2,198 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Ultra high definition video decoding with motion JPEG XR using the GPU

    Get PDF
    Many applications require real-time decoding of highresolution video pictures, for example, quick editing of video sequences in video editing applications. To increase decoding speed, parallelism can be exploited, yet, block-based image and video coding standards are difficult to decode in parallel because of the high number of dependencies between blocks. This paper investigates the parallel decoding capabilities of the new JPEG XR image coding standard for use on the massively-parallel architecture of the GPU. The potential of parallelism of the hierarchical frequency coding scheme used in the standard is addressed and a parallel decoding scheme is described suitable for real-time decoding of Ultra High Definition (4320p) Motion JPEG XR video sequences. Our results show a decoding speed of up to 46 frames per second for Ultra High Definition (4320p) sequences with high-dynamic range (32-bit/ 4: 2: 0) luma and chroma components

    Layer Selection in Progressive Transmission of Motion-Compensated JPEG2000 Video

    Get PDF
    MCJ2K (Motion-Compensated JPEG2000) is a video codec based on MCTF (Motion- Compensated Temporal Filtering) and J2K (JPEG2000). MCTF analyzes a sequence of images, generating a collection of temporal sub-bands, which are compressed with J2K. The R/D (Rate-Distortion) performance in MCJ2K is better than the MJ2K (Motion JPEG2000) extension, especially if there is a high level of temporal redundancy. MCJ2K codestreams can be served by standard JPIP (J2K Interactive Protocol) servers, thanks to the use of only J2K standard file formats. In bandwidth-constrained scenarios, an important issue in MCJ2K is determining the amount of data of each temporal sub-band that must be transmitted to maximize the quality of the reconstructions at the client side. To solve this problem, we have proposed two rate-allocation algorithms which provide reconstructions that are progressive in quality. The first, OSLA (Optimized Sub-band Layers Allocation), determines the best progression of quality layers, but is computationally expensive. The second, ESLA (Estimated-Slope sub-band Layers Allocation), is sub-optimal in most cases, but much faster and more convenient for real-time streaming scenarios. An experimental comparison shows that even when a straightforward motion compensation scheme is used, the R/D performance of MCJ2K competitive is compared not only to MJ2K, but also with respect to other standard scalable video codecs
    • …
    corecore