16 research outputs found

    Efficient multistep methods for tempered fractional calculus: Algorithms and Simulations

    Full text link
    In this work, we extend the fractional linear multistep methods in [C. Lubich, SIAM J. Math. Anal., 17 (1986), pp.704--719] to the tempered fractional integral and derivative operators in the sense that the tempered fractional derivative operator is interpreted in terms of the Hadamard finite-part integral. We develop two fast methods, Fast Method I and Fast Method II, with linear complexity to calculate the discrete convolution for the approximation of the (tempered) fractional operator. Fast Method I is based on a local approximation for the contour integral that represents the convolution weight. Fast Method II is based on a globally uniform approximation of the trapezoidal rule for the integral on the real line. Both methods are efficient, but numerical experimentation reveals that Fast Method II outperforms Fast Method I in terms of accuracy, efficiency, and coding simplicity. The memory requirement and computational cost of Fast Method II are O(Q)O(Q) and O(QnT)O(Qn_T), respectively, where nTn_T is the number of the final time steps and QQ is the number of quadrature points used in the trapezoidal rule. The effectiveness of the fast methods is verified through a series of numerical examples for long-time integration, including a numerical study of a fractional reaction-diffusion model

    Highly efficient schemes for time fractional Allen-Cahn equation using extended SAV approach

    Get PDF
    In this paper, we propose and analyze high order efficient schemes for the time fractional Allen-Cahn equation. The proposed schemes are based on the L1 discretization for the time fractional derivative and the extended scalar auxiliary variable (SAV) approach developed very recently to deal with the nonlinear terms in the equation. The main contributions of the paper consist in: 1) constructing first and higher order unconditionally stable schemes for different mesh types, and proving the unconditional stability of the constructed schemes for the uniform mesh; 2) carrying out numerical experiments to verify the efficiency of the schemes and to investigate the coarsening dynamics governed by the time fractional Allen-Cahn equation. Particularly, the influence of the fractional order on the coarsening behavior is carefully examined. Our numerical evidence shows that the proposed schemes are more robust than the existing methods, and their efficiency is less restricted to particular forms of the nonlinear potentials

    Efficient high order algorithms for fractional integrals and fractional differential equations

    Get PDF
    We propose an efficient algorithm for the approximation of fractional integrals by using Runge--Kutta based convolution quadrature. The algorithm is based on a novel integral representation of the convolution weights and a special quadrature for it. The resulting method is easy to implement, allows for high order, relies on rigorous error estimates and its performance in terms of memory and computational cost is among the best to date. Several numerical results illustrate the method and we describe how to apply the new algorithm to solve fractional diffusion equations. For a class of fractional diffusion equations we give the error analysis of the full space-time discretization obtained by coupling the FEM method in space with Runge--Kutta based convolution quadrature in time

    Alikhanov Legendre–Galerkin spectral method for the coupled nonlinear time-space fractional Ginzburg–Landau complex system

    Get PDF
    A finite difference/Galerkin spectral discretization for the temporal and spatial fractional coupled Ginzburg-Landau system is proposed and analyzed. The Alikhanov L2-1 sigma difference formula is utilized to discretize the time Caputo fractional derivative, while the Legendre-Galerkin spectral approximation is used to approximate the Riesz spatial fractional operator. The scheme is shown efficiently applicable with spectral accuracy in space and second-order in time. A discrete form of the fractional Gronwall inequality is applied to establish the error estimates of the approximate solution based on the discrete energy estimates technique. The key aspects of the implementation of the numerical continuation are complemented with some numerical experiments to confirm the theoretical claims

    Efficient numerical method for multi-term time-fractional diffusion equations with Caputo-Fabrizio derivatives

    Full text link
    In this paper, we consider a numerical method for the multi-term Caputo-Fabrizio time-fractional diffusion equations (with orders αi(0,1)\alpha_i\in(0,1), i=1,2,,ni=1,2,\cdots,n). The proposed method employs a fast finite difference scheme to approximate multi-term fractional derivatives in time, requiring only O(1)O(1) storage and O(NT)O(N_T) computational complexity, where NTN_T denotes the total number of time steps. Then we use a Legendre spectral collocation method for spatial discretization. The stability and convergence of the scheme have been thoroughly discussed and rigorously established. We demonstrate that the proposed scheme is unconditionally stable and convergent with an order of O((Δt)2+Nm)O(\left(\Delta t\right)^{2}+N^{-m}), where Δt\Delta t, NN, and mm represent the timestep size, polynomial degree, and regularity in the spatial variable of the exact solution, respectively. Numerical results are presented to validate the theoretical predictions

    Equivalence between a time-fractional and an integer-order gradient flow: The memory effect reflected in the energy

    Full text link
    Time-fractional partial differential equations are nonlocal in time and show an innate memory effect. In this work, we propose an augmented energy functional which includes the history of the solution. Further, we prove the equivalence of a time-fractional gradient flow problem to an integer-order one based on our new energy. This equivalence guarantees the dissipating character of the augmented energy. The state function of the integer-order gradient flow acts on an extended domain similar to the Caffarelli-Silvestre extension for the fractional Laplacian. Additionally, we apply a numerical scheme for solving time-fractional gradient flows, which is based on kernel compressing methods. We illustrate the behavior of the original and augmented energy in the case of the Ginzburg-Landau energy functional
    corecore