
Numerische Mathematik
https://doi.org/10.1007/s00211-018-1004-0

Numerische
Mathematik

Efficient high order algorithms for fractional integrals and
fractional differential equations

L. Banjai1 ·M. López-Fernández2

Received: 1 March 2018 / Revised: 14 July 2018
© The Author(s) 2018

Abstract
Wepropose an efficient algorithm for the approximation of fractional integrals by using
Runge–Kutta based convolution quadrature. The algorithm is based on a novel integral
representation of the convolution weights and a special quadrature for it. The resulting
method is easy to implement, allows for high order, relies on rigorous error estimates
and its performance in terms of memory and computational cost is among the best to
date. Several numerical results illustrate the method and we describe how to apply the
new algorithm to solve fractional diffusion equations. For a class of fractional diffusion
equations we give the error analysis of the full space-time discretization obtained by
coupling the FEM method in space with Runge–Kutta based convolution quadrature
in time.

Mathematics Subject Classification 65R20 · 65L06 · 65M15 · 26A33 · 35R11

1 Introduction

Fractional Differential Equations (FDEs) have nowadays become very popular for
modeling different physical processes, such as anomalous diffusion [26] or viscoelas-
ticity [1,25]. In the present paper we develop a fast and memory efficient method to

The work of the second author was partially supported by INdAM-GNCS, the Spanish Grant
MTM2016-75465, and by the Ramón y Cajal program of the Ministerio de Economia y Competitividad,
Spain.

B L. Banjai
l.banjai@hw.ac.uk

M. López-Fernández
lopez@mat.uniroma1.it

1 The Maxwell Institute for Mathematical Sciences, School of Mathematical and Computer
Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

2 Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma, Piazzale Aldo Moro
5, 00185 Rome, Italy

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287501912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-018-1004-0&domain=pdf

L. Banjai, M. López-Fernández

compute the fractional integral

Iα[f](t) = 1

�(α)

∫ t

0
(t − s)α−1 f (s) ds, (1)

for a given α ∈ (0, 1). A standard discretization of (1) is obtained by convolution
quadrature (CQ) based on a Runge–Kutta scheme [5,18]

Iα[f](tn) ≈
n∑
j=0

ωn− j f j , (2)

where the convolution weights ωn can be expressed as, see Lemma 9,

ωn = h sin(πα)

π

∫ ∞

0
x−αen(−hx) dx, (3)

with en(·) a function that depends on the Runge–Kutta scheme. For discretizations
based on linear multistep methods, see [14].

To compute up to time T = Nh using formula (2) requires O(N) memory and
O(N 2) arithmetic operations. Algorithms based on FFT can reduce the computa-
tional complexity to O(N log N) [16] or O(N log2 N) [9], but not the memory
requirements; for an overview of FFT algorithms see [7]. Here we develop algo-
rithms that reduce the memory requirement to O(| log ε| log N) and the computational
cost to O(| log ε|N log N), with ε the accuracy in the computation of the con-
volution weights. Hence, our algorithm has the same complexity as the fast and
oblivious quadratures of [19] and [23], but as we will see, a simpler construc-
tion.

The algorithms will depend on an efficient quadrature of (3) for n ≥ n0, with a
very moderate threshold value for n0, say n0 = 5. As en(z) = r(z)nq(z) and r(z) =
ez + O(z p+1), where p is the order of the underlying RK method, this is intimately
related to the construction of an efficient quadrature for the integral representation of
the convolution kernel

tα−1 = 1

�(1 − α)

∫ ∞

0
x−αe−t x dx, (4)

with t ∈ [n0h, T]. Note that as �(1 − α)�(α) = π/ sin(πα), h−1ωn is an approxi-
mation of 1

�(α)
tα−1, i.e., the kernel of (1).

Even though we eventually only require the quadrature for (3), we begin with
developing a quadrature formula for (4) for a number of reasons: the calculation for
(4) is cleaner and easier to follow, such a quadrature allows for efficient algorithms
that are not based on CQ, and finally once this is available the analysis for (3) is
much shorter. The quadrature we develop for (4) is closely related to the one devel-
oped in [13], the main difference being our treatment of the singularity at x = 0
by Gauss–Jacobi quadrature and the restriction of t to the finite interval rather than

123

Efficient high order algorithms...

semi-infinite as used in [13]. Both these decisions allow us to substantially reduce con-
stants in the above asymptotic estimates of memory and computational costs. Recent
references [2,12,27] also consider fast computation of (1), but do not address the
approximation of the convolution quadrature approximation exploiting (3). Our main
contribution here is the development of an efficient quadrature to approximate (3) and
its use in a fast and memory efficient scheme for computing the discrete convolution
(2).

The stability and convergence properties of RK convolution quadrature are well
understood, see [6,18]. This allows us to apply convolution quadrature not only to the
evaluation of fractional integrals, but also to the solution of fractional subdiffusion or
diffusion-wave equations of the form

∂
β
t u − �u = f , u(j)(0) = 0, j = 0, . . . ,m − 1,

with β ∈ (0, 2). Here, ∂β
t = Im−β∂mt , with m = �β�, denotes the Caputo fractional

derivative. Solutions of such equations typically have low regularity at t = 0, but a
discussion of adaptive or modified quadratures for this case is beyond the scope of
the current paper. For a careful analysis of BDF2 based convolution quadrature of
fractional differential equations see [8].

To our knowledge, underlying high order solvers for ODEs have been consid-
ered for the approximation of (1) only at experimental level in [2,3] and in [23],
where a fast and oblivious implementation of RK based CQ is considered for more
general applications than (1). The fast and oblivious quadratures of [19] and [23]
have the same asymptotic complexity as our algorithm, but have a more compli-
cated memory management structure and require the optimization of the shape of
the integration contour. Our new algorithm has the advantage of being much eas-
ier to implement, as it does not require sophisticated memory management and the
optimization of quadrature parameters is much simpler, and furthermore only real
arithmetic is required. The new method is also much better suited for the exten-
sion to variable steps — this will be investigated in a follow up work. On the
other hand, the present algorithm is specially tailored to the application to (1) and
related FDEs, whereas the algorithms in [19,23] allow for a wider range of applica-
tions.

The paper is organized as follows. In Sect. 2 we develop and fully analyze a special
quadrature for (1), which uses the same nodes and weights for every t ∈ [n0h, T].
In Sect. 3, we recall Convolution Quadrature based on Runge–Kutta methods and
derive the special representation of the associated weights already stated in (3).
In Sect. 4 we derive a special quadrature for (3), which uses the same nodes and
weights for every n ∈ [n0, N], with T = hN . In Sect. 5 we explain how to
turn our quadrature for the CQ weights into a fast and memory saving algorithm.
In Sect. 6 we test our algorithm with a scalar problem and in Sect. 7 we con-
sider the application to a fractional diffusion equation. We provide a complete error
analysis of the discretization in space and time of a class of fractional diffusion equa-
tions.

123

L. Banjai, M. López-Fernández

2 Efficient quadrature for t˛−1

In the following we fix an integer n0 > 0, time step h > 0, and the final computational
time T > 0. Throughout, the parameterα is restricted to the interval (0, 1).We develop
an efficient quadrature for (4) accurate for t ∈ [n0h, T].

2.1 Truncation

First of all we truncate the integral

tα−1 = 1

�(1 − α)

∫ L

0
x−αe−t x dx + τ(L),

where τ(L) denotes the truncation error.

Lemma 1 For t ≥ n0h and L = A/h we have that

|τ(L)| ≤ hα−1

�(1 − α)

∫ ∞

A
x−αe−n0xdx . (5)

Proof

|τ(L)| = hα−1

�(1 − α)

∫ ∞

A
x−αe− t

h xdx

≤ hα−1A−α

�(1 − α)

∫ ∞

A
e−n0xdx

= A−αhα−1e−n0A

n0�(1 − α)
.

	

Remark 2 Given a tolerance tol > 0, |τ(L)| ≤ tol if

A + α

n0
log(A) ≥ 1

n0
log

(
hα−1

n0�(1 − α)tol

)
. (6)

Assuming A ≥ 1 we can choose

A = log

(
1

n0�(1 − α)tol

)
+ (1 − α) log

(
1

h

)
.

However, in practice it is advantageous to use the bound (5) to numerically find the
optimal A.

123

Efficient high order algorithms...

2.2 Gauss–Jacobi quadrature for the initial interval

We choose an initial integration interval

I0 = 1

�(1 − α)

∫ L0

0
x−αe−t x dx,

along which we will perform Gauss–Jacobi integration.
Recall the Bernstein ellipse E
, which is given as the image of the circle of radius

 > 1 under themap z �→ (z+z−1)/2. The largest imaginary part on Eρ is (
−
−1)/2
and the largest real part is (
 +
−1)/2.

Theorem 3 Let f be analytic inside the Bernstein ellipse E
 with
 > 1 and bounded
there by M. Then the error of Gauss quadrature with weight w(x) is bounded by

|I f − IQ f | ≤ 4M

−2Q+1

 − 1

∫ 1

−1
w(x)dx,

where I f = ∫ 1
−1 w(x) f (x)dx and IQ f = ∑Q

j=1 w j f (x j) is the correspondingGauss
formula, with weights w j > 0.

Proof A proof of this result for w(x) ≡ 1 can be found in [24, Chapter 19]. The same
proof works for the weighted Gauss quadrature as well. We give the details next.

First of all note that we can expand f in Chebyshev series

f (x) =
∞∑
k=0

akTk(x)

with |ak | ≤ 2M
−k [24, Theorem 8.1]. If we denote by fK (x) = ∑K
k=0 akTk(x) the

truncated series then

| f − fK | ≤ 2M
−K

 − 1
.

As IQ is exact for polynomials of degree 2Q − 1, we have that

|I f − IQ f | = ∣∣I (f − f2Q−1) − IQ(f − f2Q−1)
∣∣

≤ 2M
−2Q+1

 − 1

⎛
⎝

∫ 1

−1
w(x)dx +

2Q−1∑
j=1

w j

⎞
⎠

= 4M
−2Q+1

 − 1

∫ 1

−1
w(x)dx,

where we have used the fact the weights are positive and integrate constants exactly.
	

123

L. Banjai, M. López-Fernández

Changing variables to the reference interval [−1, 1] we obtain

I0 = 1

�(1 − α)

(
L0

2

)1−α ∫ 1

−1
e−t(y+1)L0/2(y + 1)−αdy.

We apply Theorem 3 to the case

f0(x) = 1

�(1 − α)

(
L0

2

)1−α

e−t(x+1)L0/2, w(x) = (1 + x)−α (7)

and denote

τGJ(Q) := I f0 − IQ f0 =
∫ 1

−1
f0(x)w(x) dx −

Q∑
j=1

w j f0(x j).

Theorem 4 For t ∈ [0, T] and any Q ≥ 1 we have the bound

|τGJ(Q)| ≤ 4L1−α
0

�(2 − α)

(
1 + T L0

4Q

)(
eT L0

8Q

)2Q

.

Proof Since f0 in (7) is an entire function, by Theorem 3 we can estimate

|τGJ(Q)| ≤ 4

�(1 − α)

(
L0
2

)1−α
(∫ 1

−1
(1 + x)−α dx

)
min

>1

(

−2Q+1

ρ − 1
max
ξ∈Eρ

∣∣∣e−t(ξ+1)L0/2
∣∣∣
)

= 4

�(1 − α)

L1−α
0

1 − α
min

>1

(

−2Q+1

ρ − 1
max
ξ∈Eρ

e−t(Re ξ+1)L0/2

)

= 4L1−α
0

�(2 − α)
min

>1

(

−2Q+1

ρ − 1
et(
+
−1−2)L0/4

)

≤ 4L1−α
0

�(2 − α)
min

>1

(

−2Q+1

ρ − 1
eT (
+
−1−2)L0/4

)
.

Let
 = eδ with δ > 0. Then the error bound can be written as

|τGJ(Q)| ≤ 4L1−α
0

�(2 − α)
min
δ>0

eδ

eδ − 1
e−2Qδ+L0T (cosh δ−1)/2.

We now choose δ so that it maximises the function

g(δ) = 2Qδ − L0T (cosh δ − 1) /2.

As

g′(δ) = 2Q − L0T sinh δ/2, g′′(δ) = −L0T cosh δ/2 < 0,

123

Efficient high order algorithms...

we have a maximum at

2Q − L0T sinh δ/2 = 0 �⇒ δ = sinh−1
(

4Q

T L0

)
.

Using the identities

sinh−1 y = log

(
y +

√
1 + y2

)
, cosh x =

√
1 + sinh2 x,

we derive an error estimate with the above choice of δ:

|τGJ(Q)| ≤ 4L1−α
0

�(2 − α)

(
1 + T L0

4Q

)
e−2Qδ+L0T (cosh δ−1)/2

≤ 4L1−α
0

�(2 − α)

(
1 + T L0

4Q

) (
T L0

8Q

)2Q

e
L0T

(
−1+

√
1+(4Q/(T L0))2

)
/2

≤ 4L1−α
0

�(2 − α)

(
1 + T L0

4Q

) (
T L0

8Q

)2Q

e2Q,

where in the last step above we have used that −1 + √
1 + x2 ≤ x for x > 0. This

gives the stated result. 	

2.3 Gauss quadrature on increasing intervals

We next split the remaining integral as

1

�(1 − α)

∫ L

L0

x−αe−xt dx =
J∑

j=1

I j ,

where

I j = 1

�(1 − α)

∫ L j

L j−1

x−αe−xt dx

= �L j

2�(1 − α)
e−L j−1t

∫ 1

−1

(
L j−1 + �L j

2
(y + 1)

)−α

e−t(y+1)�L j /2 dy,

where�L j = L j−L j−1, j = 1, . . . , J , with L J = L . The intervals are chosen so that
for some B ≥ 1, �L j = BL j−1, i.e., L j = (B + 1)L j−1 and J = �logB+1 L/L0�.
To each integral we apply standard, i.e., w(x) ≡ 1 in Theorem 3, Gauss quadrature
with Q nodes and denote the corresponding error by

τ j (Q) := I f j − IQ f j

123

L. Banjai, M. López-Fernández

with

f j (x) = 4�L j

�(1 − α)
e−L j−1t

(
L j−1 + �L j

2
(x + 1)

)−α

e−t(x+1)�L j /2. (8)

Theorem 5 For any Q ≥ 1 and t ≥ 0

|τ j (Q)| ≤ 4BL1−α
j−1

�(1 − α)
min
0<ε<1

g(ε, B)−2Q+1

g(ε, B) − 1
ε−αe−t L j−1ε,

with

g(ε, B) = 1 + 2

B
(1 − ε) +

√(
1 + 2

B
(1 − ε)

)2

− 1.

Proof Note that the integrand f j in (8) is now not entire and there will be a restriction

 <
max on the choice of the Bernstein ellipse E
 in order to avoid the singularity of
the fractional power. In particular we require

L j−1 − �L j

4
(
 +
−1 − 2) = L j−1

(
1 − B

4
(
 +
−1 − 2)

)
> 0,

which is satisfied for 1 <
 <
max and

max = 1 + 2

B
(1 + √

1 + B).

Setting

ε(
) = 1 − B

4
(
 +
−1 − 2)

we see that ε ∈ (0, 1) for
 ∈ (1,
max) and that

L j−1 − �L j

4
(
 +
−1 − 2) = L j−1ε.

Hence

|τ j (Q)| ≤ 4�L j

�(1 − α)
L−α
j−1 min

1<
<
max

−2Q+1

 − 1
ε−αe−t L j−1ε.

The result is now obtained by using

cosh−1 y = log

(
y +

√
y2 − 1

)
, y ≥ 1,

to show that
 = g(ε, B). 	

123

Efficient high order algorithms...

Remark 6 Choosing for instance ε = 0.1 and B = 1 in the above estimate, we obtain

max = g(0, B) = 3 + 2
√
2 = 5.83

and

|τ j (Q)| ≤ 10αL1−α
j−1 exp(−0.1t L j−1)

1.1�(1 − α)
(5.41)−2Q+1.

As we will require a uniform bound for t ∈ [tn0 , T], we can substitute t = tn0 in this
estimate.

3 Runge–Kutta convolution quadrature

Let us consider an s-stage Runge–Kutta method described by the coefficient matrix
Oι = (ai j)si, j=1 ∈ R

s×s , the vectors of weights b = (b1, . . . , bs)T ∈ R
s and the vector

of abcissae c = (c1, . . . , cs)T ∈ [0, 1]s . We assume that the method is A-stable, has
classical order p ≥ 1, stage order q and satisfies as, j = b j , j = 1, . . . , s, [10]. The
corresponding stability function is given by

r(z) = 1 + zbT (I − zOι)−11, (9)

where

1 = (1, 1, . . . , 1)T .

Our assumptions imply the following properties:

1. cs = 1.
2. r(∞) = bTOι−11 − 1 = 0.
3. r(z) = ez + O(z p+1)

4. |r(z)| ≤ 1 for Re z ≤ 0.

Important examples of RK methods satisfying our assumptions are Radau IIA and
Lobatto IIIC methods.

Let us consider the convolution

K (∂t) f :=
∫ t

0
k(t − τ) f (τ)dτ, (10)

where K (z)denotes theLaplace transformof the convolution kernel k(t). K is assumed
to be analytic for Re z > 0 and bounded there as |K (z)| ≤ |z|−μ for some μ > 0.
The operational notation K (∂t) f introduced in [15], is useful in emphasising certain
properties of convolutions. Of particular importance is the composition rule, namely, if
K (s) = K1(s)Ks(s) then K (∂t) f = K1(∂t)K2(∂t) f . This will be used when solving
fractional differential equations in Sect. 7.2.

123

L. Banjai, M. López-Fernández

If μ < 0, the convolution is defined by

K (∂t) f =
(
d

dt

)m

Km(∂t) f ,

where Km(z) = z−mK (z) and m smallest integer such that m > −μ.
For K (z) = z−α the convolution coincides with the fractional integral of order α,

i.e., according to the operational notation, we can write

Iα[f](t) = ∂−α
t f (t), t > 0, α ∈ (0, 1).

For β > 0, ∂β
t is equivalent to the Riemann–Liouville fractional derivative, see defi-

nition (28).
Runge–Kutta convolution quadrature has been derived in [18] and applied to (10)

provides approximations at time-vectors tn = (tn, j)
s
j=1, with tn, j = tn + c j h and

tn = nh, defined by

K (∂t) f (tn) ≈ K (∂ht) f (tn) :=
n∑
j=0

Wn− j (K)f j , (11)

where (K (∂t) f (tn))� = K (∂t) f (tn,�), (f j)� = f (t j,�) and the weight matrices W j

are the coefficients of the power series

K

(
�(ζ)

h

)
=

∞∑
j=0

W j (K)ζ j (12)

with

�(ζ) =
(
Oι + ζ

1 − ζ
1bT

)−1 = Oι−1 − ζOι−11bTOι−1. (13)

The notation in (11) again emphasises that the composition rule holds also after dis-
cretization: if K (s) = K1(s)Ks(s) then K (∂ht) f = K1(∂

h
t)K2(∂

h
t) f .

The last row in (11) defines the approximation at the time grid tn+1, since cs = 1.
Denoting ω j (K) the last row of W j (K), the approximation reads

K (∂t) f (tn+1) ≈ K (∂ht) f (tn+1) :=
n∑
j=0

ωn− j (K)f j , (f j)� = f (t j,�). (14)

For the rest of the paper we will denote by W j = W j (K) and ω j = ω j (K) the
weights for the fractional integral case, i.e., for K (z) = z−α .

123

Efficient high order algorithms...

Remark 7 (Notation). We have defined the discrete convolution K (∂ht) f for functions
f . For a sequence f0, . . . , fN ∈ R

s , we use the same notation K (∂ht)f to denote

K (∂ht)f(tn+1) =
n∑
j=0

ωn− j (K)f j , n = 0, . . . , N ,

and similarly for K (∂ht)f(tn) with the meaning

K (∂ht)f(tn) =
n∑
j=0

Wn− j (K)f j

and

K (∂ht)f(tn,�) =
⎛
⎝ n∑

j=0

Wn− j (K)f j

⎞
⎠

�

.

Note also that

K (∂ht)f(tn,s) = K (∂ht)f(tn+1).

FFT techniques based on (12) can be applied to compute at once all the required
W j , j = 0, . . . , N , with N = �T /h�, [16]. The computational cost associated to this
method is O(N log(N)). It implies precomputing and keeping in memory all weight
matrices for the approximation of every Iα[f](tn), n = 1, . . . , N , see [4] for details
and many experiments.

The following error estimate for the approximation of (1) by (14) is given by [18,
Theorem 2.2]. Notice that we allow K (z) to be amap between two Banach spaces with
appropriate norms denoted by ‖ · ‖ in the following. This will be needed in Sect. 7.

Theorem 8 Assume that there exist c ∈ R, 0 < δ < π
2 and M > 0 such that

K (z) is analytic in a sector | arg(z − c)| < π − δ and satisfies there the bound
‖K (z)‖ ≤ M |z|−α . Then if f ∈ C p[0, T], there exists h0 > 0 and C > 0 such that
for h ≤ h0 it holds

∥∥∥K (∂t) f (tn) − K (∂ht) f (tn)
∥∥∥ ≤ Chp

q∑
�=0

(
1 + tα+�−p

n

)
‖ f (�)(0)‖

+ C
(
h p + hq+1+α| log(h)|

)⎛
⎝

p−1∑
�=q+1

‖ f (�)(0)‖ + max
0≤τ≤tn

‖ f (p)(τ)‖
⎞
⎠ .

123

L. Banjai, M. López-Fernández

3.1 Real integral representation of the CQweights

The convolution quadrature weights ω j can also be expressed as [23]

ωn = h

2π i

∫
�

z−αen(hz) dz, (15)

for en(λ) a function which depends on the ODE method underlying the CQ formula
and an integration contour � which can be chosen as a Hankel contour beginning and
ending in the left half of the complex plane.

Lemma 9 The weights are given by

Wn = h sin(πα)

π

∫ ∞

0
x−αEn(−hx) dx, (16)

and

ωn = h sin(πα)

π

∫ ∞

0
x−αen(−hx) dx, (17)

where

(�(ζ) − z I)−1 =
∞∑
n=0

En(z)ζ
n (18)

and en(z) is the last row of En(z).
Explicit formulas for En and en are given by

E0 = Oι(I − zOι)−1, En(z) = r(z)n−1(I − zOι)−11q(z) (19)

and
en(z) = r(z)nq(z), (20)

where r is the stability function of the method and q(z) = bT (I − zOι)−1.

Proof Since z−α is analytic in the whole complex plane but for the branch cut on the
negative real axis, the Hankel contour � can be degenerated into negative real axis
as in the derivation of the real inversion formula for the Laplace transform [11, Sect.
10.7] to obtain

ωn = h

2π i

∫ ∞

0
(eiπα − e−iπα)x−αen(−hx) dx

= h sin(πα)

π

∫ ∞

0
x−αen(−hx) dx .

The expression for Wn is obtained in the same way and the explicit formulas for En

and en can be found in [23]. 	

The next properties will be used later in Sect. 4

123

Efficient high order algorithms...

Lemma 10 There exist constants γ > 1, b > 0 and Cq > 0 such that

|r(z)| ≤ eγ Re z, for 0 ≤ Re z ≤ b,

and

‖q(z)‖ ≤ Cq, for Re z ≤ b,

where Cq depends on the choice of the norm ‖ · ‖.
Proof Fix a b > 0 such that all the poles of r(z) (and hence q(z)) belong to Re z > b.
Define now

γ = sup
0≤Re z≤b

1

Re z
log |r(z)| = max

{
1,

1

b
sup

Re z=b
log |r(z)|

}
, (21)

where we have used the properties of r(z) to see that supRe z=0
1

Re z log |r(z)| = 1.
Recall that q(z) = bT (I − zOι)−1. As all the singularities of q are in the half-plane

Re z > b and ‖q(z)‖ → 0 as |z| → ∞, we have that ‖q(z)‖ is bounded in the region
Re z ≤ b. 	

Remark 11 (a) Note that for BDF1we can choose b ∈ (0, 1). Hence, γ = b−1 log 1

1−b
and since q(z) = r(z) for BDF1, we can set Cq = eγ b.

(b) For the 2-stage Radau IIA method we have

r(z) = 2z + 6

z2 − 4z + 6
, q(z) = 1

2(z2 − 4z + 6)

[
9 3 − 2z

]
.

As the poles of r and q are at z = 2 ± √
2i, we can choose any b ∈ (0, 2) and

obtain the optimal γ numerically using (21). For example for b = 1, we can choose
γ ≈ 1.0735. Similarly we can compute Cq by computing

Cq = sup
Re z=0 or Re z=b

‖q(z)‖.

For b = 1 and the Euclidian norm we have Cq ≈ 1.6429. Using the same proce-
dure, for b = 3/2, we have γ ≈ 1.2617 and Cq ≈ 3.3183.

(c) For the 3-stage Radau IIA method the poles of r(z) and q(z) belong to Re z ≥
92/3
6 − 91/3

2 + 3 ≈ 2.681. Choosing b = 1 gives γ ≈ 1.0117 and Cq ≈ 1.1803,
whereas for b = 1.5 we obtain γ ≈ 1.0521 and Cq ≈ 1.7954.

Lemma 12 There exist constants c > 0 and x0 > 0 such that

max{‖en(z)‖, ‖En(z)‖} ≤ |x0 − cRe z|−n−1, for Re z < 0.

123

L. Banjai, M. López-Fernández

Proof Using that r(∞) = bTOι−11− 1 = 0 it can be shown that r(z) = bTOι−1(I −
zOι)−11. Let all eigenvalues ofOι−1 and hence all poles of r(z), q(z), and (I − zOι)−1

lie in Re z ≥ x̃0 > 0. There exists a constant C such that for all Re z < 0

max{|r(z)|, ‖q(z)‖, ‖(I − zOι)−1‖} ≤ C |Re z − x̃0|−1 ≤ |x0 − cRe z|−1,

where we can set x0 = 1
C x̃0 and c = 1

C . 	

Remark 13 1. For BDF1, c = 1 and x0 = 1.
2. For 2-stage Radau IIA the constant can be obtained following the proof. Namely

we choose x̃0 = 2 and find numerically that

max{|r(z)|, ‖q(z)‖, ‖(I − zOι)−1‖}|Re z − x̃0| ≤ 2, Re z ≤ 0.

Hence we can choose C = 2 and c = 1/2 and x0 = 2/C = 1.
3. Similarly, for 3-stage Radau IIA we choose x̃0 = 2.6811 and find that

max{|r(z)|, ‖q(z)‖, ‖(I − zOι)−1‖}|Re z − x̃0| ≤ 3.0821, Re z ≤ 0.

Hence we can choose C = 3.0821 and c = 1/C = 0.3245 and x0 = x̃0/C =
0.8699.

In the rest of the section our goal is to derive a good quadrature for the approxima-
tion of ωn and Wn . We will perform the same steps as in Sect. 2 for the ωn . The
same quadrature rules will give essentially the same error estimates for the Wn ; see
Remark 21.

4 Efficient quadrature for the CQweights

Analogously to the the continuous case (1), we fix n0, h, and T and develop an
efficient quadrature for the CQ weights representation (17), for nh ∈ [(n0 + 1)h, T]
and α ∈ (0, 1).

4.1 Truncation of the CQweights integral representation

Again we truncate the integral

ωn = h sin(πα)

π

∫ L

0
x−αen(−hx) dx + τ (L)

and give a bound on the truncation error τ (L).

Lemma 14 With the choice L = Ah−1, the truncation error is bounded as

‖τ (L)‖ ≤ hα sin(πα)

π

∫ ∞

A
‖en(−x)‖x−αdx (22)

123

Efficient high order algorithms...

or more explicitly

‖τ (L)‖ ≤ hα sin(πα)

cnπ
A−α(x0 + cA)−n .

Proof From Lemma 12 we have that

‖τ (L)‖ ≤ hα sin(πα)

π

∫ ∞

A
‖en(−x)‖x−αdx

≤ L−α sin(πα)

π

∫ ∞

A
(x0 + cx)−n−1dx

= hα sin(πα)

cnπ
A−α(x0 + cA)−n .

	

Corollary 15 Let L = A/h. Given tol > 0, choosing

A >

(
hα sin(πα)

tol nπcn+1

) 1
n+α

ensures ‖τ (L)‖ ≤ tol. The estimate becomes uniform in n > n0 by setting n = n0 +1
in the above error bound.

Proof We have from above

‖τ (L)‖ ≤ hα sin(πα)

cnπ
A−α|cA + z0|−n ≤ hα sin(πα)

nπ
A−α−nc−n−1,

from which the result follows. 	

Remark 16 In practice we find that instead of using Corollary 15, better results are
obtained if a simple numerical search is done to find the optimal A such that the right-
hand side in (22) with n = n0 + 1 is less than tol. To do this, we start from A = 0 and
iteratively approximate the integral in (22) for increased values of A (A ← A+0.125
in our code) until the resulting quantity is belowour error tolerance. The approximation
of the integrals is done by the MATLAB built-in routine integral. Notice that this
has to be done only once for each RK-CQ formula and value of α ∈ (0, 1).

4.2 Gauss–Jacobi quadrature for the CQweights

In a similar way as in Sect. 2.2, we consider the approximation of the integral

ωn = h sin(πα)

π

∫ ∞

0
x−αen(−xh) dx

123

L. Banjai, M. López-Fernández

and investigate in the first place the approximation of

I0,n := h sin(πα)

π

∫ L0

0
x−αen(−xh) dx,

for some suitable L0 > 0 by using Gauss–Jacobi quadrature. Changing variables as
in Sect. 2.2 we obtain

I0,n = h sin(πα)

π

(
L0

2

)1−α ∫ 1

−1
(y + 1)−αen(−h(y + 1)L0/2)dy

and apply Theorem 3 to estimate the error

τGJ,n(Q) = IQf0 − If0

with the weight w(x) = (x + 1)−α and integrand

f0(x) = h sin(πα)

π

(
L0

2

)1−α

en(−h(x + 1)L0/2).

Theorem 17 Let

max = 1 + 2b

L0h
+

√(
2b

L0h

)2

+ 4b

L0h
,

with b and γ from Lemma 10, and

opt = 4Q

γ T L0
+

√
1 +

(
4Q

γ T L0

)2

.

If
opt ∈ (1,
max), we have the bound

‖τGJ,n(Q)‖ ≤ Cq
hL1−α

0 sin(πα)

π(1 − α)

(
1 + γ T L0

4Q

) (
eγ T L0

8Q

)2Q

.

Otherwise we have the bound

‖τGJ,n(Q)‖ ≤ Cq
hL1−α

0 sin(πα)

π(1 − α)

(

−2Q+1
max

max − 1
eγ Tb/h

)
.

Proof We again consider the Bernstein ellipse E
 around [−1, 1], but now in order to
be able to use Lemma 10 and avoid the singularities of en(z) in the right-half plane
we have a restriction on
. Namely, the maximal value of
 is given by

h
(

max +
−1

max − 2
)
L0/4 = b,

123

Efficient high order algorithms...

which implies, writing
max = eδmax ,

cosh(δmax) − 1 = 2b

L0h
,

and thus

δmax = cosh−1
(
1 + 2b

L0h

)

giving the expression for
max from the statement of the theorem. The error estimate
for Gauss–Jacobi quadrature then reads, by using Lemma 10,

∥∥τGJ,n
∥∥ ≤ hL1−α

0 sin(πα)

π(1 − α)
min

1<
≤
max

(

−2Q+1

 − 1
max
ζ∈Eρ

‖en(−h(ζ + 1)L0/2)‖
)

≤ Cq
hL1−α

0 sin(πα)

π(1 − α)
min

1<
≤
max

(

−2Q+1

 − 1
eγ tn L0(
+
−1−2)/4

)

≤ Cq
hL1−α

0 sin(πα)

π(1 − α)
min

1<
<
max

(

−2Q+1

 − 1
eγ T L0(
+
−1−2)/4

)
.

Proceeding as in Sect. 2.2 with γ T in place of T we obtain the bound

‖τGJ,n(Q)‖ ≤ Cq
hL1−α

0 sin(πα)

π(1 − α)

(
1 + γ T L0

4Q

) (
eγ T L0

8Q

)2Q

,

provided that the optimal value for
 is within the accepted interval

opt = 4Q

γ T L0
+

√
1 +

(
4Q

γ T L0

)2

∈ (1,
max),

otherwise we make the choice
 =
max. 	

Remark 18 In all our numerical experiments, we have found that
opt <
max.

4.3 Gauss quadrature on increasing intervals for the CQweights

We next split the remaining integral into the sum

h sin(πα)

π

∫ L

L0

x−αen(−xh) dx =
J∑

j=1

In, j ,

where

In, j = h sin(πα)

π

∫ L j

L j−1

x−αen(−xh) dx .

123

L. Banjai, M. López-Fernández

The intervals are again chosen so that for some B ≥ 1, L j = (B + 1)L j−1. To each
integral we apply standard Gauss quadrature, i.e., w(x) ≡ 1 in Theorem 3, with Q
nodes and denote the corresponding error by τ n, j (Q).

Theorem 19

‖τn, j (Q)‖ ≤
4hBL1−α

j−1 sin(πα)

π
min

0<ε<1

g(ε, B)−2Q+1

g(ε, B) − 1
ε−α min(Cq, |x0 + cL j−1hε|−n−1),

with constants Cq, c, x0 from Lemmas 10 and 12 and

g(ε, B) = 1 + 2

B
(1 − ε) +

√(
1 + 2

B
(1 − ε)

)2

− 1. (23)

Proof The proof is the same as the proof of Theorem 5, we only need to combine the
facts that |r(z)| ≤ 1 for Re z ≤ 0, the bound ‖q(z)‖ ≤ Cq from Lemma 10, and the
bound from Lemma 12. 	

Remark 20 To obtain a uniform bound for tn ∈ [tn0+1, T], we replace n by n0 + 1 in
the above bound.

Remark 21 We have developed the quadrature for the weights ωn . However, up to a
small difference in constants, the same error estimates hold for the matrix weightsWn .
Certainly, due to Lemma 12, the truncation estimate is the same. The main estimate
used in the proof of Theorem 17 is the bound on the stability function r(z) and on
q(z). The additional terms in En(z) would only contribute to the constant. Similar
comment holds for Theorem 17.

5 Fast summation and computational cost

Now the efficient quadrature is available we explain how to use it to develop a fast
algorithm for computing the corresponding discrete convolution. In order to do this,
we split the convolution as

n∑
j=0

ω j fn− j =
n0∑
j=0

ω j fn− j +
n∑

j=n0+1

ω j fn− j = I 1n + I 2n ,

where as before (fn)� = f (tn,�); see (11). The first term is computed exactly, whereas
for the second we can use the quadrature. Let NQ be the total number of quadrature
nodes and let (wk, xk) denote the quadrature weights and nodes with the weights
including the values of x−α

k in the region L0 to L where Gauss quadrature is used.
Then our approximation of I 2n has the form

n∑
j=n0+1

ω j fn− j ≈
NQ∑
k=1

wk(r(−hxk))
n0+1

n−n0−1∑
j=0

(r(−hxk))
jq(−hxk)fn−n0−1− j .

123

Efficient high order algorithms...

Defining

Qn,k =
n−n0−1∑

j=0

(r(−hxk))
jq(−hxk)fn−n0−1− j (24)

we see that

Qn,k = r(−hxk)Qn−1,k + q(−hxk)fn−n0−1, Qn0,k = 0.

Hence the convolution can be approximated as

n∑
j=0

ω j fn− j ≈
n0∑
j=0

ω j fn− j +
NQ∑
k=1

wk(r(−hxk))
n0+1Qn,k,

with the Qn,k satisfying the above recursion. Notice that for each k = 1, . . . , NQ ,
Qn,k is the RK approximation at time tn−n0−1 of the ODE:

q̇ = −xkq + f , q(0) = 0.

Thus, fromone step to the next onewe only need updating Qn,k , for k = 1, . . . , NQ ,
NQ being the total number of quadrature nodes. Set ε the target accuracy of the
quadrature. Then, from the results in Sect. 4 it follows that the total computational
cost is O(NNQ) with

NQ = O(| log(ε)| log(L/L0)). (25)

For n ≥ 5, Corollary 15 implies L ∼ h−1 and from Theorem 17 a reasonable
choice for L0 is L0 = 4/(eT), which leads to

NQ = O(| log(ε)| log(h−1T)) = O(| log(ε)| log(NT)).

Therefore, the computational complexity isO(| log ε|N log N), whereas the storage
requirement scales as O(NQ) = O(| log ε| log N).

6 Numerical experiments

Given a tolerance tol > 0, time step h > 0, minimal index n0, final time T > 0, and
the fractional power α ∈ (0, 1) we use the above estimates to choose the parameters
in the quadrature.

In particular we choose L0 = 4/T and L = Ah−1 with A such that the upper
bound for the trunction error in (22) is less than tol/3. We set B̃ = 3 and

J =
⌊
log(L/L0)

log(1 + B̃)

⌋
and B = (L/L0)

1/J − 1.

123

L. Banjai, M. López-Fernández

100 200 300 400 500
10 -10

10 -8

10 -6

10 -4

10 -2

Fig. 1 We show the error in the computation of the 2-stage Radau IIA weights ωn for n > n0 with two
different tolerances. The number of quadrature points is also shown. The results are for α = 0.5, T = 5,
h = 10−2, n0 = 5, and B = 3

Note that in general this choice results in fewer integration intervals than when fixing
B and setting J to the smallest integer such that L ≤ L0(1 + B)J . Next, we set
L j = L0(1 + B) j , for j = 0, . . . , J and let Q0 denote the number of quadrature
points in the Gauss–Jacobi quadrature on [0, L0] and Q j , j = 0, . . . , J − 1, the
number of Gauss quadrature points in the interval [L j , L j+1]. We choose the smallest
Q0 so that the bound on ‖τGJ,n(Q0)‖ in Theorem 17 is less than tol/3; note that
in all of the experiments below we had
opt <
max. By doing a simple numerical
minimization on the bound in Theorem 19, we find the optimal Q j such that the error
‖τ n, j (Q j)‖ < tol J−1/3. With this choice of parameters each weight ω j , j > n0, is
computed to accuracy less than tol.

In Fig. 1 we show the error ‖ω̃n − ωn‖, where ω̃n is the nth weight computed
using the new quadrature scheme and ωn is an accurate approximation of the weight
computed by standard means. We see that the error is bounded by the tolerance and
that for the initial weights the error is close to this bound. The error for larger n is
considerably smaller than the required tolerance. This is expected, as in Corollary 15
we need to use the worst case n = n0 + 1 to determine the trunction parameter A.

We also investigate the number of quadrature points in dependence on h, T inTable 1
and on α and tol in Table 2. We observe only a moderate increase with decreasing h,
tol and increasing T . The dependence on α is mild.

Table 1 Dependence of the total number of quadrature points on time step h and final time T . The other
parameters are fixed at n0 = 5, B = 3, tol = 10−6, α = 0.5. On the left the data is for backward Euler and
on the right for the 2-stage Radau IIA CQ

h
∖
T 1 10 100 1000 h

∖
T 1 10 100 1000

10−1 20 30 40 49 10−1 13 25 34 44

10−2 27 36 44 52 10−2 21 31 39 46

10−3 31 39 46 50 10−3 28 35 41 46

10−4 34 40 45 48 10−4 31 37 43 45

123

Efficient high order algorithms...

Table 2 Dependence of the total number of quadrature points on the tolerance tol and the fractional power
α. The other parameters are fixed at h = 10−2, T = 50, n0 = 5, B = 3. Again the data on the left is for
backward Euler and on the right for 2-stage Radau IIA

tol
∖
α 0.1 0.3 0.5 0.7 0.9 tol

∖
α 0.1 0.3 0.5 0.7 0.9

10−2 11 11 10 8 6 10−2 9 9 8 8 6

10−4 27 27 26 25 21 10−4 23 25 24 23 20

10−6 45 44 45 43 36 10−6 39 39 39 37 35

10−8 66 65 64 61 55 10−8 71 68 65 53 51

10−10 86 87 85 82 74 10−10 96 93 90 86 77

6.1 Fractional integral

Let us now consider the evaluation of a fractional integral

u(t) = Iα[g](t), (26)

where

g(t) = t3e−t .

First we investigate the behaviour of the standard implementation of CQ, based on
FFT. In the particular case of the two-stage Radau IIA, p = 3 and q = 2, from
Theorem 8 we would expect full order convergence. We set T = 128, and h = 23− j ,
j = 0, . . . , 7, α = 1/4. We do not have access to the exact solution u(t), so its role is
taken by an accurate numerical approximation. In Fig. 2 we show the convergence of
the error maxn |u(tn) − un| using the standard implementation of CQ. We compare it
with the theoretical reference curve 10−2.5(h3 + |log(h)| h3+α), which fits the results
better in this pre-asymptotic regime than the dominant term h3 on its own.

Next, we apply our new quadrature implementation of CQ. We set tol = 10−6,
and the rest of the parameters as in the above section. We denote by ũn the new
approximation of un and plot the error |un − ũn| in Fig. 3. We see that the error is
bounded by 10−6 for all n, showing that the final perturbation error introduced by our
approximation of the CQ weights remains bounded with respect to the target accuracy
in our quadrature, cf. [23]. We also compare computational times in Fig. 3. For the
implementation of the standardCQwehave used the O(N log N)FFTbased algorithm
from [16]. We see that for larger time-steps the FFT method is faster due to a certain
overhead in constructing the quadrature points for the new method. For smaller time
steps however the new method is even marginally faster. The main advantage of the
new method is the O(log N) amount of memory required compared to O(N) amount
of memory by the standardmethod. For example, in this computation with the smallest
time step, there are N = 2048 time steps and the total number of quadrature points
is 37. As each quadrature point carries approximately the same amount of memory
as one directly computed time-step, we see that the memory requirement is around
50 times smaller with the new method for this example. Such a difference in memory

123

L. Banjai, M. López-Fernández

10 -2 10 -1 10 0 10 1
10 -8

10 -6

10 -4

10 -2

10 0

10 2

Fig. 2 Convergence of the error maxn |u(tn)− un | for the 2-stage Radau IIA convolution quadrature of the
fractional integral (26)

0 50 100 150
tn

10-15

10-10

10-5

er
ro

r

Δt = 4
Δt = 0.5
Δt = 0.0625

10 1 10 2 10 3 10 4
10 -3

10 -2

10 -1

10 0

10 1

Fig. 3 We plot in the left graph the difference |ũn −un | against tn , where un is computed using the standard
implementation of CQ and ũn with the new method at tol = 10−6. On the right we plot the required time
for the two methods

requirements becomes of crucial importance when faced with non-scalar examples
coming from discretizations of PDE. The next section considers this case.

7 Application to a fractional diffusion equation

We now consider the problem of finding u(t) ∈ H1
0 (�) such that

∂
β
t u − �u = f , for (x, t) ∈ � × [0, T],
u(k)(x, 0) = 0, for x ∈ �, k = 0, . . . ,m − 1,

(27)

with β ∈ (0, 2) \ {1} and m = �β�. Here, � is a bounded, convex Lipschitz domain
in Rd , d = 1, 2, 3, H1

0 (�) the Sobolev space of functions with zero trace, and ∂
β
t the

123

Efficient high order algorithms...

fractional derivative

∂
β
t u := Im−β [∂mt u](t) = 1

�(1 − m + β)

∫ t

0
(t − s)m−β−1∂mt u(s) ds. (28)

This is the fractional derivative in the Caputo sense, which in the case u(k)(0) = 0,
k = 0, . . . ,m − 1, is equivalent to the Riemann–Liouville derivative.

Remark 22 For simplicity we avoid the integer case β = 1 as it is just the standard
heat equation and in some places this case would have to be treated slighlty differently.

The application of CQ based on BDF2 to integrate (28) in time has been analyzed
in [8, Sect. 8]. A related problem with a fractional power of the Laplacian has been
studied in [20], but not with a CQ time discretization. Here we apply Runge–Kutta
based CQ. The analysis of the application of RK based CQ to (27) is not available in
the literature, hence we give the analysis here for sufficiently smooth and compatible
right-hand side f . We first analyze the error of the spatial discretization.

7.1 Space-time discretization of the FPDE: error estimates

Let X�x ⊂ H1
0 (�) be a finite element space of piecewise linear functions and let

�x be the meshwidth. Applying the Galerkin method in space we obtain a system of
fractional differential equations: Find u(t) ∈ X�x such that

∫
�

∂
β
t u(t)v + ∇u(t) ∇v dx =

∫
�

f (t)vdx, for t ∈ [0, T], v ∈ X�x

u(k)(0) = 0, for x ∈ �, k = 0, . . . ,m − 1,
(29)

Theorem 23 Let f ∈ Cm([0, T]; L2(�)) with f (k)(0) = 0, k = 0, . . . ,m − 1 and let
u(t) be the solution of (29) and u(t) the solution of (27). Then if m > β we have

‖u(t) − u(t)‖H1(�) ≤ C�x
∫ t

0
‖ f (m)(τ)‖L2(�)dτ.

If further m > 2β we have

‖u(t) − u(t)‖L2(�) ≤ C(�x)2
∫ t

0
‖ f (m)(τ)‖L2(�)dτ.

Proof Consider the Laplace transform of (27)

zβ û − �û = f̂ , | arg(z)| < min(π, (π − δ)/β), (30)

for some fixed δ > 0, and the bilinear form

a(u, v) =
∫

�

zβuvdx +
∫

�

∇u · ∇vdx .

123

L. Banjai, M. López-Fernández

Hence, a(u, v) = ∫
�

f̂ vdx is the weak form of (30). The bilinear form is continuous

|a(u, v)| ≤ max(1, |z|β)‖u‖H1(�)‖v‖H1(�)

and

Re a(z−βu, u) = ‖u‖2L2(�)
+ Re z−β‖∇u‖2L2(�)

≥ Re z−β‖∇u‖2L2(�)

and

| Im a(z−βu, u)| = | Im z−β |‖∇u‖2L2(�)
.

Hence

|a(u, u)| = |z|β |a(z−βu, u)| ≥
{ ‖∇u‖2

L2(�)
if Re z−β > 0,

|z|β | Im z−β |‖∇u‖2
L2(�)

otherwise.

As | arg(zβ)| < π − δ, we have that |a(u, u)| ≥ C‖∇u‖2
L2(�)

and using the Poincaré

inequality we obtain coercivity in H1
0 (�). Lax-Milgram gives us that there exists a

unique û ∈ H1
0 (�) solution of (30) and that

‖û‖H1(�) ≤ C�‖ f̂ ‖H−1(�).

If furthermore f̂ ∈ L2(�), we have that

| Im zβ |‖û‖2L2(�)
=

∣∣∣∣Im
∫

�

f̂ ûdx

∣∣∣∣ ≤ ‖ f̂ ‖L2(�)‖û‖L2(�)

and

Re zβ‖û‖2L2(�)
= −‖∇u‖2L2(�)

+ Re
∫

�

f̂ ûdx ≤ ‖ f̂ ‖L2(�)‖û‖L2(�).

Dividing by |z|β‖û‖L2(�) and using the fact that | arg(zβ)| < π − δ gives

‖û‖L2(�) ≤ C |z|−β‖ f̂ ‖L2(�). (31)

For the finite element solution, Céa’s lemma gives that

‖û − û‖H1(�) ≤ max(1, |z|β) inf
v∈X�x

‖û − v‖H1(�),

where û denotes the Laplace transform of u. Using the Aubin-Nitche trick, we obtain
the estimate in the weaker norm

‖û − û‖L2(�) ≤ C max(1, |z|β)‖û − û‖H1(�) sup
g∈L2(�), g �=0

inf
v∈X�x

‖ϕg − v‖H1(�)

‖g‖L2(�)

,

123

Efficient high order algorithms...

where ϕg is the solution of the dual problem

a(v, ϕg) =
∫

�

gv dx, for all v ∈ X�x .

Recalling that� is assumed to be convex, we can use standard elliptic regularity results
together with −�û = f̂ − zβ û to show that

‖û‖H2(�) ≤ C‖ f̂ − zβ û‖L2(�) ≤ C(‖ f̂ ‖L2(�) + ‖zβ û‖L2(�)) ≤ C‖ f̂ ‖L2(�),

where the final inequality follows from (31). Similarly

‖ϕg‖H2(�) ≤ C‖g‖L2(�)

and using standard approximation results we have that

‖û − û‖H1(�) ≤C�x max(1, |z|β)‖ f̂ ‖L2(�) = C�x max(|z|−m, |z|β−m)‖zm f̂ ‖L2(�)

and

‖û − û‖L2(�) ≤ C max(|z|−m, |z|2β−m)(�x)2‖zm f̂ ‖L2(�).

The proof is completed by applying Parseval’s theorem. 	

The fully discrete system is now obtained by simply discretizing the fractional

derivative at stage level using RK-CQ:

∫
�

(∂ht)
βU(tn)v + ∇Un ∇v dx =

∫
�

f (tn)vdx, (32)

for n = 1, . . . , N − 1, v ∈ Xh .

Theorem 24 Let an A-stable, s-stage Runge–Kutta method of order p and stage order
q be given which satisifes the assumptions of Sect. 3 and let u(t) be the solution of (27)
and U solution of (32). If uh denotes the solution at full time steps, i.e., uhn+1 = Un,s

and if f ∈ C p([0, T]; L2(�)) with f (k)(0) = 0, for k = 0, . . . , �β� − 1 then

‖u(tn) − uhn‖L2(�) = O(�x2) + O(h p + hq+1+β)

+ O(h p)

(q∑
�=0

(
1 + tβ+�−p

n

)
‖ f (�)(0)‖L2(�)

)
.

Proof Denote by K (z) : f �→ u the solution operator of the Laplace transformed
problem (30) and note the resolvent estimate

‖K (z)‖L2(�)←L2(�) ≤ C |z|−β, | arg(z)| < min(π, (π − δ)/β),

123

L. Banjai, M. López-Fernández

for any δ > 0, following from (31); see also [8] and [21]. The same estimate holds for
the solution operator K�x : f �→ u of the Galerkin discretization in the space X�x .
Note also that

u(t) = K (∂t) f , u(t) = K�x (∂t) f , U = K�x (∂
h
t) f , uh = K�x (∂

h
t) f .

The second to last equality above follows from standard properties of convolution
quadrature, see for example [17, Sect. 4] and [22, Chap. 9], whereas the last one is
simply the use of operational notation explained in Remark 7. The result now follows
from Theorems 8, 23, and the triangle inequality. 	

7.2 Implementation and numerical experiments

Though all the information needed for the implementation is given in the preceding
pages, for the benefit of the reader we give some more detail here. Let M denote the
number of degrees of freedom in space, i.e., M = dim X�x , let B and A be the mass
and stiffness matrices.

For simplicity of presentation we assume β ∈ (0, 1) and let Un ∈ R
sM now denote

the vectorUn = [Un,1, . . . ,Un,s]T withUn,� ≈ u(tn,�), � = 1, . . . , s. Hence the fully
discrete system can be written as a system of linear equations

(
(∂ht)

β ⊗ B
)
U + (Is ⊗ A)U = F, for tn ∈ [0, T], (33)

where ID denotes the identity matrix of size D × D and F j ∈ R
sM .

Note that the composition rule allows us to write the CQ approximation to ∂
β
t y, as

(∂ht)
βY = (∂ht)

β−m(∂ht)
mY,

with (Y j)� ≈ y(t j,�) and m = �β�. As β − m < 0, the discrete version (∂ht)
β−1 of

the fractional integral ∂
β−1
t = I1−β can be evaluated by our fast algorithm, whereas

(∂ht)
m is the standard one-step Runge–Kutta approximation of the derivative repeated

m times.
For simplicity of presentation introduce new variables V j ∈ R

Ms with

Vn =
(
∂ht ⊗ IM

)
U(tn).

Note that

Vn = (IM ⊗ D0)Un + (IM ⊗ D1)Un−1, n = 1, . . . , N ,

where from (13) we have that

D0 = 1

h
Oι−1, D1 = 1

h
Oι−11bTOι−1.

123

Efficient high order algorithms...

Then the fully discrete system (33) becomes

n∑
j=0

(
Wn− j ⊗ IM

)
V j + (Is ⊗ B)−1 (Is ⊗ A)Un = (Is ⊗ B)−1 Fn,

where W j are the weight matrices for the fractional integral Iα with α = 1 − β.
Rearranging terms so that the known vectors are on the right-hand side and denoting

A = Is ⊗ A, B = Is ⊗ B,

we obtain

(W0 ⊗ IM)Vn + B−1AUn = B−1Fn −
n−1∑
j=0

(
Wn− j ⊗ IM

)
V j

or using the definition of Vn

(W0D0 ⊗ IM)Un + B−1AUn = − (W0D1 ⊗ IM)Un−1 − B−1Fn

−
n−1∑
j=0

(
Wn− j ⊗ IM

)
V j .

At each time step this system needs to be solved, where the expensive part is the
computation of the discrete convolution in the right-hand side and the storage of all
the vectors V j . This problem is resolved by our fast method of evaluation of discrete
convolutions with the following variation with respect to Sect. 5 in order to deal with
the stages:

n∑
j=n0+1

(
W j ⊗ IM

)
Vn− j ≈ h

NQ∑
k=1

wk(r(−hxk))
n0Qn−1,k (34)

with

Q�,k =
�−n0−1∑

j=0

(r(−hxk))
j
(
(Is + hxkOι)−1 1q(−hxk) ⊗ IM

)
V�−n0−1− j

satisfying the recursion

Q�,k = r(−hxk)Q�−1,k +
(
(Is + hxkOι)−1 1q(−hxk) ⊗ IM

)
f�−n0−1, Qn0,k = 0.

As a final point let us note that due to (12)

W0 =
(

�(0)

h

)−α

= hαOια

123

L. Banjai, M. López-Fernández

Table 3 We show the error and the memory requirements for the new method and the standard implemen-
tation of CQ

N Error Memory (MB) SE Standard mem. (MB)

32 2.94 × 10−1 39.1 2.94 × 10−1 59.2

64 3.07 × 10−2 40.3 3.07 × 10−2 98.7

128 2.61 × 10−3 42.8 2.61 × 10−3 177.6

256 2.98 × 10−4 44.0 3.01 × 10−4 335.4

and hence

W0D0 = (h)α−1Oια−1 = (h)−βOι−β.

As the spectrum of Oι−β is in the right-half complex plane the problem to be solved
at each time-step has a unique solution.

For the numerical experiments we let � be the square with corners (−1,−1) and
(1, 1) and choose f so that the exact solution is

u(x, t) = sin3
(3
2π t

)
cos

(1
2πx1

)
cos

(1
2πx2

)
.

We let the final time be T = 7, fix the finite element space on a triangular mesh with
meshwidth �x = 5 × 10−3 and compute the error in the L2(�) norm at t = T . The
error and memory requirements as the number of time-steps is increased are given
in Table 3 for our new method and for the standard implementation of the CQ. We
have used as tolerance tol = 10−4 and the 2-stage RadauIIA based CQ, for which the
theory predicts convergence of order O(h3). We see that the error is the same for the
two implementations of the CQ, achieving in both cases the predicted order 3, but that
the memory requirements for the new method stay almost constant whereas for the
standard implementation they grow linearly.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Adolfsson, K., Enelund, M., Larsson, S.: Space-time discretization of an integro-differential equation
modeling quasi-static fractional-order viscoelasticity. J. Vib. Control 14(9–10), 1631–1649 (2008)

2. Baffet, D.: A Gauss–Jacobi kernel compression scheme for fractional differential equations. (2018).
arXiv:1801.06095

3. Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM
J. Numer. Anal. 55(2), 496–520 (2017)

4. Banjai, L.: Multistep and multistage convolution quadrature for the wave equation: algorithms and
experiments. SIAM J. Sci. Comput. 32(5), 2964–2994 (2010)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1801.06095

Efficient high order algorithms...

5. Banjai, L., Lubich, C.: An error analysis of Runge–Kutta convolution quadrature. BIT 51(3), 483–496
(2011)

6. Banjai, L., Lubich, C., Melenk, J.M.: Runge–Kutta convolution quadrature for operators arising in
wave propagation. Numer. Math. 119(1), 1–20 (2011)

7. Banjai, L., Schanz, M.: Wave propagation problems treated with convolution quadrature and BEM.
In: Langer, U., Schanz, M., Steinbach, O., Wendland, W.L. (eds.) Fast Boundary Element Methods
in Engineering and Industrial Applications, Lecture Notes in Applied and Computational Mechanics,
vol. 63, pp. 145–184. Springer, Berlin (2012)

8. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-
wave equations. Math. Comput. 75(254), 673–696 (2006)

9. Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equa-
tions. SIAM J. Sci. Stat. Comput. 6(3), 532–541 (1985)

10. Hairer, E., Wanner, G.: Solving ordinary differential equations. II, vol. 14 of Springer Series in Com-
putational Mathematics, 2nd edition. Springer, Berlin (1996)

11. Henrici, P.: Applied and Computational Complex Analysis, vol. 2. Wiley, New York (1977)
12. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its

applications to fractional diffusion equations. (2015). arXiv:1511.03453
13. Li, J.-R.: A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31(6),

4696–4714 (2009/10)
14. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)
15. Lubich, C.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 129–145

(1988)
16. Lubich, C.: Convolution quadrature and discretized operational calculus II. Numer. Math. 52, 413–425

(1988)
17. Lubich, C.: On the multistep time discretization of linear initial-boundary value problems and their

boundary integral equations. Numer. Math. 67, 365–389 (1994)
18. Lubich, C., Ostermann, A.: Runge–Kutta methods for parabolic equations and convolution quadrature.

Math. Comput. 60(201), 105–131 (1993)
19. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput.

24(1), 161–182 (2002)
20. Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to space-time fractional parabolic prob-

lems. SIAM J. Numer. Anal. 54(2), 848–873 (2016)
21. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44.

Springer, New York (1983)
22. Sayas, F.-J.: Retarded Potentials and Time Domain Boundary Integral Equations, vol. 50. Springer,

Heidelberg (2016)
23. Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J.

Sci. Comput. 28(2), 421–438 (2006)
24. Trefethen, L.N.: Approximation Theory and Approximation Practice. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia (2013)
25. Yu, Y., Perdikaris, P., Karniadakis, G.E.: Fractional modeling of viscoelasticity in 3D cerebral arteries

and aneurysms. J. Comput. Phys. 323, 219–242 (2016)
26. Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an A+B → C reaction-subdiffusion process.

Phys. Rev. E 69, 036126 (2004)
27. Zeng, F., Turner, I., Burrage,K.:A stable fast time-steppingmethod for fractional integral and derivative

operators. (2017). arXiv:1703.05480

123

http://arxiv.org/abs/1511.03453
http://arxiv.org/abs/1703.05480

	Efficient high order algorithms for fractional integrals and fractional differential equations
	Abstract
	1 Introduction
	2 Efficient quadrature for tα-1
	2.1 Truncation
	2.2 Gauss–Jacobi quadrature for the initial interval
	2.3 Gauss quadrature on increasing intervals

	3 Runge–Kutta convolution quadrature
	3.1 Real integral representation of the CQ weights

	4 Efficient quadrature for the CQ weights
	4.1 Truncation of the CQ weights integral representation
	4.2 Gauss–Jacobi quadrature for the CQ weights
	4.3 Gauss quadrature on increasing intervals for the CQ weights

	5 Fast summation and computational cost
	6 Numerical experiments
	6.1 Fractional integral

	7 Application to a fractional diffusion equation
	7.1 Space-time discretization of the FPDE: error estimates
	7.2 Implementation and numerical experiments

	References

