1,823 research outputs found

    Review of Non-Technical Losses Identification Techniques

    Get PDF
    Illegally consumption of electric power, termed as non-technical losses for the distribution companies is one of the dominant factors all over the world for many years. Although there are some conventional methods to identify these irregularities, such as physical inspection of meters at the consumer premises etc, but it requires large number of manpower and time; then also it does not seem to be adequate. Now a days there are various methods and algorithms have been developed that are proposed in different research papers, to detect non-technical losses. In this paper these methods are reviewed, their important features are highlighted and also the limitations are identified. Finally, the qualitative comparison of various non-technical losses identification algorithms is presented based on their performance, costs, data handling, quality control and execution times. It can be concluded that the graph-based classifier, Optimum-Path Forest algorithm that have both supervised and unsupervised variants, yields the most accurate result to detect non-technical losses

    Improving Knowledge-Based Systems with statistical techniques, text mining, and neural networks for non-technical loss detection

    Get PDF
    Currently, power distribution companies have several problems that are related to energy losses. For example, the energy used might not be billed due to illegal manipulation or a breakdown in the customer’s measurement equipment. These types of losses are called non-technical losses (NTLs), and these losses are usually greater than the losses that are due to the distribution infrastructure (technical losses). Traditionally, a large number of studies have used data mining to detect NTLs, but to the best of our knowledge, there are no studies that involve the use of a Knowledge-Based System (KBS) that is created based on the knowledge and expertise of the inspectors. In the present study, a KBS was built that is based on the knowledge and expertise of the inspectors and that uses text mining, neural networks, and statistical techniques for the detection of NTLs. Text mining, neural networks, and statistical techniques were used to extract information from samples, and this information was translated into rules, which were joined to the rules that were generated by the knowledge of the inspectors. This system was tested with real samples that were extracted from Endesa databases. Endesa is one of the most important distribution companies in Spain, and it plays an important role in international markets in both Europe and South America, having more than 73 million customers

    Electric Power Grid Resilience to Cyber Adversaries: State of the Art

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The smart electricity grids have been evolving to a more complex cyber-physical ecosystem of infrastructures with integrated communication networks, new carbon-free sources of powergeneratio n, advanced monitoring and control systems, and a myriad of emerging modern physical hardware technologies. With the unprecedented complexity and heterogeneity in dynamic smart grid networks comes additional vulnerability to emerging threats such as cyber attacks. Rapid development and deployment of advanced network monitoring and communication systems on one hand, and the growing interdependence of the electric power grids to a multitude of lifeline critical infrastructures on the other, calls for holistic defense strategies to safeguard the power grids against cyber adversaries. In order to improve the resilience of the power grid against adversarial attacks and cyber intrusions, advancements should be sought on detection techniques, protection plans, and mitigation practices in all electricity generation, transmission, and distribution sectors. This survey discusses such major directions and recent advancements from a lens of different detection techniques, equipment protection plans, and mitigation strategies to enhance the energy delivery infrastructure resilience and operational endurance against cyber attacks. This undertaking is essential since even modest improvements in resilience of the power grid against cyber threats could lead to sizeable monetary savings and an enriched overall social welfare

    ANOMALY INFERENCE BASED ON HETEROGENEOUS DATA SOURCES IN AN ELECTRICAL DISTRIBUTION SYSTEM

    Get PDF
    Harnessing the heterogeneous data sets would improve system observability. While the current metering infrastructure in distribution network has been utilized for the operational purpose to tackle abnormal events, such as weather-related disturbance, the new normal we face today can be at a greater magnitude. Strengthening the inter-dependencies as well as incorporating new crowd-sourced information can enhance operational aspects such as system reconfigurability under extreme conditions. Such resilience is crucial to the recovery of any catastrophic events. In this dissertation, it is focused on the anomaly of potential foul play within an electrical distribution system, both primary and secondary networks as well as its potential to relate to other feeders from other utilities. The distributed generation has been part of the smart grid mission, the addition can be prone to electronic manipulation. This dissertation provides a comprehensive establishment in the emerging platform where the computing resources have been ubiquitous in the electrical distribution network. The topics covered in this thesis is wide-ranging where the anomaly inference includes load modeling and profile enhancement from other sources to infer of topological changes in the primary distribution network. While metering infrastructure has been the technological deployment to enable remote-controlled capability on the dis-connectors, this scholarly contribution represents the critical knowledge of new paradigm to address security-related issues, such as, irregularity (tampering by individuals) as well as potential malware (a large-scale form) that can massively manipulate the existing network control variables, resulting into large impact to the power grid

    A Novel Features-Based Multivariate Gaussian Distribution Method for the Fraudulent Consumers Detection in the Power Utilities of Developing Countries

    Get PDF
    According to statistics, developing countries all over the world have suffered significant non-technical losses (NTLs) both in natural gas and electricity distribution. NTLs are thought of as energy that is consumed but not billed e.g., theft, meter tampering, meter reversing, etc. The adaptation of smart metering technology has enabled much of the developed world to significantly reduce their NTLs. Also, the recent advancements in machine learning and data analytics have enabled a further reduction in these losses. However, these solutions are not directly applicable to developing countries because of their infrastructure and manual data collection. This paper proposes a tailored solution based on machine learning to mitigate NTLs in developing countries. The proposed method is based on a multivariate Gaussian distribution framework to identify fraudulent consumers. It integrates novel features like social class stratification and the weather profile of an area. Thus, achieving a significant improvement in fraudulent consumer detection. This study has been done on a real dataset of consumers provided by the local power distribution companies that have been cross-validated by onsite inspection. The obtained results successfully identify fraudulent consumers with a maximum success rate of 75%. 2013 IEEE.This work was supported by the Qatar National Library.Scopus2-s2.0-8510734936

    Game-Theoretic and Machine-Learning Techniques for Cyber-Physical Security and Resilience in Smart Grid

    Get PDF
    The smart grid is the next-generation electrical infrastructure utilizing Information and Communication Technologies (ICTs), whose architecture is evolving from a utility-centric structure to a distributed Cyber-Physical System (CPS) integrated with a large-scale of renewable energy resources. However, meeting reliability objectives in the smart grid becomes increasingly challenging owing to the high penetration of renewable resources and changing weather conditions. Moreover, the cyber-physical attack targeted at the smart grid has become a major threat because millions of electronic devices interconnected via communication networks expose unprecedented vulnerabilities, thereby increasing the potential attack surface. This dissertation is aimed at developing novel game-theoretic and machine-learning techniques for addressing the reliability and security issues residing at multiple layers of the smart grid, including power distribution system reliability forecasting, risk assessment of cyber-physical attacks targeted at the grid, and cyber attack detection in the Advanced Metering Infrastructure (AMI) and renewable resources. This dissertation first comprehensively investigates the combined effect of various weather parameters on the reliability performance of the smart grid, and proposes a multilayer perceptron (MLP)-based framework to forecast the daily number of power interruptions in the distribution system using time series of common weather data. Regarding evaluating the risk of cyber-physical attacks faced by the smart grid, a stochastic budget allocation game is proposed to analyze the strategic interactions between a malicious attacker and the grid defender. A reinforcement learning algorithm is developed to enable the two players to reach a game equilibrium, where the optimal budget allocation strategies of the two players, in terms of attacking/protecting the critical elements of the grid, can be obtained. In addition, the risk of the cyber-physical attack can be derived based on the successful attack probability to various grid elements. Furthermore, this dissertation develops a multimodal data-driven framework for the cyber attack detection in the power distribution system integrated with renewable resources. This approach introduces the spare feature learning into an ensemble classifier for improving the detection efficiency, and implements the spatiotemporal correlation analysis for differentiating the attacked renewable energy measurements from fault scenarios. Numerical results based on the IEEE 34-bus system show that the proposed framework achieves the most accurate detection of cyber attacks reported in the literature. To address the electricity theft in the AMI, a Distributed Intelligent Framework for Electricity Theft Detection (DIFETD) is proposed, which is equipped with Benford’s analysis for initial diagnostics on large smart meter data. A Stackelberg game between utility and multiple electricity thieves is then formulated to model the electricity theft actions. Finally, a Likelihood Ratio Test (LRT) is utilized to detect potentially fraudulent meters

    The Role of Deep Learning in Advancing Proactive Cybersecurity Measures for Smart Grid Networks: A Survey

    Full text link
    As smart grids (SG) increasingly rely on advanced technologies like sensors and communication systems for efficient energy generation, distribution, and consumption, they become enticing targets for sophisticated cyberattacks. These evolving threats demand robust security measures to maintain the stability and resilience of modern energy systems. While extensive research has been conducted, a comprehensive exploration of proactive cyber defense strategies utilizing Deep Learning (DL) in {SG} remains scarce in the literature. This survey bridges this gap, studying the latest DL techniques for proactive cyber defense. The survey begins with an overview of related works and our distinct contributions, followed by an examination of SG infrastructure. Next, we classify various cyber defense techniques into reactive and proactive categories. A significant focus is placed on DL-enabled proactive defenses, where we provide a comprehensive taxonomy of DL approaches, highlighting their roles and relevance in the proactive security of SG. Subsequently, we analyze the most significant DL-based methods currently in use. Further, we explore Moving Target Defense, a proactive defense strategy, and its interactions with DL methodologies. We then provide an overview of benchmark datasets used in this domain to substantiate the discourse.{ This is followed by a critical discussion on their practical implications and broader impact on cybersecurity in Smart Grids.} The survey finally lists the challenges associated with deploying DL-based security systems within SG, followed by an outlook on future developments in this key field.Comment: To appear in the IEEE internet of Things journa

    Big Data Analytics in Smart Grids for Renewable Energy Networks: Systematic Review of Information and Communication Technology Tools

    Get PDF
    El desarrollo industrial y económico de los países industrializados, a partir del siglo XIX, ha ido de la mano del desarrollo de la electricidad, del motor de combustión interna, de los ordenadores, de Internet, de la utilización de datos y del uso intensivo del conocimiento centrado en la ciencia y la tecnología. La mayoría de las fuentes de energía convencionales han demostrado ser finitas y agotables. A su vez, las diferentes actividades de producción de bienes y servicios que utilizan combustibles fósiles y energía convencional, han aumentado significativamente la contaminación del medio ambiente, y con ello, han contribuido al calentamiento global. El objetivo de este trabajo fue realizar una aproximación teórica a las tecnologías de análisis de datos e inteligencia de negocio aplicadas a las redes de sistemas eléctricos inteligentes con energías renovables. Para este trabajo se realizó una revisión bibliométrica y bibliográfica sobre Big Data Analytics, herramientas TIC de la industria 4.0 y Business intelligence en diferentes bases de datos disponibles en el dominio público. Los resultados del análisis indican la importancia del uso de la analítica de datos y la inteligencia de negocio en la gestión de las empresas energéticas. El trabajo concluye señalando cómo se está aplicando la inteligencia de negocio y la analítica de datos en ejemplos concretos de empresas energéticas y su creciente importancia en la toma de decisiones estratégicas y operativasThe industrial and economic development of the industrialized countries, from the nineteenth century, has gone hand in hand with the development of electricity, the internal combustion engine, computers, the Internet, data use and the intensive use of knowledge focused on science and the technology. Most conventional energy sources have proven to be finite and exhaustible. In turn, the different production activities of goods and services using fossil fuels and conventional energy, have significantly increased the pollution of the environment, and with it, contributed to global warming. The objective of this work was to carry out a theoretical approach to data analytics and business intelligence technologies applied to smart electrical-system networks with renewable energies. For this paper, a bibliometric and bibliographic review about Big Data Analytics, ICT tools of industry 4.0 and Business intelligence was carried out in different databases available in the public domain. The results of the analysis indicate the importance of the use of data analytics and business intelligence in the management of energy companies. The paper concludes by pointing out how business intelligence and data analytics are being applied in specific examples of energy companies and their growing importance in strategic and operational decision makinghttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://scholar.google.com/citations?user=9HLAZYUAAAAJ&hl=eshttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961https://orcid.org/0000-0003-1166-198
    corecore