3,248 research outputs found

    Hand Motion Tracking System using Inertial Measurement Units and Infrared Cameras

    Get PDF
    This dissertation presents a novel approach to develop a system for real-time tracking of the position and orientation of the human hand in three-dimensional space, using MEMS inertial measurement units (IMUs) and infrared cameras. This research focuses on the study and implementation of an algorithm to correct the gyroscope drift, which is a major problem in orientation tracking using commercial-grade IMUs. An algorithm to improve the orientation estimation is proposed. It consists of: 1.) Prediction of the bias offset error while the sensor is static, 2.) Estimation of a quaternion orientation from the unbiased angular velocity, 3.) Correction of the orientation quaternion utilizing the gravity vector and the magnetic North vector, and 4.) Adaptive quaternion interpolation, which determines the final quaternion estimate based upon the current conditions of the sensor. The results verified that the implementation of the orientation correction algorithm using the gravity vector and the magnetic North vector is able to reduce the amount of drift in orientation tracking and is compatible with position tracking using infrared cameras for real-time human hand motion tracking. Thirty human subjects participated in an experiment to validate the performance of the hand motion tracking system. The statistical analysis shows that the error of position tracking is, on average, 1.7 cm in the x-axis, 1.0 cm in the y-axis, and 3.5 cm in the z-axis. The Kruskal-Wallis tests show that the orientation correction algorithm using gravity vector and magnetic North vector can significantly reduce the errors in orientation tracking in comparison to fixed offset compensation. Statistical analyses show that the orientation correction algorithm using gravity vector and magnetic North vector and the on-board Kalman-based orientation filtering produced orientation errors that were not significantly different in the Euler angles, Phi, Theta and Psi, with the p-values of 0.632, 0.262 and 0.728, respectively. The proposed orientation correction algorithm represents a contribution to the emerging approaches to obtain reliable orientation estimates from MEMS IMUs. The development of a hand motion tracking system using IMUs and infrared cameras in this dissertation enables future improvements in natural human-computer interactions within a 3D virtual environment

    An illumination invariant face recognition system for access control using video

    Full text link
    Illumination and pose invariance are the most challenging aspects of face recognition. In this paper we describe a fully automatic face recognition system that uses video information to achieve illumination and pose robustness. In the proposed method, highly nonlinear manifolds of face motion are approximated using three Gaussian pose clusters. Pose robustness is achieved by comparing the corresponding pose clusters and probabilistically combining the results to derive a measure of similarity between two manifolds. Illumination is normalized on a per-pose basis. Region-based gamma intensity correction is used to correct for coarse illumination changes, while further refinement is achieved by combining a learnt linear manifold of illumination variation with constraints on face pattern distribution, derived from video. Comparative experimental evaluation is presented and the proposed method is shown to greatly outperform state-of-the-art algorithms. Consistent recognition rates of 94-100% are achieved across dramatic changes in illumination

    Binokulare EigenbewegungsschĂ€tzung fĂŒr Fahrerassistenzanwendungen

    Get PDF
    Driving can be dangerous. Humans become inattentive when performing a monotonous task like driving. Also the risk implied while multi-tasking, like using the cellular phone while driving, can break the concentration of the driver and increase the risk of accidents. Others factors like exhaustion, nervousness and excitement affect the performance of the driver and the response time. Consequently, car manufacturers have developed systems in the last decades which assist the driver under various circumstances. These systems are called driver assistance systems. Driver assistance systems are meant to support the task of driving, and the field of action varies from alerting the driver, with acoustical or optical warnings, to taking control of the car, such as keeping the vehicle in the traffic lane until the driver resumes control. For such a purpose, the vehicle is equipped with on-board sensors which allow the perception of the environment and/or the state of the vehicle. Cameras are sensors which extract useful information about the visual appearance of the environment. Additionally, a binocular system allows the extraction of 3D information. One of the main requirements for most camera-based driver assistance systems is the accurate knowledge of the motion of the vehicle. Some sources of information, like velocimeters and GPS, are of common use in vehicles today. Nevertheless, the resolution and accuracy usually achieved with these systems are not enough for many real-time applications. The computation of ego-motion from sequences of stereo images for the implementation of driving intelligent systems, like autonomous navigation or collision avoidance, constitutes the core of this thesis. This dissertation proposes a framework for the simultaneous computation of the 6 degrees of freedom of ego-motion (rotation and translation in 3D Euclidean space), the estimation of the scene structure and the detection and estimation of independently moving objects. The input is exclusively provided by a binocular system and the framework does not call for any data acquisition strategy, i.e. the stereo images are just processed as they are provided. Stereo allows one to establish correspondences between left and right images, estimating 3D points of the environment via triangulation. Likewise, feature tracking establishes correspondences between the images acquired at different time instances. When both are used together for a large number of points, the result is a set of clouds of 3D points with point-to-point correspondences between clouds. The apparent motion of the 3D points between consecutive frames is caused by a variety of reasons. The most dominant motion for most of the points in the clouds is caused by the ego-motion of the vehicle; as the vehicle moves and images are acquired, the relative position of the world points with respect to the vehicle changes. Motion is also caused by objects moving in the environment. They move independently of the vehicle motion, so the observed motion for these points is the sum of the ego-vehicle motion and the independent motion of the object. A third reason, and of paramount importance in vision applications, is caused by correspondence problems, i.e. the incorrect spatial or temporal assignment of the point-to-point correspondence. Furthermore, all the points in the clouds are actually noisy measurements of the real unknown 3D points of the environment. Solving ego-motion and scene structure from the clouds of points requires some previous analysis of the noise involved in the imaging process, and how it propagates as the data is processed. Therefore, this dissertation analyzes the noise properties of the 3D points obtained through stereo triangulation. This leads to the detection of a bias in the estimation of 3D position, which is corrected with a reformulation of the projection equation. Ego-motion is obtained by finding the rotation and translation between the two clouds of points. This problem is known as absolute orientation, and many solutions based on least squares have been proposed in the literature. This thesis reviews the available closed form solutions to the problem. The proposed framework is divided in three main blocks: 1) stereo and feature tracking computation, 2) ego-motion estimation and 3) estimation of 3D point position and 3D velocity. The first block solves the correspondence problem providing the clouds of points as output. No special implementation of this block is required in this thesis. The ego-motion block computes the motion of the cameras by finding the absolute orientation between the clouds of static points in the environment. Since the cloud of points might contain independently moving objects and outliers generated by false correspondences, the direct computation of the least squares might lead to an erroneous solution. The first contribution of this thesis is an effective rejection rule that detects outliers based on the distance between predicted and measured quantities, and reduces the effects of noisy measurement by assigning appropriate weights to the data. This method is called Smoothness Motion Constraint (SMC). The ego-motion of the camera between two frames is obtained finding the absolute orientation between consecutive clouds of weighted 3D points. The complete ego-motion since initialization is achieved concatenating the individual motion estimates. This leads to a super-linear propagation of the error, since noise is integrated. A second contribution of this dissertation is a predictor/corrector iterative method, which integrates the clouds of 3D points of multiple time instances for the computation of ego-motion. The presented method considerably reduces the accumulation of errors in the estimated ego-position of the camera. Another contribution of this dissertation is a method which recursively estimates the 3D world position of a point and its velocity; by fusing stereo, feature tracking and the estimated ego-motion in a Kalman Filter system. An improved estimation of point position is obtained this way, which is used in the subsequent system cycle resulting in an improved computation of ego-motion. The general contribution of this dissertation is a single framework for the real time computation of scene structure, independently moving objects and ego-motion for automotive applications.Autofahren kann gefĂ€hrlich sein. Die Fahrleistung wird durch die physischen und psychischen Grenzen des Fahrers und durch externe Faktoren wie das Wetter beeinflusst. Fahrerassistenzsysteme erhöhen den Fahrkomfort und unterstĂŒtzen den Fahrer, um die Anzahl an UnfĂ€llen zu verringern. Fahrerassistenzsysteme unterstĂŒtzen den Fahrer durch Warnungen mit optischen oder akustischen Signalen bis hin zur Übernahme der Kontrolle ĂŒber das Auto durch das System. Eine der Hauptvoraussetzungen fĂŒr die meisten Fahrerassistenzsysteme ist die akkurate Kenntnis der Bewegung des eigenen Fahrzeugs. Heutzutage verfĂŒgt man ĂŒber verschiedene Sensoren, um die Bewegung des Fahrzeugs zu messen, wie zum Beispiel GPS und Tachometer. Doch Auflösung und Genauigkeit dieser Systeme sind nicht ausreichend fĂŒr viele Echtzeitanwendungen. Die Berechnung der Eigenbewegung aus Stereobildsequenzen fĂŒr Fahrerassistenzsysteme, z.B. zur autonomen Navigation oder Kollisionsvermeidung, bildet den Kern dieser Arbeit. Diese Dissertation prĂ€sentiert ein System zur Echtzeitbewertung einer Szene, inklusive Detektion und Bewertung von unabhĂ€ngig bewegten Objekten sowie der akkuraten SchĂ€tzung der sechs Freiheitsgrade der Eigenbewegung. Diese grundlegenden Bestandteile sind erforderlich, um viele intelligente Automobilanwendungen zu entwickeln, die den Fahrer in unterschiedlichen Verkehrssituationen unterstĂŒtzen. Das System arbeitet ausschließlich mit einer Stereokameraplattform als Sensor. Um die Eigenbewegung und die Szenenstruktur zu berechnen wird eine Analyse des Rauschens und der Fehlerfortpflanzung im Bildaufbereitungsprozess benötigt. Deshalb werden in dieser Dissertation die Rauscheigenschaften der durch Stereotriangulation erhaltenen 3D-Punkte analysiert. Dies fĂŒhrt zu der Entdeckung eines systematischen Fehlers in der SchĂ€tzung der 3D-Position, der sich mit einer Neuformulierung der Projektionsgleichung korrigieren lĂ€sst. Die Simulationsergebnisse zeigen, dass eine bedeutende Verringerung des Fehlers in der geschĂ€tzten 3D-Punktposition möglich ist. Die EigenbewegungsschĂ€tzung wird gewonnen, indem die Rotation und Translation zwischen Punktwolken geschĂ€tzt wird. Dieses Problem ist als „absolute Orientierung” bekannt und viele Lösungen auf Basis der Methode der kleinsten Quadrate sind in der Literatur vorgeschlagen worden. Diese Arbeit rezensiert die verfĂŒgbaren geschlossenen Lösungen zu dem Problem. Das vorgestellte System gliedert sich in drei wesentliche Bausteine: 1. Registrierung von Bildmerkmalen, 2. EigenbewegungsschĂ€tzung und 3. iterative SchĂ€tzung von 3D-Position und 3D-Geschwindigkeit von Weltpunkten. Der erster Block erhĂ€lt eine Folge rektifizierter Bilder als Eingabe und liefert daraus eine Liste von verfolgten Bildmerkmalen mit ihrer entsprechenden 3D-Position. Der Block „EigenbewegungsschĂ€tzung” besteht aus vier Hauptschritten in einer Schleife: 1. Bewegungsvorhersage, 2. Anwendung der Glattheitsbedingung fĂŒr die Bewegung (GBB), 3. absolute Orientierungsberechnung und 4. Bewegungsintegration. Die in dieser Dissertation vorgeschlagene GBB ist eine mĂ€chtige Bedingung fĂŒr die Ablehnung von Ausreißern und fĂŒr die Zuordnung von Gewichten zu den gemessenen 3D-Punkten. Simulationen werden mit gaußschem und slashschem Rauschen ausgefĂŒhrt. Die Ergebnisse zeigen die Überlegenheit der GBB-Version ĂŒber die Standardgewichtungsmethoden. Die StabilitĂ€t der Ergebnisse hinsichtlich Ausreißern wurde analysiert mit dem Resultat, dass der „break down point” grĂ¶ĂŸer als 50% ist. Wenn die vier Schritte iterativ ausgefĂŒhrt, werden wird ein PrĂ€diktor-Korrektor-Verfahren gewonnen.Wir nennen diese SchĂ€tzung Multi-frameschĂ€tzung im Gegensatz zur ZweiframeschĂ€tzung, die nur die aktuellen und vorherigen Bildpaare fĂŒr die Berechnung der Eigenbewegung betrachtet. Die erste Iteration wird zwischen der aktuellen und vorherigen Wolke von Punkten durchgefĂŒhrt. Jede weitere Iteration integriert eine zusĂ€tzliche Punktwolke eines vorherigen Zeitpunkts. Diese Methode reduziert die Fehlerakkumulation bei der Integration von mehreren SchĂ€tzungen in einer einzigen globalen SchĂ€tzung. Simulationsergebnisse zeigen, dass obwohl der Fehler noch superlinear im Laufe der Zeit zunimmt, die GrĂ¶ĂŸe des Fehlers um mehrere GrĂ¶ĂŸenordnungen reduziert wird. Der dritte Block besteht aus der iterativen SchĂ€tzung von 3D-Position und 3D-Geschwindigkeit von Weltpunkten. Hier wird eine Methode basierend auf einem Kalman Filter verwendet, das Stereo, Featuretracking und Eigenbewegungsdaten fusioniert. Messungen der Position eines Weltpunkts werden durch das Stereokamerasystem gewonnen. Die Differenzierung der Position des geschĂ€tzten Punkts erlaubt die zusĂ€tzliche SchĂ€tzung seiner Geschwindigkeit. Die Messungen werden durch das Messmodell gewonnen, das Stereo- und Bewegungsdaten fusioniert. Simulationsergebnisse validieren das Modell. Die Verringerung der Positionsunsicherheit im Laufe der Zeit wird mit einer Monte-Carlo Simulation erzielt. Experimentelle Ergebnisse werden mit langen Sequenzen von Bildern erzielt. ZusĂ€tzliche Tests, einschließlich einer 3D-Rekonstruktion einer Waldszene und der Berechnung der freien Kamerabewegung in einem Indoor-Szenario, wurden durchgefĂŒhrt. Die Methode zeigt gute Ergebnisse in allen FĂ€llen. Der Algorithmus liefert zudem akzeptable Ergebnisse bei der SchĂ€tzung der Lage kleiner Objekte, wie Köpfe und Beine von realen Crash-Test-Dummies

    Modeling Self-Subtraction in Angular Differential Imaging: Application to the HD 32297 Debris Disk

    Full text link
    We present a new technique for forward-modeling self-subtraction of spatially extended emission in observations processed with angular differential imaging (ADI) algorithms. High-contrast direct imaging of circumstellar disks is limited by quasi-static speckle noise and ADI is commonly used to suppress those speckles. However, the application of ADI can result in self-subtraction of the disk signal due to the disk's finite spatial extent. This signal attenuation varies with radial separation and biases measurements of the disk's surface brightness, thereby compromising inferences regarding the physical processes responsible for the dust distribution. To compensate for this attenuation, we forward-model the disk structure and compute the form of the self-subtraction function at each separation. As a proof of concept, we apply our method to 1.6 and 2.2 micron Keck AO NIRC2 scattered-light observations of the HD 32297 debris disk reduced using a variant of the "locally optimized combination of images" (LOCI) algorithm. We are able to recover disk surface brightness that was otherwise lost to self-subtraction and produce simplified models of the brightness distribution as it appears with and without self-subtraction. From the latter models, we extract radial profiles for the disk's brightness, width, midplane position, and color that are unbiased by self-subtraction. Our analysis of these measurements indicates a break in the brightness profile power law at r~110 AU and a disk width that increases with separation from the star. We also verify disk curvature that displaces the midplane by up to 30 AU towards the northwest relative to a straight fiducial midplane.Comment: Accepted for publication in ApJ, 20 pages, 10 figures, 1 tabl

    X\mathcal{X}-Metric: An N-Dimensional Information-Theoretic Framework for Groupwise Registration and Deep Combined Computing

    Full text link
    This paper presents a generic probabilistic framework for estimating the statistical dependency and finding the anatomical correspondences among an arbitrary number of medical images. The method builds on a novel formulation of the NN-dimensional joint intensity distribution by representing the common anatomy as latent variables and estimating the appearance model with nonparametric estimators. Through connection to maximum likelihood and the expectation-maximization algorithm, an information\hyp{}theoretic metric called X\mathcal{X}-metric and a co-registration algorithm named X\mathcal{X}-CoReg are induced, allowing groupwise registration of the NN observed images with computational complexity of O(N)\mathcal{O}(N). Moreover, the method naturally extends for a weakly-supervised scenario where anatomical labels of certain images are provided. This leads to a combined\hyp{}computing framework implemented with deep learning, which performs registration and segmentation simultaneously and collaboratively in an end-to-end fashion. Extensive experiments were conducted to demonstrate the versatility and applicability of our model, including multimodal groupwise registration, motion correction for dynamic contrast enhanced magnetic resonance images, and deep combined computing for multimodal medical images. Results show the superiority of our method in various applications in terms of both accuracy and efficiency, highlighting the advantage of the proposed representation of the imaging process

    Extraction of Unfoliaged Trees from Terrestrial Image Sequences

    Get PDF
    This thesis presents a generative statistical approach for the fully automatic three-dimensional (3D) extraction and reconstruction of unfoliaged deciduous trees from wide-baseline image sequences. Tree models improve the realism of 3D Geoinformation systems (GIS) by adding a natural touch. Unfoliaged trees are, however, difficult to reconstruct from images due to partially weak contrast, background clutter, occlusions, and particularly the possibly varying order of branches in images from different viewpoints. The proposed approach combines generative modeling by L-systems and statistical maximum a posteriori (MAP) estimation for the extraction of the 3D branching structure of trees. Background estimation is conducted by means of mathematical (gray scale) morphology as basis for generative modeling. A Gaussian likelihood function based on intensity differences is employed to evaluate the hypotheses. A mechanism has been devised to control the sampling sequence of multiple parameters in the Markov Chain considering their characteristics and the performance in the previous step. A tree is classified into three typical branching types after the extraction of the first level of branches and more specific Production Rules of L-systems are used accordingly. Generic prior distributions for parameters are refined based on already extracted branches in a Bayesian framework and integrated into the MAP estimation. By these means most of the branching structure besides tiny twigs can be reconstructed. Results are presented in the form of VRML (Virtual Reality Modeling Language) models demonstrating the potential of the approach as well as its current shortcomings.Diese Dissertationsschrift stellt einen generativen statistischen Ansatz fĂŒr die vollautomatische drei-dimensionale (3D) Extraktion und Rekonstruktion unbelaubter LaubbĂ€ume aus Bildsequenzen mit großer Basis vor. Modelle fĂŒr BĂ€ume verbessern den Realismus von 3D Geoinformationssystemen (GIS), indem sie Letzteren eine natĂŒrliche Note geben. Wegen z.T. schwachem Kontrast, Störobjekten im Hintergrund, Verdeckungen und insbesondere der möglicherweise unterschiedlichen Ordnung der Äste in Bildern von verschiedenen Blickpunkten sind unbelaubte BĂ€ume aber schwierig zu rekonstruieren. Der vorliegende Ansatz kombiniert generative Modellierung mittels L-Systemen und statistische Maximum A Posteriori (MAP) SchĂ€tzung fĂŒr die Extraktion der 3D Verzweigungsstruktur von BĂ€umen. Hintergrund-SchĂ€tzung wird auf Grundlage von mathematischer (Grauwert) Morphologie als Basis fĂŒr die generative Modellierung durchgefĂŒhrt. FĂŒr die Bewertung der Hypothesen wird eine Gaußsche Likelihood-Funktion basierend auf IntensitĂ€tsunterschieden benutzt. Es wurde ein Mechanismus entworfen, der die Reihenfolge der Verwendung mehrerer Parameter fĂŒr die Markoff-Kette basierend auf deren Charakteristik und Performance im letzten Schritt kontrolliert. Ein Baum wird nach der Extraktion der ersten Stufe von Ästen in drei typische Verzweigungstypen klassifiziert und es werden entsprechend Produktionsregeln von spezifischen L-Systemen verwendet. Basierend auf bereits extrahierten Ästen werden generische Prior-Verteilungen fĂŒr die Parameter in einem Bayes’schen Rahmen verfeinert und in die MAP SchĂ€tzung integriert. Damit kann ein großer Teil der Verzweigungsstruktur außer kleinen Ästen extrahiert werden. Die Ergebnisse werden als VRML (Virtual Reality Modeling Language) Modelle dargestellt. Sie zeigen das Potenzial aber auch die noch vorhandenen Defizite des Ansatzes

    Visual Odometry and Sparse Scene Reconstruction for UAVs with a Multi-Fisheye Camera System

    Get PDF
    Autonomously operating UAVs demand a fast localization for navigation, to actively explore unknown areas and to create maps. For pose estimation, many UAV systems make use of a combination of GPS receivers and inertial sensor units (IMU). However, GPS signal coverage may go down occasionally, especially in the close vicinity of objects, and precise IMUs are too heavy to be carried by lightweight UAVs. This and the high cost of high quality IMU motivate the use of inexpensive vision based sensors for localization using visual odometry or visual SLAM (simultaneous localization and mapping) techniques. The first contribution of this thesis is a more general approach to bundle adjustment with an extended version of the projective coplanarity equation which enables us to make use of omnidirectional multi-camera systems which may consist of fisheye cameras that can capture a large field of view with one shot. We use ray directions as observations instead of image points which is why our approach does not rely on a specific projection model assuming a central projection. In addition, our approach allows the integration and estimation of points at infinity, which classical bundle adjustments are not capable of. We show that the integration of far or infinitely far points stabilizes the estimation of the rotation angles of the camera poses. In its second contribution, we employ this approach to bundle adjustment in a highly integrated system for incremental pose estimation and mapping on light-weight UAVs. Based on the image sequences of a multi-camera system our system makes use of tracked feature points to incrementally build a sparse map and incrementally refines this map using the iSAM2 algorithm. Our system is able to optionally integrate GPS information on the level of carrier phase observations even in underconstrained situations, e.g. if only two satellites are visible, for georeferenced pose estimation. This way, we are able to use all available information in underconstrained GPS situations to keep the mapped 3D model accurate and georeferenced. In its third contribution, we present an approach for re-using existing methods for dense stereo matching with fisheye cameras, which has the advantage that highly optimized existing methods can be applied as a black-box without modifications even with cameras that have field of view of more than 180 deg. We provide a detailed accuracy analysis of the obtained dense stereo results. The accuracy analysis shows the growing uncertainty of observed image points of fisheye cameras due to increasing blur towards the image border. Core of the contribution is a rigorous variance component estimation which allows to estimate the variance of the observed disparities at an image point as a function of the distance of that point to the principal point. We show that this improved stochastic model provides a more realistic prediction of the uncertainty of the triangulated 3D points.Autonom operierende UAVs benötigen eine schnelle Lokalisierung zur Navigation, zur Exploration unbekannter Umgebungen und zur Kartierung. Zur Posenbestimmung verwenden viele UAV-Systeme eine Kombination aus GPS-EmpfĂ€ngern und Inertial-Messeinheiten (IMU). Die VerfĂŒgbarkeit von GPS-Signalen ist jedoch nicht ĂŒberall gewĂ€hrleistet, insbesondere in der NĂ€he abschattender Objekte, und prĂ€zise IMUs sind fĂŒr leichtgewichtige UAVs zu schwer. Auch die hohen Kosten qualitativ hochwertiger IMUs motivieren den Einsatz von kostengĂŒnstigen bildgebenden Sensoren zur Lokalisierung mittels visueller Odometrie oder SLAM-Techniken zur simultanen Lokalisierung und Kartierung. Im ersten wissenschaftlichen Beitrag dieser Arbeit entwickeln wir einen allgemeineren Ansatz fĂŒr die BĂŒndelausgleichung mit einem erweiterten Modell fĂŒr die projektive KollinearitĂ€tsgleichung, sodass auch omnidirektionale Multikamerasysteme verwendet werden können, welche beispielsweise bestehend aus Fisheyekameras mit einer Aufnahme einen großen Sichtbereich abdecken. Durch die Integration von Strahlrichtungen als Beobachtungen ist unser Ansatz nicht von einem kameraspezifischen Abbildungsmodell abhĂ€ngig solange dieses der Zentralprojektion folgt. Zudem erlaubt unser Ansatz die Integration und SchĂ€tzung von unendlich fernen Punkten, was bei klassischen BĂŒndelausgleichungen nicht möglich ist. Wir zeigen, dass durch die Integration weit entfernter und unendlich ferner Punkte die SchĂ€tzung der Rotationswinkel der Kameraposen stabilisiert werden kann. Im zweiten Beitrag verwenden wir diesen entwickelten Ansatz zur BĂŒndelausgleichung fĂŒr ein System zur inkrementellen PosenschĂ€tzung und dĂŒnnbesetzten Kartierung auf einem leichtgewichtigen UAV. Basierend auf den Bildsequenzen eines Mulitkamerasystems baut unser System mittels verfolgter markanter Bildpunkte inkrementell eine dĂŒnnbesetzte Karte auf und verfeinert diese inkrementell mittels des iSAM2-Algorithmus. Unser System ist in der Lage optional auch GPS Informationen auf dem Level von GPS-TrĂ€gerphasen zu integrieren, wodurch sogar in unterbestimmten Situation - beispielsweise bei nur zwei verfĂŒgbaren Satelliten - diese Informationen zur georeferenzierten PosenschĂ€tzung verwendet werden können. Im dritten Beitrag stellen wir einen Ansatz zur Verwendung existierender Methoden fĂŒr dichtes Stereomatching mit Fisheyekameras vor, sodass hoch optimierte existierende Methoden als Black Box ohne Modifzierungen sogar mit Kameras mit einem Gesichtsfeld von mehr als 180 Grad verwendet werden können. Wir stellen eine detaillierte Genauigkeitsanalyse basierend auf dem Ergebnis des dichten Stereomatchings dar. Die Genauigkeitsanalyse zeigt, wie stark die Genauigkeit beobachteter Bildpunkte bei Fisheyekameras zum Bildrand aufgrund von zunehmender UnschĂ€rfe abnimmt. Das KernstĂŒck dieses Beitrags ist eine VarianzkomponentenschĂ€tzung, welche die SchĂ€tzung der Varianz der beobachteten DisparitĂ€ten an einem Bildpunkt als Funktion von der Distanz dieses Punktes zum Hauptpunkt des Bildes ermöglicht. Wir zeigen, dass dieses verbesserte stochastische Modell eine realistischere PrĂ€diktion der Genauigkeiten der 3D Punkte ermöglicht
    • 

    corecore