49,251 research outputs found

    A Spectral Graph Uncertainty Principle

    Full text link
    The spectral theory of graphs provides a bridge between classical signal processing and the nascent field of graph signal processing. In this paper, a spectral graph analogy to Heisenberg's celebrated uncertainty principle is developed. Just as the classical result provides a tradeoff between signal localization in time and frequency, this result provides a fundamental tradeoff between a signal's localization on a graph and in its spectral domain. Using the eigenvectors of the graph Laplacian as a surrogate Fourier basis, quantitative definitions of graph and spectral "spreads" are given, and a complete characterization of the feasibility region of these two quantities is developed. In particular, the lower boundary of the region, referred to as the uncertainty curve, is shown to be achieved by eigenvectors associated with the smallest eigenvalues of an affine family of matrices. The convexity of the uncertainty curve allows it to be found to within Δ\varepsilon by a fast approximation algorithm requiring O(Δ−1/2)O(\varepsilon^{-1/2}) typically sparse eigenvalue evaluations. Closed-form expressions for the uncertainty curves for some special classes of graphs are derived, and an accurate analytical approximation for the expected uncertainty curve of Erd\H{o}s-R\'enyi random graphs is developed. These theoretical results are validated by numerical experiments, which also reveal an intriguing connection between diffusion processes on graphs and the uncertainty bounds.Comment: 40 pages, 8 figure

    Toward An Uncertainty Principle For Weighted Graphs

    No full text
    International audienceThe uncertainty principle states that a signal cannot be localized both in time and frequency. With the aim of extending this result to signals on graphs, Agaskar & Lu introduce notions of graph and spectral spreads. They show that a graph uncertainty principle holds for some families of unweighted graphs. This principle states that a signal cannot be simultaneously localized both in graph and spectral domains. In this paper, we aim to extend their work to weighted graphs. We show that a naive extension of their definitions leads to inconsistent results such as discontinuity of the graph spread when regarded as a function of the graph structure. To circumvent this problem, we propose another definition of graph spread that relies on an inverse similarity matrix. We also discuss the choice of the distance function that appears in this definition. Finally, we compute and plot uncertainty curves for families of weighted graphs

    Shapes of uncertainty in spectral graph theory

    Get PDF
    We present a flexible framework for uncertainty principles in spectral graph theory. In this framework, general filter functions modeling the spatial and spectral localization of a graph signal can be incorporated. It merges several existing uncertainty relations on graphs, among others the Landau-Pollak principle describing the joint admissibility region of two projection operators, and uncertainty relations based on spectral and spatial spreads. Using theoretical and computational aspects of the numerical range of matrices, we are able to characterize and illustrate the shapes of the uncertainty curves and to study the space-frequency localization of signals inside the admissibility regions

    Discrete Harmonic Analysis. Representations, Number Theory, Expanders and the Fourier Transform

    Get PDF
    This self-contained book introduces readers to discrete harmonic analysis with an emphasis on the Discrete Fourier Transform and the Fast Fourier Transform on finite groups and finite fields, as well as their noncommutative versions. It also features applications to number theory, graph theory, and representation theory of finite groups. Beginning with elementary material on algebra and number theory, the book then delves into advanced topics from the frontiers of current research, including spectral analysis of the DFT, spectral graph theory and expanders, representation theory of finite groups and multiplicity-free triples, Tao's uncertainty principle for cyclic groups, harmonic analysis on GL(2,Fq), and applications of the Heisenberg group to DFT and FFT. With numerous examples, figures, and over 160 exercises to aid understanding, this book will be a valuable reference for graduate students and researchers in mathematics, engineering, and computer science

    Signals on Graphs: Uncertainty Principle and Sampling

    Full text link
    In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this work, first, we provide a class of graph signals that are maximally concentrated on the graph domain and on its dual. Then, building on this framework, we derive an uncertainty principle for graph signals and illustrate the conditions for the recovery of band-limited signals from a subset of samples. We show an interesting link between uncertainty principle and sampling and propose alternative signal recovery algorithms, including a generalization to frame-based reconstruction methods. After showing that the performance of signal recovery algorithms is significantly affected by the location of samples, we suggest and compare a few alternative sampling strategies. Finally, we provide the conditions for perfect recovery of a useful signal corrupted by sparse noise, showing that this problem is also intrinsically related to vertex-frequency localization properties.Comment: This article is the revised version submitted to the IEEE Transactions on Signal Processing on May, 2016; first revision was submitted on January, 2016; original manuscript was submitted on July, 2015. The work includes 16 pages, 8 figure

    Entropy of eigenfunctions on quantum graphs

    Full text link
    We consider families of finite quantum graphs of increasing size and we are interested in how eigenfunctions are distributed over the graph. As a measure for the distribution of an eigenfunction on a graph we introduce the entropy, it has the property that a large value of the entropy of an eigenfunction implies that it cannot be localised on a small set on the graph. We then derive lower bounds for the entropy of eigenfunctions which depend on the topology of the graph and the boundary conditions at the vertices. The optimal bounds are obtained for expanders with large girth, the bounds are similar to the ones obtained by Anantharaman et.al. for eigenfunctions on manifolds of negative curvature, and are based on the entropic uncertainty principle. For comparison we compute as well the average behaviour of entropies on Neumann star graphs, where the entropies are much smaller. Finally we compare our lower bounds with numerical results for regular graphs and star graphs with different boundary conditions.Comment: 28 pages, 3 figure

    Weak uncertainty principle for fractals, graphs and metric measure spaces

    Full text link
    We develop a new approach to formulate and prove the weak uncertainty inequality which was recently introduced by Okoudjou and Strichartz. We assume either an appropriate measure growth condition with respect to the effective resistance metric, or, in the absence of such a metric, we assume the Poincare inequality and reverse volume doubling property. We also consider the weak uncertainty inequality in the context of Nash-type inequalities. Our results can be applied to a wide variety of metric measure spaces, including graphs, fractals and manifolds
    • 

    corecore