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Shapes of Uncertainty in Spectral Graph Theory
Wolfgang Erb

F

Abstract

We present a flexible framework for uncertainty principles in spectral graph theory. In this framework, general filter
functions modeling the spatial and spectral localization of a graph signal can be incorporated. It merges several existing
uncertainty relations on graphs, among others the Landau-Pollak principle describing the joint admissibility region of two
projection operators, and uncertainty relations based on spectral and spatial spreads. Using theoretical and computational
aspects of the numerical range of matrices, we are able to characterize and illustrate the shapes of the uncertainty curves
and to study the space-frequency localization of signals inside the admissibility regions.
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1 Introduction

Uncertainty principles are important cornerstones in signal analysis. They describe inherent
limitations of a signal to be localized simultaneously in a complementary pair of domains, usually

referred to as space and frequency (or spectral) domains. Uncertainty relations can be formulated in
a multitude of ways. Exemplarily, the first uncertainty principle discovered by Heisenberg [15] can
be written in terms of a commutator relation of a position with a momentum operator. In other
contexts, uncertainty relations are described in terms of inequalities, by the space-frequency support
or the smoothness of functions, or in form of boundary curves for an uncertainty region. A survey
on different description possibilities can be found in [11], a wider theory is given in [14].

In signal processing on graphs, uncertainty relations play a crucial role as well. They are used to
describe the limitations of space-frequency localization [1, 35], to study sampling properties on graphs
[26, 36], or to analyse space-frequency atoms and wavelet decompositions [1, 30, 31]. The discrete
harmonic structure in spectral graph theory (as introduced in [5]) allows to transfer many uncertainty
relations developed in classical settings directly onto a graph structure. This has led to a quite
fragmented zoo of available uncertainty relations. As the discrete geometry of a graph can vary from
a very homogeneous, symmetric geometry to a very inhomogeneous structure, not every uncertainty
principle is equally useful for every graph. To give an example, it is shown in [3, 35] that particular
graphs, as for instance complete graphs, exhibit a harmonic structure in which the support theorem
of Elad and Bruckstein [7] provides only a very week uncertainty relation. For graphs it is therefore
important to have a flexible framework of uncertainty principles at hand that can be adapted to the
graph structure or to particular applications in graph signal processing.

In spectral graph theory, the complementary pair of domains in which localization is measured is
given by a space domain consisting of a discrete set of graph nodes and a spectral domain provided
by the eigendecomposition of a graph Laplacian [5]. The description of uncertainty principles on
graphs relies on this graph-dependent spatial and spectral structure. The second key ingredient for
the formulation of an uncertainty principle is a proper concept for the measurement of space and
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frequency localization. Suitable localization measures on graphs should be consistent with the given
harmonic structure, but also be adjustable to prerequisites determined by applications.

The goal of this article is to offer a new more general perspective on uncertainty principles in
spectral graph theory, able to incorporate a large number of different localization measures. These
measures will be defined in terms of localization operators built upon a space and a frequency filter.
For any given pair of filters we want to visualize and characterize the shapes of the corresponding
uncertainty regions. For this, we combine existing results on operator-based uncertainty principles in
signal processing with computational methods developed for the numerical range of matrices. In this
way, we get a powerful unified framework for the analysis, the computation and the illustration of
uncertainty in spectral graph theory.
Main contributions. Our uncertainty framework on graphs is a synthesis and extension of several
established results. It is built on the following ideas, compactly illustrated in Table 1.
• The theoretical starting point of this framework is the space-frequency analysis studied by
Landau, Pollak and Slepian [19, 20, 21, 32, 33, 34] for signals on the real line and its relative
on graphs [36, 39]. In Sections 3 and 4, we will extend this theory from projection operators
to general symmetric, positive-semidefinite operators. In this way, we are able to merge the
Landau-Pollak uncertainty for projection operators with uncertainty relations based on spectral
and spatial spreads on graphs as formulated in [1, 24, 25]. Our main new theoretical result in
this part is the uncertainty estimate given in Theorem 4.3.

• The second key technology implemented in this framework consists of theoretical and compu-
tational aspects of the numerical range of matrices [4, 13, 16, 17, 22, 37]. In Section 5, we show
that the uncertainty regions related to the space and frequency localization measures can be
formulated and calculated with help of a convex numerical range. In this way, we obtain the
efficient Algorithm 1 for the computation and visualization of the uncertainty curves and, in
addition, the theoretical bounds in Theorems 5.3 and 5.5 for the uncertainty regions. This
simplifies the methods derived in [1] for the calculation of the convex uncertainty curve.

• In a Landau-Pollak-Slepian type space-frequency analysis, it is possible to formulate error es-
timates for the approximation of space-frequency localized signals [9, 10, 20]. In our general
framework on graphs, these estimates will be derived in Section 6.

Compared to existing uncertainty relations on graphs that are based on predefined single space-
frequency filters, the filter pairs in our general framework are flexible. This gives the interesting
opportunity to design filter functions for a graph-adapted space-frequency analysis. In particular, the
generality of our framework has the following advantages:
• The Landau-Pollak-Slepian space-frequency analysis is based on a set-oriented localization while
the spectral spreads defined in [1] favor signals localized at the lower end of the graph spectrum.
In our framework arbitrary distance functions on the graph or its spectrum can be implemented
to measure different types of space-frequency localization. This allows us to design localization
measures that contain additional spatial, directional or spectral information of the graph. We
will provide some examples in Section 7.

• By using projection filters in the Landau-Pollak-Slepian setting the spectrum of the space-
frequency operator clusters at the values 0 and 1 [21, 33]. This leads to numerical instability
when calculating the corresponding eigendecomposition directly. In Section 7, we will observe a
similar clustering for graphs. By the usage of alternative filters, this clustering can be avoided.

• In graph convolutional neural networks, spatial and spectral filters are extracted in an optimiza-
tion process [6, 38]. The generality of our framework allows to express uncertainty relations also
for such learned filter functions.
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Unified framework
of uncertainty principles
in spectral graph theory

Landau-Pollak-Slepian theory
In signal processing: [19, 33, 34]

On graphs: [36]

Numerical range
of matrices
[4, 17, 22, 37]

Uncertainty principle
based on graph spreads
and spectral spreads [1]

provides theory
and estimates
for boundary

provides concept for
space-frequency analysis

computational
methods

results on
approximation
and boundary

particular
filter functions

description of
uncertainty
curve

Table 1: Main conceptual influences for the uncertainty framework studied in this work.

2 Background
2.1 Spectral graph theory
The goal of this section is to give a broad overview on spectral graph theory and the notion of
harmonic analysis on a graph G, essential for the formulation of space-frequency decompositions or
uncertainty principles. A profound introduction to spectral graph theory can be found in [5]. For an
introduction to the Fourier transform and space-frequency concepts on graphs, we refer to [31].

We describe the graph G as a triplet G = (V,E,A), where V = {v1, . . . , vn} denotes the set of
vertices (or nodes) of the graph, E ⊆ V × V is the set of (directed or undirected) edges connecting
the nodes and A ∈ Rn×n is a weighted, symmetric and non-negative adjacency matrix containing
the connection weights of the edges. The entire harmonic structure of the graph G is encoded and
described by this adjacency matrix A. Note that, although G can also be a directed graph, the
symmetric matrix A gives an undirected harmonic structure on G.

We aim at studying signals x on the graph G, i.e. functions x : V → R that associate a real value
to each node of V . Since the number of nodes in G is fixed (i.e. n) and the set V is ordered, we can
naturally represent the signal x as a vector x = (x1, . . . , xn) ∈ Rn. Depending on the context, we will
switch between these two representations.

To define the Fourier transform on G, we consider the (normalized) graph Laplacian L associated
to the adjacency matrix A:

L := In −T−
1
2 AT−

1
2 .

Here, In is the n× n identity matrix, and T is the degree matrix with entries given as

(T)ij :=


∑n
k=0(A)ik, if i = j

0, otherwise
.

Since the adjacency matrix A is symmetric, also L is a symmetric operator and we can compute its
orthonormal eigendecomposition as

L = UMλUᵀ,

where Mλ = diag(λ) = diag(λ1, . . . , λn) is the diagonal matrix with the increasingly ordered eigen-
values λi, i ∈ {1, . . . , n}, of L as diagonal entries, i.e.,

(Mλ)ij :=
(
diag(λ)

)
ij

=

λi if i = j

0 otherwise
.

The columns u1, . . . , un of the orthonormal matrix U are normalized eigenvectors of L with respect
to the eigenvalues λ1, . . . , λn. The ordered set Ĝ = {u1, . . . , un} of eigenvectors is an orthonormal
basis for the space of signals on the graph G. We call Ĝ the spectrum of the graph G.
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2.2 Fourier transform on graphs
In classical Fourier analysis, as for instance the Euclidean space or the torus, the Fourier transform
can be defined in terms of the eigenvalues and eigenfunctions of the Laplace operator. In analogy, we
consider the elements of Ĝ, i.e. the eigenvectors {u1, . . . , un}, as the Fourier basis on the graph G.
In particular, going back to our spatial signal x, we can define the graph Fourier transform of x as

x̂ := Uᵀx,

and its inverse graph Fourier transform as

x := Ux̂.

The entries x̂i = uᵀi x of x̂ are the frequency components or coefficients of the signal x with respect
to the basis function ui. For this reason, x̂ : Ĝ → R can be seen as a distribution on the spectral
domain Ĝ of the graph G. To keep the notation simple, we will however usually represent spectral
distributions x̂ as vectors (x̂1, . . . , x̂n) in Rn. Regarding the eigenvalues of the normalized graph
Laplacian L it is well-known that (see [5, Lemma 1.7])

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2.

2.3 Spatial and spectral filtering on graphs
By using the graph Fourier transform to switch between spatial and spectral domain, we can now
define (pointwise) multiplication and convolution between two signals x and y. As there is no
immediate description of translation on G, it is easier to define the convolution in the spectral
domain, using an analogy to classical Fourier analysis in which the convolution of two signals is
calculated as the pointwise product of their Fourier transforms. We define

x ∗ y := U (x̂� ŷ) = U ((Uᵀx)� (Uᵀy)) , (1)

where x̂ � ŷ := (x̂1ŷ1, . . . , x̂nŷn) denotes the pointwise Hadamard product of the two vectors x̂ and
ŷ. The Hadamard product x � y between two signals x and y can be formulated in matrix-vector
notation as x�y = Mxy by applying the diagonal matrix Mx = diag(x) to the vector y. In the same
way, we get also for functions x̂ and ŷ on Ĝ the notion x̂� ŷ = Mx̂ŷ. In this way, according to (1),
we obtain for the convolution the identities

x ∗ y = UMx̂Uᵀy = UMŷUᵀx.

3 Space and frequency localization on graphs
3.1 General setting
We are going to study a space-frequency analysis for signals x on the graph G based on two
nonnegative normalized filter functions f, g ∈ Rn with the properties

0 ≤ f, g ≤ 1 and ‖f‖∞ = ‖g‖∞ = 1. (2)

Given the two filters f and g we introduce the following two operators

Mfx := f � x,
Cgx := g ∗ x = UMĝUᵀx.

The point-wise multiplication Mf with the filter f will be referred to as space localization operator,
the convolution Cg as frequency localization operator. From the properties of f and g in (2) it follows
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immediately that both operators Mf and Cg are symmetric and positive-semidefinite and the spectral
norm of both operators is exactly 1. For the operators Mf and Cg we define the expectation values

m̄f (x) := 〈Mfx, x〉
‖x‖2 , c̄g(x) := 〈Cgx, x〉

‖x‖2 .

We say that a signal x on G is space-localized with respect to the window function f if m̄f (x) is
close to one. In the same way, we say that x on G is frequency-localized with respect to g if c̄g(x)
approaches one. Based on the mean values m̄f (x) and c̄g(x), we define the set of admissible values
related to the operators Mf and Cg as

W(Mf ,Cg) := {(m̄f (x), c̄g(x)) | ‖x‖ = 1} ⊂ [0, 1]2. (3)

Due to a relation profoundly described in Section 5, we call W(Mf ,Cg) also the numerical range of
the pair (Mf ,Cg) of operators. All the uncertainty principles studied in this work are linked to the
boundaries of the set W(Mf ,Cg).

3.2 Space-frequency operators on graphs
To investigate the joint localization of a signal x with respect to the spatial filter f and the frequency
filter g, as well as for the description of the set W(Mf ,Cg), we consider the following two space-
frequency operators on the graph G:

R(θ)
f,g := cos(θ) Mf + sin(θ) Cg and Sf,g := Cg1/2MfCg1/2 .

The linear combination R(θ)
f,g of the two symmetric matrices Mf and Cg is symmetric for any angle

0 ≤ θ < 2π and positive semidefinite if 0 ≤ θ ≤ π
2 . The operator norm of R(θ)

f,g is bounded by
| cos θ|+ | sin θ| ≤

√
2. The composition Sf,g ∈ Rn×n is a positive semidefinite, symmetric matrix with

spectral norm bounded by 1.
To study the space-frequency operators R(θ)

f,g and Sf,g we focus on their eigendecompositions

R(θ)
f,g = ΦMρΦᵀ, and Sf,g = ΨMσΨᵀ.

The decreasingly ordered eigenvalues ρ = ρ(θ) = (ρ(θ)
1 , . . . ρ(θ)

n ) of the matrix R(θ)
f,g are real and contained

in [−
√

2,
√

2]. The decreasingly ordered eigenvalues σ = (σ1, . . . σn) of Sf,g, are non-negative and
smaller than 1. The columns {φ(θ)

1 , . . . , φ(θ)
n } of Φ and {ψ1, . . . , ψn} of Ψ form a complete set of

orthonormal eigenvectors of the operators R(θ)
f,g and Sf,g, respectively. We say that a signal x is

space-frequency localized with respect to the filters f and g if the expectation values

r̄(θ)
f,g(x) :=

〈R(θ)
f,gx, x〉
‖x‖2 = cos(θ) m̄f (x) + sin(θ) c̄g(x) and s̄f,g(x) := 〈Sf,gx, x〉

‖x‖2

get close to one. The largest eigenvalues ρ(θ)
1 and σ1 and the corresponding eigenvectors φ(θ)

1 and ψ1,
will be of major importance of us. For the largest eigenvalue σ1 of the space-frequency operator Sf,g
we get additionally the following characterizations.
Property 3.1. The largest eigenvalue σ1 of the space-frequency operator Sf,g corresponds to the
following spectral operator norms:

σ1 = ‖Sf,g‖ = ‖Mf1/2Cg1/2‖2 = ‖Cg1/2Mf1/2‖2 = ‖Mf1/2CgMf1/2‖.
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3.3 Examples of space-frequency filters on graphs
(1) (Landau-Pollak-Slepian filters or projection-projection filters) Let χA denote the indicator func-

tion of a set A, i.e.
χA(v) :=

{
1 if v ∈ A,
0 if v /∈ A.

For a subset A of the node set V and a subset B of the spectrum Ĝ, we define the filter functions
f and g as

f = χA ĝ = χB. (4)

Both, the space-localization Mf and the frequency-localization operator Cg defined in terms
of f and ĝ = Uᵀg in (4) are projection operators satisfying M2

f = Mf and C2
g = Cg. The

space-frequency operator Sf,g is in this case equivalently given as Sf,g = CgMfCg. For signals
on the real line, the space-frequency analysis related to these projection operators, including the
study of uncertainty principle and the distribution of the eigenvalues σi was studied intensively by
Landau, Pollak and Slepian in a series of papers in the sixties of the last century, cf. [19, 20, 32, 34].
A variant of this theory on the unit sphere is given in [27, 29]. A general theory based on two
projection operators in an abstract Hilbert spaces, can be found in [14, Chapter 3 §1]. The
translation to the graph setting was conducted in [36].

(2) (Distance-projection filters) As a second spatial filter, we want to generate a window function
that limits a signal x if the distance d(v, w) to a point w on the graph gets large. In general,
d(v, w) can be any distance metric on the nodes V of the graph. In this article, we will use
the geodesic distance on the graph as a metric d, i.e. d(v, w) is the length of the shortest path
connecting the nodes v and w. We further set

dw(v) := d(v, w), d(∞)
w := max

v∈V
d(v, w).

Then, as spatial filter f and frequency filter g, we define

f(v) = 1− dw(v)/d(∞)
w , v ∈ V, and ĝ = χB, (5)

i.e., the spatial filter f incorporates the distance dw to a reference node w and the frequency
filter g, as before, describes the projection on a spectral subset B ⊂ Ĝ. For f we have

Mfx = In − 1
d(∞)
w

Mdwx, m̄f (x) = 1− xᵀMdwx
d(∞)
w ‖x‖2 .

Similar distance-projection filters were used in a continuous setup for orthogonal expansions on
the interval [−1, 1] [8, 9, 18] and on the unit sphere [10].

(3) (Modified distance-projection filters) While the projection filter ĝ = χB generates bandlimited
signals on the graph G (with support in the frequency "band" B ⊂ Ĝ), in applications it is often
relevant to additionally soften the higher frequencies. This can be achieved by multiplying the
projection filter χB in the spectral domain with a filter function ĝ(β) in which the coefficients
0 ≤ ĝ

(β)
k ≤ 1 decay for increasing frequency k. Also for the distance filter f given in (5) slight

modifications can be useful in order to alter the influence of the distance. A simple possibility
here is to add an additional power α > 0 to the distance function. In this way, we get as modified
filters

f(v) = 1−
(

dw(v)
d(∞)
w

)α
, ĝ = χB � ĝ(β). (6)

The effects of such modifications to the shape of the uncertainty principles will be investigated
in Section 7. An example of such a modified filter function in the frequency domain is given in
[39]. Here, the author proposes to use the eigenvalues λi of the graph Laplacian to define the
components ĝ(β)

i of the additional filter.
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(4) (Distance-Laplace filter) Another spectral filter ĝ = (ĝ1, . . . , ĝn) on Ĝ can be defined as
ĝk = 1− λk/2, (7)

where λk denotes the k-th. smallest eigenvalue of the graph Laplacian L. In this case, we get
Cgx = U(In − 1

2Mλ)Uᵀx = (In − 1
2L)x.

Dividing by the factor 2 in (7) guarantees that the spectrum of Cg is contained in [0, 1] (as the
spectrum of the normalized Laplacian L is contained in [0, 2]). Using the modified distance filter
from (6) with α = 2 as a spatial filter, we get

m̄f (x) = 1−
xᵀMd2

w
x

(d(∞)
w )2‖x‖2 , c̄g(x) = 1− xᵀLx

2‖x‖2 .

In [1], the measure c̄Uλ(x) = xᵀLx/‖x‖2 is called the spectral spread of x while the measure
m̄d2

w
(x) = xᵀMd2

w
x/‖x‖2 is denoted as the graph spread of x with respect to the node w. In [1]

an uncertainty principle on graphs is formulated in terms of these two spreads. We will show
that this uncertainty principle fits as a special case in our more general framework.

(5) (Laplace-Laplace filter) Instead of defining the operators Mf and Cg for signals on the graph
domain, it is also possible to define them in terms of distributions x̂ in the spectral domain Ĝ.
In this sense, we can introduce the operators Mf̂ and Cĝ as

Mf̂ x̂ = f̂ � x̂, Cĝx̂ = ĝ ∗ x̂ = UMˆ̂gU
ᵀx̂.

An example of such a filtering is given in [3]. Here, f and g are given as
f̂ = 1− 1

2λ, ĝ = 1− 1
2λ.

In [3], the filters are actually formulated in terms of f̂ = ĝ = λ. The reformulation above
guarantees that the entries f̂ and ĝ are between 0 and 1 and that the relevant part of the
uncertainty curve is located at (1, 1) instead of (0, 0).

3.4 Comparison to space-frequency analysis based on windowed Fourier transform
An interesting source for uncertainty principles and space-frequency analysis on graphs is based on
the windowed Fourier transform [26, 30, 31]. For this, we want to give a brief comparison between the
space-frequency concepts studied in this article and those related to the windowed Fourier transform.
For a window function h : G → R, the windowed Fourier transform Fhx of a signal x is defined in
the domain G× Ĝ as

Fhx(vi, uk) := xᵀ(MukCeih), (8)
where ei = χvi , i ∈ {1, . . . , n} simply denote the standard basis vectors for the space of signals on G.
In this definition, Ceih can be interpreted as a generalized shift of the window h on G whereas Muk

describes a generalized modulation in terms of the Fourier basis uk. The space-frequency analysis
related to the windowed Fourier transform uses the coefficients Fhx(vi, uk) to analyse the signal x.
Further, the system {MukCeih}i,k provides a frame for the space of signals on G if ĥ1 6= 0. Compared
to the space-frequency analysis studied in this paper, there are some conceptual differences:
1) The windowed Fourier transform is based on the choice of a single window function h, compared

to the two filters f and g for the operators Sf,g and R(θ)
f,g.

2) The space-frequency analysis related to the windowed Fourier transform is based on the frame
system {MukCeih}i,k (cf. [31]) compared to the orthogonal basis of eigenfunctions {ψk} and
{φ(θ)

k } of the operators Sf,g and R(θ)
f,g.

3) Uncertainty relations are formulated in terms of the frame coefficients in (8), see [26].
There are several possibilities to vary the definition in (8), leading to a similar space-frequency
analysis. A simple example here is to exchange the order of Muk and Cei in (8). More detailed
discussions about the windowed Fourier transform and frame decompositions can be found in [26, 31].
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4 Uncertainty principles related to the operator Sf,g
We start with a first uncertainty relation for general filter functions f and g with the normalization (2)
that rely on the maximal eigenvalue σ1 of the space-frequency operator Sf,g. This type of uncertainty
principle was first studied by Landau and Pollak [19] for projection operators acting on functions on
the real line. The corresponding relation for projection operators on graphs was formulated in [36]. In
our setting, this corresponds to filter functions f and g defined in terms of an indicator function, i.e.
the setting of Example (1) in Section 3.3. Goal of this section is to prove this uncertainty principle
now for general localization operators Mf and Cg.

If ‖Sf,g‖ = σ1 < 1, we can specify this uncertainty relation on G by providing an explicit bound
for the admissibility region W(Mf ,Cg). This bound is based on the curve

γf,g : [σ1, 1]→ R : γf,g(t) :=
(
(t σ1) 1

2 + ((1− t)(1− σ1)) 1
2
)2
.

Lemma 4.1. Assume that σ1 < 1. If m̄f (x)c̄g(x) ≥ σ1, then the inequality

arccos m̄f (x)
‖Mfx‖

+ arccos c̄g(x)
‖Cgx‖

≥ arccos

√
m̄f (x)

√
c̄g(x)

‖Mfx‖‖Cgx‖
√
σ1 (9)

holds true. This implies the upper bound

c̄g(x) ≤ γf,g(m̄f (x)) =
(
(m̄f (x)σ1) 1

2 + ((1− m̄f (x))(1− σ1)) 1
2
)2

(10)

for c̄g(x) in the domain m̄f (x)c̄g(x) ≥ σ1.

Proof. Let x be a normalized signal on the graph G with ‖x‖ = 1. Further, we consider the two
normalized vectors

y1 = 1
‖Mfx‖

Mfx and y = 1
‖Cgx‖

Cgx.

The angular distance is a metric for vectors on the unit sphere. In particular, the sum of the angular
distances between the vectors y1 and x, and y2 and x is always larger than the angular distance
between y1 and y2, i.e.

arccos〈y1, x〉+ arccos〈y2, x〉 ≥ arccos〈y1, y2〉. (11)

For the term 〈y1, y2〉, we can find an upper bound using the Cauchy-Schwarz-inequality:

〈y1, y2〉 ≤ |〈y1, y2〉| =
|〈Mfx,Cgx〉|
‖Mfx‖‖Cgx‖

=
|〈Mf1/2x,Mf1/2Cgx〉|
‖Mfx‖‖Cgx‖

≤
‖Mf1/2x‖‖Mf1/2Cgx‖
‖Mfx‖‖Cgx‖

=

√
m̄f (x)

√
〈Cg1/2MfCgx,Cg1/2x〉
‖Mfx‖‖Cgx‖

≤

√
m̄f (x)

√
c̄g(x)

√
〈Cg1/2MfCg1/2x, x〉

‖Mfx‖‖Cgx‖
≤

√
m̄f (x)

√
c̄g(x)

‖Mfx‖‖Cgx‖
√
σ1.

As we assume that m̄f (x)c̄g(x) ≥ σ1 the last expression is smaller than 1. Therefore in (11), we get

〈y1, y2〉 ≤

√
m̄f (x)

√
c̄g(x)

‖Mfx‖‖Cgx‖
√
σ1 ≤ 1, 〈y1, x〉 = m̄f (x)

‖Mfx‖
, 〈y2, x〉 = c̄g(x)

‖Cgx‖
,

and, thus, precisely the inequality (9) To demonstrate the second inequality we make use of the
following fact:

if 0 < a ≤ b ≤ 1, then arccos bt− arccos at is a decreasing function in t ∈
[
−1
b
, 1
b

]
. (12)
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Therefore, by setting a =
√

c̄g(x)
‖Cgx‖

√
σ1 ≤ c̄g(x)

‖Cgx‖

√
m̄f (x) ≤

√
m̄f (x) = b ≤ 1, we can apply (12) to

inequality (10) and obtain

arccos
√

m̄f (x) + arccos c̄g(x)
‖Cgx‖

≥ arccos

√
c̄g(x)
‖Cgx‖

√
σ1.

Applying (12) a second time with a = √σ1 ≤
√

c̄g(x) = b ≤ 1, we get

arccos
√

m̄f (x) + arccos
√

c̄g(x) ≥ arccos√σ1

in the domain m̄f (x)c̄g(x) ≥ σ1. Applying the trigonometric identity cos(α − β) = cosα cos β −
sinα cos β we finally obtain the inequality (10) as

c̄g(x) 1
2 ≤ cos(arccos√σ1 − arccos

√
m̄f (x)) = (m̄f (x)σ1) 1

2 + ((1− m̄f (x))(1− σ1)) 1
2 .

Remark 4.2. Note that for t ∈ [σ1, 1] we have the following inequalities

σ1 ≤
σ1

t
≤ −t+ 1 + σ1 ≤ γf,g(t) ≤ 1.

Therefore, in the square [σ1, 1]2 we have the relations{
(t, s) ∈ [σ1, 1]2 | s ≥ γf,g(t)

}
⊂
{

(t, s) ∈ [σ1, 1]2 | ts ≥ σ1
}
⊂ [σ1, 1]2.

Lemma 4.1 provides a general restriction of the set W(Mf ,Cg) in the upper right corner [σ1, 1]2
of the unit square. By simple reflections, we get an analogous result for the other three corners.
To simplify the notation we define the corresponding reflection operator ∗ on the filters f and g as
f ∗ = 1− f and g∗ = 1− g. Further, to distinguish eigenvalues σ1 for different filters, we use in this
part the extended notation σ(f,g)

1 to denote the largest eigenvalue of the operator Sf,g. We consider
now the following subdomain of the square [0, 1]2 (see Figure 1 (left)):

Wγ :=


(t, s) ∈ [0, 1]2

∣∣∣∣∣∣∣∣∣∣∣

s ≤ γf,g(t) if ts ≥ σ
(f,g)
1 ,

1− s ≤ γf,g∗(t) if t(1− s) ≥ σ
(f,g∗)
1 ,

s ≤ γf∗,g(1− t) if (1− t)s ≥ σ
(f∗,g)
1 ,

1− s ≤ γf∗,g∗(1− t) if (1− t)(1− s) ≥ σ
(f∗,g∗)
1


.

Lemma 4.1 now implies the following:
Theorem 4.3. The range W(Mf ,Cg) is contained in Wγ.

Remark 4.4.
1) If σ1 = σ

(f,g)
1 < 1 (or, similarly, if σ(f∗,g)

1 < 1, σ(f,g∗)
1 < 1 or σ(f∗,g∗)

1 < 1) then Theorem 4.3 is an
uncertainty relation for the operators Mf and Cg. It states that a signal x on the graph can not
be well localized with respect to both operators Mf and Cg. In particular, the vector of mean
values (m̄f (x), c̄g(x)) can not get close to (1, 1).

2) The uncertainty statement in Theorem 4.3 can get sharp in the sense that if Mf and Cg are two
projection operators, then we get equality W(Mf ,Cg) =Wγ in Theorem 4.3. For graphs this is
shown in [36, Theorem 3.1]. This fact can be interpreted in the following way: among all pairs of
positive definite operators with spectral norm 1 and eigenvalues σ(f,g)

1 , σ(f∗,g)
1 , σ(f,g∗)

1 , and σ(f∗,g∗)
1 ,

a pair of projection operators gives the weakest possible uncertainty relation in Theorem 4.3. In
other words, pairs of projection operators have the smallest mutual correlation between space-
and frequency localization according to this uncertainty relation.
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c̄g(x)

m̄f (x)
1

1

W(Mf ,Cg)

Wγ

σ
(f,g)
1

1− σ(f∗,g∗)
1

1− σ(f∗,g∗)
1

σ
(f∗,g)
1

σ
(f,g∗)
1

1− σ(f∗,g)
1

σ
(f,g)
1

1− σ(f,g∗)
1

c̄g(x)

m̄f (x)
1

1 (
m̄f (φ(θ)

1 ), c̄g(φ(θ)
1 )
)

W(Mf ,Cg)

H(θ)∩[0,1]2

L(θ)

Fig. 1: Illustration of the uncertainty principles in Theorem 4.3 (left) and in Theorem 5.3 (right).

4.1 Do we always have uncertainty on graphs?
In our uncertainty framework, the answer is no. Compared to the real line setting studied in [19], the
scenario σ1 = 1 is possible on some graphs, as pointed out it [36]. This implies that in some cases
there are signals x satisfying m̄f (x) = c̄g(x) = 1, i.e. x is perfectly localized in space and frequency
simultaneously. Therefore, we can not expect that every pair of filters (f, g) induces an uncertainty
principle on G. Nevertheless, in a lot of cases the condition σ1 < 1 can be guaranteed. One of these
conditions is the following:
Proposition 4.5. Let f and g be two filter functions on a graph G satisfying (2). If the maximal
eigenvalue 1 of Mf and Cg is simple, then σ1 = ‖Sf,g‖ < 1.
Proof. Assume that σ1 = 1, then by Property 3.1 we can find a normalized signal x such that
1 = ‖Cg1/2Mf1/2x‖. As the spectral norms of Cg1/2 and Mf1/2 are one, this is only possible if x
is an eigenvector of Mf1/2 with respect to the eigenvalue 1. As Mf1/2 is a diagonal matrix and the
eigenvalue 1 is simple, we have x = ±ei for some i ∈ {1, . . . , n}, i.e. x is up to the factor ± a canonical
basis vector. Therefore, we get 1 = ‖Cg1/2ei‖, i.e. ei is also an eigenvector of Cg1/2 with respect to
the largest eigenvalue 1. As the eigenvalue 1 of Cg1/2 is simple this implies that ei corresponds (up
to a possible sign) to one of the columns of U, that is, ei is an eigenvector of the normalized graph
Laplacian L. This on the other hand is not possible by the given structure of the adjacency matrix
A as the vertex vi is connected by at least one edge to another vertex vj.

For some graphs, the conditions of Proposition 4.5 on the filters f and g can not be weakened in
order to still guarantee σ1 < 1. We give two counterexamples.
Counterexample 4.6.
(1) (Bipartite graphs) We consider a bipartite graph G with 4 nodes {v1, v2, v3, v4} and two undi-

rected edges connecting v1 with v2 and v3 with v4. For this graph we obtain the graph Laplacian
L and its spectral decomposition as

L =


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 , U = 1√
2


1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

 , Mλ =


0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

 .
In particular λ1 = λ2 = 0 and λ3 = λ4 = 2 are double eigenvalues of L with a corresponding
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two-dimensional eigenspace. Now, if we choose the filters f and g as

f = (1, 0, 1, 0), ĝ = (1, 0, 1, 0),

we get

(m̄f (e1), c̄g(e1)) = (1, 1), (m̄f (e2), c̄g(e2)) = (0, 1),
(m̄f (e3), c̄g(e3)) = (1, 0), (m̄f (e4), c̄g(e4)) = (0, 0).

The convexity of the numerical range (established in Theorem 5.1 below) therefore implies that
W(Mf ,Cg) = [0, 1]2, i.e. we encounter no uncertainty in this example.
In a similar way, we can check for the filters f = (1, 0, 0, 0), ĝ = (1, 0, 1, 0) or f = (1, 1, 0, 0),
ĝ = (1, 0, 0, 0) that the right upper corner (1, 1) is contained in W(Mf ,Cg), i.e., that σ1 = 1.
Therefore, in this example also the conditions of Proposition 4.5 can not be weakened. Similar
counterexamples can be constructed on larger bipartite graphs with an even number of nodes.

(2) (Complete graphs) We consider now a complete graph G with 4 nodes {v1, v2, v3, v4} in which
each node is connected to all other nodes by an undirected edge. For this graph we obtain the
graph Laplacian L and its spectral decomposition as

L = 1
3


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 , U = 1
2


1 1

√
2 0

1 1 −
√

2 0
1 −1 0

√
2

1 −1 0 −
√

2

 , Mλ =


0 0 0 0
0 4/3 0 0
0 0 4/3 0
0 0 0 4/3

 .
For the filter functions f and g given by

f = (1, 1, 0, 0), ĝ = (0, 0, 1, 0),

we get (m̄f (u3), c̄g(u3)) = (1, 1). Thus, also in this example of a connected graph the right upper
corner (1, 1) is contained in W(Mf ,Cg) and σ1 = 1. In this example it is therefore not possible
to weaken the condition for the spatial filter f in Proposition 4.5. Also on general complete
graphs with n ≥ 3 nodes a similar counterexample can be constructed.

5 Computation of Uncertainty principles and the numerical range W(Mf ,Cg)
For a normalized vector x ∈ Rn we have

m̄f (x) + i c̄g(x) = xᵀMfx+ i xᵀCgx = xᵀ(Mf + i Cg)x.

Thus, by identifying the complex numbers C with the plane R2 the admissibility region W(Mf ,Cg)
can be seen as a part of the numerical range W(Mf + iCg) of the matrix Mf + iCg given by

W(Mf + iCg) := {x̄ᵀ(Mf + iCg)x | x ∈ Cn, ‖x‖ = 1} .

The definition of W(Mf ,Cg) in (3) and of W(Mf + iCg) are very similar, the only difference being
that W(Mf + iCg) is classically defined in terms of complex-valued vectors x. In Theorem 5.1 below,
we will see that the two sets coincide if the number of nodes is n ≥ 3. For this reason, we call the
admissibility regionW(Mf ,Cg) also the numerical range of the pair (Mf ,Cg). The deep link between
the numerical range and uncertainty principles is pointed out in several works, among others in the
original work [19] of Landau and Pollak and the subsequent study in [22]. In [18], this link is used
to derive uncertainty principles on an interval in terms of general spatial localization measures.
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5.1 Uncertainty principle related to the operator R(θ)
f,g

The correspondence of W(Mf ,Cg) with W(Mf + iCg) is important for us, as we can use a broad
arsenal of available results for W(Mf + iCg) to describe and approximate W(Mf ,Cg). A second
crucial property for our investigations is the convexity of W(Mf ,Cg).
Theorem 5.1 (Theorem 2.1, 2.2. and Remark 1 in [4]).
If n ≥ 3, the setW(Mf ,Cg) is convex, compact and corresponds to the numerical rangeW(Mf +iCg).
In the case n = 2, the set W(Mf ,Cg) corresponds to the elliptical boundary of W(Mf + iCg).
Remark 5.2. The convexity of W(Mf + iCg) is the well-known Hausdorff-Toeplitz Theorem (cf. the
original works [13, 37] of Hausdorff and Toeplitz, proofs in english are given in [12, Theorem 1.1-2]
or [16, Section 1.3]). Theorem 5.1, and, thus, the correspondence of the range W(Mf ,Cg) with the
classical numerical range W(Mf + iCg), is proven in [4]. Actually, in [4] this correspondence is shown
by first proving the convexity of W(Mf ,Cg). A simplified and unified proof for the convexity of the
two sets is given in [2]. In the exceptional case n = 2, the set W(Mf ,Cg) is an ellipse, a circle or
a degenerate ellipse in form of a line segment or a point (cf. [4]). The compactness of W(Mf ,Cg)
follows from the fact that x→ (m̄f (x), c̄g(x)) is a continuous mapping from the compact unit sphere
in Rn onto W(Mf ,Cg) (see also [12, Theorem 5.1-1]).

Using the convexity of W(Mf ,Cg), we derive now further properties that are useful for the
formulation of an uncertainty principle as well as for the numerical computation of W(Mf ,Cg). The
following derivations can already be found in a similar form in the first works [13, 37] of Hausdorff
and Toeplitz for the range W(Mf + iCg). The results regarding the approximation of the numerical
range with polygons can be found in [17] or in [16, Section 1.5].

We first observe that for (t, s) ∈ W(Mf ,Cg) the largest possible value of the coordinate t is attained
for a normalized eigenvector of Mf with respect to the largest eigenvalue. By our definition of the
space-frequency operator R(θ)

f,g, these are given as ρ(0)
1 (the largest eigenvalue) and φ(0)

1 (a respective
eigenvector) of the matrix R(0)

f,g = Mf . In particular, we have

ρ
(0)
1 = φ

(0)ᵀ
1 Mfφ

(0)
1 = max

t∈R
{t | (t, s) ∈ W(Mf ,Cg)}.

Therefore the vertical line L(0) = {(ρ(0)
1 , s) | s ∈ R} is a supporting hyperplane for the numerical

range W(Mf ,Cg) such that the half-plane {(t, s) | t ≤ ρ
(0)
1 } contains W(Mf ,Cg). Further, the point

(φ(0)ᵀ
1 Mfφ

(0)
1 , φ

(0)ᵀ
1 Cgφ

(0)
1 ) ∈ L(0) ∩W(Mf ,Cg) is on the boundary of W(Mf ,Cg).

In a next step, we consider for θ ∈ [0, 2π) the (clockwise oriented) rotation matrix

R(θ) :=
(

cos θ sin θ
− sin θ cos θ

)
.

The rotated numerical range R(θ)W(Mf ,Cg) can be written as

R(θ)W(Mf ,Cg) =W(cos θMf + sin θCg,− sin θMf + cos θCg).

Thus, by considering the largest eigenvalue ρ(θ)
1 of the symmetric matrix R(θ)

f,g = cos(θ)Mf +sin(θ)Cg,
and a corresponding eigenvector φ(θ)

1 , the argument above implies that the line

L(θ) := {ρ(θ)
1 (cos θ, sin θ) + τ(− sin θ, cos θ) | τ ∈ R} = {(t, s) | cos(θ) t+ sin(θ) s = ρ

(θ)
1 }

is a supporting hyperplane of W(Mf ,Cg). In particular, W(Mf ,Cg) is completely contained in the
half-plane

H(θ) := {(t, s) | cos(θ) t+ sin(θ) s ≤ ρ
(θ)
1 }

and the point
p(θ) := (φ(θ)ᵀ

1 Mfφ
(θ)
1 , φ

(θ)ᵀ
1 Cgφ

(θ)
1 ) ∈ L(θ) ∩W(Mf ,Cg)
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lies on the boundary of the numerical range. We summarize this argumentation line in the following
uncertainty principle related to the operators R(θ)

f,g as well as in a characterization of the boundary
curve ofW(Mf ,Cg). For the complex-valued numerical rangeW(Mf +iCg) this result was originally
given in [37]. We will use a formulation closer to the one given in [17, Theorem 1 & 2 & 3].

Theorem 5.3 (Uncertainty principle related to R(θ)
f,g).

For every 0 ≤ θ < 2π, we have the inclusion

W(Mf ,Cg) ⊆ [0, 1]2 ∩H(θ),

in which the supporting line L(θ) intersects the boundary of W(Mf ,Cg). On the other hand, for every
point p on the boundary of W(Mf ,Cg) we have an angle 0 ≤ θ < 2π such that p ∈ L(θ). For this
angle, we get an eigenvector φ(θ)

1 (not necessarily unique) corresponding to the largest eigenvalue ρ(θ)
1

of R(θ)
f,g such that

p = (φ(θ)ᵀ
1 Mfφ

(θ)
1 , φ

(θ)ᵀ
1 Cgφ

(θ)
1 ).

Remark 5.4.
1) The second statement of Theorem 5.3 follows from the convexity of W(Mf ,Cg) in the case

n ≥ 3. For n = 2, we use the fact that W(Mf ,Cg) corresponds to the boundary of the convex
numerical range W(Mf + iCg). Both is guaranteed by Theorem 5.1. Theorem 5.3 is illustrated
graphically in Figure 1 (right).

2) For θ = π/4, Theorem 5.3 implies that
√

2ρ(π/4)
n ≤ m̄f (x) + c̄g(x) ≤

√
2ρ(π/4)

1 .

Defining, as in Example 3.3.5 the space and frequency operators in the spectral domain instead
of in the graph domain, we obtain similarly the inequalities

√
2ρ(π/4)

n ≤ m̄f̂ (x̂) + c̄ĝ(x̂) ≤
√

2ρ(π/4)
1 ,

in which ρ(π/4)
1 and ρ(π/4)

n are the largest and the smallest eigenvalue of the matrix (Mf̂+Cĝ)/
√

2.
Using the Laplace-Laplace filter described in Example 3.3.5 a variant of this inequality was
formulated in [3, Theorem 4.1] as an uncertainty principle on graphs.

5.2 Approximation of the numerical range W(Mf ,Cg) with polygons
We proceed now one step further and construct polygons based on a set Θ = {θ1, . . . θK} ⊂ [0, 2π)
of K ≥ 3 different angles to approximate the numerical range W(Mf ,Cg) from the interior as well
as from the exterior. Using the notation of Section 5.1, we define the two K-gons

P(Θ)
out (Mf ,Cg) :=

K⋂
k=1
H(θ) =

K⋂
k=1

{
(t, s) | cos(θk) t+ sin(θk) s ≤ ρ

(θk)
1

}
,

P(Θ)
in (Mf ,Cg) := conv{p(θ1), p(θ2), . . . p(θK)}.

The convexity of the numerical range W(Mf ,Cg) (for n ≥ 3) combined with the statements of
Theorem 5.3 imply the following result.
Theorem 5.5 (Theorem 4 in [17]). Let Θ = {θ1, . . . θK} ⊂ [0, 2π) be a set of K ≥ 3 different angles
and n ≥ 3. Then,

P(Θ)
in (Mf ,Cg) ⊆ W(Mf ,Cg) ⊆ P(Θ)

out (Mf ,Cg).

Remark 5.6. The vertices of the outer polygon P(Θ)
out (Mf ,Cg) can be calculated explicitly. A corre-

sponding formula based on the eigenvalues ρ(θk)
1 is given in [17] and adapted to the notation of this

article in equation (13). Note that compared to [17], the orientation of the rotation is reversed.
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5.3 Algorithm for the numerical approximation of the numerical range W(Mf ,Cg)
Using the version of Theorem 5.5 for the range W(Mf + iCg), two algorithms for the polygonal
approximation of the convex set W(Mf + iCg) (one from the interior, the other from the exterior)
were derived in [17]. In this article, we can additionally exploit the symmetry of the matrices Mf and
Cg. The resulting purely real-valued method to obtain the polygonal approximations of W(Mf ,Cg)
is listed in Algorithm 1.
Remark 5.7.
1) In Algorithm 1, we didn’t specify a strategy for the selection of the angles θk. Such strategies

are studied in [28] in which the resulting method for the approximation of an arbitrary convex
set in R2 is called sandwich algorithm (as the boundary of the convex set is sandwiched by an
inner and an outer polygon). In [28], it is shown that if an adaptive angle bisection is applied
then the sandwich algorithm converges quadratically in the number of vertices K.

2) In [1], the sandwich algorithm was applied to approximate a part of the boundary ofW(Mf ,Cg)
(denoted as uncertainty curve) in case of the filter pair (f, g) given in Section 3.3 (4). Compared
to Theorem 5.3, a slightly different characterization of the boundary points of W(Mf ,Cg) was
derived in [1, Theorem 1]. Namely, instead of a rotation angle θ a slope parameter α was used.
Although the characterization with a slope parameter α is elegant, it has the slight disadvantage
that the entire boundary of W(Mf ,Cg) can not be described with a single parametrization.

Algorithm 1: Calculation of interior and exterior approximations to W(Mf ,Cg)

Input: The matrices Mf , Cg, the angles
0 ≤θ1<θ2< · · ·<θK< 2π, with K ≥ 3.
Set θ0 = θK .

for k ∈ {1, 2, . . . , K} do
Create R(θk)

f,g = cos(θk)Mf + sin(θk)Cg ;
Calculate normalized eigenvector φ(θk)

1 for
the maximal eigenvalue ρ(θk)

1 ;
Create the boundary point

p(θk) =
(
φ

(θk)ᵀ
1 Mfφ

(θk)
1 , φ

(θk)ᵀ
1 Cgφ

(θk)
1

)
.

Generate the interior polygon
P(Θ)

in (Mf ,Cg) = conv{p(θ1), . . . p(θK)}
as an approximation to W(Mf ,Cg).

for k ∈ {1, 2, . . . , K} do
Create the outer vertex q(θk) as

q(θk) = R(−θk)

(
ρ

(θk)
1 ,

ρ
(θk)
1 cos(θk − θk−1)− ρ(θk−1)

1
sin(θk − θk−1)

)
. (13)

Generate P(Θ)
out (Mf ,Cg) = conv{q(θ1), . . . q(θK)}

as a polygon exterior to W(Mf ,Cg).

Fig. Alg. 1: Interior and exterior approximation
of the numerical range W(Mf ,Cg) based on
Algorithm 1 using an interior and an exterior
polygon with K = 7 vertices.

6 Error estimates for space-frequency localized signals
The orthogonal basis of eigenvectors {ψ1, . . . , ψn} and {φ(θ)

1 , . . . , φ(θ)
n } of the matrices Sf,g and R(θ)

f,g

are natural candidates to decompose a signal x on G into single space-frequency components. In
particular, we can expand every signal x as

x =
n∑
k=1

(ψᵀ
kx)ψk and x =

n∑
k=1

(φ(θ)ᵀ
k x)φ(θ)

k ,
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with the coefficients ψᵀ
kx and φ(θ)ᵀ

k x giving information about the space-frequency localization of x.
If the signal x itself is space-frequency localized with respect to the operators Sf,g or R(θ)

f,g, or if the
variance terms

var[Sf,g](x) := xᵀ(Sf,g − s̄f,g(x))2x

‖x‖2 , var[R(θ)
f,g](x) :=

xᵀ(R(θ)
f,g − r̄(θ)

f,g(x))2x

‖x‖2

are small, we can approximate the signal x well with only a few eigenvectors. This is specified in the
following result.

Theorem 6.1. Let s < σ1 and r < ρ
(θ)
1 . For a signal x on G, we have the inequalities∥∥∥∥∥∥x−

∑
k:σk≥s

(ψᵀ
kx)ψk

∥∥∥∥∥∥
2

≤ σ1 − s̄f,g(x)
σ1 − s

‖x‖2,

∥∥∥∥∥∥∥x−
∑

k: ρ(θ)
k
≥r

(φ(θ)ᵀ
k x)φ(θ)

k

∥∥∥∥∥∥∥
2

≤
ρ

(θ)
1 − r̄(θ)

f,g(x)
ρ

(θ)
1 − r

‖x‖2. (14)

Further, for a > 0, define the intervals Is,a = [s̄f,g(x)−a, s̄f,g(x)+a], and Ir,a = [r̄(θ)
f,g(x)−a, r̄(θ)

f,g(x)+a].
Then, we get the error bounds∥∥∥∥∥∥x−

∑
k:σk∈Is,a

(ψᵀ
kx)ψk

∥∥∥∥∥∥
2

≤ var[Sf,g](x)
a2 ‖x‖2,

∥∥∥∥∥∥∥x−
∑

k: ρ(θ)
k
∈Ir,a

(φ(θ)ᵀ
k x)φ(θ)

k

∥∥∥∥∥∥∥
2

≤
var[R(θ)

f,g](x)
a2 ‖x‖2. (15)

Proof. We provide the proof only for the space-frequency analysis related to the operator Sf,g. For
R(θ)
f,g the argumentation line is identical.
For a signal x on G, the orthonormality of the eigenbasis {ψ1, . . . ψn} gives∥∥∥∥∥∥x−

∑
k:σk≥s

(ψᵀ
kx)ψk

∥∥∥∥∥∥
2

=
∑

k:σk<s
(ψᵀ

kx)2 ≤ 1
σ1 − s

∑
k:σk<s

(ψᵀ
kx)2(σ1 − σk) ≤

1
σ1 − s

n∑
k=1

(ψᵀ
kx)2(σ1 − σk)

Since, ‖x‖2 = ∑n
k=1(ψᵀ

kx)2 (Pythagoras) and ∑n
k=1 σk(ψ

ᵀ
kx)2 = s̄f,g(x)‖x‖2 (spectral decomposition of

Sf,g), we get the inequality (14). Similarly, we can prove the bound in (15). Namely, we have∥∥∥∥∥∥x−
∑

k:σk∈Is,a

(ψᵀ
kx)ψk

∥∥∥∥∥∥
2

=
∑

k:σk∈R\Is,a

(ψᵀ
kx)2 ≤ 1

a2

∑
k:σk∈R\Is,a

(ψᵀ
kx)2(s̄f,g(x)− σk)2

≤ 1
a2

n∑
k=1

(ψᵀ
kx)2(s̄f,g(x)− σk)2 = var[Sf,g](x)

a2 ‖x‖2.

This completes the proof of (15) for the operator Sf,g.
Remark 6.2. For a normalized signal x on G with ‖x‖ = 1, the vector µ(x) = (µ1(x), . . . , µn(x)) given
by µk(x) = (ψᵀ

kx)2 can be considered as a probability distribution on the spectrum of Sf,g (similarly
also for the operator R(θ)

f,g). The two inequalities (14) and (15) stated in Theorem 6.1 can therefore be
seen as variants of the Markov and the Chebyshev inequality for a µ(x)-distributed random variable,
(see [23, p. 114]). For orthogonal polynomials on the interval [−1, 1], similar error estimates were
derived in [9].

7 Shapes of uncertainty - Examples and Illustrations
As a final part of this work, we want to study and illustrate the uncertainty regions for concrete filter
pairs (f, g). Further, we want to analyze the effects of the different filter pairs on the space-frequency
localization on graphs. For this, we conduct several numerical experiments on two explicit graphs.
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Fig. 2: Experimental setup on the sensor network G1. The spatial filters f1, f2, f3 and f4 described
in Section 7.1.2 are plotted from left to right.

7.1 Experimental setup for graphs and filters
7.1.1 The graphs
As undirected and unweighted test graphs, we consider point clouds in R2 in which two nodes v1 and
v2 get connected if the euclidean distance satisfies |v1 − v2| ≤ R for some chosen radius R > 0. In
particular, we study the following two settings:
(1) G1 is a sensor network with n1 = 253 random nodes in the square [0, 1]2. With the radius

R = 1/6, we obtain a graph with 2369 edges. G1 is illustrated in Figure 2.
(2) The node set of G2 is a reduced point cloud taken from the Stanford bunny (Source: Stanford

University Computer Graphics Laboratory). It contains n2 = 900 nodes projected in the xy-
plane. Choosing as radius R = 0.01 we obtain the graph G2 with 7325 edges. The Stanford
bunny G2 is illustrated in Figure 3.

Fig. 3: Experimental setup on the Stanford bunny G2. The spatial filters f1, f2, f3 and f4 described
in Section 7.1.2 are plotted from left to right.

7.1.2 The space and frequency filters
We test four different filter pairs:
(1) (f1, g1) is a projection-projection pair as described in Section 3.3 (1). It corresponds to the

space-frequency setting studied in [36]. For the spatial filter f1 = χA, we choose the circular set
A = {v ∈ V | |v − w| ≤ r}, i.e. A consists of all nodes of the point cloud V that are within an
euclidean distance r to the central node w. The matrix Mf1 is then the orthogonal projection
onto the signals supported in A. For G1, we choose r = 0.25, for the bunny G2 we take r = 0.015.
In the spectral domain, we use the filter ĝ = χB with B = {u1, . . . , uN} ⊂ Ĝ and N < n, i.e.,
Cg1 is the orthogonal projection onto the bandlimited signals spanned by the basis B. For the
graph G1, we use as bandwidth N = 100, for the bunny G2 we take N = 200.

(2) (f2, g2) is a distance-projection pair as defined in Section 3.3 (2). The spatial filter f2 is defined
as f2 = 1 − dw/d(∞)

w , where dw(v) is the number of edges of the shortest path connecting w
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with v ∈ V . To compare f2 with f1, we use for both filters the same central node w. Further, g2
coincides with the projection filter g1 = χB described above in (1).

(3) (f3, g3) is a modified distance-projection pair from Section 3.3 (3). The two filters f and g are
given for α > 0, β > 0, as

f3 = 1−
(

dw
d(∞)
w

)α
, ĝ3 = χB �

(
1−

(
λ
2

)β)
.

Here, xα is defined as xα = (xα1 , . . . , xαn). The set B is the same as for the filters g1 = g2. In our
experiments we choose α = 1/2 and β = 2.

(4) (f4, g4) is the distance-Laplace pair discussed in Section 3.3 (4) and a variant of the uncertainty
setting studied in [1]. This pair is given as

f4 = 1−
(

dw
d(∞)
w

)2
, ĝ4 = 1− λ/2.

In particular, the spatial filter f4 corresponds to the filter f3 with the parameter α = 2.

7.2 Shapes of uncertainty and space-frequency localization of eigenvectors
7.2.1 Description
As a first experiment, we apply Algorithm 1 and plot the numerical rangesW(Mf ,Cg) of the four filter
pairs (f1, g1), (f2, g2), (f3, g3), and (f4, g4) on the two test graphs G1 and G2. Further, we calculate
the space-frequency localization of the eigenvectors of the matrices Sf,g and R(θ)

f,g, θ = 9π/20, inside
W(Mf ,Cg). The corresponding results are illustrated in Figure 4 and Figure 5. As an additional
analysis tool, we display in Figure 6 the decay of the eigenvalues of Sf,g and R(θ)

f,g.

Fig. 4: The numerical range W(Mf ,Cg) for the filter pairs (f1, g1), (f2, g2), (f3, g3), (f4, g4) on the
sensor graph G1 (from left to right). The black dots represent the position (m̄f (ψk), c̄g(ψk)) of the
eigenvectors of the operator Sf,g. The ringed black dot indicates the position of ψ1.

7.2.2 Discussion of the shapes
From the shape of the uncertainty curves it is possible to extract qualitative information about the
applied filter functions, and in case of (f4, g4) also about the underlying graph G. All four filter
pairs display an uncertainty, the projection filter pair (f1, g1) giving the largest admissibility region
W(Mf1 ,Cg1), or in other words, the weakest uncertainty relation. That W(Mf1 ,Cg1) describes in
fact an uncertainty relation is only visible by a proper zoom, as displayed in Figure 6 (left).

The parameter α > 0 of the modified distance filter f3 has a visible impact on the shape of the
uncertainty curve close to (1, 1). While decreasing the parameter α results in an uncertainty curve
distant to the point (1, 1), increasing α has the opposite effect. The spectral filters g1, g2 and g3 are
all three bandlimiting filters. This is visible in the first three illustrations of Figure 4 and Figure 5
as the lower boundary of the numerical range intersects the axis s = 0. The fourth filter g4 contains
spectral information of the graph. In Figure 4 and 5 (right) we see that the operator Cg4 is invertible,
and, thus that the largest eigenvalue of the graph Laplacian certainly satisfies λn < 2.
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Fig. 5: Comparison of W(Mf ,Cg) for the filter pairs (f1, g1), (f2, g2), (f3, g3), (f4, g4) on the graph
G2 (from left to right). The black dots represent the location

(
m̄f (φ(θ)

k ), c̄g(φ(θ)
k )

)
of the eigenvectors

of the operator R(θ)
f,g with θ = 9π/20. The ringed black dot indicates the position of φ(θ)

1 .

Fig. 6: Left: Zoom of the upper right corner of Figure 4 (left). Middle: Decay of the eigenvalues σk
of Sf,g for the filter pairs (f1, g1), (f2, g2), (f3, g3), (f4, g4) on G1. Right: Decay of the eigenvalues ρ(θ)

k

of R(θ)
f,g (θ = 9π/20) for the filter pairs (f1, g1), (f2, g2), (f3, g3), (f4, g4) on the graph G2.

7.2.3 Discussion of the space-frequency localization of the eigenvectors of Sf,g and R(θ)
f,g

We first have a look at the decay of the eigenvalues of Sf,g and R(θ)
f,g in Figure 6 (middle) and (left).

The bandlimiting behavior of the spectral filters g1, g2 and g3 is visible by the jumps of the eigenvalues
at the bandwidth N , whereas for g4 we see a smooth decay of the eigenvalues. For the projection-
projection pair (f1, g1) an earlier drop of the eigenvalues is visible in case of the operator Sf,g and a
clustering at the values 0, cos θ, sin θ and 1 in case of the operator R(θ)

f,g. The distance filters f2 and
f3 on the other hand provide smoothly decaying eigenvalues until the rapid drop at N .

The bandlimiting property of the filters g1, g2 and g3 is also visible in the space-frequency locations
of the eigenvectors of Sf,g and R(θ)

f,g shown in Figure 4 and 5. For these filters, we see a clear separation
between bandlimited eigenvectors in the range and the eigenvectors spanning the kernel of Sf,g and
R(θ)
f,g, respectively. For the pairs (f1, g1) and (f3, g3) additional effects are visible as f1 is a projection

filter (enlarging the kernel of Sf,g and R(θ)
f,g) and as ĝ3 contains an additional smoothing factor ĝ(β).

For the filter pair (f4, g4) such a separation is not visible.

7.3 Space localization of bandlimited signals for distance-projection filters
In case of the distance-projection pair (f2, g2) further interesting effects are visible in the space-
frequency behavior of the eigendecomposition of the operator Sf,g. In the example given in Figure 4



SHAPES OF UNCERTAINTY IN SPECTRAL GRAPH THEORY 19

Fig. 7: The eigenvectors ψ1 ψ10, ψ50 and ψ200 of Sf2,g2 on G2 (from left to right).

(middle left), we observe that the frequency measure of an eigenvector ψk is either c̄g(ψk) = 1 (i.e.
the eigenvector ψk is bandlimited) or c̄g(ψk) = 0 (if k > N , i.e. the support of ψ̂k is outside of B).
We can further order the bandlimited eigenvectors of Sf,g with respect to their spatial localization
m̄f . This corresponds to the natural ordering of the bandlimited eigenvectors ψk with respect to the
decreasing eigenvalues of Sf,g. In particular, the optimally space-localized eigenvector with respect
to the localization measure m̄f inside the band B is ψ1, the least space-localized is the eigenvector
ψN . For the distance filter f2 on the graph G2, different bandlimited eigenvectors ψk are illustrated
in Figure 7. It gets visible that the eigenvectors ψk are localized on G2 in a ring with a certain graph
distance to the center node w. This distance is linked to the index k.

7.4 Space-frequency behavior of the optimally localized eigenvectors

Fig. 8: Top row: the eigenvectors ψ1 of the operator Sf,g for the graph G1 and the filter pairs (f1, g1),
(f2, g2), (f3, g3), and (f4, g4) (from left to right).
Bottom row: the eigenvectors φ(θ)

1 of the operator R(θ)
f,g with θ = 9

20π for the graph G2 and the filter
pairs (f1, g1), (f2, g2), (f3, g3), and (f4, g4) (from left to right).

Finally, we compare the space-frequency behavior of the optimally space-frequency localized eigen-
vectors ψ1 and φ(θ)

1 for the four filter pairs in Section 7.1.2. The spatial and spectral distributions of
these localized eigenvectors are illustrated in Figure 8 and Figure 9, respectively.
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Fig. 9: The Fourier coefficients of the eigenvectors displayed in Figure 8.
Top row: the absolute value of the Fourier coefficients ψ̂1 of the eigenvector ψ1 for the graph G1 and
the filter pairs (f1, g1), (f2, g2), (f3, g3), and (f4, g4) (from left to right).
Bottom row: the absolute value of the Fourier coefficients φ̂(θ)

1 of the eigenvector φ(θ)
1 (θ = 9

20π) for
the graph G2 and the filter pairs (f1, g1), (f2, g2), (f3, g3), and (f4, g4) (from left to right).

Regarding the space localization, all four filter pairs provide eigenvectors ψ1 and φ
(θ)
1 that are

localized around the center node w of the spatial filter. The kind of localization of the eigenvectors
follows roughly the structure of the spatial filters given in Figure 2 and Figure 3. In particular,
whereas f1 gives a set-oriented localization measure, the filters f2, f3 and f4 are distance-oriented
(with respect to the center w). The effects of the spectral filters on the eigenvectors get mainly visible
in case of the filters g3 and g4. The decaying Fourier coefficients ĝ3 and ĝ4 have a blurring effect on
the optimal eigenvectors, in particular in case of the pair (f4, g4).

In the spectral domain, we see that the bandlimiting filters g1 = g2 and g3 are rather rough
localization measures in the spectrum of the graph. In principle, they mainly push the optimal
eigenvector to be in the given frequency band B. On the other hand, the Laplace filter g4 generates
optimal eigenvectors with a much stronger frequency localization in the lower part of the spectral
domain corresponding to the small eigenvalues of the graph Laplacian.

8 Conclusion
In this work, we presented a flexible framework for uncertainty relations in spectral graph theory
that allows to characterize and compute uncertainty regions for a broad family of different space
and frequency filters. In particular, the usage of a polygonal approximation method for the convex
numerical range enabled us to visualize the boundaries of the uncertainty regions very efficiently.
This visualization technique and the related descriptions of uncertainty curves and space-frequency
decompositions of signals make this framework into a promising tool to study and analyze new filter
designs for a graph-adapted space-frequency analysis.
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