2,672 research outputs found

    Role of Bootstrap Averaging in Generalized Approximate Message Passing

    Full text link
    Generalized approximate message passing (GAMP) is a computationally efficient algorithm for estimating an unknown signal w0∈RNw_0\in\mathbb{R}^N from a random linear measurement y=Xw0+ϔ∈RMy= Xw_0 + \epsilon\in\mathbb{R}^M, where X∈RM×NX\in\mathbb{R}^{M\times N} is a known measurement matrix and Ï”\epsilon is the noise vector. The salient feature of GAMP is that it can provide an unbiased estimator r^G∌N(w0,s^2IN)\hat{r}^{\rm G}\sim\mathcal{N}(w_0, \hat{s}^2I_N), which can be used for various hypothesis-testing methods. In this study, we consider the bootstrap average of an unbiased estimator of GAMP for the elastic net. By numerically analyzing the state evolution of \emph{approximate message passing with resampling}, which has been proposed for computing bootstrap statistics of the elastic net estimator, we investigate when the bootstrap averaging reduces the variance of the unbiased estimator and the effect of optimizing the size of each bootstrap sample and hyperparameter of the elastic net regularization in the asymptotic setting M,N→∞,M/N→α∈(0,∞)M, N\to\infty, M/N\to\alpha\in(0,\infty). The results indicate that bootstrap averaging effectively reduces the variance of the unbiased estimator when the actual data generation process is inconsistent with the sparsity assumption of the regularization and the sample size is small. Furthermore, we find that when w0w_0 is less sparse, and the data size is small, the system undergoes a phase transition. The phase transition indicates the existence of the region where the ensemble average of unbiased estimators of GAMP for the elastic net norm minimization problem yields the unbiased estimator with the minimum variance.Comment: 6 pages, 5 figure

    Fitting a function to time-dependent ensemble averaged data

    Get PDF
    Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.Comment: 47 pages (main text: 15 pages, supplementary: 32 pages

    Self-Referential Noise and the Synthesis of Three-Dimensional Space

    Get PDF
    Generalising results from Godel and Chaitin in mathematics suggests that self-referential systems contain intrinsic randomness. We argue that this is relevant to modelling the universe and show how three-dimensional space may arise from a non-geometric order-disorder model driven by self-referential noise.Comment: Figure labels correcte

    Force-dependent unbinding rate of molecular motors from stationary optical trap data

    Full text link
    Molecular motors walk along filaments until they detach stochastically with a force-dependent unbinding rate. Here, we show that this unbinding rate can be obtained from the analysis of experimental data of molecular motors moving in stationary optical traps. Two complementary methods are presented, based on the analysis of the distribution for the unbinding forces and of the motor's force traces. In the first method, analytically derived force distributions for slip bonds, slip-ideal bonds, and catch bonds are used to fit the cumulative distributions of the unbinding forces. The second method is based on the statistical analysis of the observed force traces. We validate both methods with stochastic simulations and apply them to experimental data for kinesin-1
    • 

    corecore