144 research outputs found

    Micro-motion controller

    Get PDF
    Micro-motions in surgical applications are small motions in the range of a few millimeters and are common in ophthalmic surgery, neurosurgery, and other surgeries which require precise manipulation over short distances. Robotic surgery is replacing traditional open surgery at a rapid pace due to the obvious health benefits, however, most of the robotic surgical tools use robotic motion controllers that are designed to work over a large portion of the human body, thus involving motion of the entire human arm at shoulder joint. This requirement to move a large inertial mass results in undesirable, unwanted, and imprecise motion. This senior design project has created a 2-axis micro-motion “capable” platform, where the device studies the most common linear, 2-D surgical micro-motion of pinched human fingers in a damped and un-damped state. Through a system of printed and modeled parts in combination with motors and encoders a microsurgical controller was developed which can provide location-based output on a screen. Mechanical damping was introduced to research potential stability of micro-motion in any surgeon’s otherwise unsteady hand. The device is to also serve as a starter set for future biomedical device research projects in Santa Clara University’s bioengineering department. Further developments in the microsurgical controller such as further scaling, addition of a third axis, haptic feedback through the microcontroller, and component encasing to allow productization for use on an industrial robotic surgical device for clinical applications

    Haptics in Robot-Assisted Surgery: Challenges and Benefits

    Get PDF
    Robotic surgery is transforming the current surgical practice, not only by improving the conventional surgical methods but also by introducing innovative robot-enhanced approaches that broaden the capabilities of clinicians. Being mainly of man-machine collaborative type, surgical robots are seen as media that transfer pre- and intra-operative information to the operator and reproduce his/her motion, with appropriate filtering, scaling, or limitation, to physically interact with the patient. The field, however, is far from maturity and, more critically, is still a subject of controversy in medical communities. Limited or absent haptic feedback is reputed to be among reasons that impede further spread of surgical robots. In this paper objectives and challenges of deploying haptic technologies in surgical robotics is discussed and a systematic review is performed on works that have studied the effects of providing haptic information to the users in major branches of robotic surgery. It has been tried to encompass both classical works and the state of the art approaches, aiming at delivering a comprehensive and balanced survey both for researchers starting their work in this field and for the experts

    Microsurgery robots: addressing the needs of high-precision surgical interventions

    Get PDF
    Robots can help surgeons perform better quality operations, leading to reductions in the hospitalisation time of patients and in the impact of surgery on their postoperative quality of life

    Dynamic Active Constraints for Surgical Robots using Vector Field Inequalities

    Full text link
    Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still underrepresented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this work, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.Comment: Accepted on T-RO 2019, 19 Page

    Robotic Neurosurgery

    Get PDF

    Development of a Novel Handheld Device for Active Compensation of Physiological Tremor

    Get PDF
    In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation of physiological tremor in the hand. MEMS-based accelerometers and gyroscopes have been used for sensing the motion of the hand in six degrees of freedom (DOF). An augmented state complementary Kalman filter is used to calculate 2 DOF orientation. An adaptive filtering algorithm, band-limited Multiple Fourier linear combiner (BMFLC), is used to calculate the tremor component in the hand in real-time. Ionic Polymer Metallic Composites (IPMCs) have been used as actuators for deflecting the tool-tip to compensate for the tremor

    Development and preliminary results of bimanual smart micro-surgical system using a ball-lens coupled OCT distance sensor

    Get PDF
    Bimanual surgery enhances surgical effectiveness and is required to successfully accomplish complex microsurgical tasks. The essential advantage is the ability to simultaneously grasp tissue with one hand to provide counter traction or exposure, while dissecting with the other. Towards enhancing the precision and safety of bimanual microsurgery we present a bimanual SMART micro-surgical system for a preliminary ex-vivo study. To the best of our knowledge, this is the first demonstration of a handheld bimanual microsurgical system. The essential components include a ball-lens coupled common-path swept source optical coherence tomography sensor. This system effectively suppresses asynchronous hand tremor using two PZT motors in feedback control loop and efficiently assists ambidextrous tasks. It allows precise bimanual dissection of biological tissues with a reduction in operating time as compared to the same tasks performed with conventional onehanded approaches. © 2016 Optical Society of America.1

    Doctor of Philosophy

    Get PDF
    dissertationMost humans have difficulty performing precision tasks, such as writing and painting, without additional physical support(s) to help steady or offload their arm's weight. To alleviate this problem, various passive and active devices have been developed. However, such devices often have a small workspace and lack scalable gravity compensation throughout the workspace and/or diversity in their applications. This dissertation describes the development of a Spatial Active Handrest (SAHR), a large-workspace manipulation aid, to offload the weight of the user's arm and increase user's accuracy over a large three-dimensional workspace. This device has four degrees-of-freedom and allows the user to perform dexterous tasks within a large workspace that matches the workspace of a human arm when performing daily tasks. Users can move this device to a desired position and orientation using force or position inputs, or a combination of both. The SAHR converts the given input(s) to desired velocit
    corecore