3,098 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems; its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area

    SLSF: Stable Linked Structure Flooding For Mobile Ad Hoc Networks

    Get PDF
    International audienceFor some applications in ad hoc networks optimal dissemination is a key issue (e.g. service discovery, network management). In this paper, we are creating and exploiting stable (sub-)structures to achieve an efficient (as far as low network resource usage is concerned) dissemination by building a two-layer protocol. Firstly, single-hop clusters, among stable-connected devices, are created. Secondly, on top of those clusters, inter-cluster relays (ICR) are determined. This leads to an overall stable-connected structure. The results show that the proposed stable linked structure flooding (SLSF) protocol efficiently disseminates data among stable nodes. Interestingly with growing density both the number of forwarding nodes and the bandwidth used remain comparatively low. Therefore we plan to use SLSF as a basis for a stable service discovery

    Generative Boltzmann Adversarial Network in Manet Attack Detection and QOS Enhancement with Latency

    Get PDF
    Mobile Ad-Hoc Network (MANET) are considered as self-configured network those does not have any centralized base station for the network monitoring and control. MANET environment does not control architecture for routing for the frequent maintenance of topology. The drastic development of Internet leads to adverse effect of development in MANET for different multimedia application those are sensitive to latency. Upon the effective maintenance of the QoS routing route discovery is performed to calculate queue and contention delay. However, the MANET requirement comprises of the complex procedure to withstand the Quality of Service (QoS) with Artificial Intelligence (AI). In MANET it is necessary to compute the MANET attacks with improved QoS with the reduced latency as existing model leads to higher routing and increased latency.  In this paper proposed a Generative Boltzmann Networking Weighted Graph (GBNWG) model for the QoS improvement in MANET to reduce latency. With GBNWG model the MANET model network performance are computed with the weighted graph model. The developed weighted graph computes the routes in the MANET network for the estimation of the available path in the routing metrices. The proposed GBNWG model is comparatively estimated with the conventional QOD technique. Simulation analysis stated that GBNWG scheme exhibits the improved performance in the QoS parameters. The GBNWG scheme improves the PDR value by 12%, 41% reduced control packets and 45% improved throughput value

    Self-Organizing and Scalable Routing Protocol (SOSRP) for Underwater Acoustic Sensor Networks

    Get PDF
    Las redes de sensores acústicas submarinas (UASN) han ganado mucha importancia en los últimos años: el 71% de la superficie de la Tierra está cubierta por océanos. La mayoría de ellos, aún no han sido explorados. Aplicaciones como prospección de yacimientos, prevención de desastres o recopilación de datos para estudios de biología marina se han convertido en el campo de interés para muchos investigadores. Sin embargo, las redes UASN tienen dos limitaciones: un medio muy agresivo (marino) y el uso de señales acústicas. Ello hace que las técnicas para redes de sensores inalámbricas (WSN) terrestres no sean aplicables. Tras realizar un recorrido por el estado del arte en protocolos para redes UASN, se propone en este TFM un protocolo de enrutamiento denominado "SOSRP", descentralizado y basado en tablas en cada nodo. Se usa como criterio para crear rutas una combinación del valor de saltos hasta el nodo recolector y la distancia. Las funciones previstas del protocolo abarcan: autoorganización de las rutas, tolerancia a fallos y detección de nodos aislados. Mediante la implementación en MATLAB de SOSRP así como de un modelo de propagación y energía apropiados para entorno marino, se obtienen resultados de rendimiento en distintos escenarios (variando nºextremo de paquetes, consumo de energía o longitud de rutas creadas (con y sin fallo). Los resultados obtenidos muestran una operación estable, fiable y adecuada para el despliegue y operación de los nodos en redes UASN

    Dynamic Fault Diagnosis in Mobile Ad Hoc Networks

    Get PDF
    Fault diagnosis in Mobile Ad-hoc Networks (MANETs) is very challenging task. Diagnosis algorithm should be efficient enough to find the status (either faulty or fault free) of each mobile in the network. The models in the literature are either for static fault or dynamic fault. Dynamic fault identification is more complex and difficult than static fault. In this thesis, we proposed Dynamic Distributed Diagnosis Model to identify dynamic faults arising during the testing phase of the diagnosis session. The model assumes that each node has fixed and same set of neighbours i.e. the MANET topology is static throughout the diagnosis session. Our model works on a network with nn number of nodes, which is σ\sigma-diagnosable. Where σ\sigma is one less than the minimum degree of a node in the network. It has two variation based on dissemination method, first is simple flooding approach and second is based on spanning tree. The flooding based model consists of two phases; a testing phase and a dissemination phase. The spanning tree based model has three phase; a testing phase, a building phase and a dissemination phase. In testing phase, we have used the concept of heartbeat, where every mobile broadcasts a response message at fixed interval, so that a node can correctly be diagnosed by at least one fault free neighbour. Building phase constructs a spanning tree with fault-free mobiles. Dissemination phase, with the help of spanning tree, disseminates the local diagnostic views through the fault-free mobiles. After aggregating the entire views, initiator node disseminates the global diagnostic view to the fault free mobiles down the spanning tree. In this way, all fault free units reach to an agreement about the status of other nodes in the network. Further, we have given the proof of correctness and completeness of our model and found the time complexity, and compared the simulation results with the existing fault diagnosis protocols

    Energy-aware routing protocols in wireless sensor networks

    Get PDF
    Saving energy and increasing network lifetime are significant challenges in the field of Wireless Sensor Networks (WSNs). Energy-aware routing protocols have been introduced for WSNs to overcome limitations of WSN including limited power resources and difficulties renewing or recharging sensor nodes batteries. Furthermore, the potentially inhospitable environments of sensor locations, in some applications, such as the bottom of the ocean, or inside tornados also have to be considered. ZigBee is one of the latest communication standards designed for WSNs based on the IEEE 802.15.4 standard. The ZigBee standard supports two routing protocols, the Ad hoc On-demand Distance Vector (AODV), and the cluster-tree routing protocols. These protocols are implemented to establish the network, form clusters, and transfer data between the nodes. The AODV and the cluster-tree routing protocols are two of the most efficient routing protocols in terms of reducing the control message overhead, reducing the bandwidth usage in the network, and reducing the power consumption of wireless sensor nodes compared to other routing protocols. However, neither of these protocols considers the energy level or the energy consumption rate of the wireless sensor nodes during the establishment or routing processes. (Continues...)
    corecore