2 research outputs found

    Delta robot motion control

    Get PDF
    Abstract. The aim of this thesis is to generate a functional motion control to a delta robot. The motion control is based on solving the inverse kinematics problem of the delta robot. This solution is then used to form the control logic of the robot. In addition, this thesis also introduces forward kinematics solution models and, the most common industrial robots and their features. Applications of industrial robots, as well as the industries that utilize them the most are also examined. This thesis introduces a self-made delta robot and its motion control design. The functionality of motion control is studied by measuring the positioning accuracy as well as the repeatability of the self-made delta robot in the xy-plane. Accuracy measurements are performed using a separate measuring device. A small-scale comparison between the positioning accuracy of a self-made and a commercial delta robot is implemented to find out how closely can the performance of a commercial delta robot be reproduced with a self-made delta robot. The results of this thesis indicate that the inverse kinematics model of the delta robot as well as the motion control actually work. The results demonstrate that the performance of the self-made delta robot is at a good level and that further development is worthwhile. There was not enough measurement data to perform a proper comparison between the self-made and the commercial delta robot. However, despite the narrow sampling, it is assumed that the positioning accuracy of the self-made delta robot is not yet at the same level as that of the commercial product. The accuracy of the self-made delta robot presented in this thesis can be improved by developing the feeding of the robot’s drive commands. The materials used in the construction of the robot as well as the quality of the joints also affect the accuracy. The inverse kinematics model of the delta robot presented in this thesis can be easily scaled to different sized delta robots depending on the application. Motion control can be utilized in the control of delta robots implemented with a similar mechanical structure.Delta-robotin liikkeenohjaus. Tiivistelmä. Tämän työn tarkoituksena on suunnitella delta-robotille toimiva liikkeenohjaus. Liikkeenohjauksen rakentaminen perustuu delta-robotin käänteiskinematiikan ratkaisemiseen. Käänteiskinematiikan ratkaisua hyödynnetään ohjauslogiikan toteutuksessa. Työssä tutustutaan myös suorankinematiikan ratkaisumalleihin, sekä esitellään yleisimpiä teollisuusrobotteja ja niiden ominaisuuksia. Työssä tarkastellaan myös teollisuusrobottien käyttökohteita, sekä niitä eniten hyödyntävät teollisuudenalat. Työssä tutustutaan omavalmisteiseen delta-robottiin ja sen liikkeenohjauksen suunnitteluun. Liikkeenohjauksen toimivuutta tutkitaan mittaamalla omavalmisteisen delta-robotin paikoitustarkkuus, sekä toistotarkkuus xy-tasossa. Tarkkuusmittaukset toteutetaan käyttämällä erillistä mittalaitetta. Työssä pyritään myös selvittämään kuinka lähelle kaupallisen delta-robotin suorituskykyä voidaan päästä omavalmisteisella delta-robotilla. Työssä toteutetaan pienimuotoinen vertailu omavalmisteisen ja kaupallisen delta-robotin paikoitustarkkuuden välillä. Työn tulokset osoittavat, että delta-robotin käänteiskinematiikan malli, sekä liikkeenohjaus toimivat. Tuloksista selviää, että omavalmisteisen delta-robotin suorituskyky on hyvällä tasolla ja sen kehittämistä kannattaa jatkaa. Omavalmisteisen ja kaupallisen delta-robotin kunnolliseen vertailuun ei saatu riittävästi dataa. Suppeasta otannasta huolimatta on kuitenkin oletettavaa, että omavalmisteisen delta-robotin paikoitustarkkuus ei vielä yllä samalle tasolle kaupallisen tuotteen kanssa. Työssä esitellyn omavalmisteisen delta-robotin tarkkuutta saadaan parannettua kehittämällä robotin ajokomentojen syöttämistä. Myös robotin rakenteessa käytetyt materiaalit, sekä nivelten laadukkuus vaikuttavat tarkkuuteen. Työssä esitetty delta-robotin käänteiskinematiikan malli on helposti skaalattavissa myös erikokoisiin delta-robotteihin käyttökohteesta riippuen. Liikkeenohjausta voidaan hyödyntää vastaavalla mekaanisella rakenteella toteutettujen delta-robottien ohjauksessa

    Análise, simulação e controle de um sistema de compensação de movimento utilizando um manipulador plataforma de stewart acionado por atuadores hidráulicos

    Get PDF
    O mecanismo Plataforma de Stewart é um manipulador do tipo paralelo, com seis graus de liberdade, boa relação peso/carga e alta rigidez. Tais características conferem a este tipo de manipulador propriedades superiores de precisão em relação aos manipuladores seriais. Neste trabalho, o controle de um Manipulador Plataforma de Stewart (MPS) acionado por atuadores hidráulicos é estudado com o objetivo de compensação de movimentos para viabilização de transferência de cargas e pessoas em ambiente naval.Visando ao desenvolvimento de um protótipo experimental, o manipulador é estudado considerando a situação em que se encontra sobreposto a um segundo MPS que tem por objetivo simular o movimento da maré, sendo ambos MPS considerados desacoplados dinamicamente. Neste contexto, o estudo envolve a análise cinemática e dinâmica do manipulador incluindo, também, a dinâmica dos cilindros hidráulicos. Além disso, são estudadas unidades de medição inercial (IMU) utilizando-as como instrumento para medição do movimento da base a ser compensado. O projeto do controlador do sistema de atenuação de movimento faz uso da técnica de Torque Computado (TC). A análise de estabilidade, feita separadamente para o sistema mecânico e hidráulico, baseou-se da teoria de Lyapunov. Simulações realizadas considerando trajetórias similares às do movimento de um navio são utilizadas. Para compensação do movimento são utilizados, também, sinais provenientes de uma IMU. Por meio de simulação, comprova-se que o sistema proposto é capaz de compensar adequadamente os movimentos da base estudados.The Stewart platform mechanism is a parallel manipulator with six degrees of freedom, high load/weight ratio and high stifness. These properties give them a better accuracy when compared to serial manipulators. This work focuses on study of electrohydraucally Stewart Platform Manipulators (MPS) to enable compensation of vessels motions for load and personell transfer in sea. Aimed at developing an experimental prototype, a second MPS is placed underneath the rst MPS to simulate vessels motions and so both manipulators are considered dynamically decoupled. In this sense, the kinematics and dynamics of this manipulator are presented, as well as a mathematical model of the hydraulic actuator. Furthermore, special attention is given to the study of inertial measurement units (IMU) which is used as an instrument for measuring the motion to be compensated. Controller design for the compensation system is developed considering compute torque theory which consider the system separated in two: mechanical and hydraulic. The Lyapunov criteria is used to guarantee closed loop stability for each subsystem. Simulations are performed considering similar vessel motions. Signals provided from a comercial IMU are used for motion compensation. The control compensation performance is veri ed by means of computer simulations
    corecore