376 research outputs found

    Stabilization of a non standard FETI-DP mortar method for the Stokes problem

    Get PDF
    In a recent paper [E. Chacón Vera and D. Franco Coronil, J. Numer. Math. 20 (2012) 161–182.] a non standard mortar method for incompressible Stokes problem was introduced where the use of the trace spaces H1/2 and H1/2 00 and a direct computation of the pairing of the trace spaces with their duals are the main ingredients. The importance of the reduction of the number of degrees of freedom leads naturally to consider the stabilized version and this is the results we present in this work. We prove that the standard Brezzi–Pitkaranta stabilization technique is available and that it works well with this mortar method. Finally, we present some numerical tests to illustrate this behaviour.Ministerio de Ciencia e InnovaciónJunta de Andaluci

    Stabilized MorteX method for mesh tying along embedded interfaces

    Get PDF
    We present a unified framework to tie overlapping meshes in solid mechanics applications. This framework is a combination of the X-FEM method and the mortar method, which uses Lagrange multipliers to fulfill the tying constraints. As known, mixed formulations are prone to mesh locking which manifests itself by the emergence of spurious oscillations in the vicinity of the tying interface. To overcome this inherent difficulty, we suggest a new coarse-grained interpolation of Lagrange multipliers. This technique consists in selective assignment of Lagrange multipliers on nodes of the mortar side and in non-local interpolation of the associated traction field. The optimal choice of the coarse-graining spacing is guided solely by the mesh-density contrast between the mesh of the mortar side and the number of blending elements of the host mesh. The method is tested on two patch tests (compression and bending) for different interpolations and element types as well as for different material and mesh contrasts. The optimal mesh convergence and removal of spurious oscillations is also demonstrated on the Eshelby inclusion problem for high contrasts of inclusion/matrix materials. Few additional examples confirm the performance of the elaborated framework

    Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers

    Full text link
    This is the pre-peer reviewed version of the following article: Tur, M., Albelda, J., Nadal, E. and Ródenas, J. J. (2014), Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. Int. J. Numer. Meth. Engng, 98: 399–417, which has been published in final form at http://dx.doi.org/10.1002/nme.4629 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] The use of Cartesian meshes independent of the geometry has some advantages over the traditional meshes used in the finite element method. The main advantage is that their use together with an appropriate hierarchical data structure reduces the computational cost of the finite element analysis. This improvement is based on the substitution of the traditional mesh generation process by an optimized procedure for intersecting the Cartesian mesh with the boundary of the domain and the use efficient solvers based on the hierarchical data structure. One major difficulty associated to the use of Cartesian grids is the fact that the mesh nodes do not, in general, lie over the boundary of the domain, increasing the difficulty to impose Dirichlet boundary conditions. In this paper, Dirichlet boundary conditions are imposed by means of the Lagrange multipliers technique. A new functional has been added to the initial formulation of the problem that has the effect of stabilizing the problem. The technique here presented allows for a simple definition of the Lagrange multipliers field that even allow us to directly condense the degrees of freedom of the Lagrange multipliers at element level.The authors acknowledge the financial support received from the research project DPI2010-20542 of the Ministerio de Economia y Competitividad. Also, we appreciated the financial support of the FPU program (AP2008-01086) of the Universitat Politecnica de Valencia and the Generalitat Valenciana (PROMETEO/2012/023). The authors are also grateful for the support of the Framework Program 7 Initial Training Network Funding under grant number 289361 'Integrating Numerical Simulation and Geometric Design Technology (INSIST)'.Tur Valiente, M.; Albelda Vitoria, J.; Nadal Soriano, E.; Ródenas García, JJ. (2014). Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. International Journal for Numerical Methods in Engineering. 98(6):399-417. https://doi.org/10.1002/nme.462939941798

    Simulation of cell movement through evolving environment: a fictitious domain approach

    Get PDF
    A numerical method for simulating the movement of unicellular organisms which respond to chemical signals is presented. Cells are modelled as objects of finite size while the extracellular space is described by reaction-diffusion partial differential equations. This modular simulation allows the implementation of different models at the different scales encountered in cell biology and couples them in one single framework. The global computational cost is contained thanks to the use of the fictitious domain method for finite elements, allowing the efficient solve of partial differential equations in moving domains. Finally, a mixed formulation is adopted in order to better monitor the flux of chemicals, specifically at the interface between the cells and the extracellular domain

    Numerical methods for coupled processes in fractured porous media

    Get PDF
    Numerical simulations have become essential in the planning and execution of operations in the subsurface, whether this is geothermal energy production or storage, carbon sequestration, petroleum production, or wastewater disposal. As the computational power increases, more complex models become feasible, not only in the form of more complicated physics, but also in the details of geometric constraints such as fractures, faults and wells. These features are often of interest as they can have a profound effect on different physical processes in the porous medium. This thesis focuses on modeling and simulations of fluid flow, transport and deformation of fractured porous media. The physical processes are formulated in a mixed-dimensional discrete fracture matrix model, where the rock matrix, fractures, and fracture intersections form a hierarchy of subdomains of different dimensions that are coupled through interface laws. A new discretization scheme for solving the deformation of a poroelastic rock coupled to a Coulomb friction law governing fracture deformation is presented. The novelty of this scheme comes from combining an existing finite-volume discretization for poroelasticity with a hybrid formulation that adds Lagrange multipliers on the fracture surface. This allows us to formulate the inequalities as complementary functions and solve the corresponding non-linear system using a semi-smooth Newton method. The mixed-dimensional framework is used to investigate non-linear coupled flow and transport. Here, we study how highly permeable fractures affect the viscous fingering in a porous medium and show that there is a complex interplay between the unstable viscous fingers and the fractures. The computer code of the above contributions of the thesis work has been implemented in the open-source framework PorePy. The introduction of fractures is a challenge to the discretization and the implementation of the governing equations, and the aim of this framework is to enable researchers to overcome many of the technical difficulties inherent to fractures, allowing them to easily develop models for fractured porous media. One of the large challenges for the mixed-dimensional discrete fracture matrix models is to create meshes that conform to the fractures, and we present a novel algorithm for constructing conforming Voronoi meshes. The proposed algorithm creates a mesh hierarchy, where the faces of the rock matrix mesh conform to the cells of the fractures, and the faces of the fracture mesh conform to the cells of the fracture intersections. The flexibility of the mixed-dimensional framework is exemplified by the wide range of applications and models studied within this thesis. While these physical processes might be fairly well known in a porous medium without fractures, the results of this thesis improves our understanding as well as the models and solution strategies for fractured porous media
    corecore