1,926 research outputs found

    On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations

    Full text link
    The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for coarse spatial resolutions and small time step sizes. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.Comment: 31 page

    Rough clustering for web transactions

    Get PDF
    Grouping web transactions into clusters is important in order to obtain better understanding of user's behavior. Currently, the rough approximation-based clustering technique has been used to group web transactions into clusters. It is based on the similarity of upper approximations of transactions by given threshold. However, the processing time is still an issue due to the high complexity for finding the similarity of upper approximations of a transaction which used to merge between two or more clusters. In this study, an alternative technique for grouping web transactions using rough set theory is proposed. It is based on the two similarity classes which is nonvoid intersection. The technique is implemented in MATLAB ® version 7.6.0.324 (R2008a). The two UCI benchmark datasets taken from: http:/kdd.ics.uci.edu/ databases/msnbc/msnbc.html and http:/kdd.ics.uci.edu/databases/ Microsoft / microsoft.html are opted in the simulation processes. The simulation reveals that the proposed technique significantly requires lower response time up to 62.69 % and 66.82 % as compared to the rough approximation-based clustering, severally. Meanwhile, for cluster purity it performs better until 2.5 % and 14.47%, respectively

    A bounded upwinding scheme for computing convection-dominated transport problems

    Get PDF
    A practical high resolution upwind differencing scheme for the numerical solution of convection-dominated transport problems is presented. The scheme is based on TVD and CBC stability criteria and is implemented in the context of the finite difference methodology. The performance of the scheme is investigated by solving the 1D/2D scalar advection equations, 1D inviscid Burgers’ equation, 1D scalar convection–diffusion equation, 1D/2D compressible Euler’s equations, and 2D incompressible Navier–Stokes equations. The numerical results displayed good agreement with other existing numerical and experimental data

    Inertial Coupling Method for particles in an incompressible fluctuating fluid

    Full text link
    We develop an inertial coupling method for modeling the dynamics of point-like 'blob' particles immersed in an incompressible fluid, generalizing previous work for compressible fluids. The coupling consistently includes excess (positive or negative) inertia of the particles relative to the displaced fluid, and accounts for thermal fluctuations in the fluid momentum equation. The coupling between the fluid and the blob is based on a no-slip constraint equating the particle velocity with the local average of the fluid velocity, and conserves momentum and energy. We demonstrate that the formulation obeys a fluctuation-dissipation balance, owing to the non-dissipative nature of the no-slip coupling. We develop a spatio-temporal discretization that preserves, as best as possible, these properties of the continuum formulation. In the spatial discretization, the local averaging and spreading operations are accomplished using compact kernels commonly used in immersed boundary methods. We find that the special properties of these kernels make the discrete blob a particle with surprisingly physically-consistent volume, mass, and hydrodynamic properties. We develop a second-order semi-implicit temporal integrator that maintains discrete fluctuation-dissipation balance, and is not limited in stability by viscosity. Furthermore, the temporal scheme requires only constant-coefficient Poisson and Helmholtz linear solvers, enabling a very efficient and simple FFT-based implementation on GPUs. We numerically investigate the performance of the method on several standard test problems...Comment: Contains a number of corrections and an additional Figure 7 (and associated discussion) relative to published versio
    corecore