10,714 research outputs found

    Dynamically typed languages

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features

    Safer typing of complex API usage through Java generics

    Get PDF
    When several incompatible implementations of a single API are in use in a Java program, the danger exists that instances from different implementations may inadvertently be mixed, leading to errors. In this paper we show how to use generics to prevent such mixing. The core idea of the approach is to add a type parameter to the interfaces of the API, and tie the classes that make up an implementation to a unique choice of type parameter. In this way methods of the API can only be invoked with arguments that belong to the same implementation. We show that the presence of a type parameter in the interfaces does not violate the principle of interface-based programming: clients can still completely abstract over the choice of implementation. In addition, we demonstrate how code can be reused between different implementations, how implementations can be defined as extensions of other implementations, and how different implementations may be mixed in a controlled and safe manner. To explore the feasibility of the approach, gauge its usability, and identify any issues that may crop up in practical usage, we have refactored a fairly large existing API-based application suite, and we report on the experience gained in the process

    Linguistic Reflection in Java

    Get PDF
    Reflective systems allow their own structures to be altered from within. Here we are concerned with a style of reflection, called linguistic reflection, which is the ability of a running program to generate new program fragments and to integrate these into its own execution. In particular we describe how this kind of reflection may be provided in the compiler-based, strongly typed object-oriented programming language Java. The advantages of the programming technique include attaining high levels of genericity and accommodating system evolution. These advantages are illustrated by an example taken from persistent programming which shows how linguistic reflection allows functionality (program code) to be generated on demand (Just-In-Time) from a generic specification and integrated into the evolving running program. The technique is evaluated against alternative implementation approaches with respect to efficiency, safety and ease of use.Comment: 25 pages. Source code for examples at http://www-ppg.dcs.st-and.ac.uk/Java/ReflectionExample/ Dynamic compilation package at http://www-ppg.dcs.st-and.ac.uk/Java/DynamicCompilation

    CPL: A Core Language for Cloud Computing -- Technical Report

    Full text link
    Running distributed applications in the cloud involves deployment. That is, distribution and configuration of application services and middleware infrastructure. The considerable complexity of these tasks resulted in the emergence of declarative JSON-based domain-specific deployment languages to develop deployment programs. However, existing deployment programs unsafely compose artifacts written in different languages, leading to bugs that are hard to detect before run time. Furthermore, deployment languages do not provide extension points for custom implementations of existing cloud services such as application-specific load balancing policies. To address these shortcomings, we propose CPL (Cloud Platform Language), a statically-typed core language for programming both distributed applications as well as their deployment on a cloud platform. In CPL, application services and deployment programs interact through statically typed, extensible interfaces, and an application can trigger further deployment at run time. We provide a formal semantics of CPL and demonstrate that it enables type-safe, composable and extensible libraries of service combinators, such as load balancing and fault tolerance.Comment: Technical report accompanying the MODULARITY '16 submissio

    An overview of the ciao multiparadigm language and program development environment and its design philosophy

    Full text link
    We describe some of the novel aspects and motivations behind the design and implementation of the Ciao multiparadigm programming system. An important aspect of Ciao is that it provides the programmer with a large number of useful features from different programming paradigms and styles, and that the use of each of these features can be turned on and off at will for each program module. Thus, a given module may be using e.g. higher order functions and constraints, while another module may be using objects, predicates, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of program optimizations. Such optimizations produce code that is highly competitive with other dynamic languages or, when the highest levéis of optimization are used, even that of static languages, all while retaining the interactive development environment of a dynamic language. The environment also includes a powerful auto-documenter. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in the format of a paper, pointing instead to the existing literature on the system

    Variadic genericity through linguistic reflection : a performance evaluation

    Get PDF
    This work is partially supported by the EPSRC through Grant GR/L32699 “Compliant System Architecture” and by ESPRIT through Working Group EP22552 “PASTEL”.The use of variadic genericity within schema definitions increases the variety of databases that may be captured by a single specification. For example, a class of databases of engineering part objects, in which each database instance varies in the types of the parts and the number of part types, should lend itself to a single definition. However, precise specification of such a schema is beyond the capability of polymorphic type systems and schema definition languages. It is possible to capture such generality by introducing a level of interpretation, in which the variation in types and in the number of fields is encoded in a general data structure. Queries that interpret the encoded information can be written against this general data structure. An alternative approach to supporting such variadic genericity is to generate a precise database containing tailored data structures and queries for each different instance of the virtual schema.1 This involves source code generation and dynamic compilation, a process known as linguistic reflection. The motivation is that once generated, the specific queries may execute more efficiently than their generic counter-parts, since the generic code is “compiled away”. This paper compares the two approaches and gives performance measurements for an example using the persistent languages Napier88 and PJama.Postprin
    • 

    corecore