105 research outputs found

    Robust Cardiac Motion Estimation using Ultrafast Ultrasound Data: A Low-Rank-Topology-Preserving Approach

    Get PDF
    Cardiac motion estimation is an important diagnostic tool to detect heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of the complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate the cardiac motion using ultrafast ultrasound data. -- Our solution is based on a variational formulation characterized by the L2-regularized class. The displacement is represented by a lattice of b-splines and we ensure robustness by applying a maximum likelihood type estimator. While this is an important part of our solution, the main highlight of this paper is to combine a low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati Matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. While maintaining the accuracy of the solution, the low-rank preprocessing is shown to speed up the convergence of the variational problem. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that experience motion.Comment: 15 pages, 10 figures, Physics in Medicine and Biology, 201

    Bijective Density-Equalizing Quasiconformal Map for Multiply-Connected Open Surfaces

    Full text link
    This paper proposes a novel method for computing bijective density-equalizing quasiconformal (DEQ) flattening maps for multiply-connected open surfaces. In conventional density-equalizing maps, shape deformations are solely driven by prescribed constraints on the density distribution, defined as the population per unit area, while the bijectivity and local geometric distortions of the mappings are uncontrolled. Also, prior methods have primarily focused on simply-connected open surfaces but not surfaces with more complicated topologies. Our proposed method overcomes these issues by formulating the density diffusion process as a quasiconformal flow, which allows us to effectively control the local geometric distortion and guarantee the bijectivity of the mapping by solving an energy minimization problem involving the Beltrami coefficient of the mapping. To achieve an optimal parameterization of multiply-connected surfaces, we develop an iterative scheme that optimizes both the shape of the target planar circular domain and the density-equalizing quasiconformal map onto it. In addition, landmark constraints can be incorporated into our proposed method for consistent feature alignment. The method can also be naturally applied to simply-connected open surfaces. By changing the prescribed population, a large variety of surface flattening maps with different desired properties can be achieved. The method is tested on both synthetic and real examples, demonstrating its efficacy in various applications in computer graphics and medical imaging

    Numerical Computation of Weil-Peterson Geodesics in the Universal Teichm\"uller Space

    Full text link
    We propose an optimization algorithm for computing geodesics on the universal Teichm\"uller space T(1) in the Weil-Petersson (WPW P) metric. Another realization for T(1) is the space of planar shapes, modulo translation and scale, and thus our algorithm addresses a fundamental problem in computer vision: compute the distance between two given shapes. The identification of smooth shapes with elements on T(1) allows us to represent a shape as a diffeomorphism on S1S^1. Then given two diffeomorphisms on S1S^1 (i.e., two shapes we want connect with a flow), we formulate a discretized WPW P energy and the resulting problem is a boundary-value minimization problem. We numerically solve this problem, providing several examples of geodesic flow on the space of shapes, and verifying mathematical properties of T(1). Our algorithm is more general than the application here in the sense that it can be used to compute geodesics on any other Riemannian manifold.Comment: 21 pages, 11 figure

    A Novel Diffeomorphic Model for Image Registration and Its Algorithm

    Get PDF
    In this work, we investigate image registration by mapping one image to another in a variational framework and focus on both model robustness and solver efficiency. We first propose a new variational model with a special regularizer, based on the quasi-conformal theory, which can guarantee that the registration map is diffeomorphic. It is well known that when the deformation is large, many variational models including the popular diffusion model cannot ensure diffeomorphism. One common observation is that the fidelity error appears small while the obtained transform is incorrect by way of mesh folding. However, direct reformulation from the Beltrami framework does not lead to effective models; our new regularizer is constructed based on this framework and added to the diffusion model to get a new model, which can achieve diffeomorphism. However, the idea is applicable to a wide class of models. We then propose an iterative method to solve the resulting nonlinear optimization problem and prove the convergence of the method. Numerical experiments can demonstrate that the new model can not only get a diffeomorphic registration even when the deformation is large, but also possess the accuracy in comparing with the currently best models

    Geodesic Active Fields:A Geometric Framework for Image Registration

    Get PDF
    Image registration is the concept of mapping homologous points in a pair of images. In other words, one is looking for an underlying deformation field that matches one image to a target image. The spectrum of applications of image registration is extremely large: It ranges from bio-medical imaging and computer vision, to remote sensing or geographic information systems, and even involves consumer electronics. Mathematically, image registration is an inverse problem that is ill-posed, which means that the exact solution might not exist or not be unique. In order to render the problem tractable, it is usual to write the problem as an energy minimization, and to introduce additional regularity constraints on the unknown data. In the case of image registration, one often minimizes an image mismatch energy, and adds an additive penalty on the deformation field regularity as smoothness prior. Here, we focus on the registration of the human cerebral cortex. Precise cortical registration is required, for example, in statistical group studies in functional MR imaging, or in the analysis of brain connectivity. In particular, we work with spherical inflations of the extracted hemispherical surface and associated features, such as cortical mean curvature. Spatial mapping between cortical surfaces can then be achieved by registering the respective spherical feature maps. Despite the simplified spherical geometry, inter-subject registration remains a challenging task, mainly due to the complexity and inter-subject variability of the involved brain structures. In this thesis, we therefore present a registration scheme, which takes the peculiarities of the spherical feature maps into particular consideration. First, we realize that we need an appropriate hierarchical representation, so as to coarsely align based on the important structures with greater inter-subject stability, before taking smaller and more variable details into account. Based on arguments from brain morphogenesis, we propose an anisotropic scale-space of mean-curvature maps, built around the Beltrami framework. Second, inspired by concepts from vision-related elements of psycho-physical Gestalt theory, we hypothesize that anisotropic Beltrami regularization better suits the requirements of image registration regularization, compared to traditional Gaussian filtering. Different objects in an image should be allowed to move separately, and regularization should be limited to within the individual Gestalts. We render the regularization feature-preserving by limiting diffusion across edges in the deformation field, which is in clear contrast to the indifferent linear smoothing. We do so by embedding the deformation field as a manifold in higher-dimensional space, and minimize the associated Beltrami energy which represents the hyperarea of this embedded manifold as measure of deformation field regularity. Further, instead of simply adding this regularity penalty to the image mismatch in lieu of the standard penalty, we propose to incorporate the local image mismatch as weighting function into the Beltrami energy. The image registration problem is thus reformulated as a weighted minimal surface problem. This approach has several appealing aspects, including (1) invariance to re-parametrization and ability to work with images defined on non-flat, Riemannian domains (e.g., curved surfaces, scalespaces), and (2) intrinsic modulation of the local regularization strength as a function of the local image mismatch and/or noise level. On a side note, we show that the proposed scheme can easily keep up with recent trends in image registration towards using diffeomorphic and inverse consistent deformation models. The proposed registration scheme, called Geodesic Active Fields (GAF), is non-linear and non-convex. Therefore we propose an efficient optimization scheme, based on splitting. Data-mismatch and deformation field regularity are optimized over two different deformation fields, which are constrained to be equal. The constraint is addressed using an augmented Lagrangian scheme, and the resulting optimization problem is solved efficiently using alternate minimization of simpler sub-problems. In particular, we show that the proposed method can easily compete with state-of-the-art registration methods, such as Demons. Finally, we provide an implementation of the fast GAF method on the sphere, so as to register the triangulated cortical feature maps. We build an automatic parcellation algorithm for the human cerebral cortex, which combines the delineations available on a set of atlas brains in a Bayesian approach, so as to automatically delineate the corresponding regions on a subject brain given its feature map. In a leave-one-out cross-validation study on 39 brain surfaces with 35 manually delineated gyral regions, we show that the pairwise subject-atlas registration with the proposed spherical registration scheme significantly improves the individual alignment of cortical labels between subject and atlas brains, and, consequently, that the estimated automatic parcellations after label fusion are of better quality

    Explorations of Infinitesimal Inverse Spectral Geometry

    Get PDF
    Spectral geometry is a mathematical discipline that studies the relationship between the geometry of Riemannian manifolds and the spectra of natural differential operators defined on them. The spectra of Laplacians are the ones most studied in this context. A sub-field of this discipline, called inverse spectral geometry, studies how much geometric information one can recover from such spectra. The motivation behind our study of inverse spectral geometry is a physical one. It has recently been proposed that inverse spectral geometry could be the missing mathematical link between quantum field theory and general relativity needed to unify those theories into a single theory of quantum gravity. Unfortunately, this proposed link is not well understood. Most of the efforts in inverse spectral geometry were historically concentrated on the generation of counterexamples to the most general formulation of inverse spectral geometry and the few positive results that exist are quite limited. In order to remedy to that, it has been proposed to linearize the problem, and study an infinitesimal version of inverse spectral geometry. In this thesis, I begin by reviewing the theory of pseudodifferential operators and using it to prove the spectral theorem for elliptic operators. I then define the commonly used Laplacians and survey positive and negative results in inverse spectral geometry. Afterwards, I briefly discuss a coordinate free reformulation of Riemannian geometry via the notion of spectral triple. Finally, I introduce a formulation of inverse spectral geometry adapted for numerical implementations and apply it to the inverse spectral geometry of a particular class of star-shaped domains in ℝ²
    • …
    corecore