Discrete Harmonic Analysis
 Representations, Number Theory, Expanders, and the Fourier Transform
 31 July 2017

Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli

To the memory of my six (sic!) grandparents:
Tullio Levi-Civita, Padua 29.3.1873 - Rome 29.12.1941
Libera Trevisani Levi-Civita, Verona 17.5.1890 - Rome 11.12.1973
Riccardo Vittorio Ceccherini Stame, Rome 7.6.1903 - Rome 16.10.1991
Piera Paoletti Ceccherini, Florence 9.8.1896 - Rome 8.5.1973
Walter Silberstein, Vienna 14.07.1911 - Auschwitz 11.7.1944
Edith Hahn Silberstein, Vienna 7.2.1911 - Auschwitz 23.5.1944

To my parents, Cristina, Nadiya, and Virginia

To the memory of my father, and to my mother

Contents

Part I Finite Abelian groups and the DFT page 1
1 Finite Abelian groups 3
1.1 Preliminaries in Number Theory 3
1.2 Structure theory of finite Abelian groups: preliminary results 10
1.3 Structure theory of finite Abelian groups: the theorems 18
1.4 Endomorphisms and automorphisms of finite Abelian groups 27
1.5 Endomorphisms and automorphisms of finite cyclic groups 30
1.6 The endomorphism ring of a finite Abelian p-group. 36
1.7 The automorphisms of a finite Abelian p-group 41
1.8 The cardinality of $\operatorname{Aut}(A)$ 43
2 The Fourier Transform on finite Abelian groups 47
2.1 Some notation 47
2.2 Characters of finite cyclic groups 49
2.3 Characters of finite Abelian groups 51
2.4 The Fourier transform 54
2.5 Poisson's formulas and the uncertainty principle 61
2.6 Tao's uncertainty principle for cyclic groups 64
3 Dirichlet's theorem on primes in arithmetic progressions 76
3.1 Analytic preliminaries 76
3.2 Preliminaries on multiplicative characters 87
3.3 Dirichlet L-functions 91
3.4 Euler's theorem 99
3.5 Dirichlet's theorem 102
4 Spectral Analysis of the DFT and Number Theory 104
4.1 Preliminary Results 104
4.2 The decomposition into eigenspaces 111
4.3 Applications: some classical results by Gauss and Schur 118
4.4 Quadratic reciprocity and Gauss sums 120
5 The Fast Fourier Transform 133
5.1 A preliminary example 133
5.2 Stride Permutations 135
5.3 Permutation Matrices and Kronecker Products 143
5.4 The matrix form of the FFT 156
5.5 Algorithmic aspects of the FFT 166
Part II Finite Fields and their characters 171
6 Finite fields 173
6.1 Preliminaries on Ring Theory 173
6.2 Finite algebraic extensions 177
6.3 The structure of finite fields 182
6.4 The Frobenius automorphism 183
6.5 Existence and uniqueness of Galois fields 185
6.6 Subfields and irreducible polynomials 190
6.7 Hilbert Satz 90 194
6.8 Quadratic extensions 199
$7 \quad$ Character theory of finite fields 204
7.1 Generalities on additive and multiplicative characters 204
7.2 Decomposable characters 208
7.3 Generalized Kloosterman sums 210
7.4 Gauss sums 217
7.5 The Hasse-Davenport identity 221
7.6 Jacobi sums 225
7.7 On the number of solutions of equations 230
7.8 The FFT over a finite field 235
Part III Graphs and expanders 241
8 Graphs and their products 243
8.1 Graphs and their adjacency matrix 243
8.2 Strongly regular graphs 249
8.3 Bipartite graphs 253
8.4 The complete graph 255
8.5 The hypercube 256
8.6 The discrete circle 258
8.7 Tensor products 260
8.8 Cartesian, tensor, and lexicographic products of graphs 266
8.9 Wreath product of finite graphs 272
8.10 Lamplighter graphs and their spectral analysis 276
8.11 The lamplighter on the complete graph 278
8.12 The replacement product 281
8.13 The zig-zag product 286
8.14 Cayley graphs and graph products 288
9 Expanders and Ramanujan graphs 292
9.1 The Alon-Milman-Dodziuk Theorem 293
9.2 The Alon-Boppana-Serre Theorem 304
9.3 Nilli's proof of the Alon-Boppana-Serre theorem 309
9.4 Ramanujan graphs 316
9.5 Expander graphs 318
9.6 The Margulis example 320
9.7 The Alon-Schwartz-Shapira estimate 329
9.8 Estimates of the first nontrivial eigenvalue for the Zig-Zag product 336
9.9 Explicit construction of expanders via the Zig-Zag product 347
Part IV Harmonic Analysis on Finite Linear Groups 349
10 Representation theory of finite groups 351
10.1 Representations, irreducibility and equivalence 351
10.2 Schur's lemma and the orthogonality relations 358
10.3 The group algebra and the Fourier transform 370
10.4 Group actions and permutation characters 381
10.5 Conjugate representations and tensor products 389
10.6 The commutant of a representation 400
10.7 A noncommutative FFT 407
11 Induced representations and Mackey theory 409
11.1 Induced representations 409
11.2 Frobenius reciprocity 419
11.3 Preliminaries on Mackey's theory 423
11.4 Mackey's formula for invariants 424
11.5 Mackey's lemma 430
11.6 The Mackey-Wigner little group method 431
11.7 Semidirect products with an Abelian group 435
12 Fourier analysis on finite affine groups and finite Heisen- berg groups 436
12.1 Representation theory of the affine group $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ 436
Contents vii
12.2 Representation theory of the affine group $\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})$ 443
12.3 Representation theory of the Heisenberg group $H_{3}(\mathbb{Z} / n \mathbb{Z})$ 447
12.4 The DFT revisited 454
12.5 The FFT revisited 457
12.6 Representation theory of the Heisenberg group $H_{3}\left(\mathbb{F}_{q}\right)$ 467
13 Hecke algebras and multiplicity-free triples 470
13.1 Preliminaries and notation 470
13.2 Hecke algebras 472
13.3 Commutative Hecke algebras 476
13.4 Spherical functions: intrinsic theory 479
13.5 Harmonic analysis on the Hecke algebra $\mathcal{H}(G, K, \chi)$ 485
14 Representation theory of GL $\left(2, \mathbb{F}_{q}\right)$ 493
14.1 Matrices associated with linear operators 493
14.2 Canonical forms for $\mathfrak{M}_{2}(\mathbb{F})$ 494
14.3 The finite case 499
14.4 Representation theory of the Borel subgroup 503
14.5 Parabolic induction 505
14.6 Cuspidal representations 512
14.7 Whittaker models and Bessel functions 523
14.8 Gamma coefficients 534
14.9 Character theory of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ 538
14.10 Induced representations from $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ to $\mathrm{GL}\left(2, \mathbb{F}_{q^{m}}\right)$. 545
14.11 Decomposition of tensor products 552
Appendix 1 Chebyshëv polynomials 555
Bibliography 567
Index 576

Preface

The aim of the present monograph is to introduce the reader to some central topics in discrete harmonic analysis, namely, character theory of finite Abelian groups, (additive and multiplicative) character theory of finite fields, graphs and expanders, and representation theory of finite (possibly not Abelian) groups, including spherical functions, associated Fourier transforms, and spectral analysis of invariant operators. An important transversal topic, which is present in several sections of the book, is constituted by tensor products which are developed for matrices, graphs, and representations.

We have written the book as self-contained as possible: it only requires some elementary notions in linear algebra (including the spectral theorem
and its applications), abstract algebra (first rudiments in the theory of (finite) groups and rings), and elementary number theory.

First of all, we study in detail the structure of finite Abelian groups and their automorphisms. We then introduce the corresponding character theory leading to a complete analysis of the Fourier transform, focusing on the connections with number theory. For instance, we deduce Gauss law of quadratic reciprocity from the spectral analysis of the Discrete Fourier Transform. Actually, characters of finite Abelian groups will appear also, as a fundamental tool in the proof of several deep results, in subsequent chapters, constituting, this way, the central topic and common thread of the whole book.

We also present Dirichlet's theorem on primes in arithmetic progressions which is based on the character theory of finite Abelian groups as well as Tao's uncertainty principle for (finite) cyclic groups [157].

Our treatment also includes an exposition of the Fast Fourier Transform, focusing on the theoretical aspects related to its expressions in terms of factorizations and tensor products. This part of the monograph is inspired, at least partially, to the important work of Auslander and Tolimieri [15] and the papers by Davio [49] and Rose [130]. The book by Stein and Shakarchi [150] has been a fundamental source for our treatment of Dirichlet's theorem as well as for the first section of the chapter on the Fast Fourier Transform.

The second part of the book constitutes a self-contained introduction to the basic algebraic theory of finite fields and their characters. This includes, on the one hand, a complete study of the automorphisms, norms, traces, and quadratic extensions of finite fields, and, on the other hand, additive characters and multiplicative characters and several associated sums (trigonometric and Gaussian) and the Fast Fourier Transform over finite fields. One of the main goals is to present the generalized Kloosterman sums from PiatetskiShapiro's monograph [123] which will play a fundamental role in Chapter 14 on the representation theory of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$. We also introduce the reader to the study, initiated by André Weil [165], of the number of solutions of equations over finite fields and present the Hasse-Davenport identity [70] which relates the Gauss sums over a finite field and those over a finite extension.

The third part is devoted to harmonic analysis on finite graphs and several constructions such as the replacement product and the zig-zag product. The central themes are expanders and Ramanujan graphs. We present the basic theorems of Alon-Milman and Dodziuk, and of Alon-Boppana-Serre, on the isoperimetric constant and the spectral gap of a (finite, undirected, connected) regular graph, and their connections. We discuss a few examples with explicit computations showing optimality of the bounds given by the above theorems. We then give the basic definitions of expanders and de-
scribe three fundamental constructions due to Margulis, to Alon, Schwartz, and Shapira (based on the replacement product), and to Reingold, Vadhan, and Wigderson (based on the zig-zag product). In these constructions, the harmonic analysis on finite abelian groups and finite fields we developed in the previous parts, plays a crucial role. The presentation is inspired to the monographs by Terras [159], Lubotzky [99], and by Davidoff-Sarnak-Valette [48], as well as to the papers by Hoory-Linial-Wigderson [74], Alon-SchwartzShapira [10], and Alon-Lubotzky-Wigderson [8].

The final part of the present monograph is devoted to the representation theory of finite groups with emphasis on induced representations and Mackey theory. This includes a complete description of the irreducible representations of the affine groups and Heisenberg groups with coefficients in both the finite field \mathbb{F}_{q} and the ring $\mathbb{Z} / n \mathbb{Z}$. Moreover, both the Discrete Fourier Transform and the Fast Fourier Transform are revisited, following Auslander-Tolimieri [15] and Schulte [142], in terms of two different realizations of a particular representation of the Heisenberg group. In Chapter 13 we develop, with a complete and original treatment, the basic theory of multiplicity-free triples, their associated spherical functions, and (commutative) Hecke algebras. This is a subject which has not yet received the attention it deserves. As far as we know, this notion is just mentioned in some exercises in Macdonald's book [105]. The classical theory of finite Gelfand pairs, which constitutes a particular yet fundamental case, was essentially covered in our first monograph [29]. The exposition culminates with a complete treatment of the representation theory of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$, along the lines developed by Piatetski-Shapiro [123]: our approach, via multiplicityfree triples, constitutes our original contribution to the theory.

All this said, one can use this monograph as a textbook for at least four different courses on:
(i) Finite Abelian groups, the DFT, and the FFT (the structure of finite Abelian groups, their character theory, and the Fourier transforms): Sections 1.1, 1.2, and 1.3, and Chapters 2, 4, and 5. The remaining sections in Chapter 1 as well as Chapter 3 are optional.
(ii) Finite commutative harmonic analysis (the structure of finite Abelian groups, their character theory, and the Fourier transforms; Dirichlet's theorem; finite fields and their characters): Sections 1.1, 1.2 , and 1.3 , and Chapters 2, $3,4,6$, and 7 .
(iii) Graph theory (a brief introduction to finite graphs, various notions of graph products, spectral theory, and expanders): Sections 1.1, 1.2,
1.3, 2.1, 2.2, 2.3, and 2.4, and Chapters 8 and 9 (omitting, if necessary, the parts involving character theory of finite fields).
(iv) Finite harmonic analysis (representation theory of finite groups: from the basics to $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$): Sections 1.1, 1.2, and 1.3, Chapters 2, 4, and 6 , Sections 7.1, 7.2, 7.3, and 7.4, and the whole of Part IV (Section 12.5 , Chapter 13, and Sections 14.7 and 14.8 may be omitted).

We thank Alfredo Donno for interesting discussions as well as for helping us with some figures. We also express our deep gratitude to Sam Harrison, Kaitlin Leach, Clare Dennison, and Mark Fox from Cambridge University Press for their constant encouragement and most precious help at all stages of the editing process.

Part I

Finite Abelian groups and the DFT

Finite Abelian groups

This chapter contains an elementary, self-contained, but quite complete exposition of the structure theory of finite Abelian groups, including a detailed account on their endomorphisms and automorphisms. We also provide all the necessary background in number theory (only basic prerequisites are assumed).

1.1 Preliminaries in Number Theory

In this section we review some basic facts on elementary Number Theory. Most of the proofs are elementary and often left as exercises. More details can be found in the monographs by Apostol [13], Davenport [47], Herstein [71], Ireland and Rosen [79], Mac Lane and Birkhoff [113], Nagell [117], and Nathanson [118].

We denote by $\mathbb{N}=\{0,1,2, \ldots\}$ the set of natural numbers, and we recall that, by Peano's axioms (see [113]), every non-empty subset $A \subseteq \mathbb{N}$ admits a (unique) minimal element.

Also, a basic tool in elementary number theory is the division (Euclidean) algorithm (long division): let $a, b \in \mathbb{Z}$ such that $b \geq 1$, then there exist unique $q, r \in \mathbb{Z}$ with $0 \leq r<b$ such that

$$
\begin{equation*}
a=b q+r . \tag{1.1}
\end{equation*}
$$

If $r=0$ one says that b divides a and we write $b \mid a$.
Theorem 1.1.1 (Definition of the greatest common divisor) Let $a, b \in$ \mathbb{Z} with $(a, b) \neq(0,0)$. Then there exists a unique positive integer d satisfying the following conditions:
(i) $d \mid a$ and $d \mid b$;
(ii) if $d^{\prime} \mid a$ and $d^{\prime} \mid b$, then $d^{\prime} \mid d$.

Moreover, there exist (not necessarily unique) $m_{0}, n_{0} \in \mathbb{Z}$ such that (Bézout identity)

$$
\begin{equation*}
d=m_{0} a+n_{0} b \tag{1.2}
\end{equation*}
$$

Definition 1.1.2 The positive integer d as in the above statement is called the greatest common divisor of a and b and it is denoted by $\operatorname{gcd}(a, b)$.

Proof of Theorem 1.1.1 Suppose that d_{1} and d_{2} are two positive integers satisfying conditions (i) and (ii). Then, by (ii) we have $d_{1} \mid d_{2}$ and $d_{2} \mid d_{1}$. This forces $d_{1}= \pm d_{2}$ and therefore $d_{1}=d_{2}$ by positivity. This proves uniqueness. In order to show existence, consider the set

$$
\mathcal{I}=\{m a+n b: m, n \in \mathbb{Z}\} \subseteq \mathbb{Z}
$$

Note that if $z, z^{\prime} \in \mathcal{I}$ then $z+z^{\prime} \in \mathcal{I}$ and $-z \in \mathcal{I}$. As a consequence, $\mathcal{I}_{+}=\mathcal{I} \cap(\mathbb{N} \backslash\{0\})$ is a non-empty subset of \mathbb{N}. Let $d=m_{0} a+n_{0} b$ denote the minimal element of \mathcal{I}_{+}: we claim that $\mathcal{I}=\{h d: h \in \mathbb{Z}\}$. Indeed, the inclusion \supseteq is obvious, while, if $k \in \mathcal{I}$, by the division algorithm we can find $q, r \in \mathbb{Z}$ such that $k=q d+r$ with $0 \leq r<d$. Now, since $r=k-q d \in \mathcal{I}_{+} \cup\{0\}$, by minimality of d we necessarily have $r=0$, that is, $k \in\{h d: h \in \mathbb{Z}\}$. This shows the other inclusion and proves our claim. Since $a=a \cdot 1+b \cdot 0, b=$ $a \cdot 0+b \cdot 1 \in \mathcal{I}$, there exist $h_{1}, h_{2} \in \mathbb{Z}$ such that $a=h_{1} d$ and $b=h_{2} d$, so that $d \mid a$ and $d \mid b$. On the other hand, if $d^{\prime} \mid a$ and $d^{\prime} \mid b$, say $a=h_{1}^{\prime} d^{\prime}$ and $b=h_{2}^{\prime} d^{\prime}$, with $h_{1}^{\prime}, h_{2}^{\prime} \in \mathbb{Z}$, then $d=m_{0} a+n_{0} b=m_{0} h_{1}^{\prime} d^{\prime}+n_{0} h_{2}^{\prime} d^{\prime}=\left(m_{0} h_{1}^{\prime}+n_{0} h_{2}^{\prime}\right) d^{\prime}$ so that $d^{\prime} \mid d$. This shows that $d=\operatorname{gcd}(a, b)$.

Remark 1.1.3 The set \mathcal{I} is an ideal in the $\operatorname{ring} \mathbb{Z}$, and \mathbb{Z} is a principal ideal domain (see Section 6.1).

From the proof of Theorem 1.1.1 we immediately deduce the following:
Corollary 1.1.4 Given $a, b, c \in \mathbb{Z}$ with $(a, b) \neq(0,0)$, the linear equation

$$
n a+m b=c
$$

has a solution $(n, m) \in \mathbb{Z}^{2}$ if and only if $\operatorname{gcd}(a, b)$ divides c.
(See also Proposition 1.2.13 below.)
Exercise 1.1.5 Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ with $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \neq(0,0, \ldots, 0)$.
(1) Show that there exists a unique positive integer d satisfying the following conditions:
(i) $d \mid a_{i}$ for all $i=1,2, \ldots, n$;
(ii) if $d^{\prime} \mid a_{i}$ for all $i=1,2, \ldots, n$, then $d^{\prime} \mid d$.

In particular, setting $d_{2}=\operatorname{gcd}\left(a_{1}, a_{2}\right)$ and $d_{i}=\operatorname{gcd}\left(d_{i-1}, a_{i}\right)$ for $i \geq 3$, show that $d=d_{n}$;
(2) show that there exist $m_{i} \in \mathbb{Z}, i=1,2, \ldots, n$, such that (generalized Bézout identity) $d=m_{1} a_{1}+m_{2} a_{2}+\ldots+m_{n} a_{n}$.

Definition 1.1.6 Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ with $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \neq(0,0, \ldots, 0)$. The number d in Exercise 1.1.5.(1) is called the greatest common divisor of the a_{i} s and it is denoted by $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. One says that $a_{1}, a_{2}, \ldots, a_{n} \in$ \mathbb{Z} are relatively prime provided $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$.

An integer $p>1$ is said to be prime if its positive divisors are exactly 1 and p.

Exercise 1.1.7 (Euclidean algorithm) Let $a, b \in \mathbb{N}$ and suppose that $b \geq 1$ and $b \nmid a$. Set $r_{0}=a, r_{1}=b$, and recursively define, by the division algorithm,

$$
r_{k}=r_{k+1} q_{k+1}+r_{k+2}
$$

where $0 \leq r_{k+2}<r_{k+1}$, for all $k \geq 0$. Show that $\operatorname{gcd}(a, b)=r_{n}$ where $n \in \mathbb{N}$ is the largest index for which $r_{n}>0$ (so that $r_{n+1}=0$).

Exercise 1.1.8 Let $a, b, c \in \mathbb{Z}$ and p a prime number.
(1) Prove that if $\operatorname{gcd}(a, b)=1$ and $a \mid b c$ then $a \mid c$;
(2) deduce that if $p \mid b c$ then $p \mid b$ or $p \mid c$.

Exercise 1.1.9 (Fundamental theorem of arithmetic) Let $n \geq 2$ be an integer. Show that there exists a unique prime factorization

$$
n=p_{1}{ }^{m_{1}} p_{2}{ }^{m_{2}} \cdots p_{h}{ }^{m_{h}}
$$

where $p_{1}<p_{2}<\cdots<p_{h}$ are prime numbers, $m_{1}, m_{2}, \ldots, m_{h} \geq 1$ are the multiplicities, and $h \geq 1$.

Hint. For uniqueness, use induction combined with Exercise 1.1.8.
Exercise 1.1.10 Let $a_{1}, a_{2}, \ldots, a_{n} \geq 2$ be integers. Suppose that

$$
a_{j}=p_{1}{ }^{m_{1 j}} p_{2}{ }^{m_{2 j}} \cdots p_{h}{ }^{m_{h j}}
$$

with distinct primes p_{i} and multiplicities $m_{i j} \geq 0$, for all $i=1,2, \ldots, h$ and $j=1,2, \ldots, n$. Show that

$$
\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)={p_{1}}^{m_{1}} p_{2}{ }^{m_{2}} \cdots p_{h}{ }^{m_{h}}
$$

where $m_{i}=\min \left\{m_{i j}: j=1,2, \ldots, n\right\}$ for all $i=1,2, \ldots, h$.

Exercise 1.1.11 (Euclid's proof of the infinitude of primes)

(1) Let $p_{1}, p_{2}, \ldots, p_{n}, n \geq 1$, be distinct primes. Show that the number $p_{1} p_{2} \cdots p_{n}+1$ is not divisible by p_{i} for all $i=1,2, \ldots, n$;
(2) deduce that the set of prime numbers is infinite.

There are many other proofs of the infinitude of primes. Six of them (including Euclid's proof) are in the book by Aigner and Ziegler [5]. A deep generalization of this fact will be presented in Chapter 3.

Definition 1.1.12 Let $n \geq 1$ and $a, b \in \mathbb{Z}$. One says that a is congruent to b modulo n, and one writes $a \equiv b \bmod n$, provided $n \mid(a-b)$.

Exercise 1.1.13 Let $n \geq 1$.
(1) Show that the congruence relation $\equiv \bmod n$ is an equivalence relation;
(2) suppose that $a=n q+r$, with $0 \leq r<n$. Show that $a \equiv r \bmod n$;
(3) deduce that there are exactly n equivalence classes and that a complete list of representatives is provided by $0,1, \ldots, n-1$.

For $n \geq 1$ and $a \in \mathbb{Z}$ we denote by

$$
\begin{equation*}
\bar{a}=\{a+h n: h \in \mathbb{Z}\} \tag{1.3}
\end{equation*}
$$

the equivalence class containing a.
We denote by $\mathbb{Z} / n \mathbb{Z}=\{\bar{a}: a \in \mathbb{Z}\}=\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$ the corresponding quotient set.

Exercise 1.1.14 Let $n \geq 1$ and $a, b \in \mathbb{Z}$. Set

$$
\begin{equation*}
\bar{a}+\bar{b}=\overline{a+b} \quad \text { and } \quad \bar{a} \cdot \bar{b}=\overline{a b} \tag{1.4}
\end{equation*}
$$

(1) Show that the operations + and \cdot in (1.4) are well defined;
(2) show that $(\mathbb{Z} / n \mathbb{Z},+)$ is a cyclic group;
(3) show that $(\mathbb{Z} / n \mathbb{Z},+, \cdot)$ is a unital commutative ring;
(4) show that \bar{a} is invertible in $(\mathbb{Z} / n \mathbb{Z},+, \cdot)$ if and only if $\operatorname{gcd}(a, n)=1$;
(5) deduce that if p is a prime, then $(\mathbb{Z} / p \mathbb{Z},+, \cdot)$ is a field.

For (5), see also Corollary 6.1.13.

Notation 1.1.15 Let $n \geq 1$. For $k, m \in \mathbb{Z}$ we write

$$
k \bar{m}=\bar{m}+\bar{m}+\cdots+\bar{m}(k \text { summands })
$$

if $k \geq 0$, and $k \bar{m}=-(|k| \bar{m})$ if $k<0$, where \bar{m} is as in (1.3).

The notation above is consistent with the fact that $(\mathbb{Z} / n \mathbb{Z},+)$, as any Abelian group, is a \mathbb{Z}-module; see the monographs by Herstein [71], Lang [93], and Knapp [87].

Lemma 1.1.16 Let r and s be positive integers with $\operatorname{gcd}(r, s)=1$. Then for every $0 \leq k \leq r s-1$ there exist unique $0 \leq u \leq r-1$ and $0 \leq v \leq s-1$ such that

$$
\begin{equation*}
k \equiv u s+v r \quad \bmod r s \tag{1.5}
\end{equation*}
$$

Proof As u and v vary, with $0 \leq u \leq r-1$ and $0 \leq v \leq s-1$, the expression $u s+v r$ yields (at most) rs integers; therefore it suffices to show that these are all distinct $\bmod r s$. Indeed, for $0 \leq u, u^{\prime} \leq r-1$ and $0 \leq v, v^{\prime} \leq s-1$ we have (keeping in mind that $\operatorname{gcd}(r, s)=1$):

$$
\begin{aligned}
u s+v r \equiv u^{\prime} s+v^{\prime} r \quad \bmod r s & \Longrightarrow\left(u-u^{\prime}\right) s+\left(v-v^{\prime}\right) r \equiv 0 \bmod r s \\
(\text { by Exercise 1.1.8.(1)) } & \Longrightarrow \begin{cases}u \equiv u^{\prime} \bmod r \\
v \equiv v^{\prime} \bmod s\end{cases} \\
& \Longrightarrow u=u^{\prime} \text { and } v=v^{\prime} .
\end{aligned}
$$

Notation 1.1.17 For $n \geq 1$ we denote by

- \mathbb{Z}_{n} the additive group $(\mathbb{Z} / n \mathbb{Z},+)$ of integers $\bmod n$;
- C_{n} the multiplicative cyclic group of order n;
- $\mathbb{Z} / n \mathbb{Z}$ the $\operatorname{ring}(\mathbb{Z} / n \mathbb{Z},+, \cdot)$ of integers $\bmod n$.

When $n=p$ is a prime, we shall denote by \mathbb{F}_{p} the finite field $\mathbb{Z} / p \mathbb{Z}$ (cf. Exercise 1.1.14.(5)).

Note that if C_{n} is generated by the element $a \in C_{n}$, then the map $\bar{k} \mapsto a^{k}$, for all $k \in \mathbb{Z}$, is well defined and establishes a natural group isomorphism of \mathbb{Z}_{n} onto C_{n}.

We shall examine the structure of all finite fields in Section 6.3.
Definition 1.1.18 The Euler totient function is the map φ defined by

$$
\varphi(n)=|\{m \in \mathbb{N}: 1 \leq m \leq n, \operatorname{gcd}(m, n)=1\}|
$$

for all $n \geq 1$, where $|\cdot|$ denotes cardinality. In words, the value $\varphi(n)$ equals the number of positive integers less than or equal to n that are relatively prime to n.

Proposition 1.1.19 Let n be a positive integer. Then in the cyclic group \mathbb{Z}_{n} there are exactly $\varphi(n)$ distinct generators.

Proof Let $1 \leq m \leq n-1$ and suppose that $\operatorname{gcd}(m, n)=1$. By Bézout identity, we can find $a, b \in \mathbb{Z}$ such that $a m+b n=1$. Let $1 \leq h \leq n-1$ be such that $\bar{h}=\bar{a}$. Then, in \mathbb{Z}_{n} we have $\bar{m}+\bar{m}+\cdots+\bar{m}=h \bar{m}=\overline{a m}=\overline{1}$. As $\overline{1}$ clearly generates \mathbb{Z}_{n}, this shows that \bar{m} generates \mathbb{Z}_{n} as well. On the other hand, if $\operatorname{gcd}(m, n)=q>1$, then we can find $h, k \in \mathbb{N}$ such that $m=h q$ and $n=k q$. Note that $1 \leq k<n$. Then we have $k \bar{m}=\overline{k m}=\overline{k h q}=h \bar{n}=\overline{0}$ so that the (cyclic) subgroup generated by \bar{m} in \mathbb{Z}_{n} has order $\leq k$ and therefore cannot equal the whole \mathbb{Z}_{n}. This shows that \bar{m} is not a generator of \mathbb{Z}_{n}.

The statement then follows from the definition of $\varphi(n)$.
Proposition 1.1.20 (Gauss) Let n be a positive integer. Then we have

$$
\sum_{\substack{1 \leq r \leq n \\ r \mid n}} \varphi(r)=n
$$

Proof For every positive divisor r of n let us set

$$
\begin{equation*}
A(r):=\{k \in \mathbb{N}: 1 \leq k \leq n, \operatorname{gcd}(k, n)=n / r\} \tag{1.6}
\end{equation*}
$$

For $1 \leq k \leq n$ we clearly have $k \in A(r)$ with $r=n / \operatorname{gcd}(k, n)$, and such an r is unique, so that

$$
\begin{equation*}
\{1,2, \ldots, n\}=\coprod_{\substack{1 \leq r \leq n \\ r \mid n}} A(r) \tag{1.7}
\end{equation*}
$$

Now, for every $k \in A(r)$ there exists a unique positive integer j such that $k=j \frac{n}{r}$. It follows that $1 \leq j \leq r$ and

$$
\frac{n}{r}=\operatorname{gcd}(k, n)=\operatorname{gcd}\left(j \frac{n}{r}, r \frac{n}{r}\right)=\frac{n}{r} \operatorname{gcd}(j, r)
$$

so that $\operatorname{gcd}(j, r)=1$. Conversely, if $r \mid n$ and $\operatorname{gcd}(j, r)=1$, then $\operatorname{gcd}\left(j \frac{n}{r}, n\right)=$ $\operatorname{gcd}\left(j \frac{n}{r}, r \frac{n}{r}\right)=\frac{n}{r}$. As a consequence, $A(r)=\left\{j \frac{n}{r}: \operatorname{gcd}(j, r)=1\right\}$ so that

$$
\begin{equation*}
|A(r)|=\varphi(r) \tag{1.8}
\end{equation*}
$$

and therefore, from (1.7) we deduce

$$
n=\sum_{\substack{1 \leq r \leq n \\ r \mid n}}|A(r)|=\sum_{\substack{1 \leq r \leq n \\ r \mid n}} \varphi(r)
$$

Theorem 1.1.21 Let p be a prime number. The (multiplicative) group \mathbb{F}_{p}^{*} of invertible elements in the field \mathbb{F}_{p} is cyclic (of order $p-1$).

Proof We first observe that $\left|\mathbb{F}_{p}^{*}\right|=|\{\overline{1}, \overline{2}, \ldots, \overline{p-1}\}|=p-1$.
For every positive divisor r of $p-1$ let us set

$$
B(r):=\left\{\alpha \in \mathbb{F}_{p}^{*}: \alpha \text { is of order } r\right\} .
$$

Thus, if $\alpha \in B(r)$, we have $\alpha^{r}=1$ and α generates a cyclic group $\langle\alpha\rangle$ of order r consisting exactly of all the solutions in \mathbb{F}_{p} of the equation $x^{r}=1$. That is, $B(r) \subseteq\langle\alpha\rangle$ (recall also that over any field, an equation of degree m has at most m solutions). By virtue of Proposition 1.1.19, $\langle\alpha\rangle$ has $\varphi(r)$ generators, namely the powers α^{h} with $1 \leq h \leq r$ and $\operatorname{gcd}(h, r)=1$. As a consequence, if $B(r) \neq \emptyset$ we have $|B(r)|=\varphi(r)$. Therefore

$$
p-1=\left|F_{p}^{*}\right|=\sum_{r \mid(p-1)}|B(r)| \leq \sum_{r \mid(p-1)} \varphi(r)=p-1,
$$

where the last equality follows from Proposition 1.1.20. Since the above is inded an equality, we deduce that $B(r) \neq \emptyset$ for every r which divides $p-1$. In particular, every element $\alpha \in B(p-1)$ is of order $p-1$ and therefore $\langle\alpha\rangle=\mathbb{F}_{p}^{*}$.

Exercise 1.1.22 (Fermat's little theorem) Show that if p is a prime, then for all $n \in \mathbb{Z}$ we have $n^{p} \equiv n \bmod p$ and $n^{p-1} \equiv 1 \bmod p$ if $p \nmid n$.

We end this section with the following well-known results (see also Remark 5.2.15) which we deduce from Theorem 1.1.1.

Corollary 1.1.23 (Chinese remainder theorem I) Let r,s be two positive integers such that $\operatorname{gcd}(r, s)=1$. Then for all $(a, b) \in \mathbb{Z}$ there exists $x=x(a, b) \in \mathbb{Z}$ solution to the system

$$
\begin{cases}x \equiv a & \bmod r \tag{1.9}\\ x \equiv b & \bmod s .\end{cases}
$$

Proof By Bézout identity, we can find $u, v \in \mathbb{Z}$ such that $1=u r+v s$. We leave it to the reader to check that the quantities $a+(b-a) u r$ and $b+(a-b)$ vs are equal and constitute a solution to (1.9).

Exercise 1.1.24 With the notation from Corollary 1.1.23, set $\delta_{1}=x(1,0)$ and $\delta_{2}=x(0,1)$. Show that $x(a, b)=a \delta_{1}+b \delta_{2}$.

Exercise 1.1.25 (Chinese remainder theorem II) Let $r_{1}, r_{2}, \ldots, r_{n}$ be positive integers such that $\operatorname{gcd}\left(r_{i}, r_{j}\right)=1$ for all $1 \leq i<j \leq n$.
(a) Show that for all $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ there exists a solution $x=$ $x\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}$ of the system

$$
\begin{cases}x \equiv a_{1} & \bmod r_{1} \tag{1.10}\\ x \equiv a_{2} & \bmod r_{2} \\ \cdots & \cdots \\ x \equiv a_{n} & \bmod r_{n}\end{cases}
$$

(b) set $R=r_{1} r_{2} \cdots r_{n}$. Show that $y \in \mathbb{Z}$ is another solution to (1.10) if and only if $x \equiv y \bmod R$.

Hint. For every $i=1,2, \ldots, n$ denote by $\delta_{i} \in \mathbb{Z}$ a solution to (1.9) with $a=1, b=0, r=r_{i}$, and $s=R / r_{i}$. Show that δ_{i} is a solution to (1.9) with $a=1, b=0, r=r_{i}$, and $s=r_{j}$, for all $j \neq i$. Then show that $x\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1} \delta_{1}+a_{2} \delta_{2}+\cdots+a_{n} \delta_{n}$.

Proposition 1.1.26 Let $n \geq 1, m \in \mathbb{Z}$, and set $d=\operatorname{gcd}(m, n)$. Then, in the cyclic group \mathbb{Z}_{n} we have $o(\bar{m})=\frac{n}{d}$.

Proof We have

$$
\begin{aligned}
k m \equiv 0 \bmod n & \Leftrightarrow n \mid k m \\
& \left.\Leftrightarrow \frac{n}{d} \right\rvert\, k \frac{m}{d} \\
& \left.\Leftrightarrow \frac{n}{d} \right\rvert\, k
\end{aligned}
$$

since $\frac{n}{d}$ and $\frac{m}{d}$ are relatively prime.
Exercise 1.1.27 Deduce Proposition 1.1.19 from Proposition 1.1.26.

1.2 Structure theory of finite Abelian groups: preliminary results

In this section we review some basic facts on finite Abelian groups and their structure. Our exposition is based on the following monographs: by Machì [102], Zappa [170], Kurzweil and Stellmacher [90], Kurosh [89], Rotman [132], Herstein [71] and Nathanson [118], and on the papers [18, 72, 120].

We use additive notation. In particular, for $a \in \mathbb{Z}_{n}$ and $r \in \mathbb{N}$ we set $r a=a+a+\ldots+a$ (r summands). Moreover, for an element a (respectively a subset B) of an Abelian group A, we denote by $\langle a\rangle=\{r a: r \in \mathbb{N}\}$
(respectively $\langle B\rangle$) the subgroup of A generated by a (respectively B) and by $\mathrm{o}(a)=|\langle a\rangle| \in \mathbb{N} \cup\{\infty\}$ the order of a.
Let A be a finite Abelian group and let $A_{1}, A_{2}, \ldots, A_{k} \leq A, k \geq 1$ be subgroups of A.

Definition 1.2.1 The sum of the subgroups $A_{1}, A_{2}, \ldots, A_{k}$ is the subgroup

$$
\begin{equation*}
B=A_{1}+A_{2}+\cdots+A_{k} \tag{1.11}
\end{equation*}
$$

formed by all elements $a \in A$ which can be expressed as

$$
\begin{equation*}
a=a_{1}+a_{2}+\cdots+a_{k} \tag{1.12}
\end{equation*}
$$

with $a_{j} \in A_{j}, j=1,2, \ldots, k$.
One says that the subgroup B in (1.11) is an (internal) direct sum, and we write

$$
\begin{equation*}
B=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{k} \tag{1.13}
\end{equation*}
$$

provided that the expression (1.12) is unique for every $a \in B$.
Proposition 1.2.2 The following conditions are equivalent for $B=A_{1}+$ $A_{2}+\cdots+A_{k}:$
(i) B is a direct sum;
(ii) if $a_{1}+a_{2}+\cdots+a_{k}=0$ with $a_{j} \in A_{j}, j=1,2, \ldots, k$, then $a_{1}=a_{2}=$ $\cdots=a_{k}=0 ;$
(iii) $\left(A_{1}+A_{2}+\cdots+A_{j-1}+A_{j+1}+\cdots+A_{k}\right) \cap A_{j}=\{0\}$ for all $j=1,2, \ldots, k$;
(iv) $|B|=\left|A_{1}\right| \cdot\left|A_{2}\right| \cdot \ldots \cdot\left|A_{k}\right|$.

Moreover, if one of the above conditions holds and

$$
A_{j}=B_{j, 1} \oplus B_{j, 2} \oplus \cdots \oplus B_{j, h_{j}}
$$

where the $B_{j, i}$ s are subgroups and $h_{j} \geq 1$, for all $j=1,2, \ldots, k$, then

$$
B=\bigoplus_{j=1}^{k} \bigoplus_{i=1}^{h_{j}} B_{j, i}
$$

Proof We leave it as an easy exercise.
Let now $B_{1}, B_{2}, \ldots, B_{k}$ be Abelian groups.
Definition 1.2.3 The (external) direct sum of the groups $B_{1}, B_{2}, \ldots, B_{k}$, denoted

$$
\begin{equation*}
B_{1} \oplus B_{2} \oplus \cdots \oplus B_{k} \tag{1.14}
\end{equation*}
$$

is the Cartesian product $B_{1} \times B_{2} \times \cdots \times B_{k}$ endowed with the group operation

$$
\left(b_{1}, b_{2}, \ldots, b_{k}\right)+\left(b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{k}^{\prime}\right)=\left(b_{1}+b_{1}^{\prime}, b_{2}+b_{2}^{\prime}, \ldots, b_{k}+b_{k}^{\prime}\right)
$$

for all $b_{i}, b_{i}^{\prime} \in B_{i}, i=1,2, \ldots, k$.
Note that

$$
\begin{equation*}
\left|B_{1} \oplus B_{2} \oplus \cdots \oplus B_{k}\right|=\left|B_{1}\right| \cdot\left|B_{2}\right| \cdot \ldots \cdot\left|B_{k}\right| . \tag{1.15}
\end{equation*}
$$

The notions of internal and external direct sum are strictly correlated:

Proposition 1.2.4

(i) Let $B=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{k}$ be an external direct sum. For every $j=$ $1,2, \ldots, k$, denote by A_{j} the subgroup, isomorphic to B_{j}, consisting of all elements of B of the form $\left(0,0, \ldots, 0, a_{j}, 0, \ldots, 0\right)$ with $a_{j} \in B_{j}$ in the j th coordinate. Then

$$
B=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{k}
$$

as an internal direct sum;
(ii) the internal direct sum (1.11) is isomorphic to the external direct sum of the groups $A_{1}, A_{2}, \ldots, A_{k}$.

Proof We leave it as an easy exercise.
As a consequence, in the sequel, if $B \cong B_{1} \oplus B_{2} \oplus \cdots \oplus B_{k}$, by abuse of language we shall regard the groups $B_{j}, j=1,2, \ldots, k$, as subgroups of the Abelian group B.

We now focus on some basic results on cyclic groups and their structure.
Proposition 1.2.5 Let r, s be two positive integers satisfying $\operatorname{gcd}(r, s)=1$. Then if $n=r s$ we have

$$
\mathbb{Z}_{n} \cong \mathbb{Z}_{r} \oplus \mathbb{Z}_{s}
$$

Proof Let a be a generator of \mathbb{Z}_{n} and set $b=r a$ and $c=s a$. Since $s b=s r a=n a=0$ and $k b=k r a \neq 0$ for $0 \leq k<s$, we have that $\mathrm{o}(b)=s$ and, similarly, $\mathrm{o}(c)=r$. Moreover,

$$
\langle b\rangle \cap\langle c\rangle=0 .
$$

Indeed, if $k b=h c$ with $0 \leq k<s$ and $0 \leq h<r$ then

$$
k r a=h s a
$$

with $0 \leq k r, h s<n$, which implies that $k r=h s$. Since $\operatorname{gcd}(r, s)=1$ we necessarily have $s \mid k$ and $r \mid h$ (see Exercise 1.1.8.(1)) and this forces $h=k=0$. Finally, by Bézout identity (cf. Theorem 1.1.1), there exist $u, v \in \mathbb{Z}$ such that $r u+s v=1$ so that

$$
a=1 a=u r a+v s a=u b+v c
$$

This implies that $\mathbb{Z}_{n}=\langle b\rangle \oplus\langle c\rangle \cong \mathbb{Z}_{r} \oplus \mathbb{Z}_{s}$.
Definition 1.2.6 An Abelian group is termed indecomposable if it cannot be written as a direct sum of two or more nontrivial subgroups.

A p-primary cyclic group is a cyclic group of order a nontrivial power of a prime p.

From Proposition 1.2.5 we deduce:
Corollary 1.2.7 (Chinese remainder theorem III) Let $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{t}^{k_{t}}$ be the prime factorization of an integer $n \geq 2$. Then

$$
\begin{equation*}
\mathbb{Z}_{n} \cong \mathbb{Z}_{p_{1}^{k_{1}}} \oplus \mathbb{Z}_{p_{2}^{k_{2}}} \oplus \cdots \oplus \mathbb{Z}_{p_{t}^{k_{t}}} \tag{1.16}
\end{equation*}
$$

That is, every cyclic group may be written as a direct sum of p-primary cyclic groups corresponding to distinct primes p.

Exercise 1.2.8 Show that the Chinese remainder theorem III (Corollary 1.2 .7) is equivalent to the Chinese remainder theorem II (Exercise 1.1.25).

Corollary 1.2.9 Let m and n be two positive integers and suppose that m divides n. Then \mathbb{Z}_{n} contains an element of order m.

Proof Let $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{t}^{k_{t}}$ be the prime factorization of n. Then we can write $m=p_{1}^{h_{1}} p_{2}^{h_{2}} \cdots p_{t}^{h_{t}}$ with $0 \leq h_{i} \leq k_{i}, i=1,2, \ldots, t$. In the notation of Corollary 1.2.7, let $a_{1}, a_{2}, \ldots, a_{t}$ be the generators of the primary cyclic subgroups in (1.16). We claim that the element

$$
z=p_{1}^{k_{1}-h_{1}} a_{1}+p_{2}^{k_{2}-h_{2}} a_{2}+\cdots+p_{t}^{k_{t}-h_{t}} a_{t}
$$

has order m. Indeed,

$$
m z=\frac{m}{p_{1}^{h_{1}}} p_{1}^{k_{1}} a_{1}+\frac{m}{p_{2}^{h_{2}}} p_{2}^{k_{2}} a_{2}+\cdots+\frac{m}{p_{t}^{h_{t}}} p_{t}^{k_{t}} a_{t}=0
$$

and if $m^{\prime} \mid m$ and $m^{\prime}<m$, say $m^{\prime}=p_{1}^{h_{1}^{\prime}} p_{2}^{h_{2}^{\prime}} \cdots p_{t}^{h_{t}^{\prime}}$ (with $0 \leq h_{i}^{\prime} \leq h_{i}$, for all
$i=1,2, \ldots, t$, and there exists $1 \leq j \leq t$ such that $h_{j}^{\prime}<h_{j}$) then

$$
m^{\prime} z=\frac{m^{\prime}}{p_{1}^{h_{1}^{\prime}}} p_{1}^{k_{1}-h_{1}+h_{1}^{\prime}} a_{1}+\frac{m^{\prime}}{p_{2}^{h_{2}^{2}}} p_{2}^{k_{2}-h_{2}+h_{2}^{\prime}} a_{2}+\cdots+\frac{m^{\prime}}{p_{t}^{h_{t}^{\prime}}} p_{t}^{k_{t}-h_{t}+h_{t}^{\prime}} a_{t} \neq 0
$$

since

$$
\frac{m^{\prime}}{p_{j}^{h_{j}^{\prime}}} p^{k_{j}-h_{j}+h_{j}^{\prime}} a_{j} \neq 0 .
$$

This proves the claim and the corollary.
Proposition 1.2.10 Let p be a prime number and let a be a generator of the p-primary cyclic group $\mathbb{Z}_{p^{k}}$. Then every nontrivial subgroup of $\mathbb{Z}_{p^{k}}$ contains the element $p^{k-1} a$. In particular, $\mathbb{Z}_{p^{k}}$ is indecomposable.

Proof Let $x \in \mathbb{Z}_{p^{k}}$ be any nontrivial element. Then we can find $0<s<p^{k}$ such that $x=s a$. We may decompose s in the form $s=p^{h} r$, with $0 \leq h<k$ and $r \in \mathbb{N}$ such that $\operatorname{gcd}(p, r)=1$. Then we can find $u, v \in \mathbb{Z}$ such that $r u+p v=1$ so that

$$
\begin{aligned}
\left(p^{k-h-1} u\right) x & =p^{k-h-1} u s a \\
& =p^{k-1} u r a \\
& =p^{k-1}(1-p v) a \\
& =p^{k-1} a
\end{aligned}
$$

that is, $p^{k-1} a \in\langle x\rangle$. This shows that every nontrivial subgroup of $\mathbb{Z}_{p^{k}}$ contains $p^{k-1} a$.
The last statement then follows from Proposition 1.2.2.(iii).
Corollary 1.2.11 For every $n \geq 2$, the cyclic group \mathbb{Z}_{n} has a unique decomposition as a direct sum of p-primary cyclic groups and it is given by (1.16).

Proposition 1.2.12 Let $n \geq 1$, and let a be a generator of the cyclic group \mathbb{Z}_{n}. Then every subgroup A of \mathbb{Z}_{n} is cyclic and $A=\left\langle\frac{n}{m} a\right\rangle$ where $m=o(A)$. Conversely, for every divisor m of n there exists a unique subgroup $A_{m} \leq \mathbb{Z}_{n}$ of order m.

Proof Let A be a non trivial subgroup of \mathbb{Z}_{n}. Set

$$
h=\min \{k \in \mathbb{N}: k a \in A\}
$$

and let us show that $A=\langle h a\rangle$. Indeed, if $s a \in A$, then, by the division algorithm, there exist $q \in \mathbb{N}$ and $0 \leq r<h$ such that $s=q h+r$ so that

$$
r a=s a-q h a \in A
$$

forcing $r=0$ and $s a=q h a \in\langle h a\rangle$.
On the other hand, if m divides n, then $\mathrm{o}\left(\frac{n}{m} a\right)=m$. Indeed, $m \frac{n}{m} a=$ $n a=0$, while if $0<r<m$ then $r \frac{n}{m}<n$ so that $\left(r \frac{n}{m}\right) a=r\left(\frac{n}{m} a\right) \neq 0$. This shows that $A_{m}=\left\langle\frac{n}{m} a\right\rangle$ (uniqueness follows from the first part).

Proposition 1.2.13 Let $n \geq 1, a, b \in \mathbb{Z}$, and set $d=\operatorname{gcd}(a, n)$. Then the linear congruence

$$
\begin{equation*}
m a \equiv b \quad \bmod n \tag{1.17}
\end{equation*}
$$

has a solution $m \geq 1$ if and only if

$$
b \equiv 0 \quad \bmod d .
$$

If this is the case, (1.17) has d distinct pairwise non-congruent solutions.
Proof We have $m a \equiv b \bmod n$ if and only if there exists $k \in \mathbb{Z}$ such that $m a=b+k n$, that is, $b=m a-k n$. By Corollary 1.1.4, this last equation admits a solution $(m, k) \in \mathbb{Z}^{2}$ if and only if d divides b. By Proposition 1.1.26 the linear congruence

$$
h a \equiv 0 \quad \bmod n
$$

has exactly d non-congruent solutions, namely $h=\frac{n}{d}, 2 \frac{n}{d}, \ldots,(d-1) \frac{n}{d}, n$. If $b \equiv 0 \bmod d$ and m_{0} is a fixed solution of (1.17), then a complete list of pairwise non-congruent solutions of (1.17) is given by

$$
m=m_{0}, m_{0}+\frac{n}{d}, m_{0}+2 \frac{n}{d}, \ldots, m_{0}+(d-1) \frac{n}{d} .
$$

Remark 1.2.14 We write Proposition 1.2 .13 in a more abstract form by using multiplicative notation. Let $n \geq 1$, recall that C_{n} denotes the multiplicative cyclic group, and let $x \in C_{n}$ be a generator. Let $a \in \mathbb{Z}$ and set $d=\operatorname{gcd}(a, n)$. Given $z \in C_{n}$ consider the equation (in the variable y in C_{n})

$$
\begin{equation*}
y^{a}=z . \tag{1.18}
\end{equation*}
$$

- If $z=u^{d}$ for some $u \in C_{n}$, then (1.18) has d solutions;
- otherwise, (1.18) has no solutions.
(Just set $z=x^{b}$ and $y=x^{m}$, and consider the exponents.)

We now examine arbitrary Abelian groups (not necessarily cyclic). We begin with a kind of converse to Proposition 1.2.5.

Proposition 1.2.15 Let A be a finite Abelian group. Let $a, b \in A$ and suppose that $\operatorname{gcd}(\mathrm{o}(a), \mathrm{o}(b))=1$. Then $\mathrm{o}(a+b)=\mathrm{o}(a) \mathrm{o}(b)$.

Proof $\operatorname{Set} \mathrm{o}(a)=r, \mathrm{o}(b)=s$ and observe that $r s(a+b)=r s a+r s b=$ $s(r a)+r(s b)=0$. Suppose now that $m \in \mathbb{N}$ satisfies $m(a+b)=0$. As a consequence, $m a=-m b$ so that $s m a=-m s b=0$ and therefore r divides $s m$. Since r and s are coprime, we deduce that r divides m. Analogously, s divides m. Since $\operatorname{gcd}(r, s)=1$ this implies that m is a multiple of $r s$. Therefore $r s$ is the order of $a+b$.

Remark 1.2.16 In general, we do not have $o(a+b)=\frac{\mathrm{o}(a) \mathrm{o}(b)}{\operatorname{gcd}(0(a), \mathrm{o}(b))}=$ $\operatorname{lcm}(\mathrm{o}(a), \mathrm{o}(b))$, where lcm denotes the least common multiple. For instance, just consider the case $a=-b$.

Proposition 1.2.17 Let p be a prime number and $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{h}$ positive integers. Then the Abelian group

$$
A=\mathbb{Z}_{p^{\mu_{1}}} \oplus \mathbb{Z}_{p^{\mu_{2}}} \oplus \cdots \oplus \mathbb{Z}_{p^{\mu_{h}}}
$$

is not cyclic.
Proof The elements in A of maximal order are of the form $a_{1}+a_{2}+\cdots+a_{h}$, where a_{1} is a generator of $\mathbb{Z}_{p^{\mu_{1}}}$ and $a_{i} \in \mathbb{Z}_{p^{\mu_{i}}}$ for $i=2,3, \ldots, h$; their order is $p^{\mu_{1}}$.

Exercise 1.2.18 Let A be a finite Abelian group and $a, b \in A$. Show that A contains an element of order $\operatorname{lcm}(\mathrm{o}(a), \mathrm{o}(b))$.

The following is, probably, the most difficult exercise in Herstein's book [71] (it is Exercise 26 in Section 2.5). Its difficulty relies on the fact that the author asked for a proof based only on tools developed up to Section 2.5 of his book. A proof in this style was published by Robert Beals [18].

Exercise 1.2.19 Let A be a finite Abelian group and $B, C \leq A$ subgroups of A with $|B|=m$ and $|C|=n$. Show that A contains a subgroup of order $\operatorname{lcm}(m, n)$.
Exercises 1.2.18 and 1.2.19 are quite easy once the whole structure theory of finite Abelian groups will be fully developed (in the remaining part of this chapter).

Proposition 1.2.20 Let A be a finite Abelian group and $a \in A$ an element of maximal order. Then for all $b \in A$ one has that $\mathrm{o}(b)$ divides $\mathrm{o}(a)$.

Proof Fix $b \in A$ and let p^{k} be a prime power in the factorization of $\mathrm{o}(b)$. Suppose that $\mathrm{o}(a)=p^{h} m$, where $h \geq 0$ and $\operatorname{gcd}(p, m)=1$. By Corollary 1.2.9, there exist $c \in\langle a\rangle$ with $\mathrm{o}(c)=m$ and $d \in\langle b\rangle$ with $\mathrm{o}(d)=p^{k}$. Then, by Proposition 1.2.15, o $(c+d)=p^{k} m$ so that, by maximality of $\mathrm{o}(a)$, we necessarily have $k \leq h$. This shows that every prime power in the factorization of $\mathrm{o}(b)$ divides $\mathrm{o}(a)$. It follows that $\mathrm{o}(b)$ divides $\mathrm{o}(a)$.

Lemma 1.2.21 Let A be a finite Abelian group, $a \in A$ an element of maximal order, $b \in A$ an arbitrary element, and denote by m the order of $b+\langle a\rangle$ in the quotient group $A /\langle a\rangle$. Then there exists c in the the coset $b+\langle a\rangle$ such that $\mathrm{o}(c)=m$.

Proof First of all we observe that $m b+\langle a\rangle=m(b+\langle a\rangle)=\langle a\rangle$ so that $m b \in\langle a\rangle$ and we can find $n \in \mathbb{N}$ such that

$$
\begin{equation*}
m b=n a \tag{1.19}
\end{equation*}
$$

Setting

$$
h=\mathrm{o}(a) \text { and } t=\operatorname{gcd}(n, h)
$$

by Proposition 1.1.26 we have $\mathrm{o}(n a)=\frac{h}{t}$.
We claim that

$$
\begin{equation*}
\mathrm{o}(b)=\frac{m h}{t} \tag{1.20}
\end{equation*}
$$

Indeed, setting $r=\mathrm{o}(b)$, by (1.19) we have $\frac{m h}{t} b=\frac{h}{t} m b=\frac{h}{t} n a=0$ and this implies

$$
\begin{equation*}
r \left\lvert\, \frac{m h}{t}\right. \tag{1.21}
\end{equation*}
$$

Conversely, since $r(b+\langle a\rangle)=(r b+\langle a\rangle)=\langle a\rangle$ and, by hypothesis, $\mathrm{o}(b+\langle a\rangle)=$ m, we have that m divides r. Thus we can find $q \in \mathbb{N}$ such that $r=q m$. As a consequence, by (1.19) we have

$$
0=r b=q m b=q n a
$$

Since $\mathrm{o}(n a)=\frac{h}{t}$, we deduce that $\frac{h}{t}$ divides q, that is, there exists $s \in \mathbb{N}$ such that $q=s \frac{h}{t}$. It follows that

$$
r=q m=s m \frac{h}{t}=s \frac{m h}{t}
$$

so that $\frac{m h}{t}$ divides r and, by (1.21),

$$
\mathrm{o}(b)=r=\frac{m h}{t}
$$

Thus, the claim (1.20) follows.
From Proposition 1.2.20 it follows that $r=\frac{m h}{t}$ divides h (the order of a, which is maximal) and therefore, $m \mid t$. Thus we can find $k \in \mathbb{N}$ such that $t=k m$. Setting $v=\frac{n}{t}$ (this is an integer since $t=\operatorname{gcd}(n, h)$) and recalling (1.19), we have

$$
\begin{equation*}
m b=n a=v t a=m v k a \tag{1.22}
\end{equation*}
$$

Setting

$$
c=b-v k a
$$

we have $b+\langle a\rangle=c+\langle a\rangle$ and by (1.22)

$$
m c=m b-m v k a=0
$$

This shows that $\mathrm{o}(c) \mid m$. Since $m=\mathrm{o}(b+\langle a\rangle)=\mathrm{o}(c+\langle a\rangle) \leq \mathrm{o}(c) \leq m$, we deduce that $\mathrm{o}(c)=m$.

1.3 Structure theory of finite Abelian groups: the theorems

In this section we present the three structure theorems for finite Abelian groups.

Theorem 1.3.1 (Invariant factors decomposition) Let A be a finite Abelian group. Then there exists a unique finite sequence $r_{1}, r_{2}, \ldots, r_{k}, k \geq$ 1, of positive integers such that
(i) r_{j} divides r_{j-1} for all $j=2,3, \ldots, k$;
(ii) $|A|=r_{1} r_{2} \cdots r_{k}$;
(iii) $A \cong \mathbb{Z}_{r_{1}} \oplus \mathbb{Z}_{r_{2}} \oplus \cdots \oplus \mathbb{Z}_{r_{k}}$.

Proof First of all we show, by induction on $n=|A|$, that such a sequence exists. The case $n=1$ is trivial (take $k=1=r_{1}$). Let now $n \geq 2$ and suppose the statement holds for all finite Abelian groups of order $1 \leq h \leq$ $n-1$. Let then $a_{1} \in A$ such that $r_{1}=\mathrm{o}\left(a_{1}\right)$ is maximal and consider the quotient group $A^{\prime}=A /\left\langle a_{1}\right\rangle$. We have $\left|A^{\prime}\right|=|A| / \mathrm{o}\left(a_{1}\right)<n$ so that, by the inductive hypothesis, we can find a finite sequence $r_{2}, r_{3}, \ldots, r_{k}$ of positive integers such that r_{j} divides r_{j-1} for all $j=3,4, \ldots, k$,

$$
\begin{equation*}
\left|A^{\prime}\right|=r_{2} r_{3} \cdots r_{k} \tag{1.23}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{\prime} \cong \mathbb{Z}_{r_{2}} \oplus \mathbb{Z}_{r_{3}} \oplus \cdots \oplus \mathbb{Z}_{r_{k}} \tag{1.24}
\end{equation*}
$$

By virtue of Lemma 1.2.21, we can find elements $a_{2}, a_{3}, \ldots, a_{k} \in A$ such that the summand $\mathbb{Z}_{r_{j}}$ is generated by $a_{j}+\left\langle a_{1}\right\rangle$ and

$$
\begin{equation*}
\mathrm{o}\left(a_{j}\right)=r_{j} \tag{1.25}
\end{equation*}
$$

for all $j=3,4, \ldots, k$. Clearly,

$$
\begin{equation*}
A=\left\langle a_{1}\right\rangle+\left\langle a_{2}\right\rangle+\cdots+\left\langle a_{k}\right\rangle . \tag{1.26}
\end{equation*}
$$

Indeed, if $b \in A$ then by virtue of (1.24) we can find integers $m_{2}, m_{3}, \ldots, m_{k}$ such that

$$
\begin{aligned}
b+\left\langle a_{1}\right\rangle & =m_{2}\left(a_{2}+\left\langle a_{1}\right\rangle\right)+m_{3}\left(a_{3}+\left\langle a_{1}\right\rangle\right)+\cdots+m_{k}\left(a_{k}+\left\langle a_{1}\right\rangle\right) \\
& =\left(m_{2} a_{2}+\left\langle a_{1}\right\rangle\right)+\left(m_{3} a_{3}+\left\langle a_{1}\right\rangle\right)+\cdots+\left(m_{k} a_{k}+\left\langle a_{1}\right\rangle\right) \\
& =\left(m_{2} a_{2}+m_{3} a_{3}+\cdots+m_{k} a_{k}\right)+\left\langle a_{1}\right\rangle
\end{aligned}
$$

so that $b-\left(m_{2} a_{2}+m_{3} a_{3}+\cdots+m_{k} a_{k}\right) \in\left\langle a_{1}\right\rangle$, and therefore we can find $m_{1} \in \mathbb{N}$ such that $b=m_{1} a_{1}+m_{2} a_{2}+m_{3} a_{3}+\cdots+m_{k} a_{k}$. This shows (1.26).
From (1.23) and $\mathrm{o}\left(a_{1}\right)=r_{1}$ we deduce that $|A|=r_{1}\left|A^{\prime}\right|=r_{1} r_{2} \cdots r_{k}$ (namely, condition (ii)) so that, by virtue of Proposition 1.2.2, the sum (1.26) is indeed a direct sum, and (iii) follows as well. Moreover, by Proposition 1.2.20 we deduce that r_{2} divides r_{1} so that, by induction, also (i) is satisfied.

We now turn to uniqueness of the sequence $r_{1}, r_{2} \ldots, r_{k}$. Suppose that $s_{1}, s_{2}, \ldots, s_{h}, h \in \mathbb{N}$, is also a sequence of integers satisfying (i), (ii) and (iii). For every $j=1,2, \ldots, h$, we denote by $b_{j} \in A$ a generator of the summand $\mathbb{Z}_{s_{j}}$ so that, for every $c \in A$, we can find $n_{1}, n_{2} \ldots, n_{h} \in \mathbb{N}$ such that $c=n_{1} b_{1}+n_{2} b_{2}+\ldots+n_{h} b_{h}$. From (i) we deduce that $s_{1} c=0$ so that $s_{1}=\mathrm{o}\left(b_{1}\right)$ is the maximal order of the elements of A so that (cf. the first part of the proof)

$$
s_{1}=r_{1} .
$$

Suppose then that we have, for some $2 \leq j \leq \min \{h, k\}$,

$$
\begin{equation*}
s_{1}=r_{1}, s_{2}=r_{2}, \ldots, s_{j-1}=r_{j-1} \text { and } s_{j} \neq r_{j} . \tag{1.27}
\end{equation*}
$$

To fix ideas, suppose that $s_{j}<r_{j}$ and denote by

$$
B=\left\{s_{j} c: c \in A\right\}
$$

the set of s_{j}-multiples of the elements of A. Clearly, B is a subgroup of A.

Moreover (cf. (1.26)), if $c \in A$ we can find $m_{1}, m_{2} \ldots, m_{k} \in \mathbb{N}$ such that $c=m_{1} a_{1}+m_{2} a_{2}+\ldots+m_{k} a_{k}$. Thus

$$
s_{j} c=m_{1}\left(s_{j} a_{1}\right)+m_{2}\left(s_{j} a_{2}\right)+\ldots+m_{k}\left(s_{j} a_{k}\right)
$$

which implies that

$$
\begin{equation*}
B=B_{1} \oplus\left\langle s_{j} a_{j}\right\rangle \oplus B_{2} \tag{1.28}
\end{equation*}
$$

where $B_{1}=\left\langle s_{j} a_{1}\right\rangle \oplus\left\langle s_{j} a_{2}\right\rangle \oplus \cdots \oplus\left\langle s_{j} a_{j-1}\right\rangle$ and $B_{2}=\left\langle s_{j} a_{j+1}\right\rangle \oplus\left\langle s_{j} a_{j+2}\right\rangle \oplus \cdots \oplus$ $\left\langle s_{j} a_{k}\right\rangle$, and each summand in $B_{1} \oplus\left\langle s_{j} a_{j}\right\rangle$ is nontrivial since $s_{j}<r_{i}=\mathrm{o}\left(a_{i}\right)$ for all $i=1,2, \ldots, j$; in particular,

$$
\begin{equation*}
\mathrm{o}\left(s_{j} a_{j}\right)=\frac{\mathrm{o}\left(a_{j}\right)}{\operatorname{gcd}\left(s_{j}, r_{j}\right)}=\frac{r_{j}}{\operatorname{gcd}\left(s_{j}, r_{j}\right)}>1 \tag{1.29}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
B=\left\langle s_{j} b_{1}\right\rangle \oplus\left\langle s_{j} b_{2}\right\rangle \oplus \cdots \oplus\left\langle s_{j} b_{j-1}\right\rangle \tag{1.30}
\end{equation*}
$$

since $s_{j} b_{\ell}=0$ for $\ell=j, j+1, \ldots, h$. Note that

$$
\begin{equation*}
\mathrm{o}\left(s_{j} a_{i}\right)=\frac{\mathrm{o}\left(a_{i}\right)}{s_{j}}=\frac{r_{i}}{s_{j}}=\frac{s_{i}}{s_{j}}=\mathrm{o}\left(s_{j} b_{i}\right), \tag{1.31}
\end{equation*}
$$

for $i=1,2, \ldots, j-1$. From (1.30) and (1.31) we deduce that $B=B_{1}$ so that, in particular, $\left\langle s_{j} a_{j}\right\rangle$ is trivial, a contradiction with (1.29). This shows that $h=k$ and $s_{1}=r_{1}, s_{2}=r_{2}, \ldots, s_{h}=r_{h}$, and uniqueness follows.

Definition 1.3.2 The positive integers satisfying (i), (ii), and (iii) in Theorem 1.3.1 are called the invariant factors of A.

Corollary 1.3.3 (Cauchy's theorem for Abelian groups) Let A be a finite Abelian group. Suppose that p is a prime divisor of the order of A. Then A contains an element of order p.

Proof Let $r_{1}, r_{2}, \ldots, r_{k}$ denote the invariant factors of A. Since p divides $|A|=r_{1} r_{2} \cdots r_{k}$, by virtue of Exercise 1.1.8.(2), we can find $1 \leq j \leq k$ such that $p \mid r_{j}$ (in fact, by Theorem 1.3.1.(i), we always have $p \mid r_{1}$). From Corollary 1.2 .9 we deduce that the subgroup $\mathbb{Z}_{r_{j}}$, and therefore A, contains an element of order p.

Remark 1.3.4 The above is a quite unusual proof of Cauchy's theorem for Abelian groups. Indeed, any book on group theory or on undergraduate algebra contains a direct proof of the more general result, namely the Cauchy theorem for not necessarily Abelian groups. Often, (e.g. Robinson [129]), one
deduces Cauchy's theorem from the even more general Sylow theorem. In other books (e.g. Herstein [71], Lang [93], Mac Lane and Birkhoff [113], and Rotman [132]) the Abelian case is proved as a first step towards the general case. Finally, in Machi's monograph [102] there is an elementary direct proof of the general result based on the paper by McKay [106] (cf. Exercise 1.3.6 below). In the next exercise we outline a direct proof of Corollary 1.3.3 following [120].

Exercise 1.3.5 Let A be a finite Abelian group. Suppose that p is a prime divisor of the order of A and let B be a proper maximal subgroup of A.
(1) Show that the quotient group A / B is cyclic of prime order;
(2) show that if p does not divide $|B|$ then there exists $c \in A$ such that $\langle c\rangle+B=A$ and $|\langle c\rangle /(\langle c\rangle \cap B)|=p ;$
(3) use (1) and (2) to give (another) inductive proof of Corollary 1.3.3.

As mentioned above, in the next exercise we outline a direct proof of the general Cauchy theorem. We use some elementary notions on group actions that will be further developed in Section 10.4.

Exercise 1.3.6 Let G be a finite (not necessarily Abelian) group: we use multiplicative notation. Suppose that p is a prime divisor of the order of G and set

$$
X=\left\{\left(g_{1}, g_{2}, \ldots, g_{p}\right) \in G^{p}: g_{1} g_{2} \cdots g_{p}=1_{G}\right\} .
$$

(1) Show that $|X|=|G|^{p-1}$;
(2) show that \mathbb{Z}_{p} acts on X by cyclic permutations, namely that if $x=$ $\left(g_{1}, g_{2}, \ldots, g_{p}\right) \in X$ and t is a fixed generator of \mathbb{Z}_{p} then $t x=$ $\left(g_{2}, g_{3}, \ldots, g_{p}, g_{1}\right) \in X ;$
(3) for $x \in X$ denote by $\operatorname{Stab}_{x}=\left\{s \in \mathbb{Z}_{p}: s x=x\right\}$ the stabilizer of x : show that Stab_{x} is a subgroup of \mathbb{Z}_{p} and, from Lagrange's theorem, deduce that it is either trivial or the whole \mathbb{Z}_{p};
(4) denote by $\mathbb{Z}_{p} x=\left\{s x: s \in \mathbb{Z}_{p}\right\}$ the orbit of $x \in X$ and show that $\left|\mathbb{Z}_{p} x\right|=p /\left|\operatorname{Stab}_{x}\right|$ (orbit-stabilizer theorem);
(5) deduce that the only possible orbit sizes are 1 and p;
(6) show that $\mathbb{Z}_{p} x=\{x\}$ if and only if there exists $g \in G$ such that $x=(g, g, \ldots, g)$, so that, necessarily, $g^{p}=1_{G}$;
(7) let m (respectively n) denote the number of orbits of size 1 (respectively p): from (5) and (6) deduce that $m+n p=|G|^{p-1}$ and $m \geq 1$;
(8) from (7) deduce that $m \geq 2$ (in fact m is divisible by p) and therefore, by (6), there exists $g \in G$ of period p.

Theorem 1.3.7 (Primary decomposition) Let A be a finite Abelian group. Let

$$
\begin{equation*}
|A|=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{t}^{k_{t}} \tag{1.32}
\end{equation*}
$$

be the prime factorization of the order of A. Then

$$
A_{i}=\left\{a \in A: \mathrm{o}(a) \text { is a power of } p_{i}\right\}
$$

is a subgroup of A of order $p_{i}^{k_{i}}$, for $i=1,2, \ldots, t$, and

$$
\begin{equation*}
A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{t} \tag{1.33}
\end{equation*}
$$

Proof We first remark that, by virtue of Corollary 1.3.3, $A_{i} \neq\{0\}$, and we leave it as an exercise to check that A_{i} is a subgroup for $i=1,2, \ldots, t$.

Let $a \in A$. Then, since $\mathrm{o}(a)$ divides $|A|$, there exists a nonempty subset $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ of $\{1,2, \ldots, t\}$ and integers $1 \leq h_{j} \leq k_{i_{j}}, j=1,2, \ldots, m$, such that

$$
\mathrm{o}(a)=p_{i_{1}}^{h_{1}} p_{i_{2}}^{h_{2}} \cdots p_{i_{m}}^{h_{m}}
$$

By the Chinese remainder theorem III (Corollary 1.2.7), we have

$$
\langle a\rangle=\mathbb{Z}_{p_{i_{1}}^{h_{1}}} \oplus \mathbb{Z}_{p_{i_{2}}^{h_{2}}} \oplus \cdots \oplus \mathbb{Z}_{p_{i_{m}}^{h_{m}}} \subseteq A_{i_{1}}+A_{i_{2}}+\cdots+A_{i_{m}}
$$

This shows that

$$
\begin{equation*}
A=A_{1}+A_{2}+\cdots+A_{t} \tag{1.34}
\end{equation*}
$$

We claim that the above sum is direct. Suppose that $a_{1}+a_{2}+\cdots+a_{t}=0$, where $a_{i} \in A_{i}, i=1,2, \ldots, t$. Let $1 \leq i \leq t$. Then, after multiplying by $q_{i}=\frac{|A|}{p_{i}^{k_{i}}}$, we get $q_{i} a_{i}=0$ and, since the order of a_{i} does not divide q_{i}, we necessarily have $a_{i}=0$. Thus $a_{1}=a_{2}=\cdots=a_{t}=0$ and from Proposition 1.2.2 the claim follows. This establishes (1.33).

Let $1 \leq i \leq t$. Since A_{i} only contains elements of order a power of p_{i}, from Corollary 1.3 .3 we deduce that $\left|A_{i}\right|=p_{i}^{r_{i}}$ for some integer $r_{i} \geq 1$. Moreover, since the sum (1.34) is direct, we have $|A|=\left|A_{1}\right| \cdot\left|A_{2}\right| \cdot \ldots \cdot\left|A_{t}\right|=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{t}^{r_{t}}$ so that, by uniqueness of the prime factorization (1.32) of $|A|$, we necessarily have $r_{i}=k_{i}$ for all $i=1,2, \ldots, t$, completing the proof.

Definition 1.3.8 Let p be a prime number. A group G is termed a p-group provided that every element has order a power of p.

Sylow's first theorem (see for instance Herstein [71]) states that if G is a finite group and p a prime number such that $|G|=p^{n} m$, where $n, m \geq 1$ with $\operatorname{gcd}(p, m)=1$ (thus n is the maximal power of p dividing the order
of G), then G contains a p-subgroup of order p^{n} : this is called a p-Sylow subgroup of G.
Thus, from Theorem 1.3.7, an Abelian version of Sylow's first theorem follows.

Definition 1.3.9 Let p be a prime number. An Abelian p-group is called a p-primary group (cf. Definition 1.2.6). Moreover, for $i=1,2, \ldots, t$, the subgroup A_{i} in (1.33) is termed the p_{i}-primary component of A.

The following relates and refines the statements of Theorem 1.3.1 and Theorem 1.3.7: we use the notation therein.

Corollary 1.3.10 (Structure theorem for finite Abelian groups) Let A be a finite Abelian group. Then there exist unique positive integers h_{i} and $m_{i j}, i=1,2, \ldots, t$ and $j=1,2, \ldots, h_{i}$, satisfying $h_{i} \leq k_{i}$ and

$$
\begin{equation*}
m_{i 1} \geq m_{i 2} \geq \cdots \geq m_{i h_{i}} \tag{1.35}
\end{equation*}
$$

for all $i=1,2, \ldots, t$, such that the following holds:

$$
\begin{equation*}
A \cong \bigoplus_{i=1}^{t} \bigoplus_{j=1}^{h_{i}} \mathbb{Z}_{p_{i}^{m_{i j}}} \tag{1.36}
\end{equation*}
$$

$$
\begin{equation*}
A_{i} \cong \bigoplus_{j=1}^{h_{i}} \mathbb{Z}_{p_{i}^{m_{i j}}} \tag{1.37}
\end{equation*}
$$

for $i=1,2, \ldots, t$, and

$$
\begin{equation*}
\mathbb{Z}_{r_{j}} \cong \bigoplus_{\substack{1 \leq i \leq t: \\ h_{i} \geq j}} \mathbb{Z}_{p_{i}}^{m_{i j}} \tag{1.38}
\end{equation*}
$$

for $j=1,2, \ldots, k$. In particular, $\sum_{j=1}^{h_{i}} m_{i j}=k_{i}$ for $i=1,2, \ldots, t$ and

$$
\begin{equation*}
\prod_{\substack{1 \leq i \leq t: \\ h_{i} \geq j}} p_{i}^{m_{i j}}=r_{j} \tag{1.39}
\end{equation*}
$$

for all $j=1,2, \ldots, k$.
Proof We shall present two proofs of this fundamental result: we can exchange the order of the applications of Theorem 1.3.1 and Theorem 1.3.7. First proof. We apply Theorem 1.3.1 to each p-primary component A_{i} in (1.33): thus we can find $1 \leq h_{i} \leq k_{i}$ and $m_{i 1} \geq m_{i 2} \geq \cdots \geq m_{i h_{i}}$ such that (1.37) and therefore (1.36) hold. Uniqueness follows from uniqueness
in Theorem 1.3.1 and uniqueness of the prime factorization of $|A|$. Let now $1 \leq j \leq k$. Then (1.35) implies that $\prod_{\substack{1 \leq i \leq t: \\ h_{i} \geq j}} p_{i}^{m_{i j}}$ divides $\prod_{\substack{1 \leq \leq \leq t \\ h_{i} \geq j-1}} p_{i}^{m_{i, j-1}}$ so that, by Proposition 1.2.5 and uniqueness in Theorem 1.3.1, we deduce (1.39) and (1.38).

Second proof. Consider the invariant factors $r_{j}, j=1,2, \ldots, t$, in Theorem 1.3.1.(iii). Let $r_{1}=p_{1}^{m_{11}} p_{2}^{m_{21}} \cdots p_{t}^{m_{t 1}}$ denote the prime factorization of r_{1} (so that $m_{i 1}>0$ for $i=1,2, \ldots, t$). Let $1 \leq j \leq k$. Since $r_{j}\left|r_{j-1}, \ldots, r_{2}\right| r_{1}$, we can write $r_{j}=p_{1}^{m_{1 j}} p_{2}^{m_{2 j}} \cdots p_{t}^{m_{t j}}$ with $m_{i, j-1} \geq m_{i j} \geq 0$ for $i=1,2, \ldots, t$. Let us denote by h_{i} the largest j such that $m_{i j}>0$ (equivalently, $m_{i h_{i}}>0$ and $m_{i, h_{i}+1}=0$). This way, $r_{j}=\prod_{1 \leq i \leq t .}^{h_{i} \geq j} p_{i}^{m_{i j}}$ is the prime factorization of r_{j} and (1.39) follows. Applying Theorem 1.3.7 to each $\mathbb{Z}_{r_{j}}, j=1,2, \ldots, t$, we deduce (1.38). Finally, from the direct sum decomposition in Theorem 1.3.1.(iii), we deduce (1.36) and, by definition of A_{i}, (1.37).

Corollary 1.3.11 A finite Abelian group is indecomposable if and only if it is a p-primary cyclic group for some prime p.

Proof The "if" part is Proposition 1.2.10. Conversely, if A is indecomposable, then in (1.36) we must have $t=1$ and $h_{1}=1$.

Definition 1.3.12 The positive integers $m_{i j}, i=1,2, \ldots, t, j=1,2, \ldots, h_{i}$, in Corollary 1.3.10 are called the elementary divisors of A.

In Corollary 1.3 .10 we have shown that the invariant factors determine uniquely the elementary divisors, and vice versa. More precisely, given the prime factorization (1.32), from (1.39) we have a correspondence

$$
\left(r_{j}\right)_{j=1}^{k} \leftrightarrow\left(\left(h_{i}\right)_{i=1}^{t},\left(m_{i j}\right)_{\substack{1 \leq i \leq t \\ 1 \leq j \leq h_{i}}}\right) .
$$

Our next task is to compute the number of nonisomorphic Abelian groups of a given order $n \in \mathbb{N}$. For this purpose we introduce the following definitions.

Definition 1.3.13 Let $n \in \mathbb{N}$. A partition of n is a sequence

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{h}\right)
$$

of positive integers such that

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{h} \text { and } \lambda_{1}+\lambda_{2}+\cdots+\lambda_{h}=n .
$$

We then write $\lambda \vdash n$.

We denote by $p(n)=|\{\lambda: \lambda \vdash n\}|$ the number of partitions of n.
The map $p: \mathbb{N} \rightarrow \mathbb{N}$ is called the partition function.
Let now A and B be two finite Abelian groups. Then $A \cong B$ if and only if, denoting by $\left(r_{j}^{A}\right)_{j=1}^{k_{A}}$ and $\left(r_{j}^{B}\right)_{j=1}^{k_{B}}$ the corresponding invariant factors, then $k_{A}=k_{B}$ and $r_{j}^{A}=r_{j}^{B}$ for all $j=1,2, \ldots, k_{A}$: we express this last condition by saying, with a slight abuse of language, that A and B have the same invariant factors. Equivalently, A and B are isomorphic if and only if $|A|=|B|$ and, denoting by $\left(m_{i j}^{A}\right) \underset{\substack{1 \leq i \leq t \\ 1 \leq j \leq h_{i}^{A}}}{ }$ and $\left(m_{i j}^{B}\right)_{\substack{1 \leq i \leq t \\ 1 \leq j \leq h_{i}^{B}}}^{\substack{\text { a }}}$ the corresponding elementary divisors, we have $h_{i}^{A}=h_{i}^{B^{i}}$ and $m_{i j}^{A}=m_{i j}^{B}$ for all $i=1,2, \ldots, t$ and $j=1,2, \ldots, h_{i}^{A}$. Again, with a slight abuse of language, this last condition may be expressed by saying that A and B have the same elementary divisors.

Proposition 1.3.14 Let $n \geq 2$ and denote by $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{t}^{k_{t}}$ its prime factorization. Then the number of nonisomorphic Abelian groups of order n is

$$
p\left(k_{1}\right) p\left(k_{2}\right) \cdots p\left(k_{t}\right)
$$

Proof Let A be an Abelian group of order n and denote by $\left(m_{i j}^{A}\right)_{\substack{1 \leq i \leq t \\ 1 \leq j \leq h A}}$ the corresponding elementary divisors. Then for each $i=1,2, \ldots, t$ we have the partition $\mu_{i}=\left(m_{i 1}, m_{i 2}, \ldots, m_{i h_{i}}\right) \vdash k_{i}$. Since, by the above observations, the elementary divisors uniquely determine A (of the given order n) up to isomorphism, this ends the proof.

Remark 1.3.15 Theorem 1.3.1, Theorem 1.3.7, and Corollary 1.3.10 provide three different decompositions of a finite Abelian group. In Theorem 1.3.1 and Corollary 1.3 .10 , the structure of the decompositions is unique (that is, the invariant factors and the elementary divisors, respectively, are uniquely determined). On the one hand, the associated subgroups (namely the $\mathbb{Z}_{r_{j}}$, $j=1,2, \ldots, k$, and the $\mathbb{Z}_{p_{i} m_{i j}}, i=1,2, \ldots, t, j=1,2, \ldots, h_{i}$, respectively) are not uniquely determined. This aspect will be discussed in Section 1.8 (see Corollary 1.8.4). On the other hand, the subgroups in the decomposition in Theorem 1.3.7 are uniquely determined.

We now give a characterization of the decomposition (1.36) in Corollary 1.3.10. First recall that, by Proposition 1.2 .10 , every p-primary cyclic group $\mathbb{Z}_{p^{m_{i j}}}$ is indecomposable.

Proposition 1.3.16 With the notation from Corollary 1.3.10, let $A=$ $\bigoplus_{\mu=1}^{q} B_{\mu}$ be a decomposition of A as a direct sum of indecomposable subgroups. Then $q=\sum_{i=1}^{t} h_{i}$ and there exists a bijection

$$
\mu:\left\{(i, j): 1 \leq i \leq t, 1 \leq j \leq h_{i}\right\} \longrightarrow\{1,2, \ldots, q\}
$$

such that

$$
\begin{equation*}
\mathbb{Z}_{p_{i}^{m_{i j}}}^{\cong B_{\mu(i, j)}} \tag{1.40}
\end{equation*}
$$

for $i=1,2, \ldots, t$ and $j=1,2, \ldots, h_{i}$.
Proof By Corollary 1.3.11, each B_{μ} is a p-primary cyclic group. Let $1 \leq$ $i \leq t$. Then, in the notation of Theorem 1.3.7, we can find distinct indices $1 \leq \mu(i, 1), \mu(i, 2), \ldots, \mu\left(i, k_{i}\right) \leq q$ such that

$$
A_{i}=B_{\mu(i, 1)} \oplus B_{\mu(i, 2)} \oplus \cdots \oplus B_{\mu\left(i, k_{i}\right)}
$$

and $B_{\mu(i, 1)}, B_{\mu(i, 2)}, \ldots, B_{\mu\left(i, k_{i}\right)}$ are all the p_{i}-groups among the B_{μ} s. Up to permuting the indices, if necessary, we may assume that

$$
\left|B_{\mu(i, 1)}\right| \geq\left|B_{\mu(i, 2)}\right| \geq \cdots \geq\left|B_{\mu\left(i, k_{i}\right)}\right|
$$

so that, necessarily, $\left|B_{\mu(i, j-1)}\right|$ divides $\left|B_{\mu(i, j)}\right|$ for $j=2,3, \ldots, k_{i}$. By applying the uniqueness assertion in Theorem 1.3.1, we deduce (1.40) (in particular, $k_{i}=h_{i}$ for all $\left.i=1,2, \ldots, t\right)$. The remaining part of the statement is now clear.

Proposition 1.3.17 Let A be a finite Abelian group. Then, in the notation of Theorem 1.3.7, the following conditions are equivalent:
(a) A is cyclic;
(b) A contains exactly one subgroup of order p_{i} for every $i=1,2, \ldots, t$;
(c) A_{i} is cyclic for every $i=1,2, \ldots, t$.

Proof The implication (a) \Rightarrow (b) follows immediately from Proposition 1.2.12.

Suppose that there exists $1 \leq i \leq t$ such that A_{i} is not cyclic. Then, in (1.37) (and with the notation therein) we necessarily have $h_{i} \geq 2$ so that A_{i} contains a subgroup B isomorphic to $\mathbb{Z}_{p_{i}^{m_{i 1}}} \oplus \mathbb{Z}_{p_{i}^{m_{i 2}}}$. By virtue of Cauchy's theorem (Corollary 1.3.3) applied to each direct component, B and therefore A contain two distinct subgroups of order p_{i}. This shows the implication (b) \Rightarrow (c).
Suppose (c). Let $a_{i} \in A_{i}$ be a generator of A_{i} for every $i=1,2, \ldots, t$. Then by Proposition 1.2.15, the element $a=a_{1} a_{2} \cdots a_{t}$ has order $\mathrm{o}(a)=$
$\mathrm{o}\left(a_{1}\right) \mathrm{o}\left(a_{2}\right) \cdots \mathrm{o}\left(a_{t}\right)=\left|A_{1}\right| \cdot\left|A_{2}\right| \cdot \ldots \cdot\left|A_{t}\right|=|A|$ (the last equality follows from (1.33) and (1.15)). This shows that $A=\langle a\rangle$ is cyclic, and the implication (c) \Rightarrow (a) follows as well.

Remark 1.3.18 The decomposition of a finite Abelian as a direct sum of cyclic groups presented in (1.36) is the finer, while the one in Theorem 1.3.1.(iii) is the coarser.

1.4 Generalities on endomorphisms and automorphisms of finite Abelian groups

In the next sections we present a complete description of the automorphisms of finite Abelian groups in order to:

- clarify the structure theorem (cf. Remark 1.3.15);
- show examples for potential applications of Theorem 11.7.1.

We start with some basic general results.
Let A be a finite Abelian group. A map $\alpha: A \rightarrow A$ such that

$$
\alpha(a+b)=\alpha(a)+\alpha(b)
$$

for all $a, b \in A$ is called an endomorphism of A. We denote by $\operatorname{End}(A)$ the set of all endomorphisms of A.

Note that if $\alpha \in \operatorname{End}(A)$ then $\alpha(0)=0$ and $\alpha(-a)=-\alpha(a)$ for all $a \in A$. Moreover, $\operatorname{End}(A)$ is a unital ring: for $\alpha, \beta \in \operatorname{End}(A)$ we define their sum $\alpha+\beta$ and their product $\alpha \beta$ by setting

$$
(\alpha+\beta)(a)=\alpha(a)+\beta(a)
$$

and, respectively,

$$
(\alpha \beta)(a)=\alpha(\beta(a))
$$

for all $a \in A$; the zero endomorphism $0=0_{\operatorname{End}(A)} \in \operatorname{End}(A)$ and the identity map $1=\operatorname{Id}_{A} \in \operatorname{End}(A)$ defined by

$$
0(a)=0_{A}
$$

and

$$
1(a)=a
$$

for all $a \in A$, are the zero and unital element of $\operatorname{End}(A)$, respectively.
Let $\alpha \in \operatorname{End}(A)$. We denote by $\operatorname{Ker}(\alpha)=\{a \in A: \alpha(a)=0\}$ the kernel of α. It is immediate that $\operatorname{Ker}(\alpha)$ is a subgroup of A and that $\operatorname{Ker}(\alpha)=\{0\}$ if and only if α is a bijective map.

Suppose now that α is bijective. Then the inverse map α^{-1} is also an endomorphism: indeed, if $a, b \in A$

$$
\alpha\left[\alpha^{-1}(a+b)\right]=a+b=\alpha\left[\alpha^{-1}(a)\right]+\alpha\left[\alpha^{-1}(b)\right]=\alpha\left[\alpha^{-1}(a)+\alpha^{-1}(b)\right]
$$

so that, by bijectivity, we have $\alpha^{-1}(a+b)=\alpha^{-1}(a)+\alpha^{-1}(b)$.
A bijective endomorphism of A is called an automorphism of A. It follows from the previous observation that the set

$$
\operatorname{Aut}(A)=\{\alpha \in \operatorname{End}(A): \operatorname{Ker}(\alpha)=\{0\}\}
$$

of all automorphisms of A is the group of units of $\operatorname{End}(A)$.

Lemma 1.4.1 Let A be a finite Abelian group and $m \in \mathbb{N}$. Then the map $\alpha_{m}: A \rightarrow A$ defined by $\alpha_{m}(a)=m a$ for all $a \in A$, is an endomorphism of A. Moreover, α_{m} is an automorphism if and only if $\operatorname{gcd}(m,|A|)=1$.

Proof The fact that $\alpha_{m} \in \operatorname{End}(A)$ follows immediately from the fact that A is Abelian. Let now $d=\operatorname{gcd}(m,|A|)$. If $d>1$ and p is a prime dividing d, by Cauchy's theorem (Corollary 1.3.3) we can find $a \in A$ such that $\mathrm{o}(a)=p$. As a consequence, $\alpha_{m}(a)=m a=\frac{m}{p}(p a)=\frac{m}{p} 0=0$ so that α_{m} cannot be injective, that is, $\alpha_{m} \notin \operatorname{Aut}(A)$. Conversely, if $d=1$, then by Lagrange's theorem, A does not contain elements of order q for every integer $q \geq 2$ dividing m. As a consequence $\alpha_{m}(a)=m a \neq 0$ for all $a \in A \backslash\{0\}$, equivalently, $\operatorname{Ker}(\alpha)=\{0\}$, so that $\alpha_{m} \in \operatorname{Aut}(A)$.

Let R_{1} and R_{2} be two unital rings. We equip their Cartesian product $R_{1} \times R_{2}$ with a structure of a unital ring by setting

$$
\left(r_{1}, r_{2}\right)+\left(r_{1}^{\prime}+r_{2}^{\prime}\right)=\left(r_{1}+r_{1}^{\prime}, r_{2}+r_{2}^{\prime}\right) \text { and }\left(r_{1}, r_{2}\right)\left(r_{1}^{\prime}, r_{2}^{\prime}\right)=\left(r_{1} r_{1}^{\prime}, r_{2} r_{2}^{\prime}\right)
$$

for all $r_{1}, r_{1}^{\prime} \in R_{1}$ and $r_{2}, r_{2}^{\prime} \in R_{2}$. It is clear that the elements $(0,0)$ and $(1,1)$ are the zero and unit elements of $R_{1} \times R_{2}$. Moreover if $\left(r_{1}, r_{2}\right) \in R_{1} \times R_{2}$ we have $-\left(r_{1}, r_{2}\right)=\left(-r_{1},-r_{2}\right)$ and $\left(r_{1}, r_{2}\right)$ is a unit if and only if both r_{1} and r_{2} are and, if this is the case, $\left(r_{1}, r_{2}\right)^{-1}=\left(r_{1}^{-1}, r_{2}^{-1}\right)$. In other words, denoting by $\mathcal{U}(R)$ the group of units of any unital ring R, we have

$$
\begin{equation*}
\mathcal{U}\left(R_{1} \times R_{2}\right)=\mathcal{U}\left(R_{1}\right) \times \mathcal{U}\left(R_{2}\right) \tag{1.41}
\end{equation*}
$$

Theorem 1.4.2 ([72]) Let A and B be two finite Abelian groups. Suppose that $\operatorname{gcd}(|A|,|B|)=1$. Then the map $\Phi: \operatorname{End}(A) \times \operatorname{End}(B) \rightarrow \operatorname{End}(A \oplus B)$ defined by

$$
[\Phi(\alpha, \beta)](a+b)=\alpha(a)+\beta(b)
$$

for all $\alpha \in \operatorname{End}(A), \beta \in \operatorname{End}(B), a \in A$ and $b \in B$, is a unital ring isomorphism. In particular,

$$
\begin{equation*}
\operatorname{Aut}(A \oplus B) \cong \operatorname{Aut}(A) \times \operatorname{Aut}(B) \tag{1.42}
\end{equation*}
$$

Proof It is easy to check that $\Phi(\alpha, \beta) \in \operatorname{End}(A \oplus B)$. Let us show that Φ is a ring homomorphism. For $\alpha_{1}, \alpha_{2} \in \operatorname{End}(A), \beta_{1}, \beta_{2} \in \operatorname{End}(B), a \in A$ and $b \in B$ we have

$$
\begin{aligned}
{\left[\Phi\left(\alpha_{1}, \beta_{1}\right)+\Phi\left(\alpha_{2}, \beta_{2}\right)\right](a+b) } & =\left[\Phi\left(\alpha_{1}, \beta_{1}\right)\right](a+b)+\left[\Phi\left(\alpha_{2}, \beta_{2}\right)\right](a+b) \\
& =\left(\alpha_{1}(a)+\beta_{1}(b)\right)+\left(\alpha_{2}(a)+\beta_{2}(b)\right) \\
& =\left(\alpha_{1}(a)+\alpha_{2}(a)\right)+\left(\beta_{1}(b)+\beta_{2}(b)\right) \\
& =\left[\alpha_{1}+\alpha_{2}\right](a)+\left[\beta_{1}+\beta_{2}\right](b) \\
& =\left[\Phi\left(\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}\right)\right](a+b) \\
& =\left[\Phi\left(\left(\alpha_{1}, \beta_{1}\right)+\left(\alpha_{2}, \beta_{2}\right)\right)\right](a+b)
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\Phi\left(\alpha_{1}, \beta_{1}\right) \Phi\left(\alpha_{2}, \beta_{2}\right)\right](a+b) } & =\Phi\left(\alpha_{1}, \beta_{1}\right)\left[\left(\Phi\left(\alpha_{2}, \beta_{2}\right)\right)(a+b)\right] \\
& =\Phi\left(\alpha_{1}, \beta_{1}\right)\left(\alpha_{2}(a)+\beta_{2}(b)\right) \\
& =\alpha_{1}\left(\alpha_{2}(a)\right)+\beta_{1}\left(\beta_{2}(b)\right) \\
& =\left[\Phi\left(\alpha_{1} \alpha_{2}, \beta_{1} \beta_{2}\right)\right](a+b) \\
& =\left[\Phi\left(\left(\alpha_{1}, \beta_{1}\right)\left(\alpha_{2} \beta_{2}\right)\right)\right](a+b)
\end{aligned}
$$

so that $\Phi\left(\left(\alpha_{1}, \beta_{1}\right)+\left(\alpha_{2}, \beta_{2}\right)\right)=\Phi\left(\alpha_{1}, \beta_{1}\right)+\Phi\left(\alpha_{2}, \beta_{2}\right)$ and $\Phi\left(\left(\alpha_{1}, \beta_{1}\right)\left(\alpha_{2} \beta_{2}\right)\right)=$ $\Phi\left(\alpha_{1}, \beta_{1}\right) \Phi\left(\alpha_{2} \beta_{2}\right)$.

Moreover, it is straightforward that

$$
\begin{equation*}
\Phi(1,1)=\Phi\left(\operatorname{Id}_{A}, \operatorname{Id}_{B}\right)=\operatorname{Id}_{A \oplus B}=1 \tag{1.43}
\end{equation*}
$$

This shows that Φ is a unital ring homomorphism.
Let us now show that $\operatorname{Ker}(\Phi)=\{(0,0)\}$. Indeed, if $\alpha \in \operatorname{End}(A)$ and $\beta \in \operatorname{End}(B)$ satisfy $\Phi(\alpha, \beta)=0$, then $\alpha(a)=\alpha(a)+\beta(0)=\Phi(\alpha, \beta)(a, 0)=0$ for all $a \in A$ (respectively $\beta(b)=\alpha(0)+\beta(b)=\Phi(\alpha, \beta)(0, b)=0$ for all $b \in B$) so that, necessarily, $\alpha=0$ (respectively $\beta=0$). This shows injectivity of Φ.

Let us show that Φ is surjective. Let $\omega \in \operatorname{End}(A \oplus B)$. Denoting by $\pi_{A}: A \times B \rightarrow A$ and $\pi_{B}: A \times B \rightarrow B$ the canonical projections (these are clearly group homomorphisms), we define a homomorphism $\gamma: B \rightarrow A$ by setting

$$
\gamma(b)=\pi_{A}(\omega(0, b))
$$

for all $b \in B$. Now, if $n=|A|$ we have, for all $b \in B$,

$$
0=n \gamma(b)=\gamma(n b)
$$

Since by hypothesis $\operatorname{gcd}(n,|B|)=1$, the map $\beta_{n}: B \rightarrow B$, defined by $\beta_{n}(b)=$ $n b$ for all $b \in N$, is an isomorphism by Lemma 1.4.1. We deduce that $\gamma=0$, that is,

$$
\begin{equation*}
\pi_{A}(\omega(0, b))=0 \tag{1.44}
\end{equation*}
$$

for all $b \in B$. Exchanging the roles of A and B, we have

$$
\begin{equation*}
\pi_{B}(\omega(a, 0))=0 \tag{1.45}
\end{equation*}
$$

for all $a \in A$. Consider the endomorphisms $\alpha=\alpha_{\omega} \in \operatorname{End}(A)$ and $\beta=\beta_{\omega} \in$ $\operatorname{End}(B)$ defined by

$$
\begin{align*}
\alpha(a) & =\pi_{A}(\omega(a, 0)) \tag{1.46}\\
\beta(b) & =\pi_{B}(\omega(0, b))
\end{align*}
$$

for all $a \in A$ and $b \in B$. Then, since $\pi_{A}+\pi_{B}=\operatorname{Id}_{A \oplus B}$, we have, for all $a \in A$ and $b \in B$

$$
\begin{aligned}
& \omega(a, b)=\omega(a, 0)+\omega(0, b) \\
&= {\left[\pi_{A}+\pi_{B}\right](\omega(a, 0))+\left[\pi_{A}+\pi_{B}\right](\omega(0, b)) } \\
&= \pi_{A}(\omega(a, 0))+\pi_{B}(\omega(a, 0)) \\
& \quad+\pi_{A}(\omega(0, b))+\pi_{B}(\omega(0, b))
\end{aligned}
$$

$($ by (1.45) and $(1.44))=\pi_{A}(\omega(a, 0))+\pi_{B}(\omega(0, b))$

$$
\begin{aligned}
(\text { by }(1.46)) & =\alpha(a)+\beta(b) \\
& =[\Phi(\alpha, \beta)](a, b) .
\end{aligned}
$$

In other words,

$$
\omega=\Phi(\alpha, \beta)
$$

and therefore Φ is surjective.
Since Φ is unital, it establishes a group isomorphism between the corresponding groups of units, so that, keeping in mind (1.41), equation (1.42) follows.

1.5 Endomorphisms and automorphisms of finite cyclic groups

We turn to the study of the endomorphisms of a finite cyclic group. We keep in mind Notation 1.1.17 and (1.3), and recall that $\mathcal{U}(\mathbb{Z} / n \mathbb{Z}) \subseteq \mathbb{Z} / n \mathbb{Z}$ denotes the (multiplicative) group of units of $\mathbb{Z} / n \mathbb{Z}$.

Lemma 1.5.1 For $n \geq 1$ we have $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})=\{\bar{m} \in \mathbb{Z} / n \mathbb{Z}: \operatorname{gcd}(n, m)=1\}$.
Proof Indeed let $\bar{m} \in \mathbb{Z} / n \mathbb{Z}$ and set $d=\operatorname{gcd}(n, m)$. If $d>1$ then, setting $s=m / d \in \mathbb{N}$ and $t=n / d \in \mathbb{N}$, we have $\bar{t} \neq \overline{0}$ and

$$
\bar{m} \cdot \bar{t}=\overline{m t}=\overline{m n / d}=\overline{n s}=\overline{0}
$$

thus showing that \bar{m} is a zero-divisor and therefore is not invertible. On the other hand, if $d=1$ by virtue of the Bézout identity (cf. (1.2)), we can find $a, b \in \mathbb{Z}$ such that $a n+b m=1$ so that

$$
\bar{b} \cdot \bar{m}=\overline{b m}=\overline{1-a n}=\overline{1}-\overline{0}=\overline{1} .
$$

This shows that \bar{m} is invertible (with inverse $\bar{m}^{-1}=\bar{b}$).
Proposition 1.5.2 For $n \geq 1$ we have $\operatorname{End}\left(\mathbb{Z}_{n}\right) \cong \mathbb{Z} / n \mathbb{Z}$.
Proof For $\bar{m} \in \mathbb{Z} / n \mathbb{Z}$ define $\psi_{\bar{m}} \in \operatorname{End}\left(\mathbb{Z}_{n}\right)$ by setting $\psi_{\bar{m}}(\bar{k})=\bar{k} \bar{m}=\overline{m k}$ for all $\bar{k} \in \mathbb{Z}_{n}$. We claim that the map $\Psi: \mathbb{Z} / n \mathbb{Z} \rightarrow \operatorname{End}\left(\mathbb{Z}_{n}\right)$ defined by $\Psi(\bar{m})=\psi_{\bar{m}}$ is a unital ring isomorphism. Let $0 \leq k, m, m^{\prime} \leq n-1$.

We have $\left[\psi_{\bar{m}} \psi_{\overline{m^{\prime}}}\right](\bar{k})=\psi_{\bar{m}}\left(\overline{m^{\prime} k}\right)=\overline{m m^{\prime} k}=\psi_{\overline{m m^{\prime}}}(\bar{k})=\psi_{\bar{m} \overline{m^{\prime}}}(\bar{k})$ thus showing that $\Psi\left(\overline{m m^{\prime}}\right)=\Psi(\bar{m}) \Psi\left(\overline{m^{\prime}}\right)$. Moreover, it is clear that $\Psi(\overline{1})=$ $\psi_{\overline{1}}=\mathrm{Id}_{\mathbb{Z}_{n}}=1$, so that Ψ is a unital ring homomorphism.
Suppose that $\Psi(\bar{m})=\Psi\left(\overline{m^{\prime}}\right)$. Then $\bar{m}=\psi_{\bar{m}}(\overline{1})=\Psi(\bar{m})(\overline{1})=\Psi\left(\overline{m^{\prime}}\right)(\overline{1})=$ $\psi_{\overline{m^{\prime}}}(\overline{1})=\overline{m^{\prime}}$, showing that Ψ is injective.

Finally, let $\psi \in \operatorname{End}\left(\mathbb{Z}_{n}\right)$ and suppose that $\bar{m}=\psi(\overline{1})$. Then we have

$$
\psi(\bar{k})=\psi(\overline{k 1})=\psi(\underbrace{\overline{1+1+\cdots+1}}_{k \text { times }})=k \psi(\overline{1})=k \bar{m}=\overline{k m}=\psi_{\bar{m}}(\bar{k}) .
$$

In other words, $\psi=\psi_{\bar{m}}=\Psi(\bar{m})$. This shows that Ψ is also surjective, completing the proof.

Corollary 1.5.3 For $n \geq 1$ we have $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong \mathcal{U}(\mathbb{Z} / n \mathbb{Z})$. In particular, $\operatorname{Aut}\left(\mathbb{Z}_{n}\right)$ is Abelian and

$$
\begin{equation*}
\left|\operatorname{Aut}\left(\mathbb{Z}_{n}\right)\right|=\varphi(n), \tag{1.47}
\end{equation*}
$$

where φ is Euler's totient function (cf. Definition 1.1.18).
Proof The first statement follows from the fact that the map Ψ in the proof of Proposition 1.5.2 is a unital ring isomorphism and therefore establishes a group isomorphism between the corresponding groups of units. Moreover, since the ring $\mathbb{Z} / n \mathbb{Z}$ is commutative, we have that $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ is Abelian. Finally, (1.47) is an immediate consequence of Lemma 1.5.1.

Exercise 1.5.4 Let $m \geq 1$ and $n \geq 2$ such that $\operatorname{gcd}(m, n)=1$ and let p be a prime number such that $p \nmid m$.
(1) Prove the following (Euler's identity)

$$
m^{\varphi(n)} \equiv 1 \bmod n
$$

(2) deduce the following (Fermat's identity)

$$
m^{p-1} \equiv 1 \bmod p
$$

Recall that Theorem 1.1.21 may be expressed in the form: if p is a prime then $\mathcal{U}(\mathbb{Z} / p \mathbb{Z})$ is cyclic of order $p-1$.

Exercise 1.5.5 Deduce Fermat's identity in Exercise 1.5.4 directly from Theorem 1.1.21.

In the remaining part of this section, we analyze more closely the structure of the Abelian group $\mathcal{U}(\mathbb{Z} / n \mathbb{Z}) \cong \operatorname{Aut}\left(\mathbb{Z}_{n}\right)$ focusing on its decomposition as a direct sum of cyclic groups (cf. Section 1.3). Actually, as these are multiplicative groups, we use multiplicative notation (cf. Notation 1.1.17) and decompose into direct products.

Proposition 1.5.6 Let $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{t}^{k_{t}}$ be the prime factorization of an integer $n \geq 2$. Then

$$
\begin{aligned}
\mathcal{U}(\mathbb{Z} / n \mathbb{Z}) & \cong \operatorname{Aut}\left(\mathbb{Z}_{n}\right) \\
& \cong \operatorname{Aut}\left(\mathbb{Z}_{p_{1}^{k_{1}}}\right) \times \operatorname{Aut}\left(\mathbb{Z}_{p_{2}}\right) \times \cdots \times \operatorname{Aut}\left(\mathbb{Z}_{p_{t}^{k_{t}}}\right) \\
& \cong \mathcal{U}\left(\mathbb{Z} / p_{1}^{k_{1}} \mathbb{Z}\right) \times \mathcal{U}\left(\mathbb{Z} / p_{2}^{k_{2}} \mathbb{Z}\right) \times \cdots \times \mathcal{U}\left(\mathbb{Z} / p_{t}^{k_{t}} \mathbb{Z}\right) .
\end{aligned}
$$

Proof The first isomorphism follows from Corollary 1.5.3. The second from (1.42) and the Chinese remainder theorem III (Theorem 1.2.7). The last one follows again from Corollary 1.5.3.
We now determine the structure of $\mathcal{U}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right) \cong \operatorname{Aut}\left(\mathbb{Z}_{p^{k}}\right)$ for p prime and $k \geq 1$. This requires some nontrivial calculations in number theory; our treatment is inspired by the monographs by Nathanson [118], Ireland and Rosen [79], and Rotman [132]. We first observe that

$$
\begin{equation*}
\left|\mathcal{U}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|=\varphi\left(p^{k}\right)=p^{k}-p^{k-1}=(p-1) p^{k-1} \tag{1.48}
\end{equation*}
$$

Indeed, the first equality follows from Corollary 1.5.3, while the second is a consequence of the fact that an integer $1 \leq n \leq p^{k}$ is divisible by p if and only if there exists $1 \leq h \leq p^{k-1}$ such that $n=p h$.

Theorem 1.5.7 We have: $\mathcal{U}(\mathbb{Z} / 2 \mathbb{Z})=\{\overline{1}\}, \mathcal{U}(\mathbb{Z} / 4 \mathbb{Z})=\langle\overline{-1}\rangle \cong C_{2}$ and, for $k \geq 3$,

$$
\begin{equation*}
\mathcal{U}\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)=\langle\overline{-1}\rangle \times\langle\overline{5}\rangle \cong C_{2} \times C_{2^{k-2}} \tag{1.49}
\end{equation*}
$$

Proof The first two assertions are trivial. Suppose that $k \geq 3$. We observe that (1.48) now becomes

$$
\begin{equation*}
\left|\mathcal{U}\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)\right|=2^{k}-2^{k-1}=2^{k-1} \tag{1.50}
\end{equation*}
$$

In particular the order of $\overline{5}$, as an element of (the Abelian multiplicative group) $\mathcal{U}\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)$, is o $(\overline{5})=2^{r}$ for some $1 \leq r \leq k-1$.

Claim 1: For $k \geq 3$ we have $5^{2^{k-3}} \equiv 1+2^{k-1} \bmod 2^{k}$.
We proceed by induction on k. For $k=3$ this is easy: indeed we have $5^{1}=5 \equiv 1+4 \bmod 8$.

Assume the congruence holds for some $k \geq 3$ and let us prove it for $k+1$. Observe that there exists $h \in \mathbb{Z}$ such that

$$
\begin{equation*}
5^{2^{k-3}}=1+2^{k-1}+h 2^{k} \tag{1.51}
\end{equation*}
$$

We have

$$
\begin{aligned}
5^{2^{(k+1)-3}} & =5^{2^{k-2}} \\
& =\left(5^{2^{k-3}}\right)^{2} \\
(\text { by }(1.51)) & =\left(1+2^{k-1}+h 2^{k}\right)^{2} \\
& =1+2^{k}+h 2^{k+1}+2^{2 k-2}+\left(h+h^{2}\right) 2^{2 k} \\
& \equiv 1+2^{k} \bmod 2^{k+1}
\end{aligned}
$$

where the last congruence follows from the fact that, recalling that $k \geq 3$, $h 2^{k+1}+2^{k-3} 2^{k+1}+\left(h+h^{2}\right) 2^{k-1} 2^{k+1} \equiv 0 \bmod 2^{k+1}$. The proof of the claim is completed.

It follows from Claim 1 that $r \geq k-2$ since $1+2^{k-1} \not \equiv 1 \bmod 2^{k}$.
Moreover, the order of $\overline{-1}$, as an element of (the multiplicative group) $\mathcal{U}\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)$, is clearly o $(\overline{-1})=2$.

Claim 2: $\langle\overline{5}\rangle \cap\langle\overline{-1}\rangle=\{\overline{1}\}$.
Indeed, suppose by contradiction that $\overline{-1} \in\langle\overline{5}\rangle$. Then we can find a positive integer s such that $\overline{-1}=\overline{5}^{s}$, equivalently, $5^{s} \equiv-1 \bmod 2^{k}$ and therefore, a fortiori, $5^{s} \equiv-1 \bmod 4$. But this is impossible, since from $5 \equiv 1 \bmod 4$
we deduce $5^{s} \equiv 1 \bmod 4$. The claim follows.

Recalling (1.50), we have
$2^{k-1}=\left|\mathcal{U}\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)\right| \geq|\langle\overline{-1}\rangle \times\langle\overline{5}\rangle|=|\langle\overline{-1}\rangle| \cdot|\langle\overline{5}\rangle|=2 \cdot 2^{r} \geq 2 \cdot 2^{k-2}=2^{k-1}$ so that $r=k-2$, that is, $\langle\overline{5}\rangle \cong C_{2^{k-2}}$, and (1.49) follows.

Theorem 1.5.8 Let $p \neq 2$ be a prime and $k \geq 1$. Then we have

$$
\begin{equation*}
\mathcal{U}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right) \cong C_{p^{k}-p^{k-1}} \tag{1.52}
\end{equation*}
$$

Proof First of all, we note that for $k=1$ the statement reduces to that of Theorem 1.1.21. Thus, we may assume $k \geq 2$.

Let $p-1=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{t}^{k_{t}}$ denote the prime factorization of $p-1$ and observe that $p_{i} \neq p$ for all $i=1,2, \ldots, t$. Since $\mathcal{U}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$ is Abelian and $\left|\mathcal{U}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|=(p-1) p^{k-1}($ by $(1.48))$, we can apply Theorem 1.3.7 and write $\mathcal{U}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)=G_{1} \times G_{2}$ where $\left|G_{1}\right|=p-1$ and $\left|G_{2}\right|=p^{k-1}$.

Claim 1: $G_{1} \cong C_{p-1}$.
Consider the map $\Phi: \mathbb{Z} / p^{k} \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$ defined by setting $\Phi(\bar{m})=\widetilde{m}$ where $\bar{m}=m+p^{k} \mathbb{Z}$ and $\widetilde{m}=m+p \mathbb{Z}, m \in \mathbb{Z}$. We remark that Φ is well defined because if $m \equiv n \bmod p^{k}$ then $m \equiv n \bmod p$, equivalently, $\widetilde{m} \supseteq \bar{m}$, for all $m, n \in \mathbb{Z}$, so that the partition of \mathbb{Z} induced by the congruence $\bmod p^{k}$ is finer than the one induced by the congruence $\bmod p$. In particular, Φ is surjective. Let $m, n \in \mathbb{Z}$. Then we have

$$
\Phi(\bar{m} \cdot \bar{n})=\Phi(\overline{m n})=\widetilde{m n}=\widetilde{m} \cdot \widetilde{n}=\Phi(\bar{m}) \Phi(\bar{n})
$$

so that the restriction ϕ of Φ to $\mathcal{U}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$ yields a group homomorphism of $\mathcal{U}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$ onto $\mathcal{U}(\mathbb{Z} / p \mathbb{Z})$.

Now, by Theorem 1.1.21, $\mathcal{U}(\mathbb{Z} / p \mathbb{Z}) \cong C_{p-1}$, and $\left|G_{2}\right|=p^{k-1}$. Thus every element $g_{2} \in G_{2}$ has order $\mathrm{o}\left(g_{2}\right)=p^{h}$ for some $0 \leq h \leq k-1$. Its image under Φ has order $\mathrm{o}\left(\Phi\left(g_{2}\right)\right)=p^{h^{\prime}}$ for some $0 \leq h^{\prime} \leq h$ but since $\operatorname{gcd}(p, p-1)=1$, necessarily $h^{\prime}=0$, that is, $g_{2} \in \operatorname{Ker}(\Phi)$. This shows that $G_{2} \subseteq \operatorname{Ker}(\Phi)$. Since

$$
p^{k-1}(p-1)=\left|\mathcal{U}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)\right|=|\operatorname{Ker}(\Phi)| \cdot|\mathcal{U}(\mathbb{Z} / p \mathbb{Z})|=|\operatorname{Ker}(\Phi)|(p-1)
$$

we have that $|\operatorname{Ker}(\Phi)|=p^{k-1}$ and therefore $G_{2}=\operatorname{Ker}(\Phi)$. Then

$$
G_{1} \cong \frac{G_{1} \times G_{2}}{G_{2}} \cong \frac{\mathcal{U}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)}{\operatorname{Ker}(\Phi)} \cong C_{p-1}
$$

and the claim follows. Notice that we have also proved that $G_{2}=\{\bar{m} \in$
$\left.\mathbb{Z} / p^{k} \mathbb{Z}: m \equiv 1 \bmod p\right\}$.
Claim 2: $G_{2} \cong C_{p^{k-1}}$.
We first prove, by induction on $h \in \mathbb{N}$, the following identities

$$
\begin{equation*}
(1+p)^{p^{h}} \equiv 1 \bmod p^{h+1} \tag{1.53}
\end{equation*}
$$

and

$$
\begin{equation*}
(1+p)^{p^{h}} \not \equiv 1 \bmod p^{h+2} \tag{1.54}
\end{equation*}
$$

For $h=0$ this is clear: (1.53) becomes $1+p \equiv 1 \bmod p$ and (1.54) becomes $1+p \not \equiv 1 \bmod p^{2}$. Assume the result for some $h \geq 0$ and let us prove it for $h+1$. Now, (1.53) implies that $(1+p)^{p^{h}}=1+r p^{h+1}$ for some $r \in \mathbb{Z}$, while (1.54) implies that $p \nmid r$. Therefore

$$
\begin{aligned}
(1+p)^{)^{h+1}} & =\left[(1+p)^{p^{h}}\right]^{p} \\
& =\left[1+r p^{h+1}\right]^{p} \\
& =\sum_{j=0}^{p}\binom{p}{j} r^{j} p^{j h+j} \\
& =1+\binom{p}{1} r p^{h+1}+\left(\binom{p}{2} r^{2} p^{2 h+2}+\sum_{j=3}^{p}\binom{p}{j} r^{j} p^{j h+j}\right) \\
& =1+r p^{h+2}+s p^{h+3}
\end{aligned}
$$

where $s=\sum_{j=2}^{p}\binom{p}{j} r^{j} p^{(j-1) h+j-3} \in \mathbb{N}$ since, for all $h \geq 0, p \left\lvert\,\binom{ p}{2}\right.$, so that $p^{h+3} \left\lvert\,\binom{ p}{2} p^{2 h+2}\right.$, and $p^{h+3} \mid p^{j h+j}$ for all $j \geq 3$.

We deduce that $(1+p)^{p^{h+1}} \equiv 1 \bmod p^{h+2}$ and, since $p \nmid r$ by (1.54), $(1+p)^{p^{h+1}} \not \equiv 1 \bmod p^{h+3}$. This proves the induction.
Taking $h=k-1$ in (1.53) and $h=k-2$ in (1.54), we deduce that the element $\overline{1+p} \in \mathcal{U}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$ has multiplicative order $o(\overline{1+p})=p^{k-1}$ and therefore it generates a cyclic group of order p^{k-1}. Thus, the second claim follows as well.
Finally, from the two claims it follows that $\mathcal{U}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)=G_{1} \times G_{2} \cong$ $C_{p-1} \times C_{p^{k-1}}$ and it is cyclic (of order $p^{k}-p^{k-1}$) by Proposition 1.2.15 (or Proposition 1.2.5).

Corollary 1.5.9 (Gauss) Let $n \geq 2$. Then $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ is cyclic if and only if one of the following cases holds: (i) $n=2$, (ii) $n=4$, (iii) $n=p^{k}$, (iv) $n=2 p^{k}$, where, in (iii) and (iv), p is an odd prime and $k \geq 1$.

Proof Consider the factorization (1.16). Suppose first that $t=1$. If $p_{1}=2$, then, by Theorem 1.5.7, $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ is cyclic if and only if $k_{1}=1$ or $k_{1}=2$ (note that for the "only if" part we should also invoke Proposition 1.2.17). This covers cases (i) and (ii). On the other hand, if $p_{1}>2$, then (iii) follows immediately from Theorem 1.5.8.
Suppose now that n is not a power of a prime, so that $t \geq 2$. If there exist $1 \leq i<j \leq t$ such that p_{i} and p_{j} are both odd, then, from Theorem 1.5.8, we deduce that $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ contains a subgroup isomorphic to $C_{p_{i}^{k_{i}}-p_{i}^{k_{i}-1}} \times$ $C_{p_{j}^{k_{j}}-p_{j}^{k_{j}-1}}$, where both $p_{i}^{k_{i}}-p_{i}^{k_{i}-1}$ and $p_{j}^{k_{j}}-p_{j}^{k_{j}-1}$ are even. As a consequence, $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ contains a subgroup isomorphic to $C_{2} \oplus C_{2}$ which is not cyclic (cf. Proposition 1.2.17). Since a subgroup of a cyclic group is also cyclic, this prevents $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ from being cyclic.
It only remains the case when n is even (so that $p_{1}=2$) and $t=2$. If $k_{1}>1$, then, also keeping in mind Theorem 1.5.7, $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ contains a subgroup isomorphic to $C_{2} \oplus C_{p_{2}^{k_{2}-p_{2}}}{ }_{2}^{k_{2}-1}$. Since $p_{2}^{k_{2}}-p_{2}^{k_{2}-1}$ is even, by the argument above we deduce that $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ cannot be cyclic. Finally, if $k_{1}=1$, so that $n=2 p_{2}^{k_{2}}$, we have $\mathcal{U}(\mathbb{Z} / n \mathbb{Z}) \cong C_{p_{2}^{k_{2}}-p_{2}^{k_{2}-1}}$. This covers the case (iv) and completes our analysis.

In the case where $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ is cyclic (cf. Corollary 1.5.9), a generator of $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ is called a primitive root $\bmod n$.

1.6 The endomorphism ring of a finite Abelian p-group.

We now examine the structure of the endomorphism ring of a finite (not necessarily cyclic) Abelian group A. Observe that, by virtue of Theorem 1.3.7 and Theorem 1.4.2, it suffices to reduce to the case when A is a p group. We thus suppose that

$$
\begin{equation*}
A=\bigoplus_{j=1}^{h} \mathbb{Z}_{p^{m_{j}}} \tag{1.55}
\end{equation*}
$$

with p is prime and

$$
\begin{equation*}
1 \leq m_{1} \leq m_{2} \leq \cdots \leq m_{h} \tag{1.56}
\end{equation*}
$$

(note that, in contrast with (1.35), in (1.56) we have reversed the order of the $m_{j} \mathrm{~s}$). We closely follow the arguments is [72].

We first introduce some specific notation. If R is a unital commutative ring, we denote by $\mathfrak{M}_{h}(R)$ the set of all $h \times h$ matrices with coefficients in R. We now recall some basic facts of matrix theory; we refer to the
monographs by Horn and Johnson [75] and by Lancaster and Tismenetsky [91] as a general reference for further details (although these books treat complex matrices, the results that we use can be easily adapted for $\mathfrak{M}_{h}(R)$; see also the book by Malcev [114]). Let $B=\left(b_{i, j}\right)_{i, j=1}^{h} \in \mathfrak{M}_{h}(R)$. We denote by $\operatorname{adj}(B)$ the adjugate of B (in [91], following an older terminology, the term "adjoint" is used instead), that is, the matrix whose (i, j)-entry is equal to $(-1)^{i+j} B_{j, i}$, where $B_{j, i}$ is the (j, i)-th minor (of order $h-1$) of B, that is, the determinant of the matrix obtained by deleting row j and column i from B. Since these determinants are expressed as polynomials in the coefficients, we have that $\operatorname{adj}(B) \in \mathfrak{M}_{h}(R)$ for all $B \in \mathfrak{M}_{h}(R)$. Moreover, $\operatorname{adj}(B)$ satisfies the fundamental identity

$$
\begin{equation*}
B \cdot \operatorname{adj}(B)=\operatorname{adj}(B) \cdot B=I \cdot \operatorname{det}(B) . \tag{1.57}
\end{equation*}
$$

As a consequence, B is invertible in $\mathfrak{M}_{h}(R)$ if and only if $\operatorname{det}(B)$ is an invertible element in R and, if this is the case, one has

$$
B^{-1}=\operatorname{det}(B)^{-1} \operatorname{adj}(B)
$$

In particular, if B is invertible, $\operatorname{adj}(B)$ is the unique matrix satisfying (1.57). Moreover, if R is a field, then B is invertible if and only if $\operatorname{det}(B) \neq 0$.
Continuing with our purpose of setting notation, an element of \mathbb{Z}^{h} (respectively A) will be represented by a column vector $\mathbf{n}=\left(n_{j}\right)_{j=1}^{h}$ (respectively $\overline{\mathbf{n}}=\left(\overline{n_{j}}\right)_{j=1}^{h}$), where $n_{j} \in \mathbb{Z}$ (respectively $\overline{n_{j}} \in \mathbb{Z} / p^{m_{j}} \mathbb{Z}$) for $j=1,2, \ldots, h$. Note that we use the same notation for the different congruence classes mod $p^{m_{j}}, j=1,2, \ldots, h$. Also, for $j=1,2, \ldots, h$, we set $\delta_{j}=\left(\delta_{i, j}\right)_{i=1}^{h} \in \mathbb{Z}^{h}$ (respectively $\mathbf{a}_{j}=\left(\overline{\delta_{i, j}}\right)_{i=1}^{h} \in A$, where $\overline{\delta_{i, j}} \in \mathbb{Z}_{p^{m_{i}}}$). This way, we have $\mathbf{n}=\sum_{j=1}^{h} n_{j} \delta_{j}$ and $\overline{\mathbf{n}}=\sum_{j=1}^{h} n_{j} \mathbf{a}_{j}$ for all $\mathbf{n} \in \mathbb{Z}^{h}$. Moreover,

$$
\begin{equation*}
A=\left\langle\mathbf{a}_{1}\right\rangle \oplus\left\langle\mathbf{a}_{2}\right\rangle \oplus \cdots \oplus\left\langle\mathbf{a}_{h}\right\rangle . \tag{1.58}
\end{equation*}
$$

Given a matrix $B=\left(b_{i, j}\right)_{i, j=1}^{h} \in \mathfrak{M}_{h}(\mathbb{Z})$ and $\mathbf{n} \in \mathbb{Z}^{h}$ the usual product $B \mathbf{n}$ is given by $B \mathbf{n}=\sum_{i, j=1}^{h} b_{i, j} n_{j} \delta_{i}$. In other words, setting $\mathbf{b}_{j}=\left(b_{i, j}\right)_{i=1}^{h}=$ $\sum_{i=1}^{h} b_{i, j} \delta_{i} \in \mathbb{Z}^{h}$, we have

$$
\begin{equation*}
B \delta_{j}=\mathbf{b}_{j}=\sum_{i=1}^{h} b_{i, j} \delta_{i} \tag{1.59}
\end{equation*}
$$

for all $j=1,2, \ldots, h$.
Moreover, for all $j=1,2, \ldots, h$, we denote by $\pi_{j}: \mathbb{Z} \rightarrow \mathbb{Z} / p^{m_{j}} \mathbb{Z}$ the standard quotient map, that is $\pi_{j}\left(n_{j}\right)=\overline{n_{j}}$ for all $n_{j} \in \mathbb{Z}$, and by $\pi: \mathbb{Z}^{h} \rightarrow A$
the map defined by

$$
\pi(\mathbf{n})=\pi\left(\sum_{j=1}^{h} n_{j} \delta_{j}\right)=\sum_{j=1}^{h} \overline{n_{j}} \mathbf{a}_{j}=\overline{\mathbf{n}}
$$

for all $\mathbf{n} \in \mathbb{Z}^{h}$. Note that π is a group homomorphism.
We now introduce a subring of $\mathfrak{M}_{h}(\mathbb{Z})$ that plays a fundamental role in the description of $\operatorname{End}(A)$. We set

$$
\begin{align*}
\mathcal{R} & =\mathcal{R}\left(p ; m_{1}, m_{2}, \ldots, m_{h}\right) \\
& =\left\{B=\left(b_{i, j}\right)_{i, j=1}^{h} \in \mathfrak{M}_{h}(\mathbb{Z}): p^{m_{i}-m_{j}} \mid b_{i, j}, \text { for all } 1 \leq j<i \leq h\right\} \tag{1.60}
\end{align*}
$$

The fact that \mathcal{R} is a subring of $\mathfrak{M}_{h}(\mathbb{Z})$ will be proved below.
For instance, if $h=4, m_{1}=1, m_{2}=3, m_{3}=4$ and $m_{4}=7$ then
$\mathcal{R}(p ; 1,3,4,7)=\left\{\left(\begin{array}{cccc}c_{1,1} & c_{1,2} & c_{1,3} & c_{1,4} \\ p^{2} c_{2,1} & c_{2,2} & c_{2,3} & c_{2,4} \\ p^{3} c_{3,1} & p c_{3,2} & c_{3,3} & c_{3,4} \\ p^{6} c_{4,1} & p^{4} c_{4,2} & p^{3} c_{4,3} & c_{4,4}\end{array}\right): c_{i, j} \in \mathbb{Z}, i, j=1,2,3,4\right\}$.
Consider the diagonal matrix

$$
P=\left(\begin{array}{ccccc}
p^{m_{1}} & 0 & \cdots & 0 & 0 \\
0 & p^{m_{2}} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & p^{m_{h-1}} & 0 \\
0 & 0 & \cdots & 0 & p^{m_{h}}
\end{array}\right)
$$

Proposition 1.6.1

(i) A matrix $B \in \mathfrak{M}_{h}(\mathbb{Z})$ belongs to \mathcal{R} if and only if it can be represented in the form

$$
\begin{equation*}
B=P C P^{-1} \tag{1.61}
\end{equation*}
$$

for some $C \in \mathfrak{M}_{h}(\mathbb{Z})$;
(ii) \mathcal{R} is a unital ring;
(iii) $\operatorname{adj}(B) \in \mathcal{R}$ for all invertible $B \in \mathcal{R}$.

Proof (i). Let $C=\left(c_{i, j}\right)_{i, j=1}^{h} \in \mathfrak{M}_{h}(\mathbb{Z})$ then

$$
\begin{equation*}
P C P^{-1}=\left(p^{m_{i}-m_{j}} c_{i, j}\right)_{i, j=1}^{h} \tag{1.62}
\end{equation*}
$$

clearly belongs to \mathcal{R}. Conversely, suppose that $B=\left(b_{i, j}\right)_{i, j=1}^{h} \in \mathcal{R}$ and
consider the matrix $C=\left(c_{i, j}\right)_{i, j=1}^{h} \in \mathfrak{M}_{h}(\mathbb{Z})$ defined by

$$
c_{i, j}=p^{m_{j}-m_{i}} b_{i, j}= \begin{cases}b_{i, j} / p^{m_{i}-m_{j}} & \text { if } i>j \\ p^{m_{j}-m_{i}} b_{i, j} & \text { if } i \leq j\end{cases}
$$

From the right hand side above, (1.56), and (1.60), it follows that, indeed, $c_{i, j} \in \mathbb{Z}$ for all $1 \leq i, j \leq h$. Moreover, we deduce from (1.62) that C satisfies (1.61).
(ii). Let $B_{1}, B_{2} \in \mathcal{R}$. Then, by (i), there exist $C_{1}, C_{2} \in \mathfrak{M}_{h}(\mathbb{Z})$ such that $B_{1}=P C_{1} P^{-1}$ and $B_{2}=P C_{2} P^{-1}$. It follows that $B_{1}+B_{2}=P\left(C_{1}+\right.$ $\left.C_{2}\right) P^{-1} \in \mathcal{R}$ and $B_{1} B_{2}=P C_{1} C_{2} P^{-1} \in \mathcal{R}$. Moreover, it is clear from the definitions that the identity matrix $I \in \mathcal{R}$.
(iii). Let $B \in \mathcal{R}$ be invertible. Then, by (i), there exists $C \in \mathfrak{M}_{h}(\mathbb{Z})$ such that (1.61) holds: we deduce that $\operatorname{det}(B)=\operatorname{det}(C) \neq 0$. Setting $\widetilde{B}=P \operatorname{adj}(C) P^{-1}$ we have

$$
\widetilde{B} B=P \operatorname{adj}(C) C P^{-1}=\operatorname{det}(B) I=P C \operatorname{adj}(C) P^{-1}=B \widetilde{B}
$$

and, by uniqueness of the adjugate satisfying (1.57) for invertible elements, we deduce that $\widetilde{B}=\operatorname{adj}(B)$. It follows from (i) that $\operatorname{adj}(B) \in \mathcal{R}$.

We are now in position to describe $\operatorname{End}(A)$ as a quotient of the ring \mathcal{R}.
Theorem 1.6.2 The map $\Psi: \mathcal{R} \rightarrow \operatorname{End}(A)$ defined by setting

$$
\begin{equation*}
\Psi(B) \overline{\mathbf{n}}=\pi(B \mathbf{n}) \tag{1.63}
\end{equation*}
$$

for all $\mathbf{n} \in \mathbb{Z}^{h}$ and $B \in \mathcal{R}$, is well defined and is a surjective unital ring homomorphism. Moreover,

$$
\begin{equation*}
\operatorname{Ker}(\Psi)=\left\{\left(b_{i, j}\right)_{i, j=1}^{h} \in \mathcal{R}: p^{m_{i}} \mid b_{i, j} \text { for all } i, j=1,2, \ldots, h\right\} \tag{1.64}
\end{equation*}
$$

so that $\operatorname{End}(A) \cong \mathcal{R} / \operatorname{Ker}(\Psi)$.
Proof Let $B \in \mathcal{R}$. First of all, we verify that $\Psi(B)$ is well defined. Suppose that $\mathbf{n}, \mathbf{n}^{\prime} \in \mathbb{Z}^{h}$ satisfy $\overline{\mathbf{n}}=\overline{\mathbf{n}^{\prime}}$, that is, $n_{j} \equiv n_{j}^{\prime} \bmod p^{m_{j}}$, equivalently $p^{m_{j}} \mid\left(n_{j}-n_{j}^{\prime}\right)$, for all $j=1,2, \ldots, h$. Let also $B=\left(b_{i, j}\right)_{i, j=1}^{h} \in \mathcal{R}$. Then we have

$$
\pi(B \mathbf{n})-\pi\left(B \mathbf{n}^{\prime}\right)=\pi\left(B\left(\mathbf{n}-\mathbf{n}^{\prime}\right)\right)=\pi\left(\sum_{i=1}^{h} \sum_{j=1}^{h} b_{i, j}\left(n_{j}-n_{j}^{\prime}\right) \delta_{i}\right)=\overline{\mathbf{0}}
$$

since, if $i>j$,

$$
b_{i, j}\left(n_{j}-n_{j}^{\prime}\right)=\frac{b_{i, j}}{p^{m_{i}-m_{j}}} \cdot \frac{n_{j}-n_{j}^{\prime}}{p^{m_{j}}} \cdot p^{m_{i}}
$$

where $\frac{b_{i, j}}{p^{m_{i}-m_{j}}} \in \mathbb{Z}$ by (1.60), and $\frac{n_{j}-n_{j}^{\prime}}{p^{m}} \in \mathbb{Z}$ by our assumptions, while, if $i \leq j$, then $b_{i, j}\left(n_{j}-n_{j}^{\prime}\right)$ is divisible by $p^{m_{j}}$ and therefore by $p^{m_{i}}$, since $m_{i} \leq m_{j}$. Thus $\Psi(B)$ is well defined.

The fact that $\Psi(B) \in \operatorname{End}(A)$ follows easily from the linearity of the maps π and $\mathbf{n} \mapsto B \mathbf{n}$.

In order to show that Ψ is surjective, let $M \in \operatorname{End}(A)$. Then we can find $B=\left(b_{i, j}\right)_{i, j=1}^{h} \in \mathfrak{M}_{h}(\mathbb{Z})$ such that $M\left(\mathbf{a}_{j}\right)=\sum_{i=1}^{h} b_{i, j} \mathbf{a}_{i}, j=1,2, \ldots, h$. Since $M(\overline{\mathbf{0}})=\overline{\mathbf{0}}$ and $p^{m_{j}} \mathbf{a}_{j}=0$, we get (since M is a homomorphism)

$$
\overline{\mathbf{0}}=M\left(p^{m_{j}} \mathbf{a}_{j}\right)=p^{m_{j}} M\left(\mathbf{a}_{j}\right)=p^{m_{j}} \sum_{i=1}^{h} b_{i, j} \mathbf{a}_{i}=\sum_{i=1}^{h} p^{m_{j}} b_{i, j} \mathbf{a}_{i}
$$

which forces $p^{m_{j}} b_{i, j} \equiv 0 \bmod p^{m_{i}}$ for all $i, j=1,2, \ldots, h$ (cf. Proposition 1.2.2). In particular, $p^{m_{i}-m_{j}} \mid b_{i, j}$ for all $1 \leq j<i \leq h$, so that $B \in \mathcal{R}$.

As a consequence, given $\mathbf{n} \in \mathbb{Z}$ we have

$$
\begin{array}{rl}
M(\overline{\mathbf{n}})=M\left(\sum_{j=1}^{h} n_{j} \mathbf{a}_{j}\right)=\sum_{j=1}^{h} n_{j} & M\left(\mathbf{a}_{j}\right)=\sum_{i, j=1}^{h} n_{j} b_{i, j} \mathbf{a}_{i} \\
& =\pi\left(\sum_{i, j=1}^{h} n_{j} b_{i, j} \delta_{i}\right)=\pi(B \mathbf{n})=\Psi(B)(\overline{\mathbf{n}})
\end{array}
$$

In other words, $\Psi(B)=M$ and surjectivity follows.
We now show that Ψ is a unital ring homomorphism and determine its kernel.

It is clear that $\Psi(I)=\mathrm{Id}_{A}$, the identity endomorhism of A and $\Psi(0)=0_{A}$, the zero endomorphism of A.

Let now $B=\left(b_{i, j}\right)_{i, j=1}^{h}, B_{1}, B_{2} \in \mathcal{R}$, and $n_{1}, n_{2}, \ldots, n_{h} \in \mathbb{Z}$. Then, we have

$$
\begin{aligned}
\Psi\left(B_{1}+B_{2}\right) \overline{\mathbf{n}} & =\pi\left(\left(B_{1}+B_{2}\right) \mathbf{n}\right)=\pi\left(B_{1} \mathbf{n}+B_{2} \mathbf{n}\right)=\pi\left(B_{1} \mathbf{n}\right)+\pi\left(B_{2} \mathbf{n}\right) \\
& =\Psi\left(B_{1}\right) \overline{\mathbf{n}}+\Psi\left(B_{2}\right) \overline{\mathbf{n}}
\end{aligned}
$$

showing that $\Psi\left(B_{1}+B_{2}\right)=\Psi\left(B_{1}\right)+\Psi\left(B_{2}\right)$. Similarly,

$$
\Psi\left(B_{1}\right) \Psi\left(B_{2}\right) \overline{\mathbf{n}}=\Psi\left(B_{1}\right) \pi\left(B_{2} \mathbf{n}\right)=\pi\left(B_{1} B_{2} \mathbf{n}\right)=\Psi\left(B_{1} B_{2}\right) \overline{\mathbf{n}}
$$

showing that $\Psi\left(B_{1} B_{2}\right)=\Psi\left(B_{1}\right) \Psi\left(B_{2}\right)$.

Finally,

$$
\begin{aligned}
B \in \operatorname{Ker}(\Psi) & \Leftrightarrow \Psi(B) \mathbf{a}_{j}=\overline{\mathbf{0}} \text { for all } j=1,2, \ldots, h \\
& \Leftrightarrow \pi\left(B \delta_{j}\right)=\overline{\mathbf{0}} \text { for all } j=1,2, \ldots, h \\
& \Leftrightarrow \pi_{i}\left(b_{i, j}\right)=0 \text { for all } i, j=1,2, \ldots, h \\
& \Leftrightarrow p_{i}^{m_{i}} \mid b_{i, j} \text { for all } i, j=1,2, \ldots, h,
\end{aligned}
$$

and (1.64) follows.
Corollary 1.6.3 In (1.58) we have

$$
\Psi(B) \mathbf{a}_{j} \in\left\langle\mathbf{a}_{j}\right\rangle
$$

for $j=1,2, \ldots, h$, if and only if $p^{m_{i}} \mid b_{i, j}$ for $i \neq j$. Moreover, if this is the case, then there exists a diagonal matrix $B^{\prime} \in \mathcal{R}$ such that $\Psi\left(B^{\prime}\right)=\Psi(B)$.

Proof We have

$$
\begin{aligned}
\Psi(B) \mathbf{a}_{j} & =\pi\left(B \delta_{j}\right) \\
(\text { by }(1.59)) & =\sum_{i=1}^{h} \pi\left(b_{i, j}\right) \mathbf{a}_{i}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\Psi(B) \mathbf{a}_{j} \in\left\langle\mathbf{a}_{j}\right\rangle & \Leftrightarrow b_{i, j} \equiv 0 \quad \bmod p^{m_{i}} \text { for } i \neq j \\
& \Leftrightarrow p^{m_{i}} \mid b_{i, j} \text { for } i \neq j
\end{aligned}
$$

The last statement follows from (1.64).

1.7 The automorphisms of a finite Abelian p-group

Let p be a prime number and $h \geq 1$ be an integer. Recall that we denote by \mathbb{F}_{p} the finite field $\mathbb{Z} / p \mathbb{Z}$ and by $\bar{n} \in \mathbb{F}_{p}$ the congruence class of $n \in \mathbb{Z} \bmod p$. We denote by $\operatorname{GL}\left(h, \mathbb{F}_{p}\right)$ the group of all invertible matrices in $\mathfrak{M}_{h}\left(\mathbb{F}_{p}\right)$. We need to introduce this group in order to characterize the invertible elements in $\operatorname{End}(A)$, where A is a p-group as in (1.55).

Let now $B=\left(b_{i, j}\right)_{i, j=1}^{h} \in \mathfrak{M}_{h}(\mathbb{Z})$. We set

$$
\begin{equation*}
\bar{B}=\left(\overline{b_{i, j}}\right)_{i, j=1}^{h} \in \mathfrak{M}_{h}\left(\mathbb{F}_{p}\right) \tag{1.65}
\end{equation*}
$$

As we remarked above, \bar{B} is invertible in $\mathfrak{M}_{h}\left(\mathbb{F}_{p}\right)$ if and only if $\operatorname{det} \bar{B} \neq \overline{0}$. Since $\operatorname{det}(\bar{B})=\overline{\operatorname{det}(B)}$, we have that $\bar{B} \in \operatorname{GL}\left(h, \mathbb{F}_{p}\right)$ if and only if $p \nmid \operatorname{det}(B)$. Moreover, if this is the case, B is also invertible in \mathcal{R} (and in $\mathfrak{M}_{h}(\mathbb{Z})$).

With the same notation from the previous section we have:

Theorem 1.7.1 Let $B \in \mathcal{R}$ and set $M=\Psi(B) \in \operatorname{End}(A)$. Then M is invertible (i.e. $M \in \operatorname{Aut}(A)$) if an only if $\bar{B} \in \operatorname{GL}\left(h, \mathbb{F}_{p}\right)$.

Proof Suppose first that \bar{B} is invertible, so that p does not divide $\operatorname{det}(B)$. Then we can find $q \in \mathbb{Z}$ such that

$$
q \cdot \operatorname{det}(B) \equiv 1 \quad \bmod p^{m_{j}} \text { for all } j=1,2, \ldots, h
$$

Indeed, $\operatorname{gcd}\left(\operatorname{det}(B), p^{m_{h}}\right)=1$ so that $\operatorname{det}(B)$ has an inverse $q \bmod p^{m_{h}}$ which is also an inverse $\bmod p^{m_{j}}$ for all other $j s\left(\right.$ recall that $m_{h} \geq m_{j}$). Let us set

$$
C=q \cdot \operatorname{adj}(B)
$$

By Proposition 1.6.1.(iii), we have $C \in \mathcal{R}$. Moreover, $\Psi(C) \Psi(B)=\Psi(C B)=$ $\Psi((q \cdot \operatorname{det}(B)) I)=\operatorname{Id}_{A} \in \operatorname{End}(A)$ and similarly, $\Psi(B) \Psi(C)=\operatorname{Id}_{A}$, so that $M=\psi(B)$ is invertible, with inverse $\Psi(C)$.

Conversely, suppose that $M=\psi(B)$ is invertible. Recalling that Ψ is surjective, we can find $C \in \mathcal{R}$ such that $\Psi(C)$ is the inverse of M. It follows that $\Psi(I)=\operatorname{Id}_{A}=\Psi(B) \Psi(C)=\Psi(B C)$, equivalently, $\Psi(B C-I)=0$ (the trivial endomorphism of A), so that, by (1.64), p divides all coefficients of $B C-I$, and therefore

$$
\bar{B} \cdot \bar{C}=\overline{B C}=\bar{I} \in \mathfrak{M}_{h}\left(\mathbb{F}_{p}\right)
$$

It follows that $\bar{B} \in \mathrm{GL}\left(h, \mathbb{F}_{p}\right)$.

We now need some basic notions on group actions that will be recalled with more details in Section 10.4.

Denote by \mathcal{V} the set of all h-tuples $\left(A_{1}, A_{2}, \ldots, A_{h}\right)$ such that

- $A_{1}, A_{2}, \ldots, A_{h}$ are subgroups of A
- $A_{j} \cong \mathbb{Z}_{p^{m_{j}}}, j=1,2, \ldots, h$
- $A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{h}$.

In other words, \mathcal{V} is the set of all invariant factors decompositions of A (see Theorem 1.3.1 and (1.55)). Then the group $\operatorname{Aut}(A) \operatorname{acts}$ on \mathcal{V} and this action is clearly transitive. We want to identify the stabilizer of a fixed decomposition.

Corollary 1.7.2 The stabilizer of the decomposition (1.58) is given by the
set of all $\Psi(B)$, where

$$
B=\left(\begin{array}{cccc}
b_{1} & 0 & 0 & 0 \\
0 & b_{2} & 0 & 0 \\
\vdots & & \ddots & 0 \\
0 & 0 & \cdots & b_{h}
\end{array}\right)
$$

is diagonal with $\overline{b_{i}} \in \mathcal{U}\left(\mathbb{Z} / p^{m_{i}} \mathbb{Z}\right), i=1,2, \ldots, h$. In particular, its cardinality is equal to

$$
(p-1)^{h} \prod_{i=1}^{h} p^{m_{i}-1}
$$

Proof It is an immediate consequence of Corollary 1.6.3, Corollary 1.5.3, and (1.48).

1.8 The cardinality of $\operatorname{Aut}(A)$

In this section we determine the cardinality of $\operatorname{Aut}(A)$, where A is a p-group as in (1.55). To this end, keeping in mind (1.56), we introduce the following numbers:

$$
t_{j}=\max \left\{j \leq t \leq h: m_{t}=m_{j}\right\}
$$

and

$$
s_{i}=\min \left\{1 \leq s \leq i: m_{s}=m_{i}\right\}
$$

for all $i, j=1,2, \ldots, h$. Note that $t_{j} \geq j$ and $s_{i} \leq i$ for all $i, j=1,2, \ldots, h$; in particular, $t_{h}=h$ and $s_{1}=1$.

Lemma 1.8.1 For all $i, j=1,2, \ldots, h$ we have

$$
m_{i}>m_{j} \Leftrightarrow i>t_{j} \Leftrightarrow j<s_{i}
$$

and

$$
m_{i} \leq m_{j} \Leftrightarrow i \leq t_{j} \Leftrightarrow j \geq s_{i}
$$

Proof The proof is an immediate consequence of the fact that $m_{1} \leq m_{2} \leq$ $\cdots \leq m_{h}$ and it is left as an exercise.

Corollary 1.8.2 Let $B=\left(b_{i, j}\right)_{i, j=1}^{h} \in \mathcal{R}$ and $1 \leq i, j \leq h$. Suppose that $i>t_{j}$ (equivalently, $j<s_{i}$). Then, with the notation as in (1.65), $\overline{b_{i, j}}=\overline{0}$.

Proof If $i>t_{j}$ (equivalently, $j<s_{i}$), then $m_{i}>m_{j}$ and, as $B \in \mathcal{R}$, we have $p^{m_{i}-m_{j}} \mid b_{i, j}$.

Theorem 1.8.3

$$
|\operatorname{Aut}(A)|=\prod_{k=1}^{h}\left(p^{t_{k}}-p^{k-1}\right) \prod_{j=1}^{s_{h}} p^{m_{j}\left(h-t_{j}\right)} \prod_{i=1}^{h} p^{\left(m_{i}-1\right)\left(h-s_{i}+1\right)}
$$

Proof Let $B \in \mathcal{R}$ and suppose that $\Psi(B) \in \operatorname{End}(A)$ is invertible (i.e. $\Psi(B) \in$ Aut $(A))$. Then, by virtue of Theorem 1.7.1, $\bar{B} \in \mathrm{GL}\left(h, \mathbb{F}_{p}\right)$ and by Corollary 1.8.2, $\bar{B}=\left(\overline{b_{i, j}}\right)_{i, j=1}^{h}=\left(c_{i, j}\right)_{i, j=1}^{h}$ is given by

$$
\left(\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, h} \tag{1.66}\\
c_{2,1} & c_{2,2} & \cdots & c_{2, h} \\
\vdots & \vdots & \vdots & \vdots \\
c_{t_{1}, 1} & c_{t_{1}, 2} & \cdots & c_{t_{1}, h} \\
0 & c_{t_{1}+1,2} & \cdots & c_{t_{1}+1, h} \\
\vdots & \vdots & \vdots & \vdots \\
0 & c_{t_{2}, 2} & \cdots & c_{t_{2}, h} \\
0 & 0 & \cdots & c_{t_{2}+1, h} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & c_{t_{h}, h}
\end{array}\right)=\left(\begin{array}{ccccccc}
c_{1, s_{1}} & c_{1,2} & \cdots & \cdots & \cdots & \cdots & c_{1, h} \\
0 & \cdots & 0 & c_{2, s_{2}} & \cdots & \cdots & c_{2, h} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & c_{h, s_{h}} & \cdots & c_{h, h}
\end{array}\right) .
$$

Note that the two matrices above have the same 0 entries: by Corollary 1.8.2 and Lemma 1.8.1, $c_{i, j}=0$ if $i>t_{j}$, equivalently, if $j<s_{i}$.

Using the left hand side in the above equality, we have the following counting: the first column may be chosen in $p^{t_{1}}-1$ distinct ways (the -1 because we have to discard the $\overline{0}$-column), the second one in $p^{t_{2}}-p$ ways (the $-p$ because we have to discard the p multiples of the first column, since the two have to be independent).

Continuing this way, setting

$$
\mathcal{G}=\left\{C \in \mathrm{GL}\left(h, \mathbb{F}_{p}\right): C=\bar{B}, B \in \mathcal{R}, \Psi(B) \in \operatorname{Aut}(A)\right\}
$$

we have that

$$
\begin{equation*}
|\mathcal{G}|=\prod_{k=1}^{h}\left(p^{t_{k}}-p^{k-1}\right) \tag{1.67}
\end{equation*}
$$

Let now fix $C=\bar{B} \in \mathcal{G}$ as in (1.66), and set

$$
\mathcal{M}_{C}=\{\Psi(B): B \in \mathcal{R}, \bar{B}=C\} \subset \operatorname{Aut}(A)
$$

We claim that

$$
\begin{equation*}
\left|\mathcal{M}_{C}\right|=\prod_{j=1}^{s_{h}} p^{m_{j}\left(h-t_{j}\right)} \prod_{i=1}^{h} p^{\left(m_{i}-1\right)\left(h-s_{i}+1\right)} \tag{1.68}
\end{equation*}
$$

(in particular, $n=\left|\mathcal{M}_{C}\right|$ is independent of $C \in \mathcal{G}$).
For each $1 \leq j \leq h$ there are exactly $h-t_{j}$ zeroes below the entry $c_{t_{j}, j}$ (cf. the left hand side of (1.66)) and the i th one (corresponding to the (i, j)entry: note that $i>t_{j} \geq j$, equivalently, $m_{i}>m_{j}$) gives $p^{m_{j}}$ distinct possibilities for the (i, j)-th entry of $B \in \mathcal{R}$ (each yielding a different $\Psi(B)$): by (1.60) and (1.64) it must be an element of $p^{m_{i}-m_{j}} \mathbb{Z} / p^{m_{i}} \mathbb{Z} \cong \mathbb{Z} / p^{m_{j}} \mathbb{Z}$. The last isomorphism follows from the elementary congruence: for $x, y \in \mathbb{Z}$, $x p^{m_{i}-m_{j}} \equiv y p^{m_{i}-m_{j}} \bmod p^{m_{i}}$ if and only if $x \equiv y \bmod p^{m_{j}}$.
This yields the first factor in the right hand side of (1.68). Note also that $t_{j}=h \Leftrightarrow m_{j}=m_{h} \Leftrightarrow j \geq s_{h}$.

On the other hand, for each $1 \leq i \leq h$ there are exactly $h-s_{i}+1$ terms on the right and including $c_{i, s_{i}}$ (cf. the right hand side of (1.66)) and the j th one (corresponding to the (i, j)-entry: note that $j \geq s_{i}$, equivalently, $m_{i} \leq m_{j}$) gives rise to $p^{m_{i}-1}$ distinct possibilities for the (i, j)-th entry of $B \in \mathcal{R}$: it must be equal to $c_{i, j}+$ an element of $p \mathbb{Z} / p^{m_{i}} \mathbb{Z} \cong \mathbb{Z} / p^{m_{i}-1} \mathbb{Z}$ (again by virtue of (1.64)). This yields the second factor in the right hand side of (1.68) proving the claim. Since

$$
|\operatorname{Aut}(A)|=\sum_{C \in \mathcal{G}}\left|\mathcal{M}_{C}\right|=|\mathcal{G}| \cdot n,
$$

the statement follows from (1.67) and (1.68).
We now count the number ν of invariant factors decompositions of A (recall the notation preceding Corollary 1.7.2).

Corollary 1.8.4

$$
|\mathcal{V}|=p^{h(h-1) / 2} \prod_{k=1}^{h}\left(\sum_{\ell=0}^{t_{k}-k} p^{\ell}\right) \cdot \prod_{j=1}^{s_{h}} p^{m_{j}\left(h-t_{j}\right)} \cdot \prod_{i=1}^{h} p^{\left(m_{i}-1\right)\left(h-s_{i}\right)} .
$$

Proof Divide the cardinality of $\operatorname{Aut}(A)$ in Theorem 1.8.3 by the cardinality of the stabilizer in Corollary 1.7.2.

Example 1.8.5 Suppose that $m_{1}=m_{2}=\cdots=m_{h}=m$. Then $\operatorname{Aut}(A)$ is group-isomorphic to $\mathrm{GL}\left(h, \mathbb{Z} / \mathbb{Z}_{p^{m}}\right)$ (here, according with our notation, $\mathbb{Z} / \mathbb{Z}_{p^{m}}$ is no more a field if $m \geq 2$, but just a ring). Indeed, in this case,
$\mathcal{R} \equiv \mathfrak{M}_{h}(\mathbb{Z})$ and, by (1.64), we have $\operatorname{End}(A) \cong \mathfrak{M}_{h}\left(\mathbb{Z} / \mathbb{Z}_{p^{m}}\right)$. Now $t_{j}=h$ for $j=1,2, \ldots, h$ and $s_{i}=1$ for $i=1,2, \ldots, h$ so that, by Theorem 1.8.3, we have

$$
|\operatorname{Aut}(\underbrace{Z_{p^{m}} \oplus \mathbb{Z}_{p^{m}} \oplus \cdots \oplus \mathbb{Z}_{p^{m}}}_{h \text { times }})|=p^{(m-1) h^{2}} \cdot \prod_{k=1}^{h}\left(p^{h}-p^{k-1}\right)
$$

Two particular cases are relevant. For $h=1$, we find

$$
\left|\operatorname{Aut}\left(\mathbb{Z}_{p^{m}}\right)\right|=p^{m-1}(p-1)=p^{m}-p^{m-1}
$$

and this agrees with the results in Theorem 1.5.7 and Theorem 1.5.8 (but this follows also from the fact that $\varphi\left(p^{m}\right)=p^{m}-p^{m-1}$, cf. Corollary 1.5.3). If in addition, one has $m_{1}=m_{2}=\cdots=m_{h}=1$ we get

$$
\operatorname{Aut}(\underbrace{Z_{p} \oplus \mathbb{Z}_{p} \oplus \cdots \oplus \mathbb{Z}_{p}}_{h \text { times }}) \cong \mathrm{GL}\left(h, \mathbb{F}_{p}\right)
$$

and

$$
|\operatorname{Aut}(\underbrace{Z_{p} \oplus \mathbb{Z}_{p} \oplus \cdots \oplus \mathbb{Z}_{p}}_{h \text { times }})|=\left|\mathrm{GL}\left(h, \mathbb{F}_{p}\right)\right|=\prod_{k=1}^{h}\left(p^{h}-p^{k-1}\right)
$$

which coincides with (1.67), since $t_{k}=h$ for all $k=1,2, \ldots, h$.

2

The Fourier Transform on finite Abelian groups

This chapter is a fairly complete exposition of the basic character theory and the Fourier transform on finite Abelian groups. Our presentation is inspired by our monograph [29], and the books by Terras [159] and Nathanson [118]; Section 2.6 contains a recent result of Terence Tao [157]. The results established here will be used and generalized in almost every subsequent chapter.

2.1 Some notation

In this section, we fix some basic notation and results of "harmonic analysis" on finite sets. Further notation and results will be developed in Section 8.7. These two sections constitute the core of the preliminaries in finite harmonic analysis.

Let X be a finite set and denote by $L(X)=\{f: X \rightarrow \mathbb{C}\}$ the vector space of all complex-valued functions defined on X. Clearly, $\operatorname{dim} L(X)=|X|$, where $|\cdot|$ denotes cardinality.

For $x \in X$ we denote by δ_{x} the Dirac function centered at x, that is, the element $\delta_{x} \in L(X)$ defined by

$$
\delta_{x}(y)= \begin{cases}1 & \text { if } y=x \\ 0 & \text { if } y \neq x\end{cases}
$$

for all $y \in X$.
The set $\left\{\delta_{x}: x \in X\right\}$ is a natural basis for $L(X)$ and if $f \in L(X)$ then $f=\sum_{x \in X} f(x) \delta_{x}$.

The space $L(X)$ is endowed with the scalar product defined by setting

$$
\left\langle f_{1}, f_{2}\right\rangle=\sum_{x \in X} f_{1}(x) \overline{f_{2}(x)}
$$

for $f_{1}, f_{2} \in L(X)$, and we denote by $\|f\|=\sqrt{\langle f, f\rangle \mid}$ the norm of $f \in L(X)$. Note that the basis $\left\{\delta_{x}: x \in X\right\}$ is orthonormal with respect to $\langle\cdot, \cdot\rangle$. Sometimes we shall write $\langle\cdot, \cdot\rangle_{L(X)}$ (respectively $\|\cdot\|_{L(X)}$) to emphasize the space where the scalar product (the norm) is defined, if other spaces are also considered.
For a subset $Y \subseteq X$, we regard $L(Y)$ as a subspace of $L(X)$ and we denote by $\mathbf{1}_{Y}=\sum_{y \in Y} \delta_{y} \in L(X)$ the characteristic function of Y. In particular, if $Y=X$ we simply write $\mathbf{1}$ (the constant function with value 1) instead of $\mathbf{1}_{X}$.
For $Y_{1}, Y_{2}, \ldots, Y_{m} \subseteq X$ we write $X=Y_{1} \amalg Y_{2} \amalg \cdots \amalg Y_{m}$ to indicate that the Y_{j} 's constitute a partition of X, that is $X=Y_{1} \cup Y_{2} \cup \cdots \cup Y_{m}$ and $Y_{i} \cap Y_{j}=$ \emptyset whenever $i \neq j$. In other words, the symbol \amalg denotes a disjoint union. In particular, if we write $Y \amalg Y^{\prime}$ we implicitly assume that $Y \cap Y^{\prime}=\emptyset$. Note that if $X=Y_{1} \amalg Y_{2} \amalg \cdots \amalg Y_{m}$ then $L(X) \cong L\left(Y_{1}\right) \oplus L\left(Y_{2}\right) \oplus \cdots \oplus L\left(Y_{m}\right)$.
If $A: L(X) \rightarrow L(X)$ is a linear operator, setting

$$
\begin{equation*}
a(x, y)=\left[A \delta_{y}\right](x) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, we have that

$$
\begin{equation*}
[A f](x)=\sum_{y \in X} a(x, y) f(y) \tag{2.2}
\end{equation*}
$$

for all $x \in X$ and $f \in L(X)$, and we say that the matrix $a=(a(x, y))_{x, y \in X}$, indexed by X, represents the operator A. We denote by $\operatorname{End}(L(X))$ the complex vector space of all linear operators $A: L(X) \rightarrow L(X)$.
With our notation, the identity operator $I \in \operatorname{End}(L(X))$ is represented by the identity matrix which may be expressed as $I=\left(\delta_{x}(y)\right)_{x, y \in X}$.
If $A_{1}, A_{2} \in \operatorname{End}(L(X))$ are represented by the matrices a_{1} and a_{2}, respectively, then the composition $A=A_{1} \circ A_{2} \in \operatorname{End}(L(X))$ is represented by the corresponding product of matrices $a=a_{1} \cdot a_{2}$ that is

$$
a(x, y)=\sum_{z \in X} a_{1}(x, z) a_{2}(z, y)
$$

For $k \in \mathbb{N}$ we denote by $a^{k}=\left(a^{(k)}(x, y)\right)_{x, y \in X}$ the product of k copies of a, namely, $a^{(0)}=I$, the identity matrix, and, for $k \geq 1$,

$$
a^{(k)}(x, y)=\sum_{z \in X} a^{(k-1)}(x, z) a(z, y)
$$

We remark that (2.2) can be also interpreted as the product of the matrix a with the column vector $f=(f(x))_{x \in X}$.
Given a matrix a and a column (respectively a row) vector f, we denote by
a^{T} and by f^{T} the transposed matrix (i.e. $a^{T}(x, y)=a(y, x)$ for all $\left.x, y \in X\right)$ and the row (respectively column) transposed vector. This way, we also denote by $f^{T} A$ the function given by

$$
\begin{equation*}
\left[f^{T} A\right](y)=\sum_{x \in X} f(x) a(x, y) \tag{2.3}
\end{equation*}
$$

If X is a set of cardinality $|X|=n$ and $k \leq n$, then a k-subset of X is a subset $A \subseteq X$ such that $|A|=k$.

If $v_{1}, v_{2}, \ldots, v_{m}$ are vectors in a vector space V, then $\left\langle v_{1}, v_{2}, \ldots, v_{m}\right\rangle$ will denote their linear span.

We end with the most elementary tool of finite harmonic analysis. It will be used and rediscovered many times (see Proposition 8.1.4, Theorem 9.1.7 and Example 10.4.3).

Proposition 2.1.1 Let X be a finite set and set $W_{0}=\{f \in L(X)$: f is constant $\}$ and $W_{1}=\left\{f \in L(X): \sum_{x \in X} f(x)=0\right\}$. Then we have the following orthogonal decomposition:

$$
\begin{equation*}
L(X)=W_{0} \oplus W_{1} \tag{2.4}
\end{equation*}
$$

Proof Let $f \in L(X)$. Setting $f_{0}(x)=\frac{1}{|X|} \sum_{y \in X} f(y)$ for all $x \in X$ we have $f_{0} \in W_{0}$ and $f_{1}=f-f_{0} \in W_{1}$, so that $L(X)=W_{0}+W_{1}$. Moreover, it is immediate to check that $W_{0} \perp W_{1}$, so that (2.4) is an orthogonal direct sum.

2.2 Characters of finite cyclic groups

Let $n \geq 2$ and denote, as usual, by $\mathbb{Z}_{n}=\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$ the cyclic group of order n, written additively.

Recall (cf. Section 2.1) that $L\left(\mathbb{Z}_{n}\right)$ denotes the complex vector space of all functions $f: \mathbb{Z}_{n} \rightarrow \mathbb{C}$. Note that if $f \in L\left(\mathbb{Z}_{n}\right)$, then the function $F: \mathbb{Z} \rightarrow \mathbb{C}$ defined by $F(x)=f(\bar{x})$ for all $x \in \mathbb{Z}$ is n-periodic (namely $F(x+n)=F(x)$ for all $x \in \mathbb{Z}$) and the map $f \mapsto F$ establishes a bijective correspondance between the elements in $L\left(\mathbb{Z}_{n}\right)$ and the n-periodic complex functions on \mathbb{Z}.

In the following, by abuse of language, we shall identify f and F and use the same notation for the corresponding arguments: in particular, for $x \in \mathbb{Z}$ the (a priori improperly defined) expressions $f(x)$ and $F(\bar{x})$ stand for $f(\bar{x})=F(x)$. More generally, we shall use the same notation for an element $x \in \mathbb{Z}$ and its image in \mathbb{Z}_{n} (in other words, we shall omit the bar-symbol "-" in the notation for $\bar{x} \in \mathbb{Z}_{n}$) and we shall use the bar-symbol to denote conjugation of complex numbers. In particular, we shall use the symbols
$\sum_{y=0}^{n-1}$ to denote the sum $\sum_{y \in \mathbb{Z}_{n}}$ over all elements of \mathbb{Z}_{n}, and we regard the Dirac functions $\delta_{x}, x \in \mathbb{Z}_{n}$, as elements in $L\left(\mathbb{Z}_{n}\right)$.

Let us set

$$
\omega=\exp \frac{2 \pi i}{n}=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n} \in \mathbb{C} .
$$

We recall that ω is an n-th primitive root of 1 and that the n-th complex roots of the unit are $\omega^{k}, k=0,1, \ldots, n-1$. Note that $\omega^{z}=\omega^{z+n}$ for all $z \in \mathbb{Z}$ so that (cf. the comments above) the map $z \mapsto \omega^{z}$ defines an element of $L\left(\mathbb{Z}_{n}\right)$. More generally, for $x \in \mathbb{Z}_{n}$, we denote by $\chi_{x} \in L\left(\mathbb{Z}_{n}\right)$ the function $z \mapsto \omega^{z x}$.

Definition 2.2.1 The functions $\chi_{x} \in L\left(\mathbb{Z}_{n}\right)$ are called the characters of \mathbb{Z}_{n}.
Note that $\chi_{x}(y)=\chi_{y}(x) \in \mathbb{T}=\{z \in \mathbb{C}:|z|=1\}, \chi_{y}(-x)=\overline{\chi_{y}(x)}$ for all $x, y \in \mathbb{Z}_{n}$, and $\chi_{0}=\mathbf{1}$, the constant function.
The basic identity for the characters is

$$
\chi_{z}(x+y)=\chi_{z}(x) \chi_{z}(y)
$$

for all $x, y, z \in \mathbb{Z}_{n}$ and, in the following lemma, we prove that, in fact, it is a "characteristic" property of characters.

Lemma 2.2.2 If $\phi: \mathbb{Z}_{n} \rightarrow \mathbb{T}$ satisfies $\phi(x+y)=\phi(x) \phi(y)$ for all $x, y \in \mathbb{Z}_{n}$, then $\phi=\chi_{z}$ for some $z \in \mathbb{Z}_{n}$.

Proof First note that since $\phi(0)=\phi(0+0)=\phi(0) \phi(0)$, we necessarily have $\phi(0)=1$. As a consequence, $1=\phi(0)=\phi(\underbrace{1+1+\cdots+1}_{n \text { times }})=\phi(1)^{n}$ and we deduce that $\phi(1)$ is an n-th root of 1 . Therefore there exists $z \in \mathbb{Z}_{n}$ such that $\phi(1)=\omega^{z}$. This gives $\phi(x)=\phi(1)^{x}=\omega^{z x}=\chi_{z}(x)$ for all $x \in \mathbb{Z}_{n}$.

Lemma 2.2.3 (Orthogonality relations for characters of \mathbb{Z}_{n}) Let χ and ψ be two characters of \mathbb{Z}_{n}. Then

$$
\begin{equation*}
\langle\chi, \psi\rangle=n \delta_{\chi, \psi} . \tag{2.5}
\end{equation*}
$$

Proof Let $x_{1}, x_{2} \in \mathbb{Z}_{n}$ be such that $\chi=\chi_{x_{1}}$ and $\psi=\chi_{x_{2}}$. Let us set $z=\omega^{x_{1}-x_{2}}$ and observe that $\chi_{x_{1}}(y) \overline{\chi_{x_{2}}(y)}=\omega^{y\left(x_{1}-x_{2}\right)}=z^{y}$ for all $y \in \mathbb{Z}_{n}$ so that

$$
\begin{equation*}
\langle\chi, \psi\rangle=\left\langle\chi_{x_{1}}, \chi_{x_{2}}\right\rangle=\sum_{y=0}^{n-1} \chi_{x_{1}}(y) \overline{\chi_{x_{2}}(y)}=\sum_{y=0}^{n-1} z^{y} . \tag{2.6}
\end{equation*}
$$

Suppose first that $\chi \neq \psi$, i.e. $x_{1} \neq x_{2}$. Then z is a nontrivial root of the unity (i.e. $z^{n}-1=0$ and $z-1 \neq 0$) and from the identity

$$
z^{n}-1=(z-1)\left(1+z+\cdots+z^{n-1}\right)=(z-1) \sum_{y=0}^{n-1} z^{y}
$$

we deduce that $\sum_{y=0}^{n-1} z^{y}=0$ and the quantity (2.6) vanishes. On the other hand, if $\chi=\psi$, that is $x_{1}=x_{2}$, then $z=\omega^{x_{1}-x_{2}}=1$ and the quantity (2.6) equals n.

Note that if $\chi=\chi_{x_{1}}$ and $\psi=\chi_{x_{2}}$, then (2.5) may be expressed as

$$
\begin{equation*}
\left\langle\chi_{x_{1}}, \chi_{x_{2}}\right\rangle=n \delta_{x_{1}, x_{2}} \equiv n \delta_{0}\left(x_{1}-x_{2}\right) \tag{2.7}
\end{equation*}
$$

From the lemma and the fact that $\chi_{x}(y)=\chi_{y}(x)$ for all $x, y \in \mathbb{Z}_{n}$ we immediately deduce the following dual orthogonality relations for characters of \mathbb{Z}_{n} :

$$
\begin{equation*}
\sum_{x \in \mathbb{Z}_{n}} \chi_{x}\left(y_{1}\right) \overline{\chi_{x}\left(y_{2}\right)}=n \delta_{0}\left(y_{1}-y_{2}\right) \tag{2.8}
\end{equation*}
$$

for all $y_{1}, y_{2} \in \mathbb{Z}_{n}$.

2.3 Characters of finite Abelian groups

Let A be a finite Abelian group, written additively.
Definition 2.3.1 A character of A is a map $\chi: A \rightarrow \mathbb{T}$ such that

$$
\chi(x+y)=\chi(x) \chi(y)
$$

for all $x, y \in A$.
The set \widehat{A} of all characters of A is an Abelian group with respect to the product $\widehat{A} \times \widehat{A} \ni(\chi, \psi) \mapsto \chi \cdot \psi \in \widehat{A}$ defined by $(\chi \cdot \psi)(x)=\chi(x) \psi(x)$, for all $x \in A$. It is called the dual of A.

Remark 2.3.2 Note that if $A=\mathbb{Z}_{n}$, then Definition 2.3.1 coincides with Definition 2.2.1 and $\widehat{\mathbb{Z}_{n}}=\left\{\chi_{x}: x \in \mathbb{Z}_{n}\right\}$ is isomorphic to \mathbb{Z}_{n}. Indeed, since for all $x \in \mathbb{Z}_{n}$ we have $\left(\chi_{1}\right)^{x}=\chi_{x}$, then $\widehat{\mathbb{Z}_{n}}$ is the cyclic group (necessarily of order n) generated by χ_{1} (alternatively, as $\chi_{x+y}(z)=\chi_{z}(x+y)=$ $\chi_{z}(x) \chi_{z}(y)=\chi_{x}(z) \chi_{y}(z)$ for all $x, y, z \in \mathbb{Z}_{n}$, the map $x \mapsto \chi_{x}$ yields a surjective (and therefore bijective) group homomorphism $\mathbb{Z}_{n} \rightarrow \widehat{\mathbb{Z}_{n}}$).

Proposition 2.3.3 Let A be a finite Abelian group and let

$$
\begin{equation*}
A=\mathbb{Z}_{m_{1}} \oplus \mathbb{Z}_{m_{2}} \oplus \cdots \oplus \mathbb{Z}_{m_{k}} \tag{2.9}
\end{equation*}
$$

be a decomposition of A as direct sum of cyclic groups (see, for instance Theorem 1.3.1 or Corollary 1.3.10). Set $\omega_{j}=\exp \frac{2 \pi i}{m_{j}}, j=1,2, \ldots, k$, and, for $y=\left(y_{1}, y_{2}, \ldots, y_{k}\right) \in A$, define $\chi_{y}: A \rightarrow \mathbb{T}$ by setting

$$
\begin{equation*}
\chi_{y}(x)=\omega_{1}^{x_{1} y_{1}} \omega_{2}^{x_{2} y_{2}} \cdots \omega_{k}^{x_{k} y_{k}} \tag{2.10}
\end{equation*}
$$

for all $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in A$. Then χ_{y} is a character of A, every character of A is of this form and distinct ys yield distinct characters. In particular, $|\widehat{A}|=|A|$.

Proof The first assertion, namely that (2.10) defines a character of A, is straightforward:

$$
\begin{aligned}
\chi_{y}\left(x+x^{\prime}\right) & =\omega_{1}^{\left(x_{1}+x_{1}^{\prime}\right) y_{1}} \omega_{2}^{\left(x_{2}+x_{2}^{\prime}\right) y_{2}} \cdots \omega_{k}^{\left(x_{k}+x_{k}^{\prime}\right) y_{k}} \\
& =\omega_{1}^{x_{1} y_{1}} \omega_{2}^{x_{2} y_{2}} \cdots \omega_{k}^{x_{k} y_{k}} \cdot \omega_{1}^{x_{1}^{\prime} y_{1}} \omega_{2}^{x_{2}^{\prime} y_{2}} \cdots \omega_{k}^{x_{k}^{\prime} y_{k}} \\
& =\chi_{y}(x) \chi_{y}\left(x^{\prime}\right)
\end{aligned}
$$

for all $y=\left(y_{1}, y_{2}, \ldots, y_{k}\right), x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{k}^{\prime}\right) \in A$.
Let us show that every character of A is of the form (2.10). Let $\chi: A \rightarrow$ \mathbb{T} be a character of A. We first observe that, for all $j=1,2, \ldots, k$, the restriction $\left.\chi\right|_{\mathbb{Z}_{m_{j}}}$ of χ to the subgroup $\mathbb{Z}_{m_{j}} \leq A$ is a character of $\mathbb{Z}_{m_{j}}$ so that, by Lemma 2.2 .2 , there exists $y_{j} \in \mathbb{Z}_{m_{j}}$ such that $\left.\chi\right|_{\mathbb{Z}_{j}}=\chi_{y_{j}}$. As a consequence, setting $y=\left(y_{1}, y_{2}, \ldots, y_{k}\right) \in A$, we have

$$
\begin{aligned}
\chi(x) & =\chi\left(x_{1}, x_{2}, \ldots, x_{k}\right) \\
& =\left.\chi\right|_{\mathbb{Z}_{m_{1}}}\left(x_{1}\right) \chi\left|\mathbb{Z}_{m_{2}}\left(x_{2}\right) \cdots \chi\right|_{\mathbb{Z}_{m_{k}}}\left(x_{k}\right) \\
& =\chi_{y_{1}}\left(x_{1}\right) \chi_{y_{2}}\left(x_{2}\right) \cdots \chi_{y_{k}}\left(x_{k}\right) \\
& =\omega_{1}^{x_{1} y_{1}} \omega_{2}^{x_{2} y_{2}} \cdots \omega_{k}^{x_{k} y_{k}} \\
& =\chi_{y}(x)
\end{aligned}
$$

for all $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in A$. This shows that $\widehat{A}=\left\{\chi_{y}: y \in A\right\}$.
Note that with the notation above we may write

$$
\begin{equation*}
\chi_{y}(x)=\prod_{j=1}^{k} \chi_{y_{j}}\left(x_{j}\right) \tag{2.11}
\end{equation*}
$$

for all $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{k}\right) \in A$.

Corollary 2.3.4 Let A be a finite Abelian group. Then the dual group \widehat{A} is isomorphic to A.

Proof With the notation in Proposition 2.3.3, it is straightforward to check that $\chi_{y+y^{\prime}}=\chi_{y} \cdot \chi_{y^{\prime}}$ for all $y, y^{\prime} \in A$ (cf. the particular case where $A=\mathbb{Z}_{n}$ in Remark 2.3.2) so that the map $y \mapsto \chi_{y}$ yields a surjective (and therefore bijective, since $|A|=|\widehat{A}|$) group homomorphism from A onto \widehat{A}.

Proposition 2.3.5 (Orthogonality relations for characters of A) Let $\chi, \psi \in \widehat{A}$ and $x, y \in A$. Then we have the orthogonality relations

$$
\begin{equation*}
\langle\chi, \psi\rangle=|A| \delta_{\chi, \psi} \tag{2.12}
\end{equation*}
$$

and the dual orthogonality relations

$$
\begin{equation*}
\sum_{\chi \in \widehat{A}} \chi(x) \overline{\chi(y)}=|A| \delta_{x, y} \equiv|A| \delta_{0}(x-y) . \tag{2.13}
\end{equation*}
$$

Proof By virtue of Proposition 2.3.3 and the notation therein, we can find $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{k}\right) \in A$ such that $\chi=\chi_{x}$ and $\psi=\chi_{y}$. Using the notation in (2.11) we then have

$$
\begin{aligned}
& \qquad \begin{aligned}
\langle\chi, \psi\rangle & =\left\langle\chi_{x}, \chi_{y}\right\rangle=\sum_{z \in A} \chi_{x}(z) \overline{\chi_{y}(z)} \\
& =\sum_{z \in A} \prod_{j=1}^{k} \chi_{x_{j}}\left(z_{j}\right) \overline{\chi_{y_{j}}\left(z_{j}\right)} \\
& =\prod_{j=1}^{k} \sum_{z_{j} \in \mathbb{Z}_{m_{j}}} \chi_{x_{j}}\left(z_{j}\right) \overline{\chi_{y_{j}}\left(z_{j}\right)} \\
& =\prod_{j=1}^{k}\left\langle\chi_{x_{j}}, \chi_{y_{j}}\right\rangle \\
\text { (by Lemma 2.2.3) } & =\prod_{j=1}^{k} m_{j} \delta_{x_{j}, y_{j}} \\
& =|A| \delta_{x, y}=|A| \delta_{\chi, \psi} .
\end{aligned}
\end{aligned}
$$

We remark that the isomorphism in Corollary 2.3 .4 (given by (2.11)) depends on the choice of the decomposition of A and therefore on the generators for the corresponding cyclic subgroups, that is, it depends on the coordinates.

There is, however, an intrinsic isomorphism between A and the dual of \widehat{A}, called the bidual of A and denoted by $\widehat{\widehat{A}}$, given by

$$
\begin{equation*}
A \ni a \mapsto \psi_{a} \in \widehat{\widehat{A}}, \tag{2.14}
\end{equation*}
$$

where $\psi_{a}(\chi)=\chi(a)$ for all $\chi \in \widehat{A}$.
Exercise 2.3.6 Prove that the map (2.14) is a group isomorphism.
This duality is similar to the (possibly more familiar) one coming from linear algebra. Recall that if V is a finite dimensional vector space over a field \mathbb{F}, the dual of V is the vector space V^{*} consisting of all \mathbb{F}-linear maps $f: V \rightarrow \mathbb{F}$. Then if $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\} \subset V\left(d=\operatorname{dim}_{\mathbb{F}} V\right)$ is a basis for V and $\left\{v_{1}^{*}, v_{2}^{*}, \ldots, v_{d}^{*}\right\} \subset V^{*}$ is the dual basis (defined by $v_{i}^{*}\left(v_{j}\right)=\delta_{i, j}$ for all $i, j=1,2, \ldots, d$), then the map $v_{i} \mapsto v_{i}^{*}$ linearly extends to a (unique) vector space isomorphism $\varphi: V \rightarrow V^{*}$. Note that φ depends on the choice of basis $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$. However, denoting by $V^{* *}=\left(V^{*}\right)^{*}$ the bidual of V, the map $V \ni v \mapsto \psi_{v} \in V^{* *}$ defined by $\psi_{v}\left(v^{*}\right)=v^{*}(v)$ for all $v^{*} \in V^{*}$ yields a canonical vector space isomorphism between V and $V^{* *}$.
Returning back to group theory, the isomorphism $A \rightarrow \widehat{\hat{A}}$ extends to locally compact Abelian groups: this is called Pontrjagin duality. As an example, if $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ denotes the unit circle, then $\widehat{\mathbb{T}} \cong \mathbb{Z}$ and $\widehat{\mathbb{T}} \cong \mathbb{T}$ (this is the setting of classical Fourier series, see, for instance, the monographs on abstract harmonic analysis by Rudin [134], Katznelson [85], and Loomis [98]).

2.4 The Fourier transform

Let A be a finite Abelian group. We recall (cf. Section 2.1) that $L(A)$, the complex vector space of all functions $f: A \rightarrow \mathbb{C}$, is equipped with an inner product $\langle\cdot, \cdot\rangle_{L(A)}$ (for short $\langle\cdot, \cdot\rangle$) defined by

$$
\left\langle f_{1}, f_{2}\right\rangle=\sum_{x \in A} f_{1}(x) \overline{f_{2}(x)}
$$

for all $f_{1}, f_{2} \in L(A)$. We also denote by $\|\cdot\|_{L(A)}$ (for short $\|\cdot\|$) the associated norm.
Note the $\operatorname{dim}(L(A))=|A|$ and therefore, by virtue of the orthogonality relations for characters (Proposition 2.3.5), the set $\left\{\chi_{x}: x \in A\right\}$ is an orthogonal basis for $L(A)$.

Definition 2.4.1 The Fourier Transform of a function $f \in L(A)$ is the function $\widehat{f} \in L(\widehat{A})$ defined by

$$
\begin{equation*}
\widehat{f}(\chi)=\langle f, \chi\rangle=\sum_{y \in A} f(y) \overline{\chi(y)} \tag{2.15}
\end{equation*}
$$

for all $\chi \in \widehat{A}$. Then $\widehat{f}(\chi)$ is called the Fourier coefficient of f with respect to χ. Moreover, we shall denote by $\mathcal{F} f=\frac{1}{\sqrt{|A|}} \widehat{f}$ the normalized Fourier Transform of $f \in L(A)$.

When $A=\mathbb{Z}_{n}$ (the cyclic group of order n), and $f \in L\left(\mathbb{Z}_{n}\right)$ we shall call $\frac{1}{n} \widehat{f}$ the Discrete Fourier Transform (briefly, DFT) of f.

The following two theorems express, in a functional form, the fact that the $\chi \mathrm{s}$ constitute an orthogonal basis of the space $L(A)$.

Theorem 2.4.2 (Fourier inversion formula) For every $f \in L(A)$ we have

$$
\begin{equation*}
f=\frac{1}{|A|} \sum_{\chi \in \widehat{A}} \widehat{f}(\chi) \chi \tag{2.16}
\end{equation*}
$$

Proof Let $f \in L(A)$ and $x \in A$. Then

$$
\begin{aligned}
\frac{1}{|A|} \sum_{\chi \in \widehat{A}} \widehat{f}(\chi) \chi(x) & =\frac{1}{|A|} \sum_{\chi \in \widehat{A}} \sum_{y \in A} f(y) \overline{\chi(y)} \chi(x)= \\
& =\frac{1}{|A|} \sum_{y \in A} f(y) \sum_{\chi \in \widehat{A}} \overline{\chi(y)} \chi(x)= \\
(\text { by }(2.13)) & =\frac{1}{|A|} \sum_{y \in A} f(y)|A| \delta_{0}(y-x)=f(x) .
\end{aligned}
$$

Theorem 2.4.3 (Plancherel and Parseval formulas) For $f, g \in L(A)$ we have (Plancherel formula)

$$
\|\widehat{f}\|_{L(\widehat{A})}=\sqrt{|A|}\|f\|_{L(A)}
$$

and (Parseval formula)

$$
\langle\widehat{f}, \widehat{g}\rangle_{L(\widehat{A})}=|A|\langle f, g\rangle_{L(A)}
$$

Proof We first prove the Parseval formula:

$$
\begin{aligned}
\langle\widehat{f}, \widehat{g}\rangle_{L(\widehat{A})} & =\sum_{\chi \in \widehat{A}} \widehat{f}(\chi) \overline{\widehat{g}(\chi)} \\
& =\sum_{\chi \in \widehat{A}}\left(\sum_{y_{1} \in A} f\left(y_{1}\right) \overline{\chi\left(y_{1}\right)}\right)\left(\sum_{y_{2} \in A} \overline{g\left(y_{2}\right)} \chi\left(y_{2}\right)\right) \\
& =\sum_{y_{1} \in A} \sum_{y_{2} \in A} f\left(y_{1}\right) \overline{g\left(y_{2}\right)} \sum_{\chi \in \widehat{A}} \overline{\chi\left(y_{1}\right)} \chi\left(y_{2}\right)= \\
(\text { by }(2.13)) & =|A| \sum_{y \in A} f(y) \overline{g(y)}=|A|\langle f, g\rangle_{L(A)} .
\end{aligned}
$$

The Plancherel formula is immediately deduced from the Parseval formula by taking $g=f$.

Exercise 2.4.4 Show that $\widehat{\delta_{x}}(\chi)=\overline{\chi(x)}$ for all $x \in A$ and $\chi \in \widehat{A}$.
For $f_{1}, f_{2} \in L(A)$ we define their convolution as the function $f_{1} * f_{2} \in L(A)$ given by

$$
\left(f_{1} * f_{2}\right)(x)=\sum_{y \in A} f_{1}(x-y) f_{2}(y)
$$

for all $x \in A$.

Definition 2.4.5 An algebra over a field \mathbb{F} is a vector space \mathcal{A} over \mathbb{F} endowed with a product such that \mathcal{A} is a ring with respect to the sum and the product and the following associative laws, for the product and multiplication by a scalar, hold:

$$
\alpha(A B)=(\alpha A) B=A(\alpha B)
$$

for all $\alpha \in \mathbb{F}$ and $A, B \in \mathcal{A}$.
An algebra \mathcal{A} is commutative (or Abelian) if it is commutative as a ring, namely if $A B=B A$ for all $A, B \in \mathcal{A}$; it is unital if it has a unit, that is, there exists an element $I \in \mathcal{A}$ such that $A I=I A=A$ for all $A \in \mathcal{A}$.

Given two algebras \mathcal{A}_{1} and \mathcal{A}_{2} over the field \mathbb{F}, a bijective linear map $\Phi: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ such that $\Phi(a b)=\Phi(a) \Phi(b)$ for all $a, b \in \mathcal{A}_{1}$ is called an isomorphism. If such an isomorphism Φ exists, one says that the algebras \mathcal{A}_{1} and \mathcal{A}_{2} are isomorphic, and we write $\mathcal{A}_{1} \cong \mathcal{A}_{2}$.

In the following proposition we present the main properties of the convolution product in $L(A)$.

Proposition 2.4.6 For all $f, f_{1}, f_{2}, f_{3} \in L(A)$ one has
(i) $f_{1} * f_{2}=f_{2} * f_{1}$ (commutativity)
(ii) $\left(f_{1} * f_{2}\right) * f_{3}=f_{1} *\left(f_{2} * f_{3}\right)$ (associativity)
(iii) $\left(f_{1}+f_{2}\right) * f_{3}=f_{1} * f_{3}+f_{2} * f_{3}$ (distributivity)
(iv) $\widehat{f_{1} * f_{2}}=\widehat{f_{1}} \cdot \widehat{f_{2}}$
(v) $\delta_{0} * f=f * \delta_{0}=f$.

In particular, $L(A)$ is a commutative algebra over \mathbb{C} with unit $I=\delta_{0}$.
Proof We prove only (iv), namely that the Fourier transform of the convolution of two functions equals the pointwise product of their Fourier transforms. Let $f_{1}, f_{2} \in L(A)$ and $\chi \in \widehat{A}$. Then we have

$$
\begin{aligned}
\widehat{f_{1} * f_{2}}(\chi) & =\sum_{x \in A}\left(f_{1} * f_{2}\right)(x) \overline{\chi(x)} \\
& =\sum_{x \in A} \sum_{t \in A} f_{1}(x-t) f_{2}(t) \overline{\chi(x-t) \chi(t)} \\
& =\widehat{f}_{1}(\chi) \widehat{f}_{2}(\chi)
\end{aligned}
$$

The other identities are left as an exercise.
The translation operator $T_{x} \in \operatorname{End}(L(A)), x \in A$, is defined by:

$$
\left(T_{x} f\right)(y)=f(y-x)
$$

for all $x, y \in A$ and $f \in L(A)$.
Exercise 2.4.7 Show that $T_{x} f=f * \delta_{x}$ and $\widehat{T_{x} f}(\chi)=\overline{\chi(x)} \widehat{f}(\chi)$ for all $f \in L(A), x \in A$, and $\chi \in \widehat{A}$.

Let $R \in \operatorname{End}(L(A))$. We say that R is A-invariant if commutes with all translations, namely

$$
R T_{x}=T_{x} R
$$

for all $x \in A$. Also we say that R is a convolution operator provided there exists $h \in L(A)$ such that $R f=f * h$ for all $f \in L(A)$: the function h is then called the (convolution) kernel of R and we write $R=R_{h}$.

Exercise 2.4.8

(1) Show that every convolution operator is A-invariant.
(2) Show that

- $R_{h_{1}}+R_{h_{2}}=R_{h_{1}+h_{2}} ;$
- $R_{\alpha h}=\alpha R_{h}$;
- $R_{h_{1}} R_{h_{2}}=R_{h_{1} * h_{2}}$
for all $h_{1}, h_{2}, h \in L(A)$ and $\alpha \in \mathbb{C}$.
(3) Deduce that $\mathcal{R}=\left\{R_{h}: h \in L(A)\right\}$ is a commutative algebra isomorphic to $L(A)$.
\mathcal{R} is called the algebra of convolution operators on A.
Lemma 2.4.9 The linear operator R associated with the matrix $(r(x, y))_{x, y \in A}$ is A-invariant if and only if

$$
\begin{equation*}
r(x-z, y-z)=r(x, y) \tag{2.17}
\end{equation*}
$$

for all $x, y, z \in A$.
Proof The linear operator R is A-invariant if and only if, for all $x, z \in A$ and $f \in L(A)$ one has $\left[T_{z}(R f)\right](x)=\left[R\left(T_{z} f\right)\right](x)$, that is,

$$
\sum_{u \in A} r(x-z, u) f(u)=\sum_{u \in A} r(x, u) f(u-z),
$$

equivalently,

$$
\sum_{u \in A} r(x-z, u-z) f(u-z)=\sum_{u \in A} r(x, u) f(u-z) .
$$

Since the $\delta_{t}, t \in A$, constitute a basis for $L(A)$, taking $f=\delta_{y-z}$ for all $y \in A$, the last equality is in turn equivalent to (2.17).

Theorem 2.4.10 The following conditions are equivalent for $R \in \operatorname{End}(L(A))$:
(a) R is A-invariant;
(b) R is a convolution operator;
(c) every $\chi \in \widehat{A}$ is an eigenvector of R.

Proof $(\mathrm{a}) \Rightarrow(\mathrm{b})$: by Lemma 2.4.9, A-invariance yields $r(x, y)=r(x-y, 0)$ for all $x, y \in A$, so that if we define $h \in L(A)$ by setting

$$
\begin{equation*}
h(x)=r(x, 0) \tag{2.18}
\end{equation*}
$$

for all $x \in A$, we then have $r(x, y)=h(x-y)$ and therefore

$$
(R f)(x)=\sum_{y \in A} h(x-y) f(y)=(h * f)(x)
$$

and $R=R_{h}$ is a convolution operator.
(b) $\Rightarrow(\mathrm{c})$: let $h \in L(A)$ and $\chi \in \widehat{A}$. Suppose that $R=R_{h}$. Then

$$
\begin{equation*}
[R \chi](y)=\sum_{t \in A} \chi(y-t) h(t)=\chi(y) \sum_{t \in A} \overline{\chi(t)} h(t)=\widehat{h}(\chi) \chi(y) \tag{2.19}
\end{equation*}
$$

This shows that every $\chi \in \widehat{A}$ is an eigenvector of R with eigenvalue $\widehat{h}(\chi)$.
Suppose now that every $\chi \in \widehat{A}$ is an eigenvector of R with eigenvalue $\lambda(\chi) \in \mathbb{C}$. Observe that

$$
\begin{equation*}
\left[T_{x} \chi\right](y)=\chi(y-x)=\overline{\chi(x)} \chi(y) \tag{2.20}
\end{equation*}
$$

for all $x, y \in A$ and $\chi \in \widehat{A}$. For $\chi \in \widehat{A}$ and $x \in A$ we have

$$
\begin{aligned}
R T_{x}(\chi) & =R(\overline{\chi(x)} \chi)(\text { by }(2.20)) \\
& =\overline{\chi(x)} \lambda(\chi) \chi \\
(\text { by }(2.20)) & =\lambda(\chi) T_{x}(\chi) \\
& =T_{x}(\lambda(\chi) \chi) \\
& =T_{x} R(\chi)
\end{aligned}
$$

By linearity of R and T_{x}, and by the Fourier inversion theorem, this shows that $R T_{x}(f)=T_{x} R(f)$ for all $f \in L(A)$, and (c) \Rightarrow (a) follows as well.

From the proof of the previous theorem (cf. equation (2.19)) we extract the following.

Corollary 2.4.11 Let $h \in L(A)$. Then $R_{h}(\chi)=\widehat{h}(\chi) \chi$ for every $\chi \in \widehat{A}$. In particular, R_{h} is diagonalizable, its eigenvectors are the characters of A, and its spectrum is given by $\sigma\left(R_{h}\right)=\{\widehat{h}(\chi): \chi \in \widehat{A}\}$.

Corollary 2.4.12 (Trace formula) Let $h \in L(A)$. Then

$$
\operatorname{Tr}\left(R_{h}\right)=\sum_{\chi \in \widehat{A}} \widehat{h}(\chi)=|A| h(0)
$$

Proof The first equality follows from the previous corollary since $\operatorname{Tr}\left(R_{h}\right)=$ $\sum_{\lambda \in \sigma\left(R_{h}\right)} \lambda$. The second equality follows from the Fourier inversion formula, keeping in mind that $\chi(0)=1$ for all $\chi \in \widehat{A}$.

Exercise 2.4.13 Consider the normalized Fourier transform (cf. Definition 2.4.1), that is, the map $\mathcal{F}: L(A) \rightarrow L(A)$ defined by

$$
\begin{equation*}
[\mathcal{F} f](x)=\frac{1}{\sqrt{|A|}} \widehat{f}\left(\chi_{x}\right)=\frac{1}{\sqrt{|A|}} \sum_{y \in A} f(y) \overline{\chi_{x}(y)} \tag{2.21}
\end{equation*}
$$

for all $f \in L(A)$ and $x \in A\left(\chi_{x}\right.$ as in Proposition 2.3.3).
(1) Show that $\mathcal{F} \in \operatorname{End}(L(A))$ and that it is an isometric bijection.
(2) Show that \mathcal{F}^{-1} is given by $\left[\mathcal{F}^{-1} f\right](x)=\frac{1}{\sqrt{|A|}} \widehat{f}\left(\chi_{-x}\right)$ for all $f \in L(A)$ and $x \in A$.

Definition 2.4.14 Let $f \in L(A)$. We define $f^{-} \in L(A)$ by setting $f^{-}(a)=$ $f(-a)$ for all $a \in A$. Then f is called even (respectively odd) if $f=f^{-}$ (respectively $f=-f^{-}$). Similarly, for $\varphi \in L(\widehat{A})$ we set $\varphi^{-}(\chi)=\varphi(\bar{\chi})$ and we say that φ is even if $\varphi=\varphi^{-}$.

Exercise 2.4.15 Let $h \in L(A)$.
(1) Show that $\widehat{h^{-}}=(\widehat{h})^{-}$. Deduce that h is even if and only if \widehat{h} is even;
(2) show that $\widehat{\bar{h}}=\overline{(\widehat{h})^{-}}$;
(3) deduce that the following conditions are equivalent:
(a) h is real valued and even;
(b) \widehat{h} is real valued and even;
(4) show that $\sigma\left(R_{h}\right) \subset \mathbb{R} \Leftrightarrow h=\bar{h}^{-}$.

Exercise 2.4.16 Let $n \geq 1$. A matrix of the form

$$
\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & \cdots & a_{n-1} \\
a_{n-1} & a_{0} & a_{1} & \cdots & \cdots & a_{n-2} \\
a_{n-2} & a_{n-1} & a_{0} & \cdots & \cdots & a_{n-3} \\
\vdots & \vdots & \vdots & \cdots & \cdots & \vdots \\
a_{1} & a_{2} & a_{3} & \cdots & \cdots & a_{0}
\end{array}\right)
$$

with $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{C}$ is said to be circulant. Denote by \mathcal{C}_{n} the set of all $n \times n$ circulant matrices.
(1) Let $R, S \in \mathcal{C}_{n}$ and $\alpha, \beta \in \mathbb{C}$. Show that $R S=S R$ and that $R S,(\alpha R+$ $\beta S) \in \mathcal{C}_{n}$. Deduce that \mathcal{C}_{n} is a commutative algebra with unit.
(2) Show that $R \in \mathcal{C}_{n}$ if and only if its adjoint $R^{*} \in \mathcal{C}_{n}$, so that \mathcal{C}_{n} is closed under adjunction.
(3) Let $\mathcal{B}=\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{n-1}\right\} \subset L\left(\mathbb{Z}_{n}\right)$ so that $f=\sum_{x=0}^{n-1} f(x) \delta_{x}$ for every $f \in L\left(\mathbb{Z}_{n}\right)$. Show that $R \in \operatorname{End}\left(L\left(\mathbb{Z}_{n}\right)\right)$ is a convolution operator if and only if the matrix representing it is circulant.
Hint. If $h \in L\left(\mathbb{Z}_{n}\right)$ is the kernel of R, then $R=R_{h}$ is represented, with respect to \mathcal{B} by the (circulant) matrix $(h(y-x))_{x, y \in \mathbb{Z}_{n}}$.

Deduce that \mathcal{C}_{n} is isomorphic to $L\left(\mathbb{Z}_{n}\right)$ as algebras.
(4) Let $\omega=\exp \left(\frac{2 i \pi}{n}\right) \in \mathbb{T}$ and set

$$
F_{n}=\frac{1}{\sqrt{n}}\left(\begin{array}{ccccc}
1 & 1 & \cdots & \cdots & 1 \tag{2.22}\\
1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\
1 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-2(n-1)} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \cdots & \omega^{-(n-1)^{2}}
\end{array}\right)
$$

Observe that $F_{n} \in \mathfrak{M}_{n}(\mathbb{C})$ is symmetric so that its adjoint F_{n}^{*} is equal to its conjugate $\overline{F_{n}}$. Show also that the orthogonality relations in Lemma 2.2.3 are equivalent to saying that F_{n} is a unitary matrix.
(5) Prove that a matrix $R \in \mathfrak{M}_{n}(\mathbb{C})$ is in \mathcal{C}_{n} if and only if $F_{n} R F_{n}^{*}$ is diagonal. The map $\mathcal{C}_{n} \ni R \mapsto F_{n} R F_{n}^{*} \in \Delta_{n}$, where $\Delta_{n} \subseteq \mathfrak{M}_{n}(\mathbb{C})$ denotes the subalgebra of all diagonal matrices, is called the discrete Fourier transform, briefly $D F T$, on \mathcal{C}_{n}.

2.5 Poisson's formulas and the uncertainty principle

In this section, following the monographs by Nathanson [118] and Terras [159], we treat the finite analogue of two basic properties of the classical Fourier Transform.

Let A be a finite Abelian group, B a subgroup of A, and consider the quotient group A / B.

For $f \in L(A / B)$ we define $\tilde{f} \in L(A)$ by setting $\tilde{f}(a)=f(a+B)$, for all $a \in A$. In other words, $\widetilde{f}=f \circ \pi$, where $\pi: A \rightarrow A / B$ is the canonical quotient map. \tilde{f} is called the inflation of f to A.

Note that the correspondence $f \mapsto \widetilde{f}$ yields an algebra isomorphism between $L(A / B)$ and the subalgebra of $L(A)$ consisting of all functions that are constant on the B-cosets. Moreover, if $\psi \in \widehat{A / B}$, then $\widetilde{\psi} \in \widehat{A}$: indeed $\widetilde{\psi}=\psi \circ \pi$ is a composition of group homomorphisms.

Exercise 2.5.1 Let $\chi \in \widehat{A}$. Show that there exists $\psi \in \widehat{A / B}$ such that $\chi=\widetilde{\psi}$ if and only if $\left.\chi\right|_{B} \equiv \mathbf{1}_{B}$.

Theorem 2.5.2 (Poisson summation formulas) Let $f \in L(A)$ and let $\mathcal{S} \subseteq A$ be a system of representatives of the B-cosets in A. Then

$$
\begin{equation*}
\frac{1}{|B|} \sum_{b \in B} f(b)=\frac{1}{|A|} \sum_{\psi \in \widehat{A / B}} \widehat{f}(\widetilde{\psi}) \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{c \in \mathcal{S}}\left|\sum_{b \in B} f(c+b)\right|^{2}=\frac{|B|}{|A|} \sum_{\psi \in \widehat{A / B}}|\widehat{f}(\widetilde{\psi})|^{2} . \tag{2.24}
\end{equation*}
$$

Proof Define $f^{\sharp} \in L(A)$ by setting

$$
f^{\sharp}(a)=\sum_{b \in B} f(a+b)
$$

for all $a \in A$. Clearly, f^{\sharp} is constant on the B-cosets in A. Moreover, for each $\chi \in \widehat{A}$,

$$
\begin{aligned}
\widehat{f^{\sharp}}(\chi) & =\sum_{a \in A} f^{\sharp}(a) \overline{\chi(a)} \\
& =\sum_{a \in A} \sum_{b \in B} f(a+b) \overline{\chi(a)} \\
(\text { setting } c=a+b) & =\sum_{c \in A} \sum_{b \in B} f(c) \overline{\chi(c-b)} \\
& =\left[\sum_{b \in B} \chi(b)\right] \cdot \widehat{f}(\chi) \\
\text { (by (2.12) applied to } \left.\left.\chi\right|_{B} \in \widehat{B}\right) & = \begin{cases}|B| \widehat{f}(\chi) & \text { if }\left.\chi\right|_{B}=\mathbf{1}_{B} \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

As a consequence, taking into account Exercise 2.5.1, $\widehat{f^{\sharp}}(\chi)$ equals $|B| \widehat{f}(\widetilde{\psi})$ if $\chi=\widetilde{\psi}$ for some $\psi \in \widehat{A / B}$, and vanishes otherwise.
Then, the Fourier inversion formula (cf. Theorem 2.4.2) applied to f^{\sharp} gives

$$
f^{\sharp}=\frac{|B|}{|A|} \sum_{\psi \in \widehat{A / B}} \widehat{f}(\widetilde{\psi}) \widetilde{\psi}
$$

that is,

$$
\frac{1}{|B|} \sum_{b \in B} f(b+a)=\frac{1}{|A|} \sum_{\psi \in \widehat{A / B}} \widehat{f}(\tilde{\psi}) \widetilde{\psi}(a)
$$

for all $a \in A$. In particular, when $a=0$ we get (2.23). Moreover, applying the Plancherel formula (cf. Theorem 2.4.3) to the function f^{\sharp}, we get

$$
\left\|f^{\sharp}\right\|_{L(A)}^{2}=\frac{1}{|A|}\left\|\widehat{f^{\sharp}}\right\|_{L(\widehat{A})}^{2}=\frac{|B|^{2}}{|A|} \sum_{\psi \in \widehat{A / B}}|\widehat{f}(\widetilde{\psi})|^{2} .
$$

Since

$$
\begin{aligned}
\left\|f^{\sharp}\right\|_{L(A)}^{2} & =\sum_{a \in A}\left|f^{\sharp}(a)\right|^{2} \\
& =\sum_{c \in \mathcal{S}} \sum_{b \in B}\left|f^{\sharp}(c+b)\right|^{2} \\
\text { (since } f^{\sharp} \text { is constant on } B \text {-cosets) } & =\sum_{c \in \mathcal{S}}|B| \cdot\left|f^{\sharp}(c)\right|^{2} \\
& =|B| \sum_{c \in \mathcal{S}}\left|\sum_{b \in B} f(c+b)\right|^{2},
\end{aligned}
$$

(2.24) follows.

For $f \in L(A)$ we set

$$
\begin{gathered}
\operatorname{supp}(f)=\{a \in A: f(a) \neq 0\} \subseteq A \\
\|f\|_{\infty}=\max \{|f(a)|: a \in A\}
\end{gathered}
$$

and

$$
\operatorname{supp}(\widehat{f})=\{\chi \in \widehat{A}: \widehat{f}(\chi) \neq 0\} \subseteq \widehat{A}
$$

Lemma 2.5.3 Let $f \in L(A)$. Then

$$
\|f\|_{L(A)}^{2} \leq\|f\|_{\infty}^{2} \cdot|\operatorname{supp}(f)|
$$

Proof This is a straightforward calculation:

$$
\begin{aligned}
\|f\|_{L(A)}^{2} & =\sum_{a \in A}|f(a)|^{2}=\sum_{a \in \operatorname{supp}(f)}|f(a)|^{2} \\
& \leq \sum_{a \in \operatorname{supp}(f)}\|f\|_{\infty}^{2}=\|f\|_{\infty}^{2} \cdot|\operatorname{supp}(f)|
\end{aligned}
$$

Theorem 2.5.4 (Uncertainty principle) Let $f \in L(A)$ and suppose that $f \neq 0$. Then

$$
\begin{equation*}
|\operatorname{supp}(f)| \cdot|\operatorname{supp}(\widehat{f})| \geq|A| \tag{2.25}
\end{equation*}
$$

Proof From the Fourier inversion formula (Theorem 2.4.2) and the fact
$\|\chi\|_{\infty} \leq 1$ for all $\chi \in \widehat{A}$, we deduce that, for every $a \in A$,

$$
\begin{aligned}
|f(a)| & =\frac{1}{|A|}\left|\sum_{\chi \in \widehat{A}} \widehat{f}(\chi) \chi(a)\right| \\
& \leq \frac{1}{|A|} \sum_{\chi \in \widehat{A}}|\widehat{f}(\chi)| \\
& =\frac{1}{|A|} \sum_{\chi \in \operatorname{supp}(\widehat{f})}|\widehat{f}(\chi)| .
\end{aligned}
$$

Taking the max over $a \in A$ and squaring, we get

$$
\left.\begin{array}{l}
\qquad\|f\|_{\infty}^{2}
\end{array} \leq \frac{1}{|A|^{2}}\left(\sum_{\chi \in \operatorname{supp}(\widehat{f})}|\widehat{f}(\chi)|\right)^{2}, ~\left(\sum_{\chi \in \widehat{A}} \mathbf{1}_{\operatorname{supp}(\widehat{f})}(\chi) \cdot|\widehat{f}(\chi)|\right)^{2}\right)
$$

Since $f \neq 0$ we have $\|f\|_{\infty}>0$ and therefore, comparing the first and the last term in the above formula, we get the desired inequality.

Remark 2.5.5 If we take $f=\delta_{0}$ (the Dirac function at the identity element of A), then $\left|\operatorname{supp}\left(\delta_{0}\right)\right|=1$, while $\widehat{\delta_{0}}(\chi)=\overline{\chi(0)}=1$ for all $\chi \in \widehat{A}$ so that $\left|\operatorname{supp}\left(\widehat{\delta_{0}}\right)\right|=|A|$. In this case, $\left|\operatorname{supp}\left(\widehat{\delta_{0}}\right)\right| \cdot\left|\operatorname{supp}\left(\delta_{0}\right)\right|=|A|$ showing that the lower bound in (2.25) is optimal.

2.6 Tao's uncertainty principle for cyclic groups

In this section we prove an uncertainty principle, due to Tao [157], which improves on the inequality (2.25) when the finite Abelian group A is cyclic of prime order. We first present some general preliminary material on number
theory together with some specific tools developed in [157]. Recall that $\mathbb{Z}[x]$ denotes the ring of polynomials with integer coefficients.

Proposition 2.6.1 (Eisenstein's criterion) Let $q(x)=a_{0}+a_{1} x+\cdots+$ $a_{n} x^{n} \in \mathbb{Z}[x]$. Suppose that there exists a prime p such that
(i) p divides $a_{0}, a_{1}, \ldots, a_{n-1}$;
(ii) p does not divide a_{n};
(iii) p^{2} does not divide a_{0}.

Then the polynomial q is irreducible over \mathbb{Z}.
Proof By contradiction, suppose that

$$
q(x)=\left(b_{0}+b_{1} x+\cdots+b_{n-k} x^{n-k}\right)\left(c_{0}+c_{1} x+\cdots+c_{k} x^{k}\right)
$$

with $1 \leq k<n$ and $b_{0}, b_{1}, \cdots, b_{n-k}, c_{0}, c_{1}, \ldots, c_{k} \in \mathbb{Z}$. Then we have

$$
\begin{cases}a_{0} & =b_{0} c_{0} \\ a_{1} & =b_{0} c_{1}+b_{1} c_{0} \\ a_{2} & =b_{0} c_{2}+b_{1} c_{1}+b_{2} c_{0} \\ \cdots & \cdots \\ a_{n} & =b_{n-k} a_{k} .\end{cases}
$$

Since a_{0} is divisible by p but not by p^{2}, only one of the integers b_{0}, c_{0} is divisible by p. Suppose that b_{0} is divisible by p and c_{0} is not. Since a_{1} is divisible by p, this forces b_{1} to be divisible by p. Continuing this way, we deduce that b_{2}, b_{3}, \ldots are divisible by p until we arrive to

$$
a_{n-k}=b_{0} c_{n-k}+b_{1} c_{n-k-1}+\cdots+b_{n-k-1} c_{1}+b_{n-k} c_{0}
$$

which forces b_{n-k} to be divisible by p. But this contradicts the second assumption, because $a_{n}=b_{n-k} c_{k}$.

Example 2.6.2 Let p be a prime number. Then, the polynomial $q(x)=$ $1+x+x^{2}+\cdots+x^{p-2}+x^{p-1}$ is irreducible over \mathbb{Z}. Indeed, we have

$$
q(x+1)=\frac{(x+1)^{p}-1}{(x+1)-1}=\binom{p}{p-1}+\binom{p}{p-2} x+\cdots+\binom{p}{1} x^{p-2}+x^{p-1} .
$$

Since $\binom{p}{k}=\frac{p!}{k!(p-k)!}, k=1,2, \ldots, p-1$, is an integer divisible by p and $\binom{p}{p-1}=p$ is not divisible by p^{2}, by virtue of Eisenstein's criterion we deduce that $q(x+1)$ (and therefore $q(x)$) is irreducible over \mathbb{Z}.

Definition 2.6.3 A polynomial $q(x) \in \mathbb{Z}[x]$ is called primitive if its coefficients are relatively prime and its leading coefficients is positive.

Clearly, any $q(x) \in \mathbb{Z}[x]$ may be represented in the form $q(x)= \pm c q_{1}(x)$, where $c \in \mathbb{N}$ is the greatest common divisor of its coefficients and $q_{1}(x)$ is primitive. Also, any $f(x) \in \mathbb{Q}[x]$ may be represented in the form $f(x)=$ $\frac{c}{d} q(x)$, where $q(x) \in \mathbb{Z}[x]$ is primitive and $c, d \in \mathbb{Z}$.

Proposition 2.6.4 (Gauss lemma) The product of two primitive polynomials is primitive.

Proof By contradiction, suppose that $q_{1}(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}$ and $q_{2}(x)=b_{0}+b_{1} x+\cdots+b_{m-1} x^{m-1}+b_{m} x^{m}$ are primitive polynomials, but their product $q_{1}(x) q_{2}(x)=c_{0}+c_{1} x+\cdots+c_{n+m-1} x^{n+m-1}+c_{n+m} x^{n+m}$ is not. This means that there exists a prime p that divides all the coefficients $c_{0}, c_{1}, c_{2}, \ldots, c_{n+m-1}, c_{n+m}$. By the primitivity of $q_{1}(x)$ and $q_{2}(x)$, we can find i (respectively j) the minimal index such that a_{i} (respectively b_{j}) is not divisible by p. Then, in the expression

$$
c_{i+j}=a_{i} b_{j}+\left(a_{i-1} b_{j+1}+\cdots+a_{0} b_{j+i}+a_{i+1} b_{j-1}+\cdots+a_{i+j} b_{0}\right)
$$

all the summands are divisible by p except $a_{i} b_{j}$. Thus p does not divide c_{i+j}, and this is a contradiction.

Corollary 2.6.5 A polynomial $q(x) \in \mathbb{Z}[x]$ which is irreducible over \mathbb{Z} is also irreducible over \mathbb{Q}.

Proof Let $q(x) \in \mathbb{Z}[x]$ and suppose that it is reducible over \mathbb{Q}, say $q(x)=$ $f_{1}(x) f_{2}(x)$, where both $f_{1}(x)$ and $f_{2}(x)$ belong to $\mathbb{Q}[x]$ and are not-trivial ($\operatorname{deg} f_{1}, \operatorname{deg} f_{2}<\operatorname{deg} q$). For $i=1,2$, we can write

$$
f_{i}(x)=\frac{a_{i}}{b_{i}} q_{i}(x),
$$

where $q_{i}(x)$ is a primitive polynomial and $a_{i}, b_{i} \in \mathbb{Z}$ are relatively prime. Then

$$
\begin{equation*}
q(x)=\frac{a_{1} a_{2}}{b_{1} b_{2}}\left[q_{1}(x) q_{2}(x)\right] . \tag{2.26}
\end{equation*}
$$

Since both $q(x)$ and $q_{1}(x) q_{2}(x)$ are integer valued, $a_{1} a_{2}\left[q_{1}(x) q_{2}(x)\right]$ must be divisible by $b_{1} b_{2}$. Let $b_{1}=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{t}^{m_{t}}$ be the prime factorization of b_{1}. Consider the prime power $p_{1}^{m_{1}}$. It cannot divide all coefficients of $q_{1}(x) q_{2}(x)$ because, by Gauss lemma, this polynomial is primitive. Also, it cannot divide a_{1} because this is relatively prime with b_{1}. Therefore it must
divide a_{2}. Repeating the same argument with the other prime factors of b_{1} we deduce that b_{1} divides a_{2}. Similarly, b_{2} divides a_{1}. Thus, we can find $c_{1}, c_{2} \in \mathbb{Z}$ such that

$$
a_{1}=c_{1} b_{2} \quad \text { and } \quad a_{2}=c_{2} b_{1}
$$

Then (2.26) becomes

$$
q(x)=c_{1} c_{2} q_{1}(x) q_{2}(x)
$$

This shows that $q(x)$ is (also) reducible over \mathbb{Z}.

Corollary 2.6.6 Let $p(x), q(x) \in \mathbb{Z}[x]$ and suppose that $p(x)$ is primitive and divides $q(x)$ over \mathbb{Q}. Then $p(x)$ divides $q(x)$ over \mathbb{Z}.

Proof Let $f(x) \in \mathbb{Q}[x]$ such that $q(x)=p(x) f(x)$. Also write $f(x)=\frac{a}{b} r(x)$ with $r(x)$ a primitive polynomial and $a, b \in \mathbb{Z}$ relatively prime. Thus

$$
q(x)=\frac{a}{b} p(x) r(x)
$$

where the polynomials $q(x)$ and $p(x) r(x)$ both have integer coefficients. By Gauss lemma, $p(x) r(x)$ is primitive and this forces $b= \pm 1$, concluding the proof.

Definition 2.6.7 A complex number α is called algebraic provided it is a root of some polynomial $q(x) \in \mathbb{Z}[x]$, that is, $q(\alpha)=0$. A minimal polynomial of an algebraic number α is a primitive polynomial of least degree $q(x) \in \mathbb{Z}[x]$ such that $q(\alpha)=0$.

Clearly, a minimal polynomial is irreducible over \mathbb{Z} (and therefore over \mathbb{Q} by Corollary 2.6.5). In Proposition 2.6 .8 we shall establish its uniqueness. For the next proposition, we need the notion of a principal ideal. Roughly speaking, a principal ideal in a commutative unital ring \mathcal{R} is a subset of the form $\mathcal{I}=f \mathcal{R}$ for some $f \in \mathcal{R}$, called a generator of \mathcal{I} : we refer to Section 6.1 for a more comprehensive treatment of this and of other related notions.

Proposition 2.6.8 Let $\alpha \in \mathbb{C}$ be an algebraic number and let $p(x) \in \mathbb{Z}[x]$ be a minimal polynomial of α. Consider the ideal $\mathcal{I}=\{q(x) \in \mathbb{Z}[x]: q(\alpha)=0\}$. Then \mathcal{I} is principal and generated by $p(x)$. In particular, $p(x)$ is the unique primitive irreducible polynomial in \mathcal{I}.

Proof Consider the ideal $\widetilde{\mathcal{I}}=\{f(x) \in \mathbb{Q}[x]: f(\alpha)=0\}$ in $\mathbb{Q}[x]$. Since every ideal in $\mathbb{Q}[x]$ is principal (see Exercise 6.1 .6), $\widetilde{\mathcal{I}}$ is generated by some element $f_{0}(x)$ of least degree. By eliminating the denominators and changing signs
of all coefficients, if necessary, we may suppose that $f_{0}(x)$ belongs to $\mathbb{Z}[x]$ and is primitive. Let $q(x) \in \mathcal{I} \subseteq \widetilde{\mathcal{I}}$. Then we can find $f(x) \in \mathbb{Q}[x]$ such that $q(x)=f(x) f_{0}(x)$. Since $f_{0}(x)$ is primitive, from Corollary 2.6.6 we deduce that $f_{0}(x)$ divides $q(x)$ in $\mathbb{Z}[x]$. Moreover, if $q(x)=p(x)$, we deduce that $f_{0}(x)=p(x)$, by minimality of the degree of $p(x)$. This shows that \mathcal{I} is principal, generated by $p(x)$.

Example 2.6.9 Let p be a prime. Consider the algebraic number $\omega=$ $\exp \left(\frac{2 \pi i}{p}\right)$ and the polynomial $q(x)=\frac{x^{p}-1}{x-1}=1+x+x^{2}+\cdots+x^{p-1}$. Then $q(x)$ is irreducible (cf. Example 2.6.2) and $q(\omega)=0$. Then, by Proposition 2.6.8, $q(x)$ is the minimal polynomial of ω and every $f(x) \in \mathbb{Z}[x]$ such that $f(\omega)=0$ is a multiple of $q(x)$ in $\mathbb{Z}[x]$.

Proposition 2.6.10 Let $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in the variables $x_{1}, x_{2}, \ldots, x_{n}$ with integer coefficients. Suppose that, for some $i \neq j$,

$$
\left.P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right|_{x_{i}=x_{j}} \equiv 0
$$

Then there exists a polynomial $Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with integer coefficients such that $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{i}-x_{j}\right) Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Proof For the sake of simplicity, suppose that $i=1$ and $j=2$ so that $P\left(x_{1}, x_{1}, \ldots, x_{n}\right) \equiv 0$. Let us denote by $P_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (respectively $\left.P_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$ the sum of the monomials of $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with positive (respectively negative) coefficients so that

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)+P_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
$$

Note that

$$
P_{1}\left(x_{1}, x_{1}, \ldots, x_{n}\right)=-P_{2}\left(x_{1}, x_{1}, \ldots, x_{n}\right),
$$

since $P\left(x_{1}, x_{1}, \ldots, x_{n}\right) \equiv 0$. This implies that there exists a bijection between the monomials in $P_{1}\left(x_{1}, x_{1}, \ldots, x_{n}\right)$ and those in $P_{2}\left(x_{1}, x_{1}, \ldots, x_{n}\right)$. More precisely, let us fix $m>0$ and $k, k_{3}, \ldots, k_{n} \geq 0$; then the monomial $m x_{1}^{k} x_{3}^{k_{3}} \cdots x_{n}^{k_{n}}$ appears in $P_{1}\left(x_{1}, x_{1}, \ldots, x_{n}\right)$ if and only if $-m x_{1}^{k} x_{3}^{k_{3}} \cdots x_{n}^{k_{n}}$ appears in $P_{2}\left(x_{1}, x_{1}, \ldots, x_{n}\right)$. Suppose this is the case. Then we can find $m_{0}, m_{1}, \ldots, m_{k}$ and $n_{0}, n_{1}, \ldots, n_{k}$ nonnegative integers such that the sum of the monomials of $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ whose variables x_{i} have degree k_{i} for $i=1,2 \ldots, n$ and $k_{1}+k_{2}=k$ is

$$
\begin{equation*}
\sum_{\ell=0}^{k} m_{\ell} x_{1}^{k-\ell} x_{2}^{\ell} x_{3}^{k_{3}} \cdots x_{n}^{k_{n}}-\sum_{\ell=0}^{k} n_{\ell} x_{1}^{k-\ell} x_{2}^{\ell} x_{3}^{k_{3}} \cdots x_{n}^{k_{n}} \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{0}+m_{1}+\cdots+m_{k}=n_{0}+n_{1}+\cdots+n_{k}=m \tag{2.28}
\end{equation*}
$$

but also such that

$$
m_{\ell} \neq 0 \Rightarrow n_{\ell}=0 \quad n_{\ell} \neq 0 \Rightarrow m_{\ell}=0
$$

(because, otherwise, there would be a cancellation). By virtue of (2.28) with every monomial $x_{1}^{k-\ell} x_{2}^{\ell} x_{3}^{k_{3}} \cdots x_{n}^{k_{n}}$ such that $m_{\ell} \neq 0$ we can (arbitrarily but bijectively) associate a monomial $x_{1}^{k-h} x_{2}^{h} x_{3}^{k_{3}} \cdots x_{n}^{k_{n}}$ with $m_{h} \neq 0$ and $h \neq \ell$. Now, for $h>\ell$ we have the identity

$$
\begin{aligned}
x_{1}^{k-\ell} x_{2}^{\ell}-x_{1}^{k-h} x_{2}^{h} & =x_{2}^{\ell} x_{1}^{k-h}\left(x_{1}^{h-\ell}-x_{2}^{h-\ell}\right) \\
& =x_{2}^{\ell} x_{1}^{k-h}\left(x_{1}-x_{2}\right)\left(x_{1}^{h-\ell-1}+x_{1}^{h-\ell-2} x_{2}+\cdots+x_{2}^{h-\ell-1}\right)
\end{aligned}
$$

Exchanging h with ℓ we get the analogous identity for $h<\ell$. This shows that (2.27) is divisible by $x_{1}-x_{2}$.

Repeating the argument for each monomial $m x_{1}^{k} x_{3}^{k_{3}} \cdots x_{n}^{k_{n}}$ (with $m>0$ and $k, k_{3}, \ldots, k_{n} \geq 0$) appearing in $P_{1}\left(x_{1}, x_{1}, \ldots, x_{n}\right)$, we deduce that, in fact, $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is divisible by $x_{1}-x_{2}$.

Example 2.6.11 Consider the polynomial $P\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{1} x_{2}-2 x_{2}^{2}$. We have $P_{1}\left(x_{1}, x_{1}\right)=2 x_{1}^{2}$ and $P_{2}\left(x_{1}, x_{1}\right)=-2 x_{1}^{2}$, and $m=2$. Moreover, $m_{0}=m_{1}=1$ and $m_{2}=0$, while $n_{0}=n_{1}=0$ and $n_{2}=2$. We have $P\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}-x_{2}^{2}\right)+\left(x_{1} x_{2}-x_{2}^{2}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)+\left(x_{1}-x_{2}\right) x_{2}=$ $\left(x_{1}-x_{2}\right)\left(x_{1}+2 x_{2}\right)$, so that $Q\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}$.

Lemma 2.6.12 Let p be a prime, n a positive integer, and $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ a polynomial with integer coefficients. Suppose that $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ are (not necessarily distinct) pth roots of unity such that $P\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)=0$. Then $P(1,1, \ldots, 1)$ is divisible by p.

Proof Setting $\omega=\exp \left(\frac{2 \pi i}{p}\right)$ we can find integers $0 \leq k_{j} \leq p-1$ such that $\omega_{j}=\omega^{k_{j}}$, for $j=1,2, \ldots, n$.

Define the polynomials $q(x), r(x) \in \mathbb{Z}[x]$ by setting

$$
P\left(x^{k_{1}}, x^{k_{2}}, \ldots, x^{k_{n}}\right)=\left(x^{p}-1\right) q(x)+r(x)
$$

where $\operatorname{deg} r<p$. Then $r(\omega)=0$ and since $\operatorname{deg} r<p$ we deduce that $r(x)$ is a multiple of the minimal polynomial of ω, that is (cf. Example 2.6.9), $r(x)=m\left(1+x+x^{2}+\cdots+x^{p-1}\right)$ for some $m \in \mathbb{Z}$. It follows that $P(1,1, \ldots, 1)=r(1)=m p$.

Theorem 2.6.13 (Chebotarëv) Let p be a prime and $1 \leq n \leq p$. Let $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ (respectively $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$) be distinct elements in $\{0,1, \ldots, p-$ 1\}. Then the matrix

$$
A=\left(\exp \frac{2 \pi i \eta_{h} \xi_{k}}{p}\right)_{h, k=1}^{n}
$$

is non-singular.
Proof Set $\omega_{h}=\exp \left(\frac{2 \pi i \eta_{h}}{p}\right)$ for $h=1,2, \ldots, n$. Note that the $\omega_{h} \mathrm{~s}$ are distinct p th roots of unity and $A=\left(\omega_{h}^{\xi_{k}}\right)_{1=h, k}^{n}$. Define the polynomial $D\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (with integer coefficients) by setting

$$
D\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det}\left(x_{h}^{\xi_{k}}\right)_{h, k=1}^{n}
$$

As the determinant is an alternating form, we have $\left.D\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right|_{x_{h}=x_{k}} \equiv$ 0 whenever $1 \leq h \neq k \leq n$, so that, by recursively applying Proposition 2.6.10, we can find a polynomial $Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with integer coefficients such that

$$
\begin{equation*}
D\left(x_{1}, x_{2}, \ldots, x_{n}\right)=Q\left(x_{1}, x_{2}, \ldots, x_{n}\right) \prod_{1 \leq h<k \leq n}\left(x_{k}-x_{h}\right) \tag{2.29}
\end{equation*}
$$

To prove the theorem, it is equivalent to show that $Q\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right) \neq 0$ (because the $\omega_{h} \mathrm{~s}$ are all distinct) so that, by virtue of Lemma 2.6.12, it suffices to show that p does not divide $Q(1,1, \ldots, 1)$. For this, we need the next three lemmas. Let us first introduce some useful notation.

Given an n-tuple $\mathbf{k}=\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ of non-negative integers, we say that the (monomial) differential operator

$$
\begin{equation*}
L=L_{\mathbf{k}}=\left(x_{1} \frac{\partial}{\partial x_{1}}\right)^{k_{1}}\left(x_{2} \frac{\partial}{\partial x_{2}}\right)^{k_{2}} \cdots\left(x_{n} \frac{\partial}{\partial x_{n}}\right)^{k_{n}} \tag{2.30}
\end{equation*}
$$

is of type \mathbf{k} and order $\mathrm{o}(\mathbf{k})=k_{1}+k_{2}+\cdots+k_{n}$.
Lemma 2.6.14 Let L be a differential operator of type \mathbf{k} and $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $G\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ two polynomials. Then

$$
\begin{equation*}
L(F G)=\sum_{(\mathbf{i}, \mathbf{j})} L_{\mathbf{i}}(F) \cdot L_{\mathbf{j}}(G) \tag{2.31}
\end{equation*}
$$

where the sum runs over all pairs (\mathbf{i}, \mathbf{j}) such that (componentwise) $\mathbf{i}+\mathbf{j}=\mathbf{k}$. (and therefore $\mathrm{o}(\mathbf{i})+\mathrm{o}(\mathbf{j})=k)$.

Proof We proceed by induction on the order k of L. If $k=0$ then L is the identity and the statement is trivial. Suppose we have shown the statement for all differential operators of order $\leq k$ and let L be a differential operator of order $k+1$. Up to renaming the variables, we may suppose that $L=\left(x_{1} \frac{\partial}{\partial x_{1}}\right) L^{\prime}$, where L^{\prime} has order k. By the Leibniz rule and the inductive hypothesis we then have

$$
\begin{aligned}
L(F G) & =\left(x_{1} \frac{\partial}{\partial x_{1}}\right) L^{\prime}(F G) \\
& =\left(x_{1} \frac{\partial}{\partial x_{1}}\right) \sum_{(\mathbf{i}, \mathbf{j})} L_{\mathbf{i}}(F) \cdot L_{\mathbf{j}}(G) \\
& =\sum_{\left(\mathbf{i}^{\prime}, \mathbf{j}\right)} L_{\mathbf{i}^{\prime}}(F) \cdot L_{\mathbf{j}}(G)+\sum_{\left(\mathbf{i}, \mathbf{j}^{\prime}\right)} L_{\mathbf{i}}(F) \cdot L_{\mathbf{j}^{\prime}}(G)
\end{aligned}
$$

where $\mathbf{i}^{\prime}=\left(i_{1}+1, i_{2}, \ldots, i_{n}\right)$ and $\mathbf{j}^{\prime}=\left(j_{1}+1, j_{2}, \ldots, j_{n}\right)$, and, clearly, o $\left(\mathbf{i}^{\prime}\right)+$ $\mathrm{o}(\mathbf{j})=\mathrm{o}(\mathbf{i})+\mathrm{o}\left(\mathbf{j}^{\prime}\right)=k+1$.

Lemma 2.6.15 For $1 \leq j \leq n$ and $1 \leq h \leq j-1$ we have

$$
\begin{align*}
\left(x_{j} \frac{\partial}{\partial x_{j}}\right)^{h}\left(x_{j}-x_{1}\right)\left(x_{j}-x_{2}\right) \cdots & \left(x_{j}-x_{j-1}\right) \\
& =\sum_{t=1}^{h} a_{h, t} x_{j}^{t} \sum_{\mathbf{i}_{t}} \prod_{\substack{1 \leq i \leq j-1 \\
i \neq i_{1}, i_{2}, \ldots, i_{t}}}\left(x_{j}-x_{i}\right) \tag{2.32}
\end{align*}
$$

where $\sum_{\mathbf{i}_{t}}$ runs over all $\mathbf{i}_{t}=\left(i_{1}, i_{2}, \ldots, i_{t}\right)$ with $1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq j-1$ and the $a_{h, t}=a_{h, t}(j) s$ are non-negative integers such that $a_{h, h}=h$! In particular,

$$
\begin{aligned}
&\left(x_{j} \frac{\partial}{\partial x_{j}}\right)^{j-1}\left(x_{j}-x_{1}\right)\left(x_{j}-x_{2}\right) \cdots\left(x_{j}-x_{j-1}\right) \\
&=(j-1)! \\
& \quad x_{j}^{j-1} \\
& \quad+\text { terms containing at least one factor }\left(x_{j}-x_{i}\right)
\end{aligned}
$$

with $1 \leq i<j$.

Proof We proceed by induction on $h=1,2, \ldots, j-1$. For $h=1$ we have

$$
\begin{aligned}
\left(x_{j} \frac{\partial}{\partial x_{j}}\right)\left(x_{j}-\right. & \left.x_{1}\right)\left(x_{j}-x_{2}\right) \cdots\left(x_{j}-x_{j-1}\right) \\
= & x_{j}\left(x_{j}-x_{2}\right)\left(x_{j}-x_{3}\right) \cdots\left(x_{j}-x_{j-1}\right) \\
& \quad+\left(x_{j}-x_{1}\right) x_{j}\left(x_{j}-x_{3}\right) \cdots\left(x_{j}-x_{j-1}\right) \\
& +\cdots \\
& \quad+\left(x_{j}-x_{1}\right)\left(x_{j}-x_{2}\right) \cdots\left(x_{j}-x_{j-3}\right) x_{j}\left(x_{j}-x_{j-1}\right) \\
& \quad+\left(x_{j}-x_{1}\right)\left(x_{j}-x_{2}\right) \cdots\left(x_{j}-x_{j-2}\right) x_{j} \\
= & x_{j} \sum_{k=1}^{j-1}\left(x_{j}-x_{1}\right)\left(x_{j}-x_{2}\right) \cdots\left(\widehat{x_{j}-x_{k}}\right) \cdots\left(x_{j}-x_{j-1}\right)
\end{aligned}
$$

where the factor $\hat{\cdot}$ is omitted. Since $\left(x_{j} \frac{\partial}{\partial x_{j}}\right) x_{j}=x_{j}$, keeping in mind the previous calculation, we have

$$
\begin{aligned}
\left(x_{j} \frac{\partial}{\partial x_{j}}\right)^{2} & \left(x_{j}-x_{1}\right)\left(x_{j}-x_{2}\right) \cdots\left(x_{j}-x_{j-1}\right) \\
& =\left(x_{j} \frac{\partial}{\partial x_{j}}\right) x_{j} \sum_{k=1}^{j-1}\left(x_{j}-x_{1}\right) \cdots\left(\widehat{x_{j}-x_{k}}\right) \cdots\left(x_{j}-x_{j-1}\right) \\
& =x_{j} \sum_{k=1}^{j-1}\left(x_{j}-x_{1}\right) \cdots\left(\widehat{x_{j}-x_{k}}\right) \cdots\left(x_{j}-x_{j-1}\right) \\
& +2 x_{j}^{2} \sum_{1 \leq k<k^{\prime} \leq j-1}\left(x_{j}-x_{1}\right) \cdots\left(\widehat{x_{j}-x_{k}}\right) \cdots\left(\widehat{x_{j}-x_{k^{\prime}}}\right) \cdots\left(x_{j}-x_{j-1}\right)
\end{aligned}
$$

Suppose we have proved the formula (2.32) for $h<j-1$. Then

$$
\begin{aligned}
& \left(x_{j} \frac{\partial}{\partial x_{j}}\right)^{h+1}\left(x_{j}-x_{1}\right)\left(x_{j}-x_{2}\right) \cdots\left(x_{j}-x_{j-1}\right) \\
& =\left(x_{j} \frac{\partial}{\partial x_{j}}\right) \sum_{t=1}^{h} a_{h, t} x_{j}^{t} \sum_{\mathbf{i}_{t}} \prod_{\substack{1 \leq i \leq j-1 \\
i \neq i_{1}, i_{2}, \ldots, i_{t}}}\left(x_{j}-x_{i}\right) \\
& =\sum_{t=1}^{h} a_{h, t} t x_{j}^{t} \sum_{\mathbf{i}_{t}} \prod_{\substack{1 \leq i \leq j-1 \\
i \neq i_{1}, i_{2}, \ldots, i_{t}}}\left(x_{j}-x_{i}\right) \\
& \quad+\sum_{t=1}^{h} a_{h, t} x_{j}^{t+1} \sum_{\mathbf{i}_{t+1}}(t+1) \prod_{\substack{1 \leq i \leq j-1 \\
i \neq i_{1}, i_{2}, \ldots, i_{t+1}}}\left(x_{j}-x_{i}\right) \\
& =\sum_{t=1}^{h+1} a_{h+1, t} x_{j}^{t} \sum_{\mathbf{i}_{t}} \prod_{\substack{1 \leq i \leq j-1 \\
i \neq i_{1}, i_{2}, \ldots, i_{t}}}\left(x_{j}-x_{i}\right),
\end{aligned}
$$

where

$$
a_{h+1, t}= \begin{cases}a_{h, t} t+a_{h, t-1} t & \text { for } t=1,2, \ldots, h \\ a_{h, h}(h+1)=(h+1)! & \text { for } t=h+1\end{cases}
$$

Lemma 2.6.16 Let $L=L_{(0,1, \ldots, n-1)}$, that is,

$$
L=\left(x_{1} \frac{\partial}{\partial x_{1}}\right)^{0}\left(x_{2} \frac{\partial}{\partial x_{2}}\right)^{1} \cdots\left(x_{n} \frac{\partial}{\partial x_{n}}\right)^{n-1}
$$

Then if $D\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ are as in (2.29), we have

$$
\begin{equation*}
[L D](1,1, \ldots, 1)=\prod_{j=1}^{n}(j-1)!Q(1,1, \ldots, 1) \tag{2.33}
\end{equation*}
$$

Proof By virtue of Lemma 2.6.14 and Lemma 2.6.15 we have

$$
\begin{aligned}
{[L D]\left(x_{1}, x_{2}, \ldots, x_{n}\right)=} & \prod_{j=1}^{n}(j-1)!x_{j}^{j-1} Q\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& + \text { terms containing at least one factor }\left(x_{j}-x_{i}\right)
\end{aligned}
$$

with $1 \leq i<j$. In particular, taking $x_{i}=1$ for $i=1,2, \ldots, n$ we deduce (2.33).

End of the proof of Theorem 2.6.13 For L as in Lemma 2.6.16 we have (where \mathfrak{S}_{n} denotes the symmetric group of degree n)

$$
\begin{aligned}
{[L D]\left(x_{1}, x_{2}, \ldots, x_{n}\right) } & =L \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) x_{1}^{\xi_{\sigma(1)}} x_{2}^{\xi_{\sigma(2)}} \cdots x_{n}^{\xi_{\sigma(n)}} \\
& =\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \xi_{\sigma(1)}^{0} x_{1}^{\xi_{\sigma(1)}} \xi_{\sigma(2)}^{1} x_{2}^{\xi_{\sigma(2)}} \cdots \xi_{\sigma(n)}^{n-1} x_{n}^{\xi_{\sigma(n)}}
\end{aligned}
$$

since

$$
\left(x_{j} \frac{\partial}{\partial x_{j}}\right)^{j-1} x_{j}^{\xi_{\sigma(j)}}=\xi_{\sigma(j)}^{j-1} x_{j}^{\xi_{\sigma(j)}}
$$

for all $j=1,2, \ldots, n$. Thus

$$
\begin{aligned}
{[L D](1,1, \ldots, 1) } & =\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \xi_{\sigma(1)}^{0} \xi_{\sigma(2)}^{1} \cdots \xi_{\sigma(n)}^{n-1} \\
& =\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\xi_{1} & \xi_{2} & \cdots & \xi_{n} \\
\xi_{1}^{2} & \xi_{2}^{2} & \cdots & \xi_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{1}^{n-1} & \xi_{2}^{n-1} & \cdots & \xi_{n}^{n-1}
\end{array}\right|=\prod_{1 \leq i<j \leq n}\left(\xi_{j}-\xi_{i}\right)
\end{aligned}
$$

is the Vandermonde determinant (see, e.g., [91]). Since $\xi_{j} \neq \xi_{i}$ for $1 \leq i<$ $j \leq n$, we deduce that $[L D](1,1, \ldots, 1)$ is not divisible by p. Since also $\prod_{j=1}^{n}(j-1)$! is not divisible by p (because $n \leq p$), from (2.33) we deduce that $Q(1,1, \ldots, 1)$ is not divisible by p either. By virtue of Lemma 2.6.12, this completes the proof of Theorem 2.6.13.

Given a non-empty subset $A \subseteq \mathbb{Z}_{p}$ and a function $f \in L(A)$, in the following we shall denote by \bar{f} its extension $\bar{f}: \mathbb{Z}_{p} \rightarrow \mathbb{C}$ defined by setting $\bar{f}(z)=0$ for all $z \in \mathbb{Z}_{p} \backslash A$. For simplicity, we regard the DFT as a map $L\left(\mathbb{Z}_{p}\right) \rightarrow L\left(\mathbb{Z}_{p}\right)$. In other words, for $f \in L\left(\mathbb{Z}_{p}\right)$ and $x \in \mathbb{Z}_{p}$,

$$
\widehat{f}(x)=\frac{1}{p} \sum_{y \in \mathbb{Z}_{p}} f(y) \omega^{-x y}
$$

see also Exercise 2.4.13.
Corollary 2.6.17 Let p be a prime. Let $A, B \subseteq \mathbb{Z}_{p}$ such that $|A|=|B|$. Then the linear map $T=T_{A, B}: L(A) \rightarrow L(B)$ defined by $T f=\left.\widehat{\bar{f}}\right|_{B}$ is invertible.

Proof Set $A=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}$ and $B=\left\{\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right\}$ and consider the
basis of $L(A)$ (respectively, of $L(B)$) consisting of the Dirac functions $\delta_{\xi_{j}}$, with $j=1,2, \ldots, n$ (respectively, $\delta_{\eta_{k}}$, with $k=1,2, \ldots, n$), and let $\omega=$ $\exp (2 \pi i / p)$. Then we have

$$
\left[T \delta_{\xi_{k}}\right]\left(\eta_{h}\right)=\widehat{\delta_{\xi_{k}}}\left(\eta_{h}\right)=\sum_{x \in \mathbb{Z}_{p}} \delta_{\xi_{k}}(x) \omega^{-x \eta_{h}}=\omega^{-\eta_{h} \xi_{k}}
$$

By virtue of Theorem 2.6 .13 we have $\operatorname{det}\left(\left[T \delta_{\xi_{k}}\right]\left(\eta_{h}\right)\right)_{h, k=1}^{n} \neq 0$, showing that T is indeed invertible.

We are now in position to state and prove the main result of this section.
Theorem 2.6.18 (Tao) Let p be a prime number and $f \in L\left(\mathbb{Z}_{p}\right)$ non-zero. Then

$$
|\operatorname{supp}(f)|+|\operatorname{supp}(\widehat{f})| \geq p+1
$$

Conversely, if $\varnothing \neq A, A^{\prime} \subseteq \mathbb{Z}_{p}$ are two subsets such that $|A|+\left|A^{\prime}\right|=p+1$, then there exists $f \in L\left(\mathbb{Z}_{p}\right)$ such that $\operatorname{supp}(f)=A$ and $\operatorname{supp}(\widehat{f})=A^{\prime}$.

Proof Suppose, by contradiction, that, setting $\operatorname{supp}(f)=A$ and $\operatorname{supp}(\widehat{f})=$ C, one has $|A|+|C| \leq p$. Then we can find a subset $B \subseteq \mathbb{Z}_{p}$ such that $|B|=|A|$ and $C \cap B=\varnothing$. We deduce that $T f=\left.\widehat{\bar{f}}\right|_{B}$ is identically zero. Since $f \not \equiv 0$, this contradicts injectivity of T (Corollary 2.6.17).

Conversely, let $\varnothing \neq A, A^{\prime} \subseteq \mathbb{Z}_{p}$ be two subsets such that $|A|+\left|A^{\prime}\right|=p+1$. Let $B \subseteq \mathbb{Z}_{p}$ such that $|B|=|A|$ and $B \cap A^{\prime}$ reduces to a single element, say ξ. Note that $\left(\mathbb{Z}_{p} \backslash B\right) \cup\{\xi\} \supseteq A^{\prime}$ so that, by taking cardinalities, $\left|A^{\prime}\right|=p+1-|A|=p-|B|+1=\left|\left(\mathbb{Z}_{p} \backslash B\right) \cup\{\xi\}\right| \geq\left|A^{\prime}\right|$ which yields

$$
\begin{equation*}
\left(\mathbb{Z}_{p} \backslash B\right) \cup\{\xi\}=A^{\prime} \tag{2.34}
\end{equation*}
$$

Consider the map $T=T_{A, B}: L(A) \rightarrow L(B)$. By Corollary 2.6.17, we can find $g \in L(A)$ such that $T g=\left.\delta_{\xi}\right|_{B}$ so that $\widehat{\bar{g}}$ vanishes on $B \backslash\{\xi\}$ but $\widehat{\bar{g}}(\xi) \neq 0$. Setting $f=\bar{g} \in L\left(\mathbb{Z}_{p}\right)$ we clearly have $\operatorname{supp}(f) \subseteq A$ and $\operatorname{supp}(\widehat{f}) \subseteq\left(\mathbb{Z}_{p} \backslash B\right) \cup$ $\{\xi\}$. Let us show that indeed $\operatorname{supp}(f)=A$ and, moreover, $\operatorname{supp}(\widehat{f})=A^{\prime}$. By the first part of the theorem we have
$p+1 \leq|\operatorname{supp}(f)|+\left|\operatorname{supp}(\widehat{f}) \leq|A|+\left|\mathbb{Z}_{p} \backslash B\right|+1=|A|+(p-|B|)+1=p+1\right.$ so that all inequalities above are indeed equalities. In particular, $\operatorname{supp}(f)=$ A and $\operatorname{supp}(\widehat{f})=\left(\mathbb{Z}_{p} \backslash B\right) \cup\{\xi\}=A^{\prime}$, where the last equality follows from (2.34).

3

Dirichlet's theorem on primes in arithmetic progressions

In this chapter, we give an exposition on the celebrated Dirichlet theorem on primes in arithmetic progressions. It states that, if r and m are relatively prime positive integers, then the arithmetic progression $r, r+m, r+$ $2 m, \ldots, r+k m, \ldots$ contains infinitely many primes. For instance, there are infinitely many primes numbers of the form $1+4 k, k \in \mathbb{N}$. There are several proofs of this theorem: some of them are based on algebraic number theory (see the monograph by Weyl [166]), other on analytic number theory (see the monograph by Serre [144]), but also elementary proofs are available (see the paper by Selberg [143]). By an elementary proof we mean a proof that does not use sophisticated methods of complex variables, algebraic geometry, or cohomology theory, but it may be technically very difficult.

Here, the character theory of finite Abelian groups is an essential ingredient, in particular, in order to define Dirichlet L-functions, which constitute one of the central objects in number theory. We have chosen to follow the exposition in the beautiful book by Stein and Shakarchi [150]. The authors have managed to reduce the proof to the use of very elementary analysis. We have also taken some material from the book by Knapp [88]. Other proofs may be found in the monographs by Apostol [13], Ireland and Rosen [79], and Nathanson [118].

3.1 Analytic preliminaries

In this section, we establish some elementary results on real and complex series. As in our main source [150], we avoid the use of complex analysis: just elementary properties of real and complex series will be used (up to and including existence of the radius of convergence for real and complex power series, elementary properties of uniform convergence, and differentiability of real power series). In several points we closely follow the exposition in [88].

From the well known expansion $\log (1+t)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} t^{k}$, for $t \in(-1,1]$ we deduce that

$$
\log \frac{1}{1-t}=-\log (1-t)=\sum_{k=1}^{\infty} \frac{t^{k}}{k}
$$

for $t \in[-1,1)$. We then define

$$
\begin{equation*}
\log \frac{1}{1-z}=\sum_{k=1}^{\infty} \frac{z^{k}}{k} \tag{3.1}
\end{equation*}
$$

for all $z \in \mathbb{C},|z|<1$. With exp we denote the usual complex exponential: $\exp (x+i y)=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)$ for all $x, y \in \mathbb{R}$. Also, $\Re z$ denotes the real part of $z \in \mathbb{C}$.

Proposition 3.1.1

(i) $|z|<1$ if and only if $\Re \frac{1}{1-z}>\frac{1}{2}$.
(ii) $\exp \left(\log \frac{1}{1-z}\right)=\frac{1}{1-z}$ for all $|z|<1$.
(iii) $\log \frac{1}{1-z}=z+R(z)$ where the error term $R(z)$ satisfies $|R(z)|<|z|^{2}$ if $|z|<\frac{1}{2}$.
(iv) $\left|\log \frac{1}{1-z}\right| \leq \frac{3}{2}|z|$, if $|z|<\frac{1}{2}$.

Proof (i) Setting $w=\frac{1}{1-z}$ we have $z=\frac{w-1}{w}$ and

$$
|z|<1 \Leftrightarrow|w-1|<|w| \Leftrightarrow \Re w>\frac{1}{2} .
$$

(ii) Consider the polar expression of z given by $z=\rho e^{i \theta}$ with $\rho \geq 0$ and $\theta \in \mathbb{R}$. We then have to show that

$$
\begin{equation*}
\left(1-\rho e^{i \theta}\right) \exp \left(\sum_{k=1}^{\infty} \frac{\rho^{k} e^{i k \theta}}{k}\right)=1 \tag{3.2}
\end{equation*}
$$

For $\rho=0$ it is trivially satisfied. By differentiating with respect to the real variable ρ, we get

$$
\begin{aligned}
& \frac{d}{d \rho}\left[\left(1-\rho e^{i \theta}\right) \exp \left(\sum_{k=1}^{\infty} \frac{\rho^{k} e^{i k \theta}}{k}\right)\right] \\
& =\left[-e^{i \theta}+\left(1-\rho e^{i \theta}\right) e^{i \theta} \sum_{k=1}^{\infty}\left(\rho e^{i \theta}\right)^{k-1}\right] \exp \left(\log \frac{1}{1-z}\right)
\end{aligned}
$$

which vanishes since $\sum_{k=0}^{\infty}\left(\rho e^{i \theta}\right)^{k}=\frac{1}{1-\rho e^{i \theta}}$. Therefore, the left hand side
of (3.2) is constant along each line $\theta=$ cost and it is equal to its value for $\rho=0$. Thus (3.2) follows.
(iii)

$$
\begin{aligned}
|R(z)| & =\left|\log \frac{1}{1-z}-z\right|=\left|\sum_{k=2}^{\infty} \frac{z^{k}}{k}\right| \\
& \leq \sum_{k=2}^{\infty} \frac{|z|^{k}}{k} \leq \frac{|z|^{2}}{2} \sum_{k=0}^{\infty}|z|^{k} \\
\text { (for } \left.|z|<\frac{1}{2}\right) & <\frac{|z|^{2}}{2} \sum_{k=0}^{\infty} \frac{1}{2^{k}}=|z|^{2} .
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\left|\log \frac{1}{1-z}\right| & \leq \sum_{k=1}^{\infty} \frac{|z|^{k}}{k} \\
& \leq|z|\left[1+\sum_{k=2}^{\infty} \frac{|z|^{k-1}}{2}\right] \\
\left(\text { for }|z|<\frac{1}{2}\right) & <|z|\left[1+\sum_{k=2}^{\infty} \frac{1}{2^{k}}\right] \\
& =\frac{3}{2}|z| .
\end{aligned}
$$

Definition 3.1.2 Let $\left(z_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers. The associated infinite product, denoted $\prod_{n=1}^{\infty} z_{n}$, is the limit of the partial products $z_{1} z_{2} \cdots z_{n}$ as n tends to infinity, in formulæ,

$$
\prod_{n=1}^{\infty} z_{n}=\lim _{n \rightarrow+\infty} \prod_{k=1}^{n} z_{k}
$$

The product is said to converge when the limit exists and is not zero. Otherwise, the product is said to diverge.

The following is one of the basic results in the theory of infinite products.
Proposition 3.1.3 Let $\left(z_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers and suppose that $\left|z_{n}\right|<1$ for all $n \in \mathbb{N}$. Then the infinite product $\prod_{n=1}^{\infty} \frac{1}{1-\left|z_{n}\right|}$ converges if and only if the series $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges. Moreover, if this is
the case, the infinite product $\prod_{n=1}^{\infty} \frac{1}{1-z_{n}}$ also converges and one has

$$
\begin{equation*}
\prod_{n=1}^{\infty} \frac{1}{1-z_{n}}=\exp \left(\sum_{n=1}^{\infty} \log \frac{1}{1-z_{n}}\right) \tag{3.3}
\end{equation*}
$$

Proof The only if part follows from the elementary inequalities

$$
1+\sum_{k=1}^{n}\left|z_{k}\right| \leq \prod_{k=1}^{n}\left(1+\left|z_{k}\right|\right) \leq \prod_{k=1}^{n} \frac{1}{1-\left|z_{k}\right|}
$$

Suppose now that $\sum_{n=1}^{\infty}\left|z_{n}\right|<+\infty$. Then $\lim _{n \rightarrow+\infty}\left|z_{n}\right|=0$ and, without loss of generality, we may assume that $\left|z_{n}\right|<\frac{1}{2}$. From Proposition 3.1.1.(ii) we get

$$
\begin{aligned}
\prod_{k=1}^{n} \frac{1}{1-\left|z_{k}\right|} & =\prod_{k=1}^{n} \exp \left(\log \frac{1}{1-\left|z_{k}\right|}\right) \\
& =\exp \left(\sum_{k=1}^{n} \log \frac{1}{1-\left|z_{k}\right|}\right)
\end{aligned}
$$

and Proposition 3.1.1.(iv) yields

$$
\left|\log \frac{1}{1-\left|z_{k}\right|}\right| \leq \frac{3}{2}\left|z_{k}\right|
$$

for all $k \in \mathbb{N}$. From our assumptions we then deduce that $\sum_{k=1}^{\infty} \log \frac{1}{1-\left|z_{k}\right|}$ converges absolutely. We conclude by invoking the continuity of exp. The proof of the convergence of $\prod_{n=1}^{\infty} \frac{1}{1-z_{n}}$ is analogous. Moreover, this limit is nonzero and equals $\lim _{n \rightarrow+\infty} \exp \left(\sum_{k=1}^{n} \log \frac{1}{1-z_{k}}\right)$.

In what follows, we will often use Abel's formula of summation by parts: if $\left(z_{n}\right)_{n \in \mathbb{N}}$ and $\left(w_{n}\right)_{n \in \mathbb{N}}$ are complex sequences, then setting $Z_{0}=0$ and $Z_{k}=\sum_{i=1}^{k} z_{i}$, for $k \geq 1$, one has

$$
\begin{equation*}
\sum_{k=m}^{n} z_{k} w_{k}=\sum_{k=m}^{n-1} Z_{k}\left(w_{k}-w_{k+1}\right)+Z_{n} w_{n}-Z_{m-1} w_{m} \tag{3.4}
\end{equation*}
$$

for all $1 \leq m \leq n$. The proof is just an easy exercise.
Definition 3.1.4 Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers. The associated Dirichlet series is the series given by

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

where s is a complex variable.

Let $A \subset \mathbb{C}$ and $\left(f_{n}\right)_{n \in \mathbb{N}}$ a sequence of complex functions. One says that the series $\sum_{n=1}^{\infty} f_{n}(z)$ is M-test convergent on A if there exists a sequence $\left(M_{n}\right)_{n \in \mathbb{N}}$ of positive real numbers such that

- $\left|f_{n}(z)\right| \leq M_{n}$ for all $z \in A$ and $n \geq 1$;
- $\sum_{n=1}^{\infty} M_{n}<+\infty$.

Clearly, M-test convergence on A implies both uniform and absolute convergence on A. In the following we regard a Dirichlet series as a series of complex functions.

Proposition 3.1.5 Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers. If the Dirichlet series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ is convergent for $s=s_{0}$ then it is uniformly convergent on each compact subset contained in $\left\{s \in \mathbb{C}: \Re s>\Re s_{0}\right\}$ and it is absolutely convergent at each $s \in \mathbb{C}$ such that $\Re s>\Re s_{0}+1$.

Proof According with the notation in (3.4), set

$$
z_{n}=\frac{a_{n}}{n^{s_{0}}}, \quad Z_{n}=\sum_{k=1}^{n} z_{k}, \quad \text { and } \quad w_{n}(s)=\frac{1}{n^{s-s_{0}}}
$$

for all $n \geq 1$. Then $\sum_{n=1}^{\infty} z_{n} w_{n}(s)$ coincides with the Dirichlet series. Moreover the following holds.
(i) The sequence $\left(Z_{n}\right)_{n \in \mathbb{N}}$ converges (by hypothesis); in particular, it is bounded: $\exists H>0$ such that $\left|Z_{n}\right| \leq H$ for all $n \geq 1$.
(ii) $\lim _{n \rightarrow+\infty} w_{n}(s)=0$ uniformly on each set $\{s \in \mathbb{C}: \Re s \geq \mu\}$ with $\mu>\Re s_{0}$. Indeed, for $\Re s \geq \mu>\Re s_{0}$ we have

$$
\left|n^{s-s_{0}}\right|=n^{\Re\left(s-s_{0}\right)} \geq n^{\mu-\Re s_{0}}
$$

so that $\left|\frac{1}{n^{s-s_{0}}}\right| \leq \frac{1}{n^{\mu-\Re s_{0}}}$ which tends to 0 as $n \rightarrow+\infty$.
(iii) The series $\sum_{n=1}^{\infty}\left|w_{n}(s)-w_{n+1}(s)\right|$ is M-test convergent on every compact set $A \subseteq\left\{s \in \mathbb{C}: \Re s>\Re s_{0}\right\}$. Indeed, if $\left|s-s_{0}\right| \leq \delta$ and
$\Re s-\Re s_{0} \geq \eta>0$, we have

$$
\begin{aligned}
\left|\frac{1}{n^{s-s_{0}}}-\frac{1}{(n+1)^{s-s_{0}}}\right| & =\left|\int_{n}^{n+1} \frac{s-s_{0}}{t^{s-s_{0}+1}} d t\right| \\
& \leq \sup _{n \leq t \leq n+1}\left|\frac{s-s_{0}}{t^{s-s_{0}+1}}\right| \\
& =\sup _{n \leq t \leq n+1} \frac{\left|s-s_{0}\right|}{t^{\Re\left(s-s_{0}\right)+1}} \\
& =\frac{\left|s-s_{0}\right|}{n^{\Re\left(s-s_{0}\right)+1}} \\
& \leq \frac{\delta}{n^{\eta+1}}
\end{aligned}
$$

Then we can apply Cauchy's criterion for uniform convergence:

$$
\begin{aligned}
\left|\sum_{k=m}^{n} \frac{a_{k}}{k^{s}}\right|= & \left|\sum_{k=m}^{n} z_{k} w_{k}(s)\right| \\
(\text { by }(3.4)) \leq & \sum_{k=m}^{n}\left|Z_{k}\right| \cdot\left|w_{k}(s)-w_{k+1}(s)\right| \\
& +\left|Z_{n}\right| \cdot\left|w_{n}(s)\right|+\left|Z_{m-1}\right| \cdot\left|w_{m}(s)\right| \\
\text { (by (i), (ii), and (iii)) } \leq & \sum_{k=m}^{n} \frac{H \delta}{k^{\eta+1}}+\frac{H}{n^{\mu-\Re s_{0}}}+\frac{H}{m^{\mu-\Re s_{0}}} .
\end{aligned}
$$

Thus, for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|\sum_{k=m}^{n} \frac{a_{k}}{k^{s}}\right|<\varepsilon$ for all $n \geq m \geq N$ and $s \in A$, and uniform convergence is proved.

Finally, if $\Re s>\Re s_{0}+1$ then, setting $\eta^{\prime}=\Re s-\Re s_{0}-1>0$, we have

$$
\left|\frac{a_{n}}{n^{s}}\right|=\left|\frac{a_{n}}{n^{s_{0}}}\right| \cdot\left|\frac{1}{n^{s-s_{0}}}\right|=\left|\frac{a_{n}}{n^{s_{0}}}\right| \cdot \frac{1}{n^{\Re s-\Re s_{0}}}=\left|\frac{a_{n}}{n^{s_{0}}}\right| \frac{1}{n^{1+\eta^{\prime}}}
$$

for all $n \geq 1$, so that boundedness of the sequence $\left(\left|\frac{a_{n}}{n^{s_{0}}}\right|\right)_{n \geq 1}$ yields absolute convergence of the Dirichlet series.

Remark 3.1.6 By a celebrated theorem of Weierstass (see [3, 133, 115]) if a series of analytic functions converges uniformly on each compact subset of a set $A \subset \mathbb{C}$, then the sum is analytic on A. Then Proposition 3.1.5 ensures that if a Dirichlet series converges at $s_{0} \in \mathbb{C}$ then it is analytic on the region $\left\{s \in \mathbb{C}: \Re s>\Re s_{0}\right\}$. We will not use this important fact.

Proposition 3.1.7 Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers. If the

Dirichlet series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ is absolutely convergent at $s=s_{0}$, then it is M-test convergent on $\left\{s \in \mathbb{C}: \Re s \geq \Re s_{0}\right\}$.

Proof Just note that

$$
\left|\frac{a_{n}}{n^{s}}\right|=\left|\frac{a_{n}}{n^{s_{0}}}\right| \cdot\left|\frac{1}{n^{s-s_{0}}}\right| \leq\left|\frac{a_{n}}{n^{s_{0}}}\right| \cdot \frac{1}{n^{\Re s-\Re s_{0}}} \leq\left|\frac{a_{n}}{n^{s_{0}}}\right|
$$

for all $n \geq 1$.
A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of complex numbers is called strictly multiplicative if

$$
\begin{equation*}
a_{1}=1 \quad \text { and } \quad a_{n m}=a_{n} a_{m} \text { for all } n, m \geq 1 \tag{3.5}
\end{equation*}
$$

We are now in position to state and prove one of the central results of this chapter. We use analytic methods to prove a number theoretical result from the algebraic property (3.5). Its consequence, Euler product formula (3.11), is a landmark in number theory.

Theorem 3.1.8 Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a strictly multiplicative sequence of complex numbers. Suppose that the associated Dirichlet series converges at $s \in \mathbb{C}$ and that $\left|a_{p}\right|<p^{s}$ for each prime p. Then for such an s, the Dirichlet series has the product expansion

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p \text { prime }} \frac{1}{1-a_{p} p^{-s}}
$$

Proof First of all, the infinite product in the right hand side converges by Proposition 3.1.3 applied to the sequence $\left(\frac{a_{p}}{p^{s}}\right)_{p \text { prime }}$. For $n, m \geq 1$ we set

$$
\begin{gathered}
P_{n}=\{p \text { prime }: p \leq n\}, \quad S_{n}=\sum_{k=1}^{n} \frac{a_{k}}{k^{s}}, \quad S=\sum_{k=1}^{\infty} \frac{a_{k}}{k^{s}}, \\
\Xi_{n, m}=\prod_{p \in P_{n}}\left(\sum_{h=0}^{m} \frac{a_{p^{h}}}{p^{h s}}\right)=\prod_{p \in P_{n}}\left(1+\frac{a_{p}}{p^{s}}+\frac{a_{p^{2}}}{p^{2 s}}+\cdots+\frac{a_{p^{m}}}{p^{m s}}\right), \\
\Xi_{n}=\prod_{p \in P_{n}} \frac{1}{1-a_{p} p^{-s}}, \quad \text { and } \quad \Xi=\prod_{p \text { prime }} \frac{1}{1-a_{p} p^{-s}} .
\end{gathered}
$$

Note that we have to prove that $S=\Xi$. Then, since $\left(a_{p}\right)^{k}=a_{p^{k}}$ (by strict multiplicativity), the formula for the sum of a geometric series and an easy
combinatorial argument yield

$$
\begin{align*}
\Xi_{n}-\Xi_{n, m} & =\prod_{p \in P_{n}}\left(\sum_{h=0}^{\infty} \frac{a_{p^{h}}}{p^{h s}}\right)-\prod_{p \in P_{n}}\left(\sum_{h=0}^{m} \frac{a_{p^{h}}}{p^{h s}}\right) \\
& =\prod_{p \in P_{n}}\left(\sum_{h=0}^{m} \frac{a_{p^{h}}}{p^{h s}}+\sum_{h=m+1}^{\infty} \frac{a_{p^{h}}}{p^{h s}}\right)-\prod_{p \in P_{n}}\left(\sum_{h=0}^{m} \frac{a_{p^{h}}}{p^{h s}}\right) \tag{3.6}\\
& =\sum_{\substack{A \subseteq P_{n} \\
A \neq \emptyset}}\left[\prod_{p \in P_{n} \backslash A}\left(\sum_{h=0}^{m} \frac{a_{p^{h}}}{p^{h s}}\right) \cdot \prod_{p \in A}\left(\sum_{h=m+1}^{\infty} \frac{a_{p^{h}}}{p^{h s}}\right)\right] .
\end{align*}
$$

For $n, m \geq 1$ we also set
$Q_{n, m}=\left\{k=p_{1}^{h_{1}} p_{2}^{h_{2}} \cdots p_{t}^{h_{t}}: p_{i}\right.$ prime, $\left.p_{1}, p_{2}, \ldots, p_{t} \leq n, h_{1}, h_{2}, \ldots, h_{t} \leq m\right\}$.
Clearly, $1 \in Q_{n, m}$. Since the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is strictly multiplicative, if $k=p_{1}^{h_{1}} p_{2}^{h_{2}} \cdots p_{t}^{h_{t}}$ then

$$
a_{k}=\left(a_{p_{1}}\right)^{h_{1}}\left(a_{p_{2}}\right)^{h_{2}} \cdots\left(a_{p_{t}}\right)^{h_{t}} \text { and } \frac{a_{k}}{k^{s}}=\frac{a_{p_{1}}^{h_{1}}}{p_{1}^{h_{1} s}} \frac{a_{p_{2}}^{h_{2}}}{p_{2}^{h_{2} s}} \cdots \frac{a_{p_{t}}^{h_{t}}}{p_{t}^{h_{t} s}} .
$$

Then

$$
\begin{equation*}
\Xi_{n, m}=\prod_{p \in P_{n}}\left(\sum_{h=0}^{m} \frac{a_{p^{h}}}{p^{h s}}\right)=\sum_{k \in Q_{n, m}} \frac{a_{k}}{k^{s}} \tag{3.7}
\end{equation*}
$$

because in evaluating the product we get all possible factorizations of integers in $Q_{n, m}$.

Let $\varepsilon>0$. By the convergence assumption, we can find an integer n_{ε} such that, for all $n>n_{\varepsilon}$,

$$
\begin{equation*}
\left|S_{n}-S\right|<\varepsilon \quad \text { and } \quad\left|\Xi_{n}-\Xi\right|<\varepsilon \tag{3.8}
\end{equation*}
$$

Fix $n>n_{\varepsilon}$. Then, by virtue of (3.6), for m sufficiently large we have

$$
\begin{align*}
\left|\Xi_{n}-\Xi_{n, m}\right| & \leq \sum_{\substack{A \subseteq P_{n}: \\
A \neq \emptyset}}\left[\prod_{p \in P_{n} \backslash A}\left(\sum_{h=0}^{m} \frac{\left|a_{p^{h}}\right|}{\left|p^{h s}\right|}\right) \cdot \prod_{p \in A}\left(\sum_{h=m+1}^{\infty} \frac{\left|a_{p^{h}}\right|}{\left|p^{h s}\right|}\right)\right] \\
& \leq 2^{\left|P_{n}\right|}\left(\sum_{k=1}^{\infty} \frac{\left|a_{k}\right|}{\left|k^{s}\right|}\right)^{\left|P_{n}\right|} \sum_{k=m+1}^{\infty} \frac{\left|a_{k}\right|}{\left|k^{s}\right|} \tag{3.9}\\
& <\varepsilon
\end{align*}
$$

because n is fixed, $\sum_{k=1}^{\infty} \frac{\left|a_{k}\right|}{\left|k^{s}\right|}$ converges, $A \neq \emptyset$, and, for any $p \in A$,

$$
\sum_{h=m+1}^{\infty} \frac{\left|a_{p^{h}}\right|}{\left|p^{h s}\right|} \leq \sum_{k=m+1}^{\infty} \frac{\left|a_{k}\right|}{\left|k^{s}\right|}
$$

which tends to 0 as $m \rightarrow+\infty$ (for the last inequality, just note that certainly $p^{m+1} \geq m+1$).

Moreover, if in addition $m \geq \log _{2} n$, we clearly have $Q_{n, m} \supseteq\{1,2, \ldots, n\}$. As a consequence, (3.7) and (3.8) imply that

$$
\begin{equation*}
\left|\Xi_{n, m}-S_{n}\right| \leq\left|\sum_{\substack{k \in Q_{n, m}: \\ k>n}} \frac{a_{k}}{k^{s}}\right| \leq \sum_{k=n+1}^{\infty} \frac{\left|a_{k}\right|}{\left|k^{s}\right|} \leq \varepsilon . \tag{3.10}
\end{equation*}
$$

Finally, from (3.8), (3.9), and (3.10), we deduce that

$$
|S-\Xi| \leq\left|S-S_{n}\right|+\left|S_{n}-\Xi_{n, m}\right|+\left|\Xi_{n, m}-\Xi_{n}\right|+\left|\Xi_{n}-\Xi\right| \leq 4 \varepsilon .
$$

As ε was arbitrary, this ends the proof.
If $a_{n}=1$ for all $n \in \mathbb{N}$, then the sequence is strictly multiplicative and the associated Dirichlet series is the celebrated Riemann zeta function

$$
\zeta(s)=\sum_{n=1} \frac{1}{n^{s}} .
$$

From the equality $\left|\frac{1}{n^{s}}\right|=\frac{1}{n^{\text {Rs }}}$ we deduce that this series converges absolutely at each $s \in \mathbb{C}$ with $\Re s>1$. From Theorem 3.1.8 we deduce, as a particular case, the Euler product formula

$$
\begin{equation*}
\zeta(s)=\prod_{p \text { prime }} \frac{1}{1-p^{-s}} \tag{3.11}
\end{equation*}
$$

for all $s \in \mathbb{C}$ with $\Re s>1$.

Remark 3.1.9

(i) Examining the proof of Theorem 3.1.8 in the case of the Riemann zeta function, that is, considering the expressions

$$
\frac{1}{n^{s}}=\frac{1}{p_{1}^{s h_{1}} p_{2}^{s h_{2}} \cdots p_{t}^{s h_{t}}} \quad \text { and } \quad \frac{1}{1-p^{-s}}=\sum_{h=0}^{\infty} \frac{1}{p^{s h}}
$$

the identity

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

may be seen as an analytic formulation of the fundamental theorem of arithmetic (see Exercise 1.1.9).
(ii) Actually, the Riemann zeta function has a meromorphic continuation on the whole \mathbb{C} with exactly one simple pole at $s=1$ with residue 1 . For this and other properties and applications of the Riemann zeta functions we refer to [151].

We end this section by analyzing two remarkable asymptotic estimates for partial sums of particular values of the Riemann zeta function.

Proposition 3.1.10

(i) There exists $\gamma>0$ (the so-called Euler-Mascheroni constant) such that, for all $n \geq 1$,

$$
\sum_{k=1}^{n} \frac{1}{k}=\log n+\gamma+\mathcal{O}\left(\frac{1}{n}\right)
$$

(ii) There exists $\sigma \in \mathbb{R}$ such that, for all $n \geq 1$,

$$
\sum_{k=1}^{n} \frac{1}{\sqrt{k}}=2 \sqrt{n}+\sigma+\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)
$$

Proof (i) Set

$$
\gamma_{k}=\frac{1}{k}-\int_{k}^{k+1} \frac{1}{x} d x
$$

Since $\frac{1}{k+1}<\frac{1}{x}<\frac{1}{k}$ for $k<x<k+1$, we get

$$
\frac{1}{k+1}<\int_{k}^{k+1} \frac{1}{x} d x<\frac{1}{k}
$$

so that

$$
\begin{equation*}
0<\gamma_{k}<\frac{1}{k}-\frac{1}{k+1} \tag{3.12}
\end{equation*}
$$

It follows that the series $\sum_{k=1}^{\infty} \gamma_{k}$ is convergent and has positive terms.
Let us define γ as the sum of such a series.

Let $n \geq 1$. From (3.12) we get

$$
\begin{aligned}
\sum_{k=n+1}^{\infty} \gamma_{k}=\lim _{m \rightarrow \infty} \sum_{k=n+1}^{m} \gamma_{k} \leq & \lim _{m \rightarrow \infty} \sum_{k=n+1}^{m}\left(\frac{1}{k}-\frac{1}{k+1}\right) \\
& =\lim _{m \rightarrow \infty}\left(\frac{1}{n+1}-\frac{1}{m+1}\right)=\frac{1}{n+1}<\frac{1}{n}
\end{aligned}
$$

Finally, from

$$
\begin{aligned}
\gamma-\sum_{k=n+1}^{\infty} \gamma_{k} & =\sum_{k=1}^{n} \frac{1}{k}-\sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{x} d x \\
& =\sum_{k=1}^{n} \frac{1}{k}-\int_{1}^{n+1} \frac{1}{x} d x \\
& =\sum_{k=1}^{n} \frac{1}{k}-\log (n+1)
\end{aligned}
$$

we deduce (using $\left.\frac{1}{n} \geq \log \left(1+\frac{1}{n}\right)=\log (n+1)-\log n>0\right)$ that

$$
\left|\sum_{k=1}^{n} \frac{1}{k}-\gamma-\log n\right|=\left|\log \left(1+\frac{1}{n}\right)-\sum_{k=n+1}^{\infty} \gamma_{k}\right| \leq \frac{2}{n}
$$

(ii) We set

$$
\eta_{k}=\frac{1}{\sqrt{k}}-\int_{k}^{k+1} \frac{1}{\sqrt{x}} d x
$$

Arguing as in the proof of (i), but replacing x and k by \sqrt{x} and \sqrt{k}, respectively, we get

$$
0<\eta_{k}<\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}
$$

which replaces (3.12). We deduce that the series $\sum_{k=1}^{\infty} \eta_{k}$ converges so that, denoting by η the sum of such a series, $\sum_{k=n+1}^{\infty} \eta_{k} \leq \frac{1}{\sqrt{n}}$ and

$$
\eta-\sum_{k=n+1}^{\infty} \eta_{k}=\sum_{k=1}^{n} \frac{1}{\sqrt{k}}-2 \sqrt{n+1}+2
$$

Finally, setting $\sigma=\eta-2$, we get

$$
\left|\sum_{k=1}^{n} \frac{1}{\sqrt{k}}-\sigma-2 \sqrt{n}\right|=\left|2(\sqrt{n+1}-\sqrt{n})-\sum_{k=n+1}^{\infty} \eta_{k}\right| \leq \frac{3}{\sqrt{n}}
$$

where the last inequality follows from $\sqrt{n+1}-\sqrt{n} \leq \frac{1}{\sqrt{n}}$.

We will also use the following elementary inequality: for $s>1$

$$
\begin{equation*}
\zeta(s) \leq 1+\sum_{n=2}^{\infty} \int_{n-1}^{n} \frac{1}{t^{s}} d t=1+\int_{1}^{+\infty} \frac{1}{t^{s}} d s=1+\frac{1}{s-1} \tag{3.13}
\end{equation*}
$$

where the inequality follows from $\frac{1}{n^{s}} \leq \frac{1}{t^{s}}$, for $n-1 \leq t \leq n$.

3.2 Preliminaries on multiplicative characters

In this section we consider the multiplicative characters of the ring $\mathbb{Z} / m \mathbb{Z}$, that is, the characters of the multiplicative Abelian group $\mathcal{U}(\mathbb{Z} / m \mathbb{Z})$ (see Section 1.4), where m is a positive integer. If $\psi \in \mathcal{U}(\widehat{\mathbb{Z} / m \mathbb{Z}})$ we extend it to the whole $\mathbb{Z} / m \mathbb{Z}$ by setting $\psi(x)=0$ if $x \in \mathbb{Z} / m \mathbb{Z}$ is not invertible and then we think of it as an m-periodic function defined on \mathbb{Z}. More precisely, if $\psi \in \mathcal{U}(\widehat{\mathbb{Z} / m \mathbb{Z}})$, the associated Dirichlet character $\chi=\chi_{\psi}$ is the function $\chi: \mathbb{Z} \rightarrow \mathbb{T} \cup\{0\}$ defined by setting

$$
\chi(n)= \begin{cases}\psi(\bar{n}) & \text { if } \operatorname{gcd}(n, m)=1 \\ 0 & \text { otherwise }\end{cases}
$$

for all $n \in \mathbb{Z}$, where, as usual, $\bar{n} \in \mathbb{Z} / m \mathbb{Z}$ denotes the class $n+m \mathbb{Z}$. Clearly, $\chi(1)=\psi(\overline{1})=1$ and $\chi(n k)=\chi(n) \chi(k)$ for all $k, n \in \mathbb{Z}$; thus a Dirichlet character is strictly multiplicative (see (3.5)). The principal Dirichlet character $\bmod m$, denoted by χ_{0}, is the extension of the trivial character, that is,

$$
\chi_{0}(n)= \begin{cases}1 & \text { if } \operatorname{gcd}(n, m)=1 \\ 0 & \text { otherwise }\end{cases}
$$

for all $n \in \mathbb{Z}$. We denote by $D C(m)$ the set of all Dirichlet characters $\bmod m$. From Corollary 1.5.3 and Corollary 2.3 .4 we deduce that $|D C(m)|=\varphi(m)$. If $\operatorname{gcd}(n, m)=1$, we define a variant Δ_{n} of the Dirac function, by setting,

$$
\Delta_{n}(k)= \begin{cases}1 & \text { if } k \equiv n \quad \bmod m \tag{3.14}\\ 0 & \text { otherwise }\end{cases}
$$

for all $k \in \mathbb{Z}$. In other words, Δ_{n} is the characteristic function of the class $\bar{n} \bmod m$. Clearly, for the Abelian multiplicative group $\mathcal{U}(\mathbb{Z} / m \mathbb{Z})$ a Fourier analysis (as described in Section 2.4) is still valid: we may translate it in terms of the Dirichlet characters, as follows.

Proposition 3.2.1 If $\operatorname{gcd}(n, m)=1$, then, for all $k \in \mathbb{Z}$,

$$
\Delta_{n}(k)=\frac{1}{\varphi(m)} \sum_{\chi \in D C(m)} \overline{\chi(n)} \chi(k)
$$

Proof The Fourier transform of Δ_{n} (assuming $0<n \leq m-1$) yields

$$
\widehat{\Delta_{n}}(\chi)=\sum_{h=0}^{m-1} \Delta_{n}(h) \chi(h)=\chi(n)
$$

for all $\chi \in D C(m)$. Then we may apply the Fourier inversion formula (2.16).

We now describe some specific technical results on the Dirichlet characters. We begin with a cancellation property.

Lemma 3.2.2 Let $\chi \in D C(m)$. If $\chi \neq \chi_{0}$, then

$$
\left|\sum_{k=1}^{n} \chi(k)\right|<m
$$

for all $n \in \mathbb{N}$.
Proof Indeed, the orthogonality relations for characters (Proposition 2.3.5) yield

$$
\sum_{k=h m+1}^{(h+1) m} \chi(k)=\sum_{k=h m+1}^{(h+1) m} \chi(k) \overline{\chi_{0}(k)}=0
$$

for all $h \in \mathbb{N}$. Therefore, if $n=q m+r$, with $0 \leq r<m$, we have

$$
\sum_{k=1}^{n} \chi(k)=\sum_{h=0}^{q-1} \sum_{k=h m+1}^{(h+1) m} \chi(k)+\sum_{k=q m+1}^{q m+r} \chi(k)=\sum_{k=1}^{r} \chi(k)
$$

so that

$$
\left|\sum_{k=1}^{n} \chi(k)\right| \leq \sum_{k=1}^{r}|\chi(k)| \leq r<m
$$

Lemma 3.2.3 For all $\chi \in D C(m), \chi \neq \chi_{0}$, and for all positive integers $h<n$, we have the following asymptotic estimates:

$$
\begin{equation*}
\sum_{k=h}^{n} \frac{\chi(k)}{\sqrt{k}}=\mathcal{O}\left(\frac{1}{\sqrt{h}}\right) \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=h}^{n} \frac{\chi(k)}{k}=\mathcal{O}\left(\frac{1}{h}\right) \tag{3.16}
\end{equation*}
$$

Proof First of all, by applying the mean value theorem to the function $f(x)=\frac{1}{\sqrt{x}}$ we get

$$
\frac{1}{\sqrt{k+1}}-\frac{1}{\sqrt{k}}=[(k+1)-k] f^{\prime}(\xi)=-\frac{1}{2 \xi^{3 / 2}}
$$

for some $\xi \in[k, k+1]$ so that

$$
\begin{equation*}
0 \leq \frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}} \leq \frac{1}{2 k \sqrt{k}} \tag{3.17}
\end{equation*}
$$

Using (3.4) with $z_{n}=\chi(n), w_{n}=\frac{1}{\sqrt{n}}$, and $Z_{n}=\sum_{k=1}^{n} \chi(k)$, we have

$$
\sum_{k=h}^{n} \frac{\chi(k)}{\sqrt{k}}=\sum_{k=h}^{n-1} Z_{k}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)+\frac{Z_{n}}{\sqrt{n}}-\frac{Z_{h-1}}{\sqrt{h}}
$$

But, by Lemma 3.2.2, $\left|Z_{k}\right| \leq m$, so that (3.17) yields

$$
\left|\sum_{k=h}^{n-1} Z_{k}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\right| \leq \frac{m}{2} \sum_{k=h}^{\infty} \frac{1}{k^{3 / 2}} \leq \frac{m}{2} \int_{h-1}^{+\infty} \frac{1}{x^{3 / 2}} d x=\frac{m}{\sqrt{h-1}} \leq \frac{2 m}{\sqrt{h}}
$$

for $h \geq 2$ which, together with the trivial estimate $\left|\frac{Z_{n}}{\sqrt{n}}-\frac{Z_{h-1}}{\sqrt{h}}\right| \leq \frac{2 m}{\sqrt{h}}$, proves (3.15). The proof of (3.16) is similar, but now one uses the inequality (for $h \geq 2$)

$$
\sum_{k=h}^{n-1}\left(\frac{1}{k}-\frac{1}{k+1}\right) \leq \sum_{k=h}^{\infty} \frac{1}{k^{2}} \leq \int_{h-1}^{+\infty} \frac{1}{x^{2}} d x=\frac{1}{h-1} \leq \frac{2}{h}
$$

Definition 3.2.4 A Dirichlet character $\chi \in D C(m)$ is called real if $\chi(n) \in \mathbb{R}$ (so that $\chi(n) \in\{-1,0,1\}$) for all $n \in \mathbb{Z}$.

Lemma 3.2.5 If $\chi \in D C(m)$ is real, then, for all $n \in \mathbb{N}$, we have

$$
\sum_{\substack{k \in \mathbb{N}: \\ k \mid n}} \chi(k) \geq \begin{cases}0 & \text { for all } n \in \mathbb{N} \\ 1 & \text { if } n \text { is a square }\end{cases}
$$

Proof If $n=p^{h}, p$ prime, then the divisors of n are $1, p, \ldots, p^{h-1}, p^{h}$ so that

$$
\begin{aligned}
\sum_{\substack{k \in \mathbb{N}: \\
k \mid n}} \chi(k) & =\chi(1)+\chi(p)+\cdots+\chi\left(p^{h-1}\right)+\chi\left(p^{h}\right) \\
& =\chi(1)+\chi(p)+\cdots+\chi(p)^{h-1}+\chi(p)^{h} \\
& = \begin{cases}h+1 & \text { if } \chi(p)=1 \\
1 & \text { if } \chi(p)=-1 \text { and } h \text { is even } \\
0 & \text { if } \chi(p)=-1 \text { and } h \text { is odd } \\
1 & \text { if } \chi(p)=0\end{cases}
\end{aligned}
$$

Note also that $\chi(p)=0$ if and only if $p \mid m$. If $n=p_{1}^{h_{1}} p_{2}^{h_{2}} \cdots p_{t}^{h_{t}}$ is the prime factorization of n as the product of distinct primes, then

$$
\sum_{\substack{k \in \mathbb{N}: \\ k \mid n}} \chi(k)=\prod_{j=1}^{t}\left[\chi(1)+\chi\left(p_{j}\right)+\chi\left(p_{j}\right)^{2}+\cdots+\chi\left(p_{j}\right)^{h_{j}}\right]
$$

so that the sum in the left hand side vanishes if and only if $\chi\left(p_{j}\right)=-1$ and h_{j} is odd for at least one $j \in\{1,2, \ldots, t\}$, otherwise the sum is ≥ 1.

For the last result of this section, we make use of a simple technique developed by Dirichlet (but for another problem in number theory, the socalled divisor problem; see [150]). For $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{C}$ and $h \in \mathbb{N}$ we set

$$
S_{h}=\sum_{\substack{n, k \in \mathbb{N}: \\ n k \leq h}} f(n, k)
$$

We can write this sum in the following useful ways:

$$
\begin{aligned}
S_{h} & =\sum_{\substack{\ell=1}}^{h} \sum_{\substack{n, k \in \mathbb{N}: \\
n k=\ell}} f(n, k) & & \text { (summation along hyperbolas) } \\
& =\sum_{n=1}^{h} \sum_{k=1}^{h / n} f(n, k) & & \text { (vertical summation) } \\
& =\sum_{k=1}^{h} \sum_{n=1}^{h / k} f(n, k) & & \text { (horizontal summation). }
\end{aligned}
$$

Proposition 3.2.6 Let $\chi \in D C(m), \chi \neq \chi_{0}$, and suppose that χ is real. Set

$$
f(n, k)=\frac{\chi(k)}{\sqrt{n k}}
$$

for all $n, k \geq 1$ and

$$
S_{h}=\sum_{\substack{n, k \in \mathbb{N}: \\ n k \leq h}} f(n, k)
$$

for all $h \geq 1$. Then there exists a constant $c>0$ such that, for all $h \geq 1$,

$$
S_{h} \geq c \log h
$$

Proof Using summation along hyperbolas, we get

$$
\begin{aligned}
& \qquad \begin{aligned}
S_{h} & =\sum_{\ell=1}^{h} \sum_{\substack{n, k \in \mathbb{N}: \\
n k=\ell}} \frac{\chi(k)}{\sqrt{n k}} \\
& =\sum_{\ell=1}^{h} \frac{1}{\sqrt{\ell}} \sum_{\substack{k \in \mathbb{N}: \\
k \mid \ell}} \chi(k) \\
\text { (by Lemma 3.2.5 and } \left.\ell=t^{2}\right) & \geq \sum_{t=1}^{\sqrt{h}} \frac{1}{t} \\
\text { (by Proposition 3.1.10.(i)) } & \geq c \log h,
\end{aligned} \$ \text {, }
\end{aligned}
$$

for some $c>0$ sufficiently small.

3.3 Dirichlet L-functions

Definition 3.3.1 Let $m \in \mathbb{N}$ and $\chi \in D C(m)$. The associated Dirichlet L-function is the complex function function $L(\cdot, \chi)$ defined by setting

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

for all $s \in \mathbb{C}$ where the series converges.
Since $|\chi(n)| \leq 1$ for all $n \in \mathbb{N}$, the function $L(s, \chi)$ is defined for all $s \in \mathbb{C}$ with $\Re s>1$, because for these values the series is absolutely convergent:

$$
\left|\frac{\chi(n)}{n^{s}}\right| \leq \frac{1}{n^{\Re s}}
$$

We limit ourselves to give the most elementary properties of L-functions, following again our main reference [150]. More extensive treatments may be found in $[13,81]$. For instance, $L(s, \chi)$ may be extended to an analytic
(respectively, meromorphic with just a simple pole at $s=1$) to the whole \mathbb{C}, if $\chi \neq \chi_{0}$ (respectively, $\chi=\chi_{0}$).

From Theorem 3.1.8, since any $\chi \in D C(m)$ is strictly multiplicative, we deduce that

$$
L(s, \chi)=\prod_{p \text { prime }} \frac{1}{1-\chi(p) p^{-s}} \quad \text { (Dirichlet formula) }
$$

for all $s \in \mathbb{C}$ with $\Re s>1$. In the case $\chi=\mathbf{1}$, Dirichlet formula reduces to Euler product formula (see (3.11)).

Proposition 3.3.2 Let $m=p_{1}^{h_{1}} p_{2}^{h_{2}} \cdots p_{t}^{h_{t}}$ be the factorization of m into powers of distinct primes, then

$$
L\left(s, \chi_{0}\right)=\prod_{j=1}^{t}\left(1-p_{j}^{-s}\right) \cdot \zeta(s)
$$

for all $s \in \mathbb{C}$ with $\Re s>1$.
Proof Indeed, by Dirichlet formula,

$$
L\left(s, \chi_{0}\right)=\prod_{\substack{p \\ p r i m e: \\ p \nmid m}} \frac{1}{1-p^{-s}}
$$

since

$$
\chi_{0}(p)= \begin{cases}1 & \text { if } p \nmid m \\ 0 & \text { if } p \mid m\end{cases}
$$

Following [150], we now focus our study to the case $s \in \mathbb{R}$, that is, we analyze $L(\cdot, \chi)$ mainly as a function of a real variable. This leads to a more elementary and simpler proof and more specific statements. However, note that, in general, $L(s, \chi) \in \mathbb{C}$, even if $s \in \mathbb{R}$.

Proposition 3.3.3 Let $\chi \in D C(m), \chi \neq \chi_{0}$. Then
(i) $L(s, \chi)$ converges for $s>0$ and the convergence is uniform on each compact subset of $(0,+\infty)$;
(ii) the map $s \mapsto L(s, \chi)$ is $C^{1}(0,+\infty)$;
(iii) for $s \rightarrow+\infty$

$$
L(s, \chi)=1+\mathcal{O}\left(2^{-s}\right) \quad \text { and } \quad L^{\prime}(s, \chi)=\mathcal{O}\left(2^{-s}\right)
$$

Proof (i) Set $z_{k}=\chi(k)$ and $w_{k}=\frac{1}{k^{s}}$ in the summation by parts formula (3.4). Then, Lemma 3.2.2 yields $\left|Z_{n}\right| \leq m$ for all $n \in \mathbb{N}$ and therefore, by (3.4), for $0<h \leq n$ and $s>0$,

$$
\left|\sum_{k=h}^{n} \frac{\chi(k)}{k^{s}}\right| \leq \sum_{k=h}^{n-1} m\left[\frac{1}{k^{s}}-\frac{1}{(k+1)^{s}}\right]+\frac{m}{h^{s}}+\frac{m}{n^{s}}=\frac{2 m}{h^{s}}
$$

which tends to 0 as $h \rightarrow+\infty$. Then, by the Cauchy criterion, the series defining $L(s, \chi)$ converges at all $s>0$ and, moreover, it converges uniformly on each compact set in $(0,+\infty)$, by Proposition 3.1.5.
(ii) First of all, note that if we set $g(x)=x^{-s} \log x$ for $x>0$, then $g^{\prime}(x)=x^{-s-1}(1-s \log x)$ and, for $x>1$,

$$
\begin{aligned}
\left|g^{\prime}(x)\right| & \leq x^{-s-1}(1+s \log x) \\
& =x^{-s-1}+x^{-s-1} \log x^{s} \\
& \leq 3 x^{-1-s / 2}
\end{aligned}
$$

since $x^{-s} \leq x^{-s / 2}$ and $\log x^{s}=2 \log x^{s / 2} \leq 2 x^{s / 2}$, for $x>1$ and $s>0$. By the mean value theorem, it follows that, for $k \in \mathbb{N}$,

$$
\begin{equation*}
\left|\frac{\log k}{k^{s}}-\frac{\log (k+1)}{(k+1)^{s}}\right| \leq \max _{[k, k+1]} g^{\prime}(x) \leq \frac{3}{k^{1+s / 2}} \tag{3.18}
\end{equation*}
$$

Then, by differentiating the series defining $L(s, \chi)$ we get

$$
L^{\prime}(s, \chi)=\sum_{n=2}^{\infty}-\frac{\log n}{n^{s}} \chi(n)
$$

Setting $z_{k}=\chi(k)$ and $w_{k}=\frac{\log k}{k^{s}}$ in (3.4) and using $\left|Z_{k}\right| \leq m$ as in (i), we get

$$
\begin{aligned}
\left|\sum_{k=h}^{n}-\frac{\log k}{k^{s}} \chi(k)\right| & \leq \sum_{k=h}^{n-1} m\left|\frac{\log (k+1)}{(k+1)^{s}}-\frac{\log k}{k^{s}}\right|+m \frac{\log h}{h^{s}}+m \frac{\log n}{n^{s}} \\
(\text { by }(3.18)) & \leq 3 m \sum_{k=h}^{n-1} \frac{1}{k^{1+s / 2}}+m \frac{\log h}{h^{s}}+m \frac{\log n}{n^{s}}
\end{aligned}
$$

which tends to 0 uniformly in $s \in[\delta,+\infty), \delta>0$, as $h<n$ tend to $+\infty$. In other words, the uniform convergence of $\sum_{k=1}^{\infty} \frac{1}{k^{1+s / 2}}$ in $[\delta,+\infty), \delta>0$, together with the Cauchy criterion, ensures the uniform convergence of the series of $L^{\prime}(s, \chi)$.
(iii) Fix $s_{0}>1$ and set $C=\sum_{n=2}^{\infty} \frac{1}{n^{s} 0}$. Then for $s \geq s_{0}$ we have

$$
\begin{aligned}
|L(s, \chi)-1| & \leq \sum_{n=2}^{\infty} \frac{1}{n^{s}} \\
& =2^{-s} \sum_{n=2}^{\infty} \frac{1}{(n / 2)^{s}} \\
& \leq 2^{-s} \sum_{n=2}^{\infty} \frac{1}{(n / 2)^{s_{0}}} \\
& =2^{s_{0}} C 2^{-s}=\mathcal{O}\left(2^{-s}\right)
\end{aligned}
$$

Similarly,

$$
\left|L^{\prime}(s, \chi)\right| \leq \sum_{n=2}^{\infty} \frac{\log n}{n^{s}}=2^{-s} \sum_{n=2}^{\infty} \frac{\log n}{(n / 2)^{s}}=\mathcal{O}\left(2^{-s}\right)
$$

Remark 3.3.4 Actually, from Proposition 3.3.3.(i) and elementary complex analysis, a stronger result than Proposition 3.3.3.(ii) follows, namely, that $L(s, \chi)$ is analytic on $\{s \in \mathbb{C}: \Re s>0\}$; see [88]. But, as mentioned at the beginning of this section, this is not the strongest result: $L(s, \chi)$ has an analytic continuation on the whole \mathbb{C}, if $\chi \neq \chi_{0}$.

Corollary 3.3.5 For $\chi \in D C(m), \chi \neq \chi_{0}$, the integral

$$
\int_{s}^{+\infty} \frac{L^{\prime}(t, \chi)}{L(t, \chi)} d t
$$

is convergent for all $s>1$.

Proof From Proposition 3.3.3.(iii) it follows that

$$
\frac{L^{\prime}(t, \chi)}{L(t, \chi)}=\mathcal{O}\left(2^{-t}\right)
$$

as $t \rightarrow+\infty$. Note also that $L(t, \chi) \neq 0$ for $t>1$, by Proposition 3.1.3 and Dirichlet product formula.

Proposition 3.3.6 For $s>1$ and $\chi \neq \chi_{0}$, define the logarithm of $L(s, \chi)$ by setting

$$
\log L(s, \chi)=-\int_{s}^{+\infty} \frac{L^{\prime}(t, \chi)}{L(t, \chi)} d t
$$

Then, for $s>1$, we have

$$
\begin{gather*}
\exp [\log L(s, \chi)]=L(s, \chi) \tag{3.19}\\
\log L(s, \chi)=\sum_{p \text { prime }} \log \frac{1}{1-\chi(p) p^{-s}} \tag{3.20}
\end{gather*}
$$

where the logarithm in the right hand side is defined by means of (3.1), and

$$
\begin{equation*}
\prod_{\chi \in D C(m)} L(s, \chi)=\exp \left[\varphi(m) \sum_{p \text { prime }} \sum_{k=1}^{\infty} \frac{\Delta_{1}\left(p^{k}\right)}{k p^{k s}}\right] \tag{3.21}
\end{equation*}
$$

where Δ_{1} is as in (3.14).
Proof We have

$$
\begin{aligned}
& \frac{d}{d s}\{L(s, \chi) \exp [-\log L(s, \chi)]\}= L^{\prime}(s, \chi) \exp [-\log L(s, \chi)] \\
& \quad-L(s, \chi) \cdot \frac{L^{\prime}(s, \chi)}{L(s, \chi)} \exp [-\log L(s, \chi)] \\
&=0
\end{aligned}
$$

and by Proposition 3.3.3.(iii),

$$
\lim _{s \rightarrow+\infty} L(s, \chi) \exp [-\log L(s, \chi)]=1
$$

Since the argument of the above limit is constant, (3.19) follows.
We now prove (3.20). First of all, we note that by Proposition 3.1.1.(iv) and Proposition 3.1.3, the series at right hand side is uniformly convergent on each interval $[\delta,+\infty), \delta>1$, so that it is continuous in $(1,+\infty)$. Moreover, for $s>1$, the exponential of both sides of (3.20) is equal to $L(s, \chi)$. Indeed, for the left hand side this follows from (3.19), while, for the right hand side,

$$
\exp \left[\sum_{p \text { prime }} \log \frac{1}{1-\chi(p) p^{-s}}\right]=\prod_{p \text { prime }} \frac{1}{1-\chi(p) p^{-s}}=L(s, \chi)
$$

where the first equality follows from (3.3) and the second from Dirichlet product formula. Since \exp has imaginary period equal to 2π, it follows that there exists an integer valued function h such that

$$
\log L(s, \chi)=\sum_{p \text { prime }} \log \frac{1}{1-\chi(p) p^{-s}}+2 \pi i h(s)
$$

But h is continuous, because both sides of (3.20) are continuous, and therefore it is constant. Since both sides of (3.20) tend to zero for $s \rightarrow+\infty$, this constant is equal to zero, and (3.20) is proved.

We now turn to the proof of (3.21). By (3.20) we have:

$$
\begin{aligned}
\prod_{\chi \in D C(m)} L(s, \chi) & =\exp \left[\sum_{\chi \in D C(m)} \sum_{p \text { prime }} \log \frac{1}{1-\chi(p) p^{-s}}\right] \\
& =\exp \left[\sum_{p \text { prime }} \sum_{\chi \in D C(m)} \log \frac{1}{1-\chi(p) p^{-s}}\right] \\
(\text { by }(3.1)) & =\exp \left[\sum_{p \text { prime }} \sum_{\chi \in D C(m)} \sum_{k=1}^{\infty} \frac{\chi\left(p^{k}\right)}{k p^{k s}}\right] \\
& =\exp \left[\sum_{p \text { prime }} \sum_{k=1}^{\infty} \frac{1}{k p^{k s}} \sum_{\chi \in D C(m)} \chi\left(p^{k}\right)\right] \\
\text { (by Proposition 3.2.1) } & =\exp \left[\varphi(m) \sum_{p \text { prime }} \sum_{k=1}^{\infty} \frac{\Delta_{1}\left(p^{k}\right)}{k p^{k s}}\right] .
\end{aligned}
$$

Corollary 3.3.7 For $s>1$ the product in the left hand side of (3.21) is real and satisfies

$$
\begin{equation*}
\prod_{\chi \in D C(m)} L(s, \chi) \geq 1 \tag{3.22}
\end{equation*}
$$

Proof The argument of the exponential in the right hand side of (3.21) is real and nonnegative.

Lemma 3.3.8 With the assumptions and notation as in Proposition 3.2.6 we have:

$$
S_{h}=2 \sqrt{h} L(1, \chi)+\mathcal{O}(1)
$$

Proof We partition $A_{h}=\{(n, k) \in \mathbb{N} \times \mathbb{N}: n k \leq h\}$, the summation region in the definition of S_{h}, into the regions

$$
A_{h}^{(1)}=\left\{(n, k) \in \mathbb{N} \times \mathbb{N}: 1 \leq n \leq \sqrt{h}, \sqrt{h}<k \leq \frac{h}{n}\right\}
$$

$$
A_{h}^{(2)}=\left\{(n, k) \in \mathbb{N} \times \mathbb{N}: 1 \leq k \leq \sqrt{h}, 1 \leq n \leq \frac{h}{k}\right\}
$$

Correspondingly, $S_{h}=S_{h}^{(1)}+S_{h}^{(2)}$, where

$$
S_{h}^{(1)}=\sum_{(n, k) \in A_{h}^{(1)}} \frac{\chi(k)}{\sqrt{n k}}=\sum_{n \leq \sqrt{h}} \frac{1}{\sqrt{n}}\left(\sum_{\sqrt{h}<k \leq \frac{h}{n}} \frac{\chi(k)}{\sqrt{k}}\right)
$$

(the last equality follows from vertical summation) and

$$
S_{h}^{(2)}=\sum_{(n, k) \in A_{h}^{(2)}} \frac{\chi(k)}{\sqrt{n k}}=\sum_{1 \leq k \leq \sqrt{h}} \frac{\chi(k)}{\sqrt{k}}\left(\sum_{n \leq \frac{h}{k}} \frac{1}{\sqrt{n}}\right)
$$

(the last equality follows from horizontal summation). Then

$$
\begin{align*}
\quad\left|S_{h}^{(1)}\right| & \leq \sum_{n \leq \sqrt{h}} \frac{1}{\sqrt{n}}\left|\sum_{\sqrt{h}<k \leq \frac{h}{n}} \frac{\chi(k)}{\sqrt{k}}\right| \\
(\text { by }(3.15)) & =\sum_{n \leq \sqrt{h}} \frac{1}{\sqrt{n}} \mathcal{O}\left(\frac{1}{\sqrt[4]{h}}\right) \tag{3.23}
\end{align*}
$$

(by Proposition 3.1.10.(ii)) $=\mathcal{O}(1)$,
and, by Proposition 3.1.10.(ii),

$$
\begin{align*}
S_{h}^{(2)} & =\sum_{1 \leq k \leq \sqrt{h}} \frac{\chi(k)}{\sqrt{k}}\left[2 \sqrt{\frac{h}{k}}+\sigma+\mathcal{O}\left(\sqrt{\frac{k}{h}}\right)\right] \tag{3.24}\\
& =2 \sqrt{h} L(1, \chi)+\mathcal{O}(1)
\end{align*}
$$

where in the last equality we have used the following estimates:

$$
\begin{aligned}
2 \sqrt{h} \sum_{1 \leq k \leq \sqrt{h}} \frac{\chi(k)}{k} & =2 \sqrt{h} L(1, \chi)-2 \sqrt{h} \sum_{k>\sqrt{h}} \frac{\chi(k)}{k} \\
(\text { by }(3.16)) & =2 \sqrt{h} L(1, \chi)+2 \sqrt{h} \mathcal{O}\left(\frac{1}{\sqrt{h}}\right) \\
& =2 \sqrt{h} L(1, \chi)+\mathcal{O}(1),
\end{aligned}
$$

by (3.15)

$$
\sigma \sum_{1 \leq k \leq \sqrt{h}} \frac{\chi(k)}{\sqrt{k}}=\mathcal{O}(1)
$$

and, finally, for some constant $C>0$,

$$
\left|\sum_{1 \leq k \leq \sqrt{h}} \frac{\chi(k)}{\sqrt{k}} \mathcal{O}\left(\sqrt{\frac{k}{h}}\right)\right| \leq \frac{C}{\sqrt{h}}\left|\sum_{1 \leq k \leq \sqrt{h}} \chi(k)\right|=\mathcal{O}(1)
$$

From (3.23) and (3.24) the proof immediately follows.
We are now in position to state and prove the main technical result in the proof of the Dirichlet Theorem. Most of the preliminary results will be used, directly or indirectly, in its proof.

Theorem 3.3.9 (Dirichlet) Let $\chi \in D C(m)$ and suppose that $\chi \neq \chi_{0}$. Then

$$
L(1, \chi) \neq 0
$$

Proof First of all, we establish two simple inequalities. If $L(1, \chi)=0$ then there exist $C_{1}>0$ such that

$$
\begin{equation*}
|L(s, \chi)| \leq C_{1}|s-1| \tag{3.25}
\end{equation*}
$$

for $1 \leq s \leq 2$ (this follows from the mean value theorem; recall also Proposition 3.3.3.(ii)), and there exists $C_{2}>0$ such that

$$
\begin{equation*}
\left|L\left(s, \chi_{0}\right)\right| \leq \frac{C_{2}}{|s-1|} \tag{3.26}
\end{equation*}
$$

for $1<s \leq 2$. Indeed, by Proposition 3.3.2 we have

$$
\begin{aligned}
\left|L\left(s, \chi_{0}\right)\right| & \leq \prod_{j=1}^{t}\left|1-p_{j}^{-s}\right| \cdot|\zeta(s)| \\
(\operatorname{by}(3.13)) & \leq C\left(1+\frac{1}{s-1}\right) \\
& \leq \frac{C_{2}}{s-1}
\end{aligned}
$$

where $C=\max _{1 \leq s \leq 2} \prod_{j=1}^{t}\left|1-p_{j}^{-s}\right|$ and $C_{1}=2 C$. The rest of the proof is divided into two cases.
First case: χ is complex, that is $\chi(n) \in \mathbb{C} \backslash \mathbb{R}$ for some $n \in \mathbb{Z}$. Therefore, $\chi \neq$ $\bar{\chi}$. By contradiction, assume $L(1, \chi)=0$. Then also $L(1, \bar{\chi})=\overline{L(1, \chi)}=0$. But then, taking into account (3.22), (3.25), (3.26), and the notation therein,
we have, for $1<s \leq 2$,

$$
\begin{aligned}
& 1 \leq \\
& \prod_{\chi^{\prime} \in D C(m)} L\left(s, \chi^{\prime}\right)=L(s, \chi) L(s, \bar{\chi}) L\left(s, \chi_{0}\right) \cdot \prod_{\substack{\chi^{\prime} \in D C(m): \\
\chi^{\prime} \neq \chi, \bar{\chi}, \chi_{0}}} L\left(s, \chi^{\prime}\right) \\
& \leq C_{1}^{2}|s-1|^{2} \cdot \frac{C_{2}}{|s-1|} \cdot C_{3}=C_{1} C_{2} C_{3}|s-1|
\end{aligned}
$$

where $C_{3}>0$ is a constant (cf. Proposition 3.3.3), a contradiction.
Second case $\chi \neq \chi_{0}$ is real valued, that is, $\chi(n) \in\{-1,0,1\}$ for all $n \in \mathbb{Z}$. On the one hand, by Proposition 3.2.6 and the notation therein, we have

$$
S_{h} \geq c \log h
$$

while, on the other hand, by Lemma 3.3.8, we have

$$
S_{h}=\sqrt{h} L(1, \chi)+\mathcal{O}(1)
$$

This clearly leads to a contradiction if $L(1, \chi)=0$.

3.4 Euler's theorem

In this section we present a celebrated theorem of Euler. We begin with a further technical result which is a consequence of Theorem 3.3.9.

Theorem 3.4.1 Let $\chi \in D C(m)$. If $\chi \neq \chi_{0}$ then

$$
\sum_{p \text { prime }} \frac{\chi(p)}{p^{s}}=\mathcal{O}(1)
$$

for $s \rightarrow 1^{+}$.
Proof By virtue of (3.20), for $s \rightarrow 1^{+}$we have

$$
\begin{aligned}
\log L(s, \chi) & =\sum_{p \text { prime }} \log \frac{1}{1-\chi(p) p^{-s}} \\
\text { (by Proposition 3.1.1.(iii)) } & =\sum_{p \text { prime }} \frac{\chi(p)}{p^{s}}+\mathcal{O}\left(\sum_{p \text { prime }} \frac{1}{p^{2 s}}\right) \\
& =\sum_{p \text { prime }} \frac{\chi(p)}{p^{s}}+\mathcal{O}(1)
\end{aligned}
$$

On the other hand, since $L^{\prime}(t, \chi)$ and $L(t, \chi)$ are continuous in $(0,+\infty)$
(Proposition 3.3.3) and $L(1, \chi) \neq 0$ (Theorem 3.3.9), by Corollary 3.3.5 and Proposition 3.3.6 we have

$$
\log L(s, \chi)=-\int_{s}^{+\infty} \frac{L^{\prime}(t, \chi)}{L(t, \chi)} d t=\mathcal{O}(1)
$$

for $s \rightarrow 1^{+}$.
We are now in position to state and prove Euler's theorem. We give two proofs: the first one is Euler's original proof and follows from some of the results in the preceding sections; the second proof is due to Erdôs and it is more elementary but based on a clever trick ([59]; see also [5]).

Theorem 3.4.2 (Euler)

$$
\sum_{p \text { prime }} \frac{1}{p}=+\infty
$$

Euler's proof For $s>1$ the zeta function $\zeta(s)$ is real valued and, by virtue of Euler product formula (3.11), we have (here \log is the usual real function)

$$
\begin{aligned}
\qquad \log \zeta(s) & =\sum_{p \text { prime }} \log \frac{1}{1-p^{-s}} \\
\text { (by Proposition 3.1.1.(iii)) } & =\sum_{p \text { prime }}\left[\frac{1}{p^{s}}+R\left(\frac{1}{p^{s}}\right)\right] .
\end{aligned}
$$

Moreover, again from Proposition 3.1.1.(iii) we deduce that

$$
\left|\sum_{\text {p prime }} R\left(\frac{1}{p^{s}}\right)\right| \leq \sum_{p \text { prime }} \frac{1}{p^{2 s}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Therefore,

$$
\sum_{p \text { prime }} \frac{1}{p^{s}} \geq \log \zeta(s)-\frac{\pi^{2}}{6}
$$

which tends to $+\infty$ for $s \rightarrow 1^{+}$, since $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ tends to $+\infty$ for $s \rightarrow 1^{+}$.
Erdốs' proof By contradiction, assume that

$$
\sum_{p \text { prime }} \frac{1}{p}<+\infty
$$

Then there exists a partition $P \coprod Q$ of the set of all primes such that P is
finite and

$$
\begin{equation*}
\sum_{p \in Q} \frac{1}{p}<\frac{1}{2} \tag{3.27}
\end{equation*}
$$

For $n \in \mathbb{N}$, set

$$
\begin{gathered}
A_{n}=\{k \in \mathbb{N}: k \leq n, k \text { is divisible by at least one prime in } Q\} \\
B_{n}=\{k \in \mathbb{N}: k \leq n, k \text { is divisible only by primes in } P\} .
\end{gathered}
$$

Clearly,

$$
\begin{equation*}
\{1,2, \ldots, n\}=A_{n} \coprod B_{n} \tag{3.28}
\end{equation*}
$$

From (3.27) we get

$$
\begin{equation*}
\left|A_{n}\right| \leq \sum_{p \in Q} \frac{n}{p}<\frac{n}{2} \tag{3.29}
\end{equation*}
$$

because if $p \in Q$, then the multiples of p less than or equal to n are at most n / p. We now estimate the cardinality of B_{n}.

We uniquely write each $k \in B_{n}$ as the product of a square and a square-free integer

$$
k=s_{k}^{2} r_{k}
$$

in other words s_{k} is the largest divisor of k such that s_{k}^{2} divides k. We first note that there are at most $2^{|P|}$ possible choices for r_{k} (this is a product of all primes in P each with exponent 0 or 1). Moreover, it is clear that $s_{k} \leq \sqrt{k} \leq \sqrt{n}$ so that, altogether

$$
\begin{equation*}
\left|B_{n}\right| \leq 2^{|P|} \sqrt{n} \tag{3.30}
\end{equation*}
$$

Then for

$$
n=2^{2|P|+4}
$$

we have $2^{|P|}=\frac{\sqrt{n}}{4}$ and therefore, by virtue of (3.28),

$$
\begin{aligned}
n & =\left|A_{n}\right|+\left|B_{n}\right| \\
(\text { by }(3.29) \text { and }(3.30)) & \leq \frac{n}{2}+2^{|P|} \sqrt{n} \\
& =\frac{n}{2}+\frac{n}{4}=\frac{3}{4} n
\end{aligned}
$$

a contradiction.

3.5 Dirichlet's theorem

Theorem 3.5.1 (Dirichlet's theorem on primes in arithmetic progressions) Let $m, r \in \mathbb{N}$ and suppose that $\operatorname{gcd}(m, r)=1$. Then the arithmetic progression

$$
r, r+m, r+2 m, r+3 m, \ldots, r+k m, \ldots
$$

contains infinitely many primes.
Proof We show that

$$
\begin{equation*}
\lim _{s \rightarrow 1^{+}} \sum_{\substack{\text { p prime: } \\ p \equiv r \bmod m}} \frac{1}{p^{s}}=+\infty, \tag{3.31}
\end{equation*}
$$

from which it immediately follows that the set $\{p$ prime: $p \equiv r \bmod m\}$ is infinite. (3.31) is clearly a generalization of Theorem 3.4.2, but it requires a lot more work. The first step is the use of the discrete Fourier inversion formula in Proposition 3.2.1 (with $n=r$ and $k=p$): for $s>1$ we have

$$
\begin{aligned}
\sum_{\substack{\text { p prime: } \\
p \equiv r \bmod m}} \frac{1}{p^{s}} & =\sum_{p \text { prime }} \frac{\Delta_{r}(p)}{p^{s}} \\
& =\frac{1}{\varphi(m)} \sum_{\chi \in D C(m)} \overline{\chi(r)} \sum_{p \text { prime }} \frac{\chi(p)}{p^{s}} \\
\left(\text { since } \chi_{0}(r)=1\right) & =\frac{1}{\varphi(m)} \sum_{p \text { prime }} \frac{\chi_{0}(p)}{p^{s}}+\frac{1}{\varphi(m)} \sum_{\substack{\chi \in D C(m) \\
\chi \neq \chi_{0}}} \overline{\chi(r)} \sum_{p \text { prime }} \frac{\chi(p)}{p^{s}} .
\end{aligned}
$$

Now, on the one hand, by Euler's theorem (Therorem 3.4.2) and the fact that there are only finitely many primes p dividing m,

$$
\sum_{p \text { prime }} \frac{\chi_{0}(p)}{p^{s}}=\sum_{p \nmid m} \frac{1}{p^{s}} \rightarrow+\infty
$$

for $s \rightarrow 1^{+}$. On the other hand, for $\chi \neq \chi_{0}$ Theorem 3.4.1 ensures that the quantity $\sum_{p \text { prime }} \frac{\chi(p)}{p^{s}}$ is bounded for $s \rightarrow 1^{+}$.

Remark 3.5.2 One of the most important and difficult results in number theory proved in recent years is the celebrated Green-Tao theorem [66] which states that the set of prime numbers contains arbitrarily long arithmetic progressions. This may be considered as a kind of "reciprocal" of

Dirichlet's theorem which ensures that certain arithmetic progressions contain infinitely many primes. The Green-Tao theorem, also, is a particular case of a celebrated conjecture, due to Erdős, on arithmetic progressions which states that if A is an infinite subset of \mathbb{N} such that $\sum_{n \in A} 1 / n=+\infty$, then A contains arbitrarily long arithmetic progressions. Other particular cases of Erdôs' conjecture are the celebrated theorems of Roth [131] and Szemerédi $[155,156]$ which we do not state here but for which we refer to the expository paper by Tao [158]. We only mention that Erdôs' conjecture is still open and that a prize of 3000 USD is offered for its proof or disproof.

Spectral Analysis of the DFT and Number Theory

In this chapter, following [104] and the exposition in [15], we present the spectral analysis of the normalized Fourier transform on \mathbb{Z}_{n} (cf. Exercise 2.4.13). In the last two sections, as an application, we recover some classical results in number theory due to Gauss and Schur including the celebrated law of quadratic reciprocity.

4.1 Preliminary Results

We will use the notation and convention as in the beginning of Section 2.2.
This way, the normalized Fourier transform $\mathcal{F}: L\left(\mathbb{Z}_{n}\right) \rightarrow L\left(\mathbb{Z}_{n}\right)$ is given by

$$
[\mathcal{F} f](m)=\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} f(k) \omega^{-k m}
$$

for all $f \in L\left(\mathbb{Z}_{n}\right)$ and $m \in \mathbb{Z}_{n}$; see Definition 2.4.1.
Similarly, the corresponding inverse Fourier transform $\mathcal{F}^{-1}: L\left(\mathbb{Z}_{n}\right) \rightarrow$ $L\left(\mathbb{Z}_{n}\right)$ is given by

$$
\left[\mathcal{F}^{-1} f\right](m)=\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} f(k) \omega^{k m}
$$

for all $f \in L\left(\mathbb{Z}_{n}\right)$ and $m \in \mathbb{Z}_{n}$. Note also that now Proposition 2.4.6.(iv) becomes

$$
\mathcal{F}\left(f_{1} * f_{2}\right)=\sqrt{n} \mathcal{F}\left(f_{1}\right) \mathcal{F}\left(f_{2}\right) .
$$

Recall (cf. Definition 2.4.14) that for $f \in L\left(\mathbb{Z}_{n}\right)$ we denote by $f^{-} \in L\left(\mathbb{Z}_{n}\right)$ the function defined by $f^{-}(x)=f(-x)$ for all $x \in \mathbb{Z}_{n}$.

Lemma 4.1.1

(i) $\mathcal{F}^{-1} \mathcal{F}=\mathcal{F} \mathcal{F}^{-1}=\mathrm{id}_{L\left(\mathbb{Z}_{n}\right)}$.
(ii) \mathcal{F} and \mathcal{F}^{-1} are unitary operators.
(iii) $\mathcal{F}^{2} f=f^{-}$for all $f \in L\left(\mathbb{Z}_{n}\right)$.
(iv) $\mathcal{F} \chi_{m}=\sqrt{n} \delta_{m}$ for all $m \in \mathbb{Z}_{n}$.
(v) $\mathcal{F} \delta_{m}=\frac{1}{\sqrt{n}} \chi_{-m}=\frac{1}{\sqrt{n}} \chi_{n-m}$.

Proof (i) and (ii) are just a reformulation of the Fourier inversion formula (Theorem 2.4.2) and the Plancherel formula (Theorem 2.4.3), respectively; they can also be immediate deduced from the orthogonality relations (Proposition 2.3.5).
(iii) Let $f \in L\left(\mathbb{Z}_{n}\right)$ and $m \in \mathbb{Z}_{n}$. Then

$$
\begin{aligned}
{\left[\mathcal{F}^{2} f\right](m) } & =\frac{1}{n} \sum_{h=0}^{n-1}\left(\sum_{k=0}^{n-1} f(k) \omega^{-k h}\right) \omega^{-h m} \\
& =\sum_{k=0}^{n-1} f(k) \frac{1}{n} \sum_{h=0}^{n-1} \chi_{-k}(h) \overline{\chi_{m}(h)} \\
(\text { by }(2.7)) & =\sum_{k=0}^{n-1} f(k) \delta_{0}(-k-m) \\
& =f(-m) .
\end{aligned}
$$

(iv) Let $m, h \in \mathbb{Z}_{n}$. Then

$$
\begin{aligned}
{\left[\mathcal{F} \chi_{m}\right](h) } & =\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \chi_{m}(k) \overline{\chi_{h}(k)} \\
(\text { by }(2.7)) & =\frac{1}{\sqrt{n}} n \delta_{0}(m-h) \\
& =\sqrt{n} \delta_{m}(h)
\end{aligned}
$$

(v) Let $m, h \in \mathbb{Z}_{n}$. Then

$$
\begin{aligned}
{\left[\mathcal{F} \delta_{m}\right](h) } & =\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \delta_{m}(k) \omega^{-h k} \\
& =\frac{1}{\sqrt{n}} \omega^{-m h} \\
& =\frac{1}{\sqrt{n}} \chi_{-m}(h)
\end{aligned}
$$

Proposition 4.1.2 Let $m \in \mathbb{Z}_{n}$.
(i) $\mathcal{F}^{4}=\mathrm{id}_{L\left(\mathbb{Z}_{n}\right)}$;
(ii) $\mathcal{F}^{2} \delta_{m}=\delta_{-m} \equiv \delta_{n-m}$;
(iii) $\mathcal{F}^{2} \chi_{m}=\chi_{-m} \equiv \chi_{n-m}$.

Proof (i), (ii), and (iii) follow immediately from Lemma 4.1.1 after observing that $\left(f^{-}\right)^{-}=f$ for all $f \in L\left(\mathbb{Z}_{n}\right),\left(\chi_{m}\right)^{-}=\chi_{-m}$, and $\left(\delta_{m}\right)^{-}=\delta_{-m}$.

Theorem 4.1.3 The characteristic polynomial $p(\lambda) \in \mathbb{C}[\lambda]$ of \mathcal{F}^{2} is given by

$$
p(\lambda)= \begin{cases}(\lambda-1)^{\frac{n+1}{2}}(\lambda+1)^{\frac{n-1}{2}} & \text { if } n \text { is odd } \\ (\lambda-1)^{\frac{n+2}{2}}(\lambda+1)^{\frac{n-2}{2}} & \text { if } n \text { is even } .\end{cases}
$$

Proof By virtue of Proposition 4.1.2.(ii), the matrix $A_{n} \in \mathfrak{M}_{n, n}(\mathbb{C})$ representing \mathcal{F}^{2} in the basis $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{n-1}\right\}$ is given by

$$
A_{n}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0
\end{array}\right)
$$

For $1 \leq k \leq n-1$ define $B_{k} \in \mathfrak{M}_{k, k}(\mathbb{C})$ by setting

$$
B_{k}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

Then

$$
\begin{equation*}
\operatorname{det}\left(\lambda I_{n}-A_{n}\right)=(\lambda-1) \operatorname{det}\left(\lambda I_{n-1}-B_{n-1}\right) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{aligned}
\operatorname{det}\left(\lambda I_{n-1}-B_{n-1}\right) & =\left|\begin{array}{ccccc}
\lambda & 0 & \cdots & 0 & -1 \\
0 & \lambda & \cdots & -1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & -1 & \cdots & \lambda & 0 \\
-1 & 0 & \cdots & 0 & \lambda
\end{array}\right| \\
& =\lambda\left|\begin{array}{cccc}
\lambda & \cdots & -1 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
-1 & \cdots & \lambda & 0 \\
0 & \cdots & 0 & \lambda
\end{array}\right|+(-1)^{n-2}\left|\begin{array}{cccc}
0 & \lambda & \cdots & -1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & -1 & \cdots & \lambda \\
-1 & 0 & \cdots & 0
\end{array}\right| \\
& =\lambda^{2} \operatorname{det}\left(\lambda I_{n-3}-B_{n-3}\right)+(-1)^{2 n-5} \operatorname{det}\left(\lambda I_{n-3}-B_{n-3}\right) \\
& =\left(\lambda^{2}-1\right) \operatorname{det}\left(\lambda I_{n-3}-B_{n-3}\right)
\end{aligned}
$$

so that, keeping in mind (4.1),

$$
\begin{aligned}
\operatorname{det}\left(\lambda I_{n}-A_{n}\right) & =\left(\lambda^{2}-1\right)(\lambda-1) \operatorname{det}\left(\lambda I_{n-3}-B_{n-3}\right) \\
& =\left(\lambda^{2}-1\right) \operatorname{det}\left(\lambda I_{n-2}-A_{n-2}\right)
\end{aligned}
$$

Since

$$
\operatorname{det}\left(\lambda I_{3}-A_{3}\right)=\left|\begin{array}{ccc}
\lambda-1 & 0 & 0 \\
0 & \lambda & -1 \\
0 & -1 & \lambda
\end{array}\right|=(\lambda-1)\left(\lambda^{2}-1\right)=(\lambda-1)^{2}(\lambda+1)
$$

and

$$
\operatorname{det}\left(\lambda I_{2}-A_{2}\right)=\left|\begin{array}{cc}
\lambda-1 & 0 \\
0 & \lambda-1
\end{array}\right|=(\lambda-1)^{2}
$$

the statement follows by induction.
By virtue of Proposition 4.1.2.(i), the minimal polynomial of \mathcal{F} divides $\lambda^{4}-$ 1 , and therefore its eigenvalues are among $\pm 1, \pm i$; see [91] for the relations among eigenvalues and the minimal polynomial. Let us show that from the trace $\operatorname{Tr} \mathcal{F}$ of \mathcal{F} we can recover the geometric/algebraic multiplicity of these eigenvalues.

Proposition 4.1.4 Suppose that $\operatorname{Tr}(\mathcal{F})=\alpha+i \beta$. Denote by m_{1} (respectively m_{2}, m_{3}, m_{4}) the multiplicity of 1 (respectively $-1, i,-i$). If n is odd (respectively even), then the ms constitute the unique solution of the linear
system

$$
\begin{cases}m_{1}-m_{2} & =\alpha \\ m_{3}-m_{4} & =\beta \\ m_{1}+m_{2} & =\frac{n+1}{2} \quad\left(\text { respectively } \frac{n+2}{2}\right) \\ m_{3}+m_{4} & =\frac{n-1}{2} \quad\left(\text { respectively } \frac{n-2}{2}\right)\end{cases}
$$

Proof By definition of the trace, we immediately have $\operatorname{Tr}(\mathcal{F})=m_{1}-m_{2}+$ $i\left(m_{3}-m_{4}\right)$: this explains the first two equations. Moreover, $m_{1}+m_{2}$ (respectively $m_{3}+m_{4}$) is the multiplicity of 1 (respectively -1) as an eigenvalue of \mathcal{F}^{2}. Thus the last two equations follow from Theorem 4.1.3.

In what follows, for $x \in \mathbb{R}$, we denote by $[x] \in \mathbb{Z}$ the greatest integer less than or equal to x. Setting $\nu=[n / 2]+1$ we consider the functions

$$
\begin{equation*}
\delta_{0} \text { and } \delta_{j}+\delta_{n-j} \text { for } j=1,2, \ldots, \nu-1 \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{k}-\delta_{n-k} \text { for } k=1,2, \ldots, n-\nu \tag{4.3}
\end{equation*}
$$

For example, if $n=4$ then $\nu=3$ and the functions in (4.2) are $\delta_{0}, \delta_{1}+\delta_{3} \equiv$ $\delta_{1}+\delta_{-1}$, and $2 \delta_{2} \equiv \delta_{2}+\delta_{-2}$ (note that these are even functions), while there is only one in (4.3), namely $\delta_{1}-\delta_{3} \equiv \delta_{1}-\delta_{-1}$ (note that this is, in turn, an odd function).

If $n=5$, then $\nu=3$ and the functions in (4.2) are $\delta_{0}, \delta_{1}+\delta_{4} \equiv \delta_{1}-\delta_{-1}$, and $\delta_{2}+\delta_{3} \equiv \delta_{2}+\delta_{-2}$ (note that these are even functions), while those in (4.3) are $\delta_{1}-\delta_{4} \equiv \delta_{1}-\delta_{-1}$, and $\delta_{2}-\delta_{3} \equiv \delta_{2}-\delta_{-2}$ (note that these are, in turn, odd functions).
Note that, more generally, if $n=2 h$ is even, then $\nu=h+1$ and $\delta_{\nu-1}+$ $\delta_{n-\nu+1}=\delta_{h}+\delta_{-h}=2 \delta_{h}$.

Moreover, we observe that $\nu-1=[n / 2] \leq n / 2$, and $j \leq n-j \Leftrightarrow j \leq n / 2$ (resp. $n-\nu=n-1-[n / 2]<n / 2$, and $k<n-k \Leftrightarrow k<n / 2$). It follows that the n functions in (4.2) and (4.3) are all distinct and nontrivial.

Let $L_{+}\left(\mathbb{Z}_{n}\right) \subseteq L\left(\mathbb{Z}_{n}\right)$ (respectively $L_{-}\left(\mathbb{Z}_{n}\right) \subseteq L\left(\mathbb{Z}_{n}\right)$) denote the subspace of complex valued even (respectively odd) functions on \mathbb{Z}_{n}.

Proposition 4.1.5 The functions in (4.2) are even, i.e. belong to $L_{+}\left(\mathbb{Z}_{n}\right)$, while those in (4.3) are odd, i.e. belong to $L_{-}\left(\mathbb{Z}_{n}\right)$. Moreover, the functions in (4.2) and (4.3) altogether form an orthogonal basis of the whole $L\left(\mathbb{Z}_{n}\right)$. In particular, we have the orthogonal decomposition

$$
\begin{equation*}
L\left(\mathbb{Z}_{n}\right)=L_{+}\left(\mathbb{Z}_{n}\right) \oplus L_{-}\left(\mathbb{Z}_{n}\right) \tag{4.4}
\end{equation*}
$$

and $\operatorname{dim} L_{+}\left(\mathbb{Z}_{n}\right)=\nu+1$ and $\operatorname{dim} L_{-}\left(\mathbb{Z}_{n}\right)=n-\nu$. Moreover, (4.4) is the spectral decomposition of $\mathcal{F}^{2}: L_{+}\left(\mathbb{Z}_{n}\right)$ is the eigenspace corresponding to 1 and $L_{-}\left(\mathbb{Z}_{n}\right)$ is the eigenspace corresponding to -1 .

Proof Since $\delta_{s}(-t)=\delta_{-s}(t)=\delta_{n-s}(t)$ for all $s, t \in \mathbb{Z}_{n}$, it is clear that the functions in (4.2) (respectively (4.3)) are even (respectively odd). The mutual orthogonality of functions in (4.2) (respectively (4.3)) is obvious since their supports are disjoint. On the other hand any function in (4.2) is orthogonal to any function in (4.3) since either their supports are disjoint, or they have the same support, say $\{s, t\}$, and then $\left\langle\delta_{s}+\delta_{t}, \delta_{s}-\delta_{t}\right\rangle=$ $\left\langle\delta_{s}, \delta_{s}\right\rangle-\left\langle\delta_{t}, \delta_{t}\right\rangle=0$. Finally, it is clear that n orthogonal functions constitute a basis of $L\left(\mathbb{Z}_{n}\right)$. The remaining statements are now clear; in particular, the last statement follows from Lemma 4.1.1.(iii) or from Proposition 4.1.2.(ii).

Lemma 4.1.6 Let $f \in L\left(\mathbb{Z}_{n}\right)$ be an eigenvector of \mathcal{F}. Then either f is even and its associated eigenvalue is 1 or -1 , or f is odd and its associated eigenvalue is i or $-i$.

Proof Let λ denote the eigenvalue associated with f, that is, $\mathcal{F} f=\lambda f$. Then $\mathcal{F}^{2} f=\lambda^{2} f$. We now express f in the basis in Proposition 4.1.5, that is,

$$
f=a_{0} \delta_{0}+\sum_{j=1}^{\nu-1} a_{j}\left(\delta_{j}+\delta_{n-j}\right)+\sum_{k=1}^{n-\nu} b_{k}\left(\delta_{k}-\delta_{n-k}\right)
$$

with $a_{0}, a_{1}, \ldots, a_{\nu-1}, b_{1}, b_{2}, \ldots, b_{n-\nu} \in \mathbb{C}$. Then, by Proposition 4.1.2.(ii) we have

$$
\mathcal{F}^{2} f=a_{0} \delta_{0}+\sum_{j=1}^{\nu-1} a_{j}\left(\delta_{j}+\delta_{n-j}\right)-\sum_{k=1}^{n-\nu} b_{k}\left(\delta_{k}-\delta_{n-k}\right)
$$

so that the condition $\mathcal{F}^{2} f=\lambda^{2} f$ yields

$$
\begin{align*}
a_{0} \delta_{0}+\sum_{j=1}^{\nu-1} a_{j}\left(\delta_{n-j}+\delta_{j}\right)-\sum_{k=1}^{n-\nu} b_{k}\left(\delta_{k}-\delta_{n-k}\right) \\
=\lambda^{2} a_{0} \delta_{0}+\sum_{j=1}^{\nu-1} \lambda^{2} a_{j}\left(\delta_{j}+\delta_{n-j}\right)+\sum_{k=1}^{n-\nu} \lambda^{2} b_{k}\left(\delta_{k}-\delta_{n-k}\right) \tag{4.5}
\end{align*}
$$

that is,

$$
\begin{aligned}
& \left(\lambda^{2}-1\right) a_{j}=0 \text { for } j=0,1, \ldots, \nu-1 \\
& \left(\lambda^{2}+1\right) b_{k}=0 \text { for } k=1,2 \ldots, n-\nu
\end{aligned}
$$

It follows that if $\lambda= \pm i$ then $a_{j}=0$ for $j=1,2, \ldots, \nu-1$, and therefore f is odd, while if $\lambda= \pm 1$ then $b_{k}=0$ for $k=1,2, \ldots, n-\nu$, and therefore f is even.

Exercise 4.1.7 Let $\nu=[n / 2]+1$ as above. Let $f \in L\left(\mathbb{Z}_{n}\right)$.
Show that if f is even, then

$$
\begin{align*}
\mathcal{F} f(m)=\frac{1}{\sqrt{n}} f(0)+\frac{2}{\sqrt{n}} & \sum_{k=1}^{\nu-2} f(k) \cos \frac{2 k m \pi}{n} \\
& + \begin{cases}\frac{2}{\sqrt{n}} f(\nu-1) \cos \frac{2(\nu-1) m \pi}{n} & \text { if } n \text { is odd } \\
\frac{1}{\sqrt{n}} f(\nu-1)(-1)^{m} & \text { if } n \text { is even }\end{cases} \tag{4.6}
\end{align*}
$$

for all $m \in \mathbb{Z}_{n}$, and $\mathcal{F} f=\mathcal{F}^{-1} f$.
Show that if f is odd, then

$$
\mathcal{F} f(m)=\frac{-2 i}{\sqrt{n}} \sum_{k=1}^{n-\nu} f(k) \sin \frac{2 k m \pi}{n}
$$

for all $m \in \mathbb{Z}_{n}$, and $\mathcal{F}^{-1} f=-\mathcal{F} f$.

Exercise 4.1.8 (cf. [54])

(1) Suppose that $F \in L\left(\mathbb{Z}_{n}\right)$ is even and define $T \in \operatorname{End}\left(L\left(\mathbb{Z}_{n}\right)\right)$ by setting

$$
[T f](x)=[f * F](x)+\sqrt{n}[\mathcal{F} F](x) f(x)
$$

for all $f \in L\left(\mathbb{Z}_{n}\right)$ and $x \in \mathbb{Z}_{n}$. Show that

$$
T \mathcal{F}=\mathcal{F} T
$$

(2) Deduce from (1) that the matrix

$$
\left(\begin{array}{cccccccc}
2 & 1 & 0 & 0 & \cdots & 0 & 0 & 1 \\
1 & 2 \cos \frac{2 \pi}{n} & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & 2 \cos \frac{4 \pi}{n} & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 2 \cos \frac{2(n-2) \pi}{n} & 1 \\
1 & 0 & 0 & 0 & \cdots & 0 & 1 & 2 \cos \frac{2(n-1) \pi}{n}
\end{array}\right)
$$

commutes with the matrix (2.22) of the Fourier transform.

4.2 The decomposition into eigenspaces

This section and the next one are among the most important sections of the book. We achieve a complete spectral theory of the DFT on \mathbb{Z}_{n} by showing a decomposition into eigenspaces together with a careful computation of their dimensions.

Let us now set

$$
\begin{aligned}
& W_{1}=\left\{\mathcal{F} g+g: g \in L_{+}\left(\mathbb{Z}_{n}\right)\right\} \\
& W_{2}=\left\{\mathcal{F} g-g: g \in L_{+}\left(\mathbb{Z}_{n}\right)\right\} \\
& W_{3}=\left\{i \mathcal{F} g-g: g \in L_{-}\left(\mathbb{Z}_{n}\right)\right\} \\
& W_{4}=\left\{i \mathcal{F} g+g: g \in L_{-}\left(\mathbb{Z}_{n}\right)\right\}
\end{aligned}
$$

Theorem 4.2.1 For the Fourier transform \mathcal{F} the following holds:

- W_{1} is the eigenspace corresponding to 1
- W_{2} is the eigenspace corresponding to -1
- W_{3} is the eigenspace corresponding to i
- W_{4} is the eigenspace corresponding to $-i$
so that

$$
L_{+}\left(\mathbb{Z}_{n}\right)=W_{1} \oplus W_{2} \text { and } L_{-}\left(\mathbb{Z}_{n}\right)=W_{3} \oplus W_{4}
$$

and therefore

$$
L\left(\mathbb{Z}_{n}\right)=W_{1} \oplus W_{2} \oplus W_{3} \oplus W_{4}
$$

is the decomposition of $L\left(\mathbb{Z}_{n}\right)$ into the eigenspaces of \mathcal{F}.

Proof First of all, we show that each $W_{j}, j=1,2,3,4$, is an eigenspace. Indeed, if $g \in L_{+}\left(\mathbb{Z}_{n}\right)$ then, by virtue of Lemma 4.1.1.(iii), $\mathcal{F}^{2} g=g$, and therefore the functions $f_{+}=\mathcal{F} g+g \in W_{1}$ and $f_{-}=\mathcal{F} g-g \in W_{2}$ satisfy:

$$
\begin{aligned}
\mathcal{F} f_{ \pm} & =\mathcal{F}(\mathcal{F} g \pm g) \\
& =g \pm \mathcal{F} g \\
& = \pm(\mathcal{F} g \pm g) \\
& = \pm f_{ \pm} .
\end{aligned}
$$

Similarly, if $g \in L_{-}\left(\mathbb{Z}_{n}\right)$ then, again by virtue of Lemma 4.1.1.(iii), $\mathcal{F}^{2} g=$
$-g$, so that the functions $f_{i}=i \mathcal{F} g-g \in W_{3}$ and $f_{-i}=i \mathcal{F} g+g \in W_{4}$ satisfy:

$$
\begin{aligned}
\mathcal{F} f_{ \pm i} & =\mathcal{F}(i \mathcal{F} g \mp g) \\
& =-i g \mp \mathcal{F} g \\
& = \pm i(i \mathcal{F} g \mp g) \\
& = \pm i f_{ \pm i} .
\end{aligned}
$$

For the converse we use repeatedly Lemma 4.1.6. Thus, if $\mathcal{F} f=f$, then f is even and $f=\mathcal{F} g+g$, with $g=\frac{1}{2} f \in L_{+}\left(\mathbb{Z}_{n}\right)$; if $\mathcal{F} f=-f$, then f is still even and $f=\mathcal{F} g-g$ with $g=-\frac{1}{2} f \in L_{+}\left(\mathbb{Z}_{n}\right)$; if $\mathcal{F} f=i f$, then f is odd and $f=i \mathcal{F} g-g$ with $g=-\frac{1}{2} f \in L_{-}\left(\mathbb{Z}_{n}\right)$; finally, if $\mathcal{F} f=-i f$, then f is odd and $f=i \mathcal{F} g+g$ with $g=\frac{1}{2} f \in L_{-}\left(\mathbb{Z}_{n}\right)$.

Since \mathcal{F} is unitary, $L\left(\mathbb{Z}_{n}\right)$ can be expressed as the direct orthogonal sum of its eigenspaces and the remaining statements are trivial.

Exercise 4.2.2 Let W be a finite dimensional Hermitian space and $T: W \rightarrow$ W a unitary operator. Suppose that $T^{4}=I_{W}$. Show that the eigenspaces of T^{2} may be used to construct the eigenspaces of T as in Theorem 4.2.1.

Exercise 4.2.3 Let W be a finite dimensional Hermitian space and $T: W \rightarrow$ W a unitary operator. Suppose that $T^{n}=I_{W}$ for some positive integer n and let ω be an n-th root of unity.
(1) Show that a vector $w \in W$ satisfies $T w=\omega w$ if and only if there exists $v \in W$ such that

$$
w=T^{n-1} v+\omega T^{n-2} v+\cdots+\omega^{n-1} v
$$

(2) Suppose that $n=h k$ with $1<h, k<n$ and set $S=T^{h}$ (so that $S^{k}=I$). Show that $w \in W$ satisfies $T w=\omega w$ if and only if $w=$ $T^{h-1} v+\omega T^{h-2} v+\cdots+\omega^{h-1} v$ for some $v \in W$ such that $S v=\omega^{h} v$.

We are now in position to exhibit suitable bases for the spaces W_{1}, W_{2}, W_{3} and W_{4} in Theorem 4.2.1. One of the main tools is the notion of a Chebyshëv set: we refer to Appendix 1 for the corresponding definition and related properties. Moreover, we work separately on each of the spaces W_{1}, W_{2}, W_{3} and W_{4}, and we summarize the results in Theorem 4.3.1. In particular, for each space we consider 4 different cases, corresponding to the congruence modulo 4 of n.

Theorem 4.2.4 Let $n=4 m+r$, with $r \in\{0,1,2,3\}$. Then the functions $u_{0}, u_{1}, \ldots, u_{m} \in W_{1}$ defined by setting

$$
u_{0}=\sqrt{n}\left(\mathcal{F} \delta_{0}+\delta_{0}\right)
$$

$$
u_{j}=\frac{\sqrt{n}}{2}\left[\mathcal{F}\left(\delta_{j}+\delta_{-j}\right)+\delta_{j}+\delta_{-j}\right]
$$

for $j=1,2, \ldots, m-1$, and

$$
u_{m}= \begin{cases}\sqrt{n}\left(\mathcal{F} \delta_{2 m}+\delta_{2 m}\right) & \text { if } n=4 m \\ \frac{\sqrt{n}}{2}\left[\mathcal{F}\left(\delta_{2 m}+\delta_{-2 m}\right)+\delta_{2 m}+\delta_{-2 m}\right] & \text { if } n=4 m+1 \\ \frac{\sqrt{n}}{2}\left[\mathcal{F}\left(\delta_{m}+\delta_{-m}\right)+\delta_{m}+\delta_{-m}\right] & \text { if } n=4 m+2,4 m+3\end{cases}
$$

are linearly independent.
Proof We divide the proof into the four cases corresponding to the possible values of r.
$\underline{n=4 m}$. It suffices to show that the restrictions of $u_{0}, u_{1}, \ldots, u_{m}$ to the set $\{m, m+1, \ldots, 2 m\} \subseteq \mathbb{Z}_{n}$ are linearly independent. Therefore, we consider the $(m+1)$-dimensional vectors:

$$
\begin{equation*}
\mathbf{z}_{j}=\left(u_{j}(m), u_{j}(m+1), \ldots, u_{j}(2 m)\right) \tag{4.7}
\end{equation*}
$$

for $j=0,1, \ldots, m$. By virtue of Lemma 4.1.1.(v) we have:

- $u_{0}=\chi_{0}+\sqrt{n} \delta_{0}$ and therefore $\mathbf{z}_{0}=(1,1, \ldots, 1)$;
- $u_{j}=\frac{1}{2}\left(\chi_{j}+\chi_{-j}\right)+\frac{\sqrt{n}}{2}\left(\delta_{j}+\delta_{-j}\right)$ and therefore, since $\frac{1}{2}\left(\chi_{j}+\chi_{-j}\right)(m+$ $k)=\cos \frac{\pi j(m+k)}{2 m}$,

$$
\mathbf{z}_{j}=\left(\cos \frac{\pi}{2} j, \cos \frac{\pi(m+1)}{2 m} j, \ldots, \cos \frac{\pi(m+k)}{2 m} j, \ldots, \cos (\pi j)\right)
$$

for $j=1,2, \ldots, m-1$;

- $u_{m}=\chi_{2 m}+\sqrt{n} \delta_{2 m}$ and, since $\chi_{2 m}(m+k)=\cos \pi(m+k)+i \sin \pi(m+$ $k)=(-1)^{m+k}$,

$$
\mathbf{z}_{m}=\left((-1)^{m},(-1)^{m+1}, \ldots,(-1)^{2 m-1}, 1+\sqrt{n}\right) .
$$

We conclude by using Proposition A1.0.2.(ii) applied to the Chebyshëv set $\{1, \cos \theta, \ldots, \cos (m-1) \theta\}$ (cf. Proposition A1.0.3) with $t_{k}=\frac{\pi(m+k)}{2 m}$, for $k=0,1, \ldots, m$.
$n=4 m+1$. Following the previous case, we consider again the vectors (4.7):

- $\mathbf{z}_{0}=(1,1, \ldots, 1)$;
- since $\frac{1}{2}\left(\chi_{j}+\chi_{-j}\right)(m+k)=\cos \frac{2 \pi(m+k)}{4 m+1} j$,
$\mathbf{z}_{j}=\left(\cos \frac{2 m \pi}{4 m+1} j, \cos \frac{2 \pi(m+1)}{4 m+1} j, \ldots, \cos \frac{2 \pi(m+k)}{4 m+1} j, \ldots, \cos \frac{4 m \pi}{4 m+1} j\right)$

$$
\text { for } j=1,2, \ldots, m-1 \text {; }
$$

- since $\frac{1}{2}\left(\chi_{2 m}+\chi_{-2 m}\right)(k+m)=\cos \frac{4 m(m+k) \pi}{4 m+1}$,
$\mathbf{z}_{m}=\left(\cos \frac{4 m^{2} \pi}{4 m+1}, \cos \frac{4 m(m+1) \pi}{4 m+1}, \ldots, \cos \frac{4 m(2 m-1) \pi}{4 m+1}, \cos \frac{8 m^{2} \pi}{4 m+1}+\frac{\sqrt{n}}{2}\right)$.
Thus we can conclude as in the previous case by taking $t_{k}=\frac{2 \pi(m+k)}{4 m+1}$ and $s_{k}=\cos \frac{4 m(m+k) \pi}{4 m+1}$ for $k=0,1, \ldots, m-1$, and $s_{m}=\cos \frac{8 m^{2} \pi}{4 m+1}+\frac{\sqrt{n}}{2}$. Just note that

$$
\cos \frac{4 m(m+k) \pi}{4 m+1}=\cos \left[(m+k) \pi-\frac{m+k}{4 m+1} \pi\right]=(-1)^{m+k} \cos \frac{(m+k) \pi}{4 m+1}
$$

and $\frac{(m+k) \pi}{4 m+1}<\frac{\pi}{2}$ for $k=0,1, \ldots, m$ so that the s_{k} s alternate in sign, and, for $k=m-1$ one has $(-1)^{2 m-1}=-1$ so that $s_{m-1}<0$, while $s_{m}=\cos \frac{2 m \pi}{4 m+1}+\frac{\sqrt{n}}{2}>0$.
$n=4 m+2$. We proceed as in the previous cases, now appealing to Proposition A1.0.2.(i) and replacing (4.7) by

$$
\mathbf{z}_{j}=\left(u_{j}(m+1), u_{j}(m+2), \ldots, u_{j}(2 m+1)\right)
$$

From the equality

$$
\frac{1}{2}\left(\chi_{j}+\chi_{-j}\right)(m+k)=\cos \frac{2 \pi(m+k) j}{4 m+2}=\cos \frac{\pi(m+k) j}{2 m+1}
$$

we get the $(m+1)$-dimensional vectors

$$
\mathbf{z}_{j}=\left(\cos \frac{(m+1) \pi}{2 m+1} j, \cos \frac{(m+2) \pi}{2 m+1} j, \ldots, \cos \frac{(m+k) \pi}{2 m+1} j, \ldots, \cos \pi j\right)
$$

for $j=0,1, \ldots, m$. The Chebyshëv set is again $\{1, \cos \theta, \ldots, \cos m \theta\}$ and $t_{k}=\frac{\pi(m+k)}{2 m+1}$, for $k=1,2, \ldots, m+1$.
$\underline{n=4 m+3}$. Now $\frac{1}{2}\left(\chi_{j}+\chi_{-j}\right)(m+k)=\cos \frac{2 \pi(m+k) j}{4 m+3}$ so that, as in the preceding case,

$$
\mathbf{z}_{j}=\left(\cos \frac{2 \pi(m+1)}{4 m+3} j, \cos \frac{2 \pi(m+2)}{4 m+3} j, \ldots, \cos \frac{2 \pi(2 m+1)}{4 m+3} j\right)
$$

for $j=0,1, \ldots, m$, and we may apply Proposition A1.0.2.(i) with the same Chebyshëv set as in the previous case and $t_{k}=\frac{2 \pi(m+k)}{4 m+3}$, for $k=1,2, \ldots, m+$ 1.

Theorem 4.2.5 Let $n=4 m+r$, with $r \in\{0,1,2,3\}$. Consider the functions $v_{0}, v_{1}, \ldots, v_{m} \in W_{2}$ defined by

$$
v_{0}=\sqrt{n}\left(\mathcal{F} \delta_{0}-\delta_{0}\right)
$$

and

$$
v_{j}=\frac{\sqrt{n}}{2}\left[\mathcal{F}\left(\delta_{j}+\delta_{-j}\right)-\left(\delta_{j}+\delta_{-j}\right)\right]
$$

for $j=1,2, \ldots, m$. Then the following holds:

- if $n=4 m, 4 m+1$, then the functions $v_{0}, v_{1}, \ldots, v_{m-1}$ are linearly independent;
- if $n=4 m+2,4 m+3$, then the functions $v_{0}, v_{1}, \ldots, v_{m}$ are linearly independent.

Proof As for the proof of Theorem 4.2.4, we divide the proof into the four cases corresponding to the possible values of r.
$\underline{n=4 m}$. Arguing as in the cases $n=4 m+2$ and $n=4 m+3$ in the proof of Theorem 4.2.4, and evaluating the functions at the points $\{m+k: k=$ $1,2, \ldots, m\}$ we get the vectors

$$
\mathbf{z}_{j}=\left(\cos \frac{\pi(m+1)}{2 m} j, \cos \frac{\pi(m+2)}{2 m} j, \ldots, \cos \frac{\pi(m+k)}{2 m} j, \ldots, \cos \pi j\right)
$$

for $j=0,1, \ldots, m-1$, and we may apply Proposition A1.0.2.(i) to the Chebyshëv set $\{1, \cos \theta, \ldots, \cos (m-1) \theta\}$ with $t_{k}=\frac{\pi(m+k)}{2 m}$, for $k=1,2, \ldots, m$.
$\underline{n=4 m+1}$. This is very similar to the previous case: now
$\mathbf{z}_{j}=\left(\cos \frac{2 \pi(m+1)}{4 m+1} j, \cos \frac{2 \pi(m+2)}{4 m+1} j, \ldots, \cos \frac{2 \pi(m+k)}{4 m+1} j, \ldots, \cos \frac{4 \pi m}{4 m+1} j\right)$
for $j=0,1, \ldots, m-1$, and we may apply Proposition A1.0.2 to the same Chebyshëv set as above and $t_{k}=\frac{2 \pi(m+k)}{4 m+1}$, for $k=1,2, \ldots, m$.
$n=4 m+2$. This leads exactly to the same vectors as in case $n=4 m+2$ of Theorem 4.2.4, evaluating the functions at the points $\{m+k: k=$ $1,2, \ldots, m+1\}$.
$n=4 m+3$. This leads exactly to the same vectors as in case $n=4 m+$ 3 of Theorem 4.2.4, evaluating the functions at the points $\{m+k: k=$ $1,2, \ldots, m+1\}$.

Theorem 4.2.6 Let again $n=4 m+r$, with $r \in\{0,1,2,3\}$. Consider the functions

$$
w_{j}=\frac{\sqrt{n}}{2}\left[i \mathcal{F}\left(\delta_{j}-\delta_{-j}\right)-\left(\delta_{j}-\delta_{-j}\right)\right] \in W_{3}
$$

for $j=1,2, \ldots, m$. Then the following holds

- if $n=4 m$ then the functions $w_{1}, w_{2}, \ldots, w_{m-1}$ are linearly independent;
- if $n=4 m+1,4 m+2,4 m+3$ then the functions $w_{1}, w_{2}, \ldots, w_{m}$ are linearly independent.

Proof Here, we divide the proof into two cases.
$\underline{n=4 m}$. For $k \geq 1$ and $j \geq 1$, by virtue of Lemma 4.1.1.(v)

$$
w_{j}(m+k)=\frac{i}{2}\left(\chi_{-j}-\chi_{j}\right)(m+k)=\sin \frac{\pi j(m+k)}{2 m}
$$

Therefore, if we restrict to the set $\{m+k: k=1,2, \ldots, m-1\}$ we get the ($m-1$)-dimensional vectors
$\mathbf{z}_{j}=\left(\sin \frac{\pi(m+1)}{2 m} j, \sin \frac{\pi(m+2)}{2 m} j, \ldots, \sin \frac{\pi(m+k)}{2 m} j, \ldots, \sin \frac{\pi(2 m-1)}{2 m} j\right)$
for $j=1,2, \ldots, m-1$, and we can apply Proposition A1.0.2 to the Chebyshëv set $\{\sin \theta, \sin 2 \theta, \ldots, \sin (m-1) \theta\}\left(\right.$ cf. Proposition A1.0.3) with $t_{k}=\frac{\pi(m+k)}{2 m}$ for $k=1,2, \ldots, m-1$.
$n=4 m+r, r=1,2,3$. Now we restrict to the set $\{m+k: k=1,2, \ldots, m\}$ obtaining the m-dimensional vectors

$$
\mathbf{z}_{j}=\left(\sin \frac{2 \pi(m+1)}{4 m+r} j, \sin \frac{2 \pi(m+2)}{4 m+r} j, \ldots, \sin \frac{2 \pi(m+k)}{4 m+r} j, \ldots, \sin \frac{4 \pi m}{4 m+r} j\right)
$$

for $j=1,2, \ldots, m$. Using the Chebyshëv set $\{\sin \theta, \sin 2 \theta, \ldots, \sin m \theta\}$ (cf. Proposition A1.0.3) with $t_{k}=\frac{2 \pi(m+k)}{4 m+r}$, for $k=1,2, \ldots, m$, we conclude the proof.

Theorem 4.2.7 Let again $n=4 m+r$, with $r \in\{0,1,2,3\}$. Consider the functions

$$
z_{j}=\frac{\sqrt{n}}{2}\left[i \mathcal{F}\left(\delta_{j}-\delta_{-j}\right)+\delta_{j}-\delta_{-j}\right]
$$

for $j=1,2, \ldots, m-1$,

$$
z_{m}=\frac{\sqrt{n}}{2} \begin{cases}i \mathcal{F}\left(\delta_{2 m-1}-\delta_{-2 m+1}\right)+\delta_{2 m-1}-\delta_{-2 m+1} & \text { if } r=0 \\ i \mathcal{F}\left(\delta_{m}-\delta_{-m}\right)+\delta_{m}-\delta_{-m} & \text { if } r=1,2,3\end{cases}
$$

and, only for $r=3$,

$$
z_{m+1}=\frac{\sqrt{n}}{2}\left[i \mathcal{F}\left(\delta_{2 m+1}-\delta_{-2 m-1}\right)+\delta_{2 m+1}-\delta_{-2 m-1}\right] .
$$

Then, all these functions belong to W_{4} (cf. Theorem 4.2.1) and the following holds:

- if $r=0,1,2$ then the functions $z_{1}, z_{2}, \ldots, z_{m}$ are linearly independent;
- if $r=3$ then the functions $z_{1}, z_{2}, \ldots, z_{m}, z_{m+1}$ are linearly independent.

Proof We divide the proof into three cases.
$\underline{n=4 m}$. We restrict the functions to the set $\{m+k: k=0,1, \ldots, m-1\}$ obtaining the m-dimensional vectors

$$
\mathbf{z}_{j}=\left(\sin \frac{\pi}{2} j, \sin \frac{\pi(m+1)}{2 m} j, \ldots, \sin \frac{\pi(m+k)}{2 m} j, \ldots, \sin \frac{\pi(2 m-1)}{2 m} j\right)
$$

for $j=1,2, \ldots, m-1$ and, since

$$
\begin{aligned}
\sin \frac{\pi(m+k)(2 m-1)}{2 m} & =\sin \left[\pi(m+k)-\frac{\pi(m+k)}{2 m}\right] \\
& =(-1)^{m+k+1} \sin \frac{\pi(m+k)}{2 m}
\end{aligned}
$$

with $\sin \frac{\pi(m+k)}{2 m}>0$ (because $0<\frac{\pi(m+k)}{2 m}<\frac{\pi}{2}$), for $k=0,1, \ldots, m-1$, and $z_{m}(2 m-1)=\sin \frac{(2 m-1) \pi}{2 m}+\frac{\sqrt{n}}{2}>0$, we have

$$
\begin{aligned}
& \mathbf{z}_{m}=\left((-1)^{m+1} \sin \frac{\pi}{2},(-1)^{m+2} \sin \frac{\pi(m+1)}{2 m}, \ldots\right. \\
& \left.\quad \ldots(-1)^{m+k+1} \sin \frac{\pi(m+k)}{2 m}, \ldots, \sin \frac{\pi(2 m-1)}{2 m}+\frac{\sqrt{n}}{2}\right) .
\end{aligned}
$$

By Proposition A1.0.2.(ii) with the Chebyshëv set $\{\sin \theta, \sin 2 \theta, \ldots, \sin (m-$ 1) $\theta\}$ with $t_{k}=\frac{\pi(m+k)}{2 m}$, for $k=0,1, \ldots, m-1$ and $s_{k}=(-1)^{m+k+1} \sin \frac{\pi(m+k)}{2 m}$, for $k=0,1, \ldots, m-2$, and $s_{m-1}=\sin \frac{\pi(2 m-1)}{2 m}+\frac{\sqrt{n}}{2}$, this completes the first case.
$n=4 m+1,4 m+2$. These cases lead to the same vectors in the corresponding cases in Theorem 4.2.6.
$\underline{n=4 m+3}$. We restrict the functions to the set $\{m+k: k=1,2, \ldots, m+1\}$ obtaining the m-dimensional vectors

$$
\mathbf{z}_{j}=\left(\sin \frac{2 \pi(m+1)}{4 m+3} j, \sin \frac{2 \pi(m+2)}{4 m+3} j, \ldots, \sin \frac{2 \pi(2 m+1)}{4 m+3} j\right)
$$

for $j=1,2, \ldots, m$.
Since,

$$
\begin{aligned}
\sin \frac{\pi(m+k)(4 m+2)}{4 m+3} & =\sin \left[\pi(m+k)-\frac{\pi(m+k)}{4 m+3}\right] \\
& =(-1)^{m+k+1} \sin \frac{\pi(m+k)}{4 m+3}
\end{aligned}
$$

with $\sin \frac{\pi(m+k)}{4 m+3}>0$, for $k=1,2, \ldots, m$, and

$$
z_{m+1}(2 m+1)=\sin \frac{\pi(2 m+1)}{4 m+3}+\frac{\sqrt{n}}{2}>0
$$

we conclude by using the Chebyshëv set $\{\sin \theta, \sin 2 \theta, \ldots, \sin m \theta\}$ with $t_{k}=$ $\frac{2 \pi(m+k)}{4 m+3}$, for $k=1,2, \ldots, m+1$, and $s_{k}=(-1)^{m+k+1} \sin \frac{\pi(m+k)}{4 m+3}$, for $k=$ $1,2, \ldots, m$, and $s_{m+1}=\sin \frac{\pi(2 m+1)}{4 m+3}+\frac{\sqrt{n}}{2}$.

4.3 Applications: some classical results by Gauss and Schur

Theorem 4.3.1 (Schur) With the notation in Theorem 4.2.1, the multiplicities of the eigenvalues of the DFT are given by the following table (recall, cf. Proposition 4.1.4, that $m_{j}=\operatorname{dim} W_{j}$, for $\left.j=1,2,3,4\right)$:

n	m_{1}	m_{2}	m_{3}	m_{4}
$4 m$	$m+1$	m	$m-1$	m
$4 m+1$	$m+1$	m	m	m
$4 m+2$	$m+1$	$m+1$	m	m
$4 m+3$	$m+1$	$m+1$	m	$m+1$

Table 4.1. The multiplicities of the eigenvalues of the DFT.

Proof Consider first the case $n=4 m$. Then the following holds:

- Theorem 4.2.4 implies $m_{1}=\operatorname{dim} W_{1} \geq m+1$;
- Theorem 4.2.5 implies $m_{2}=\operatorname{dim} W_{2} \geq m$;
- Theorem 4.2.6 implies $m_{3}=\operatorname{dim} W_{3} \geq m-1$;
- Theorem 4.2.7 implies $m_{4}=\operatorname{dim} W_{4} \geq m$.

Since $m_{1}+m_{2}+m_{3}+m_{4}=4 m$, all the inequalities above are indeed equalities.

The other cases can be handled similarly.
Remark 4.3.2 In the previous theorems we have given the spectral analysis of the matrix (2.22) of the DFT, namely of $F_{n}=\frac{1}{\sqrt{n}}\left(\omega^{-j k}\right)_{j, k=0}^{n-1}$. Other authors (for instance Auslander and Tolimieri [15] and Terras [159]) consider, instead, the matrix $\frac{1}{\sqrt{n}}\left(\omega^{j k}\right)_{j, k=0}^{n-1}$ (the k th column is switched with the $(n-$ $k)$ th column).

Corollary 4.3.3 (Gauss, Schur) The trace of \mathcal{F} is given by

$$
\operatorname{Tr}(\mathcal{F})=\left\{\begin{array}{lll}
1-i & \text { if } n \equiv 0 & \bmod 4 \\
1 & \text { if } n \equiv 1 & \bmod 4 \\
0 & \text { if } n \equiv 2 & \bmod 4 \\
-i & \text { if } n \equiv 3 & \bmod 4
\end{array}\right.
$$

and its characteristic polynomial $p(\lambda) \in \mathbb{C}[\lambda]$ is

$$
p(\lambda)= \begin{cases}(\lambda-1)^{2}(\lambda+1)(\lambda+i)\left(\lambda^{4}-1\right)^{(n-4) / 4} & \text { if } n \equiv 0 \bmod 4 \\ (\lambda-1)\left(\lambda^{4}-1\right)^{(n-1) / 4} & \text { if } n \equiv 1 \bmod 4 \\ \left(\lambda^{2}-1\right)\left(\lambda^{4}-1\right)^{(n-2) / 4} & \text { if } n \equiv 2 \bmod 4 \\ \left(\lambda^{2}-1\right)(\lambda+i)\left(\lambda^{4}-1\right)^{(n-3) / 4} & \text { if } n \equiv 3 \bmod 4\end{cases}
$$

Corollary 4.3.4 (Gauss)

$$
\sum_{k=0}^{n-1} \exp \left(\frac{2 \pi i k^{2}}{n}\right)=\left\{\begin{array}{lll}
(1+i) \sqrt{n} & \text { if } n \equiv 0 & \bmod 4 \\
\sqrt{n} & \text { if } n \equiv 1 & \bmod 4 \\
0 & \text { if } n \equiv 2 & \bmod 4 \\
i \sqrt{n} & \text { if } n \equiv 3 & \bmod 4
\end{array}\right.
$$

Proof

$$
\begin{equation*}
\operatorname{Tr}(\mathcal{F})=\sum_{k=0}^{n-1}\left\langle\mathcal{F} \delta_{k}, \delta_{k}\right\rangle=\sum_{k=0}^{n-1} \frac{1}{\sqrt{n}} \chi_{-k}(k)=\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \exp \left(-\frac{2 \pi i k^{2}}{n}\right) \tag{4.8}
\end{equation*}
$$

where the second equality follows from Lemma 4.1.1.(v). The statement then follows from Corollary 4.3 .3 by conjugating both sides of (4.8).

The case $n \equiv 2 \bmod 4$ is trivial, as it is shown in the following exercise.
Exercise 4.3.5 Suppose $n \equiv 2 \bmod 4$. Prove the identity

$$
\exp \left[\frac{2 \pi i}{n}\left(k+\frac{n}{2}\right)^{2}\right]=-\exp \frac{2 \pi i k^{2}}{n}
$$

and deduce the case $n \equiv 2 \bmod 4$ in Corollary 4.3.4.

4.4 Quadratic reciprocity and Gauss sums

This section is based on the monographs by Nathanson [118], Ireland and Rosen [79], Apostol [13], Terras [159], Nagell [117], and the paper [15] by Auslander and Tolimieri.

Definition 4.4.1 Let $n, m \in \mathbb{Z}$ with $\operatorname{gcd}(n, m)=1$. We say that m is a quadratic residue $\bmod n$ if the the congruence

$$
\begin{equation*}
x^{2} \equiv m \quad \bmod n \tag{4.9}
\end{equation*}
$$

has a solution x in \mathbb{Z}; otherwise, we say that m is a quadratic nonresidue $\bmod n$.

This section is devoted to the study of the solvability of (4.9). It culminates with the celebrated Gauss law of quadratic reciprocity (Theorem 4.4.18).

Remark 4.4.2 (1) It is clear that $m=1+k n$ is a quadratic residue mod n for all $n \in \mathbb{Z} \backslash\{0\}$ and $k \in \mathbb{Z}$. Indeed, the congruence (4.9) has solution $x=1$.
(2) Let $n, m \in \mathbb{Z}$ with $\operatorname{gcd}(n, m)=1$, so that $\bar{m} \in \mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ (cf. Lemma 1.5.1). Then m is a quadratic residue $\bmod n$ if and only if \bar{m} is a square in $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ (that is, there exists $\bar{x} \in \mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ such that $\left.\bar{x}^{2}=\bar{m}\right)$.
(3) Let $n_{1}, n_{2}, m \in \mathbb{Z}$ with $\operatorname{gcd}\left(n_{2}, m\right)=1$ and $n_{1} \mid n_{2}$, and suppose that m is a quadratic residue $\bmod n_{2}$. Set $q=n_{2} / n_{1} \in \mathbb{Z}$ and suppose that x is a solution of the congruence $x^{2} \equiv m \bmod n_{2}$. Then there exists $k \in \mathbb{Z}$ such that $x^{2}=n_{2} k+m=n_{1}(q k)+m$. This shows, in particular, that m is a quadratic residue $\bmod n_{1}$.

Proposition 4.4.3 Let $n, m \in \mathbb{Z}$ with $\operatorname{gcd}(n, m)=1$. Suppose that $n=n_{1} n_{2}$ with $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$. Then m is a quadratic residue mod n if and only if it is a quadratic residue $\bmod n_{i}$ for $i=1,2$.

Proof The "only if" part is obvious. Conversely, suppose that there exist $x_{i} \in \mathbb{Z}$ such that $m \equiv x_{i}^{2} \bmod n_{i}, i=1,2$. By the Chinese reminder theorem I (Corollary 1.1.23), there exists $x \in \mathbb{Z}$ such that $x \equiv x_{i} \bmod n_{i}, i=1,2$. Then, $x^{2} \equiv x_{i}^{2} \equiv m \bmod n_{i}, i=1,2$, and $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ implies $x^{2} \equiv m$ $\bmod n_{1} n_{2}$.

Lemma 4.4.4 Let $1 \leq \mu \leq 3$ and suppose that $m \in \mathbb{Z}$ is odd. Then the following conditions are equivalent:
(a) m is a quadratic residue $\bmod 2^{\mu}$;
(b) $m \equiv 1 \bmod 2^{\mu}$.

Proof Suppose that m is a quadratic residue $\bmod 2^{\mu}$. Then we can find $x \in \mathbb{Z}$ such that $x^{2} \equiv m \bmod 2^{\mu}$. Note that x cannot be even (otherwise m itself would be even, contradicting the assumptions). Thus there exists $h \in \mathbb{Z}$ such that $x=2 h+1$ and therefore $m \equiv x^{2}=(2 h+1)^{2}=4 h(h+1)+1 \equiv 1$ $\bmod 2^{\mu}$, since $h(h+1) \in 2 \mathbb{Z}$. This shows the implication (a) $\Rightarrow(\mathrm{b})$.
Conversely, suppose that $m \equiv 1 \bmod 2^{\mu}$. Thus we can find $k \in \mathbb{Z}$ such that $m=1+2^{\mu} k$ and it follows from Remark 4.4.2.(1) that $m=1+2^{\mu} k$ is a quadratic residue $\bmod 2^{\mu}$.

The following two theorems reduce the problem to the case n is an odd prime. To simplify notation, we denote by

$$
\begin{equation*}
|n|=2^{\mu} p_{1}^{\mu_{1}} p_{2}^{\mu_{2}} \cdots p_{k}^{\mu_{k}} \tag{4.10}
\end{equation*}
$$

the prime factorization of $|n|$ with the convention that if n is odd, then $\mu=0$ and the factor 2^{μ} is, in fact, missing.

Theorem 4.4.5 Let p be an odd prime. Then $m \in \mathbb{Z}$ is a quadratic residue $\bmod p$ if and only if $m^{\frac{p-1}{2}} \equiv 1 \bmod p$.

Proof The multiplicative group \mathbb{F}_{p}^{*} is cyclic of order $p-1$ (cf. Theorem 1.1.21). Thus, we can find $1 \leq y \leq p-1$ such that \bar{y} generates \mathbb{F}_{p}^{*}. For $x \in \mathbb{Z}$ (respectively $m \in \mathbb{Z}$) such that $p \nmid x$ (respectively $p \nmid m$) we choose by $1 \leq s=s(x) \leq p-1$ (respectively $1 \leq t=t(m) \leq p-1)$ such that
$\bar{y}^{s}=\bar{x}\left(\right.$ resp. $\left.\bar{y}^{t}=\bar{m}\right)$, equivalently, $y^{s} \equiv x\left(\right.$ resp. $\left.y^{t} \equiv m\right) \bmod p$.
Then, $m \in \mathbb{Z}($ with $\operatorname{gcd}(m, p)=1)$ is a quadratic residue $\bmod p$ if and only if the equation $x^{2} \equiv m \bmod p$ has a solution $x \in \mathbb{Z}$ and, with the above notation, this holds if and only if the equation $\bar{y}^{2 s}=\bar{y}^{t}$, which in turn is equivalent to the congruence $2 s \equiv t \bmod p-1$, has a solution s (with
$1 \leq s \leq p-1$). But this is the case if and only if t is even (just take $s=t / 2$). Now

$$
t \text { is even } \Leftrightarrow t \frac{p-1}{2} \equiv 0 \bmod p-1 \Leftrightarrow(\bar{m})^{\frac{p-1}{2}}=(\bar{y})^{t \frac{p-1}{2}}=\overline{1}
$$

where the last equality follows from \bar{y} having order $p-1$.

Theorem 4.4.6 Let $n, m \in \mathbb{Z}$ with $\operatorname{gcd}(n, m)=1$. Let (4.10) be the prime factorization of $|n|$. Then, m is a quadratic residue mod n if and only if the following conditions are satisfied:
(i) $m^{\frac{p_{j}-1}{2}} \equiv 1 \bmod p_{j}$ for $j=1,2, \ldots, k$;
(ii) and, (only) if n is even,

- $m \equiv 1 \bmod 2^{\mu}$ if $\mu=1,2$;
- $m \equiv 1 \bmod 8$ if $\mu \geq 3$.

Proof It follows from Proposition 4.4.3 that (4.9) has a solution (that is, m is a quadratic residue $\bmod n$) if and only if all the equations $x^{2} \equiv m$ $\bmod p_{j}^{\mu_{j}}$ for all $j=1,2, \ldots, k$ and, (only) if n is even, $x^{2} \equiv m \bmod 2^{\mu}$, have a solution.

Claim 1. $m \in \mathbb{Z}$ is a quadratic residue $\bmod 2^{\mu}$ if and only if

- $m \equiv 1 \bmod 2^{\mu}$ if $\mu=1,2$;
- $m \equiv 1 \bmod 8$ if $\mu \geq 3$.

If $1 \leq \mu \leq 3$, the claim is equivalent to Lemma 4.4.4.
Suppose that $\mu>3$ and that m is a quadratic residue $\bmod 2^{\mu}$. Then, it follows from Remark 4.4.2.(3) with $n_{1}=8$ and $n_{2}=2^{\mu}$ that m is a quadratic residue $\bmod 8$. From Lemma 4.4.4 we deduce that $m \equiv 1 \bmod 8$.

For the converse, suppose that $m \equiv 1 \bmod 8$. We show, by induction on $t \geq 3$, that the congruence $x^{2} \equiv m \bmod 2^{t}$ has a solution in \mathbb{Z}. For $t=3$, the statement follows from Lemma 4.4.4. Suppose now that for $t \geq 3$ there exists $x \in \mathbb{Z}$ such that $x^{2} \equiv m \bmod 2^{t}$ and let us show that there exists $y \in \mathbb{Z}$ such that $y^{2} \equiv m \bmod 2^{t+1}$. Let $q \in \mathbb{Z}$ be such that

$$
\begin{equation*}
x^{2}-m=q 2^{t} \tag{4.11}
\end{equation*}
$$

and observe that if q is even then we are done: just take $y=x$. Therefore
we suppose that q is odd. Set $y=x+2^{t-1}$. Then we have

$$
\begin{aligned}
y^{2}-m & =\left(x+2^{t-1}\right)^{2}-m \\
& =x^{2}-m+2^{t} x+2^{2 t-2} \\
(\text { by }(4.11)) & =2^{t}(q+x)+2^{t+1} 2^{t-3} \\
& \equiv 0 \quad \bmod 2^{t+1}
\end{aligned}
$$

where the last equality follows from the fact that $q+x$ is even because x is odd (since m is odd). This completes the proof of the claim.

Claim 2. Let p be an odd prime and $\mu \geq 1$. Then $m \in \mathbb{Z}$ is a quadratic residue $\bmod p^{\mu}$ if and only if m is a quadratic residue $\bmod p$.

As in the previous claim, the "only if" part is obvious.
Conversely, we again proceed by induction. The basis is trivial. Suppose that $x^{2} \equiv m \bmod p^{t}$ with $t \geq 1$ and let us show that we can find $y \in \mathbb{Z}$ such that $y^{2} \equiv m \bmod p^{t+1}$. By the inductive hypothesis, we can find $q \in \mathbb{Z}$ such that

$$
\begin{equation*}
x^{2}-m=q p^{t} \tag{4.12}
\end{equation*}
$$

and observe that if q is a multiple of p, then we are done: just take $y=x$. Therefore we suppose that $p \nmid q$. By our assumption we also have $p \nmid x$ and therefore, since p is odd, $\operatorname{gcd}(2 x, p)=1$. By virtue of Bézout identity, we can find $a, b \in \mathbb{Z}$ such that $a p+2 b x=-q$, equivalently,

$$
\begin{equation*}
q+2 b x=-a p \tag{4.13}
\end{equation*}
$$

Set $y=x+p^{t} b$. Then we have

$$
\begin{aligned}
y^{2}-m & =\left(x+p^{t} b\right)^{2}-m \\
& =x^{2}-m+2 b x p^{t}+p^{2 t} b^{2} \\
(\text { by }(4.12)) & =p^{t}(q+2 b x)+p^{t+1} p^{t-1} b^{2} \\
(\text { by }(4.13)) & =p^{t+1}\left(p^{t-1} b^{2}-a\right) \\
& \equiv 0 \quad \bmod p^{t+1}
\end{aligned}
$$

This completes the proof of the claim.
The statement then follows from Theorem 4.4.5.

From now on, p is a fixed odd prime and we study quadratic residues mod p.

Definition 4.4.7 The Legendre symbol $\left(\frac{n}{p}\right)$ is defined by setting

$$
\left(\frac{n}{p}\right)= \begin{cases}1 & \text { if } \operatorname{gcd}(n, p)=1 \text { and } n \text { is a quadratic residue } \bmod p \\ -1 & \text { if } \operatorname{gcd}(n, p)=1 \text { and } n \text { is a quadratic nonresidue } \bmod p \\ 0 & \text { if } p \mid n\end{cases}
$$

for every $n \in \mathbb{Z}$.
We now collect some basic properties of the Legendre symbol.

Proposition 4.4.8

(i) The map $n \mapsto\left(\frac{n}{p}\right)$ is constant on the congruence classes mod p, and therefore it may be seen as a function defined on \mathbb{F}_{p};
(ii) $n^{\frac{p-1}{2}} \equiv\left(\frac{n}{p}\right) \bmod p$ for all $n \in \mathbb{Z}$;
(iii) $\left(\frac{m n}{p}\right)=\left(\frac{m}{p}\right)\left(\frac{n}{p}\right)$ for all $m, n \in \mathbb{Z}$;
(iv) $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}= \begin{cases}1 & \text { if } p \equiv 1 \bmod 4 \\ -1 & \text { if } p \equiv-1 \bmod 4 .\end{cases}$

Proof (i) This follows immediately from the definition of the Legendre symbol.
(ii) If $p \mid n$ this is trivial; otherwise, from the fact that the multiplicative group \mathbb{F}_{p}^{*} has order $p-1$, we have $n^{p-1} \equiv 1 \bmod p(c f$. Fermat's little theorem (Exercise 1.1.22)) which implies

$$
\left(n^{\frac{p-1}{2}}-1\right) \cdot\left(n^{\frac{p-1}{2}}+1\right)=n^{p-1}-1 \equiv 0 \quad \bmod p
$$

that is, $n^{\frac{p-1}{2}} \equiv \pm 1 \bmod p$. By Theorem 4.4.5, $n^{\frac{p-1}{2}} \equiv 1 \bmod p$ if and only if n is a quadratic residue $\bmod p$ and therefore $n^{\frac{p-1}{2}} \equiv-1 \bmod p$ if and only if n is a quadratic nonresidue. In both cases, the statement follows from the definition of the Legendre symbol.
(iii) Again, this is obvious if $p \mid n$ or if $p \mid m$, so that we may assume $p \nmid n$ and $p \nmid m$ (and therefore $p \nmid n m$). By (ii) we have

$$
\begin{aligned}
\left(\frac{n m}{p}\right) & \equiv(n m)^{\frac{p-1}{2}} \quad \bmod p \\
& \equiv n^{\frac{p-1}{2}} m^{\frac{p-1}{2}} \quad \bmod p \\
& \equiv\left(\frac{n}{p}\right)\left(\frac{m}{p}\right) \quad \bmod p
\end{aligned}
$$

Since p is odd, $1 \not \equiv-1 \bmod p$ and we deduce that $\left(\frac{n m}{p}\right)=\left(\frac{n}{p}\right)\left(\frac{m}{p}\right)$.
(iv) This follows from (ii), after taking $n=-1$ therein.

Corollary 4.4.9 Let $Q \subseteq \mathbb{Z}$ (respectively $P \subseteq \mathbb{Z}$) denote the set of quadratic residues (respectively nonresidues) mod p and denote by \bar{Q} (respectively \bar{P}) its image in \mathbb{F}_{p}. Then $P \cdot P \subseteq Q=Q \cdot Q$ and $P \cdot Q=P$ (respectively $\bar{P} \cdot \bar{P}=\bar{Q}=\bar{Q} \cdot \bar{Q}$ and $\bar{P} \cdot \bar{Q}=\bar{P})$. Moreover,

$$
\begin{equation*}
|\bar{Q}|=|\bar{P}|=\frac{p-1}{2} \tag{4.14}
\end{equation*}
$$

Proof The inclusions $Q \cdot Q, P \cdot P \subseteq Q$ and $P \cdot Q \subseteq P$ follow immediately from Proposition 4.4.8.(iii). Since $1 \in \underline{Q}$, the equalities $Q \cdot Q=Q$ and $P \cdot Q=P$ follow. Projecting in \mathbb{F}_{p} we have $\bar{P} \cdot \bar{P} \subseteq \bar{Q}=\bar{Q} \cdot \bar{Q}$ and $\bar{P} \cdot \bar{Q}=\bar{P}$. In order to show the equality $\bar{P} \cdot \bar{P}=\bar{Q}$ and determine the cardinalities of \bar{Q} and \bar{P}, let us fix an element $\bar{n} \in \bar{P}$. We first observe that, since $Q, P \subseteq \mathbb{Z} \backslash p \mathbb{Z}$,

$$
\begin{equation*}
\bar{Q} \coprod \bar{P}=\mathbb{F}_{p}^{*} \tag{4.15}
\end{equation*}
$$

Since multiplication by \bar{n} yields a bijection of \mathbb{F}_{p}^{*}, from (4.15) we deduce that

$$
\bar{n} \bar{Q} \coprod \bar{n} \bar{P}=\mathbb{F}_{p}^{*}
$$

so that, since $\bar{n} \bar{Q} \subseteq \bar{P}$ and $\bar{n} \bar{P} \subseteq \bar{Q}$, we necessarily have that the above inclusions are indeed equalities. In particular, $\bar{P} \cdot \bar{P}=\bar{Q}$ and (4.14) holds.

Exercise 4.4.10

(1) Deduce Corollary 4.4.9 from the proof of Theorem 4.4.5.
(2) Deduce Proposition 4.4.8.(iii) from Corollary 4.4 .9 (which has been proved independently in (1)).

Definition 4.4.11 A subset $S \subseteq \mathbb{Z}$ of cardinality $|S|=\frac{p-1}{2}$ is called a Gaussian set modulo p if, for all $n \in \mathbb{Z}$ with $\operatorname{gcd}(n, p)=1$, there exist $t_{n} \in S$ and $\varepsilon_{n} \in\{1,-1\}$ such that

$$
\begin{equation*}
n \equiv \varepsilon_{n} t_{n} \quad \bmod p \tag{4.16}
\end{equation*}
$$

Exercise 4.4.12 (1) Show that if S is a Gaussian set, then $r \not \equiv \pm s \bmod p$ for all distinct $r, s \in S$.
(2) Show that the sets $S_{1}=\left\{1,2, \ldots, \frac{p-1}{2}\right\}$ and $S_{2}=\{2,4, \ldots, p-1\}$ are Gaussian sets modulo p.

Lemma 4.4.13 (Gauss' Lemma) Let S be a Gaussian set modulo p.
Then, for every $n \in \mathbb{Z}$ with $\operatorname{gcd}(n, p)=1$ we have

$$
\left(\frac{n}{p}\right)=\prod_{s \in S} \varepsilon_{n s}=(-1)^{k}
$$

where $k=\left|\left\{s \in S: \varepsilon_{n s}=-1\right\}\right|$.

Proof First of all, we show that for all $s, r \in S$

$$
t_{n s}=t_{n r} \Leftrightarrow s=r .
$$

Indeed, if $t_{n s}=t_{n r}$ then

$$
\begin{aligned}
n r & \equiv \varepsilon_{n r} t_{n r} \quad \bmod p \\
& \equiv \varepsilon_{n r} t_{n s} \quad \bmod p \\
& \equiv \pm \varepsilon_{n s} t_{n s} \quad \bmod p \\
& \equiv \pm n s \quad \bmod p
\end{aligned}
$$

that multiplied by \bar{n}^{-1} yields $r \equiv \pm s \bmod p$. By virtue of Exercise 4.4.12.(1), we deduce that $r=s$. In other words, the map $s \mapsto t_{n s}$ is a permutation of S so that

$$
\begin{aligned}
\prod_{s \in S} s \cdot \prod_{s \in S} \varepsilon_{n s} & =\prod_{s \in S} t_{n s} \cdot \prod_{s \in S} \varepsilon_{n s} \\
& =\prod_{s \in S} t_{n s} \varepsilon_{n s} \\
(\text { by }(4.16)) & \equiv \prod_{s \in S} s n \bmod p \\
\left(\text { since }|S|=\frac{p-1}{2}\right) & \equiv n^{\frac{p-1}{2}} \prod_{s \in S} s \bmod p \\
\text { (by Proposition 4.4.8.(ii)) } & \equiv\left(\frac{n}{p}\right) \prod_{s \in S} s \bmod p .
\end{aligned}
$$

Simplifying by $\prod_{s \in S} s$, and taking into account that both $\prod_{s \in S} \varepsilon_{n s}$ and $\left(\frac{n}{p}\right)$ are equal to either 1 or $-1($ and these are different $\bmod p)$, the lemma follows.

Corollary 4.4.14

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}=\left\{\begin{array}{lll}
1 & \text { if } p \equiv \pm 1 \quad \bmod 8 \\
-1 & \text { if } p \not \equiv \pm 1 & \bmod 8
\end{array}\right.
$$

Proof Take $S=\left\{1,2, \ldots, \frac{p-1}{2}\right\}$ and $n=2$. Then, by Gauss' lemma, we have $\left(\frac{2}{p}\right)=(-1)^{k}$, where k is the number of $s \in S$ such that $\varepsilon_{2 s}=-1$. For every $s \in S$, we clearly have $2 \leq 2 s \leq p-1$. Since

$$
2 \leq 2 s \leq \frac{p-1}{2} \Rightarrow 2 s \in S \Rightarrow \varepsilon_{2 s}=1
$$

while, setting $t=p-2 s$,

$$
\begin{aligned}
\frac{p+1}{2} & \leq 2 s \leq p-1 \Rightarrow 1 \leq p-2 s \leq \frac{p-1}{2} \Rightarrow t \in S \\
& \Rightarrow 2 s=p-t \equiv-t \quad \bmod p \Rightarrow \varepsilon_{2 s}=-1
\end{aligned}
$$

we deduce that k is equal to the number of $s \in S$ such that

$$
\begin{equation*}
\frac{p+1}{4} \leq s \leq \frac{p-1}{2} \tag{4.17}
\end{equation*}
$$

Now if, on the one hand, $p \equiv \pm 1 \bmod 8$, then we can find $h \in \mathbb{Z}$ such that $p=8 h \pm 1$ and (4.17) becomes

$$
2 h+\frac{1}{4} \pm \frac{1}{4} \leq s \leq 4 h-\frac{1}{2} \pm \frac{1}{2}
$$

so that, in both cases, $k=2 h$ and $\left(\frac{2}{p}\right)=(-1)^{2 h}=1$.
If, on the other hand, $p \equiv \pm 3 \bmod 8$, then we can find $h \in \mathbb{Z}$ such that $p=8 h \pm 3$ and (4.17) becomes

$$
2 h+\frac{1}{4} \pm \frac{3}{4} \leq s \leq 4 h-\frac{1}{2} \pm \frac{3}{2}
$$

so that $k=2 h \pm 1$ and, in both cases, $\left(\frac{2}{p}\right)=(-1)^{2 h \pm 1}=-1$.
Now, following the monograph by Nathanson [118], we study the Legendre symbol as a character of the multiplicative group \mathbb{F}_{p}^{*}. We recall (cf. Section 2.2) that for $n, k \in \mathbb{Z} \backslash p \mathbb{Z}$ we have defined $\chi_{n}(k)=\exp \left(\frac{2 \pi i n k}{p}\right)$.

For all $n \in \mathbb{Z}$ we set

$$
\begin{equation*}
\tau(p, n)=\sum_{k=1}^{p-1}\left(\frac{k}{p}\right) \chi_{n}(k) \tag{4.18}
\end{equation*}
$$

Note that setting $\ell_{p}(n)=\left(\frac{n}{p}\right)$ for all $n \in \mathbb{Z}$ then, in the notation in Section
2.4, we have $\tau(p, n)=\widehat{\ell_{p}}(-n)$. Clearly, $\left(\frac{k}{p}\right)$ is a multiplicative character (cf. Proposition 4.4.8.(iii)), while χ_{n} is an additive character. Note also that

$$
\begin{equation*}
\sum_{k=1}^{p-1}\left(\frac{k}{p}\right)=0 \tag{4.19}
\end{equation*}
$$

Indeed, the left hand side in (4.19) may be seen as the scalar product of the nontrivial multiplicative character ℓ_{p} with the trivial multiplicative character, so that we may use Proposition 2.3.5 (for multiplicative characters of \mathbb{F}_{p}^{*})

Theorem 4.4.15 (Gauss) Let $n \in \mathbb{Z}$. Then the following holds:
(i) $\tau(p, n)=\left(\frac{n}{p}\right) \tau(p, 1)$.
(ii) If $\operatorname{gcd}(n, p)=1$ then

$$
\tau(p, n)=\sum_{h=0}^{p-1} \exp \left(\frac{2 \pi i h^{2} n}{p}\right)
$$

in particular,

$$
\tau(p, 1)=\sum_{h=0}^{p-1} \exp \left(\frac{2 \pi i h^{2}}{p}\right)
$$

(iii)

$$
\tau(p, 1)=\left\{\begin{array}{lll}
\sqrt{p} & \text { if } p \equiv 1 & \bmod 4 \\
i \sqrt{p} & \text { if } p \equiv 3 & \bmod 4
\end{array}=i^{\frac{(p-1)^{2}}{4}} \sqrt{p}\right.
$$

Proof We first recall that $\chi_{n}(k)=\chi_{1}(n k)$. Assume $\operatorname{gcd}(n, p)=1$ so that $\left(\frac{n}{p}\right)= \pm 1$ and, for $1 \leq k \leq p-1$,

$$
\begin{equation*}
\left(\frac{k}{p}\right)=\left(\frac{k}{p}\right)\left(\frac{n}{p}\right)^{2}=\left(\frac{n k}{p}\right)\left(\frac{n}{p}\right) \tag{4.20}
\end{equation*}
$$

where the last equality follows from Proposition 4.4.8.(iii). Then

$$
\begin{aligned}
\tau(p, n) & =\sum_{k=1}^{p-1}\left(\frac{k}{p}\right) \chi_{n}(k) \\
(\text { by }(4.20)) & =\left(\frac{n}{p}\right) \sum_{k=1}^{p-1}\left(\frac{k n}{p}\right) \chi_{n}(k) \\
& =\left(\frac{n}{p}\right) \sum_{k=1}^{p-1}\left(\frac{k n}{p}\right) \chi_{1}(k n) \\
& =\left(\frac{n}{p}\right) \widehat{\ell}_{p}(-1) \\
& =\left(\frac{n}{p}\right) \tau(p, 1) .
\end{aligned}
$$

It is easy to check, by means of (4.19) that if $p \mid n$ then $\tau(p, n)=0$, and this ends the proof of (i).
(ii) Let P (respectively Q) be as in Corollary 4.4.9 and set $P^{\prime}=P \cap$ $\{1,2, \ldots, p-1\}$ (respectively $Q^{\prime}=Q \cap\{1,2, \ldots, p-1\}$).

Let $k \in Q^{\prime}$ and $h \in\{1,2, \ldots, p-1\}$ such that $h^{2} \equiv k \bmod p$. Then also $(p-h)^{2} \equiv h^{2} \equiv k \bmod p$ and $p-h \not \equiv h \bmod p$. Therefore

$$
\begin{equation*}
\sum_{h=1}^{p-1} \chi_{1}\left(n h^{2}\right)=2 \sum_{k \in Q^{\prime}} \chi_{1}(n k) \tag{4.21}
\end{equation*}
$$

and

$$
\begin{aligned}
& \qquad \begin{aligned}
\tau(p, n) & =\sum_{k=1}^{p-1}\left(\frac{k}{p}\right) \chi_{1}(n k) \\
& =\sum_{k \in Q^{\prime}} \chi_{1}(n k)-\sum_{k \in P^{\prime}} \chi_{1}(n k) \\
& =1+2 \sum_{k \in Q^{\prime}} \chi_{1}(n k)-\sum_{k=0}^{p-1} \chi_{1}(n k) \\
(\text { by }(4.21) \text { and }(2.5)) & =1+\sum_{h=1}^{p-1} \chi_{1}\left(n h^{2}\right) \\
& =\sum_{h=0}^{p-1} \exp \left(\frac{2 \pi i n h^{2}}{p}\right) .
\end{aligned} .\left\{\begin{array}{l}
\end{array}\right)
\end{aligned}
$$

(iii) This follows from (ii) and Corollary 4.3.4. Moreover, it is immediate to
check that

$$
i^{\frac{(p-1)^{2}}{4}}=\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1 & \bmod 4 \\
i & \text { if } p \equiv 3 & \bmod 4
\end{array}\right.
$$

Definition 4.4.16 $m, n \in \mathbb{Z}, n \neq 0$, we define the Gauss sum $G(m, n)$ by setting

$$
G(m, n)=\sum_{k=0}^{n-1} \exp \left(\frac{2 \pi i m k^{2}}{n}\right)
$$

(see also Definition 7.4.1 for Gauss sums over finite fields).
Observe that by virtue of Theorem 4.4.15.(ii), if $\operatorname{gcd}(p, n)=1$ then

$$
\begin{equation*}
\tau(p, n)=G(n, p) \tag{4.22}
\end{equation*}
$$

and that Corollary 4.3 .4 may be reformulated in the form

$$
G(1, n)=\left\{\begin{array}{lll}
(1+i) \sqrt{n} & \text { if } n \equiv 0 & \bmod 4 \tag{4.23}\\
\sqrt{n} & \text { if } n \equiv 1 & \bmod 4 \\
0 & \text { if } n \equiv 2 & \bmod 4 \\
i \sqrt{n} & \text { if } n \equiv 3 & \bmod 4
\end{array}\right.
$$

Proposition 4.4.17 Let $m, r, s \in \mathbb{Z}, r, s \neq 0$ and suppose that $\operatorname{gcd}(r, s)=1$. Then

$$
G(m r, s) G(m s, r)=G(m, s r)
$$

Proof

$$
\begin{aligned}
G(m r, s) G(m s, r) & =\sum_{v=0}^{s-1} \exp \left(\frac{2 \pi i m r v^{2}}{s}\right) \cdot \sum_{u=0}^{r-1} \exp \left(\frac{2 \pi i m s u^{2}}{r}\right) \\
& =\sum_{v=0}^{s-1} \sum_{u=0}^{r-1} \exp \left(2 \pi i m \frac{r^{2} v^{2}+s^{2} u^{2}}{s r}\right)
\end{aligned}
$$

$\left(\right.$ since $\left.\exp \left(2 \pi i m \frac{2 u v s r}{s r}\right)=1\right)=\sum_{v=0}^{s-1} \sum_{u=0}^{r-1} \exp \left(2 \pi i m \frac{(r v+s u)^{2}}{s r}\right)$
$($ by Lemma 1.1.16 $)=\sum_{k=0}^{s r-1} \exp \left(2 \pi i \frac{m k^{2}}{s r}\right)$

$$
=G(m, s r)
$$

We are now in position to prove the main result of this section.
Theorem 4.4.18 (Gauss law of quadratic reciprocity) Let p, q be distinct odd primes. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}
$$

Proof By virtue of Theorem 4.4.15 we have

$$
\tau(p, q)=\left(\frac{q}{p}\right) \tau(p, 1)=\left(\frac{q}{p}\right) i^{\frac{(p-1)^{2}}{4}} \sqrt{p}
$$

and, exchaning p and q,

$$
\tau(q, p)=\left(\frac{p}{q}\right) \tau(q, 1)=\left(\frac{p}{q}\right) i^{\frac{(q-1)^{2}}{4}} \sqrt{q} .
$$

Moreover, from Proposition 4.4.17 (with $r=q, s=p$ and $m=1$) and (4.22) we deduce that

$$
\begin{aligned}
\tau(p, q) \tau(q, p) & =G(q, p) G(p, q) \\
& =G(1, p q) \\
(\text { by }(4.23)) & =i^{\frac{(p q-1)^{2}}{4}} \sqrt{p q} .
\end{aligned}
$$

Then the equality

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) i^{\frac{(p-1)^{2}}{4}+\frac{(q-1)^{2}}{4}} \sqrt{p q}=i^{\frac{(p q-1)^{2}}{4}} \sqrt{p q}
$$

yields the quadratic reciprocity law because
$\frac{1}{4}\left[(p q-1)^{2}-(p-1)^{2}-(q-1)^{2}\right]=\frac{1}{4}\left[-2(p-1)(q-1)+\left(p^{2}-1\right)\left(q^{2}-1\right)\right]$ and

$$
(4 m+3)^{2} \equiv(4 m+1)^{2} \equiv 1 \quad \bmod 4 \Rightarrow p^{2}-1 \equiv q^{2}-1 \equiv 0 \quad \bmod 4
$$

so that

$$
i^{\frac{\left(p^{2}-1\right)\left(q^{2}-1\right)}{4}}=1
$$

while

$$
i^{\frac{-2(p-1)(q-1)}{4}}=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} .
$$

Exercise 4.4.19 From Theorem 4.4.18 deduce that
(1) if $p \equiv 1 \bmod 4$ or $q \equiv 1 \bmod 4$ then p is a quadratic residue $\bmod q$ if and only if q is a quadratic residue $\bmod p$;
(2) if $p \equiv q \equiv 3 \bmod 4$ then p is a quadratic residue $\bmod q$ if and only if q is a quadratic nonresidue $\bmod p$.

For instance, using the congruences

$$
179 \equiv 59 \equiv 3 \quad \bmod 4, \quad 179 \equiv 2 \quad \bmod 59, \quad \text { and } 59 \equiv 3 \bmod 8
$$

we get

$$
\left(\frac{59}{179}\right)=-\left(\frac{179}{59}\right)=-\left(\frac{2}{59}\right)=1
$$

where the last equality follows from Corollary 4.4.14.
Exercise 4.4.20 Deduce the following identities from Proposition 4.4.8 and Theorem 4.4.15: if $\operatorname{gcd}(n, p)=1$ and p is an odd prime, then

$$
\tau(p, n)^{2}=\left(\frac{-1}{p}\right) p=(-1)^{\frac{p-1}{2}} p
$$

if q is another distinct odd prime

$$
\tau(p, n)^{q-1} \equiv(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\left(\frac{p}{q}\right) \quad \bmod q
$$

Another, more elementary proof of the Gauss law of quadratic reciprocity will be sketched in Exercise 6.5.7: it avoids Corollary 4.3.4 and, therefore, all the machinery on the spectral analysis of the DFT.

5
 The Fast Fourier Transform

The Fast Fourier Transform (for brevity, FFT) is a numerical algorithm for the computation of the Discrete Fourier Transform. It is one of the most important algorithms, because it applies to an extremely wide class of numerical problems. It was discovered by Gauss who applied it to astronomical computations. It was rediscovered several times, and the most celebrated paper devoted to it is the seminal one by Cooley and Tukey [41] (one then often refers to this algorithm as to the Cooley-Tuckey algorithm).

However, as indicated in [15], this algorithm has also interesting theoretical interpretations. We will discuss this approach in Section 12.5.

In the present chapter, following the books by Tolimieri, An, and Lu [160] and by Van Loan [163], as well as the papers [49, 130, 168], we present a matrix theoretic approach to the FFT. Actually, [130] will constitute our main source, [49] is a fundamental inspiration for our treatment of stride permutations, and [160] has given us the general framework and the treatment of Rader's algorithm. Recent developments can be found in [46].

Before embarking on the formalism of Kronecker products and shuffle permutations, following the exposition in [150], we present the simplest example of the FFT.

5.1 A preliminary example

As in Section 2.2, set $\omega_{n}=\exp \frac{2 \pi i}{n}$ (note that we have added the subscript n to ω). Then, the (unnormalized) Discrete Fourier Transform of $f \in L\left(\mathbb{Z}_{n}\right)$ (cf. Definition 2.4.1) is given by

$$
\begin{equation*}
\widehat{f}^{n}(m)=\frac{1}{n} \sum_{k=0}^{n-1} f(k) \omega_{n}^{-k m} \tag{5.1}
\end{equation*}
$$

We have used the symbol ${ }^{\wedge n}$ to emphasize the fact that we are computing
the DFT of a function $f \in L\left(\mathbb{Z}_{n}\right)$. Then the computation of the Fourier coefficients of f requires:

- $n-2$ multiplications to compute the numbers $\omega_{n}^{2}, \omega_{n}^{3}, \ldots, \omega_{n}^{n-1}$ (note that in (5.1) these numbers may occur with repetitions and do all appear in the expression of some of these coefficients);
- each coefficient $\widehat{f}^{n}(m)$ requires n multiplications (to compute $\left.f(k) \omega_{n}^{-k m}\right)$, $n-1$ sums, plus a final multiplication by $\frac{1}{n}$.

Therefore, to compute all Fourier coefficients, one needs (at most)

$$
\begin{equation*}
(n-2)+n(n+(n-1)+1)=2 n^{2}+n-2 \leq 2 n^{2}+n=\mathcal{O}\left(n^{2}\right) \tag{5.2}
\end{equation*}
$$

elementary operations. We denote by $\sharp n$ the minimum number of operations that are needed to compute all the Fourier coefficients of any function in $L\left(\mathbb{Z}_{n}\right)$.

Remark 5.1.1 Note that in the definition of $\sharp n$, the minimum is over all possible algorithms: we are not necessarily using the expression of the Fourier coefficients provided by their definition (i.e. by (5.1)).

We begin with a preliminary lemma.

Lemma 5.1.2

$$
\sharp(2 n) \leq 2 \sharp n+8 n .
$$

Proof As above, we may compute the numbers $\omega_{2 n}^{k}, k=0,1, \ldots, 2 n-1$, with $2 n-2$ multiplications. Note also that

$$
\begin{equation*}
\omega_{2 n}^{2 r}=\omega_{n}^{r} \text { and } \omega_{2 n}^{2 s+1}=\omega_{2 n} \omega_{n}^{s} . \tag{5.3}
\end{equation*}
$$

Then, for $f \in L\left(\mathbb{Z}_{2 n}\right)$, we define $f_{0}, f_{1} \in L\left(\mathbb{Z}_{n}\right)$ by setting

$$
\begin{aligned}
& f_{0}(k)=f(2 k) \\
& f_{1}(k)=f(2 k+1)
\end{aligned}
$$

for all $k=0,1, \ldots, n-1$. Then

$$
\begin{align*}
\widehat{f}^{2 n}(m) & =\frac{1}{2 n} \sum_{k=0}^{2 n-1} f(k) \omega_{2 n}^{-k m} \\
(\text { by }(5.3)) & =\frac{1}{2}\left[\frac{1}{n} \sum_{r=0}^{n-1} f_{0}(r) \omega_{n}^{-r m}+\frac{1}{n} \sum_{s=0}^{n-1} f_{1}(s) \omega_{2 n}^{-m} \omega_{n}^{-s m}\right] \tag{5.4}\\
& =\frac{1}{2}\left[{\widehat{f_{0}}}^{n}(m)+\omega_{2 n}^{-m}{\widehat{f_{1}}}^{n}(m)\right] .
\end{align*}
$$

As an application of this formula, in order to compute the coefficients of f we need (at most):

- $2 \sharp n$ operations to compute the coefficients of both f_{0} and f_{1},
- $2 n-2$ operations to compute the numbers $\omega_{2 n}^{k}, k=0,1, \ldots, 2 n-1$,
- $6 n$ operations ($4 n$ multiplications and $2 n$ additions)
so that

$$
\sharp(2 n) \leq 2 \sharp n+8 n-2 \leq 2 \sharp n+8 n .
$$

Theorem 5.1.3 Let $n=2^{h}$. Then the Fourier coefficients of a function $f \in L\left(\mathbb{Z}_{n}\right)$ may be computed with at most $2^{h+2} h=4 n \log _{2} n=\mathcal{O}(n \log n)$ operations.

Proof We proceed by induction on h. If $h=1$ then $n=2$ and the Fourier coefficients are

$$
\begin{aligned}
& \widehat{f}^{2}(0)=\frac{1}{2}[f(0)+f(1)] \\
& \widehat{f}^{2}(1)=\frac{1}{2}[f(0)+(-1) f(1)]
\end{aligned}
$$

These computations require $5<8=2^{1+2} \cdot 1$ operations. Assume the statement for $n=2^{h}$, so that $\sharp n \leq 2^{h+2} h$. By Lemma 5.1 .2 , for $2 n=2^{h+1}$ we have

$$
\begin{aligned}
\sharp(2 n) & \leq 2 \sharp n+8 n \\
& \leq 2\left(2^{h+2} h\right)+8 \cdot 2^{h} \\
& =2^{h+3}(h+1) .
\end{aligned}
$$

As the above result shows, a factorization of n yields an improvement on the computation of the DFT. We will explore this after the introduction of a couple of basic theoretical tools.

5.2 Stride Permutations

Let n, m be two positive integers. By means of the Euclidean algorithm, any integer $0 \leq i \leq n m-1$ may be (uniquely) represented in the following forms:

$$
\begin{array}{ll}
i=s m+r & 0 \leq s \leq n-1,
\end{array} \quad 0 \leq r \leq m-1 .
$$

The expression (5.5) (respectively (5.6)) is called the (m, n)- (respectively (n, m)-)representation of i.

Definition 5.2.1 The stride (or shuffle) permutation is the bijection

$$
\sigma(m, n):\{0,1, \ldots, n m-1\} \rightarrow\{0,1, \ldots, n m-1\}
$$

defined by setting

$$
\sigma(m, n) i \equiv \sigma(m, n)(s m+r)=r n+s
$$

for every $0 \leq i \leq n m-1$ represented in the form (5.5).
We now present an alternative description of $\sigma(m, n)$. Divide the ordered sequence $(0,1,2, \ldots, n m-1)$ into n consecutive blocks, that is,

$$
(0,1, \ldots, n m-1)=\left(\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{n-1}\right)
$$

where $\mathcal{B}_{0}=(0,1, \ldots, m-1), \mathcal{B}_{1}=(m, m+1, \ldots, 2 m-1), \ldots, \mathcal{B}_{s}=(s m, s m+$ $1, \ldots, s m+r, \ldots,(s+1) m-1), \ldots$, and $\mathcal{B}_{n-1}=((n-1) m,(n-1) m+$ $1, \ldots, n m-1)$. Then

$$
(\sigma(m, n) 0, \sigma(m, n) 1, \ldots, \sigma(m, n)(n m-1))=\left(\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{n-1}\right)
$$

where the blocks $\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{n-1}$ are the ordered sequences defined by setting $\mathcal{C}_{s}=(s, s+n, \ldots, s+r n, \ldots, s+(m-1) n)$ for all $s=0,1, \ldots, n-1$.

$$
\begin{array}{cccccccc}
0 & 1 & \cdots & m-1 & 0 & n & \cdots & (m-1) n \\
m & m+1 & \cdots & 2 m-1 \\
\vdots(m, n) & 1 & n+1 & \cdots & (m-1) n+1 \\
(n-1) m & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
(n-1) m+1 & \cdots & n m-1 & n-1 & 2 n-1 & \cdots & m n-1
\end{array}
$$

Table 5.1. The action of the stride permutation $\sigma(m, n)$: in the first array, the rows are the blocks \mathcal{B} s, while, in the second array, the rows the blocks $\mathcal{C} s$.

For instance,

$$
\begin{array}{lll}
\sigma(3,2) 0=0 & \sigma(3,2) 1=2 & \sigma(3,2) 2=4 \\
\sigma(3,2) 3=1 & \sigma(3,2) 4=3 & \sigma(3,2) 5=5 .
\end{array}
$$

Clearly, $\sigma(m, 1)$ and $\sigma(1, n)$ are the identity permutation and

$$
\begin{equation*}
\sigma(m, n)^{-1}=\sigma(n, m) \tag{5.7}
\end{equation*}
$$

Let now m, n, k be positive integers. Then for any integer $0 \leq i \leq m n k-1$
two applications of the Euclidean algorithm yield firstly $i=t m n+s_{1}$, with $0 \leq t \leq k-1$ and $0 \leq s_{1} \leq m n-1$, and then $s_{1}=s m+r$, with $0 \leq s \leq n-1$ and $0 \leq r \leq m-1$, so that we may write

$$
\begin{equation*}
i=t m n+s m+r . \tag{5.8}
\end{equation*}
$$

We refer to (5.8) as to the (m, n, k)-representation of i. Moreover the positive integers t, s, r (or, to emphasize their ordering, the triple (t, s, r)) are called the coefficients of this representation.

Lemma 5.2.2 Let $0 \leq i<m n k-1$ with (m, n, k)-representation as in (5.8). Then
(i)

$$
\sigma(m n, k) i=s m k+r k+t
$$

that is, the $\sigma(m n, k)$-image of i is the number whose coefficients in the (k, m, n)-representation are (s, r, t); we then write (symbolically):

$$
[(m, n, k) ;(t, s, r)] \xrightarrow{\sigma(m n, k)}[(k, m, n) ;(s, r, t)] ;
$$

(ii)

$$
\sigma(m, n k) i=r n k+t n+s
$$

that is, the $\sigma(m, n k)$-image of i is the number whose coefficients in the (n, k, m)-representation are (r, t, s) and we again write (symbolically):

$$
[(m, n, k) ;(t, s, r)] \xrightarrow{\sigma(m, n k)}[(n, k, m) ;(r, t, s)] .
$$

Proof We have

$$
\begin{aligned}
\sigma(m n, k)(t m n+s m+r) & =\sigma(m n, k)[t m n+(s m+r)] \\
(\text { by Definition 5.2.1) } & =(s m+r) k+t \\
& =s m k+r k+t
\end{aligned}
$$

and this gives (i); moreover

$$
\begin{aligned}
\sigma(m, n k)(t m n+s m+r) & =\sigma(m, n k)[(t n+s) m+r)] \\
\quad(\text { by Definition 5.2.1) } & =r n k+t n+s
\end{aligned}
$$

and (ii) follows as well.

Theorem 5.2.3 (Basic product identities) Let m, n, k be positive integers. Then

$$
\begin{equation*}
\sigma(m k, n) \sigma(m n, k)=\sigma(m, n k) \tag{5.9}
\end{equation*}
$$

$$
\begin{equation*}
\sigma(n, m k) \sigma(m, n k)=\sigma(m n, k) \tag{5.10}
\end{equation*}
$$

Proof By two applications of Lemma 5.2.2.(i) we get

$$
[(m, n, k) ;(t, s, r)] \xrightarrow{\sigma(m n, k)}[(k, m, n) ;(s, r, t)] \xrightarrow{\sigma(k m, n)}[(n, k, m) ;(r, t, s)]
$$

which coincides with $\sigma(m, k n)$ by Lemma 5.2.2.(ii). This proves (5.9).
By two applications of Lemma 5.2.2.(ii) we get

$$
[(m, n, k) ;(t, s, r)] \xrightarrow{\sigma(m, n k)}[(n, k, m) ;(r, t, s)] \xrightarrow{\sigma(n, m k)}[(k, m, n) ;(s, r, t)]
$$

which coincides with $\sigma(m n, k)$ by Lemma 5.2.2.(i). This proves (5.10).
Definition 5.2.4 Let m, n, k be positive integers. We define the partial stride permutations $\iota(m, n, k)$ and $\tau(m, n, k)$ by setting

$$
\iota(m, n, k) i=s k m+t m+r
$$

and

$$
\tau(m, n, k) i=t m n+r n+s
$$

for all $i=t m n+s m+r$ as in (5.8).
Note that in the definition of $\iota(m, n, k)$ we have $s k m+t m+r=(s k+$ $t) m+r$, that is, in $i=t m n+s m+r=(t n+s) m+r$ we replace $t n+s$ by $s k+t$. Moreover, we have the following (symbolic) representation

$$
[(m, n, k) ;(t, s, r)] \xrightarrow{\iota(m, n, k)}[(m, k, n) ;(s, t, r)] .
$$

Analogously, in the definition of $\tau(m, n, k)$ we have $s m+r$ replaced by $r n+s$ and the corresponding (symbolic) representation is:

$$
[(m, n, k) ;(t, s, r)] \xrightarrow{\tau(m, n, k)}[(n, m, k) ;(t, r, s)] .
$$

Theorem 5.2.5 (Product identities for partial strides) We have

$$
\begin{equation*}
\iota(n, m, k) \tau(m, n, k)=\sigma(m, n k) \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau(m, k, n) \iota(m, n, k)=\sigma(m n, k) \tag{5.12}
\end{equation*}
$$

Proof We have

$$
[(m, n, k) ;(t, s, r)] \xrightarrow{\tau(m, n, k)}[(n, m, k) ;(t, r, s)] \xrightarrow{\iota(n, m, k)}[(n, k, m) ;(r, t, s)]
$$

which coincides with $\sigma(m, n k)$, proving (5.11). Similarly,

$$
[(m, n, k) ;(t, s, r)] \xrightarrow{\iota(m, n, k)}[(m, k, n) ;(s, t, r)] \xrightarrow{\tau(m, k, n)}[(k, m, n) ;(s, r, t)]
$$

which coincides with $\sigma(m n, k)$, proving (5.12).
Theorem 5.2.6 (Mixed products identities)

$$
\begin{align*}
& \tau(k, m, n) \sigma(m n, k)=\iota(m, n, k) \tag{5.13}\\
& \iota(n, k, m) \sigma(m, n k)=\tau(m, n, k) \tag{5.14}\\
& \sigma(m k, n) \iota(m, n, k)=\tau(m, n, k) \tag{5.15}\\
& \sigma(n, m k) \tau(m, n, k)=\iota(m, n, k) .
\end{align*}
$$

Proof The proofs are easy and left as exercises.

Corollary 5.2.7 (Similarity identity)

$$
\sigma(m n, k) \tau(m, n, k) \sigma(k, m n)=\iota(k, m, n)
$$

Proof Starting by using (5.14) we have

$$
\begin{aligned}
\sigma(m n, k) \tau(m, n, k) \sigma(k, m n) & =\sigma(m n, k) \iota(n, k, m) \sigma(m, n k) \sigma(k, m n) \\
(\text { by }(5.15) \text { and }(5.10)) & =\tau(n, k, m) \sigma(m k, n) \\
(\text { by }(5.13)) & =\iota(k, m, n) .
\end{aligned}
$$

Exercise 5.2.8 Give a direct proof of the similarity identity.
Notation 5.2.9 From now on, given integers $0 \leq k<n$ and a map $f:\{0,1, \ldots, n-1\} \rightarrow\{0,1, \ldots, n-1\}$, we write " $f(k)=j \bmod n$ " to indicate that, if $j \notin\{0,1, \ldots, n-1\}$, then the value $f(k)$ equals the unique element $j^{\prime} \in\{0,1, \ldots, n-1\}$ such that $j^{\prime} \equiv j \bmod n$. In other words, we regard $\{0,1, \ldots, n-1\}$, the domain and codomain of f, as the additive group \mathbb{Z}_{n}.

Definition 5.2.10 Let $0 \leq k \leq m-1$ and suppose that $\operatorname{gcd}(k, m)=1$. Then the elementary congruence permutation $\gamma(m, k)$ of $\{0,1, \ldots, m-1\}$ is defined by setting

$$
\gamma(m, k) j=k j \bmod m
$$

for all $j=0,1, \ldots, m-1$ (recall Lemma 1.5.1).
Let also $0 \leq h \leq m-1$ and suppose that $\operatorname{gcd}(h, m)=1$. Then the product congruence permutation $\gamma(m, k ; n, h)$ of $\{0,1, \ldots, n m-1\}$ is defined by setting

$$
\gamma(m, k ; n, h) i=s^{\prime} m+r^{\prime}
$$

for every $i=s m+r$ as in (5.5) and $s^{\prime}=h s \bmod n$ and $r^{\prime}=k r \bmod m$.
The proof of the following proposition is trivial.
Proposition 5.2.11 Let $0 \leq h, k \leq m-1$.
(i) If $\operatorname{gcd}(h, m)=\operatorname{gcd}(k, m)=1$ then $\gamma(m, k) \gamma(m, h)=\gamma(m, h k \bmod m)$ $=\gamma(m, h) \gamma(m, k)$;
(ii) if $\operatorname{gcd}(k, m)=1$ then $\gamma(m, k)^{-1}=\gamma\left(m, k^{*}\right)$, where k^{*} denotes the inverse of $k \bmod m$.

Definition 5.2.12 Suppose that $\operatorname{gcd}(n, m)=1$. We define one more permutation of $\{0,1, \ldots m n-1\}$, denoted $\beta(m, n)$, by setting

$$
\begin{equation*}
\beta(m, n) i=s_{1} m+r \tag{5.16}
\end{equation*}
$$

for all $i=s m+r$ as in (5.5), where $s_{1}=s-m^{*} r \bmod n$ (here m^{*} denotes the inverse of $m \bmod n$).

Note that $\beta(m, n)$ defined above is indeed a permutation: for, with the notation as in Definition 5.2.12, if $0 \leq s_{0} \leq n-1$ and $0 \leq r_{0} \leq m-1$, we have that $\beta(m, n) i=s_{0} m+r_{0}$ if an only if $s_{1}=s_{0}$ and $r=r_{0}$, so that also $s=m^{*} r+s_{0} \bmod n$.

Definition 5.2.13 Suppose that $\operatorname{gcd}(m, n)=1, \operatorname{gcd}(k, m)=1$, and $\operatorname{gcd}(h, n)$ $=1$. Let n^{*} be the inverse of $n \bmod m$. Then the composite bijection permutation $\pi(m, k ; n, h)$ of $\{0,1, \ldots, n m-1\}$ is defined by setting

$$
\pi(m, k ; n, h) i=h s m+k n^{*} n r \quad \bmod n m
$$

for all $i=s m+r$ as in (5.5).

Theorem 5.2.14 In the notation of Definition 5.2.13, $\pi(m, k ; n, h)$ is indeed a permutation and

$$
\begin{equation*}
\beta(m, n) \gamma(m, k ; n, h)=\pi(m, k ; n, h) . \tag{5.17}
\end{equation*}
$$

Moreover, its inverse is given by the map

$$
j \mapsto s m+r \quad 0 \leq j \leq n m-1
$$

where, denoting by k^{*} (respectively h^{*}) the inverse of k (respectively h) mod $m($ respectively $\bmod n)$,

$$
\begin{cases}s=h^{*} m^{*} j & \bmod n \tag{5.18}\\ r=k^{*} j & \bmod m\end{cases}
$$

Proof It suffices to prove (5.17), since its left hand side is a permutation. We claim that if $0 \leq n^{*} \leq m-1$ is the inverse of $n \bmod m$ and $0 \leq m^{*} \leq n-1$ is the inverse of $m \bmod n$, then

$$
\begin{equation*}
m m^{*}+n n^{*}=1 \quad \bmod n m . \tag{5.19}
\end{equation*}
$$

Indeed, recalling that $\operatorname{gcd}(m, n)=1$, by virtue of Bézout indentity (1.2), there exist $a, b \in \mathbb{Z}$ such that $a n+b m=1$. Clearly, this last identity implies that a (respectively b) is the inverse of n (respectively m) mod m $($ respectively $\bmod n)$. If $a=\alpha m+a_{1}$, with $0 \leq a_{1} \leq m-1$, and $b=\beta n+b_{1}$, with $0 \leq b_{1} \leq n-1$, then

$$
a_{1} n+b_{1} m+(\alpha+\beta) n m=1
$$

and we can take $n^{*}=a_{1}$ and $m^{*}=b_{1}$, proving the claim.
Now suppose $0 \leq s \leq n-1$ and $0 \leq r \leq m-1$. Then

$$
\beta(m, n) \gamma(m, k ; n, h)(s m+r)=\beta(m, n)\left(s^{\prime} m+r^{\prime}\right)=s_{1} m+r^{\prime}
$$

where (cf. Definition 5.2.10 and Definition 5.2.12)

$$
\begin{array}{lll}
k r=a m+r^{\prime} & \text { and } & 0 \leq r^{\prime} \leq m-1 \\
h s=b n+s^{\prime} & \text { and } & 0 \leq s^{\prime} \leq n-1,
\end{array}
$$

for suitable $a, b \in \mathbb{Z}$, and

$$
s^{\prime}-m^{*} r^{\prime}=c n+s_{1} \quad \text { and } \quad 0 \leq s_{1} \leq n-1,
$$

for a suitable $c \in \mathbb{Z}$, and m^{*} as in (5.19). It follows that

$$
s_{1}=s^{\prime}-m^{*} r^{\prime}-c n=h s-b n-m^{*} k r+a m^{*} m-c n .
$$

Therefore

$$
\begin{aligned}
s_{1} m+r^{\prime} & =h s m-b n m-m^{*} m k r+a m^{*} m^{2}-c n m+k r-a m \\
& =h s m+\left(1-m^{*} m\right) k r-a m\left(1-m^{*} m\right) \bmod n m
\end{aligned}
$$

$($ by $(5.19))=h s m+n n^{*} k r \bmod n m$,
proving (5.17).

Finally, we prove the last assertion. Suppose that $0 \leq j \leq n m-1$ and $\pi(m, k ; n, h)(s m+r)=j$. Then

$$
j=h s m+k n^{*} n r \bmod n m .
$$

Multiplying by k^{*}, we get

$$
k^{*} j=k^{*} h s m+k^{*} k n^{*} n r=r \quad \bmod m,
$$

while, multiplying by $h^{*} m^{*}$, we get

$$
h^{*} m^{*} j=s h^{*} h m^{*} m+h^{*} m^{*} k n n^{*} r=s \quad \bmod n,
$$

showing that conditions (5.18) are satisfied.
Remark 5.2.15 Two special cases of $\pi(m, k ; n, h)$ are worth mentioning.
For $k=1$ and $h=m^{*}$, we define the Chinese remainder mapping $c(m, n)=$ $\pi\left(m, 1 ; n, m^{*}\right)$. We have

$$
c(m, n)(m s+r)=m m^{*} s+n n^{*} r \quad \bmod n m .
$$

Note that (cf. (5.18)), $j=m m^{*} s+n n^{*} r$ is a solution of the system

$$
\begin{cases}j \equiv s & \bmod n \\ j \equiv r & \bmod m\end{cases}
$$

(this explains the name of the map $c(m, n)$, cf. Corollary 1.1.23).
For $k=n$ and $h=1$ we define the Ruritanian map $r(m, n)=\pi(m, n ; n, 1)$. We have

$$
\begin{aligned}
r(m, n)(m s+r) & =s m+n^{2} n^{*} r \quad \bmod n m \\
& =s m+n r \quad \bmod n m
\end{aligned}
$$

since $n n^{*}=1 \bmod m$ implies that

$$
\begin{equation*}
n^{2} n^{*}=n \quad \bmod n m . \tag{5.20}
\end{equation*}
$$

Theorem 5.2.16 (Permutational Reverse Radix Identity) If $\operatorname{gcd}(m, n)=$ $\operatorname{gcd}(k, m)=\operatorname{gcd}(h, n)=1$, then

$$
\pi(m, k ; n, h) \gamma\left(m, n ; n, m^{*}\right)=\pi(n, h ; m, k) \sigma(m, n),
$$

where, as usual, m^{*} denotes the inverse of $m \bmod n$.
Proof For $0 \leq s \leq n-1$ and $0 \leq r \leq m-1$, by applying the definitions of γ and π, and setting

$$
\begin{equation*}
s^{\prime}=s m^{*} \quad \bmod n \quad \text { and } \quad r^{\prime}=r n \quad \bmod m, \tag{5.21}
\end{equation*}
$$

we have

$$
\begin{aligned}
\pi(m, k ; n, h) \gamma\left(m, n ; n, m^{*}\right)(m s+r) & =\pi(m, k ; n, h)\left(s^{\prime} m+r^{\prime}\right) \\
& =h s^{\prime} m+k n n^{*} r^{\prime} \bmod n m \\
(\text { by }(5.21)) & =h s m^{*} m+k n^{2} n^{*} r \bmod n m \\
(\text { by }(5.20)) & =h s m^{*} m+k n r \bmod n m .
\end{aligned}
$$

On the other hand, applying the definition of $\sigma(m, n)$, we get
$\pi(n, h ; m, k) \sigma(m, n)(m s+r)=\pi(n, h ; m, k)(r n+s)=k r n+h s m m^{*} \bmod n m$.

The Permutational Reverse Radix Identity in the cases discussed in Remark 5.2.15 may be expressed as follows.

Proposition 5.2.17

$$
c(m, n)=c(n, m) \sigma(m, n) \quad a n d \quad r(m, n)=r(n, m) \sigma(m, n)
$$

Proof For $0 \leq s \leq n-1$ and $0 \leq r \leq m-1$ we have

$$
\begin{aligned}
c(n, m) \sigma(m, n)(m s+r) & =c(n, m)(r n+s) \\
& =r n n^{*}+m m^{*} s \bmod n m \\
& =c(m, n)(m s+r)
\end{aligned}
$$

(note that $\left.c(n, m)=\pi\left(n, 1 ; m, n^{*}\right)\right)$ and

$$
\begin{aligned}
r(n, m) \sigma(m, n)(m s+r) & =r(n, m)(r n+s) \\
& =r n+s m \bmod n m \\
& =r(m, n)(m s+r)
\end{aligned}
$$

(and now $r(n, m)=\pi(n, m ; m, 1))$.

5.3 Permutation Matrices and Kronecker Products

We begin with some elementary but useful remarks on the product of matrices. Let $A=\left(a_{i, j}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$ be an $n \times m$ matrix with complex coefficients.

Note that often we will actually use $\{0,1, \ldots, n-1\}$ (respectively $\{0,1, \ldots, m-$ $1\}$) in place of $\{1,2, \ldots, n\}$ (respectively $\{1,2, \ldots, m\}$) as index sets.

We denote by $A_{* j}$ its j-th column and by $A_{i *}$ its i-th row, that is,

$$
A_{* j}=\left[\begin{array}{c}
a_{1, j} \\
a_{2, j} \\
\vdots \\
a_{n, j}
\end{array}\right] \quad \text { and } \quad A_{i *}=\left[a_{i, 1}, a_{i, 2}, \cdots, a_{i, m}\right]
$$

for $j=1,2, \ldots, m$ and $i=1,2, \ldots, n$. This way, we may decompose A as

$$
A=\left[A_{* 1} A_{* 2} \cdots A_{* m}\right]=\left[\begin{array}{c}
A_{1 *} \\
A_{2 *} \\
\vdots \\
A_{n *}
\end{array}\right] .
$$

Let $B=\left(b_{j, k}\right)_{\substack{1 \leq j \leq m \\ 1 \leq k \leq h}}$ be an $m \times h$ matrix. Then the product $A B$ may be written in the following two forms. The first is:

$$
A B=\left[(A B)_{* 1}(A B)_{* 2} \cdots(A B)_{* h}\right]
$$

where, for $k=1,2, \ldots, h$,

$$
\begin{equation*}
(A B)_{* k}=\sum_{j=1}^{m} A_{* j} b_{j, k}=A\left(B_{* k}\right) . \tag{5.22}
\end{equation*}
$$

In other words, the k-th column of $A B$ is the linear combination of the columns of A with coefficients $b_{1, k}, b_{2, k}, \ldots, b_{m, k}$ (the k-th column of B). The second one is:

$$
A B=\left[\begin{array}{c}
(A B)_{1 *} \\
(A B)_{2 *} \\
\vdots \\
(A B)_{n *}
\end{array}\right]
$$

where, for $i=1,2, \ldots, n$,

$$
\begin{equation*}
(A B)_{i *}=\sum_{j=1}^{m} a_{i, j} B_{j *}=A_{i *} B . \tag{5.23}
\end{equation*}
$$

That is, the i-th row of $A B$ is the linear combinations of the rows of B with coefficients $a_{i, 1}, a_{i, 2}, \ldots, a_{i, m}$ (the i-th row of A).
With a permutation π of $\{1,2, \ldots, n\}$ we associate the $n \times n$ permutation matrix

$$
\begin{equation*}
P_{\pi}=\left(\delta_{\pi(i), j}\right)_{i, j=1}^{n} \tag{5.24}
\end{equation*}
$$

That is, the (i, j)-coefficient of P_{π} is equal to 1 if $j=\pi(i)$, and 0 otherwise. In other words, the i-th row of P_{π} is

$$
\left(P_{\pi}\right)_{i *}=\left[\begin{array}{lllllll}
0 & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right]
$$

where the unique 1 is in the $\pi(i)$ th-position (column). Noting that

$$
\begin{equation*}
\delta_{\pi(i), j}=\delta_{i, \pi^{-1}(j)} \tag{5.25}
\end{equation*}
$$

we can also conclude that the j-th column of P_{π} is

$$
\left(P_{\pi}\right)_{* j}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where the unique 1 is in the $\pi^{-1}(j)$ th-position (row).

Lemma 5.3.1 (Product rules)

(i) Let π, σ be permutations of $\{1,2, \ldots, n\}$. Then

$$
P_{\pi} P_{\sigma}=P_{\sigma \pi}
$$

Moreover,

$$
\begin{equation*}
\left(P_{\pi}\right)^{-1}=P_{\pi^{-1}}=\left(P_{\pi}\right)^{T} \tag{5.26}
\end{equation*}
$$

(ii) Let A (respectively B) be an $m \times n$ (respectively $n \times m$) matrix. Then

$$
A P_{\pi}=\left[A_{* 1} A_{* 2} \cdots A_{* n}\right] P_{\pi}=\left[A_{* \pi^{-1}(1)} A_{* \pi^{-1}(2)} \cdots A_{* \pi^{-1}(n)}\right]
$$

while

$$
P_{\pi} B=P_{\pi}\left[\begin{array}{c}
B_{1 *} \\
B_{2 *} \\
\vdots \\
B_{n *}
\end{array}\right]=\left[\begin{array}{c}
B_{\pi(1) *} \\
B_{\pi(2) *} \\
\vdots \\
B_{\pi(n) *}
\end{array}\right]
$$

Proof (i) The (i, j)-coefficient of the product $P_{\pi} P_{\sigma}$ is:

$$
\begin{aligned}
\sum_{k=1}^{n} \delta_{\pi(i), k} \delta_{\sigma(k), j} & =\sum_{k=1}^{n} \delta_{\pi(i), k} \delta_{k, \sigma^{-1}(j)} \\
& = \begin{cases}1 & \text { if } \pi(i)=\sigma^{-1}(j) \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } j=\sigma(\pi(i)) \\
0 & \text { otherwise }\end{cases} \\
& =\delta_{\sigma(\pi(i)), j} .
\end{aligned}
$$

Moreover, (5.26) follows from (5.25).
(ii) Taking into account (5.22) we have, for $j=1,2, \ldots, n$,

$$
\begin{aligned}
\left(A P_{\pi}\right)_{* j} & =\sum_{k=1}^{n} A_{* k} \delta_{\pi(k), j} \\
& =\sum_{k=1}^{n} A_{* k} \delta_{k, \pi^{-1}(j)} \\
& =A_{* \pi^{-1}(j)} .
\end{aligned}
$$

Similarly, by (5.23), for $i=1,2, \ldots, n$ we have

$$
\left(P_{\pi} B\right)_{i *}=\sum_{k=1}^{n} \delta_{\pi(i), k} B_{k *}=B_{\pi(i) *}
$$

Corollary 5.3.2 Let $A=\left(a_{i, j}\right)_{i, j=1}^{n}$ be an $n \times n$-matrix. Then

$$
P_{\pi} A P_{\pi}^{T}=\left(a_{\pi(i), \pi(j)}\right)_{i, j=1}^{n} .
$$

In other words, multiplication on the left by P_{π} is equivalent to a permutation of the rows (in the i-th position we find the $\pi^{-1}(i)$-th row). Multiplication on the right by P_{π} is equivalent to a permutation of the columns (in the j-th position we find the $\pi(j)$-th column). Note also that if we set $Q_{\pi}=P_{\pi}^{T}$ then $Q_{\pi} Q_{\sigma}=Q_{\pi \sigma}$.

Definition 5.3.3 Let $A=\left(a_{i, j}\right)_{i, j=1}^{n}$ and $B=\left(b_{i, j}\right)_{i, j=1}^{m}$ be an $n \times n$ matrix and an $m \times m$ matrix, respectively. Then the Kronecker product of A and B
is the $n m \times n m$ matrix $A \otimes B$ given in block form by

$$
A \otimes B=\left(\begin{array}{cccc}
a_{1,1} B & a_{1,2} B & \cdots & a_{1, n} B \\
a_{2,1} B & a_{2,2} B & \cdots & a_{2, n} B \\
\vdots & \vdots & \vdots & \vdots \\
a_{n, 1} B & a_{n, 2} B & \cdots & a_{n, n} B
\end{array}\right)
$$

This notion will be used in Section 8.7 and Section 10.5.

Example 5.3.4 Denote by I_{n} the $n \times n$ identity matrix. Then

$$
I_{n} \otimes B=\left(\begin{array}{cccc}
B & & & \tag{5.27}\\
& B & & \\
& & \ddots & \\
& & & B
\end{array}\right)
$$

and

$$
A \otimes I_{m}=\left(\begin{array}{cccc}
a_{1,1} I_{m} & a_{1,2} I_{m} & \cdots & a_{1, n} I_{m} \\
a_{2,1} I_{m} & a_{2,2} I_{m} & \cdots & a_{2, n} I_{m} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n, 1} I_{m} & a_{n, 2} I_{m} & \cdots & a_{n, n} I_{m}
\end{array}\right)
$$

In particular,

$$
\begin{equation*}
I_{n} \otimes I_{m}=I_{n m} \tag{5.28}
\end{equation*}
$$

Note that, in general, $A \otimes B$ is different from $B \otimes A$ (but we will show that they are similar).

Proposition 5.3.5 The Kronecker product satisfies the following properties.
(i) Bilinearity:

$$
\left(\alpha_{1} A_{1}+\alpha_{2} A_{2}\right) \otimes B=\alpha_{1}\left(A_{1} \otimes B\right)+\alpha_{2}\left(A_{2} \otimes B\right)
$$

and

$$
A \otimes\left(\beta_{1} B_{1}+\beta_{2} B_{2}\right)=\beta_{1}(A \otimes B)+\beta_{2}\left(A \otimes B_{2}\right)
$$

(ii) associativity:

$$
(A \otimes B) \otimes E=A \otimes(B \otimes E)
$$

(iii) product rule:

$$
(A \otimes B)(C \otimes D)=(A C) \otimes(B D)
$$

(iv)

$$
A \otimes B=\left(A \otimes I_{m}\right)\left(I_{n} \otimes B\right)=\left(I_{m} \otimes A\right)\left(B \otimes I_{n}\right)
$$

(v) if both A, B are invertible then $A \otimes B$ is invertible and

$$
(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}
$$

(vi)

$$
(A \otimes B)^{T}=A^{T} \otimes B^{T}
$$

for all $n \times n$ matrices $A, A_{1}, A_{2}, C, m \times m$ matrices B, B_{1}, B_{2}, D, $h \times h$ matrices E, and $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{C}$.

Proof (i) and (ii) are easy exercises left to the reader.
(iii) If $C=\left(c_{i, j}\right)_{i, j=1}^{n}$ then $(A \otimes B)(C \otimes D)$ equals

$$
\begin{aligned}
& \quad\left(\begin{array}{cccc}
a_{1,1} B & a_{1,2} B & \cdots & a_{1, n} B \\
a_{2,1} B & a_{2,2} B & \cdots & a_{2, n} B \\
\vdots & \vdots & \vdots & \vdots \\
a_{n, 1} B & a_{n, 2} B & \cdots & a_{n, n} B
\end{array}\right)\left(\begin{array}{cccc}
c_{1,1} D & c_{1,2} D & \cdots & c_{1, n} D \\
c_{2,1} D & c_{2,2} B & \cdots & c_{2, n} D \\
\vdots & \vdots & \vdots & \vdots \\
c_{n, 1} D & c_{n, 2} D & \cdots & c_{n, n} D
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\left(\sum_{j=1}^{n} a_{1, j} c_{j, 1}\right) B D & \left(\sum_{j=1}^{n} a_{1, j} c_{j, 2}\right) B D & \cdots & \left(\sum_{j=1}^{n} a_{1, j} c_{j, n}\right) B D \\
\left(\sum_{j=1}^{n} a_{2, j} c_{j, 1}\right) B D & \left(\sum_{j=1}^{n} a_{2, j} c_{j, 2}\right) B D & \cdots & \left(\sum_{j=1}^{n} a_{2, j} c_{j, n}\right) B D \\
\vdots & \vdots & \vdots & \vdots \\
\left(\sum_{j=1}^{n} a_{n, j} c_{j, 1}\right) B D & \left(\sum_{j=1}^{n} a_{n, j} c_{j, 2}\right) B D & \cdots & \left(\sum_{j=1}^{n} a_{n, j} c_{j, n}\right) B D
\end{array}\right)
\end{aligned}
$$

and this is exactly $(A C) \otimes(B D)$.
(iv) and (v) are easy consequences of (iii). Finally, (vi) is an easy exercise.

We now adopt the notation in [130]. We set

$$
\begin{equation*}
P_{n}^{m}=P_{\sigma(m, n)} \tag{5.29}
\end{equation*}
$$

that is, P_{n}^{m} is the permutation matrix associated with the stride permutation $\sigma(m, n)$ (see Definition 5.2.1). Note that, by (5.26) and (5.7), we have

$$
\begin{equation*}
\left(P_{n}^{m}\right)^{-1}=\left(P_{n}^{m}\right)^{T}=P_{m}^{n} \tag{5.30}
\end{equation*}
$$

The following important result connects stride permutations and Kronecker products.

Proposition 5.3.6 (Similarity of tensor products by stride permutations) Let $A=\left(a_{i, j}\right)_{i, j=0}^{n-1}$ and $B=\left(b_{i, j}\right)_{i, j=0}^{m-1}$. Then

$$
P_{m}^{n}(A \otimes B) P_{n}^{m}=B \otimes A
$$

Proof Denote by $(A \otimes B)_{i, i^{\prime}}\left(0 \leq, i, i^{\prime} \leq n m-1\right)$ the $\left(i, i^{\prime}\right)$-coefficient of $A \otimes B$. Then, in the notation of (5.5) and (5.6), the matrix $A \otimes B$ may be expressed as follows: if $i=s m+r$ and $i^{\prime}=s^{\prime} m+r^{\prime}$, with $0 \leq r, r^{\prime} \leq m-1$ and $0 \leq s, s^{\prime} \leq n-1$, then

$$
\begin{equation*}
(A \otimes B)_{i, i^{\prime}}=a_{s, s^{\prime}} b_{r, r^{\prime}} \tag{5.31}
\end{equation*}
$$

Moreover, if $j=r n+s$ and $j^{\prime}=r^{\prime} n+s$, with, as above, $0 \leq r, r^{\prime} \leq m-1$ and $0 \leq s, s^{\prime} \leq n-1$, then

$$
\begin{equation*}
(B \otimes A)_{j, j^{\prime}}=b_{r, r^{\prime}} a_{s, s^{\prime}} \tag{5.32}
\end{equation*}
$$

and

$$
\begin{array}{ll}
j=\sigma(m, n) i & j^{\prime}=\sigma(m, n) i^{\prime} \tag{5.33}\\
i=\sigma(n, m) j & i^{\prime}=\sigma(n, m) j^{\prime}
\end{array}
$$

Therefore, taking into account Corollary 5.3.2 and (5.7), we have

$$
\begin{aligned}
{\left[P_{m}^{n}(A \otimes B) P_{n}^{m}\right]_{j, j^{\prime}} } & =(A \otimes B)_{\sigma(n, m) j, \sigma(n, m) j^{\prime}} \\
(\text { by }(5.33)) & =(A \otimes B)_{i, i^{\prime}} \\
(\text { by }(5.31)) & =a_{s, s^{\prime}} b_{r, r^{\prime}} \\
(\text { by }(5.32)) & =(B \otimes A)_{j, j^{\prime}}
\end{aligned}
$$

We now examine the partial stride permutations introduced in Definition 5.2.4: we keep the same notation.

Proposition 5.3.7 We have

$$
P_{\tau(m, n, k)}=I_{k} \otimes P_{n}^{m}
$$

and

$$
P_{\iota(m, n, k)}=P_{k}^{n} \otimes I_{m} .
$$

Proof Note that

$$
\begin{equation*}
\left(P_{n}^{m}\right)_{i, i^{\prime}}=\delta_{\sigma(m, n) i, i^{\prime}}=\delta_{r, r^{\prime}} \delta_{s, s^{\prime}} \tag{5.34}
\end{equation*}
$$

if $i=s m+r$ and $i^{\prime}=r^{\prime} n+s^{\prime}$, with $0 \leq s, s^{\prime} \leq n-1$ and $0 \leq r, r^{\prime} \leq m-1$. Therefore, if $i=t m n+s m+r$, with $0 \leq t \leq k-1,0 \leq s \leq n-1$, and
$0 \leq r \leq m-1$, and $i^{\prime}=t^{\prime} m n+r^{\prime} n+s^{\prime}$, with $0 \leq t^{\prime} \leq k-1,0 \leq r^{\prime} \leq m-1$, and $0 \leq s^{\prime} \leq n-1$, then (cf. Definition 5.2.4)

$$
\tau(m, n, k) i=i^{\prime} \leftrightarrow t=t^{\prime}, s=s^{\prime}, r=r^{\prime}
$$

so that

$$
\begin{equation*}
\left(P_{\tau(m, n, k)}\right)_{i, i^{\prime}}=\delta_{\tau(m, n, k) i, i^{\prime}}=\delta_{t, t^{\prime}} \delta_{r, r^{\prime}} \delta_{s, s^{\prime}} \tag{5.35}
\end{equation*}
$$

Similarly, by virtue of (5.31) (with n replaced by k and m replaced by $n m$), we have

$$
\begin{align*}
\left(I_{k} \otimes P_{n}^{m}\right)_{i, i^{\prime}} & =\delta_{t, t^{\prime}}\left(P_{n}^{m}\right)_{s m+r, r^{\prime} n+s^{\prime}} \\
(\text { by }(5.34)) & =\delta_{t, t^{\prime}} \delta_{r, r^{\prime}} \delta_{s, s^{\prime}} \tag{5.36}
\end{align*}
$$

Comparing (5.35) and (5.36), we deduce the first identity.
Now suppose that $i^{\prime}=s^{\prime} k m+t^{\prime} m+r^{\prime}$ with $0 \leq t^{\prime} \leq k-1,0 \leq r^{\prime} \leq m-1$, and $0 \leq s^{\prime} \leq n-1$, while i is as above. Then (cf. Definition 5.2.4)

$$
\iota(m, n, k) i=i^{\prime} \leftrightarrow t=t^{\prime}, s=s^{\prime}, r=r^{\prime}
$$

so that

$$
\begin{equation*}
\left(P_{\iota(m, n, k)}\right)_{i, i^{\prime}}=\delta_{\iota(m, n, k) i, i^{\prime}}=\delta_{t, t^{\prime}} \delta_{s, s^{\prime}} \delta_{r, r^{\prime}} \tag{5.37}
\end{equation*}
$$

while, writing i, i^{\prime} in the forms $i^{\prime}=\left(s^{\prime} k+t^{\prime}\right) m+r^{\prime}$ and $i=(t n+s) m+r$, we have

$$
\begin{align*}
\left(P_{k}^{n} \otimes I_{m}\right)_{i, i^{\prime}} & =\left(P_{k}^{n}\right)_{t n+s, s^{\prime} k+t^{\prime}} \delta_{r, r^{\prime}} \\
& =\delta_{\sigma(n, k)(t n+s), s^{\prime} k+t^{\prime}} \delta_{r, r^{\prime}} \tag{5.38}\\
& =\delta_{s, s^{\prime}} \delta_{r, r^{\prime}} \delta_{t, t^{\prime}}
\end{align*}
$$

where the first equality follows from (5.31). Comparing (5.37) and (5.38) we deduce the second identity.

By means of Lemma 5.3.1.(i) and of Proposition 5.3.7, all the identities in Theorem 5.2.3, Theorem 5.2.5, Theorem 5.2.6, and Corollary 5.2.7 may be translated into identities for permutation matrices. We list then in the following proposition.

Proposition 5.3.8 Basic product identities:

$$
\begin{align*}
P_{k}^{m n} P_{n}^{m k} & =P_{n k}^{m} \tag{5.39}\\
P_{n k}^{m} P_{m k}^{n} & =P_{k}^{m n}
\end{align*}
$$

Product identities for partial strides:

$$
\begin{aligned}
\left(I_{k} \otimes P_{n}^{m}\right)\left(P_{k}^{m} \otimes I_{n}\right) & =P_{n k}^{m} \\
\left(P_{k}^{n} \otimes I_{m}\right)\left(I_{n} \otimes P_{k}^{m}\right) & =P_{k}^{m n} .
\end{aligned}
$$

Mixed product identities:

$$
\begin{aligned}
P_{k}^{m n}\left(I_{n} \otimes P_{m}^{k}\right) & =P_{k}^{n} \otimes I_{m} \\
P_{n k}^{m}\left(P_{m}^{k} \otimes I_{n}\right) & =I_{k} \otimes P_{n}^{m} \\
\left(P_{k}^{n} \otimes I_{m}\right) P_{n}^{m k} & =I_{k} \otimes P_{n}^{m} \\
\left(I_{k} \otimes P_{n}^{m}\right) P_{m k}^{n} & =P_{k}^{n} \otimes I_{m}
\end{aligned}
$$

Similarity identity:

$$
P_{m n}^{k}\left(I_{k} \otimes P_{n}^{m}\right) P_{k}^{m n}=P_{n}^{m} \otimes I_{k}
$$

Proof The proof is immediate and is left to the reader. We just note that, using the matrix formalism, the second identity follows from the first one by means of an application of (5.30). The same observation holds true for the other group of identities. Note also that the similarity identity is just a particular case of Proposition 5.3.6.

With the notation in Definition 5.2.10 we set

$$
\begin{equation*}
B_{m}^{k}=P_{\gamma(m, k)} \tag{5.40}
\end{equation*}
$$

Proposition 5.3.9

$$
P_{\gamma(m, k ; n, h)}=B_{n}^{h} \otimes B_{m}^{k}
$$

Proof First note that, for $0 \leq r, r^{\prime} \leq m-1$,

$$
\left(B_{m}^{k}\right)_{r, r^{\prime}}=\delta_{\gamma(m, k) r, r^{\prime}}= \begin{cases}1 & \text { if } r^{\prime} \equiv k r \quad \bmod m \tag{5.41}\\ 0 & \text { otherwise }\end{cases}
$$

Therefore, for $i=m s+r$ and $i^{\prime}=m s^{\prime}+r^{\prime}$, with $0 \leq s, s^{\prime} \leq n-1$ and $0 \leq r, r^{\prime} \leq m-1$, by virtue of (5.31) we have

$$
\begin{aligned}
\left(B_{n}^{h} \otimes B_{m}^{k}\right)_{i, i^{\prime}} & =\left(B_{n}^{h}\right)_{s, s^{\prime}}\left(B_{m}^{k}\right)_{r, r^{\prime}} \\
(\text { by }(5.41)) & =\left\{\begin{array}{ll}
1 & \text { if } s^{\prime}=h s \\
0 & \text { otherwise }
\end{array} \bmod n \text { and } r^{\prime}=k r \bmod m\right. \\
& =\delta_{\gamma(m, k ; n, h) i, i^{\prime}} \\
& =\left(P_{\gamma(m, k ; n, h)}\right)_{i, i^{\prime}} .
\end{aligned}
$$

Note also that, if $\operatorname{gcd}(k, m)=\operatorname{gcd}(h, m)=1$, from Proposition 5.2.11 we get:

$$
B_{m}^{k} B_{m}^{h}=B_{m}^{k h}=B_{m}^{h} B_{m}^{k}
$$

and

$$
\begin{equation*}
\left(B_{m}^{k}\right)^{-1} \equiv\left(B_{m}^{k}\right)^{T}=B_{m}^{k^{*}} \tag{5.42}
\end{equation*}
$$

where, as usual, $k^{*} k=1 \bmod m$.
In order to describe the matrix formulations corresponding to $\beta(m, n)$ in (5.16), we introduce a few more definitions and notation. The elementary circulant permutation matrix of order n is the matrix

$$
C_{n}=\left(\begin{array}{llllll}
0 & 0 & \cdots & & 0 & 1 \\
1 & 0 & \cdots & & 0 & 0 \\
0 & 1 & \cdots & & 0 & 0 \\
& & \ddots & & & \\
0 & 0 & \cdots & 1 & 0 & 0 \\
0 & 0 & \cdots & 0 & 1 & 0
\end{array}\right)
$$

cf. Exercise 2.4.16. In other words, denoting by $\varepsilon=\varepsilon_{n}$ the permutation of $\{0,1, \ldots, n-1\}$ defined by setting $\varepsilon(i)=i-1 \bmod n$, then

$$
\left(C_{n}\right)_{i, j}=\delta_{\varepsilon(i), j} \quad 0 \leq i, j \leq n-1
$$

equivalently (cf. (5.24)),

$$
\begin{equation*}
C_{n}=P_{\varepsilon} \tag{5.43}
\end{equation*}
$$

Clearly, $C_{n}^{k}=P_{\varepsilon^{k}}$ and therefore

$$
\left(C_{n}^{k}\right)_{i, j}= \begin{cases}1 & \text { if } i-k \equiv j \quad \bmod n \tag{5.44}\\ 0 & \text { otherwise }\end{cases}
$$

We also define the m-th block diagonal power of an $n \times n$ matrix W, as the $m n \times m n$ matrix $D_{m}(W)$ defined by setting

$$
D_{m}(W)=\left(\begin{array}{ccccc}
W^{0} & & & & \tag{5.45}\\
& W^{1} & & & \\
& & W^{2} & & \\
& & & \ddots & \\
& & & & W^{m-1}
\end{array}\right)
$$

where $W^{0}=I_{n}$ and $W^{i}=W W^{i-1}$ for $i=1,2, \ldots, m-1$. Note that, for
$j=r n+s$ and $j^{\prime}=r^{\prime} n+s^{\prime}$, with $0 \leq r, r^{\prime} \leq m-1$ and $0 \leq s, s^{\prime} \leq n-1$, we have

$$
\begin{equation*}
\left[D_{m}(W)\right]_{j, j^{\prime}}=\delta_{r, r^{\prime}} \cdot\left(W^{r}\right)_{s, s^{\prime}} . \tag{5.46}
\end{equation*}
$$

In what follows, for $0 \leq k \leq n-1$, we set

$$
\begin{equation*}
Q_{m}^{n}(k)=P_{n}^{m} D_{m}\left(C_{n}^{k}\right) P_{m}^{n} \tag{5.47}
\end{equation*}
$$

Then, with the notation in Definition 5.2.12 we have

Proposition 5.3.10

$$
P_{\beta(m, n)}=Q_{m}^{n}\left(m^{*}\right)
$$

Proof Let $i=s m+r$ and $i^{\prime}=s^{\prime} m+r^{\prime}$, with $0 \leq s, s^{\prime} \leq n-1$ and $0 \leq r, r^{\prime} \leq$ $m-1$. Then, setting $j=\sigma(m, n) i=r n+s$ and $j^{\prime}=\sigma(m, n) i^{\prime}=r^{\prime} n+s^{\prime}$, by virtue of Corollary 5.3.2 and (5.7), we have

$$
\begin{aligned}
{\left[P_{n}^{m} D_{m}\left(C_{n}^{m^{*}}\right) P_{m}^{n}\right]_{i, i^{\prime}} } & =\left[D_{m}\left(C_{n}^{m^{*}}\right)\right]_{\sigma(m, n) i, \sigma(m, n) i^{\prime}} \\
& =\left[D_{m}\left(C_{n}^{m^{*}}\right)\right]_{j, j^{\prime}} \\
(\text { by }(5.46)) & =\delta_{r, r^{\prime}}\left(C_{n}^{m^{*} r}\right)_{s, s^{\prime}} \\
(\text { by }(5.44)) & = \begin{cases}1 & \text { if } r^{\prime}=r \text { and } s^{\prime}=s-m^{*} r \quad \bmod n \\
0 & \text { otherwise }\end{cases} \\
(\text { by }(5.16)) & =\delta_{\beta(m, n) i, i^{\prime}} .
\end{aligned}
$$

Finally, we define the permutation matrix corresponding to the composite bijection permutation by setting, with the same notation as in Definition 5.2.13,

$$
\begin{equation*}
\Xi_{m}^{n}(h, k)=P_{\pi(m, k ; n, h)} \tag{5.48}
\end{equation*}
$$

Therefore, for $0 \leq i, i^{\prime} \leq m n-1$ with $i=s m+r$ as in (5.5), then

$$
\left[\Xi_{m}^{n}(h, k)\right]_{i, i^{\prime}}= \begin{cases}1 & \text { if } i^{\prime}=h s m+k n n^{*} r \quad \bmod n m \\ 0 & \text { otherwise }\end{cases}
$$

By means of Lemma 5.3.1.(i) we immediately get the matrix version of Theorem 5.2.14 and Theorem 5.2.16.

Theorem 5.3.11 Suppose $\operatorname{gcd}(n, m)=\operatorname{gcd}(k, m)=\operatorname{gcd}(h, n)=1$, $m m^{*}=$ $1 \bmod n$ and $n n^{*}=1 \bmod m$. Then we have:
(i) Matrix Factorization of Composite Bijection Permutations

$$
\begin{equation*}
\Xi_{m}^{n}(h, k)=\left(B_{n}^{h} \otimes B_{m}^{k}\right) Q_{m}^{n}\left(m^{*}\right) \tag{5.49}
\end{equation*}
$$

(ii) Reverse Radix Identity

$$
\left(B_{n}^{m^{*}} \otimes B_{m}^{n}\right) \Xi_{m}^{n}(h, k)=P_{n}^{m} \Xi_{n}^{m}(k, h)
$$

Denote by

$$
\begin{equation*}
\mathcal{C}_{m}^{n}=P_{c(m, n)}\left(=\Xi_{m}^{n}\left(m^{*}, 1\right)\right) \text { and } \mathcal{R}_{m}^{n}=P_{r(m, n)}\left(=\Xi_{m}^{n}(1, n)\right) \tag{5.50}
\end{equation*}
$$

the permutation matrices associated with the Chinese remainder mapping and with the Ruritanian map (cf. Remark 5.2.15), respectively. Then from Proposition 5.2.17 we deduce the following symmetry relations.

Proposition 5.3.12

$$
\mathcal{C}_{m}^{n}=P_{n}^{m} \mathcal{C}_{n}^{m} \quad \text { and } \quad \mathcal{R}_{m}^{n}=P_{n}^{m} \mathcal{R}_{n}^{m}
$$

We need a generalization of (5.49).
Let n, m, h, k, ℓ be positive integers such that $\operatorname{gcd}(n, h)=\operatorname{gcd}(m, k)=1$.
We set

$$
\begin{equation*}
\Xi_{m}^{n}(h, k, \ell)=\left(B_{n}^{h} \otimes B_{m}^{k}\right) Q_{m}^{n}(\ell) \tag{5.51}
\end{equation*}
$$

Therefore, by (5.49), if $\operatorname{gcd}(n, m)=1$ then we have

$$
\begin{equation*}
\Xi_{m}^{n}(h, k)=\Xi_{m}^{n}\left(h, k, m^{*}\right) \tag{5.52}
\end{equation*}
$$

where $m m^{*}=1 \bmod n$.
Before embarking on the study of the matrix formulation of the FFT, we show how to apply the machinery of stride and partial stride permutations to get some useful factorizations of tensor products.

Proposition 5.3.13 For k, m, n positive integers and A an $n \times n$ matrix we have:

$$
I_{k} \otimes A \otimes I_{m}=P_{k n}^{m}\left(I_{k m} \otimes A\right) P_{m}^{k n}
$$

and

$$
I_{k} \otimes A \otimes I_{m}=\left(I_{k} \otimes P_{n}^{m}\right)\left(I_{k m} \otimes A\right)\left(I_{k} \otimes P_{m}^{n}\right)
$$

(recall, cf. Proposition 5.3.7, that $\left.I_{k} \otimes P_{n}^{m}=P_{\tau(m, n, k)}\right)$.

Proof First observe that $I_{k} \otimes A$ is a $k n \times k n$ matrix, so that

$$
\begin{aligned}
P_{m}^{k n}\left(I_{k} \otimes A \otimes I_{m}\right) P_{k n}^{m} & =P_{m}^{k n}\left[\left(I_{k} \otimes A\right) \otimes I_{m}\right] P_{k n}^{m} \\
\text { (by Proposition 5.3.6) } & =I_{m} \otimes\left(I_{k} \otimes A\right) \\
\text { (by Proposition 5.3.5.(ii) and (5.28)) } & =I_{m k} \otimes A .
\end{aligned}
$$

Recalling that $\left(P_{m}^{k n}\right)^{-1}=P_{k n}^{m}$ (cf. (5.30)) we get the first identity by conjugating with $P_{k n}^{m}$. Similarly,

$$
\begin{aligned}
\left(I_{k} \otimes P_{m}^{n}\right)\left(I_{k} \otimes A \otimes I_{m}\right)\left(I_{k} \otimes P_{n}^{m}\right) & =\left(I_{k} \otimes P_{m}^{n}\right)\left[I_{k} \otimes\left(A \otimes I_{m}\right)\right]\left(I_{k} \otimes P_{n}^{m}\right) \\
(\text { by Proposition 5.3.5.(iii)) } & =I_{k} \otimes\left[P_{m}^{n}\left(A \otimes I_{m}\right) P_{n}^{m}\right] \\
& =I_{k} \otimes I_{m} \otimes A \\
& =I_{k m} \otimes A,
\end{aligned}
$$

and the second identity follows as well.
We now introduce some further notation. Suppose that $n_{1}, n_{2}, \ldots, n_{h}$ are positive integers, $h \geq 3$, and A_{j} is an $n_{j} \times n_{j}$ matrix, for $j=1,2, \ldots, h$. Set

$$
\begin{aligned}
& k_{1}=1 \text { and } k_{j}=n_{1} n_{2} \cdots n_{j-1} \text { for } j=2,3, \ldots, h ; \\
& m_{j}=n_{j+1} n_{j+2} \cdots n_{h} \text { for } j=1,2, \ldots h-1, \text { and } m_{h}=1
\end{aligned}
$$

and, for $j=1,2, \ldots, h$,

$$
\begin{gathered}
X_{j}=I_{n_{1}} \otimes I_{n_{2}} \otimes \cdots I_{n_{j-1}} \otimes A_{j} \otimes I_{n_{j+1}} \otimes \cdots \otimes I_{n_{h}}=I_{k_{j}} \otimes A_{j} \otimes I_{m_{j}} \\
Y_{j}=I_{k_{j} m_{j}} \otimes A_{j} .
\end{gathered}
$$

Finally, we set

$$
\begin{align*}
Q_{j} & =P_{\tau\left(m_{j+1}, n_{j+1}, k_{j+1}\right) \tau\left(n_{j}, m_{j}, k_{j}\right)} \tag{5.53}\\
& =\left(I_{k_{j}} \otimes P_{m_{j}}^{n_{j}}\right)\left(I_{k_{j+1}} \otimes P_{n_{j+1}}^{m_{j+1}}\right),
\end{align*}
$$

where the second equality follows from Proposition 5.3.7 and Lemma 5.3.1.(i).
Theorem 5.3.14 With the above notation, the following factorization identities hold.
(i) Fundamental factorization:

$$
A_{1} \otimes A_{2} \otimes \cdots \otimes A_{h}=X_{1} X_{2} \cdots X_{h}
$$

(ii) Parallel tensor product factorization I:

$$
A_{1} \otimes A_{2} \otimes \cdots \otimes A_{h}=P_{n_{1}}^{m_{1}} Y_{1} P_{n_{2}}^{k_{2} m_{2}} Y_{2} P_{n_{3}}^{k_{3} m_{3}} \cdots P_{n_{h-1}}^{k_{h-1} m_{h-1}} Y_{h-1} P_{n_{h}}^{k_{h}} Y_{h}
$$

(iii) Parallel tensor product factorization II:

$$
A_{1} \otimes A_{2} \otimes \cdots \otimes A_{h}=P_{n_{1}}^{m_{1}} Y_{1} Q_{1} Y_{2} Q_{2} \cdots Q_{h-2} Y_{h-1} Q_{h-1} Y_{h}
$$

Proof The first identity is just an iterated form of Proposition 5.3.5.(ii)-(iv). For the second identity, first observe that Proposition 5.3.13 yields

$$
X_{j}=P_{k_{j} n_{j}}^{m_{j}} Y_{j} P_{m_{j}}^{k_{j} n_{j}} \quad j=1,2, \ldots, h
$$

Moreover, since $k_{j+1}=k_{j} n_{j}$ and $m_{j}=n_{j+1} m_{j+1}$,

$$
P_{m_{j}}^{k_{j} n_{j}} P_{k_{j+1} n_{j+1}}^{m_{j+1}}=P_{n_{j+1} m_{j+1}}^{k_{j+1}} P_{k_{j+1} n_{j+1}}^{m_{j+1}}=P_{n_{j+1}}^{k_{j+1} m_{j+1}}
$$

where the last equality follows from (5.39) in Proposition 5.3.8. Therefore,

$$
\begin{aligned}
X_{1} X_{2} \cdots X_{h} & =P_{n_{1}}^{m_{1}} Y_{1} P_{m_{1}}^{n_{1}} P_{k_{2} n_{2}}^{m_{2}} Y_{2} P_{m_{2}}^{k_{2} n_{2}} \cdots Y_{j} P_{m_{j}}^{k_{j} n_{j}} P_{k_{j+1} n_{j+1}}^{m_{j+1}} Y_{j+1} \cdots Y_{h} \\
& =P_{n_{1}}^{m_{1}} Y_{1} P_{n_{2}}^{k_{2} m_{2}} Y_{2} \cdots Y_{j} P_{n_{j+1}}^{k_{j+1} m_{j+1}} Y_{j+1} \cdots P_{n_{h-1}}^{k_{h-1} m_{h-1}} Y_{h-1} P_{n_{h}}^{k_{h}} Y_{h}
\end{aligned}
$$

Finally, from Proposition 5.3.13 we also deduce

$$
X_{j}=\left(I_{k_{j}} \otimes P_{n_{j}}^{m_{j}}\right)\left(I_{k_{j} m_{j}} \otimes A_{j}\right)\left(I_{k_{j}} \otimes P_{m_{j}}^{n_{j}}\right)
$$

which, by virtue of (5.53), immediately implies the last equality in the statement.

5.4 The matrix form of the FFT

This is the central section of the present chapter. It is devoted to the matrix form of several algorithms that reduce the matrix of the DFT to a tensor product of smaller matrices, when the size of the DFT is factorizable.

Let $\omega \in \mathbb{C}$ be an arbitrary n-th root of 1 , that is, $\omega^{n}=1$. Following [130], we define the $n \times n$ matrix $A_{n}(\omega)$ by setting

$$
\begin{equation*}
A_{n}(\omega)=\left(\omega^{i j}\right)_{i, j=0}^{n-1} \tag{5.54}
\end{equation*}
$$

Clearly, $A_{n}(\omega)$ is symmetric. In the notation of Exercise 2.4.16.(4), we have

$$
\frac{1}{\sqrt{n}} A_{n}\left(e^{-\frac{2 \pi i}{n}}\right)=F_{n}
$$

Note also that if ω is a primitive n-th root of 1 , then $A_{n}(\omega)^{-1}$ exists and

$$
A_{n}(\omega)^{-1}=\frac{1}{n} A_{n}(\bar{\omega})
$$

The proof is similar to that one of Lemma 2.2.3. In general, if $\omega^{r}=1$ and $\omega^{h} \neq 1$ for $0 \leq h \leq r-1$, for some $r \geq 1$ (note that r necessarily divides n), then $\operatorname{rk} A_{n}(\omega)=r$.

Recall that C_{n} denotes the elementary circulant matrix (see (5.43)) and $D_{n}(\cdot)$ is the n-th diagonal power matrix (see (5.45)).

Proposition 5.4.1 (Eigenidentities) Let n be a positive integer, $k \geq 0$, and ω an n-th root of 1. Then we have

$$
A_{n}(\omega) C_{n}^{k}=D_{n}\left(\omega^{k}\right) A_{n}(\omega) \quad \text { and } \quad C_{n}^{k} A_{n}(\omega)=A_{n}(\omega) D_{n}\left(\omega^{-k}\right)
$$

Proof From (5.43) we get, for $0 \leq i, j \leq n-1$,

$$
\begin{aligned}
{\left[A_{n}(\omega) C_{n}^{k}\right]_{i, j} } & =\sum_{h=0}^{n-1} \omega^{i h} \delta_{\varepsilon^{k}(h), j} \\
& =\sum_{h=0}^{n-1} \omega^{i h} \delta_{h, \varepsilon^{-k}(j)} \\
& =\omega^{i \varepsilon^{-k}(j)} \\
& =\omega^{i(j+k)} \\
& =\omega^{i k} \omega^{i j} \\
& =\left[D_{n}\left(\omega^{k}\right) A_{n}(\omega)\right]_{i, j}
\end{aligned}
$$

proving the first equality.
The second equality follows from the first one, by transposing: observe that

$$
\left(C_{n}^{k}\right)^{T}=\left(P_{\varepsilon^{k}}\right)^{T}=P_{\varepsilon^{-k}}=C_{n}^{-k}
$$

so that we must replace k with $-k$.
We also need the following transformation formula.

Proposition 5.4.2 Suppose that $\operatorname{gcd}(h, n)=1$ and $h^{*} h=1 \bmod n$. Then

$$
A_{n}(\omega) B_{n}^{h}=A_{n}\left(\omega^{h^{*}}\right) \quad \text { and } \quad B_{n}^{h} A_{n}(\omega)=A_{n}\left(\omega^{h}\right)
$$

Proof For $0 \leq i, j \leq n-1$ we have

$$
\left[A_{n}(\omega) B_{n}^{h}\right]_{i, j}=_{*}\left[A_{n}(\omega)\right]_{i, \gamma(n, h)^{-1} j}
$$

(by Proposition 5.2.11.(ii)) $=\left[A_{n}(\omega)\right]_{i, h^{*} j}$
$=\omega^{i j h^{*}}$

$$
=\left[A_{n}\left(\omega^{h^{*}}\right)\right]_{i, j}
$$

where $=_{*}$ follows from Lemma 5.3.1.(ii) and (5.40). This proves the first equality. The proof of the second one is similar and left to the reader.

Using the notation in (5.45), we define the diagonal matrix of twiddle factors by setting

$$
T_{m}^{n}(\omega)=D_{m}\left(D_{n}(\omega)\right)
$$

where now ω is an $n m$-th root of 1 .
Note that, by virtue of (5.46), for $0 \leq r, r^{\prime} \leq m-1$ and $0 \leq s, s^{\prime} \leq n-1$, we have

$$
\begin{equation*}
\left[T_{m}^{n}(\omega)\right]_{r n+s, r^{\prime} n+s^{\prime}}=\delta_{r, r^{\prime}}\left[D_{n}\left(\omega^{r}\right)\right]_{s, s^{\prime}}=\delta_{r, r^{\prime}} \delta_{s, s^{\prime}} \omega^{r s} \tag{5.55}
\end{equation*}
$$

Proposition 5.4.3 With the above notation we have

$$
P_{n}^{m} T_{m}^{n}(\omega) P_{m}^{n}=T_{n}^{m}(\omega)
$$

Moreover, for integers k and h,

$$
T_{m}^{n}\left(\omega^{k}\right) T_{m}^{n}\left(\omega^{h}\right)=T_{m}^{n}\left(\omega^{k+h}\right)
$$

Proof By virtue of Corollary 5.3.2 we have

$$
\begin{aligned}
{\left[P_{n}^{m} T_{m}^{n}(\omega) P_{m}^{n}\right]_{s m+r, s^{\prime} m+r^{\prime}} } & =\left[T_{m}^{n}(\omega)\right]_{\sigma(m, n)(s m+r), \sigma(m, n)\left(s^{\prime} m+r^{\prime}\right)} \\
& =\left[T_{m}^{n}(\omega)\right]_{r n+s, r^{\prime} n+s^{\prime}} \\
(\text { by }(5.55)) & =\delta_{r, r^{\prime}} \delta_{s, s^{\prime}} \omega^{r s} \\
(\text { again by }(5.55)) & =\left[T_{n}^{m}(\omega)\right]_{s m+r, s^{\prime} m+r^{\prime}}
\end{aligned}
$$

The second identity is trivial.

Proposition 5.4.4 (Tensor form of the eigenidentities) For n, m positive integers, ω an nm-th root of 1, and an integer k, we have

$$
\begin{aligned}
D_{m}\left(C_{n}^{k}\right)\left[I_{m} \otimes A_{n}\left(\omega^{m}\right)\right] & =\left[I_{m} \otimes A_{n}\left(\omega^{m}\right)\right] T_{m}^{n}\left(\omega^{-k m}\right) \\
{\left[I_{m} \otimes A_{n}\left(\omega^{m}\right)\right] D_{m}\left(C_{n}^{k}\right) } & =T_{m}^{n}\left(\omega^{k m}\right)\left[I_{m} \otimes A_{n}\left(\omega^{m}\right)\right] .
\end{aligned}
$$

Proof We only prove the first identity: the proof of the second one is similar
and left to the reader.

$$
\begin{aligned}
& D_{m}\left(C_{n}^{k}\right)\left[I_{m} \otimes A_{n}\left(\omega^{m}\right)\right] \\
& =\left(\begin{array}{cccc}
I_{n} & & & \\
& C_{n}^{k} & & \\
& & \ddots & \\
& & & C_{n}^{k(m-1)}
\end{array}\right)\left(\begin{array}{llll}
A_{n}\left(\omega^{m}\right) & & \\
& & A_{n}\left(\omega^{m}\right) & \\
& & \ddots & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
A_{n}\left(\omega_{n}^{m}\left(\omega^{m}\right)\right.
\end{array}\right) \\
& \\
&
\end{aligned}
$$

and, by Proposition 5.4.1, this equals

$$
\begin{aligned}
& =\left(\begin{array}{llll}
A_{n}\left(\omega^{m}\right) & & & \\
& A_{n}\left(\omega^{m}\right) D_{n}\left(\omega^{-k m}\right) & & \\
& & \ddots & \\
& & & A_{n}\left(\omega^{m}\right) D_{n}\left(\omega^{-k m(m-1)}\right)
\end{array}\right) \\
& =\left(\begin{array}{llll}
A_{n}\left(\omega^{m}\right) & & & \\
& A_{n}\left(\omega^{m}\right) & & \\
& & \ddots & \\
& & & A_{n}\left(\omega^{m}\right)
\end{array}\right) . \\
& \cdot\left(\begin{array}{llll}
I_{n} & & & \\
& D_{n}\left(\omega^{-k m}\right) & & \\
& & \ddots & \\
& & & D_{n}\left(\omega^{-k m(m-1)}\right)
\end{array}\right) \\
& =\left[I_{m} \otimes A_{n}\left(\omega^{m}\right)\right] T_{m}^{n}\left(\omega^{-k m}\right) .
\end{aligned}
$$

where the last identity follows from the definition of T_{m}^{n} and the identity $D_{n}\left(\omega^{-k m h}\right)=\left[D_{n}\left(\omega^{-k m}\right)\right]^{h}$.

We are now in position to prove the basic tensor product form of the FFT and to derive all its consequences.

Theorem 5.4.5 (General Radix Identity) Let $n, m>1$ be two positive integers and ω an nm-th root of 1. Then

$$
\begin{equation*}
A_{n m}(\omega) P_{m}^{n}=\left[A_{n}\left(\omega^{m}\right) \otimes I_{m}\right] T_{n}^{m}(\omega)\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right] \tag{5.56}
\end{equation*}
$$

Proof Let $i=s m+r, i^{\prime}=s^{\prime} m+r^{\prime}, j=\alpha m+\beta$, and $j^{\prime}=\alpha^{\prime} m+\beta^{\prime}$, with
$0 \leq s, s^{\prime}, \alpha, \alpha^{\prime} \leq n-1$ and $0 \leq r, r^{\prime}, \beta, \beta^{\prime} \leq m-1$. Then, on the one hand,

$$
\begin{aligned}
\left\{\left[A_{n}\left(\omega^{m}\right) \otimes I_{m}\right] T_{n}^{m}(\omega)\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right]\right\}_{i, i^{\prime}}= & \sum_{j, j^{\prime}=0}^{n m-1}\left[A_{n}\left(\omega^{m}\right) \otimes I_{m}\right]_{i, j}\left[T_{n}^{m}(\omega)\right]_{j, j^{\prime}} \\
& \cdot\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right]_{j^{\prime}, i^{\prime}} \\
(\text { by }(5.31) \text { and }(5.55))= & \sum_{\alpha, \alpha^{\prime}=0}^{n-1} \sum_{\beta, \beta^{\prime}=0}^{m-1}\left[A_{n}\left(\omega^{m}\right)\right]_{s, \alpha} \delta_{r, \beta} \\
\left(\alpha=\alpha^{\prime}=s^{\prime} \text { and } r=\beta=\beta^{\prime}\right)= & {\left[A_{\alpha, \alpha^{\prime}}\left(\omega_{\beta, \beta^{\prime}} \omega^{\alpha}\right)\right]_{s, s^{\prime}} \delta^{s^{\prime} r}\left[A_{\alpha^{\prime}, s^{\prime}}\left[A_{m}\left(\omega^{n}\right) \omega_{\beta^{\prime}, r^{\prime}}\right)\right]_{r, r^{\prime}} } \\
(\text { by (5.54)))=} & \omega^{m s s^{\prime}+s^{\prime} r+n r r^{\prime}} .
\end{aligned}
$$

On the other hand, by Lemma 5.3.1.(ii), (5.7), and (5.29),

$$
\begin{aligned}
{\left[A_{n m}(\omega) P_{m}^{n}\right]_{i, i^{\prime}} } & =\left[A_{n m}(\omega)\right]_{i, \sigma(m, n) i^{\prime}} \\
& =\left[A_{n m}(\omega)\right]_{s m+r, r^{\prime} n+s^{\prime}} \\
& =\omega^{(s m+r)\left(r^{\prime} n+s^{\prime}\right)} \\
\left(\omega^{n m}=1\right) & =\omega^{m s s^{\prime}+s^{\prime} r+n r r^{\prime}} .
\end{aligned}
$$

We now show how, multiplying on the left and on the right the left hand side of the General Radix Identity (5.56) by suitable permutations, changes the diagonal matrix of twiddle factors in the right hand side (of (5.56)).

Theorem 5.4.6 (Twiddle Identity) With the notation of Theorem 5.4.5, for arbitrary $k_{1}, k_{2} \in \mathbb{Z}$ we have:

$$
\begin{aligned}
& Q_{m}^{n}\left(k_{1}\right) A_{n m}(\omega)\left[P_{n}^{m} Q_{n}^{m}\left(k_{2}\right)\right]^{T} \\
&=\left[A_{n}\left(\omega^{m}\right) \otimes I_{m}\right] T_{n}^{m}\left(\omega^{1-k_{1} m-k_{2} n}\right)\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right]
\end{aligned}
$$

Proof First of all, note that $\left(C_{m}^{k_{2}}\right)^{T}=C_{m}^{-k_{2}}$ (compare with (5.26) and (5.43)) and therefore, from (5.45) and (5.47) it follows that

$$
\left[Q_{n}^{m}\left(k_{2}\right)\right]^{T}=Q_{n}^{m}\left(-k_{2}\right)
$$

Therefore, taking into account Theorem 5.4.5,

$$
\begin{aligned}
Q_{m}^{n}\left(k_{1}\right) A_{n m}(\omega)\left[P_{n}^{m} Q_{n}^{m}\left(k_{2}\right)\right]^{T}= & Q_{m}^{n}\left(k_{1}\right)\left[A_{n}\left(\omega^{m}\right) \otimes I_{m}\right] T_{n}^{m}(\omega) \\
(\text { by }(5.47))= & P_{n}^{m} D_{m}\left(C_{n}^{k_{1}}\right) P_{m}^{n}\left[A_{n}\left(\omega^{m}\right) \otimes I_{m}\right] \\
& \cdot T_{n}^{m}(\omega)\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right] D_{n}\left(C_{m}^{-k_{2}}\right) \\
\text { (by Proposition 5.3.6) }= & P_{n}^{m} D_{m}\left(C_{n}^{k_{1}}\right)\left[I_{m} \otimes A_{n}\left(\omega^{m}\right)\right] P_{m}^{n} \\
& \cdot T_{n}^{m}(\omega)\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right] D_{n}\left(C_{m}^{-k_{2}}\right) \\
\text { (by Proposition 5.4.4) }= & P_{n}^{m}\left[I_{m} \otimes A_{n}\left(\omega^{m}\right)\right] T_{m}^{n}\left(\omega^{-k_{1} m}\right) P_{m}^{n} T_{n}^{m}(\omega) \\
& \cdot T_{n}^{m}\left(\omega^{-k_{2} n}\right)\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right]
\end{aligned}
$$

(by Prop.5.3.6 and Prop. 5.4.3) $=\left[A_{n}\left(\omega^{m}\right) \otimes I_{m}\right] T_{n}^{m}\left(\omega^{1-k_{1} m-k_{2} n}\right)$.

$$
\cdot\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right]
$$

Corollary 5.4.7 With the notation of (5.51) and supposing $\operatorname{gcd}\left(k_{i}, m\right)=$ $\operatorname{gcd}\left(h_{i}, n\right)=1$, for $i=1,2$, we have

$$
\begin{align*}
& \Xi_{m}^{n}\left(h_{1}, k_{1}, \ell_{1}\right) A_{n m}(\omega)\left[P_{n}^{m} \Xi_{n}^{m}\left(k_{2}, h_{2}, \ell_{2}\right)\right]^{T} \\
& \quad=\left[A_{n}\left(\omega^{h_{1} m}\right) \otimes B_{m}^{k_{1}}\right] T_{n}^{m}\left(\omega^{1-\ell_{1} m-\ell_{2} n}\right)\left[B_{n}^{h_{2}^{*}} \otimes A_{m}\left(\omega^{k_{2} n}\right)\right] \tag{5.57}
\end{align*}
$$

where $h_{2} h_{2}^{*}=1 \bmod n$.

Proof This follows immediately from Proposition 5.3.5.(iii), Theorem 5.4.6, (5.51) and Proposition 5.4.2. Just note that, if $k_{2} k_{2}^{*}=1 \bmod m$,

$$
\begin{aligned}
{\left[P_{n}^{m} \Xi_{n}^{m}\left(k_{2}, h_{2}, \ell_{2}\right)\right]^{T} } & =\left[P_{n}^{m}\left(B_{m}^{k_{2}} \otimes B_{n}^{h_{2}}\right) Q_{n}^{m}\left(\ell_{2}\right)\right]^{T} \\
(\text { by Proposition 5.3.6) } & =\left\{\left(B_{n}^{h_{2}} \otimes B_{m}^{k_{2}}\right)\left[P_{n}^{m} Q_{n}^{m}\left(\ell_{2}\right)\right]\right\}^{T} \\
& ={ }_{*}\left[P_{n}^{m} Q_{n}^{m}\left(\ell_{2}\right)\right]^{T}\left(B_{n}^{h_{2}^{*}} \otimes B_{m}^{k_{2}^{*}}\right),
\end{aligned}
$$

where, in $=_{*}$ we used the equality $\left[B_{n}^{h_{2}} \otimes B_{m}^{k_{2}}\right]^{T}=B_{n}^{h_{2}^{*}} \otimes B_{m}^{k_{2}^{*}}$ which follows from Proposition 5.3.5.(vi) and (5.42).

Remark 5.4.8 Note that Theorem 5.4.5 and Theorem 5.4.6 are particular cases of Corollary 5.4.7. Indeed, for $h_{i}=k_{i}=1, i=1,2$, Corollary 5.4.7 reduces to Theorem 5.4.6, by virtue of (5.51). If, in addition, $\ell_{1}=\ell_{2}=0$, then it reduces to Theorem 5.4.5.

Until now, we have determined algorithms for tensor product factorizations
of the matrix $A_{N}(\omega)$, where $N=m n$ is an arbitrary factorization. In what follows, we examine the case when $\operatorname{gcd}(m, n)=1$.

Theorem 5.4.9 (Twiddle Free Identity) Suppose that $\operatorname{gcd}(m, n)=1$. Then, with the notation and hypotheses of Corollary 5.4.7, we have

$$
\Xi_{m}^{n}\left(h_{1}, k_{1}\right) A_{n m}(\omega)\left[P_{n}^{m} \Xi_{n}^{m}\left(k_{2}, h_{2}\right)\right]^{T}=A_{n}\left(\omega^{h_{1} h_{2} m}\right) \otimes A_{m}\left(\omega^{k_{2} k_{1} n}\right) .
$$

Proof In (5.57) choose $\ell_{1}=m^{*}$ and $\ell_{2}=n^{*}$ (where, as usual $m m^{*}=1$ $\bmod n$ and $n n^{*}=1 \bmod m$) and recall (5.52). Then by (5.19), we have

$$
1-\ell_{1} m-\ell_{2} n=1-m m^{*}-n n^{*}=0 \bmod n m
$$

so that the twiddle factor disappears and, by Proposition 5.3.5.(iii) and Proposition 5.4.2, the right hand side in (5.57) becomes

$$
\left[A_{n}\left(\omega^{h_{1} m}\right) \otimes B_{m}^{k_{1}}\right]\left[B_{n}^{h_{2}^{*}} \otimes A_{m}\left(\omega^{k_{2} n}\right)\right]=A_{n}\left(\omega^{h_{1} h_{2} m}\right) \otimes A_{m}\left(\omega^{k_{2} k_{1} n}\right) .
$$

A special case of Theorem 5.4.9, where only elementary circulant matrices and stride permutations are used, is of particular interest.

Corollary 5.4.10 Suppose $\operatorname{gcd}(m, n)=1$ and let ω be an nm-th root of 1 . Then

$$
Q_{m}^{n}\left(m^{*}\right) A_{n m}(\omega)\left[P_{n}^{m} Q_{n}^{m}\left(n^{*}\right)\right]^{T}=A_{n}\left(\omega^{m}\right) \otimes A_{m}\left(\omega^{n}\right)
$$

Proof Set $h_{1}=h_{2}=k_{1}=k_{2}=1$ in Theorem 5.4.9, and recall Theorem 5.3.11.(i).

Theorem 5.4.11 (Generalized Winograd's Method) With the same notation and assumption of Theorem 5.4.9, we have

$$
\Xi_{m}^{n}\left(h_{1}, k_{1}\right) A_{n m}(\omega)\left[\Xi_{m}^{n}\left(h_{2}, k_{2}\right)\right]^{T}=A_{n}\left(\omega^{\alpha m}\right) \otimes A_{m}\left(\omega^{\beta n}\right),
$$

where $\alpha=h_{1} h_{2} m \bmod n$ and $\beta=k_{1} k_{2} n^{*} \bmod m$.
Proof Using the Reverse Radix Identity (Theorem 5.3.11.(ii)), the identity in Theorem 5.4.9 becomes

$$
\Xi_{m}^{n}\left(h_{1}, k_{1}\right) A_{n m}(\omega)\left[\Xi_{m}^{n}\left(h_{2}, k_{2}\right)\right]^{T}\left(B_{n}^{m} \otimes B_{m}^{n^{*}}\right)=A_{n}\left(\omega^{h_{1} h_{2} m}\right) \otimes A_{m}\left(\omega^{k_{1} k_{2} n}\right) .
$$

Multiplying both sides on the right by $\left(B_{n}^{m} \otimes B_{m}^{n^{*}}\right)^{-1}=B_{n}^{m^{*}} \otimes B_{m}^{n}$ and taking into account Proposition 5.4.2, the statement follows.

From the generalized Winograd's method we deduce the following four particular cases.

Corollary 5.4.12 (Winograd's Method [168]) Suppose $h_{1} h_{2} m=1$ $\bmod n$ and $\ell_{1} \ell_{2} n=1 \bmod m$. Then

$$
\Xi_{m}^{n}\left(h_{1}, \ell_{1} n\right) A_{n m}(\omega)\left[\Xi_{m}^{n}\left(h_{2}, \ell_{2} n\right)\right]^{T}=A_{n}\left(\omega^{m}\right) \otimes A_{m}\left(\omega^{n}\right)
$$

Proof Just note that now $k_{1}=\ell_{1} n, k_{2}=\ell_{2} n$, and $\ell_{1} \ell_{2} n=1 \bmod m$, which imply that $k_{1} k_{2} n^{*}=\ell_{1} \ell_{2} n^{2} n^{*}=1 \bmod m$.

Corollary 5.4.13 (Good's Method [65]) With the notation in (5.50) we have

$$
\mathcal{C}_{m}^{n} A_{n m}(\omega)\left[\mathcal{R}_{m}^{n}\right]^{T}=A_{n}\left(\omega^{m}\right) \otimes A_{m}\left(\omega^{n}\right)
$$

Proof Just set $h_{1}=m^{*}, k_{1}=1, h_{2}=1$, and $k_{2}=n$ in Theorem 5.4.11, so that $\alpha=m m^{*}=1 \bmod n$ and $\beta=n n^{*}=1 \bmod m$.

Corollary 5.4.14 (Similarity Identity) Suppose that $\operatorname{gcd}(k, m)=\operatorname{gcd}(h, n)=$ 1. Then

$$
\Xi_{m}^{n}(h, k) A_{n m}(\omega)\left[\Xi_{m}^{n}(h, k)\right]^{T}=A_{n}\left(\omega^{\alpha m}\right) \otimes A_{m}\left(\omega^{\beta n}\right)
$$

where $\alpha=h^{2} m \bmod n$ and $\beta=k^{2} n^{*} \bmod m$.
Proof Just set $h_{1}=h_{2}=h$ and $k_{1}=k_{2}=k$ in Theorem 5.4.11.
A special case of Corollary 5.4.14:

Corollary 5.4.15 (Winograd's Similarity)

$$
\mathcal{C}_{m}^{n} A_{n m}(\omega)\left[\mathcal{C}_{m}^{n}\right]^{T}=A_{n}\left(\omega^{m m^{*}}\right) \otimes A_{m}\left(\omega^{n n^{*}}\right)
$$

Proof Set $h=m^{*}$ and $k=1$ in Corollary 5.4.14.
For instance, for $n=4, m=3$, and $\omega=e^{i \pi / 6}$, we have $m^{*}=3, n^{*}=1$, and

$$
\mathcal{C}_{3}^{4} A_{12}(\omega)\left[\mathcal{C}_{3}^{4}\right]^{T}=A_{4}\left(\omega^{9}\right) \otimes A_{3}\left(\omega^{4}\right)
$$

We end this section with a brief description of the matrix form of the so-called Rader-Winograd algorithm. It was developed in [125]; see also [14] and, for the computational aspects, $[15,160,163]$. We consider first the case $n=p$, a prime number. By Theorem 1.1.21, \mathbb{F}_{p}^{*} is cyclic of order $p-1$. Let $\alpha \in \mathbb{F}_{p}^{*}$ be a generator and define the permutation ξ_{p} of $\{0,1, \ldots, p-1\}$ by
setting $\xi_{p}(0)=0$ and $\xi_{p}(k)=\alpha^{k-1} \bmod p$, for $k=1,2, \ldots, p-1$. Then $Q_{p}=Q_{p}(\alpha)=P_{\xi_{p}}$ denotes the corresponding permutation matrix, as in (5.24). If ω is a nontrivial p-th root of 1 , then, by Corollary 5.3.2,

$$
Q_{p} A_{p}(\omega) Q_{p}^{T}=\left(\omega^{\xi_{p}(i) \xi_{p}(j)}\right)_{i, j=0}^{p-1}
$$

that is,

$$
Q_{p} A_{p}(\omega) Q_{p}^{T}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{5.58}\\
1 & & & \\
\vdots & & C_{p-1} & \\
1 & & &
\end{array}\right)
$$

where

$$
C_{p-1}=\left(\omega^{\alpha^{i+j}}\right)_{i, j=0}^{p-2}
$$

is called the core matrix. Note that C_{p-1} is a symmetric $(p-1) \times(p-1)$ matrix, its (i, j)-entry only depends on the sum $i+j \bmod p-1$ (i.e., it is a Hankel matrix: each ascending (from left to right) skew-diagonal is constant, see Example 5.4.16) and its first row is ($\omega, \omega^{\alpha}, \omega^{\alpha^{2}}, \cdots, \omega^{\alpha^{p-2}}$). The Rader algorithm consists in the use of (5.58) to compute the DFT on \mathbb{Z}_{p}. Explicitly, for $Y=\left(y_{0}, y_{1}, \ldots, y_{p-1}\right)^{T}$ we set $X=\left(x_{0}, x_{1}, \ldots, x_{p-1}\right)^{T}=Q_{p} Y$ so that

$$
\begin{equation*}
A_{p}(\omega) Y=Q_{p}^{T}\left[Q_{p} A_{p}(\omega) Q_{p}^{T} X\right] \tag{5.59}
\end{equation*}
$$

and we have

$$
\begin{aligned}
{\left[Q_{p} A_{p}(\omega) Q_{p}^{T} X\right]_{0} } & =\sum_{k=0}^{p-1} x_{k} \\
{\left[Q_{p} A_{p}(\omega) Q_{p}^{T} X\right]_{j} } & =x_{0}+\sum_{k=1}^{p-1} \omega^{\alpha^{k+j-2}} x_{k} \text { for } j=1,2, \ldots, p-1
\end{aligned}
$$

In some papers, matrix (5.58) is replaced by

$$
Q_{p}(\alpha) A_{p}(\omega) Q_{p}(-\alpha)^{T}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & & & \\
\vdots & & D_{p} & \\
1 & & &
\end{array}\right)
$$

with $D_{p}=\left(\omega^{\alpha^{i-j}}\right)_{i, j=0}^{p-2}$. Then, $\left[Q_{p}(\alpha) A_{p}(\omega) Q_{p}(-\alpha)^{T} X\right]_{0}=\sum_{k=0}^{p-1} x_{k}$ and, for $j=1,2, \ldots, p-1$,

$$
\left[Q_{p}(\alpha) A_{p}(\omega) Q_{p}(-\alpha)^{T} X\right]_{j}=x_{0}+\sum_{k=1}^{p-1} \omega^{\alpha^{j-k}} x_{k}
$$

which has a convolutional form.

Example 5.4.16 (Winograd) For $p=7$ and $\alpha=3$ we get

$$
Q_{7}(3) A_{7}(\omega) Q_{7}(3)^{T}=\left(\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega & \omega^{3} & \omega^{2} & \omega^{6} & \omega^{4} & \omega^{5} \\
1 & \omega^{3} & \omega^{2} & \omega^{6} & \omega^{4} & \omega^{5} & \omega \\
1 & \omega^{2} & \omega^{6} & \omega^{4} & \omega^{5} & \omega & \omega^{3} \\
1 & \omega^{6} & \omega^{4} & \omega^{5} & \omega & \omega^{3} & \omega^{2} \\
1 & \omega^{4} & \omega^{5} & \omega & \omega^{3} & \omega^{2} & \omega^{6} \\
1 & \omega^{5} & \omega & \omega^{3} & \omega^{2} & \omega^{6} & \omega^{4}
\end{array}\right)
$$

Exercise 5.4.17 Fill in the details in Example 5.4.16.
For $n=p^{h}$, with p prime and $h \geq 2$, Winograd developed a variation of the Rader algorithm. We describe it only for the case $p \geq 3$. Recall that $\mathcal{U}\left(\mathbb{Z} / p^{h} \mathbb{Z}\right)$ is a cyclic group of order $(p-1) p^{h-1}=p^{h}-p^{h-1}$ (see Theorem 1.5.8). Then we deduce the following decomposition

$$
\begin{equation*}
\mathbb{Z} / p^{h} \mathbb{Z}=\{0\} \coprod \coprod_{j=1}^{h} p^{h-j} \mathcal{U}\left(\mathbb{Z} / p^{j} \mathbb{Z}\right) \tag{5.60}
\end{equation*}
$$

Indeed, for $j=1,2, \ldots, h$ we have that $x \in \mathbb{Z} / p^{j} \mathbb{Z}$ is not invertible if and only if it is divisible by p, so that we have

$$
\mathbb{Z} / p^{j} \mathbb{Z}=p\left(\mathbb{Z} / p^{j-1} \mathbb{Z}\right) \coprod \mathcal{U}\left(\mathbb{Z} / p^{j} \mathbb{Z}\right)
$$

By iterating this relation we get (5.60). Fix a generator α_{j} of $\mathcal{U}\left(\mathbb{Z} / p^{j} \mathbb{Z}\right)$, for $j=1,2, \ldots, h$. Using (5.60), we define a permutation $\xi_{p^{h}}$ of $\left\{0,1, \ldots, p^{h}-1\right\}$ by setting $\xi_{p^{h}}(0)=0$ and

$$
\xi_{p^{h}}(k)=\alpha_{j}^{k-p^{j-1}} p^{h-j} \quad \bmod p^{h}
$$

for $p^{j-1} \leq k \leq p^{j}-1$ and $j=1,2, \ldots, h$. In other words, $\xi_{p^{h}}$ maps the set $\left\{p^{j-1}, p^{j-1}+1, \ldots, p^{j}-1\right\}$ bijectively onto $p^{h-j} \mathcal{U}\left(\mathbb{Z} / p^{j} \mathbb{Z}\right)$ for all $j=$ $1,2, \ldots, h$. We then set

$$
Q_{p^{h}}=P_{\xi_{p^{h}}}
$$

The matrix form of Winograd's generalization of the Rader algorithm is obtained as in (5.59) by applying

$$
Q_{p^{h}} A_{p^{h}}(\omega) Q_{p^{h}}^{T}
$$

with ω a p^{h}-th root of 1 . The above matrix is symmetric, but no longer Hankel (though it is made up of blocks consisting of Hankel matrices; see Example (5.4.18) below).

Example 5.4.18 (Winograd) For $p=3, h=2, \alpha_{1}=2$, and $\alpha_{2}=2$ we get

$$
\mathbb{Z} / 9 \mathbb{Z}=\{0\} \coprod 3 \mathcal{U}(\mathbb{Z} / 3 \mathbb{Z}) \coprod \mathcal{U}(\mathbb{Z} / 9 \mathbb{Z})=\{0\} \coprod\{3,6\} \coprod\{1,2,4,5,7,8\}
$$

so that

$$
\begin{array}{lllll}
\xi_{9}(0)=0 & \xi_{9}(1)=3 & \xi_{9}(2)=6 & \xi_{9}(3)=1 & \xi_{9}(4)=2 \\
\xi_{9}(5)=4 & \xi_{9}(6)=8 & \xi_{9}(7)=7 & \xi_{9}(8)=5 &
\end{array}
$$

and

$$
Q_{9} A_{9}(\omega) Q_{9}^{T}=\left(\begin{array}{ccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & \omega^{3} & \omega^{6} & \omega^{3} & \omega^{6} & \omega^{3} & \omega^{6} \\
1 & 1 & 1 & \omega^{6} & \omega^{3} & \omega^{6} & \omega^{3} & \omega^{6} & \omega^{3} \\
1 & \omega^{3} & \omega^{6} & \omega & \omega^{2} & \omega^{4} & \omega^{8} & \omega^{7} & \omega^{5} \\
1 & \omega^{6} & \omega^{3} & \omega^{2} & \omega^{4} & \omega^{8} & \omega^{7} & \omega^{5} & \omega \\
1 & \omega^{3} & \omega^{6} & \omega^{4} & \omega^{8} & \omega^{7} & \omega^{5} & \omega & \omega^{2} \\
1 & \omega^{6} & \omega^{3} & \omega^{8} & \omega^{7} & \omega^{5} & \omega & \omega^{2} & \omega^{4} \\
1 & \omega^{3} & \omega^{6} & \omega^{7} & \omega^{5} & \omega & \omega^{2} & \omega^{4} & \omega^{8} \\
1 & \omega^{6} & \omega^{3} & \omega^{5} & \omega & \omega^{2} & \omega^{4} & \omega^{8} & \omega^{7}
\end{array}\right) .
$$

Exercise 5.4.19 Fill in the details of the above example and show that the matrix is made up of the multiplication tables of the following three groups (written multiplicatively): the trivial group, $\mathcal{U}(\mathbb{Z} / 3 \mathbb{Z})$, and $\mathcal{U}(\mathbb{Z} / 9 \mathbb{Z})$.

Exentensions of Rader's algorithm will be discussed in Section 7.8.

5.5 Algorithmic aspects of the FFT

In this section we examine some of the algorithmic aspects of the formulas obtained in Section 5.4. For a more complete discussion we refer to [160, 163].

First of all, we want to derive the general form of (5.4), which is also the basic nonmatrix form of the Cooley-Tuckey algorithm. We consider the action of $A_{n m}(\omega)$ to a column vector $X=\left(x_{0}, x_{1}, \ldots, x_{n m-1}\right)^{T}$. The General Radix Identity (Theorem 5.4.5) yields

$$
\begin{equation*}
A_{n m}(\omega)=\left[A_{n}\left(\omega^{m}\right) \otimes I_{m}\right] T_{n}^{m}(\omega)\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right] P_{n}^{m} \tag{5.61}
\end{equation*}
$$

Therefore, arguing as in the proof of Theorem 5.4.5, and using the formulas established therein, from (5.61), for $j=s m+r$ and $j^{\prime}=r^{\prime} n+s^{\prime}$, with $0 \leq s, s^{\prime} \leq n-1$ and $0 \leq r, r^{\prime} \leq m-1$, we get (by Lemma 5.3.1.(ii) and

$$
\begin{align*}
& {\left[A_{n m}(\omega) X\right]_{j} }=\sum_{j^{\prime}=0}^{n m-1}\left\{\left[A_{n}\left(\omega^{m}\right) \otimes I_{m}\right] T_{n}^{m}(\omega)\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right]\right\}_{j, \sigma(n, m) j^{\prime}} x_{j^{\prime}} \tag{5.29}\\
&=\sum_{r^{\prime}=0}^{m-1} \sum_{s^{\prime}=0}^{n-1}\left\{\left[A_{n}\left(\omega^{m}\right) \otimes I_{m}\right]\right. \\
&\left.=* \sum_{n}^{m}(\omega)\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right]\right\}_{s m+r, s^{\prime} m+r^{\prime}} x_{r^{\prime} n+s^{\prime}} \\
& \sum_{r^{\prime}=0}^{m-1} \omega^{m s s^{\prime}+s^{\prime} r+n r r^{\prime}} x_{r^{\prime} n+s^{\prime}}
\end{align*}
$$

(where $=_{*}$ follows from the last equality in the first part of the proof of Theorem 5.4.5), that is,

$$
\begin{equation*}
\left[A_{n m}(\omega) X\right]_{s m+r}=\sum_{s^{\prime}=0}^{n-1} \omega^{m s s^{\prime}} \omega^{s^{\prime} r} \sum_{r^{\prime}=0}^{m-1} \omega^{n r r^{\prime}} x_{r^{\prime} n+s^{\prime}} . \tag{5.62}
\end{equation*}
$$

The above is the nonmatrix form of the General Radix Identity and constitutes one of the basic formulations of the Cooley-Tuckey algorithm.

Exercise 5.5.1 (5.61) is also called the Decimation in time form of the Cooley-Tuckey algorithm. Prove the following equivalent formulas:

- (Decimation in Frequency)

$$
A_{n m}(\omega)=P_{m}^{n}\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right] T_{n}^{m}(\omega)\left[A_{n}\left(\omega^{m}\right) \otimes I_{m}\right] ;
$$

- (Parallel Form)

$$
A_{n m}(\omega)=P_{n}^{m}\left[I_{m} \otimes A_{n}\left(\omega^{m}\right)\right] P_{m}^{n} T_{n}^{m}(\omega)\left[I_{n} \otimes A_{m}\left(\omega^{n}\right)\right] P_{n}^{m}
$$

- (Vector Form)

$$
A_{n m}(\omega)=\left[A_{n}\left(\omega^{m}\right) \otimes I_{m}\right] T_{n}^{m}(\omega) P_{n}^{m}\left[A_{m}\left(\omega^{n}\right) \otimes I_{n}\right] .
$$

Now, following [130], we examine the number of operations needed to compute the DFT by means of the General Radix Identity in Theorem 5.4.5 or, equivalentely, in terms of (5.62). This way, we generalize the computation in Section 5.1. For the sake of clarity, we shall denote by $X^{(n)}$ (respectively $X^{(n m)}$) the vector $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)^{T}$ (respectively $\left.\left(x_{0}, x_{1}, \ldots, x_{n m-1}\right)^{T}\right)$. First of all, arguing as in the derivation of (5.2), we deduce that the n entries of the column matrix $A_{n}(\omega) X^{(n)}$ may be computed by means of at most

$$
\begin{equation*}
T_{1}(n)=[n+(n-1)] n+n-2=2 n^{2}-2=\mathcal{O}\left(n^{2}\right) \tag{5.63}
\end{equation*}
$$

operations.
Proposition 5.5.2 Suppose we have an algorithm that computes $A_{n}(\omega) X^{(n)}$ (ω an n-th root of 1) by means of at most $T(n)$ operations. Then we can compute $A_{n m}(\omega) X^{(n m)}$ (ω an nm-th root of 1) by means of at most

$$
T(n m) \leq n T(m)+m T(n)+(m-1)(n-1)
$$

operations.
Proof Indeed, if we use (5.62), we need to compute

$$
\sum_{r^{\prime}=0}^{m-1} \omega^{n r r^{\prime}} x_{n r^{\prime}+s^{\prime}} \quad \text { for } 0 \leq r \leq m-1 \text { and } 0 \leq s^{\prime} \leq n-1
$$

and these may be seen as n DFT's with $A_{m}\left(\omega^{n}\right)$, namely,

$$
A_{m}\left(\omega^{n}\right) X_{s^{\prime}}^{(m)}
$$

with

$$
X_{s^{\prime}}^{(m)}=\left(x_{s^{\prime}}, x_{n+s^{\prime}}, x_{2 n+s^{\prime}}, \ldots, x_{(m-1) n+s^{\prime}}\right)^{T}
$$

and $s^{\prime}=0,1, \ldots, n-1$. Then we must multiply these results by the numbers $\omega^{s^{\prime} r}$ (note that, in general, only $(n-1)(m-1)$ of them are different from 1). Finally, we need to compute the external sum in (5.62) for $0 \leq s \leq n-1$ and $0 \leq r \leq m-1$, which, as before, may be seen as m DFT's with $A_{n}\left(\omega^{m}\right)$.

For instance, from Proposition 5.5.2 and using (5.63), we get

$$
\begin{aligned}
T(n m) & \leq m \cdot 2\left(n^{2}-1\right)+n \cdot 2\left(m^{2}-1\right)+(n-1)(m-1) \\
& =2 n m(n+m)+n m-3(n+m)+1
\end{aligned}
$$

This is a great improvement: if $n=m$ then $T_{1}\left(n^{2}\right) \sim 2 n^{4}$ while $T\left(n^{2}\right) \sim 4 n^{3}$.
Theorem 5.5.3 Let M be a positive integer and let $M=m_{1} m_{2} \cdots m_{k}$ be a nontrivial factorization. Suppose that $T\left(m_{j}\right)$ operation are needed to compute the DFT with $A_{m_{j}}$. Then one can compute the DFT with A_{M} by means of at most

$$
T(M) \leq\left\{M \sum_{j=1}^{k} \frac{1}{m_{j}}\left[T\left(m_{j}\right)+m_{j}-1\right]\right\}-M+1
$$

operations. Moreover, $T(M)$ does not depend on the order of the factors used in the factorization.

Proof We deduce this from the General Radix Identity as in Proposition 5.5.2 by using induction on k. For $k=2$ the theorem reduces to Proposition 5.5.2. Assume the result for $2 \leq h \leq k-1$ and let us set $m=m_{1} m_{2} \cdots m_{\ell}$ and $n=m_{\ell+1} \cdots m_{k}$ for some $2 \leq \ell \leq k-2$. Then $M=n m$ and

$$
T(M)=T(n m)
$$

(by Proposition 5.5.2) $\leq n T(m)+m T(n)+(m n-n-m+1)$
(by inductive hypothesis) $\leq n\left(m \sum_{j=1}^{\ell} \frac{1}{m_{j}}\left[T\left(m_{j}\right)+m_{j}-1\right]-m+1\right)$

$$
\begin{aligned}
& +m\left(n \sum_{j=\ell+1}^{k} \frac{1}{m_{j}}\left[T\left(m_{j}\right)+m_{j}-1\right]-n+1\right) \\
& +m n-n-m+1 \\
= & M\left\{\sum_{j=1}^{k} \frac{1}{m_{j}}\left[T\left(m_{j}\right)+m_{j}-1\right]\right\}-M+1 .
\end{aligned}
$$

Some special cases of Theorem 5.5.3 are worth examining.

Corollary 5.5.4

$$
T(M) \leq M \sum_{j=1}^{k}\left(2 m_{j}+1\right)-M+1
$$

Proof This follows from Theorem 5.5 .3 by using (5.63) and the elementary inequality $\frac{(2 m+3)(m-1)}{m} \leq 2 m+1$.

If $m_{1}=m_{2}=\cdots=m_{k}=m$, that is, $M=m^{k}$, we get the following generalization of Theorem 5.1.3.

Corollary 5.5.5

$$
T\left(m^{k}\right) \leq(2 m+1) m^{k} k-m^{k}+1
$$

In particular, for m fixed and $k \rightarrow+\infty$, one gets

$$
T\left(m^{k}\right)=\mathcal{O}\left(k m^{k}\right)
$$

equivalently, $T(M)=\mathcal{O}(M \log M)$.

Part II

Finite Fields and their characters

6

Finite fields

This chapter is a self-contained introduction to the basic algebraic theory of finite fields. This includes a complete study of the automorphisms, norms, traces, and quadratic extensions of finite fields. Our treatment is inspired by a course given by Giuseppe Tallini in 1991 at the Istituto Nazionale di Alta Matematica "Francesco Severi" (INdAM) in Rome (cf. [141]). An alternative approach is in the monograph by Lidl and Niederreiter [96]. We also refer to the impressive volumes by Knapp [87, 88] for a very complete treatment at both a basic and advanced level.

6.1 Preliminaries on Ring Theory

We start by recalling some basic notions and results in Ring Theory. Most of the proofs are elementary and left as exercises: we refer to the monographs by Herstein [71] and Lang [93] for more details. We also assume the most elementary facts on polynomials over a field: a good reference is the book by Kurosh [89].

Let \mathcal{A} be a commutative unital ring. We denote by 0 the zero and by 1 the (multiplicative) identity element of \mathcal{A}.
\mathcal{A} is said to be an integral domain if it contains no zero divisors, that is, if $a, b \in \mathcal{A}$ satisfy $a b=0$ then $a=0$ or $b=0$.

An ideal of \mathcal{A} is a subring $\mathcal{I} \subseteq \mathcal{A}$ such that $a i \in \mathcal{I}$ for all $a \in \mathcal{A}$ and $i \in \mathcal{I}$. Viewing \mathcal{I} as a subgroup of the additive group \mathcal{A}, we can form the quotient group $\mathcal{A} / \mathcal{I}=\{(a+\mathcal{I}): a \in A\}$ and then equip it with the multiplication defined by $(a+\mathcal{I})(b+\mathcal{I})=(a b+\mathcal{I})$ for all $a, b \in A$. It is easy to check that this multiplication is well defined and that $\mathcal{A} / \mathcal{I}$ is a commutative unital ring, called the quotient ring: its zero is $(0+\mathcal{I})=\mathcal{I}$ and its unit element is $(1+\mathcal{I})$.

An element $u \in \mathcal{A}$ is called invertible, or a unit, provided there exists an element $v \in \mathcal{A}$, necessarily unique, called the inverse of u, such that $u v=1$.

A field is a commutative unital ring such that every nonzero element is invertible. In the sequel, we shall denote a field by the letters \mathbb{F} and \mathbb{E}.

Exercise 6.1.1 Show that every finite integral domain is a field.
Hint. Use the pigeon-hole principle.
We denote by $\mathcal{A}[x]$ the commutative unital ring consisting of all polynomials

$$
\begin{equation*}
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \tag{6.1}
\end{equation*}
$$

with coefficients $a_{0}, a_{1}, \ldots, a_{n}$ in \mathcal{A} in the indeterminate x. In (6.1) we implicitly assume that $a_{n} \neq 0$ and then denote by $\operatorname{deg} p=n$ the degree of the polynomial $p(x)$. If $a_{n}=1$ one says that the polynomial $p(x)$ is monic.

Clearly, if \mathcal{A} is an integral domain, so is $\mathcal{A}[x]$.
An ideal \mathcal{I} in \mathcal{A} is called principal provided there exists $a \in A$ such that $\mathcal{I}=a \mathcal{A}=\{a b: b \in \mathcal{A}\}$ and one then says that \mathcal{I} is generated by a. A principal ideal domain is an integral domain in which every ideal is principal.

Exercise 6.1.2 Let \mathcal{A} be an integral domain and let $a, b \in \mathcal{A}$. Suppose that the ideal $\mathcal{I}=\{x a+y b: x, y \in \mathcal{A}\}$ is principal. Show that every generator of \mathcal{I} is a $\operatorname{gcd}(a, b)$ (the definition of a gcd in \mathcal{A} is the same as in Theorem 1.1.1).

Exercise 6.1.3 Show that in a principal ideal domain any nondecreasing chain of ideals $\mathcal{I}_{1} \subseteq \mathcal{I}_{2} \subseteq \cdots \subseteq \mathcal{I}_{n} \subseteq \cdots$ must stabilize, that is, there exists $n_{0} \in \mathbb{N}$ such that $I_{n}=I_{n_{0}}$ for all $n \geq n_{0}$.

Example 6.1.4 The ring \mathbb{Z} of integers is a principal ideal domain. Let us show that if $\mathcal{I} \subseteq \mathbb{Z}$ is an ideal, then the minimal primitive element $a=$ $\min \{i \in \mathcal{I}: i>0\}$ generates \mathcal{I}. Indeed, given $m \in \mathcal{I}$, by Euclidean division we can find (unique) $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ such that $0 \leq r<a$ and $m=a q+r$. Since $r=m-a q \in \mathcal{I}$, by minimality of a we deduce that $r=0$, showing that $m=a q$. Thus $\mathcal{I}=a \mathcal{A}$.

Exercise 6.1.5 Show that the integral domain $\mathbb{Z}[x]$ is not a principal ideal domain.
Hint. Show that the ideal generated by 2 and x cannot be generated by a single polynomial.
We recall that in the ring $\mathbb{F}[x]$ of all polynomials over a field \mathbb{F} an analogue
of (1.1) holds. This is the Euclidean division of polynomials: for $p, s \in \mathbb{F}[x]$ there exist unique $q, r \in \mathbb{F}[x]$ such that $p(x)=q(x) s(x)+r(x)$ and $0 \leq$ $\operatorname{deg} r<\operatorname{deg} s$.

Exercise 6.1.6 Let \mathbb{F} be a field. Show that $\mathbb{F}[x]$ is a principal ideal domain. Hint. Use Euclidean division of polynomials.

Suppose that \mathcal{A} is an integral domain. A nonzero noninvertible element $p \in \mathcal{A}$ is said to be irreducible if it cannot be expressed as a product $p=a b$ with $a, b \in \mathcal{A}$ noninvertible.

Exercise 6.1.7 Let \mathcal{A} be a principal ideal domain and let $a, b, p \in \mathcal{A}$. Show that if p is irreducible and $p \mid a b$, then $p \mid a$ or $p \mid b$.
Hint. Use Exercise 6.1.2.

Example 6.1.8 (1) In the ring of integers, an element $p \in \mathbb{Z}$ is irreducible if and only if its absolute value $|p| \in \mathbb{N}$ is a prime number.
(2) If \mathbb{F} is a field, then a polynomial $p(x) \in \mathbb{F}[x]$ is irreducible if and only if it is irreducible over \mathbb{F} (in the usual sense of elementary algebra).

One then says that an integral domain \mathcal{A} is a unique factorization domain (briefly, UFD) provided that every non-zero non-unit $a \in A$ can be written as a product $a=u p_{1} p_{2} \cdots p_{k}$ of a unit $u \in \mathcal{A}$ and irreducible elements $p_{1}, p_{2}, \ldots, p_{k} \in \mathcal{A}$, and this factorization is unique in the following sense: if $a=v q_{1} q_{2} \cdots q_{h}$ is another factorization, with v a unit and $q_{1}, q_{2}, \ldots, q_{h}$ irreducible, then $h=k$ and, up to reordering the factors, $q_{j}=w_{j} p_{j}$, with w_{j} a unit, for all $j=1,2, \ldots, k$ (and therefore $v=u\left(w_{1} w_{2} \cdots w_{k}\right)^{-1}$).

Exercise 6.1.9 Show that every principal ideal domain is UFD.
Hint. For the existence, consider the set B of all ideals of \mathcal{A}, whose generators do not admit factorization and use Exercise 6.1.3. For the uniqueness use Exercise 6.1.7.

Example 6.1.10 (1) \mathbb{Z} is a UFD: every $n \in \mathbb{Z}$ can be written (uniquely) as a product

$$
n=\varepsilon p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}
$$

where $\varepsilon \in\{1,-1\}$ and $p_{1}, p_{2}, \ldots, p_{k} \in \mathbb{N}$ are distinct prime numbers (the positive integers α_{i} 's are the corresponding multiplicities).
(2) If \mathbb{F} is a field, then $\mathbb{F}[x]$ is a UFD: every polynomial $p(x) \in \mathbb{F}[x]$ can
be written (uniquely) as a product

$$
p(x)=u p_{1}(x)^{\alpha_{1}} p_{2}(x)^{\alpha_{2}} \cdots p_{k}(x)^{\alpha_{k}}
$$

where $u \in \mathbb{F}$ and $p_{1}(x), p_{2}(x), \ldots, p_{k}(x) \in \mathbb{F}[x]$ are distinct, monic irreducible polynomials (the positive integers α_{i} 's are the corresponding multiplicities).

A proper ideal $\mathcal{I} \subset \mathcal{A}$ is maximal if the following holds: whenever $\mathcal{I} \subseteq$ $\mathcal{J} \subseteq \mathcal{A}$, where \mathcal{J} is also an ideal, we necessarily have either $\mathcal{I}=\mathcal{J}$ or $\mathcal{J}=\mathcal{A}$.

Proposition 6.1.11 Let \mathcal{A} be a unital ring and $\mathcal{I} \subset \mathcal{A}$ an ideal. Then the quotient ring $\mathcal{A} / \mathcal{I}$ is a field if and only if \mathcal{I} is maximal.

Proof Suppose that \mathcal{I} is maximal. Let $a \in \mathcal{A} \backslash \mathcal{I}$ and let us show that the nonzero element $(a+\mathcal{I})$ of $\mathcal{A} / \mathcal{I}$ is a unit. Denote by $\mathcal{H} \subset \mathcal{A} / \mathcal{I}$ the ideal generated by $(a+\mathcal{I})$. Then if we denote by $\pi: \mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}$ the canonical quotient homomorphism, we have that $\mathcal{J}=\pi^{-1}(\mathcal{H})$ is an ideal in \mathcal{A} which contains \mathcal{I} and a, so that $\mathcal{I} \subsetneq \mathcal{J}$. By maximality of \mathcal{I} we have $\pi^{-1}(\mathcal{H})=\mathcal{J}=\mathcal{A}$. Since \mathcal{H} is generated by $(a+\mathcal{I})$, we can find $b \in \mathcal{A}$ such that $(1+\mathcal{I})=(a+\mathcal{I})(b+\mathcal{I})$ in \mathcal{H}. Thus $(b+\mathcal{I})$ is the inverse of $(a+\mathcal{I})$ in $\mathcal{A} / \mathcal{I}$. This shows that $\mathcal{A} / \mathcal{I}$ is a field.
Conversely, suppose that $\mathcal{A} / \mathcal{I}$ is a field. Let \mathcal{J} be and ideal of \mathcal{A} such that $\mathcal{I} \subsetneq \mathcal{J} \subseteq \mathcal{A}$. Let us show that $\mathcal{J}=\mathcal{A}$. Let $b \in \mathcal{J} \backslash \mathcal{I}$. Then $(b+\mathcal{I})$ is a non-zero element in $\mathcal{A} / \mathcal{I}$ and therefore we can find $a \in \mathcal{A}$ such that $(a+\mathcal{I})(b+\mathcal{I})=(1+\mathcal{I})$. It follows that

$$
1 \in(a b+\mathcal{I}) \subseteq a \mathcal{J}+\mathcal{J}=\mathcal{J},
$$

so that $\mathcal{J}=\mathcal{A}$. This shows that \mathcal{I} is maximal.
Proposition 6.1.12 Let \mathcal{A} be a principal ideal domain. If $a \in \mathcal{A}$ is a nonzero element, then the (principal) ideal a \mathcal{A} generated by a is maximal if and only if a is irreducible.

Proof Suppose that a is not irreducible. Then we can find noninvertible elements $b, c \in \mathcal{A}$ such that $a=b c$. Let us show that $a \mathcal{A} \subsetneq b \mathcal{A} \subsetneq \mathcal{A}$. Indeed, if we had $b \mathcal{A}=\mathcal{A}$ we could find an element $b^{\prime} \in \mathcal{A}$ such that $b b^{\prime}=1$, contradicting the fact that b is not invertible. On the other hand, if $a \mathcal{A}=b \mathcal{A}$ then $b \in a \mathcal{A}$ and we would find $d \in \mathcal{A}$ such that $b=a d$. As a consequence, $a=b c=a d c$ yielding $a(1-d c)=0$. Since \mathcal{A} is an integral domain and $a \neq 0$, we necessarily have $1-d c=0$, equivalently $d c=1$, contradicting the fact that c is not invertible. This shows that the proper ideal $a \mathcal{A}$ is not maximal.

Conversely, suppose that a is irreducible and let us show that $a \mathcal{A}$ is a maximal ideal. Thus suppose that \mathcal{J} is an ideal such that $a \mathcal{A} \subseteq \mathcal{J} \subseteq \mathcal{A}$. Since \mathcal{A} is a principal ideal domain, we can find $b \in A$ such that $\mathcal{J}=b \mathcal{A}$. Since $a \in b \mathcal{A}$ we can then find $c \in \mathcal{A}$ such that $a=b c$. By irreducibility of a, one of the two elements $b, c \in \mathcal{A}$ must be invertible. If b is invertible then $1 \in \mathcal{J}$ so that $\mathcal{J}=\mathcal{A}$. If c is invertible, then $b=a c^{-1} \in a \mathcal{A}$ so that $b \mathcal{A}=a \mathcal{A}$. It follows that $a \mathcal{A}$ is a maximal ideal.

Corollary 6.1.13 Let $n \in \mathbb{N}$. Then the quotient ring $\mathbb{Z} / n \mathbb{Z}$ is a field if and only if n is a prime number.

Recall that, for $p \in \mathbb{N}$ a prime number, we denote by \mathbb{F}_{p} the field $\mathbb{Z} / p \mathbb{Z}$ (see Notation 1.1.17).

Corollary 6.1.14 Let \mathbb{F} be a field and $p(x) \in \mathbb{F}[x]$. Then the quotient ring $\mathbb{F}[x] / p(x) \mathbb{F}[x]$ is a field if and only if $p(x)$ is irreducible (over \mathbb{F}).

Let \mathbb{F} be a field. Consider the cyclic additive subgroup C generated by the identity element $1 \in \mathbb{F}$. The characteristic of \mathbb{F}, denoted $\operatorname{char}(\mathbb{F})$, is defined to be 0 if C is infinite (and therefore isomorphic to \mathbb{Z}) and equal to the cardinality of C otherwise. Let us show that in this last case char (\mathbb{F}) is a prime number. Consider the map $\Phi: \mathbb{Z} \rightarrow \mathbb{F}$ defined by

$$
\begin{equation*}
\Phi(\pm n)= \pm(\underbrace{1+1+\cdots+1}_{n \text { terms }}) \tag{6.2}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Then it is straightforward to see that Φ is a unital ring homomorphism, so that $\mathbb{Z} / \operatorname{Ker}(\Phi) \cong \Phi(\mathbb{Z})=C$. If $\operatorname{Ker}(\Phi)=\{0\}$ then $\operatorname{char}(\mathbb{F})=0$. Otherwise, $\Phi(\mathbb{Z}) \subseteq \mathbb{F}$, being a finite integral domain is a field (cf. Exercise 6.1.1) and therefore, by Corollary 6.1.13, $\operatorname{Ker}(\Phi)=p \mathbb{Z}$ for some prime number p, so that $\operatorname{char}(\mathbb{F})=p$.

6.2 Finite algebraic extensions

We now give a basic introduction to field extensions. More complete treatments can be found in the aforementioned monographs by Herstein [71], Lang [93], and Knapp [87, 88].

Let \mathbb{F} and \mathbb{E} be two fields and suppose that $\mathbb{F} \subseteq \mathbb{E}$. We say that \mathbb{F} is a subfield of \mathbb{E} or, equivalently, that \mathbb{E} is an extension of \mathbb{F}.

Exercise 6.2.1 Show that \mathbb{E} is a vector space over \mathbb{F}.
We denote by $[\mathbb{E}: \mathbb{F}]$ the corresponding dimension $\operatorname{dim}_{\mathbb{F}} \mathbb{E}$ (the cardinality
of one (=any) vector basis of \mathbb{E} over \mathbb{F}): it is called the degree of the extension. We say that \mathbb{E} is a finite (resp. infinite) extension of \mathbb{F} provided that \mathbb{E} : $\mathbb{F}]<\infty($ resp. $[\mathbb{E}: \mathbb{F}]$ is infinite).

An element $\alpha \in \mathbb{E}$ is called algebraic over \mathbb{F} (or \mathbb{F}-algebraic) if there exists $p(x) \in \mathbb{F}[x]$ such that $p(\alpha)=0$.

Let $\alpha \in \mathbb{E}$ be an \mathbb{F}-algebraic element. Then it is straightforward to check that the set $\mathcal{I}_{\alpha}=\{p \in \mathbb{F}[x]: p(\alpha)=0\}$ is an ideal in $\mathbb{F}[x]$. It follows from Exercise 6.1.6 that there exists a monic polynomial $q \in \mathbb{F}[x]$ such that \mathcal{I}_{α} is generated by q, i.e. $\mathcal{I}_{\alpha}=q(x) \mathbb{F}[x]$.

Exercise 6.2.2 Show that the monic polynomial $q \in \mathbb{F}[x]$ is unique and irreducible.

The polynomial q is called the minimal polynomial of α (over \mathbb{F}). It follows from Corollary 6.1 .14 that $\mathbb{F}[x] / q(x) \mathbb{F}[x]$ is a field. On the other hand, consider the map

$$
\left.\begin{array}{rl}
\Phi: \quad \mathbb{F}[x] & \rightarrow \\
& \rightarrow \\
p & \mapsto
\end{array}\right) p(\alpha) .
$$

We clearly have $\operatorname{Ker}(\Phi)=\mathcal{I}_{\alpha}=q(x) \mathbb{F}[x]$ and therefore $\mathbb{F}[x] / q(x) \mathbb{F}[x]=$ $\mathbb{F}[x] / \operatorname{Ker}(\Phi)$ is isomorphic to the image $\operatorname{Im}(\Phi)$ which is a subfield of \mathbb{E} containing α, denoted $\mathbb{F}[\alpha]$. We say that $\mathbb{F}[\alpha]$ is the subfield of \mathbb{E} obtained by adjoining α to \mathbb{F}.

Exercise 6.2.3 Show that $\mathbb{F}[\alpha]$ is the subfield of \mathbb{E} generated by \mathbb{F} and α (that is, $\mathbb{F}[\alpha]$ is the intersection of all subfields of \mathbb{E} containing \mathbb{F} and α).

Proposition 6.2.4 Let \mathbb{E} be an extension of \mathbb{F}. Suppose $[\mathbb{E}: \mathbb{F}]<\infty$. Then every $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F}.

Proof Let $\alpha \in \mathbb{E}$ and set $n=[\mathbb{E}: \mathbb{F}]=\operatorname{dim}_{\mathbb{F}} \mathbb{E}$. Then the $n+1$ elements $1, \alpha, \alpha^{2}, \ldots, \alpha^{n}$ are linearly dependent over \mathbb{F}. It follows that there exists $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{F}$ such that $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \neq(0,0, \ldots, 0)$ and $a_{0}+a_{1} \alpha+$ $\cdots+a_{n} \alpha^{n}=0$. Then the polynomial $q(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{F}[x]$ satisfies $q(\alpha)=0$. This shows that α is algebraic over \mathbb{F}.

Proposition 6.2.5 Let \mathbb{E} be an extension of \mathbb{F} and $\alpha \in \mathbb{E}$. Suppose that α is algebraic over \mathbb{F} and denote by $q(x) \in \mathbb{F}[x]$ its minimal polynomial. Then setting $n=\operatorname{deg}(q)$ the following holds.
(i) $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$ is a basis of $\mathbb{F}[\alpha]$ over \mathbb{F};
(ii) $\operatorname{dim}_{\mathbb{F}} \mathbb{F}[\alpha]=n$;
(iii) $\mathbb{F}[\alpha] \cong \mathbb{F}[x] / q(x) \mathbb{F}[x]$.

Moreover, let $\beta \in \mathbb{E}$ and suppose that $q(\beta)=0$. Then the following holds.
(iv) β is algebraic over \mathbb{F} and $q(x)$ is the minimal polynomial of β;
(v) $\operatorname{dim}_{\mathbb{F}} \mathbb{F}[\beta]=n$;
(vi) $\mathbb{F}[\alpha] \cong \mathbb{F}[\beta]$;
(vii) if $\beta \in \mathbb{F}[\alpha]$ then $\mathbb{F}[\alpha]=\mathbb{F}[\beta]$.

Proof Let $q(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ and observe that $a_{0} \neq 0$ by irreducibility (cf. Exercise 6.2.2). Since $q(\alpha)=0$, we deduce that $\alpha^{n}=$ $-\left(a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}\right)$. After multiplying both sides by α^{m-n} we deduce that, more generally,

$$
\begin{equation*}
\alpha^{m}=-\left(a_{n-1} \alpha^{m-1}+\cdots+a_{1} \alpha^{m-n+1}+a_{0} \alpha^{m-n}\right) \tag{6.3}
\end{equation*}
$$

for all $m \geq n$. Similarly, after multiplying the equation $q(\alpha)=0$ by α^{-1}, we deduce that $\alpha^{-1}=-\frac{1}{a_{0}}\left(\alpha^{n-1}+a_{n-1} \alpha^{n-2}+\cdots+a_{2} \alpha+a_{1}\right)$ and, more generally,

$$
\begin{equation*}
\alpha^{-m}=-\frac{1}{a_{0}}\left(\alpha^{n-m}+a_{n-1} \alpha^{n-m-1}+\cdots+a_{2} \alpha^{2-m}+a_{1} \alpha^{1-m}\right) \tag{6.4}
\end{equation*}
$$

for all $m \geq 1$. This shows that the n elements $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ span $\mathbb{F}[\alpha]$ (recall Exercise (6.2.3)). Since $n=\operatorname{deg}(q)$ and q is the minimal polynomial of α, the above elements are also linearly independent and therefore constitute a basis for $\mathbb{F}[\alpha]$ over \mathbb{F}. This shows (i), and (ii) follows immediately thereafter. (iii) was observed when defining $\mathbb{F}[\alpha]$. (iv) follows from the obvious fact that every irreducible polynomial is the minimal polynomial of any of its roots. From this we deduce that the same relations (6.3) and (6.4) hold with α replaced by β, thus proving (v), while (vi) follows from (iii). Finally, suppose that $\beta \in \mathbb{F}[\alpha]$. Then $\mathbb{F}[\beta]=\{p(\beta): p \in \mathbb{F}[x]\}$ is a subfield of $\mathbb{F}[\alpha]$ and, from (ii) and (v), we immediately deduce (vii).

Remark 6.2.6 With the above notation, one can also say that $\mathbb{F}[\alpha]$ is obtained from \mathbb{F} by adjoining a root of (the irreducible polynomial) q. In a more abstract fashion, if q is any irreducible polynomial in $\mathbb{F}[x]$, then the field $\mathbb{F}[x] / q(x) \mathbb{F}[x]$ contains a subfield isomorphic to \mathbb{F} (that we shall still denote by $\mathbb{F})$, namely the set of all elements of the form $a_{0}+q(x) \mathbb{F}[x]$, where $a_{0} \in \mathbb{F}$ is viewed as a polynomial of degree 0 . Then the element $\alpha=x+q(x) \mathbb{F}[x] \in \mathbb{F}[x] / q(x) \mathbb{F}[x]$ is algebraic over \mathbb{F} : indeed, $q(\alpha)=$ $q(x+q(x) \mathbb{F}[x])=q(x)+q(x) \mathbb{F}[x]=0+q(x) \mathbb{F}[x]=0$. As a consequence, $\mathbb{F}[x] / q(x) \mathbb{F}[x]$ is the algebraic extension of \mathbb{F} by means of the (irreducible) polynomial $q(x)$.

When $\operatorname{deg}(q)=2$ we call it a quadratic extension.
Example 6.2.7 The field $\mathbb{C}=\{a+i b: a, b \in \mathbb{R}\}$ of complex numbers is a quadratic extension of the field \mathbb{R} of real numbers. The corresponding irreducible polynomial is $q(x)=x^{2}+1$.

Definition 6.2.8 Let $p(x) \in \mathbb{F}[x]$, say of degree $\operatorname{deg}(p)=n$. Then the smallest ($=$ of minimal degree) field extension \mathbb{E} of \mathbb{F} containing elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $p(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)$ is called a splitting field for the polynomial $p(x)$ over \mathbb{F}.

Exercise 6.2.9 (Existence and uniqueness of splitting fields) (1) Prove that, in the above definition, the field \mathbb{E} exists and is unique up to isomorphism.
Hint: existence is obtained by a repeated application of the constructions that have led to Proposition 6.2.5. Uniqueness is more difficult (we refer to the aforementioned references).
(2) Prove that, if p is irreducible (over \mathbb{F}), then $[\mathbb{E}: \mathbb{F}]$ divides n !, where $n=\operatorname{deg}(p)$.

Remark 6.2.10 Let $\mathbb{F} \subseteq \mathbb{G} \subseteq \mathbb{E}$ be fields and let $p(x) \in \mathbb{F}[x]$ (so that $p(x) \in \mathbb{G}[x])$. Then \mathbb{E} is the splitting field of $p(x)$ over \mathbb{F} if and only if it is the splitting field of $p(x)$ over \mathbb{G}.

Definition 6.2.11 Let \mathbb{E} be an extension of \mathbb{F}. The Galois group \mathbb{E} over \mathbb{F}, denoted $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$, is the group of all automorphisms of \mathbb{E} that fix \mathbb{F} pointwise, in symbols:

$$
\operatorname{Gal}(\mathbb{E} / \mathbb{F})=\{\xi \in \operatorname{Aut}(\mathbb{E}): \xi(\alpha)=\alpha \text { for all } \alpha \in \mathbb{F}\} .
$$

If we consider \mathbb{E} as a vector space over \mathbb{F}, then every automorphism $\xi \in$ $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ is \mathbb{F}-linear:

$$
\xi\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right)=\alpha_{1} \xi\left(\beta_{1}\right)+\alpha_{2} \xi\left(\beta_{2}\right)
$$

for all $\alpha_{1}, \alpha_{2} \in \mathbb{F}$ and $\beta_{1}, \beta_{2} \in \mathbb{E}$.
Proposition 6.2.12 $\operatorname{Gal}(\mathbb{E} / \mathbb{F}$) is \mathbb{F}-linearly independent (as a subset of $\operatorname{End}_{\mathbb{F}}(\mathbb{E})$, the algebra of all \mathbb{F}-linear maps $\left.T: \mathbb{E} \rightarrow \mathbb{E}\right)$.

Proof Suppose, by contradiction, that there exist $\xi_{1}, \xi_{2}, \ldots, \xi_{n} \in \operatorname{Gal}(\mathbb{E} / \mathbb{F})$,
all distinct, and $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \neq(0,0, \ldots, 0)$ in \mathbb{F}^{n} such that

$$
\begin{equation*}
\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2}+\cdots+\alpha_{n} \xi_{n}=0 \tag{6.5}
\end{equation*}
$$

Up to reducing n if necessary, we may suppose that the length $n \geq 2$ of the nontrivial linear combination in the left hand side of (6.5) is minimal (in particular, $\alpha_{i} \neq 0$ for all $\left.i=1,2, \ldots, n\right)$.

Choose $\beta \in \mathbb{E}$ such that $\xi_{1}(\beta) \neq \xi_{2}(\beta)$. Then from (6.5) we deduce that

$$
\sum_{k=1}^{n} \alpha_{k} \xi_{k}(\beta) \xi_{k}(\gamma)=\sum_{k=1}^{n} \alpha_{k} \xi_{k}(\beta \gamma)=0
$$

for all $\gamma \in \mathbb{E}$. It follows that

$$
\begin{equation*}
\alpha_{1} \xi_{1}(\beta) \xi_{1}+\alpha_{2} \xi_{2}(\beta) \xi_{2}+\cdots+\alpha_{n} \xi_{n}(\beta) \xi_{n}=0 \tag{6.6}
\end{equation*}
$$

is another vanishing nontrivial linear combination of length n. But then, multiplying (6.5) by $\xi_{1}(\beta)$ and subtracting (6.6), we obtain
$\alpha_{2}\left(\xi_{1}(\beta)-\xi_{2}(\beta)\right) \xi_{2}+\alpha_{3}\left(\xi_{1}(\beta)-\xi_{3}(\beta)\right) \xi_{3}+\cdots+\alpha_{n}\left(\xi_{1}(\beta)-\xi_{n}(\beta)\right) \xi_{n}=0$, where the left hand side is nontrivial (because $\alpha_{2}\left(\xi_{1}(\beta)-\xi_{2}(\beta)\right) \neq 0$) and of length at most $n-1$, contradicting the minimality of n. This shows that the elements in $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ are \mathbb{F}-linearly independent.

Theorem 6.2.13 Let \mathbb{E} be a finite extension of \mathbb{F}. Then $|\operatorname{Gal}(\mathbb{E} / \mathbb{F})| \leq[\mathbb{E}$: $\mathbb{F}]$.

Proof Let us set $n=[\mathbb{E}: \mathbb{F}]$ and let $\beta_{1}, \beta_{2}, \ldots, \beta_{n} \in \mathbb{E}$ constitute a basis of \mathbb{E} as a vector space over \mathbb{F}. Suppose that $\xi_{1}, \xi_{2}, \ldots, \xi_{m}$ are distinct elements in $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$. Consider the homogeneous linear system of n equations

$$
\left\{\begin{array}{l}
\alpha_{1} \xi_{1}\left(\beta_{1}\right)+\alpha_{2} \xi_{2}\left(\beta_{1}\right)+\cdots+\alpha_{m} \xi_{m}\left(\beta_{1}\right)=0 \\
\alpha_{1} \xi_{1}\left(\beta_{2}\right)+\alpha_{2} \xi_{2}\left(\beta_{2}\right)+\cdots+\alpha_{m} \xi_{m}\left(\beta_{2}\right)=0 \\
\cdots \cdots \cdots \\
\alpha_{1} \xi_{1}\left(\beta_{n}\right)+\alpha_{2} \xi_{2}\left(\beta_{n}\right)+\cdots+\alpha_{m} \xi_{m}\left(\beta_{n}\right)=0
\end{array}\right.
$$

in the m variables $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$. It is a standard fact of linear algebra (over any arbitrary field) that if $m>n$ (i.e. the number of variables is greater than the number of equations) the above system has a nontrivial solution $\left(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \ldots, \bar{\alpha}_{m}\right) \in \mathbb{E}^{m}$. Since the ξ_{i} s are \mathbb{F}-linear and $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ constitute a basis for \mathbb{E}, we deduce that

$$
\bar{\alpha}_{1} \xi_{1}(\beta)+\bar{\alpha}_{2} \xi_{2}(\beta)+\cdots+\bar{\alpha}_{m} \xi_{m}(\beta)=0
$$

for every $\beta \in \mathbb{E}$, that is, $\bar{\alpha} \xi_{1}+\bar{\alpha} \xi_{2}+\cdots+\bar{\alpha}_{m} \xi_{m}=0$, contradicting Proposition 6.2.12. This shows that $m \leq n$ and therefore $|\operatorname{Gal}(\mathbb{E} / \mathbb{F})| \leq[\mathbb{E}: \mathbb{F}]$.

Let $f(x) \in \mathbb{F}[x]$, say $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{1} x+a_{0}$. Then the derivative of $f(x)$ is the polynomial $f^{\prime}(x) \in \mathbb{F}[x]$ defined by setting

$$
f^{\prime}(x):=n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\cdots 2 a_{2} x+a_{1}
$$

Exercise 6.2.14 Show that the map $D: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ given by $D(f)=f^{\prime}$ is F-linear.

Note that if $\operatorname{char}(\mathbb{F})=p>0$, then $D x^{k p}=k p x^{k p-1}=0$ for all $k \geq 1$.

6.3 The structure of finite fields

Theorem 6.3.1 Let \mathbb{F} be a finite field. Then the following holds.
(i) There exists a prime number $p \in \mathbb{N}$ such that $\operatorname{char}(\mathbb{F})=p$;
(ii) \mathbb{F} contains a subfield isomorphic to \mathbb{F}_{p};
(iii) the additive group $(\mathbb{F},+)$ is isomorphic to $\oplus_{i=1}^{n} \mathbb{F}_{p}$ for some $n \geq 1$;
(iv) there exists $n \geq 1$ such that $|\mathbb{F}|=p^{n}$.

Proof Consider the unital homomorphism $\Phi: \mathbb{Z} \rightarrow \mathbb{F}$ defined by (6.2). As we already observed at the end of Section 6.1 , we have $\operatorname{Ker}(\Phi)=p \mathbb{Z}$ with p a prime number. Moreover, $\operatorname{Im}(\Phi) \cong \mathbb{Z} / \operatorname{Ker}(\Phi)=\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$ and this proves (i) and (ii). Let $n=[\mathbb{F}: \operatorname{Im}(\Phi)]$; then \mathbb{F} is a vector space of dimension n over $\operatorname{Im}(\Phi) \cong \mathbb{F}_{p}$ and (iii) follows. Taking cardinalities, from (iii) we immediately deduce (iv).

In the sequel, with the notation from the above theorem, we shall denote by $q=p^{n}$ the cardinality of \mathbb{F} and denote this field by \mathbb{F}_{q}.

Corollary 6.3.2 Let \mathbb{F}_{q} be a finite field of order $q=p^{n}$ and let $\mathbb{F}_{r} \subset \mathbb{F}_{q}$ be a subfield. Then there exists a divisor h of n such that $r=p^{h}$.

Proof Since $1 \in \mathbb{F}_{r}$, we clearly have $\operatorname{char}\left(\mathbb{F}_{r}\right)=\operatorname{char}\left(\mathbb{F}_{q}\right)=p$. Thus there exists an integer $h \geq 1$ such that $r=p^{h}$. Setting $s=\left[\mathbb{F}_{q}: \mathbb{F}_{r}\right]$, by Exercise 6.2.1 we have $p^{n}=q=r^{s}=\left(p^{h}\right)^{s}=p^{h s}$, so that $n=h s$.

In analogy with the particular case $q=p$ (cf. Theorem 1.1.21) we have the following:

Theorem 6.3.3 The (multiplicative) group \mathbb{F}_{q}^{*} of invertible elements in \mathbb{F}_{q} is cyclic of order $q-1$.

Proof The proof is identical to that of Theorem 1.1.21.

Definition 6.3.4 A generator of the cyclic group \mathbb{F}_{q}^{*} is called a primitive element of \mathbb{F}_{q}.

Corollary 6.3.5 \mathbb{F}_{q} is the splitting field of the polynomial $x^{q}-x$ over \mathbb{F}_{p} and consists exactly of the roots of this polynomial.

Proof First observe that $x^{q}-x \in \mathbb{F}_{p}[x]$. By Theorem 6.3.3, the multiplicative group \mathbb{F}_{q}^{*} is cyclic of order $q-1$. Therefore, every $\beta \in \mathbb{F}_{q}^{*}$ satisfies the equation $x^{q-1}=1$, i.e., it is a root of the polynomial $x^{q}-x$. Since, clearly, 0 is also a root of this polynomial, it follows that \mathbb{F}_{q} consists exactly of all the q roots of $x^{q}-x$. This shows that \mathbb{F}_{q} is the splitting field of $x^{q}-x$ over \mathbb{F}_{p}.

Corollary 6.3.6 Let r be a divisor of $q-1$. Then \mathbb{F}_{q}^{*} contains $\varphi(r)$ elements of order r. In particular, there are $\varphi(q-1)$ primitive elements of \mathbb{F}_{q}.

6.4 The Frobenius automorphism

Let \mathbb{F}_{q} be a finite field, where $q=p^{n}$. Then the map $\sigma: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ defined by

$$
\sigma(\alpha)=\alpha^{p}
$$

for all $\alpha \in \mathbb{F}_{q}$, is an automorphism. Indeed, for $\alpha, \beta \in \mathbb{F}_{q}$ we have

$$
\begin{aligned}
\sigma(\alpha+\beta) & =(\alpha+\beta)^{p} \\
& =\sum_{k=0}^{p}\binom{p}{k} \alpha^{k} \beta^{p-k} \\
& =\alpha^{p}+\beta^{p} \\
& =\sigma(\alpha)+\sigma(\beta)
\end{aligned}
$$

because the integer $\binom{p}{k}=p \frac{(p-1)(p-2) \cdots(p-k+1)}{k!}$ is a multiple of p (since p is prime), and therefore $\binom{p}{k} \equiv 0(\bmod p)$, for all $1 \leq k \leq p-1$, and

$$
\sigma(\alpha \beta)=(\alpha \beta)^{p}=(\alpha)^{p}(\beta)^{p}=\sigma(\alpha) \sigma(\beta)
$$

One calls σ the Frobenius automorphism of \mathbb{F}_{q}.
Recall (cf. Theorem 6.3.1) that for $q=p^{n}$ the field \mathbb{F}_{q} contains the subfield \mathbb{F}_{p} and that $\left[\mathbb{F}_{q}: \mathbb{F}_{p}\right]=n$.

Theorem 6.4.1 Let $q=p^{n}$. Then the following hold:
(i) $\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)$ is a cyclic group of order n;
(ii) $\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)$ is generated by the Frobenius automorphism σ;
(iii) $\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)=\operatorname{Aut}\left(\mathbb{F}_{q}\right)$.

Proof Let us first show that σ has order n. Clearly, $\sigma^{k}(\alpha)=\alpha^{p^{k}}$ for all $\alpha \in \mathbb{F}_{q}$ and $k \geq 1$. Since (in any field) the equation $x^{p^{k}}-x=0$ has at most p^{k} solutions, there exists no $1 \leq k<n$ such that $\sigma^{k}(\alpha) \equiv \alpha^{p^{k}}=\alpha$ for all $\alpha \in \mathbb{F}_{q}$.

On the other hand, it follows from Corollary 6.3.5 that $\sigma^{n}(\alpha) \equiv \alpha^{q}=\alpha$, for all $\alpha \in \mathbb{F}_{q}$. In other words, $\sigma^{n}=\operatorname{id}_{\mathbb{F}_{q}}$. This shows that the Frobenius automorphism σ has order n. Moreover, applying Corollary 6.3 .5 to \mathbb{F}_{p}^{*}, we deduce that $\sigma(\alpha) \equiv \alpha^{p}=\alpha$ for all $\alpha \in \mathbb{F}_{p}$. This shows that σ fixes pointwise all elements in $\alpha \in \mathbb{F}_{p}$, that is, $\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)$. Since, by Theorem 6.2.13, $\left|\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)\right| \leq\left[\mathbb{F}_{q}: \mathbb{F}_{p}\right]=n$, we deduce (i) and (ii).

Finally, let $\xi \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$. Then we have $\xi(0)=0, \xi(1)=1, \xi(2)=\xi(1+$ $1)=\xi(1)+\xi(1)=1+1=2$, and recursively, $\xi(k)=k$ for all $k=2,3, \ldots, p-1$ (but $\xi(p)=p \xi(1)=0$). Thus ξ fixes $\mathbb{F}_{p}=\{0,1,2, \ldots, p-1\}$ pointwise. This shows (iii).

Corollary 6.4.2 Every $\alpha \in \mathbb{F}_{q}$ has exactly one p^{k}-th root in \mathbb{F}_{q} for $k=$ $1,2, \ldots, n$.

Corollary 6.4.3 The field \mathbb{F}_{q} admits an involutory automorphism if and only if n is even. If this is the case, then it is given by $\sigma^{n / 2}$.

A nontrivial square in a field \mathbb{F} is an element $\alpha \in \mathbb{F}^{*}$ such that $\alpha \neq 1$ and $\alpha=\beta^{2}$ for some $\beta \in \mathbb{F}$.

Proposition 6.4.4 If $p=2$ then every element in \mathbb{F}_{q}^{*} is a square. If $p>2$ then there are $\frac{q-1}{2}$ squares in \mathbb{F}_{q}^{*}.

Proof The result for $p=2$ follows immediately from Corollary 6.4.2 (with $k=1$). Suppose $p>2$ and denote by $\varphi: \mathbb{F}_{q}^{*} \rightarrow \mathbb{F}_{q}^{*}$ the square map defined by $\varphi(\beta)=\beta^{2}$ for all $\beta \in \mathbb{F}_{q}^{*}$. Note that for $\beta_{1}, \beta_{2} \in \mathbb{F}_{q}$ one has $\varphi\left(\beta_{1}\right)=\varphi\left(\beta_{2}\right)$ if and only if $\beta_{1}= \pm \beta_{2}$. This shows that φ is two-to-one. As a consequence, the number of squares in \mathbb{F}_{q}^{*} equals $\left|\varphi\left(\mathbb{F}_{q}^{*}\right)\right|=\left|\mathbb{F}_{q}^{*}\right| / 2=(q-1) / 2$.

6.5 Existence and uniqueness of Galois fields

Definition 6.5.1 Let $f(x) \in \mathbb{F}_{p}[x]$ be an irreducible polynomial of degree n and denote by $f(x) \mathbb{F}_{p}[x]$ the ideal generated by $f(x)$. Then the field

$$
\mathbb{F}_{p}[x] / f(x) \mathbb{F}_{p}[x]
$$

is called a Galois field of order p^{n} (cf. Proposition 6.2.5 and Remark 6.2.6).

We shall not introduce a specific notation for Galois fields since for every prime number p and integer $n \geq 1$ all Galois fields of order $q:=p^{n}$ are isomorphic (cf. Theorem 6.5.6), and we shall use the notation \mathbb{F}_{q}. In this section, we prove their existence and uniqueness. As usual, we denote by $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ the Frobenius automorphism.

Proposition 6.5.2 Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{F}_{p}[x]$ be an irreducible polynomial of degree n and let $\mathbb{F}_{q}=\mathbb{F}_{p}[x] / f(x) \mathbb{F}_{p}[x]$ be the associated Galois field. Let also $\alpha \in \mathbb{F}_{q}$ be a root of f (cf. Remark 6.2.6). Then the elements $\alpha^{p^{k}}=\sigma^{k}(\alpha), k=0,1, \ldots, n-1$, are all distinct and are the roots of f. In particular, \mathbb{F}_{q} is the splitting field of $f(x)$ over \mathbb{F}_{p} (cf. Definition 6.2.8) and

$$
f(x)=a_{n}(x-\alpha)\left(x-\alpha^{p}\right)\left(x-\alpha^{p^{2}}\right) \cdots\left(x-\alpha^{p^{n-1}}\right)
$$

Proof Since σ^{k} is an automorphism that fixes \mathbb{F}_{p} pointwise, we have that $f\left(\sigma^{k}(\alpha)\right)=\sigma^{k}(f(\alpha))=\sigma(0)=0$, that is, $\sigma^{k}(\alpha)$ is a root of f, for all $k=0,1, \ldots, n-1$. Let us show that these elements are all distinct. Suppose that $\sigma^{k}(\alpha)=\sigma^{j}(\alpha)$, that is, $\alpha^{p^{k}}=\alpha^{p^{j}}$ for some $1 \leq k<j \leq n-1$. Set $\beta:=\sigma^{k}(\alpha)=\alpha^{p^{k}}$ and $r:=j-k \in \mathbb{N}$. We have

$$
\begin{equation*}
\sigma^{r}(\beta)=\beta^{p^{r}}=\beta^{p^{j-k}}=\left(\alpha^{p^{k}}\right)^{p^{j-k}}=\alpha^{p^{j}}=\alpha^{p^{k}}=\beta \tag{6.7}
\end{equation*}
$$

Since $f(\beta)=0$, from Proposition 6.2.5 we deduce that the elements

$$
1, \beta, \beta^{2}, \ldots, \beta^{n-1}
$$

constitute a vector space basis of \mathbb{F}_{q} over \mathbb{F}_{p}. As a consequence, for every $\delta \in \mathbb{F}_{q}$ there exist $\eta_{1}, \eta_{2}, \ldots, \eta_{n} \in \mathbb{F}_{p}$ such that

$$
\delta=\eta_{1}+\eta_{2} \beta+\cdots+\eta_{n} \beta^{n-1}
$$

Since $\left(\eta_{i}\right)^{p}=\eta_{i}$ for $i=1,2, \ldots, n$ and, by (6.7), $\beta^{p^{r}}=\beta$, we get

$$
\begin{aligned}
\delta^{p^{r}} & =\sigma^{r}\left(\eta_{1}+\eta_{2} \beta+\cdots+\eta_{n} \beta^{n-1}\right) \\
& =\eta_{1}+\eta_{2} \beta^{p^{r}}+\eta_{3}\left(\beta^{p^{r}}\right)^{2}+\cdots+\eta_{n}\left(\beta^{p^{r}}\right)^{n-1} \\
& =\eta_{1}+\eta_{2} \beta+\cdots+\eta_{n} \beta^{n-1} \\
& =\delta .
\end{aligned}
$$

Since δ was arbitrary, this contradicts Theorem 6.3.3, because $r<n$.

Proposition 6.5.3 Let $f(x) \in \mathbb{F}_{q}[x]$ be an irreducible polynomial of degree m, and let $k \geq 1$. Then $f(x)$ divides $x^{q^{k}}-x$ if and only if m divides k.

Proof By Proposition 6.2.5 and Theorem 6.3.1, $\mathbb{F}_{q}[x] / f(x) \mathbb{F}_{q}[x]$ has q^{m} elements so that

$$
\begin{equation*}
\alpha^{q^{m}}=\alpha \quad \text { for all } \alpha \in \mathbb{F}_{q}[x] / f(x) \mathbb{F}_{q}[x] \tag{6.8}
\end{equation*}
$$

(cf. Corollary 6.3.5). Taking $\alpha=x+f(x) \mathbb{F}_{q}[x]$, this yields

$$
\begin{equation*}
x^{q^{m}}-x \in f(x) \mathbb{F}_{q}[x] \tag{6.9}
\end{equation*}
$$

Let us show that for $s=0,1,2, \ldots$ we have

$$
\begin{equation*}
x^{q^{s m}}-x \in f(x) \mathbb{F}_{q}[x] \tag{6.10}
\end{equation*}
$$

We proceed by induction. For $s=0$, this is trivial and for $s=1$ equation (6.10) reduces to (6.9). Let us prove the inductive step:

$$
\begin{aligned}
x^{q^{(s+1) m}}-x & =\left(x^{q^{s m}}\right)^{q^{m}}-x \\
(\text { by }(6.10)) & \in\left(x+f(x) \mathbb{F}_{q}[x]\right)^{q^{m}}-x \\
& \subseteq x^{q^{m}}-x+f(x) \mathbb{F}_{q}[x] \\
(\text { by }(6.9)) & =f(x) \mathbb{F}_{q}[x] .
\end{aligned}
$$

In particular, if m divides k then $f(x)$ divides $x^{q^{k}}-x$.
Let us prove the converse implication. Suppose that $f(x)$ divides $x^{q^{k}}-x$. Applying the Euclidean algorithm, we can find two nonnegative integers s, r, with $0 \leq r \leq m-1$, such that $k=s m+r$. We need to show that $r=0$. By virtue of (6.9) we have

$$
x^{q^{s m}} \in x+f(x) \mathbb{F}_{q}[x]
$$

and therefore

$$
\begin{equation*}
x^{q^{k}}=x^{q^{s m+r}}=\left(x^{q^{s m}}\right)^{q^{r}} \in x^{q^{r}}+f(x) \mathbb{F}_{q}[x] \tag{6.11}
\end{equation*}
$$

Since $f(x)$ divides $x^{q^{k}}-x$, from (6.11) we deduce $x^{q^{r}}-x \in f(x) \mathbb{F}_{q}[x]$,
equivalently, $f(x)$ also divides $x^{q^{r}}-x$. As a consequence, in the field $\mathbb{F}_{q}[x] / f(x) \mathbb{F}_{q}[x]$ every element α satisfies the identity

$$
\alpha^{q^{r}}=\alpha
$$

which contradicts (6.8), since $r<m$, unless $r=0$. This shows that m divides k.

Proposition 6.5.4 Let p and m be two primes and $q=p^{h}$ for some integer $h \geq 1$. Then in $\mathbb{F}_{q}[x]$ there exist exactly

$$
\frac{q^{m}-q}{m}>0
$$

distinct irreducible monic polynomials of degree m.
Proof From the identity $\alpha^{q}=\alpha$ in \mathbb{F}_{q}, we deduce that $\alpha^{q^{2}}=\alpha^{q}=\alpha$ and, similarly, $\alpha^{q^{3}}=\alpha, \ldots, \alpha^{q^{m}}=\alpha$, for all $\alpha \in \mathbb{F}_{q}$. Therefore the polynomial $x^{q^{m}}-x$ is divisible by $x-\alpha$ for every $\alpha \in \mathbb{F}_{q}$ and therefore may be factorized as follows

$$
\begin{equation*}
x^{q^{m}}-x=f_{1}(x) f_{2}(x) \cdots f_{r}(x) \prod_{\alpha \in \mathbb{F}_{q}}(x-\alpha) \tag{6.12}
\end{equation*}
$$

where $f_{1}, f_{2}, \ldots, f_{r} \in \mathbb{F}_{q}[x]$ are monic and irreducible. We claim that in the factorization (6.12) there cannot be two equal factors (it is square free), that is, one cannot have

$$
x^{q^{m}}-x=f(x)^{2} g(x)
$$

where $f \in \mathbb{F}_{q}[x]$ has degree ≥ 1. Otherwise, by taking the derivative of both sides we would have that $q^{m} x^{q^{m}-1}-1=-1$ should equal $2 f(x) f^{\prime}(x) g(x)+$ $f(x)^{2} g^{\prime}(x)$, that is,

$$
-1=f(x)\left(2 f^{\prime}(x) g(x)+f(x) g^{\prime}(x)\right)
$$

which is impossible since $\operatorname{deg}(f) \geq 1$. This proves our claim. In particular, in (6.12) for $j=1,2, \ldots, r$ we must have $\operatorname{deg}\left(f_{j}\right) \geq 2$ and therefore, by Proposition 6.5.3 and primality of $m, \operatorname{deg}\left(f_{j}\right)=m$.

In conclusion, $f_{1}, f_{2}, \ldots, f_{r}$ are distinct irreducible polynomials of degree m. Moreover, again by virtue of Proposition 6.5.3, they constitute the complete list of all irreducible monic polynomials of degree m. It follows that the degree of the right hand side of (6.12) is $m r+q$ and must equal q^{m}. This yields

$$
r=\frac{q^{m}-q}{m}
$$

completing the proof.
Remark 6.5.5 The fact that the number $\frac{q^{m}-q}{m}$ is a integer is a particular case of Fermat's little theorem (cf. Exercise 1.1.22).

We are now in position to state and prove the main theorem of the theory of finite fields.

Theorem 6.5.6 (Main theorem: existence and uniqueness of Galois fields) For every prime number p and integer $h \geq 1$ there exists a unique (up to isomorphism) finite field \mathbb{F}_{q} of order $q=p^{h}$. It is the Galois field

$$
\mathbb{F}_{p}[x] / \ell(x) \mathbb{F}_{p}[x]
$$

where $\ell(x)=(x-\alpha)\left(x-\alpha^{p}\right)\left(x-\alpha^{p^{2}}\right) \cdots\left(x-\alpha^{p^{h-1}}\right)$ and α is any generator of the cyclic group \mathbb{F}_{q}^{*}.

Proof First of all, let us prove that a field with $q=p^{h}$ elements exists. Let

$$
\begin{equation*}
h=m_{1} m_{2} \cdots m_{r} \tag{6.13}
\end{equation*}
$$

be a factorization of h into primes (repetitions are allowed). By Proposition 6.5.4, there exists an irreducible polynomial $f_{1} \in \mathbb{F}_{p}[x]$ of degree m_{1}. Consider the field $\mathbb{F}_{p^{m_{1}}}=\mathbb{F}_{p}[x] / f_{1}(x) \mathbb{F}_{p}[x]$ and recall that it has $p^{m_{1}}$ elements. Now, again by Proposition 6.5.4, in $\mathbb{F}_{p^{m_{1}}}[x]$ there exists an irreducible polynomial f_{2} of degree m_{2}, and so on. Eventually, we obtain a field \mathbb{F}_{q} with $\left(p^{m_{1} m_{2} \cdots m_{r-1}}\right)^{m_{r}}=p^{m_{1} m_{2} \cdots m_{r}}=p^{h}=q$ elements.

By Theorem 6.3.3, the group \mathbb{F}_{q}^{*} is cyclic of order $q-1$, and let α be a generator of \mathbb{F}_{q}^{*}. Then α is algebraic over \mathbb{F}_{p}, since it is a root of the polynomial $x^{q-1}-1$, and, clearly,

$$
\mathbb{F}_{q}=\mathbb{F}_{p}[\alpha]
$$

Then, by Proposition 6.2.5, \mathbb{F}_{q} is isomorphic to $\mathbb{F}_{p}[x] / \ell(x) \mathbb{F}_{p}[x]$, where $\ell(x) \in$ $\mathbb{F}_{p}[x]$ is the minimal polynomial of α. It follows that \mathbb{F}_{q} is a Galois field. Moreover, by Proposition 6.5.2, we have

$$
\ell(x)=(x-\alpha)\left(x-\alpha^{p}\right)\left(x-\alpha^{p^{2}}\right) \cdots\left(x-\alpha^{p^{h-1}}\right)
$$

and

$$
\begin{equation*}
x^{q}-x=\ell(x) g(x) \tag{6.14}
\end{equation*}
$$

with $g(x) \in \mathbb{F}_{p}[x]$, because α is a root of $x^{q}-x$, and $\ell(x)$ is its minimal polynomial, and the principal ideal $\mathcal{I}_{\alpha}=\left\{f \in \mathbb{F}_{p}[x]: f(\alpha)=0\right\}$ is generated by $\ell(x)$.

Suppose now that \mathbb{K}_{q} is another field with q elements. Let $\bar{\alpha} \in \mathbb{K}_{q}$ be a generator of the cyclic group \mathbb{K}_{q}^{*}. From the arguments above, we have that $\mathbb{F}_{p}[\bar{\alpha}]=\mathbb{K}_{q}$. Finally, it is straightforward that the map $\mathbb{F}_{q}=\mathbb{F}_{p}[\alpha] \rightarrow$ $\mathbb{F}_{p}[\bar{\alpha}]=\mathbb{K}_{q}$, given by $f(\alpha) \mapsto f(\bar{\alpha})$ for all $f \in \mathbb{F}_{p}[x]$, is an isomorphism.
We now present, as an exercise, an elementary proof of Gauss law of quadratic reciprocity from [5]. This proof uses some facts on finite fields that we have already established. Let p and q be distinct odd primes and consider the field $\mathbb{F}_{q^{p-1}}$ and the cyclic group $\mathbb{F}_{q^{p-1}}^{*}$. By Fermat's little theorem (see Exercise 1.1.22), p divides $q^{p-1}-1=\left|\mathbb{F}_{q^{p-1}}^{*}\right|$, so that, by Corollary 1.2.9, $\mathbb{F}_{q^{p-1}}^{*}$ contains an element ζ of order p. We consider the Gauss sum

$$
G_{\zeta}=\sum_{k=1}^{p-1}\left(\frac{k}{p}\right) \zeta^{k}
$$

where $\left(\frac{k}{p}\right)$ is the Legendre symbol (cf. Definition 4.4.7). Clearly, $G_{\zeta} \in \mathbb{F}_{q^{p-1}}$.

Exercise 6.5.7

(1) Prove that

$$
\begin{equation*}
G_{\zeta}^{q}=\left(\frac{q}{p}\right) G_{\zeta} . \tag{6.15}
\end{equation*}
$$

Hint: use the identities $(a+b)^{q}=a^{q}+b^{q}$ in $\mathbb{F}_{q^{p-1}}$ and

$$
\left(\frac{k}{p}\right)=\left(\frac{k q^{2}}{p}\right)=\left(\frac{k q}{p}\right)\left(\frac{q}{p}\right),
$$

where the last equality follows from Proposition 4.4.8.(iii).
(2) Suppose that $p \nmid h$ and show that

$$
\sum_{j=1}^{p-1} \zeta^{j h}=-1
$$

(3) Show that

$$
\sum_{h=1}^{p-2}\left(\frac{h}{p}\right)=-\left(\frac{-1}{p}\right)
$$

(Hint: use Corollary 4.4.9), and deduce that

$$
\sum_{h=1}^{p-2}\left(\frac{h}{p}\right) \sum_{j=1}^{p-1} \zeta^{(1+h) j}=\left(\frac{-1}{p}\right)
$$

(4) From (2) and (3) deduce that

$$
G_{\zeta}^{2}=\left(\frac{-1}{p}\right) p
$$

(Hint: first prove that $G_{\zeta}^{2}=\sum_{h=1}^{p-1}\left(\frac{h}{p}\right) \sum_{j=1}^{p-1} \zeta^{(1+h) j}$), so that, by Proposition 4.4.8.(iv),

$$
\begin{equation*}
G_{\zeta}^{2}=p(-1)^{(p-1) / 2} \tag{6.16}
\end{equation*}
$$

(5) From (6.15) and (6.16) deduce the Gauss law of quadratic reciprocity (Theorem 4.4.18).
Hint: start with the elementary identity $G_{\zeta}^{q}=G_{\zeta}\left(G_{\zeta}^{2}\right)^{(q-1) / 2}$; use Proposition 4.4.8.(ii).

6.6 Subfields and irreducible polynomials

Proposition 6.6.1 Let $q=p^{h}$. Then, for every divisor m of h there exists a unique subfield of \mathbb{F}_{q} isomorphic to $\mathbb{F}_{p^{m}}$. Moreover all subfields are of this kind.

Proof Let \mathbb{K} be a subfield of \mathbb{F}_{q}. Then \mathbb{F}_{q} is a vector space over \mathbb{K} and therefore the cardinality of \mathbb{K} divides the cardinality of \mathbb{F}_{q}. By the uniqueness of Galois fields (Theorem 6.5.6), it follows that there exists an integer $m \leq$ h such that $\mathbb{K}=\mathbb{F}_{p^{m}}=\mathbb{F}_{p} / \ell(x) \mathbb{F}_{p}[x]$, where $\ell \in \mathbb{F}_{p}[x]$ is an irreducible polynomial of degree m. Since the equation $x^{p^{h}}-x=0$ is satisfied by all elements in $\mathbb{F}_{q} \supseteq \mathbb{K}$ we deduce that $\ell(x)$ divides $x^{p^{h}}-x$ in $\mathbb{F}_{p}[x]$ (compare with (6.14)). Therefore, by virtue of Proposition 6.5.3, we have $m=\operatorname{deg}(\ell)$ must divide h.

In order to show that, conversely, if m divides h, then $\mathbb{F}_{q}=\mathbb{F}_{p^{h}}$ contains a subfield isomorphic to $\mathbb{F}_{p^{m}}$, we use the recursive construction of \mathbb{F}_{q} in the proof of Theorem 6.5.6. Indeed, if we arrange the primes in the decomposition (6.13) of h in such a way that $m=m_{1} m_{2} \cdots m_{i}$ for some $1 \leq i \leq r$, then $\mathbb{F}_{p^{m}}$ appears, in the construction we alluded to above, as one of the intermediate fields between \mathbb{F}_{p} and $\mathbb{F}_{p^{h}}=\mathbb{F}_{q}$. Uniqueness of the subfield $\mathbb{F}_{p^{m}}$ follows from the fact that its elements are precisely the roots of the polynomial $x^{p^{m}}-x \in \mathbb{F}_{p}[x]$.

Exercise 6.6.2 Show that the lattice of all subfields of \mathbb{F}_{q} is isomorphic to the lattice of all divisors of m.

In the following, $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ denotes the Frobenius automorphism (cf. Section 6.4).

Proposition 6.6.3 Let p be a prime number, $h \geq 1$ an integer, and $q=p^{h}$. Let also $1 \leq r \leq h-1$. Then

$$
\begin{equation*}
\mathbb{K}=\left\{\beta \in \mathbb{F}_{q}: \sigma^{r}(\beta)=\beta\right\} \tag{6.17}
\end{equation*}
$$

coincides with the subfield of \mathbb{F}_{q} isomorphic to $\mathbb{F}_{p^{m}}$, where $m=\operatorname{gcd}(h, r)$.
On the other hand, if m divides h then

$$
\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p^{m}}\right) \equiv\left\{\xi \in \operatorname{Aut}\left(\mathbb{F}_{q}\right): \xi(\beta)=\beta \text { for all } \beta \in \mathbb{F}_{p^{m}}\right\}=\left\langle\sigma^{m}\right\rangle
$$

Proof First of all we observe that \mathbb{K} is a subfield of \mathbb{F}_{q}. Therefore, by Proposition 6.6.1, there exists an integer m which divides h such that $\mathbb{K}=$ $\mathbb{F}_{p^{m}}$.

Let us set $\widetilde{\sigma}=\left.\sigma\right|_{\mathbb{F}^{m}} \in \operatorname{Aut}\left(\mathbb{F}_{p^{m}}\right)$. This is the Frobenius automorphism of $\mathbb{F}_{p^{m}}$ so that, by Theorem 6.4.1, $\operatorname{Aut}\left(\mathbb{F}_{p^{m}}\right)=\langle\widetilde{\sigma}\rangle$. Now, for an integer $n \geq 0$ one has

$$
\begin{equation*}
\left.\sigma^{n}(\beta)=\beta \text { (i.e. } \widetilde{\sigma}^{n}(\beta)=\beta\right) \forall \beta \in \mathbb{F}_{p^{m}} \Leftrightarrow m \mid n . \tag{6.18}
\end{equation*}
$$

We deduce that m divides r and therefore also divides $\operatorname{gcd}(h, r)$. On the other hand, setting $m^{\prime}=\operatorname{gcd}(h, r)$ and $\widehat{\sigma}=\left.\sigma\right|_{F_{p^{m^{\prime}}}} \in \operatorname{Aut}\left(\mathbb{F}_{p^{m^{\prime}}}\right)$, arguing as above, we have $\sigma^{n}\left(\beta^{\prime}\right)=\beta^{\prime}$ (i.e. $\widehat{\sigma}^{n}\left(\beta^{\prime}\right)=\beta^{\prime}$) for all $\beta^{\prime} \in \mathbb{F}_{p^{m^{\prime}}}$ if and only if m^{\prime} divides n. Thus, taking $n=r$ we have $\sigma^{r}\left(\beta^{\prime}\right)=\beta^{\prime}$ for all $\beta^{\prime} \in \mathbb{F}_{p^{m^{\prime}}}$. Since $\mathbb{K}=\mathbb{F}_{p^{m}} \subseteq \mathbb{F}_{p^{m^{\prime}}}$ this shows that $m=m^{\prime}=\operatorname{gcd}(h, r)$.

Finally, $\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p^{m}}\right)$, being a subgroup of the cyclic group $\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)$, is itself cyclic (cf. Proposition 1.2.12). By the above arguments, we have $\sigma^{m} \in \operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p^{m}}\right)$ and, by (6.18), we indeed have $\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p^{m}}\right)=\left\langle\sigma^{m}\right\rangle$.

The following is a generalization of Proposition 6.5.2.
Corollary 6.6.4 Let $f \in \mathbb{F}_{q}[x]$ be an irreducible polynomial of degree n. Then $\mathbb{F}_{q^{n}}$ is the splitting field of f over \mathbb{F}_{q}. Moreover, if $\alpha \in \mathbb{F}_{q^{n}}$ is a root of f then $\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}$ are the roots of f and they are also distinct.

Proof Let \mathbb{F} denote the splitting field of f over \mathbb{F}_{q}. Then we can find a positive integer $h \geq n$ such that $\mathbb{F}=\mathbb{F}_{q^{h}}$: indeed, denoting by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}$ the roots of f, by Proposition 6.2 .5 and Theorem 6.6 .1 we have $\mathbb{F}_{q^{n}} \cong$ $\mathbb{F}_{q}\left[\alpha_{1}\right] \subseteq \mathbb{F}_{q}\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right]=\mathbb{F}=\mathbb{F}_{q^{h}}$.

Let σ be the generator of $\operatorname{Gal}\left(\mathbb{F}_{q^{n}}, \mathbb{F}_{q}\right)$ given by $\sigma(\beta)=\beta^{q}$ for all $\beta \in \mathbb{F}_{q^{n}}$.

Observe that σ is not the Frobenius automorphism, although we use the same symbol. Arguing as in the proof of Proposition 6.5.2, we deduce that $\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}$ are distinct roots of f and therefore exhaust all the roots of f. Then $\mathbb{F}_{q^{n}}$ contains all the roots of f, and therefore $n=h$, i.e., $\mathbb{F}=\mathbb{F}_{q^{n}}$.

Corollary 6.6.5 With the notation from the previous corollary, if α is a root of f in $\mathbb{F}_{q^{n}}$, then f is a scalar multiple of the minimal polynomial of α over \mathbb{F}_{q}, and $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}[\alpha]$.

Notation 6.6.6 Let \mathbb{F} be a finite field. We denote by $\mathbb{F}^{\text {mon }}[x]$ (resp. $\mathbb{F}^{\text {mon,irr }}[x]$) the set of monic (resp. monic irreducible) polynomials in $\mathbb{F}[x]$ and by $\mathbb{F}^{\text {mon }, k}[x]$ (resp. $\mathbb{F}^{\text {mon,irr }, k}[x]$) the set of monic (resp. monic irreducible) polynomials in $\mathbb{F}[x]$ of degree k.

In the proof of the following proposition, we need the most elementary facts on group actions (see the beginning of Section 10.4).

Proposition 6.6.7 Let $f \in \mathbb{F}_{q}^{\text {mon, irr }}[x]$ and $h \geq 1$. Choose $\tilde{f} \in \mathbb{F}_{q^{h, i r r}}^{\text {mon, }}[x]$ that divides f and set $d=d(\widetilde{f})=\min \left\{1 \leq \ell \leq h: \sigma^{\ell}(\widetilde{f})=\widetilde{f}\right\}$, where $\sigma(x)=x^{q}$ for all $x \in \mathbb{F}_{q^{h}}$. Then d divides h and

$$
\begin{equation*}
f=\prod_{\ell=0}^{d-1} \sigma^{\ell}(\widetilde{f}) \tag{6.19}
\end{equation*}
$$

is the (unique up to the reordering the factors) factorization of f into $\mathbb{F}_{q^{h}}$ irreducible monic polynomials. Moreover, all factors are distinct, $\operatorname{deg} \sigma^{\ell}(\widetilde{f})=$ $\frac{\operatorname{deg} f}{d}$, for all $\ell=0,1, \ldots, d-1$, and

$$
\begin{equation*}
d=d(\widetilde{f})=\operatorname{gcd}(h, \operatorname{deg} f) \tag{6.20}
\end{equation*}
$$

As a consequence we have, for all $k \geq 1$,

$$
\mathbb{F}_{q^{h}}^{m o n, i r r, k}[x]=\coprod_{d \mid h} \coprod_{\substack{f \in \mathbb{F}_{q}^{m o n, i r r, d k}[x]: \\ \operatorname{gcd}(h / d, k)=1}}\left\{\widetilde{f}, \sigma(\widetilde{f}), \ldots, \sigma^{d-1}(\widetilde{f})\right\}
$$

In other words, given $\tilde{f} \in \mathbb{F}_{q^{h},}^{\text {mon,irr, }}[x]$ there exists a unique $f \in \mathbb{F}_{q}^{\text {mon,irr }}[x]$ such that \widetilde{f} divides f (clearly, $\operatorname{deg} f=d(\widetilde{f}) \operatorname{deg} \tilde{f})$.

Proof Every $\sigma^{\ell}(\widetilde{f})$, for $\ell=0,1, \ldots, h-1$, is an $\mathbb{F}_{q^{h} \text {-irreducible monic poly- }}$ nomial and divides f, since $\sigma(f)=f$. In other words, the Galois group
$\operatorname{Gal}\left(\mathbb{F}_{q^{h}} / \mathbb{F}_{q}\right)$ acts on the space of monic $\mathbb{F}_{q^{h}}$-irreducible divisors of f. We have that $d(\widetilde{f})$ divides h because $\operatorname{Gal}\left(\mathbb{F}_{q^{h}} / \mathbb{F}_{q}\right)$ is cyclic of order h and generated by σ (cf. Proposition 6.6.3), and the stabilizer of \tilde{f} coincides with the set $\left\{\sigma^{d k}: k=0,1, \ldots, \frac{h}{d}\right\}$. Thus, the polynomial

$$
\begin{equation*}
\widetilde{f} \sigma(\widetilde{f}) \cdots \sigma^{d-1}(\widetilde{f}), \tag{6.21}
\end{equation*}
$$

a product of distinct $\mathbb{F}_{q^{h}}$-irreducible monic divisors of f, divides f. But (6.21) is also σ-invariant and monic, so that it belongs to $\mathbb{F}_{q}[x]$ and therefore must be equal to f (since f is irreducible over \mathbb{F}_{q}). This proves that the action described above is transitive. Moreover, since $\mathbb{F}_{q^{d}}=\left\{\alpha \in \mathbb{F}_{q^{h}}: \sigma^{d}(\alpha)=\alpha\right\}$ (by virtue of Proposition 6.6.3), we have $\widetilde{f} \in \mathbb{F}_{q^{d}}[x]$.
Set $s=\operatorname{deg} \tilde{f}$ and $n=\operatorname{deg} f$. It follows from Corollary 6.6.4 that the splitting field of \widetilde{f} over $\mathbb{F}_{q^{h}}$ is $\mathbb{F}_{q^{h s}}$. Similarly, the splitting field of f over \mathbb{F}_{q} is $\mathbb{F}_{q^{n}}$, so that, in particular, f, and therefore its factor \widetilde{f}, split into linear factors over $\mathbb{F}_{q^{n}}$. Observe that, since $d \mid h$, say $h=a d$, and $n=s d$ (this follows from the fact that the polynomial in (6.21) coincides with f), we have $h s=a d s=a n$, so that $n \mid h s$.

Setting $\ell=\operatorname{lcm}(h, n)$, we have the inclusion diagram as in Figure 6.1.

Fig. 6.1. The inclusions of the fields $\mathbb{F}_{q^{t}}, t=n, h, \ell, h s$.
Since $\mathbb{F}_{q^{n}} \subseteq \mathbb{F}_{q^{\ell}}$, it follows that \tilde{f} splits into linear factors over $\mathbb{F}_{q^{\ell}}$. Thus, since $\mathbb{F}_{q^{h}} \subseteq \mathbb{F}_{q^{\ell}} \subseteq \mathbb{F}_{q^{h s}}$, we deduce that $\mathbb{F}_{q^{\ell}}=\mathbb{F}_{q^{h s}}$, this being the splitting field of \widetilde{f} over $\mathbb{F}_{q^{h}}$. In particular, $h s=\operatorname{lcm}(h, n)$.
Setting $r=\operatorname{gcd}(h, n)$, we have

$$
h s=\operatorname{lcm}(n, h)=\frac{h n}{\operatorname{gcd}(h, n)}=\frac{h s d}{r} \Rightarrow d=r,
$$

and (6.20) follows.

Corollary 6.6.8 Let $f \in \mathbb{F}_{q}[x]$ be irreducible and let $h \geq 2$. Then f is irreducible over $\mathbb{F}_{q^{h}}$ if and only if $\operatorname{gcd}(\operatorname{deg} f, h)=1$.

6.7 Hilbert Satz 90

We now specialize, to the case of finite fields, the theory of the norm and the trace for extensions of fields. A more general treatment may be found in [93]. Fix a prime number p, two integers $n \geq 1$ and $h>1$, and set $q=p^{n}$. Let $\mathbb{E}=\mathbb{F}_{q^{h}}=\mathbb{F}_{p^{h n}}$ be the field with q^{h} elements and $\mathbb{F}=\mathbb{F}_{q}$ the unique subfield of \mathbb{E} with q elements (cf. Proposition 6.6.1). By Proposition 6.6.3, the Galois group $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ is a cyclic group of order h : we denote by σ a generator of $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$. We remark that here the notation is different from that in Proposition 6.6.3: for instance, σ is not the Frobenius automorphism of \mathbb{E} but it can be chosen as its n-th power so that $\sigma(\alpha)=\alpha^{p^{n}}=\alpha^{q}$ for all $\alpha \in \mathbb{E}$ (see Corollary 6.6.4 and Proposition 6.6.7). We define the trace and the norm as the maps $\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}: \mathbb{E} \rightarrow \mathbb{F}$ and $\mathrm{N}_{\mathbb{E} / \mathbb{F}}: \mathbb{E} \rightarrow \mathbb{F}$ given by

$$
\begin{equation*}
\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}(\alpha)=\sum_{k=1}^{h} \sigma^{k}(\alpha) \tag{6.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{N}_{\mathbb{E} / \mathbb{F}}(\alpha)=\prod_{k=1}^{h} \sigma^{k}(\alpha) \tag{6.23}
\end{equation*}
$$

for all $\alpha \in \mathbb{E}$. Note that $\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}(\alpha)\left(\right.$ resp. $\left.\mathrm{N}_{\mathbb{E} / \mathbb{F}}(\alpha)\right)$ is indeed in \mathbb{F} :

$$
\begin{equation*}
\sigma\left(\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}(\alpha)\right)=\sum_{k=1}^{h} \sigma^{k+1}(\alpha)=\sum_{k=2}^{h+1} \sigma^{k}(\alpha)=\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}(\alpha) \tag{6.24}
\end{equation*}
$$

$\left(\right.$ resp. $\left.\sigma\left(\mathrm{N}_{\mathbb{E} / \mathbb{F}}(\alpha)\right)=\mathrm{N}_{\mathbb{E} / \mathbb{F}}(\alpha)\right)$ because σ has order h. Moreover, it is clear that $\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}(\alpha)\left(\right.$ resp. $\left.\mathrm{N}_{\mathbb{E} / \mathbb{F}}(\alpha)\right)$ is independent of the choice of the generator σ in (6.22) (resp. (6.23)).

Proposition 6.7.1 (Transitivity of the trace and the norm) Let $\mathbb{E}, \mathbb{F}, \mathbb{G}$ be finite fields such that $\mathbb{F} \subseteq \mathbb{E} \subseteq \mathbb{G}$. Then
(i) $\operatorname{Tr}_{\mathbb{G} / \mathbb{F}}=\operatorname{Tr}_{\mathbb{E} / \mathbb{F}} \circ \operatorname{Tr}_{\mathbb{G} / \mathbb{E}}$
(ii) $\mathrm{N}_{\mathbb{G} / \mathbb{F}}=\mathrm{N}_{\mathbb{E} / \mathbb{F}} \circ \mathrm{N}_{\mathbb{G} / \mathbb{E}}$.

Proof By virtue of Theorem 6.5.6 and Proposition 6.6.1, there exists $h, m \in$ \mathbb{N} such that $\mathbb{F}=\mathbb{F}_{q}, \mathbb{E}=\mathbb{F}_{q^{h}}$ and $\mathbb{G}=\mathbb{F}_{q^{h m}}$. For every $\alpha \in \mathbb{G}$ we have:

$$
\begin{aligned}
{\left[\operatorname{Tr}_{\mathbb{E} / \mathbb{F}} \circ \operatorname{Tr}_{\mathbb{G} / \mathbb{E}}\right](\alpha) } & =\sum_{k=0}^{h-1}\left[\operatorname{Tr}_{\mathbb{G} / \mathbb{E}}(\alpha)\right]^{q^{k}} \\
& =\sum_{k=0}^{h-1}\left[\sum_{j=0}^{m-1} \alpha^{q^{j h}}\right]^{q^{k}} \\
\text { (the map } \left.\beta \mapsto \beta^{q^{k}} \text { belongs to } \operatorname{Aut}(\mathbb{G})\right) & =\sum_{k=0}^{h-1} \sum_{j=0}^{m-1} \alpha^{q^{j h+k}} \\
\text { (setting } r=h j+k) & =\sum_{r=0}^{h m-1} \alpha^{q^{r}} \\
& =\operatorname{Tr}_{\mathbb{G} / \mathbb{F}}(\alpha)
\end{aligned}
$$

Analogously,

$$
\begin{aligned}
{\left[\mathrm{N}_{\mathbb{E} / \mathbb{F}} \circ \mathrm{N}_{\mathbb{G} / \mathbb{E}}\right](\alpha) } & =\prod_{k=0}^{h-1}\left(\prod_{j=0}^{m-1} \alpha^{q^{j h}}\right)^{q^{k}} \\
& =\prod_{k=0}^{h-1} \prod_{j=0}^{m-1} \alpha^{q^{j h+k}} \\
(\text { setting } r=h j+k) & =\prod_{r=0}^{h m-1} \alpha^{q^{r}} \\
& =\mathrm{N}_{\mathbb{G} / \mathbb{F}}(\alpha)
\end{aligned}
$$

Theorem 6.7.2 (Hilbert Satz 90)

(i) $\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}$ is a surjective \mathbb{F}-linear map from \mathbb{E} onto \mathbb{F} and

$$
\operatorname{Ker} \operatorname{Tr}_{\mathbb{E} / \mathbb{F}}=\{\alpha-\sigma(\alpha): \alpha \in \mathbb{E}\}
$$

(ii) $\mathrm{N}_{\mathbb{E} / \mathbb{F}}$ yields (by restriction) a surjective homomorphism from the multiplicative group \mathbb{E}^{*} of \mathbb{E} into the multiplicative group \mathbb{F}^{*} of \mathbb{F} and

$$
\operatorname{KerN}_{\mathbb{E} / \mathbb{F}}=\left\{\alpha \sigma(\alpha)^{-1}: \alpha \in \mathbb{E}\right\}
$$

Proof (i) The map $\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}$ is \mathbb{F}-linear since

$$
\begin{aligned}
\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) & =\sum_{k=1}^{h} \sigma^{k}\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) \\
\left(\text { since } \sigma^{k} \in \operatorname{Gal}(\mathbb{E} / \mathbb{F})\right) & =\sum_{k=1}^{h} \alpha_{1} \sigma^{k}\left(\beta_{1}\right)+\alpha_{2} \sigma^{k}\left(\beta_{2}\right) \\
& =\alpha_{1} \operatorname{Tr}_{\mathbb{E} / \mathbb{F}}\left(\beta_{1}\right)+\alpha_{2} \operatorname{Tr}_{\mathbb{E} / \mathbb{F}}\left(\beta_{2}\right)
\end{aligned}
$$

for all $\alpha_{i} \in \mathbb{F}$ and $\beta_{i} \in \mathbb{E}, i=1,2$. As a consequence, $\operatorname{ImTr}_{\mathbb{E} / \mathbb{F}}$ is an \mathbb{F}-vector subspace of \mathbb{F} and therefore (being \mathbb{F} a field) it is either equal to $\{0\}$ or to the whole \mathbb{F}. But the first possibility implies that $\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}$ is identically zero which leads to a contradiction since it is the sum of \mathbb{F}-linearly independent \mathbb{F}-linear transformations of \mathbb{E} (cf. Proposition 6.2.12). This shows that $\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}$ is surjective. As a consequence,

$$
\left|\operatorname{Ker} \operatorname{Tr}_{\mathbb{E} / \mathbb{F}}\right|=\frac{|\mathbb{E}|}{|\mathbb{F}|}=q^{h-1}
$$

Moreover, every element of the form $\alpha-\sigma(\alpha)$, with $\alpha \in \mathbb{E}$, clearly belongs to $\operatorname{Ker} \operatorname{Tr}_{\mathbb{E} / \mathbb{F}}$. Also, for α and β in \mathbb{E} we have $\alpha-\sigma(\alpha)=\beta-\sigma(\beta)$ if and only if $\alpha-\beta=\sigma(\alpha-\beta)$, equivalently $\alpha-\beta \in \mathbb{F}$. We deduce that the set

$$
\{\alpha-\sigma(\alpha): \alpha \in \mathbb{E}\}
$$

which consists of exactly q^{h-1} elements, coincides with $\operatorname{Ker} \operatorname{Tr}_{\mathbb{E} / \mathbb{F}}$.
(ii) As for (i), it is easy to check that $\mathrm{N}_{\mathbb{E} / \mathbb{F}}$ is a group homomorphism between \mathbb{E}^{*} and \mathbb{F}^{*} : we leave the details to the reader. Moreover, we have

$$
\mathrm{N}_{\mathbb{E} / \mathbb{F}}(\alpha)=\prod_{k=1}^{h} \sigma^{k}(\alpha)=\alpha^{q} \alpha^{q^{2}} \cdots \alpha^{q^{h-1}} \alpha=\alpha^{\sum_{k=0}^{h-1} q^{k}}=\alpha^{\left(q^{h}-1\right) /(q-1)}
$$

for all $\alpha \in \mathbb{E}$. In particular, if α is a generator of \mathbb{E}^{*}, so that it has order $q^{h}-1$, then $\mathrm{N}_{\mathbb{E} / \mathbb{F}}(\alpha)$ has order $q-1$ and therefore generates \mathbb{F}^{*}. It follows that $\mathrm{N}_{\mathbb{E} / \mathbb{F}}$ is surjective. As a consequence,

$$
\begin{equation*}
\left|\operatorname{Ker} \mathrm{N}_{\mathbb{E} / \mathbb{F}}\right|=\frac{\left|\mathbb{E}^{*}\right|}{\left|\mathbb{F}^{*}\right|}=\frac{q^{h}-1}{q-1} \tag{6.25}
\end{equation*}
$$

Moreover, every element of the form $\alpha \sigma(\alpha)^{-1}$, with $\alpha \in \mathbb{E}^{*}$, clearly belongs to $\operatorname{Ker} \mathrm{N}_{\mathbb{E} / \mathbb{F}}$. Also, for α and β in \mathbb{E}^{*} we have $\alpha \sigma(\alpha)^{-1}=\beta \sigma(\beta)^{-1}$ if and only if $\alpha \beta^{-1}=\sigma\left(\alpha \beta^{-1}\right)$, equivalently $\alpha \beta^{-1} \in \mathbb{F}^{*}$. We deduce that the set $\left\{\alpha \sigma(\alpha)^{-1}: \alpha \in \mathbb{E}^{*}\right\}$ has $\left(q^{h}-1\right) /(q-1)$ elements and therefore (cf.(6.25)) equals $\operatorname{KerN}_{\mathbb{E} / \mathbb{F}}$.

Proposition 6.7.3 Let $\mathbb{F} \subseteq \mathbb{E}$ be finite fields. Let $\alpha \in \mathbb{E}$ and suppose that $\mathbb{E}=\mathbb{F}[\alpha]$. Then, denoting by $f(x)=x^{h}+a_{h-1} x^{h-1}+\cdots+a_{1} x+a_{0} \in \mathbb{F}[x]$ the minimal polynomial of α, we have

$$
\begin{equation*}
-a_{h-1}=\sum_{k=1}^{h} \sigma^{k}(\alpha) \equiv \operatorname{Tr}_{\mathbb{E} / \mathbb{F}}(\alpha) \tag{6.26}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{h} a_{0}=\prod_{k=1}^{h} \sigma^{k}(\alpha) \equiv \mathrm{N}_{\mathbb{E} / \mathbb{F}}(\alpha) \tag{6.27}
\end{equation*}
$$

Proof By virtue of Corollary 6.6.4 and Corollary 6.6.5 it follows that f is factorizable over \mathbb{E} and its roots are precisely the elements $\sigma^{k}(\alpha), k=$ $1,2, \ldots, h$. That is, $f(x)=(x-\alpha)(x-\sigma(\alpha)) \cdots\left(x-\sigma^{h-1}(\alpha)\right)$, so that (6.26) and (6.27) follow.

Since, by definition, $f(\alpha)=0$, we have $f\left(\sigma^{k}(\alpha)\right)=\sigma^{k}(f(\alpha))=0$ for all $k=1,2, \ldots, h ;$ moreover the elements $\sigma^{k}(\alpha) \in \mathbb{E}, k=1,2, \ldots, h$ are distinct.

Theorem 6.7.4 Let $\mathbb{F} \subseteq \mathbb{E}$ be finite fields and let $\alpha \in \mathbb{E}$. Consider the \mathbb{F}-linear transformation $\lambda(\alpha): \mathbb{E} \rightarrow \mathbb{E}$ defined by setting

$$
\lambda(\alpha) \beta=\alpha \beta
$$

for all $\beta \in \mathbb{E}$. Then we have

$$
\operatorname{Tr} \lambda(\alpha)=\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}(\alpha)
$$

and

$$
\operatorname{det} \lambda(\alpha)=\mathrm{N}_{\mathbb{E} / \mathbb{F}}(\alpha)
$$

Proof Set $h=[\mathbb{E}: \mathbb{F}]$.
We first prove the statement under the hypothesis that $\mathbb{E}=\mathbb{F}[\alpha]$. In this case (see Proposition 6.2.4), we have that the elements

$$
\begin{equation*}
1, \alpha, \alpha^{2}, \ldots, \alpha^{h-1} \tag{6.28}
\end{equation*}
$$

constitute a basis for the vector space \mathbb{E} over \mathbb{F} and the minimal polynomial $f \in \mathbb{F}[x]$ of α has degree h. We denote it by

$$
\begin{equation*}
f(x)=x^{h}+a_{h-1} x^{h-1}+\cdots+a_{1} x+a_{0} . \tag{6.29}
\end{equation*}
$$

Since $f(\lambda(\alpha))=\lambda(f(\alpha))$, we have that f is the minimal polynomial of $\lambda(\alpha) \in \operatorname{End}_{\mathbb{F}}(\mathbb{E})$. Since the characteristic polynomial

$$
p_{\lambda(\alpha)}(x)=\operatorname{det}(x I-\lambda(\alpha))
$$

of $\lambda(\alpha)$ also has degree h, from the Cayley-Hamilton theorem, we deduce that, in fact, $f=p_{\lambda(\alpha)}$.

Keeping in mind (6.29), we have that the matrix $M_{\lambda(\alpha)}$ representing $\lambda(\alpha)$ in the basis (6.28) is the so-called companion matrix of f, namely

$$
M_{\lambda(\alpha)}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & \cdots & 0 & 0 & 0 & -a_{0} \tag{6.30}\\
1 & 0 & 0 & \cdots & 0 & 0 & 0 & -a_{1} \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 & -a_{2} \\
& & & \ddots & & & & \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 & -a_{h-2} \\
0 & 0 & 0 & \ddots & 0 & 0 & 1 & -a_{h-1}
\end{array}\right)
$$

From this we deduce that

$$
\operatorname{Tr} \lambda(\alpha)=\operatorname{Tr} M_{\lambda(\alpha)}=-a_{h-1} \quad \text { and } \quad \operatorname{det} \lambda(\alpha)=\operatorname{det} M_{\lambda(\alpha)}=(-1)^{h} a_{0}
$$

Comparing (6.26) and (6.27) with (6.31), the statement follows in the case $\mathbb{F}[\alpha]=\mathbb{E}$.

Suppose now that $\mathbb{F}[\alpha]$ is a proper subfield of \mathbb{E}. Then $m=[\mathbb{F}[\alpha]: \mathbb{F}]$ divides h (cf. Proposition 6.6.1). Let $\left\{u_{j}: j=1,2, \ldots, h / m\right\}$ be a vector space basis of \mathbb{E} over $\mathbb{F}[\alpha]$. Moreover, as before, the elements $\alpha^{k}, k=1,2, \ldots, m$, constitute a basis of $\mathbb{F}[\alpha]$ over \mathbb{F}. As a consequence of these facts,

$$
\left\{\alpha^{k} u_{j}: k=1,2, \ldots, m ; j=1,2, \ldots, h / m\right\}
$$

is a vector space basis of \mathbb{E} over \mathbb{F}. Thus, setting $U_{j}=\operatorname{span}_{\mathbb{F}}\left\{\alpha^{k} u_{j}: k=\right.$ $1,2, \ldots m\}$ for $j=1,2, \ldots, h / m$, we have the direct sum decomposition

$$
\mathbb{F}=\bigoplus_{j=1}^{h / m} U_{j}
$$

into $\lambda(\alpha)$-invariant subspaces. Moreover, $\left.\lambda(\alpha)\right|_{U_{j}}$ is represented by an $m \times m$ $\operatorname{matrix} M_{\left.\lambda(\alpha)\right|_{U_{j}}}$ (in fact, independent of j) with coefficients in \mathbb{F} as in (6.30)

$$
M_{\left.\lambda(\alpha)\right|_{U_{j}}}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & \cdots & 0 & 0 & 0 & -a_{0} \\
1 & 0 & 0 & \cdots & 0 & 0 & 0 & -a_{1} \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 & -a_{2} \\
& & & \ddots & & & & \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 & -a_{m-2} \\
0 & 0 & 0 & \ddots & 0 & 0 & 1 & -a_{m-1}
\end{array}\right)
$$

namely the companion matrix of the minimal polynomial $f(x)=x^{m}+$ $a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0} \in \mathbb{F}[x]$ of α. Then, on the one hand, we have

$$
\operatorname{Tr} \lambda(\alpha)=\sum_{j=1}^{h / m} \operatorname{Tr}\left(\left.\lambda(\alpha)\right|_{U_{j}}\right)=\sum_{j=1}^{h / m} \operatorname{Tr}\left(M_{\left.\lambda(\alpha)\right|_{U_{j}}}\right)=\frac{h}{m}\left(-a_{m-1}\right)
$$

and

$$
\operatorname{det} \lambda(\alpha)=\prod_{j=1}^{h / m} \operatorname{det}\left(\left.\lambda(\alpha)\right|_{U_{j}}\right)=\prod_{j=1}^{h / m} \operatorname{det}\left(M_{\left.\lambda(\alpha)\right|_{U_{j}}}\right)=\left((-1)^{m} a_{0}\right)^{h / m}
$$

On the other hand,

$$
\operatorname{Tr}_{\mathbb{E} / \mathbb{F}}(\alpha)=\sum_{k=1}^{h} \sigma^{k}(\alpha)=_{*} \frac{h}{m} \sum_{k=1}^{m} \sigma^{k}(\alpha)=\frac{h}{m} \operatorname{Tr}_{\mathbb{F}[\alpha] / \mathbb{F}}(\alpha)=\frac{h}{m}\left(-a_{m-1}\right)
$$

where the last equality follows from (6.26), and

$$
\mathrm{N}_{\mathbb{E} / \mathbb{F}}(\alpha)=\prod_{k=1}^{h} \sigma^{k}(\alpha)=_{*}\left(\prod_{k=1}^{m} \sigma^{k}(\alpha)\right)^{h / m}=\left(\mathrm{N}_{\mathbb{F}[\alpha] / \mathbb{F}}(\alpha)\right)^{h / m}=\left((-1)^{m} a_{0}\right)^{h / m}
$$

where the last equality follows from (6.27), and $=_{*}$ both follow from the equality $\operatorname{Gal}(\mathbb{E}, \mathbb{F}[\alpha])=\left\langle\sigma^{m}\right\rangle($ cf. Proposition 6.6.3). Thus, the general case follows as well.

6.8 Quadratic extensions

We now concentrate on the case of quadratic extensions. We split the analysis according to the parity of the characteristic p of the fields. Our purpose is to produce matrix representations of quadratic extensions similar to the well known matrix representation of the complex numbers $z=a+i b \mapsto\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$, for all $a, b \in \mathbb{R}$. We begin with some general considerations.

Let p be a prime number, h a positive integer, and set $q:=p^{h}$. Then $\operatorname{Gal}\left(\mathbb{F}_{q^{2}} / \mathbb{F}_{q}\right)$ is a cyclic group of order two. More precisely, it is generated by the automorphism σ defined by $\sigma(\alpha)=\alpha^{q}$ for all $\alpha \in \mathbb{F}_{q^{2}}$, which clearly fixes every element $\alpha \in \mathbb{F}_{q}$, and is involutory (cf. Corollary 6.4.3 and Proposition 6.6.3). By virtue of Proposition 6.5 .4 , the polynomial ring $\mathbb{F}_{q}[x]$ contains $\left(q^{2}-q\right) / 2$ irreducible monic polynomials of degree 2 and $\mathbb{F}_{q^{2}}$ may be obtained, abstractly, by adjoining one of the roots of any of these. Moreover, if $x^{2}+$ $a x+b \in \mathbb{F}_{q}[x]$ is irreducible over \mathbb{F}_{q} and α, β are its roots, then $\sigma(\alpha)=\beta$
(and $\sigma(\beta)=\alpha$). Indeed, since σ fixes \mathbb{F}_{q} pointwise, we have

$$
\sigma\left(\alpha^{2}+a \alpha+b\right)=\sigma(\alpha)^{2}+a \sigma(\alpha)+b
$$

so that $\sigma(\alpha)$ is still a root. But σ fixes exactly the elements in \mathbb{F}_{q} so that, since $\alpha \notin \mathbb{F}_{q}$, we necessarily have $\sigma(\alpha) \neq \alpha$ and therefore $\sigma(\alpha)=\beta$.

We first examine the case when p is odd.

Theorem 6.8.1 Suppose p is odd. Let η be a generator of the cyclic group $\mathbb{F}_{q}^{*}\left(c f\right.$. Theorem 6.3.3) and denote by $\pm i$ the square roots of η. Then $\pm i \notin \mathbb{F}_{q}$ and $\{1, i\}$ is a vector space basis for $\mathbb{F}_{q^{2}}$ over \mathbb{F}_{q}. Moreover, $\mathbb{F}_{q^{2}}$ is isomorphic (as an $\mathbb{F}_{q^{-}}$algebra) to the algebra $\mathfrak{M}_{2}\left(\mathbb{F}_{q}, \eta\right) \subseteq \mathfrak{M}_{2}\left(\mathbb{F}_{q}\right)$ consisting of all matrices of the form

$$
\left(\begin{array}{cc}
\alpha & \eta \beta \\
\beta & \alpha
\end{array}\right)
$$

with $\alpha, \beta \in \mathbb{F}_{q}$. The isomorphism is provided by the map $\mathfrak{M}_{2}\left(\mathbb{F}_{q}, \eta\right) \rightarrow \mathbb{F}_{q^{2}}$ given by

$$
\left(\begin{array}{cc}
\alpha & \eta \beta \tag{6.32}\\
\beta & \alpha
\end{array}\right) \mapsto \alpha+i \beta
$$

for all $\alpha, \beta \in \mathbb{F}_{q}$. Moreover

$$
\sigma(\alpha+i \beta)=\alpha-i \beta
$$

for all $\alpha, \beta \in \mathbb{F}_{q}$.

Proof First observe that, under our assumptions on the parity of p, the order $q-1$ of the cyclic group \mathbb{F}_{q}^{*} is even. If we had $i \in \mathbb{F}_{q}$ then we would have

$$
\eta^{\frac{q-1}{2}}=\left(i^{2}\right)^{\frac{q-1}{2}}=i^{q-1}=1
$$

which is impossible (since η has order $q-1$).
Alternatively, η cannot be a square in \mathbb{F}_{q}^{*} since, otherwise, every other element in \mathbb{F}_{q}^{*} would also be a square, contradicting Proposition 6.4.4.

As a consequence, the polynomial $x^{2}-\eta \in \mathbb{F}_{q}[x]$ is irreducible and therefore $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}[i]$ so that, by Proposition 6.2.5, $\{1, i\}$ is a vector space basis of $\mathbb{F}_{q^{2}}$ over \mathbb{F}_{q}. We thus have

$$
\mathbb{F}_{q^{2}}=\left\{\alpha+i \beta: \alpha, \beta \in \mathbb{F}_{q}\right\}
$$

with addition given by

$$
\left(\alpha_{1}+i \beta_{1}\right)+\left(\alpha_{2}+i \beta_{2}\right)=\left(\alpha_{1}+\alpha_{2}\right)+i\left(\beta_{1}+\beta_{2}\right)
$$

and multiplication given by

$$
\left(\alpha_{1}+i \beta_{1}\right)\left(\alpha_{2}+i \beta_{2}\right)=\left(\alpha_{1} \alpha_{2}+\eta \beta_{1} \beta_{2}\right)+i\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right)
$$

for all $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{F}_{q}$. Moreover, since $\sigma(i)=-i$ we also have

$$
\sigma(\alpha+i \beta)=\alpha-i \beta
$$

for all $\alpha, \beta \in \mathbb{F}_{q}$. Finally, as

$$
\left(\begin{array}{cc}
\alpha_{1} & \eta \beta_{1} \\
\beta_{1} & \alpha_{1}
\end{array}\right)\left(\begin{array}{cc}
\alpha_{2} & \eta \beta_{2} \\
\beta_{2} & \alpha_{2}
\end{array}\right)=\left(\begin{array}{cc}
\alpha_{1} \alpha_{2}+\eta \beta_{1} \beta_{2} & \eta\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) \\
\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1} & \alpha_{1} \alpha_{2}+\eta \beta_{1} \beta_{2}
\end{array}\right)
$$

we deduce that the map (6.32) is indeed an isomorphism.
Corollary 6.8.2 Suppose p is odd. Then the $\left(q^{2}-q\right) / 2$ irreducible monic quadratic polynomials in $\mathbb{F}_{q}[x]$ (cf. Proposition 6.5.4) are exactly the polynomials

$$
p_{\alpha, \beta}(x)=x^{2}-2 \alpha x+\left(\alpha^{2}-\beta^{2} \eta\right)
$$

where $\alpha \in \mathbb{F}_{q}$ and $\beta \in \mathbb{F}_{q}^{*}$.
Proof Any irreducible monic quadratic polynomial over \mathbb{F}_{q} is necessarily of the form $[x-(\alpha+i \beta)][x-\sigma(\alpha+i \beta)]$, with $\alpha, \beta \in \mathbb{F}_{q}$ and $\beta \neq 0$. Since $\sigma(\alpha+i \beta)=\alpha-i \beta$, the statement follows. (Note that $p_{\alpha,-\beta}=p_{\alpha, \beta}$.)

We now examine the case $p=2$. Recall (cf. Proposition 6.4.4) that, in this case, all elements in $\mathbb{F}_{2^{h}}$ are squares.

Theorem 6.8.3 There exists $j \in \mathbb{F}_{2^{2 h}} \backslash \mathbb{F}_{2^{h}}$ and $\omega \in \mathbb{F}_{2^{h}}$ such that

$$
j^{2}+j+\omega=0 \quad\left(\text { equivalently, } \quad j^{2}=j+\omega\right)
$$

and

$$
\mathbb{F}_{2^{2 h}}=\mathbb{F}_{2^{h}}[j]
$$

Moreover, the polynomial $x^{2}+x+\omega \in \mathbb{F}_{2^{h}}[x]$ is irreducible and the map

$$
\left(\begin{array}{cc}
\alpha & \omega \beta \tag{6.33}\\
\beta & \alpha+\beta
\end{array}\right) \mapsto \alpha+j \beta
$$

yields an $\left(\mathbb{F}_{2^{h}}\right.$-algebra) isomorphism of the algebra $\mathfrak{M}_{2}\left(\mathbb{F}_{2^{h}}, \omega\right) \subseteq \mathfrak{M}_{2}\left(\mathbb{F}_{2^{h}}\right)$ consisting of all the matrices of the form

$$
\left(\begin{array}{cc}
\alpha & \omega \beta \\
\beta & \alpha+\beta
\end{array}\right)
$$

where $\alpha, \beta \in \mathbb{F}_{2^{h}}$, onto the field $\mathbb{F}_{2^{2 h}}$. Finally,

$$
\sigma(\alpha+j \beta)=(\alpha+\beta)+j \beta
$$

for all $\alpha, \beta \in \mathbb{F}_{2^{h}}$.

Proof Since $\mathbb{F}_{2^{2 h}}$ is a quadratic extension of $\mathbb{F}_{2^{h}}$, there exists an irreducible polynomial $f(x)=x^{2}+\alpha x+\beta \in \mathbb{F}_{2^{h}}[x]$ such that $\mathbb{F}_{2^{2 h}}=\mathbb{F}_{2^{h}}[j]$, where $j \in \mathbb{F}_{2^{2 h}} \backslash \mathbb{F}_{2^{h}}$ is a root of f. Note that $\alpha \neq 0$: otherwise, the polynomial $f(x)=x^{2}+\beta$ would be reducible since every element in $\mathbb{F}_{2^{h}}$ is a square.

Thus, setting $y=x \alpha^{-1}$ and $\omega=\beta \alpha^{-2} \in \mathbb{F}_{2^{h}}$, the equation $x^{2}+\alpha x+\beta=0$ becomes $\alpha^{2} y^{2}+\alpha^{2} y+\beta=0$, equivalently, $y^{2}+y+\omega=0$.

Let then $j, j^{\prime} \in \mathbb{F}_{2^{2 h}}$ be the roots of $x^{2}+x+\omega$, so that $(x-j)\left(x-j^{\prime}\right)=$ $x^{2}+x+\omega$, yielding $j+j^{\prime}=1$ and $j j^{\prime}=\omega$. Thus $j^{\prime}=1+j=\omega j^{-1}$ and $j^{2}=\omega+j$. As a consequence, in the basis $\{1, j\}$ of $\mathbb{F}_{2^{2 h}}$ over $\mathbb{F}_{2^{h}}$, addition and multiplication are given by

$$
\left(\alpha_{1}+j \beta_{1}\right)+\left(\alpha_{2}+j \beta_{2}\right)=\left(\alpha_{1}+\alpha_{1}\right)+j\left(\beta_{1}+\beta_{2}\right)
$$

and

$$
\begin{equation*}
\left(\alpha_{1}+j \beta_{1}\right)\left(\alpha_{2}+j \beta_{2}\right)=\left(\alpha_{1} \alpha_{2}+\omega \beta_{1} \beta_{2}\right)+j\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}+\beta_{1} \beta_{2}\right) \tag{6.34}
\end{equation*}
$$

for all $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{F}_{2^{h}}$. Clearly, $\sigma(j)=j^{\prime}=1+j=\omega j^{-1}$ and therefore

$$
\sigma(\alpha+j \beta)=(\alpha+\beta)+j \beta
$$

for all $\alpha, \beta \in \mathbb{F}_{2^{h}}$. Finally, we have

$$
\begin{aligned}
& \left(\begin{array}{cc}
\alpha_{1} & \omega \beta_{1} \\
\beta_{1} & \alpha_{1}+\beta_{1}
\end{array}\right)\left(\begin{array}{cc}
\alpha_{2} & \omega \beta_{2} \\
\beta_{2} & \alpha_{2}+\beta_{2}
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
\alpha_{1} \alpha_{2}+\omega \beta_{1} \beta_{2} & \omega\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}+\beta_{1} \beta_{2}\right) \\
\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}+\beta_{1} \beta_{2} & \alpha_{1} \alpha_{2}+\omega \beta_{1} \beta_{2}+\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}+\beta_{1} \beta_{2}
\end{array}\right)
\end{aligned}
$$

for all $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{F}_{2^{h}}$. From (6.34) we deduce that the map (6.33) yields the desired isomorphism.

Corollary 6.8.4 The $2^{2 h-1}-2^{h-1}$ irreducible monic quadratic polynomials in $\mathbb{F}_{2^{h}}[x]$ (cf. Proposition 6.5.4) are exactly the polynomials

$$
q_{\alpha, \beta}(x)=x^{2}+\beta x+\left(\alpha^{2}+\alpha \beta+\beta^{2} \omega\right)
$$

where $\beta \in \mathbb{F}_{2^{h}}^{*}$ and $\alpha \in \mathbb{F}_{2^{h}}$.

Proof Any irreducible monic quadratic polynomial over $\mathbb{F}_{2^{h}}$ is necessarily of the form $(x+(\alpha+j \beta))(x+\sigma(\alpha+j \beta))$ with $\alpha, \beta \in \mathbb{F}_{q}$ and $\beta \neq 0$. Since $\sigma(\alpha+j \beta)=(\alpha+\beta)+j \beta$, the statement follows. (Note that $q_{\alpha, \beta}=q_{\alpha^{\prime}, \beta^{\prime}}$ if and only if $\beta^{\prime}=\beta$ and $\alpha^{\prime} \in\{\alpha, \alpha+\beta\}$.)

In view of the next chapters, we set

$$
\bar{\alpha}=\sigma(\alpha)
$$

and call it the conjugate of $\alpha \in \mathbb{F}_{q^{2}}$. Explicit expressions are given in Theorem 6.8.1 and Theorem 6.8.3. Note also that

$$
\mathbb{N}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}(\alpha)=\alpha \bar{\alpha}
$$

and

$$
\operatorname{Tr}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}(\alpha)=\alpha+\bar{\alpha}
$$

for all $\alpha \in \mathbb{F}_{q^{2}}$. Moreover, $\alpha=\bar{\alpha}$ if and only if $\alpha \in \mathbb{F}_{q}$ (see also [86]).

7

Character theory of finite fields

In this chapter we give an introduction to the character theory of finite fields. Our exposition is mainly based on the books by Ireland and Rosen [79], Winnie Li [95], and by Lidl and Niederreiter [96]. Actually, one of the main goals is to present the generalized Kloosterman sums from PiatetskiShapiro's monograph [123] which will play a fundamental role in Chapter 14 on the representation theory of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$. We also introduce the reader to the study of the number of solutions of equations over finite fields. This is quite a vast and difficult subject which culminates with very deep results such as the Weil conjecture, proved by Deligne (see [95]). Finally, Section 7.8, devoted to the FFT over finite fields, is based on the book by Tolimieri, An , and Lu [160].

7.1 Generalities on additive and multiplicative characters

Let p be a prime number, n a positive integer, and consider \mathbb{F}_{q}, the finite field of order $q=p^{n}$. An additive character of \mathbb{F}_{q} is a character of the finite abelian group $\left(\mathbb{F}_{q},+\right)(c f$. Definition 2.3.1), that is, a map

$$
\chi: \mathbb{F}_{q} \rightarrow \mathbb{T}
$$

such that $\chi(x+y)=\chi(x) \chi(y)$ for all $x, y \in \mathbb{F}_{q}$ (here, as usual, $\mathbb{T}=\{z \in$ $\mathbb{C}:|z|=1\}$ is the (multiplicative) circle group). We observe (cf. Definition 2.3.1) that the additive characters constitute a (multiplicative) Abelian group, denoted by $\widehat{\mathbb{F}_{q}}$, called the dual group of \mathbb{F}_{q}. Clearly, if χ is an additive character, then

$$
\overline{\chi(x)}=\chi(x)^{-1}=\chi(-x)=\chi^{-1}(x)
$$

for all $x \in \mathbb{F}_{q}$. Moreover, for $\chi, \xi \in \widehat{\mathbb{F}_{q}}$, the orthogonality relations (cf. Proposition 2.3.5) are:

$$
\langle\chi, \xi\rangle=\sum_{x \in \mathbb{F}_{q}} \chi(x) \overline{\xi(x)}= \begin{cases}q & \text { if } \chi=\xi \tag{7.1}\\ 0 & \text { if } \chi \neq \xi .\end{cases}
$$

In particular, taking $\xi=\mathbf{1}$, we have

$$
\begin{equation*}
\sum_{x \in \mathbb{F}_{q}^{*}} \chi(x)=-1 \text { for all } \chi \neq \mathbf{1}, \tag{7.2}
\end{equation*}
$$

since $\sum_{x \in \mathbb{F}_{q}} \chi(x)=0$ and $\chi(0)=1$.
The principal (or canonical) additive character of \mathbb{F}_{q} is defined by setting, for all $x \in \mathbb{F}_{q}$,

$$
\begin{equation*}
\chi_{\text {princ }}(x)=\exp [2 \pi i \operatorname{Tr}(x) / p], \tag{7.3}
\end{equation*}
$$

where $\operatorname{Tr}=\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}}$ denotes the trace (cf. (6.22)) and, as usual, we identify \mathbb{F}_{p} with $\{0,1, \ldots, p-1\}$ to compute the exponential. Since Tr is a surjective $\mathbb{F}_{p^{-}}$ linear map from \mathbb{F}_{q} onto \mathbb{F}_{p} (so that, in particular, $\operatorname{Tr}(x+y)=\operatorname{Tr}(x)+\operatorname{Tr}(y)$ for all $x, y \in \mathbb{F}_{q}$) by Hilbert Satz 90 (cf. Theorem 6.7.2), $\chi_{\text {princ }}$ is indeed a nontrivial additive character.
In the following we present another explicit isomorphism between $\left(\mathbb{F}_{q},+\right)$ and its dual group $\widehat{\mathbb{F}_{q}}$ (cf. Corollary 2.3.4).

Proposition 7.1.1 Let χ be a nontrivial additive character of \mathbb{F}_{q}. For each $y \in \mathbb{F}_{q}$ define $\chi_{y}: \mathbb{F}_{q} \rightarrow \mathbb{T}$ by setting

$$
\chi_{y}(x)=\chi(x y)
$$

for all $x \in \mathbb{F}_{q}$. Then χ_{y} is also an additive character of \mathbb{F}_{q}, and the map

$$
\begin{aligned}
\Psi: \quad \mathbb{F}_{q} & \rightarrow \widehat{\mathbb{F}_{q}} \\
y & \mapsto \chi_{y}
\end{aligned}
$$

is a group isomorphism.
Proof The fact that χ_{y} is an additive character and that Ψ is a group homomorphism follow immediately from the distributivity law in \mathbb{F}_{q}. Indeed,
$\chi_{y}\left(x_{1}+x_{2}\right)=\chi\left(y\left(x_{1}+x_{2}\right)\right)=\chi\left(y x_{1}+y x_{2}\right)=\chi\left(y x_{1}\right) \chi\left(y x_{2}\right)=\chi_{y}\left(x_{1}\right) \chi_{y}\left(x_{2}\right)$
and

$$
\chi_{y+z}(x)=\chi((y+z) x)=\chi(y x+z x)=\chi(y x) \chi(z x)=\chi_{y}(x) \chi_{z}(x)
$$

for all x, x_{1}, x_{2}, y and z in \mathbb{F}_{q}.

Suppose now that $y \neq 0$. Since χ is nontrivial, we can find $\bar{x} \in \mathbb{F}_{q}$ such that $\chi(\bar{x}) \neq 1$. Let $x=y^{-1} \bar{x}$, then $\chi_{y}(x)=\chi(y x)=\chi(\bar{x}) \neq 1$. Thus $y \notin \operatorname{Ker}(\Psi)$. This shows that Ψ is injective. Since $\left|\widehat{\mathbb{F}_{q}}\right|=\left|\mathbb{F}_{q}\right|=q$ (cf. Corollary 2.3.4), we deduce that Ψ is also surjective.

Exercise 7.1.2 Show that $\widehat{\mathbb{F}_{q}^{2}}=\left\{\chi_{s, t}: s, t \in \mathbb{F}_{q}\right\}$, where

$$
\begin{equation*}
\chi_{s, t}(x, y)=\chi_{p r i n c}(s x+t y) \tag{7.4}
\end{equation*}
$$

for all $s, t, x, y, \in \mathbb{F}_{q}$.
Corollary 7.1.3 Let $\chi \in \widehat{\mathbb{F}_{q}}$ be a nontrivial additive character. Then for all $z \in \mathbb{F}_{q}$ we have

$$
\sum_{x \in \mathbb{F}_{q}^{*}} \chi(x z)= \begin{cases}q-1 & \text { if } z=0 \\ -1 & \text { if } z \neq 0\end{cases}
$$

Proof It is an immediate consequence of Proposition 7.1.1 and (7.2).
If we choose $\chi=\chi_{\text {princ }}$, we get the canonical isomorphism between \mathbb{F}_{q} and $\widehat{\mathbb{F}_{q}}:$

$$
\begin{equation*}
\chi_{y}(x)=\exp [2 \pi i \operatorname{Tr}(x y) / p] ; \tag{7.5}
\end{equation*}
$$

in particular, $\chi_{1}=\chi=\chi_{\text {princ }}$, where 1 is the (multiplicative) identity element in the field \mathbb{F}_{q}, and $\chi_{0}=1$, the trivial character.
A multiplicative character of \mathbb{F}_{q} is a character of the finite cyclic group $\left(\mathbb{F}_{q}^{*}, \cdot\right)$ (cf. Theorem 6.3.3 and Definition 2.3.1), that is, a map

$$
\psi: \mathbb{F}_{q}^{*} \rightarrow \mathbb{T}
$$

such that $\psi(x y)=\psi(x) \psi(y)$ for all $x, y \in \mathbb{F}_{q}^{*}$. We observe (cf. Definition 2.3.1) that the set $\widehat{\mathbb{F}_{q}^{*}}$ of all multiplicative characters is a (multiplicative) cyclic (cf. Remark 2.3.2) group, called the dual group of \mathbb{F}_{q}^{*}.

We can extend a multiplicative character $\psi \in \widehat{\mathbb{F}_{q}^{*}}$ to a map $\mathbb{F}_{q} \rightarrow \mathbb{T} \cup\{0\}$ (still denoted ψ), by setting

$$
\psi(0)= \begin{cases}0 & \text { if } \psi \text { is nontrivial } \tag{7.6}\\ 1 & \text { if } \psi=\mathbf{1}\end{cases}
$$

Clearly, if ψ is a multiplicative character, then

$$
\overline{\psi(x)}=\psi(x)^{-1}=\psi\left(x^{-1}\right)=\psi^{-1}(x)
$$

for all $x \in \mathbb{F}_{q}^{*}$.

Let $\psi \in \widehat{\mathbb{F}_{q}^{*}}$. In the following, we shall often encounter the quantity $\psi(-1)$: since $\psi(-1)^{2}=\psi\left[(-1)^{2}\right]=\psi(1)=1$, we necessarily have $\psi(-1)= \pm 1$. The order of ψ is the smallest positive integer m such that $\psi^{m}=\mathbf{1}$: clearly, m divides $q-1$, since $\psi(x)^{q-1}=\psi\left(x^{q-1}\right)=\psi(1)=1$ (alternatively, this is an immediate consequence of Lagrange's theorem; see Proposition 1.2.12). We recall (cf. Definition 6.3.4), that $x \in \mathbb{F}_{q}^{*}$ is called a primitive element of \mathbb{F}_{q} if it generates \mathbb{F}_{q}^{*}.

Lemma 7.1.4 Let ψ be a nontrivial multiplicative character of \mathbb{F}_{q} and denote by m its order. Then $\psi(-1)=-1$ if and only if m is even and $\frac{q-1}{m}$ is odd.

Proof Since $\psi(x)^{m}=\psi^{m}(x)=\psi\left(x^{m}\right)=1$ for all $x \in \mathbb{F}_{q}^{*}$, all the values of ψ are m-th roots of unity. Let also x be a primitive element of \mathbb{F}_{q}. Then $\psi(x)$ is a primitive m-th root of 1 , so that $\psi(x)^{h} \neq 1$ for $1 \leq h \leq m-1$.

If m is odd, then -1 is not an m-th root of unity and therefore $\psi(-1)$ is necessary equal to 1 .

Suppose now that m is even. Then $\psi(x)^{h}=-1$ if and only if $h \equiv \frac{m}{2}$ $\bmod m$. Moreover (note that $q-1$ is even, because it is divisible by m), $x^{\frac{q-1}{2}}=-1$ (since $x^{q-1}=1$ but $x^{\frac{q-1}{2}} \neq 1$). It follows that

$$
\psi(-1)=\psi\left(x^{\frac{q-1}{2}}\right)=\psi(x)^{\frac{q-1}{2}}
$$

so that

$$
\begin{aligned}
\psi(-1)=-1 & \Leftrightarrow \frac{q-1}{2} \equiv \frac{m}{2} \quad \bmod m \\
& \Leftrightarrow \frac{q-1}{m} \equiv 1 \quad \bmod 2 \\
& \Leftrightarrow \frac{q-1}{m} \text { is odd. }
\end{aligned}
$$

Exercise 7.1.5 Fill in the details of the above equivalence $\frac{q-1}{2} \equiv \frac{m}{2} \bmod m \Leftrightarrow$ $\frac{q-1}{m} \equiv 1 \bmod 2$.

Let $\psi, \phi \in \widehat{\mathbb{F}_{q}^{*}}$. The orthogonality relations are (cf. Proposition 2.3.5):

$$
\langle\psi, \phi\rangle=\sum_{x \in \mathbb{F}_{q}^{*}} \psi(x) \overline{\phi(x)}= \begin{cases}q-1 & \text { if } \psi=\phi \tag{7.7}\\ 0 & \text { if } \psi \neq \phi .\end{cases}
$$

As a consequence, if ψ is nontrivial (taking ϕ the trivial character) we
have

$$
\begin{equation*}
\sum_{x \in \mathbb{F}_{q}^{*} \backslash\{-1\}} \psi(x)=-\psi(-1) \tag{7.8}
\end{equation*}
$$

so that, keeping in mind (7.6),

$$
\begin{equation*}
\sum_{x \in \mathbb{F}_{q}} \psi(x)=0 \tag{7.9}
\end{equation*}
$$

The dual orthogonal relations (cf. (2.13)) are

$$
\sum_{\psi \in \widehat{\mathbb{F}_{q}^{*}}} \psi(x) \overline{\psi(y)}= \begin{cases}q-1 & \text { if } x=y \tag{7.10}\\ 0 & \text { if } x \neq y\end{cases}
$$

Let x be a primitive element of \mathbb{F}_{q}. The principal multiplicative character of \mathbb{F}_{q}^{*} associated with x is the multiplicative character $\psi_{\text {princ }}$ defined by setting

$$
\begin{equation*}
\psi_{p r i n c}\left(x^{k}\right)=\exp \left(\frac{2 \pi i k}{q-1}\right) \tag{7.11}
\end{equation*}
$$

for all $k=1,2, \ldots, q-1$.
Exercise 7.1.6 Show that $\psi_{\text {princ }}$ is a generator of $\widehat{\mathbb{F}_{q}^{*}}$.

7.2 Decomposable characters

We fix $q=p^{n}$ and consider the field \mathbb{F}_{q} together with its quadratic extension $\mathbb{F}_{q^{2}}$. We use the notation at the end of Section 6.8. In particular, if $\alpha \in \mathbb{F}_{q^{2}}^{*}$ then its conjugate is the element $\bar{\alpha}=\sigma(\alpha) \in \mathbb{F}_{q^{2}}^{*}$ and we have $\alpha \bar{\alpha}=\mathbb{N}_{\mathbb{F}^{2}} / \mathbb{F}_{q}(\alpha)$ and $\alpha+\bar{\alpha}=\operatorname{Tr}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}(\alpha) \in \mathbb{F}_{q}$.

Definition 7.2.1 Let ν be a character of $\mathbb{F}_{q^{2}}^{*}$.
One says that ν is decomposable if there exists a character ψ of \mathbb{F}_{q}^{*} such that

$$
\begin{equation*}
\nu(\alpha)=\psi(\alpha \bar{\alpha}) \tag{7.12}
\end{equation*}
$$

for all $\alpha \in \mathbb{F}_{q}^{*}$. If this is not the case, ν is called indecomposable,
Moreover, the conjugate of ν is the character $\bar{\nu}$ defined by

$$
\begin{equation*}
\bar{\nu}(\alpha)=\nu(\bar{\alpha}) \tag{7.13}
\end{equation*}
$$

for all $\alpha \in \mathbb{F}_{q^{2}}^{*}$.
Proposition 7.2 .2 A character $\nu \in \widehat{\mathbb{F}_{q^{2}}^{*}}$ is decomposable if and only if $\nu=\bar{\nu}$.

Proof Suppose first that ν is decomposable. Then, by virtue of (7.12), we have, for all $\alpha \in \mathbb{F}_{q^{2}}^{*}$,

$$
\bar{\nu}(\alpha)=\nu(\bar{\alpha})=\psi(\bar{\alpha} \bar{\alpha})=\psi(\alpha \bar{\alpha})=\nu(\alpha)
$$

This shows that $\nu=\bar{\nu}$.
Conversely, if $\nu=\bar{\nu}$, we may set

$$
\begin{equation*}
\psi(\alpha \bar{\alpha})=\nu(\alpha) \tag{7.14}
\end{equation*}
$$

for all $\alpha \in \mathbb{F}_{q^{2}}^{*}$. Note that this is well defined since, by virtue of Hilbert satz 90 (Theorem 6.7.2), the map $\mathbb{N}_{\mathbb{F}^{2}} / \mathbb{F}_{q}: \mathbb{F}_{q^{2}}^{*} \rightarrow \mathbb{F}_{q}^{*}$ is surjective with kernel $\operatorname{Ker} \mathbb{N}_{\mathbb{F}^{2}} / \mathbb{F}_{q}=\left\{\alpha \bar{\alpha}^{-1}: \alpha \in \mathbb{F}_{q^{2}}^{*}\right\}$. Indeed, if $\alpha, \beta \in \mathbb{F}_{q^{2}}^{*}$ and $\alpha \bar{\alpha}=\beta \bar{\beta}$, then $\mathbb{N}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}(\alpha)=\mathbb{N}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}(\beta)$, that is, $\alpha \beta^{-1} \in \operatorname{Ker}_{\mathbb{N}_{q^{2}} / \mathbb{F}_{q}}$ since the norm is a group homomorphism. Then there exists $\gamma \in \mathbb{F}_{q^{2}}^{*}$ such that $\alpha \beta^{-1}=\gamma \bar{\gamma}^{-1}$ so that $\nu\left(\alpha \beta^{-1}\right)=\nu\left(\gamma \bar{\gamma}^{-1}\right)=\nu(\gamma) \nu(\bar{\gamma})^{-1}=1$ (recall that $\nu=\bar{\nu}$), showing that $\nu(\alpha)=\nu(\beta)$.

We leave it to the reader to check that ψ is indeed a character of \mathbb{F}_{q}^{*}. By construction, (7.12) follows from (7.14).

Proposition 7.2.3 Let $\nu \in \widehat{\mathbb{F}_{q^{2}}^{*}}$ and suppose that it is not decomposable. Then

$$
\begin{equation*}
\sum_{\substack{\beta \in \mathbb{F}_{q}^{*} \\ \beta \bar{\beta}=\alpha}} \nu(\beta)=0 \tag{7.15}
\end{equation*}
$$

for all $\alpha \in \mathbb{F}_{q}^{*}$.

Proof First of all, we show that there exists $\gamma \in \mathbb{F}_{q^{2}}$ such that $\gamma \bar{\gamma}=1$ for which $\nu(\gamma) \neq 1$. Indeed, otherwise, if $\alpha, \beta \in \mathbb{F}_{q^{2}}^{*}$ satisfy $\alpha \bar{\alpha}=\beta \bar{\beta}$, then $\alpha \beta^{-1} \overline{\alpha \beta^{-1}}=1$ and therefore $\nu\left(\alpha \beta^{-1}\right)=1$ so that $\nu(\alpha)=\nu(\beta)$. We may then define a character ψ of \mathbb{F}_{q}^{*} as in (7.14) and this would contradict our assumptions on the indecomposability of ν.

Thus, for all $\alpha \in \mathbb{F}_{q}^{*}$

$$
\sum_{\substack{\beta \in \mathbb{F}_{2}^{*}: \\ \beta \bar{\beta}=\alpha}} \nu(\beta)=\sum_{\substack{\beta \in \mathbb{F}_{q}^{*}: \\ \beta \bar{\beta}=\alpha}} \nu(\gamma \beta)=\nu(\gamma) \sum_{\substack{\beta \in \mathbb{F}_{q}^{*}: \\ \beta \bar{\beta}=\alpha}} \nu(\beta),
$$

where the first equality follows from the fact that $\gamma \bar{\gamma}=1$. Since $\nu(\gamma) \neq 1$, (7.15) follows.

7.3 Generalized Kloosterman sums

In this section we introduce and study a family of generalized Kloosterman sums, that we shall use (cf. Section 14.6), following Piatetski-Shapiro [123], to describe the cuspidal representations of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ and their associated Bessel functions, a finite analogue of the classical Bessel functions .

Let $q=p^{n}$ and consider the quadratic extension $\mathbb{F}_{q^{2}}$ of the field \mathbb{F}_{q}.
Let also χ be a nontrivial character of \mathbb{F}_{q} and ν an indecomposable character of $\mathbb{I}_{q^{2}}^{*}$.
We use the notation in Section 6.8 and Section 7.2.
The generalized Kloosterman sum associated with the pair (χ, ν) is the map $j=j_{\chi, \nu}: \mathbb{F}_{q}^{*} \rightarrow \mathbb{C}$ defined by setting

$$
\begin{equation*}
j(x)=\frac{1}{q} \sum_{\substack{w \in \mathbb{F}_{\dot{*}}^{*}: \\ w \bar{w}=x}} \chi(w+\bar{w}) \nu(w) \tag{7.16}
\end{equation*}
$$

for all $x \in \mathbb{F}_{q}^{*}$.
We need a few technical formulas involving these sums: we begin with two results on additive characters.

Lemma 7.3.1 Let $z \in \mathbb{F}_{q^{2}}^{*}$ and $\chi \in \widehat{\mathbb{F}_{q}}$. Then

$$
\sum_{t \in \mathbb{F}_{q^{*}}^{*}} \chi[t z+\bar{t} \bar{z}]= \begin{cases}q^{2}-1 & \text { if } \chi \text { is trivial and } / \text { or } z=0 \\ -1 & \text { otherwise } .\end{cases}
$$

Proof We first observe that the map $\widetilde{\chi}: \mathbb{F}_{q^{2}} \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
\widetilde{\chi}(t)=\chi[t z+\bar{t} \bar{z}], \tag{7.17}
\end{equation*}
$$

for all $t \in \mathbb{F}_{q^{2}}$, is a character of $\mathbb{F}_{q^{2}}$.
Now, if χ is trivial and/or $z=0$, then $\widetilde{\chi}$ is the trivial character and therefore,

$$
\sum_{t \in \mathbb{F}_{q}^{*}} \chi[t z+\bar{t} \bar{z}]=\sum_{t \in \mathbb{F}_{q}^{2}} \widetilde{\chi}(t)=\sum_{t \in \mathbb{F}_{q_{q}^{*}}^{*}} 1=\left|\mathbb{F}_{q^{*}}^{*}\right|=q^{2}-1 .
$$

Suppose now that χ is nontrivial and $z \neq 0$. We claim that the map $\mathbb{F}_{q^{2}} \ni t \mapsto t z+\bar{t} \bar{z} \in \mathbb{F}_{q}$ is surjective. Indeed, the map $t \mapsto t z$ is a bijection of $\mathbb{F}_{q^{2}}$ and the map $s \mapsto s+\bar{s}=\operatorname{Tr}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}(s)$ is surjective by Hilbert Satz 90 (Theorem 6.7.2). It follows that the character (7.17) is nontrivial and, by
the orthogonality relations of characters (cf. (7.1)),

$$
\sum_{t \in \mathbb{F}_{q^{2}}} \chi[t z+\bar{t} \bar{z}]=\sum_{t \in \mathbb{F}_{q^{2}}} \widetilde{\chi}(t)=\langle\widetilde{\chi}, 1\rangle=0
$$

Since

$$
\chi[t z+\bar{t} \bar{z}]_{t=0}=\chi(0)=1
$$

the result follows.

Lemma 7.3.2 Let $\chi \in \widehat{\mathbb{F}_{q}}$ be a nontrivial character. Let also $z \in \mathbb{F}_{q^{2}}^{*}$ and $y \in \mathbb{F}_{q}^{*}$. Then

$$
\sum_{t \in \mathbb{F}_{q}^{*}} \chi\left[y^{-1}(t+y+z)(\overline{t+y+z})\right]=-q-\chi\left[y^{-1}(y+z)(y+\bar{z})\right]
$$

Proof We have

$$
\left.\left.\begin{array}{rl}
\sum_{t \in \mathbb{F}_{q}^{*}} & \chi\left[y^{-1}(t+y+z)(\overline{t+y+z})\right]
\end{array}\right)=\sum_{\substack{s \in \mathbb{F}_{2} \\
s \neq y+z \\
s \neq y+z}} \chi\left(y^{-1} s \bar{s}\right)\right]
$$

(by (6.25) and setting $r=s \bar{s})=(q+1) \sum_{r \in \mathbb{F}_{q}^{*}} \chi\left(y^{-1} r\right)$

$$
\begin{gathered}
+1-\chi\left[y^{-1}(y+z)(y+\bar{z})\right] \\
(\text { by }(7.1))=-(q+1)+1-\chi\left[y^{-1}(y+z)(y+\bar{z})\right] \\
=-q-\chi\left[y^{-1}(y+z)(y+\bar{z})\right]
\end{gathered}
$$

Proposition 7.3.3 For every $x \in \mathbb{F}_{q}^{*}$ we have

$$
\overline{j(x)}=\overline{\nu(-x)} j(x)
$$

Proof Let $x \in \mathbb{F}_{q}^{*}$. Then, by definition of the Kloosterman sum j (cf. (7.16)),

$$
\begin{aligned}
\overline{j(x)} & =\frac{1}{q} \sum_{\substack{y \in \mathbb{F}_{q}^{*}: \\
y \bar{y}=x}} \chi(-y-\bar{y}) \nu\left(y^{-1}\right) \\
& =* \frac{1}{q} \sum_{\substack{t \in \mathbb{F}_{2}^{*}: \\
t \bar{t}=x}} \chi\left[x\left(t^{-1}+\bar{t}^{-1}\right)\right] \nu\left(-x^{-1} t\right) \\
& ={ }_{* *} \frac{\overline{\nu(-x)} \frac{1}{q} \sum_{\substack{t \in \mathbb{F}_{2}^{*}: \\
t \bar{t}=x}} \chi(t+\bar{t}) \nu(t)}{} \\
& =\overline{\nu(-x)} j(x)
\end{aligned}
$$

where equality $=_{*}$ follows by setting $t=-x y^{-1}$ (so that $t \bar{t}=x$ and $y=$ $-x t^{-1}$), and equality $=_{* *}$ follows from $x\left(t^{-1}+\bar{t}^{-1}\right)=x \frac{t+\bar{t}}{t \bar{t}}=t+\bar{t}$.

Proposition 7.3.4 For all $x, y \in \mathbb{F}_{q}^{*}$ we have

$$
\sum_{w \in \mathbb{F}_{q}^{*}} j(x w) j(y w) \nu\left(w^{-1}\right) \chi(w)=-\chi(-x-y) \nu(-1) j(x y)
$$

Proof We have

$$
\begin{align*}
& \sum_{w \in \mathbb{F}_{q}^{*}} j(x w) j(y w) \nu\left(w^{-1}\right) \chi(w) \\
& \quad=\frac{1}{q^{2}} \sum_{\substack{ \\
w \in \mathbb{F}_{q}^{*}}} \sum_{\substack{t \in \mathbb{F}_{*}^{*} \\
t \bar{t}=x w}} \sum_{s \in \mathbb{F}_{q}^{*}:}^{s \bar{s}=y w} \tag{7.18}
\end{align*}
$$

Let us set $z=y t \bar{s}^{-1}$. First note that from $s \bar{s}=y w$ we get

$$
t s w^{-1}=y t \bar{s}^{-1}=z
$$

From $t \bar{t}=x w$ we then deduce

$$
z \bar{z}=y t \bar{s}^{-1} y \bar{t} s^{-1}=y t \bar{t} y(s \bar{s})^{-1}=y x w y w^{-1} y^{-1}=y x
$$

Moreover,

$$
\begin{align*}
& y^{-1}(s+y+z)(\overline{s+y+z})=\left(y^{-1} s+1+y^{-1} z\right)(\bar{s}+y+\bar{z}) \\
&= y^{-1} s \bar{s}+s+y^{-1} s \bar{z}+\bar{s}+y \\
& \quad+\bar{z}+y^{-1} z \bar{s}+z+y^{-1} z \bar{z} \tag{7.19}\\
&= w+s+\bar{t}+\bar{s}+y+\bar{z}+t+z+x \\
&=w+s+\bar{s}+t+\bar{t}+y+z+\bar{z}+x
\end{align*}
$$

and

$$
\begin{align*}
y^{-1}(y+z)(y+\bar{z}) & =(y+z)\left(1+y^{-1} \bar{z}\right) \\
& =y+z+\bar{z}+y^{-1} z \bar{z} \tag{7.20}\\
& =y+z+\bar{z}+x
\end{align*}
$$

Then the calculation (7.18) continues as follows:

$$
\begin{aligned}
& ={ }_{(i)} \frac{1}{q^{2}} \sum_{w \in \mathbb{F}_{q}^{*}} \sum_{\substack{s \in \mathbb{F}_{q}^{*}: \\
s \bar{q}=y w\\
}} \sum_{\substack{z \in \mathbb{F}_{2}^{*}: \\
z \bar{z}=x y}} \chi\left[y^{-1}(s+y+z)(\overline{s+y+z})-x-y-z-\bar{z}\right] \nu(z) \\
& ={ }_{(i i)} \frac{1}{q^{2}} \sum_{\substack{s \in \mathbb{F}_{q}^{*} \\
q^{*}}} \sum_{\substack{z \in \mathbb{F}_{q}^{*}: \\
z \bar{z}=x y}} \chi\left[y^{-1}(s+y+z)(\overline{s+y+z})-x-y-z-\bar{z}\right] \nu(z) \\
& =\frac{1}{q^{2}} \sum_{\substack{z \in \mathbb{F}_{q}^{*}: \\
z \bar{z}=x y}} \chi[-x-y-z-\bar{z}] \nu(z) \sum_{s \in \mathbb{F}_{q^{*}}^{*}} \chi\left[y^{-1}(s+y+z)(\overline{s+y+z})\right] \\
& ={ }_{(i i i)} \frac{1}{q^{2}} \sum_{\substack{z \in \mathbb{F}_{q}^{*}: \\
z \bar{z}=x y}} \chi[-x-y-z-\bar{z}] \nu(z)\left\{-q-\chi\left[y^{-1}(y+z)(y+\bar{z})\right]\right\} \\
& =-\frac{1}{q} \sum_{\substack{z \in \mathbb{F}_{q}^{*}: \\
z \bar{z}=x y}} \chi[-x-y-z-\bar{z}] \nu(z) \\
& -\frac{1}{q^{2}} \sum_{\substack{z \in \mathbb{F}_{2}^{*}: \\
z \bar{z}=x y}} \chi\left[-x-y-z-\bar{z}+y^{-1}(y+z)(y+\bar{z})\right] \nu(z) \\
& ={ }_{(i v)}-\frac{1}{q} \chi(-x-y) \nu(-1) \sum_{\substack{z \in \mathbb{F}_{q}^{*}: \\
z \bar{z}=x y}} \chi(z+\bar{z}) \nu(z)-\frac{1}{q^{2}} \sum_{\substack{z \in \mathbb{F}_{q}^{*}: \\
z \bar{z}=x y}} \nu(z) \\
& ={ }_{(v)}-\chi(-x-y) \nu(-1) j(x y)
\end{aligned}
$$

where $={ }_{(i)}$ follows from (7.19),$={ }_{(i i)}$ follows from Hilbert satz $90,={ }_{(i i i)}$ follows
from Lemma 7.3.2, $=_{(i v)}$ is obtained by changing z to $-z$ and because $-x-$ $y-z-\bar{z}+y^{-1}(y+z)(y+\bar{z})=0$, by (7.20), and $={ }_{(v)}$ follows from Proposition 7.2.3 and the definition of j (cf. (7.16)).

Proposition 7.3.5 (Orthogonality relations) $\sum_{w \in \mathbb{F}_{q}^{*}} j(x w) \overline{j(y w)}=\delta_{x, y}$ for all $x, y \in \mathbb{F}_{q}^{*}$.

Proof By definition of j, we have

$$
\begin{aligned}
& \sum_{w \in \mathbb{F}_{q}^{*}} j(x w) \overline{j(y w)}=\frac{1}{q^{2}} \sum_{w \in \mathbb{F}_{q}^{*}} \sum_{\substack{t \in \mathbb{F}_{q}^{*} \\
t \bar{t}=x w}} \sum_{\substack{s \in \mathbb{F}_{q}^{*}: \\
s \bar{s}=y w}} \chi(t+\bar{t}-s-\bar{s}) \nu\left(t s^{-1}\right) \\
& \text { (setting } z=t s^{-1} \text {) }=\frac{1}{q^{2}} \sum_{w \in \mathbb{F}_{\mathbb{F}}^{*}} \sum_{\substack{s \in \mathbb{F}_{q}^{*}: \\
s \bar{s}=y w}} \sum_{\substack{z \in \mathbb{F}_{d}^{*}: \\
z \bar{z}=x y^{-1}}} \chi(z s+\bar{z} \bar{s}-s-\bar{s}) \nu(z) \\
& \text { (by }(6.25))=\frac{1}{q^{2}} \sum_{\substack{z \in \mathbb{F}_{q}^{*}: \\
z \bar{z}=x y^{-1}}}\left(\sum_{s \in \mathbb{F}_{q^{2}}^{*}} \chi((z-1) s+(\bar{z}-1) \bar{s})\right) \nu(z) \text {. }
\end{aligned}
$$

If $x \neq y$, then $z \neq 1$ and, by virtue of Lemma 7.3.1, $\sum_{s \in \mathbb{P}_{\dot{q}}^{*}} \chi((z-1) s+$ $(\bar{z}-1) \bar{s})=-1$, so that

$$
\frac{1}{q^{2}} \sum_{\substack{z \in \mathbb{P}_{q}^{*}: \\ z \bar{z}=x y^{-1}}}\left(\sum_{\substack{s \in \mathbb{F}_{q}^{*}}} \chi((z-1) s+(\bar{z}-1) \bar{s})\right) \nu(z)=-\frac{1}{q^{2}} \sum_{\substack{z \in \mathbb{F}_{q}^{*} \\ z \bar{z}=x y^{-1}}} \nu(z)=0,
$$

where the last equality follows from Proposition 7.2.3.
If $x=y$, then $z=1$ is admissible and, again by virtue of Lemma 7.3.1,

$$
\begin{aligned}
\frac{1}{q^{2}} \sum_{\substack{z \in \mathbb{F}_{q}^{*}: \\
z \bar{z}=x y^{-1}}}\left(\sum_{\substack{-\mathbb{F}_{q}^{*} \\
q^{*}}} \chi((z-1) s+(\bar{z}-1) \bar{s})\right) \nu(z) & =\frac{1}{q^{2}}\left[\left(q^{2}-1\right)-\sum_{\substack{z \in \mathbb{F}_{\begin{subarray}{c}{*} }} \backslash\{1\}:} \\
{z \bar{z}=1}\end{subarray}} \nu(z)\right] \\
& =\frac{1}{q^{2}}\left[\left(q^{2}-1\right)-(-1)\right] \\
& =1,
\end{aligned}
$$

where the last but one equality follows from Proposition 7.2.3.

Corollary 7.3.6 For every $x \in \mathbb{F}_{q}^{*}$ we have

$$
\sum_{y \in \mathbb{F}_{q}^{*}} j(x y) j(y) \nu\left(y^{-1}\right)= \begin{cases}\nu(-1) & \text { if } x=1 \\ 0 & \text { if } x \neq 1\end{cases}
$$

Proof Let $x \in \mathbb{F}_{q}^{*}$. Then

$$
\begin{aligned}
\qquad \sum_{y \in \mathbb{F}_{q}^{*}} j(x y) j(y) \nu\left(y^{-1}\right) & =\sum_{y \in \mathbb{F}_{q}^{*}} j(x y) j(y) \nu\left(-y^{-1}\right) \nu(-1) \\
\text { (by Proposition 7.3.3)} & =\left(\sum_{y \in \mathbb{F}_{q}^{*}} j(x y) \overline{j(y)}\right) \nu(-1) \\
\text { (by Proposition 7.3.5)} & =\delta_{x, 1} \nu(-1) .
\end{aligned}
$$

In the following (see also Section 14.6), in order to emphasize the dependance of the map j from ν, we shall write j_{ν} (clearly, j also depends on χ). Note that, from (7.16) it follows immediately that

$$
\begin{equation*}
j_{\bar{\nu}}=j_{\nu} \tag{7.21}
\end{equation*}
$$

where $\bar{\nu}$ is the conjugate character of $\nu(\mathrm{cf} .(7.13))$.
Theorem 7.3.7 Suppose that $j_{\mu}=j_{\nu}$ and that

$$
\begin{equation*}
\left.\mu\right|_{\mathbb{F}_{q}^{*}}=\left.\nu\right|_{\mathbb{F}_{q}^{*}} \tag{7.22}
\end{equation*}
$$

Then $\mu=\nu$ or $\mu=\bar{\nu}$.

Proof Our first assumption yields

$$
\sum_{\substack{y \in \mathbb{F}^{*}: \\ q^{2}: \\ y \bar{y}=x}} \chi(y+\bar{y}) \mu(y)=q j_{\mu}(x)=q j_{\nu}(x)=\sum_{\substack{y \in \mathbb{F}^{*}: \\ q^{2}: \\ y \bar{y}=x}} \chi(y+\bar{y}) \nu(y)
$$

for all $x \in \mathbb{F}_{q}^{*}$. Moreover, for $y \in \mathbb{F}_{q^{2}}^{*}$ and $\delta \in \mathbb{F}_{q}^{*}$, we set $z=\delta^{-1} y$ (i.e. $y=\delta z$) and $t=z \bar{z}=\delta^{-2} y \bar{y}$, so that, taking into account (7.22), from the above formula we deduce

$$
\begin{equation*}
\sum_{\substack{z \in \mathbb{F}_{q^{2}}^{*}: \\ z \bar{z}=t}} \chi[\delta(z+\bar{z})] \mu(z)=\sum_{\substack{z \in \mathbb{F}^{*} \\ z \bar{z}=t}} \chi[\delta(z+\bar{z})] \nu(z) \tag{7.23}
\end{equation*}
$$

for all $t \in \mathbb{F}_{q}^{*}$ and $\delta \in \mathbb{F}_{q}$ (the case $\delta=0$ follows from Proposition 7.2.3).
Fix $t \in \mathbb{F}_{q}^{*}$. Then the solutions of the equation $z \bar{z}=t$ may be partitioned
into sets of the form $\{z, \bar{z}\}$. Choose a complete system \mathcal{C}_{t} of representatives for such sets, that is,

$$
\left\{z \in \mathbb{F}_{q^{2}}^{*}: z \bar{z}=t\right\}=\coprod_{z \in \mathcal{C}_{t}}\{z, \bar{z}\}
$$

Note (recall Proposition 6.4.4) that if t is a square in \mathbb{F}_{q}, say $t=u^{2}, u \in \mathbb{F}_{q}^{*}$, then also the singletons $\{u\}$ and $\{-u\}$ must be considered (and they coincide if q is even). We may then write (7.23) in the form

$$
\begin{align*}
& \sum_{z \in \mathcal{C}_{t} \backslash \mathbb{F}_{q}} \chi[\delta(z+\bar{z})][\mu(z)+\mu(\bar{z})-\nu(z)-\nu(\bar{z})] \\
&+\sum_{z \in \mathcal{C}_{t} \cap \mathbb{F}_{q}} \chi[\delta(z+\bar{z})][\mu(z)-\nu(z)]=0, \tag{7.24}
\end{align*}
$$

where $\mathcal{C}_{t} \cap \mathbb{F}_{q}$ is empty if t is not a square. In any case, the second sum in the left hand side vanishes by virtue of (7.22).

We now set $\widetilde{\mathcal{C}_{t}}=\left\{z+\bar{z}: z \in \mathcal{C}_{t}\right\}$. Since $z+\bar{z}=\operatorname{Tr}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}(z) \in \mathbb{F}_{q}$ for all $z \in \mathbb{F}_{q^{2}}$, we have $\widetilde{\mathcal{C}_{t}} \subseteq \mathbb{F}_{q}$. Moreover, every $x \in \widetilde{\mathcal{C}_{t}}$ corresponds to a unique set $\{z, \bar{z}\}$ (possibly $z=\bar{z}$) because the system

$$
\left\{\begin{array}{l}
z+\bar{z}=x \\
z \bar{z}=t
\end{array}\right.
$$

is equivalent to the equation $z^{2}-x z+t=0$. In other words, $x \in \widetilde{\mathcal{C}_{t}}$ determines $\{z, \bar{z}\}$ and the map

$$
\begin{array}{rll}
\mathcal{C}_{t} & \rightarrow & \widetilde{\mathcal{C}_{t}} \\
z & \mapsto & z+\bar{z}
\end{array}
$$

is a bijection. Then we may define a function $f_{t}: \widetilde{\mathcal{C}_{t}} \rightarrow \mathbb{C}$ by setting

$$
f_{t}(x)= \begin{cases}\mu(z)+\mu(\bar{z})-\nu(z)-\nu(\bar{z}) & \text { if } z \bar{z}=t, z+\bar{z}=x, \text { and } z \neq \bar{z} \\ \mu(z)-\nu(z) \equiv 0 & \text { if } z^{2}=t, z \in \mathbb{F}_{q}, \text { and } 2 z=x .\end{cases}
$$

Therefore (7.24) may be written in the form

$$
\begin{equation*}
\sum_{x \in \widetilde{\mathcal{C}_{t}}} \chi(\delta x) f_{t}(x)=0 \tag{7.25}
\end{equation*}
$$

for all $t \in \mathbb{F}_{q}^{*}$ and $\delta \in \mathbb{F}_{q}$. By Proposition 7.1.1, the functions $\psi_{x} \in L\left(\mathbb{F}_{q}\right)$, $x \in \widetilde{\mathcal{C}}_{t}$, defined by $\psi_{x}(\delta)=\chi(\delta x)$ for all $\delta \in \mathbb{F}_{q}$, are distinct characters of \mathbb{F}_{q}, and the left hand side of (7.25) may be considered as a linear combination of
distinct characters. Since the characters are linearly independent, if follows that $f_{t}=0$ for all $t \in \mathbb{F}_{q}^{*}$, that is,

$$
\begin{equation*}
\mu(z)+\mu(\bar{z})=\nu(z)+\nu(\bar{z}) \tag{7.26}
\end{equation*}
$$

for all $z \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$. Moreover, since μ and ν are multiplicative, and $z \bar{z}=$ $\mathbb{N}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}(z) \in \mathbb{F}_{q}$ for all $z \in \mathbb{F}_{q^{2}}$, keeping in mind (7.22), we have

$$
\begin{equation*}
\mu(z) \mu(\bar{z})=\nu(z) \nu(\bar{z}) \tag{7.27}
\end{equation*}
$$

From (7.26) and (7.27) we deduce that the sets $\{\mu(z), \mu(\bar{z})\}$ and $\{\nu(z), \nu(\bar{z})\}$ solve the same quadratic equation, namely,

$$
\lambda^{2}-[\mu(z)+\mu(\bar{z})] \lambda+\mu(z) \mu(\bar{z})=0
$$

It follows that $\{\mu(z), \mu(\bar{z})\}=\{\nu(z), \nu(\bar{z})\}$, that is, $\mu(z)=\nu(z)$ or $\mu(z)=$ $\nu(\bar{z})$, for each $z \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$.

Let z_{0} be a generator of the cyclic group $\mathbb{F}_{q^{2}}^{*}$ (cf. Theorem 6.3.3). Then $\mu\left(z_{0}\right)=\nu\left(z_{0}\right)$ yields $\mu=\nu$, while $\mu\left(z_{0}\right)=\nu\left(\overline{z_{0}}\right)$ yields $\mu=\bar{\nu}$.

The (ordinary) Kloosterman sums are defined by

$$
K(\chi ; a, b)=\sum_{c \in \mathbb{F}_{q}^{*}} \chi\left(a c+b c^{-1}\right)
$$

where χ is a nontrivial element of $\widehat{\mathbb{F}_{q}}$ and $a, b \in \mathbb{F}_{q}$. For more on these sums we refer to [96] and the references therein. We limit ourselves to a couple of elementary identities:

Exercise 7.3.8 Let $a, b \in \mathbb{F}_{q}$.
(a) Show that $K(\chi ; a, b)=K(\chi ; b, a)$;
(b) show that if $a \in \mathbb{F}_{q}^{*}$ then $K(\chi ; a, b)=K(\chi ; 1, a b)$.

7.4 Gauss sums

Definition 7.4.1 Let $\chi \in \widehat{\mathbb{F}_{q}}$ and $\psi \in \widehat{\mathbb{F}_{q}^{*}}$. We define the Gauss sum of the multiplicative character ψ and the additive character χ as the complex number

$$
\begin{equation*}
g(\psi, \chi)=\sum_{x \in \mathbb{F}_{q}^{*}} \psi(x) \chi(x) \tag{7.28}
\end{equation*}
$$

Note that, by virtue of (4.18) and (4.22), the Gauss sum $G(n, p)=\tau(p, n)$ coincides with $g\left(\ell_{p}, \chi_{n}\right)$.

Proposition 7.4.2 Denote by $\chi_{0}=1$ the trivial character of \mathbb{F}_{q} (so that, by (7.6), it is also the trivial multiplicative character). Then for all $\chi \in \widehat{\mathbb{F}_{q}}$ and $\psi \in \widehat{\mathbb{F}_{q}^{*}}$ we have:
(i) $g\left(\chi_{0}, \chi_{0}\right)=q-1$;
(ii) $g\left(\chi_{0}, \chi\right)=-1$ if $\chi \neq \chi_{0}$;
(iii) $g\left(\psi, \chi_{0}\right)=0$ if $\psi \neq \chi_{0}$;
(iv) $g(\psi, \chi)=\sum_{x \in \mathbb{F}_{q}} \psi(x) \chi(x)=\langle\psi, \bar{\chi}\rangle_{L\left(\mathbb{F}_{p}\right)}$ if $\psi \neq \chi_{0}$.

Proof These are all elementary consequences of the orthogonality relations for the additive and multiplicative characters (in particular (7.2), (7.6), and (7.9)). We thus leave it to the reader to fill in the details of the proof.

Note that (iv) shows that for $\psi \neq \chi_{0}$, the Gauss sum $g(\psi, \chi)$ equals the Fourier coefficient (2.15) both of ψ with respect to $\bar{\chi}$ as well as of $\left.\chi\right|_{\mathbb{F}_{q}^{*}}$ with respect to $\bar{\psi}$. We now present the basic properties of Gaussian sums.

Theorem 7.4.3 Let χ_{y} be the additive character as in (7.5), $\chi \in \widehat{\mathbb{F}_{q}}$ and $\psi \in \widehat{\mathbb{F}_{q}^{*}}$. Then we have:
(i) $g\left(\psi, \chi_{y}\right)=\overline{\psi(y)} g\left(\psi, \chi_{1}\right)$ if $y \neq 0$;
(ii) $g(\psi, \bar{\chi})=\psi(-1) g(\psi, \chi)$;
(iii) $g(\bar{\psi}, \chi)=\psi(-1) \overline{g(\psi, \chi)}$;
(iv)

$$
\psi=\frac{1}{q} \sum_{\substack{\chi \in \widehat{\mathbb{F}_{q}} \\ \chi \neq \chi_{0}}} g(\psi, \chi) \bar{\chi}=\frac{1}{q} g\left(\psi, \chi_{1}\right) \sum_{y \in \mathbb{F}_{q}^{*}} \overline{\psi(y)} \overline{\chi_{y}}
$$

if $\psi \neq \chi_{0}$;
(v) $\left.\chi\right|_{\mathbb{F}_{q}^{*}}=\frac{1}{q-1} \sum_{\psi \in \widehat{\mathbb{F}_{q}^{*}}} g(\psi, \chi) \bar{\psi}$;
(vi) $g(\psi, \chi) g(\bar{\psi}, \chi)=\psi(-1) q$ if $\psi, \chi \neq \chi_{0}$;
(vii) $|g(\psi, \chi)|=\sqrt{q}$ if $\psi, \chi \neq \chi_{0}$;
(viii) $g\left(\psi^{p}, \chi_{y}\right)=g\left(\psi, \chi_{\sigma(y)}\right)$, where $\sigma(y)=y^{p}$ is the Frobenius automorphism.

Proof (i) Suppose $y \neq 0$. Then

$$
\begin{aligned}
g\left(\psi, \chi_{y}\right) & =\sum_{x \in \mathbb{F}_{q}^{*}} \psi(x) \chi_{1}(x y) \\
(\text { setting } t=x y) & =\sum_{t \in \mathbb{F}_{q}^{*}} \psi\left(t y^{-1}\right) \chi_{1}(t) \\
& =\sum_{t \in \mathbb{F}_{q}^{*}} \psi\left(y^{-1}\right) \psi(t) \chi_{1}(t) \\
& =\overline{\psi(y)} g\left(\psi, \chi_{1}\right) .
\end{aligned}
$$

(ii) We have:

$$
\begin{aligned}
& \qquad \begin{aligned}
g(\psi, \bar{\chi}) & =\sum_{x \in \mathbb{F}_{q}^{*}} \psi(x) \overline{\chi(x)} \\
& =\sum_{x \in \mathbb{F}_{q}^{*}} \psi(x) \chi(-x) \\
\text { (setting } y=-x) & =\sum_{y \in \mathbb{F}_{q}^{*}} \psi(-y) \chi(y) \\
& =\sum_{y \in \mathbb{F}_{q}^{*}} \psi(-1) \psi(y) \chi(y) \\
& =\psi(-1) g(\psi, \chi)
\end{aligned}
\end{aligned}
$$

(iii) By (ii) and recalling that $\psi(-1)= \pm 1$ (cf. Lemma 7.1.4), we have:

$$
\begin{aligned}
\overline{g(\psi, \chi)} & =\psi(-1) \overline{g(\psi, \bar{\chi})} \\
& =\psi(-1) g(\bar{\psi}, \chi)
\end{aligned}
$$

(iv) and (v) are immediate consequences of Proposition 7.4 .2 (iii) and (iv), the Fourier inversion formula (cf. (2.16)), and (i). We leave it to the reader to fill in the details.
(vi) We have:

$$
\begin{aligned}
g(\psi, \chi) g(\bar{\psi}, \chi) & =\left[\sum_{x \in \mathbb{F}_{q}^{*}} \psi(x) \chi(x)\right] \cdot\left[\sum_{y \in \mathbb{F}_{q}^{*}} \overline{\psi(y)} \chi(y)\right] \\
& =\sum_{x, y \in \mathbb{F}_{q}^{*}} \psi\left(x y^{-1}\right) \chi(x+y) \\
\text { (setting } \left.t=x y^{-1}\right) & =\sum_{t \in \mathbb{F}_{q}^{*}} \psi(t) \sum_{y \in \mathbb{F}_{q}^{*}} \chi[y(t+1)] \\
\text { (by Corollary 7.1.3) } & =(q-1) \psi(-1)-\sum_{t \in \mathbb{F}_{q}^{*} \backslash\{-1\}} \psi(t) \\
\text { (by }(7.8)) & =(q-1) \psi(-1)-[-\psi(-1)] \\
& =q \psi(-1)
\end{aligned}
$$

(vii) Recalling, once more, that $\psi(-1)= \pm 1$, we have:

$$
\begin{aligned}
|g(\psi, \chi)|^{2} & =g(\psi, \chi) \overline{g(\psi, \chi)} \\
(\text { by }(\mathrm{iii})) & =\psi(-1) g(\psi, \chi) g(\bar{\psi}, \chi) \\
(\text { by }(\mathrm{vi})) & =q
\end{aligned}
$$

(viii) We have:

$$
\begin{aligned}
& g\left(\psi^{p}, \chi_{y}\right)=\sum_{x \in \mathbb{F}_{q}^{*}} \psi^{p}(x) \chi_{y}(x) \\
& =\sum_{x \in \mathbb{F}_{q}^{*}} \psi\left(x^{p}\right) \chi_{y}(x) \\
& \text { (setting } z=x^{p} \text {, and by bijectivity of } \sigma \text {) }=\sum_{z \in \mathbb{F}_{q}^{*}} \psi(z) \chi_{y}\left[\sigma^{-1}(z)\right] \\
& \text { (by definition of } \chi_{y} \text {) }=\sum_{z \in \mathbb{F}_{q}^{*}} \psi(z) \chi_{1}\left(\sigma^{-1}[\sigma(y) z]\right) \\
& =* \sum_{z \in \mathbb{F}_{q}^{*}} \psi(z) \chi_{1}[\sigma(y) z] \\
& =g\left(\psi, \chi_{\sigma(y)}\right) .
\end{aligned}
$$

where $=_{*}$ follows from $\operatorname{Tr} \circ \sigma^{-1}=\operatorname{Tr}(c f .(7.3),(6.22)$, and (6.24)).
Even if its module is given by Theorem 7.4.3.(vii), the exact evaluation of a Gauss sum $g(\psi, \chi)$ is a very difficult problem and only a few special values are known. See Gauss' original results in Theorem 4.4.15 for an important
example. Other cases are in the books by Lidl and Niederreiter [96] and by Berndt, Evans, and Williams [20].

7.5 The Hasse-Davenport identity

In this section we reproduce Weil's proof [165] of the Hasse-Davenport identity [70] which relates the Gauss sums over a finite field and those over a finite extension. We split it into several preliminary results.
Let us fix $\psi \in \widehat{\mathbb{F}_{q}^{*}}$ and $\chi \in \widehat{\mathbb{F}_{q}}$, with ψ nontrivial. Moreover, for every monic polynomial $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{F}_{q}[x]$, define the complex number $\lambda(f)=\lambda_{\psi, \chi}(f)$ by setting, keeping in mind (7.6),

$$
\begin{equation*}
\lambda(f)=\psi\left(a_{0}\right) \chi\left(a_{n-1}\right) \tag{7.29}
\end{equation*}
$$

Notice that if $n=1$ then $a_{n-1}=a_{0}$ and therefore $\lambda(f)=\psi\left(a_{0}\right) \chi\left(a_{0}\right)$. Since ψ is not trivial, we have $|\lambda(f)|=1$ if $a_{0} \neq 0$, while $\lambda(f)=0$ if $a_{0}=0$. Moreover, if $g(x)=x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0} \in \mathbb{F}_{q}[x]$ then

$$
f(x) g(x)=x^{n+m}+\left(a_{n-1}+b_{m-1}\right) x^{n+m-1}+\cdots+a_{0} b_{0}
$$

so that

$$
\lambda(f \cdot g)=\psi\left(a_{0} b_{0}\right) \chi\left(a_{n-1}+b_{m-1}\right)=\lambda(f) \lambda(g),
$$

that is, the map $\lambda: \mathbb{F}_{q}^{\text {mon }}[x] \rightarrow \mathbb{C}$ is multiplicative (see Notation 6.6.6).
We define the formal power series $\ell(z)=\ell_{\psi, \chi}(z)$ by setting

$$
\begin{equation*}
\ell(z)=\sum_{f \in \mathbb{F}_{q}^{\operatorname{mon}}[x]} \lambda(f) z^{\operatorname{deg} f} \equiv \sum_{k=0}^{\infty}\left(\sum_{f \in \mathbb{F}_{q}^{\operatorname{mon}, k}[x]} \lambda(f)\right) z^{k} . \tag{7.30}
\end{equation*}
$$

Proposition 7.5.1 The series $\ell(z)$ converges for all $z \in \mathbb{C}$ and its sum is given by

$$
\ell(z)=1+g(\psi, \chi) z .
$$

Proof Clearly, $\mathbb{F}_{q}^{\text {mon }, 0}[x]=\{1\}$. Moreover, $\mathbb{F}_{q}^{\text {mon }, 1}[x]=\left\{x+a_{0}: a_{0} \in \mathbb{F}_{q}\right\}$ so that (recalling Proposition 7.4.2.(iv))

$$
\sum_{f \in \mathbb{F}_{q}^{\text {mon }, 1}[x]} \lambda(f)=\sum_{a_{0} \in \mathbb{F}_{q}} \psi\left(a_{0}\right) \chi\left(a_{0}\right)=g(\psi, \chi) .
$$

Let $k \geq 2$. For every $a_{0}, a_{k-1} \in \mathbb{F}_{q}$ there are exactly q^{k-2} monic polynomials
of the form $x^{k}+a_{k-1} x^{k-1}+\cdots+a_{0}$. Then we have

$$
\sum_{f \in \mathbb{F}_{q}^{\text {mon }, k}[x]} \lambda(f)=q^{k-2} \sum_{a_{k-1}, a_{0}} \psi\left(a_{0}\right) \chi\left(a_{k-1}\right)=0,
$$

since, being ψ nontrivial, $\sum_{a_{0} \in \mathbb{F}_{q}} \psi\left(a_{0}\right)=0$ (cf. (7.9)).
We have the following formal product development:

$$
\begin{equation*}
\ell(z)=\prod_{f \in \mathbb{F}_{q}^{\text {mon,irr }}[x]} \frac{1}{1-\lambda(f) z^{\operatorname{deg} f}}, \tag{7.31}
\end{equation*}
$$

where the right hand side must be seen as the product

$$
\prod_{f \in \mathbb{E}_{q}^{\mathrm{mon}, \mathrm{irr}}[x]}\left(\sum_{r=0}^{\infty} \lambda(f)^{r} z^{r \operatorname{deg} f}\right) .
$$

In other words, the coefficient of z^{k} in $\ell(z)$ is given by

$$
\begin{equation*}
\sum \lambda\left(f_{1}\right)^{r_{1}} \lambda\left(f_{2}\right)^{r_{2}} \cdots \lambda\left(f_{s}\right)^{r_{s}}, \tag{7.32}
\end{equation*}
$$

where the (finite) sum runs over all (distinct) $f_{1}, f_{2}, \ldots, f_{s} \in \mathbb{F}_{q}^{\text {mon,irr }}[x]$ and $r_{1}, r_{2}, \ldots, r_{s} \in \mathbb{N}$ such that $r_{1} \operatorname{deg} f_{1}+r_{2} \operatorname{deg} f_{2}+\cdots+r_{s} \operatorname{deg} f_{s}=k$.
Indeed, (7.31) then amounts to saying that $\sum_{f \in \mathbb{F}_{q}^{\mathrm{mon}, k}[x]} \lambda(f)$ equals the sum (7.32). But this simply follows from the fact that f may be written uniquely (up to reordering the factors) in the form $f=f_{1}^{r_{1}} f_{2}^{r_{2}} \cdots f_{s}^{r_{s}}$ with $f_{1}, f_{2}, \ldots, f_{s} \in \mathbb{F}_{q}^{\text {mon, irr }}[x], r_{1}, r_{2}, \ldots, r_{s} \in \mathbb{N}$, and, since λ is multiplicative, $\lambda\left(f_{1}^{r_{1}} f_{2}^{r_{2}} \cdots f_{s}^{r_{s}}\right)=\lambda\left(f_{1}\right)^{r_{1}} \lambda\left(f_{2}\right)^{r_{2}} \cdots \lambda\left(f_{s}\right)^{r_{s}}$.
Let now $h>1$ and consider the field extension $\mathbb{F}_{q^{h}}$ of \mathbb{F}_{q}. We set

$$
\begin{equation*}
\Psi=\psi \circ \mathrm{N}_{\mathbb{F}_{q^{h}} / \mathbb{F}_{q}} \text { and } X=\chi \circ \operatorname{Tr}_{\mathbb{F}_{q^{h}} / \mathbb{F}_{q}} \tag{7.33}
\end{equation*}
$$

and observe that $\Psi \in \widehat{\mathbb{F}_{q^{h}}}$ is nontrivial and $X \in \widehat{\mathbb{F}_{q^{h}}}$.
Also, in analogy with (7.29), we define $\Lambda=\Lambda_{\Psi, X}: \mathbb{F}_{q^{h}}^{\text {mon }}[x] \rightarrow \mathbb{C}$ by setting

$$
\Lambda(F)=\Psi\left(A_{0}\right) X\left(A_{s-1}\right)
$$

for every monic polynomial $F(x)=x^{s}+A_{s-1} x^{s-1}+\cdots+A_{1} x+A_{0} \in \mathbb{F}_{q^{h}}[x]$.
Lemma 7.5.2 Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be an irreducible polynomial in $\mathbb{F}_{q}[x]$. Let also $h>1$ and set $d=\operatorname{gcd}(h, n)$. Then, if $F(x) \in$ $\mathbb{F}_{q^{h}}[x]$ is an irreducible and monic polynomial that divides f, we have

$$
\Lambda(F)=\lambda(f)^{\frac{h}{d}} .
$$

Proof We start by observing that, by (6.20), $s=\frac{n}{d}$ equals $\operatorname{deg} F$. Write $F(x)=x^{s}+A_{s-1} x^{s-1}+\cdots+A_{1} x+A_{0}$. Let $\alpha \in \mathbb{F}_{q^{n}}$ be a root of f (see Corollary 6.6.4). Clearly, f is the minimal polynomial of α over \mathbb{F}_{q} (see Corollary 6.6.5). Moreover, by virtue of (6.19), we may suppose that α is also a root of F (if necessary, we may replace α by $\sigma^{-\ell}(\alpha)$ for some $\ell \geq 1$). Since $h s=\frac{h}{d} n \geq n$, so that $\mathbb{F}_{q^{h s}} \supseteq \mathbb{F}_{q^{n}}$, we conclude that F is the minimal polynomial of $\alpha \in \mathbb{F}_{q^{h s}}$ over $\mathbb{F}_{q^{h}}$ (again by Corollary 6.6.5). By Proposition 6.7.3 (and the elementary fact that $\sigma(-1)=-1$), we have

$$
\begin{gather*}
A_{0}=(-1)^{s} \mathrm{~N}_{\mathbb{F}_{q^{h s}} / \mathbb{F}_{q^{h}}}(\alpha)=\mathrm{N}_{\mathbb{F}_{q^{h s}} / \mathbb{F}_{q^{h}}}(-\alpha) \tag{7.34}\\
A_{s-1}=-\operatorname{Tr}_{\mathbb{F}_{q^{h s}} / \mathbb{F}_{q^{h}}}(\alpha)=\operatorname{Tr}_{\mathbb{F}_{q^{h s}} / \mathbb{F}_{q^{h}}}(-\alpha) \tag{7.35}\\
a_{0}=\mathrm{N}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(-\alpha) \tag{7.36}\\
a_{n-1}=\operatorname{Tr}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(-\alpha) \tag{7.37}
\end{gather*}
$$

It follows that

$$
\begin{aligned}
& \Lambda(F)=\Psi\left(A_{0}\right) X\left(A_{s-1}\right) \\
&(\text { by }(7.34) \text { and }(7.35))=\Psi\left[\mathrm{N}_{\mathbb{F}_{q^{h s}} / \mathbb{F}_{q^{h}}}(-\alpha)\right] \cdot X\left[\operatorname{Tr}_{\mathbb{F}_{q^{h s}} / \mathbb{F}_{q^{h}}}(-\alpha)\right] \\
&(\text { by }(7.33))=\psi\left[\mathrm{N}_{\mathbb{F}_{q^{h}} / \mathbb{F}_{q}} \circ \mathrm{~N}_{\mathbb{F}_{q^{h s}} / \mathbb{F}_{q^{h}}}(-\alpha)\right] \\
& \cdot \chi\left[\operatorname{Tr}_{\left.\mathbb{F}_{q^{h}} / \mathbb{F}_{q} \circ \operatorname{Tr}_{\mathbb{F}_{q^{h s}} / \mathbb{F}_{q^{h}}}(-\alpha)\right]}\right.
\end{aligned}
$$

(by Proposition 6.7.1) $=\psi\left[\mathrm{N}_{\mathbb{F}_{q} h s} / \mathbb{F}_{q}(-\alpha)\right] \cdot \chi\left[\operatorname{Tr}_{\mathbb{F}_{q} h s} / \mathbb{F}_{q}(-\alpha)\right]$
(again by Proposition 6.7.1) $=\psi\left[\mathrm{N}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}} \circ \mathrm{~N}_{\mathbb{F}_{q^{h s}} / \mathbb{F}_{q^{n}}}(-\alpha)\right]$.

$$
\cdot \chi\left[\operatorname{Tr}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}} \circ \operatorname{Tr}_{\mathbb{F}_{q^{h s}} / \mathbb{F}_{q^{n}}}(-\alpha)\right]
$$

(since $\left.\alpha \in \mathbb{F}_{q^{n}}\right)=\psi\left[\mathrm{N}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(-\alpha)^{h / d}\right] \cdot \chi\left[\frac{h}{d} \operatorname{Tr}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(-\alpha)\right]$
$=\left\{\psi\left[\mathrm{N}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(-\alpha)\right]\right\}^{\frac{h}{d}} \cdot\left\{\chi\left[\operatorname{Tr}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(-\alpha)\right]\right\}^{\frac{h}{d}}$
$($ by (7.36) and $(7.37))=\left[\psi\left(a_{0}\right) \chi\left(a_{n-1}\right)\right]^{\frac{h}{d}}$
$=\lambda(f)^{\frac{h}{d}}$.

Theorem 7.5.3 (Hasse-Davenport identity) With the above notation (in particular, (7.33)) we have

$$
g(\Psi, X)=(-1)^{h-1}[g(\psi, \chi)]^{h}
$$

Proof As in (7.30), with ψ and χ replaced by Ψ and X, respectively, we set

$$
L(Z)=\sum_{\substack{F \in \mathbb{F}_{q^{h}}^{\text {mon }}}} \Lambda(F) Z^{\operatorname{deg} F}
$$

Then, Proposition 7.5.1 and (7.31) become

$$
\begin{aligned}
& L(z)=1+g(\Psi, X) Z=\prod_{F \in \mathbb{F}_{q^{\text {mon irr }}}[x]} \frac{1}{1-\Lambda(F) Z^{\operatorname{deg} F}} \\
& \left(\text { by Proposition 6.6.7) }=\prod_{f \in \mathbb{F}_{q}^{\text {mon,irr }}[x]} \prod_{\substack{F \in \mathbb{F}_{\begin{subarray}{c}{\text { mon,irr } \\
q^{h} \\
F \mid f} }} \frac{1}{} \frac{1}{1-\Lambda(F) Z^{\operatorname{deg} F}}} \\
{1-1}\end{subarray}}\right. \\
& ={ }_{*} \prod_{f \in \mathbb{F}_{q}^{\text {mon, irr }}[x]} \frac{1}{\left[1-\lambda(f)^{h / d} Z^{\operatorname{deg} f / d}\right] d} \\
& \left(\operatorname{setting} Z=z^{h}\right)=\prod_{f \in \mathbb{F}_{q}^{\text {mon, irr }}[x]}\left[1-\lambda(f)^{h / d} z^{\operatorname{deg}(f) \cdot h / d}\right]^{-d} \\
& ={ }_{* *} \prod_{f \in \mathbb{F}_{q}^{\text {mon, }, \text { ir }}} \prod_{[x]}^{h / d-1}\left[1-\lambda(f) \zeta^{d \ell} z^{\operatorname{deg} f}\right]^{-d} \\
& ={ }_{* * *} \prod_{f \in \mathbb{F}_{q}^{\text {mon, irr }}[x]} \prod_{j=0}^{h-1}\left[1-\lambda(f)\left(\zeta^{j} z\right)^{\operatorname{deg} f}\right]^{-1}
\end{aligned}
$$

(by (7.31) and Proposition 7.5.1) $=\prod_{j=0}^{h-1}\left[1+g(\psi, \chi) \zeta^{j} z\right]$

$$
\begin{aligned}
& ={ }_{* * * *} 1-[-g(\psi, \chi)]^{h} z^{h} \\
& =1-[-g(\psi, \chi)]^{h} Z
\end{aligned}
$$

where:
$=_{*}$ follows by Lemma 7.5.2 and recalling that $d=\operatorname{gcd}(\operatorname{deg} f, h)$;
$={ }_{* *}$ follows by observing that, for $n \geq 1, z^{n}-1=\prod_{\ell=0}^{n-1}(z-\exp (2 \ell \pi i / n))$ which yields (after dividing by z^{n} and setting $w=z^{-1}$) $1-w^{n}=$ $\prod_{\ell=0}^{n-1}(1-\exp (2 \ell \pi i / n) w)$ so that, setting $\zeta=\exp (2 \pi i / h)$ and $n=h / d$, $1-w^{h / d}=\prod_{\ell=0}^{h / d-1}\left(1-\zeta^{d \ell} w\right)$;
$={ }_{* * *}$ the numbers

$$
\begin{equation*}
\zeta^{j \operatorname{deg} f}, \quad j=0,1, \ldots, h-1 \tag{7.38}
\end{equation*}
$$

are the same as $\zeta^{d \ell}, \ell=0,1, \ldots, h / d$, with each number in (7.38)
repeated d times. Indeed, $d=\operatorname{gcd}(\operatorname{deg} f, h)$ implies that the period of $\zeta^{\operatorname{deg} f}$ is h / d, and if $\operatorname{deg} f=m d$ then $\zeta^{j \operatorname{deg} f}=\zeta^{m j d}(\operatorname{and} \operatorname{gcd}(m, h)=$ 1);
$={ }_{* * * *}$ finally follows from the equality $1-w^{h}=\prod_{j=0}^{h-1}\left(1-\zeta^{j} w\right)\left(\mathrm{cf} .=_{* *}\right)$.
Then the Hasse-Davenport identity follows from simplifying

$$
1+g(\Psi, X) Z=1-[-g(\psi, \chi)]^{h} Z
$$

7.6 Jacobi sums

Definition 7.6.1 For $a \in \mathbb{F}_{q}$ and $\psi_{1}, \psi_{2}, \ldots, \psi_{n} \in \widehat{\mathbb{F}_{q}^{*}}$, the associated Jacobi sum is the complex number

$$
J_{a}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)=\sum_{\substack{b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{F}_{q}: \\ b_{1}+b_{2}+\cdots+b_{n}=a}} \psi_{1}\left(b_{1}\right) \psi_{2}\left(b_{2}\right) \cdots \psi_{n}\left(b_{n}\right),
$$

with the usual convention as in (7.6).
Note that this sum effectively depends only on $n-1$ terms: we can choose $b_{1}, b_{2}, \ldots, b_{n-1}$ arbitrarily and then b_{n} is uniquely determined. Recall that 1 denotes the trivial character in $\widehat{\mathbb{F}_{q}^{*}}$.

Proposition 7.6.2 Let $a \in \mathbb{F}_{q}$ and $\psi_{1}, \psi_{2}, \ldots, \psi_{n} \in \widehat{\mathbb{F}_{q}^{*}}$. Then the following holds.
(i) $J_{a} \underbrace{(\mathbf{1}, \mathbf{1}, \ldots, \mathbf{1})}_{n \text {-times }}=q^{n-1}$;
(ii) if $a \neq 0$

$$
J_{a}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)=\psi_{1}(a) \psi_{2}(a) \cdots \psi_{n}(a) J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right) ;
$$

(iii) if some but not all of the characters $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$ are trivial, then $J_{a}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)=0 ;$
(iv) if ψ_{n} is nontrivial then

$$
\begin{aligned}
& J_{0}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right) \\
& \quad= \begin{cases}0 & \text { if } \psi_{1} \psi_{2} \cdots \psi_{n} \neq \mathbf{1} \\
\psi_{n}(-1)(q-1) J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n-1}\right) & \text { if } \psi_{1} \psi_{2} \cdots \psi_{n}=\mathbf{1}\end{cases}
\end{aligned}
$$

Proof (i) This is obvious: each term in the sum is equal to 1 .
(ii) Setting $c_{j}=b_{j} a^{-1}$, for $j=1,2, \ldots, n$, from $b_{1}+b_{2}+\cdots+b_{n}=a$ we deduce that $c_{1}+c_{2}+\cdots+c_{n}=1$ and therefore

$$
\begin{aligned}
J_{a}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right) & =\sum_{\substack{c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{F}_{q} q \\
c_{1}+c_{2}+\cdots+c_{n}=1}} \psi_{1}\left(a c_{1}\right) \psi_{2}\left(a c_{2}\right) \cdots \psi_{n}\left(a c_{n}\right) \\
& =\psi_{1}(a) \psi_{2}(a) \cdots \psi_{n}(a) \sum_{\substack{c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{F}_{q}: \\
c_{1}+c_{2}+\cdots+c_{n}=1}} \psi_{1}\left(c_{1}\right) \psi_{2}\left(c_{2}\right) \cdots \psi_{n}\left(c_{n}\right) \\
& =\psi_{1}(a) \psi_{2}(a) \cdots \psi_{n}(a) J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right) .
\end{aligned}
$$

(iii) Up to reordering the characters, we may suppose that $\psi_{1}, \psi_{2}, \ldots, \psi_{k}$ are nontrivial and $\psi_{k+1}, \psi_{k+2}, \ldots, \psi_{n}$ are trivial for some $1 \leq k \leq n-1$. Since for all $b_{1}, b_{2}, \ldots, b_{k} \in \mathbb{F}_{q}$ there exist q^{n-k-1} choices of $\left(b_{k+1}, b_{k+2}, \ldots, b_{n}\right)$ such that $b_{k+1}+b_{k+2}+\cdots+b_{n}=a-b_{1}-b_{2}-\cdots-b_{k}$, we have

$$
\begin{aligned}
J_{a}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right) & =\sum_{\substack{b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{F}_{q}: \\
b_{1}+b_{2}+\cdots+b_{n}=a}} \psi_{1}\left(b_{1}\right) \psi_{2}\left(b_{2}\right) \cdots \psi_{k}\left(b_{k}\right) \\
& =q^{n-k-1}\left(\sum_{b_{1} \in \mathbb{F}_{q}} \psi_{1}\left(b_{1}\right)\right)\left(\sum_{b_{2} \in \mathbb{F}_{q}} \psi_{2}\left(b_{2}\right)\right) \cdots\left(\sum_{b_{k} \in \mathbb{F}_{q}} \psi_{k}\left(b_{k}\right)\right)
\end{aligned}
$$

$$
(\text { by }(7.9))=0 \text {. }
$$

(iv) First note that we may assume $n \geq 2$ because, for $n=1$ and $\psi_{1} \neq \mathbf{1}$, the statement immediately follows from (7.6). Then

$$
\begin{aligned}
& J_{0}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)= \sum_{a \in \mathbb{F}_{q}}\left(\sum_{\substack{b_{1}, b_{2}, \ldots, b_{n-1} \in \mathbb{F}_{q}: \\
b_{1}+b_{2}+\cdots+b_{n-1}=-a}} \psi_{1}\left(b_{1}\right) \psi_{2}\left(b_{2}\right) \cdots \psi_{n-1}\left(b_{n-1}\right)\right) \psi_{n}(a) \\
&\left(\psi_{n}(0)=0\right)= \sum_{a \in \mathbb{F}_{q}^{*}} \psi_{n}(a) J_{-a}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n-1}\right) \\
&(\text { by (ii) })= J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n-1}\right) \\
& \cdot \sum_{a \in \mathbb{F}_{q}^{*}} \psi_{n}(a) \psi_{1}(-a) \psi_{2}(-a) \cdots \psi_{n-1}(-a) \\
&=J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n-1}\right) \psi_{1}(-1) \psi_{2}(-1) \cdots \psi_{n-1}(-1) \\
& \cdot \sum_{a \in \mathbb{F}_{q}^{*}}\left(\psi_{1} \psi_{2} \cdots \psi_{n}\right)(a) .
\end{aligned}
$$

Now, if $\psi_{1} \psi_{2} \cdots \psi_{n}$ is nontrivial, the statement follows from (7.9).

If $\psi_{1} \psi_{2} \cdots \psi_{n}=\mathbf{1}$ then $\sum_{a \in \mathbb{F}_{q}^{*}}\left(\psi_{1} \cdots \psi_{n}\right)(a)=q-1$ and

$$
\psi_{1}(-1) \psi_{2}(-1) \cdots \psi_{n-1}(-1)=\overline{\psi_{n}(-1)}=\psi_{n}(-1)
$$

(recall that $\psi_{n}(-1)= \pm 1$; see Lemma 7.1.4).

Corollary 7.6.3 Suppose that $\psi_{1}, \psi_{2}, \ldots, \psi_{n} \in \widehat{\mathbb{F}_{q}^{*}}$ are nontrivial as well as their product. Then, setting $\psi_{0}=\left(\psi_{1} \psi_{2} \cdots \psi_{n}\right)^{-1}$, one has

$$
J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)=\frac{\psi_{0}(-1)}{q-1} J_{0}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{n}\right)
$$

and

$$
J_{-1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)=\frac{1}{q-1} J_{0}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{n}\right) .
$$

Proof Applying Proposition 7.6.2.(iv) with ψ_{n} replaced by ψ_{0}, we get

$$
J_{0}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{n}\right)=(q-1) \psi_{0}(-1) J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)
$$

For the second identity, use 7.6.2.(ii).

Actually, the term "Jacobi sum" is attributed to J_{1} in [79] and [96], and to J_{-1} in [95].

Proposition 7.6.4 Suppose that $\psi_{1}, \psi_{2}, \ldots, \psi_{n} \in \widehat{\mathbb{F}_{q}^{*}}$ are nontrivial as well as their product. Then, for every nontrivial $\chi \in \widehat{\mathbb{F}_{q}}$, we have:

$$
J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)=\frac{g\left(\psi_{1}, \chi\right) g\left(\psi_{2}, \chi\right) \cdots g\left(\psi_{n}, \chi\right)}{g\left(\psi_{1} \psi_{2} \cdots \psi_{n}, \chi\right)}
$$

Proof Indeed, by Definition 7.4.1 and (7.6), we have

$$
\begin{aligned}
g\left(\psi_{1}, \chi\right) & g\left(\psi_{2}, \chi\right) \cdots g\left(\psi_{n}, \chi\right) \\
& =\left(\sum_{x_{1} \in \mathbb{F}_{q}} \psi_{1}\left(x_{1}\right) \chi\left(x_{1}\right)\right)\left(\sum_{x_{2} \in \mathbb{F}_{q}} \psi_{2}\left(x_{2}\right) \chi\left(x_{2}\right)\right) \cdots\left(\sum_{x_{n} \in \mathbb{F}_{q}} \psi_{n}\left(x_{n}\right) \chi\left(x_{n}\right)\right) \\
& =\sum_{x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{F}_{q}} \psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right) \cdots \psi_{n}\left(x_{n}\right) \chi\left(x_{1}+x_{2}+\cdots+x_{n}\right) \\
& =\sum_{a \in \mathbb{F}_{q}} \chi(a) \sum_{\substack{x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{F}_{q}: \\
x_{1}+x_{2}+\cdots+x_{n}=a}} \psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right) \cdots \psi_{n}\left(x_{n}\right) \\
& =\sum_{a \in \mathbb{F}_{q}} \chi(a) J_{a}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right) \\
& =* J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right) \sum_{a \in \mathbb{F}_{q}^{*}}\left(\psi_{1} \psi_{2} \cdots \psi_{n}\right)(a) \chi(a) \\
& =J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right) g\left(\psi_{1} \psi_{2} \cdots \psi_{n}, \chi\right),
\end{aligned}
$$

where $=*$ follows from Proposition 7.6.2.(ii) and (iv). By Theorem 7.4.3.(vii), $g\left(\psi_{1} \psi_{2} \cdots \psi_{n}, \chi\right) \neq 0$, and this observation ends the proof.

Proposition 7.6.5 Suppose that $\psi_{1}, \psi_{2}, \ldots, \psi_{n} \in \widehat{\mathbb{F}_{q}^{*}}$ are nontrivial while their product $\psi_{1} \psi_{2} \cdots \psi_{n}$ is trivial. Then

$$
J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n-1}\right)=\frac{\psi_{n}(-1)}{q} g\left(\psi_{1}, \chi\right) g\left(\psi_{2}, \chi\right) \cdots g\left(\psi_{n}, \chi\right)
$$

for all nontrivial $\chi \in \widehat{\mathbb{F}_{q}}$. Moreover,

$$
J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)=-\psi_{n}(-1) J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n-1}\right)
$$

Proof Since $\psi_{n}^{-1}=\psi_{1} \psi_{2} \cdots \psi_{n-1}$, by Theorem 7.4.3.(vi) we have

$$
g\left(\psi_{1} \psi_{2} \cdots \psi_{n-1}, \chi\right) g\left(\psi_{n}, \chi\right)=\psi_{n}(-1) q
$$

and therefore, by Proposition 7.6 .4 (recall also that $\psi_{n}(-1)= \pm 1$; see Lemma 7.1.4),

$$
\begin{aligned}
J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n-1}\right) & =\frac{g\left(\psi_{1}, \chi\right) g\left(\psi_{2}, \chi\right) \cdots g\left(\psi_{n-1}, \chi\right)}{g\left(\psi_{1} \psi_{2} \cdots \psi_{n-1}, \chi\right)} \\
& =\frac{\psi_{n}(-1)}{q} g\left(\psi_{1}, \chi\right) g\left(\psi_{2}, \chi\right) \cdots g\left(\psi_{n}, \chi\right)
\end{aligned}
$$

and the first identity is proved.

Note now that the triviality of $\psi_{1} \psi_{2} \cdots \psi_{n}$ and Proposition 7.6.2.(ii) yield

$$
J_{a}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)=J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)
$$

for all $a \in \mathbb{F}_{q}^{*}$. Then

$$
\begin{aligned}
& J_{0}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)+(q-1) J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right) \\
&=\sum_{a \in \mathbb{F}_{q}} J_{a}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right) \\
& \text { (by Definition 7.6.1) }=\sum_{a \in \mathbb{F}_{q}} \sum_{\substack{b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{F}_{q}: \\
b_{1}+b_{2}+\cdots+b_{n}=a}} \psi_{1}\left(b_{1}\right) \psi_{2}\left(b_{2}\right) \cdots \psi_{n}\left(b_{n}\right) \\
&=\sum_{\substack{c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{F}_{q}}} \psi_{1}\left(c_{1}\right) \psi_{2}\left(c_{2}\right) \cdots \psi_{n}\left(c_{n}\right) \\
&=\left(\sum_{c_{1} \in \mathbb{F}_{q}} \psi_{1}\left(c_{1}\right)\right)\left(\sum_{c_{2} \in \mathbb{F}_{q}} \psi_{2}\left(c_{2}\right)\right) \cdots\left(\sum_{c_{n} \in \mathbb{F}_{q}} \psi_{n}\left(c_{n}\right)\right) \\
&(\text { by }(7.9))=0 .
\end{aligned}
$$

Therefore

$$
J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)=\frac{1}{1-q} J_{0}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)
$$

$$
\text { (by Proposition 7.6.2.(iv)) }=-\psi_{n}(-1) J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n-1}\right)
$$

Corollary 7.6.6 Suppose that $\psi_{1}, \psi_{2}, \ldots, \psi_{n} \in \widehat{\mathbb{F}_{q}^{*}}$ are nontrivial. If their product $\psi_{1} \psi_{2} \cdots \psi_{n}$ is nontrivial then

$$
\begin{equation*}
\left|J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)\right|=q^{(n-1) / 2} \tag{7.39}
\end{equation*}
$$

while, if $\psi_{1} \psi_{2} \cdots \psi_{n}$ is trivial then

$$
\begin{equation*}
\left|J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)\right|=q^{(n-2) / 2} \tag{7.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|J_{0}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)\right|=(q-1) q^{(n-2) / 2} \tag{7.41}
\end{equation*}
$$

Proof (7.39) follows from Theorem 7.4.3.(vii) and Proposition 7.6.4. Also, (7.40) follows from 7.4.3.(vii) and Proposition 7.6.5. Finally, (7.41) follows from Proposition 7.6.2.(iv) and (7.39).

Exercise 7.6.7 Let $\psi_{1}, \psi_{2}, \ldots, \psi_{k} \in \widehat{\mathbb{F}_{q}^{*}}$ and suppose that they are not all trivial. Denote by $\Psi_{1}, \Psi_{2}, \ldots, \Psi_{k} \in \widehat{\mathbb{F}_{q^{h}}}$ their corresponding extensions as in (7.33). Prove that

$$
J_{1}\left(\Psi_{1}, \Psi_{2}, \ldots, \Psi_{k}\right)=(-1)^{(h-1)(k-1)} J_{1}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right)
$$

Hint. Use Proposition 7.6.2.(iii) if some character is trivial, then apply Proposition 7.6.4, Proposition 7.6.5, and Theorem 7.5.3.

For more on Jacobi sums we refer to the aforementioned book by Berndt, Evans, and Williams [20].

7.7 On the number of solutions of equations

This section is based on the original paper by Weil [165] and the monographs by Ireland and Rosen [79], Lidl and Niederreiter [96], and Winnie Li [95]. It contains very important results that led Weil (ibidem) to the statement of his celebrated conjecture, solved by Deligne [51] (see also [95]).

Let $r \in \mathbb{N}$ and $f\left(x_{0}, x_{1}, \ldots, x_{r}\right) \in \mathbb{F}_{q}\left[x_{0}, x_{1}, \ldots, x_{r}\right]$. We denote by N_{f} the number of solutions of the equation $f=0$, that is,

$$
N_{f}=\left|\left\{\left(x_{0}, x_{1}, \ldots, x_{r}\right) \in \mathbb{F}_{q}^{r+1}: f\left(x_{0}, x_{1}, \ldots, x_{r}\right)=0\right\}\right|
$$

where \mathbb{F}_{q}^{r+1} is the $(r+1)$-dimensional vector space over \mathbb{F}_{q}. Moreover, if $u \in \mathbb{F}_{q}$ and $n \in \mathbb{N}$, we denote by $N_{n}(u)$ the number of solutions of the equation $x^{n}=u$, that is,

$$
N_{n}(u)=\left|\left\{x \in \mathbb{F}_{q}: x^{n}=u\right\}\right|
$$

Lemma 7.7.1

(i) If $d=\operatorname{gcd}(n, q-1)$ then

$$
N_{n}(u)= \begin{cases}1 & \text { if } u=0 \\ d & \text { if } u \text { is a d-th power in } \mathbb{F}_{q}^{*} \\ 0 & \text { otherwise } .\end{cases}
$$

(ii) If $f\left(x_{0}, x_{1}, \ldots, x_{r}\right)=a_{0} x_{0}^{n_{0}}+a_{1} x_{1}^{n_{1}}+\cdots+a_{r} x_{r}^{n_{r}}$ with $a_{i} \in \mathbb{F}_{q}^{*}$ and integers $n_{i}>0$, for $i=1,2, \ldots, r$, then

$$
N_{f}=\sum_{\substack{u_{0}, u_{1}, \ldots, u_{r} \in \mathbb{F}_{q}: \\ \sum_{i=0}^{r} a_{i} u_{i}=0}} N_{n_{0}}\left(u_{0}\right) N_{n_{1}}\left(u_{1}\right) \cdots N_{u_{r}}\left(u_{r}\right) .
$$

Proof (i) The case $u=0$ is obvious; the remaining is just Remark 1.2.14.
(ii) Put $x_{i}^{n_{i}}=u_{i}$ for $i=0,1, \ldots, r$, and count the number of solutions of these equations.

Lemma 7.7.2 With the same notation as in Lemma 7.7.1.(i) we have

$$
N_{n}(u)=\sum_{\substack{\psi \in \widehat{\mathbb{F}_{q}^{*}}: \\ \psi^{d}=1}} \psi(u)
$$

Proof Suppose first that $u \in \mathbb{F}_{q}^{*}$ is a d-power, say $u=v^{d}$, for some $v \in \mathbb{F}_{q}^{*}$. Then

$$
\begin{aligned}
\sum_{\substack{\psi \in \widehat{\mathbb{F}_{q}^{*}}: \\
\psi^{d}=\mathbf{1}}} \psi(u) & =\sum_{\substack{ \\
\\
\\
\\
=}} \psi \sum_{\substack{\psi \in \widehat{\mathbb{F}_{q}^{*}}:}}\left[\psi(v) v^{d}\right) \\
& =\left|\left\{\psi \in \widehat{\mathbb{F}_{q}^{*}}: \psi^{d}=\mathbf{1}\right\}\right| \\
& =d,
\end{aligned}
$$

where the last equality follows from Proposition 1.2 .12 applied to the cyclic group $\widehat{\mathbb{F}_{q}^{*}}$ (recall also Corollary 2.3.4 and Exercise 7.1.6).

Suppose now that u is not a d th power and let α be a generator of \mathbb{F}_{q}^{*}. Then we can find $k, r \in \mathbb{N}$ with $0<r<d$ such that $u=\alpha^{d k+r}$. Thus, if $\psi^{d}=\mathbf{1}$, we have

$$
\psi(u)=\psi\left(\alpha^{r}\right)
$$

and we may think of ψ as a character of the quotient group \mathbb{F}_{q}^{*} / H, where

$$
H=\left\{v^{d}: v \in \mathbb{F}_{q}^{*}\right\}=\left\{\alpha^{k d}: k=0,1, \ldots, \frac{q-1}{d}\right\}
$$

Since \mathbb{F}_{q}^{*} / H is cyclic of order $q-1 /((q-1) / d)=d$, we conclude that $\{\psi \in$ $\left.\widehat{\mathbb{F}_{q}^{*}}: \psi^{d}=\mathbf{1}\right\}$ may be identified with $\widehat{\mathbb{F}_{q}^{*} / H}$, so that, using the dual orthogonal relations (7.10), we deduce that

$$
\sum_{\substack{\psi \in \widehat{\mathbb{F}_{q}^{*}}: \\ \psi^{d}=1}} \psi(u)=\sum_{\psi \in \widehat{\mathbb{F}_{q}^{*} / H}} \psi(1) \psi\left(\alpha^{r}\right)=0
$$

To conclude, in both cases, we may invoke Lemma 7.7.1.(i).

In the following we use the notation

$$
\Xi=\left\{\left(\psi_{0}, \psi_{1}, \ldots, \psi_{r}\right) \in\left(\widehat{\mathbb{F}_{q}^{*}}\right)^{r+1}: \psi_{i} \neq \mathbf{1}, \psi_{i}^{d_{i}}=\mathbf{1}, i=0,1, \ldots, r\right\}
$$

and

$$
\Xi_{1}=\left\{\left(\psi_{0}, \psi_{1}, \ldots, \psi_{r}\right) \in \Xi: \psi_{0} \psi_{1} \cdots \psi_{r}=\mathbf{1}\right\} .
$$

Theorem 7.7.3 (Hua-Vandiver [77], Weil [165]: the homogeneous case) Let f be as in Lemma 7.7.1.(ii) and set $d_{i}=\operatorname{gcd}\left(n_{i}, q-1\right)$, for $i=$ $0,1, \ldots, r$. Then

$$
\begin{equation*}
N_{f}=q^{r}+\sum_{\left(\psi_{0}, \psi_{1}, \ldots, \psi_{r}\right) \in \Xi_{1}} \psi_{0}\left(a_{0}^{-1}\right) \psi_{1}\left(a_{1}^{-1}\right) \cdots \psi_{r}\left(a_{r}^{-1}\right) J_{0}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{r}\right) \tag{7.42}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|N_{f}-q^{r}\right| \leq(q-1) q^{\frac{r-1}{2}} M \tag{7.43}
\end{equation*}
$$

where $M=\left|\Xi_{1}\right|$.
Proof From Lemma 7.7.1 and Lemma 7.7.2 we deduce that

$$
\begin{aligned}
& N_{f}=\sum_{\substack{u_{0}, u_{1}, \ldots, u_{r} \in \mathbb{F}_{q}: \\
\sum_{i=0}^{i}: a_{i} u_{i}=0}} \sum_{\substack{\psi_{0}, \psi_{1}, \ldots, \psi_{r} \in \widehat{\mathbb{F}_{q}^{*}}: \\
\psi_{i}^{d_{i}}=\mathbf{1}, i=0, \ldots, r}} \psi_{0}\left(u_{0}\right) \psi_{1}\left(u_{1}\right) \cdots \psi_{r}\left(u_{r}\right) \\
& =\sum_{\psi_{0}, \psi_{1}, \ldots, \psi_{r} \in \widehat{\mathbb{P}_{q}^{*}}:} \psi_{0}\left(a_{0}^{-1}\right) \psi_{1}\left(a_{1}^{-1}\right) \cdots \psi_{r}\left(a_{r}^{-1}\right) \\
& \psi_{i}^{d_{i}}=\mathbf{1}, i=0,1, \ldots, r \\
& \cdot \sum_{\substack{u_{0}, u_{1}, \ldots, u_{r} \in \mathbb{F}_{q}: \\
\sum_{i=0}^{r}, a_{i} u_{i}=0}} \psi_{0}\left(a_{0} u_{0}\right) \psi_{1}\left(a_{1} u_{1}\right) \cdots \psi_{r}\left(a_{r} u_{r}\right) \\
& =\sum_{\substack{\psi_{0}, \psi_{1}, \ldots, \psi_{r} \in \widehat{\mathbb{F}_{q}^{*}}: \\
\psi_{i}^{d_{i}}=1, i=0,1, \ldots, r}} \psi_{0}\left(a_{0}^{-1}\right) \psi_{1}\left(a_{1}^{-1}\right) \cdots \psi_{r}\left(a_{r}^{-1}\right) J_{0}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{r}\right) .
\end{aligned}
$$

Then (7.42) follows from Proposition 7.6.2.(i),(iii),(iv). Moreover, we deduce (7.43) from (7.42) and (7.41).

We now consider the equation

$$
\begin{equation*}
a_{0} x_{0}^{n_{0}}+a_{1} x_{1}^{n_{1}}+\cdots+a_{r} x_{r}^{n_{r}}=b, \tag{7.44}
\end{equation*}
$$

where $n_{0}, n_{1}, \ldots, n_{r}$ are positive integers and $b \in \mathbb{F}_{q}^{*}$. We set

$$
f\left(x_{0}, x_{1}, \ldots, x_{r}\right)=a_{0} x_{0}^{n_{0}}+a_{1} x_{1}^{n_{1}}+\cdots+a_{r} x_{r}^{n_{r}}-b
$$

and

$$
N_{f}=\left|\left\{\left(x_{0}, x_{1}, \ldots, x_{r}\right) \in \mathbb{F}_{q}^{r+1}: f\left(x_{0}, x_{1}, \ldots, x_{r}\right)=0\right\}\right|
$$

Theorem 7.7.4 (Hua-Vandiver, Weil: the non-homogeneous case) With the notation above, and setting again $d_{i}=\operatorname{gcd}\left(n_{i}, q-1\right), i=0,1, \ldots, r$, we have:

$$
\begin{align*}
N_{f}=q^{r}+\sum_{\left(\psi_{0}, \psi_{1}, \ldots, \psi_{r}\right) \in \Xi} & \left(\psi_{0} \psi_{1} \cdots \psi_{r}\right)(b) \\
\cdot & \psi_{0}\left(a_{0}^{-1}\right) \psi_{1}\left(a_{1}^{-1}\right) \cdots \psi_{r}\left(a_{r}^{-1}\right) J_{1}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{r}\right) \tag{7.45}
\end{align*}
$$

and

$$
\begin{equation*}
\left|N_{f}-q^{r}\right| \leq M q^{\frac{r-1}{2}}+M^{\prime} q^{\frac{r}{2}} \tag{7.46}
\end{equation*}
$$

where, as before, $M=\left|\Xi_{1}\right|$, and $M^{\prime}=\left|\Xi \backslash \Xi_{1}\right|$.

Proof Arguing as in the proof of Theorem 7.7.3 we get

$$
\begin{aligned}
& N_{f}=\sum_{\substack{u_{0}, u_{1}, \ldots, u_{r} \in \mathbb{F}_{q}: \\
\sum_{i=0}^{r} a_{i} u_{i}=b}} \sum_{\substack{\psi_{0}, \psi_{1}, \ldots, \psi_{r} \in \widehat{\mathbb{F}_{q}^{*}}: \\
\psi_{i}^{d_{i}}=\mathbf{1}, i=0,1, \ldots, r}} \psi_{0}\left(u_{0}\right) \psi_{1}\left(u_{1}\right) \cdots \psi_{r}\left(u_{r}\right) \\
& =\sum_{\substack{\psi_{0}, \psi_{1}, \ldots, \psi_{r} \in \widehat{\mathbb{F}_{q}^{*}}: \\
\psi_{i}^{d_{i}}=\mathbf{1}, i=0,1, \ldots, r}} \psi_{0}\left(a_{0}^{-1} b\right) \psi_{1}\left(a_{1}^{-1} b\right) \cdots \psi_{r}\left(a_{r}^{-1} b\right) \\
& \sum_{\substack{u_{0}, u_{1}, \ldots, u_{r} \in \mathbb{F}_{q}: \\
\sum_{i=0}^{r} b^{-1} a_{i} u_{i}=1}} \psi_{0}\left(b^{-1} a_{0} u_{0}\right) \psi_{1}\left(b^{-1} a_{1} u_{1}\right) \cdots \psi_{r}\left(b^{-1} a_{r} u_{r}\right) \\
& =\quad \sum\left(\psi_{0} \psi_{1} \cdots \psi_{r}\right)(b) \psi_{0}\left(a_{0}^{-1}\right) \psi_{1}\left(a_{1}^{-1}\right) \cdots \psi_{r}\left(a_{r}^{-1}\right) J_{1}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{r}\right) \\
& \psi_{0}, \psi_{1}, \ldots, \psi_{r} \in \widehat{\mathbb{P}_{q}^{*}}: \\
& \psi_{i}^{d_{i}}=\mathbf{1}, i=0,1, \ldots, r
\end{aligned}
$$

and (7.45) follows again from Proposition 7.6.2.(i),(iii), while the estimate (7.46) follows easily from (7.39) and (7.40).

Corollary 7.7.5 With the same notation as in Theorem 7.7.4 we have

$$
\left|N_{f}-q^{r}\right| \leq\left(d_{0}-1\right)\left(d_{1}-1\right) \cdots\left(d_{r}-1\right) q^{\frac{r}{2}}
$$

Proof Just note that $M+M^{\prime}=|\Xi|=\left(d_{0}-1\right)\left(d_{1}-1\right) \cdots\left(d_{r}-1\right)$.
Remark 7.7.6 Note that, both in Theorem 7.7.3 and in Theorem 7.7.4, if
$d_{i}=1$ for some i, then $N_{f}=q^{r}$. This is obvious: for instance, suppose that $n_{0}=1$. Then, for any choice of $x_{1}, x_{2}, \ldots, x_{r} \in \mathbb{F}_{q}$, setting

$$
x_{0}=-\frac{1}{a_{0}}\left[a_{1} x_{1}^{n_{1}}+a_{2} x_{2}^{n_{2}}+\cdots+a_{r} x_{r}^{n_{r}}-b\right]
$$

yields a solution of (7.44). Moreover, since the exact formulas and the estimates depend only on the numbers $d_{0}, d_{1}, \ldots, d_{r}$, one may assume that $n_{0}, n_{1}, \ldots, n_{r}$ are divisors of $q-1$.

Corollary 7.7.7 Let p be a prime number, $n_{0}, n_{1}, \ldots, n_{r}$ positive integers, and $a_{0}, a_{1}, \ldots, a_{r}, b \in \mathbb{Z}$. Then the number $N(p)$ of (non-congruent) solutions $\left(x_{0}, x_{1}, \ldots, x_{r}\right) \in \mathbb{Z}^{r+1}$ of the congruence

$$
a_{0} x_{0}^{n_{0}}+a_{1} x_{1}^{n_{1}}+\cdots+a_{r} x_{r}^{n_{r}}=b \quad \bmod p
$$

satisfies the condition

$$
\left|N(p)-p^{r}\right| \leq\left(n_{0}-1\right)\left(n_{1}-1\right) \cdots\left(n_{r}-1\right) p^{r / 2} .
$$

In particular,

$$
\lim _{\substack{p \rightarrow+\infty \\ p \text { prime }}} N(p)=+\infty .
$$

Proof This follows immediately from Corollary 7.7.5 after observing that $n_{i} \geq d_{i}$ for all is.

We conclude this section with an exercise.

Exercise 7.7.8

(1) Prove that for every integer $k \geq 0$

$$
\sum_{x \in \mathbb{F}_{q}} x^{k}= \begin{cases}0 & \text { if } k=0 \text { or }(q-1) \nmid k \\ -1 & \text { if } k>0 \text { and }(q-1) \mid k\end{cases}
$$

(here we assume $0^{0}=1$).
Hint: for $k>0$ use a generator α of \mathbb{F}_{q}^{*}.
(2) Show that if $f \in \mathbb{F}_{q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\operatorname{deg}(f)<n(q-1)$ then

$$
\sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}_{q}} f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=0
$$

Hint: from (1) deduce the statement for a monomial.
(3) Show that if $f \in \mathbb{F}_{q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $F=1-f^{q-1}$ then

$$
N_{f}=\sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}_{q}} F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right),
$$

where N_{f} is seen as an element of \mathbb{F}_{q}.
(4) (Warning's Theorem [164]) Prove that if $f \in \mathbb{F}_{q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\operatorname{deg}(f)<n$, then N_{f} is divisible by p.
Hint: from (2) and (3) it follows that $N_{f}=0 \bmod p$.
(5) (Chevalley's Theorem [39]) Show that if $f \in \mathbb{F}_{q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ satisfies $f(0,0, \ldots, 0)=0$ and $\operatorname{deg}(f)<n$, then $N_{f} \geq 2$. In particular, $f=0$ has a nontrivial solution.

Remark 7.7.9 Chevalley's theorem was conjectured by E. Artin in 1935 and immediately proved by Chevalley and generalized by Warning. The proof sketched in the above exercise is due to Ax [16]. Warning, actually, proved that $N_{f} \geq q^{n-\operatorname{deg}(f)}$; see the monograph by Lidl and Niederreiter [96], where these results are proved also for systems of polynomials.

7.8 The FFT over a finite field

In this section, following again [160], we describe the matrix form of several algorithms for the additive Fourier transform over \mathbb{F}_{q}, with $q=p^{h}, p \geq 3$ prime, and $h \geq 1$. We generalize Rader's algorithm discussed at the end of Section 5.4. The original sources are [2] and [14].
The Fourier Transform over \mathbb{F}_{q} is defined as in (2.15) by setting

$$
\begin{equation*}
\widehat{f}(\chi)=\sum_{x \in \mathbb{F}_{q}} f(x) \overline{\chi(x)} \tag{7.47}
\end{equation*}
$$

for all $f \in L\left(\mathbb{F}_{q}\right)$ and $\chi \in \widehat{\mathbb{F}_{q}}$. However, to keep notation similar to that in Section 5.4, we avoid conjugation for χ when describing the matrix representing (7.47). By means of Theorem 6.3.3, we fix a generator α of the cyclic group \mathbb{F}_{q}^{*} and we introduce the following ordering for the elements of \mathbb{F}_{q} :

$$
\begin{equation*}
0, \alpha^{0}=1, \alpha, \alpha^{2}, \ldots, \alpha^{q-2} . \tag{7.48}
\end{equation*}
$$

Then, using the representation (7.5), we define the Fourier Matrix $A_{\mathbb{F}_{q}}$ of \mathbb{F}_{q} by setting

$$
A_{\mathbb{F}_{q}}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{7.49}\\
1 & & & \\
\vdots & & C_{q-1} & \\
1 & & &
\end{array}\right)
$$

where

$$
\begin{equation*}
C_{q-1}=\left(\exp \left[2 \pi i \operatorname{Tr}\left(\alpha^{k+j}\right) / p\right]\right)_{k, j=0}^{q-2} \tag{7.50}
\end{equation*}
$$

is the associated core matrix. C_{q-1} has the following property: its (k, j) entry depends only upon $k+j \bmod q-1$. A matrix with this property is called skew circulant $\bmod q-1$. In particular, C_{q-1} is Hankel and therefore symmetric. Note also that in [50] it is given a different definition of skewcirculant matrices, but we follow the terminology in [160]. Clearly, (7.49) represents the matrix form of Rader's algorithm over \mathbb{F}_{q}. Now we describe three block decompositions of the core matrix C_{q-1}. First of all, we assume that $h \geq 2$ so that $q-1=p^{h}-1$ is not a prime number (for instance, it is divisible by $p-1$). We begin with a description of an analogue of the CooleyTuckey algorithm due to Agarwal and Tuckey. Suppose that $q-1=m n$ is a nontrivial (arbitrary) factorization of $q-1$. Denote by

$$
\begin{equation*}
B=\left\langle\alpha^{m}\right\rangle \tag{7.51}
\end{equation*}
$$

the subgroup generated by α^{m}. Clearly, B is cyclic of order n and we have the decomposition

$$
\mathbb{F}_{q}^{*}=\coprod_{k=0}^{m-1} \alpha^{k} B
$$

Now we choose a different ordering for \mathbb{F}_{q} (in place of (7.48)): we first order B by setting

$$
\begin{equation*}
1, \alpha^{m}, \alpha^{2 m}, \ldots, \alpha^{(n-1) m} \tag{7.52}
\end{equation*}
$$

and then we order \mathbb{F}_{q} :

$$
\begin{equation*}
0, B, \alpha B, \ldots, \alpha^{m-1} B \tag{7.53}
\end{equation*}
$$

The core matrix corresponding to this ordering has the form

$$
\left(\begin{array}{cccc}
C(0,0) & C(0,1) & \ldots & C(0, m-1) \tag{7.54}\\
C(1,0) & C(1,1) & \ldots & C(1, m-1) \\
\vdots & \vdots & \ddots & \vdots \\
C(m-1,0) & C(m-1,1) & \ldots & C(m-1, m-1)
\end{array}\right)
$$

where $C\left(r, r^{\prime}\right)$, with $0 \leq r, r^{\prime} \leq m-1$, is the $n \times n$ matrix

$$
\begin{equation*}
C\left(r, r^{\prime}\right)=\left(\exp \left[2 \pi i \operatorname{Tr}\left(\alpha^{r+r^{\prime}+\left(s+s^{\prime}\right) m}\right) / p\right]\right)_{s, s^{\prime}=0}^{n-1} \tag{7.55}
\end{equation*}
$$

Note that $C\left(r, r^{\prime}\right)$ is skew-circulant $\bmod n$. It follows that (7.54) is a Hankel (actually skew-circulant mod $n m$) matrix whose blocks are Hankel (actually
skew-circulant $\bmod n$) matrices. A further property is presented in the following proposition.

Proposition 7.8.1 Set

$$
S_{n}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \tag{7.56}\\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

If $r+r^{\prime}=r_{1}+r_{1}^{\prime} \bmod m$ and

$$
\begin{equation*}
\ell m=r+r^{\prime}-r_{1}-r_{1}^{\prime} \tag{7.57}
\end{equation*}
$$

for some positive ℓ, then

$$
C\left(r, r^{\prime}\right)=S_{n}^{\ell} C\left(r_{1}, r_{1}^{\prime}\right)
$$

Proof From (7.57) we deduce that

$$
r+r^{\prime}+\left(s+s^{\prime}\right) m=r_{1}+r_{1}^{\prime}+\left(\ell+s+s^{\prime}\right) m
$$

so that

$$
\left[C\left(r, r^{\prime}\right)\right]_{s, s^{\prime}}=\left[C\left(r_{1}, r_{1}^{\prime}\right)\right]_{s+\ell, s^{\prime}}=\left[S_{n}^{\ell} C\left(r_{1}, r_{1}^{\prime}\right)\right]_{s, s^{\prime}}
$$

where $s+\ell$ must be considered $\bmod n$.
Remark 7.8.2 Clearly, the matrices (7.50) and (7.54) are similar and the similarity is realized by means of a permutation matrix (recall Corollary 5.3.2). More precisely, by means of the permutation of \mathbb{F}_{q}^{*} that transforms the ordered sequence (7.48) into the ordered sequence (7.53). The easy details are left to the reader and the same remark holds true for the block decomposition (7.59).

Now we give an analogue of the Good formula (Corollary 5.4.13).
Suppose, as before, that $q-1=n m$. We now also require that $\operatorname{gcd}(n, m)=$

1. By Proposition 1.2 .5 we have

$$
\begin{equation*}
\mathbb{Z}_{m n} \cong \mathbb{Z}_{m} \oplus \mathbb{Z}_{n} \tag{7.58}
\end{equation*}
$$

More precisely, the generator of \mathbb{Z}_{m} is n and the generator of \mathbb{Z}_{n} is m (for instance, take $a=1$ in the proof of Proposition 1.2.5, or use Bezout's identity (1.2): $1=u m+v n \Rightarrow m=1 \bmod n$ and $n=1 \bmod m)$. Setting $A=\left\langle\alpha^{n}\right\rangle$
and recalling that $B=\left\langle\alpha^{m}\right\rangle$ (cf. (7.51)), (7.58) yields the multiplicative decomposition

$$
\mathbb{F}_{q}^{*} \cong A \times B
$$

with A (respectively B) multiplicative cyclic of order m (respectively n). Then, we may replace the ordering (7.53) by

$$
0, B, \alpha^{n} B, \alpha^{2 n} B, \ldots, \alpha^{(m-1) n} B
$$

where B is ordered again as in (7.52). With this new ordering, the core matrix has the form

$$
\left(\begin{array}{cccc}
\widetilde{C}(0,0) & \widetilde{C}(0,1) & \ldots & \widetilde{C}(0, m-1) \tag{7.59}\\
\widetilde{C}(1,0) & \widetilde{C}(1,1) & \ldots & \widetilde{C}(1, m-1) \\
\vdots & \vdots & & \vdots \\
\widetilde{C}(m-1,0) & \widetilde{C}(m-1,1) & \ldots & \widetilde{C}(m-1, m-1)
\end{array}\right)
$$

where $\widetilde{C}\left(r, r^{\prime}\right)$, with $0 \leq r, r^{\prime} \leq m-1$, is the $n \times n$ matrix

$$
\widetilde{C}\left(r, r^{\prime}\right)=\left(\exp \left[2 \pi i \operatorname{Tr}\left(\alpha^{\left(r+r^{\prime}\right) n+\left(s+s^{\prime}\right) m}\right) / p\right]\right)_{s, s^{\prime}=0}^{n-1}
$$

The \widetilde{C} s have the same properties of the $C \mathrm{~s}$ in (7.54). Moreover,

$$
\widetilde{C}\left(r, r^{\prime}\right)=\widetilde{C}\left(r_{1}, r_{1}^{\prime}\right)
$$

if $r+r^{\prime}=r_{1}+r_{1}^{\prime} \bmod m$. Setting $T(r)=\widetilde{C}(r, 0)$, matrix (7.59) takes the form:

$$
\left(\begin{array}{cccc}
T(0) & T(1) & \cdots & T(m-1) \\
T(1) & T(2) & \cdots & T(0) \\
\vdots & \vdots & & \vdots \\
T(m-1) & T(0) & \cdots & T(m-2)
\end{array}\right)
$$

This matrix is block skew-circulant $\bmod m$ and each block is skew-circulant $\bmod n$.

We consider now a particular case of (7.54). We take $m=\frac{p^{h}-1}{p-1}$ and $n=p-1$. The matrix S_{p-1} is as in (7.56). Set also $\omega=e^{2 \pi i / p}$ and $\varepsilon=\alpha^{m}$. Note that now $B \cong \mathbb{Z}_{p}^{*}$ and $\varepsilon \in \mathbb{F}_{p}^{*}$ is a generator of this group (recall Corollary 6.3.5).

Theorem 7.8.3 (Auslander, Feigh, and Winograd) Define

$$
\nu:\{0,1, \ldots, q-1\} \rightarrow\{0,1, \ldots, p-2\} \cup\{-\infty\}
$$

by means of the relation

$$
\begin{cases}\operatorname{Tr}\left(\alpha^{r}\right)=\varepsilon^{\nu(r)} & \text { if } \operatorname{Tr}\left(\alpha^{r}\right) \neq 0 \\ \nu(r)=-\infty & \text { if } \operatorname{Tr}\left(\alpha^{r}\right)=0\end{cases}
$$

for $r=0,1, \ldots, q-1$. Set also

$$
S_{p-1}^{-\infty}=\left(\begin{array}{cccc}
-1 & -1 & \cdots & -1 \\
-1 & -1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & -1
\end{array}\right)
$$

Then the matrix (7.54) may be factorized as

$$
\left[I_{m} \otimes C(p)\right] S
$$

where we use the notation in (5.27) and

$$
S=\left(\begin{array}{cccc}
S_{p-1}^{-\nu(0)} & S_{p-1}^{-\nu(1)} & \ldots & S_{p-1}^{-\nu(m-1)} \\
S_{p-1}^{-\nu(1)} & S_{p-1}^{-\nu(2)} & \ldots & S_{p-1}^{-\nu(m)} \\
\vdots & \vdots & & \vdots \\
S_{p-1}^{-\nu(m-1)} & S_{p-1}^{-\nu(m)} & \cdots & S_{p-1}^{-\nu(2 m-2)}
\end{array}\right)
$$

and

$$
C(p)=\left(\omega^{\varepsilon^{k+j}}\right)_{k, j=0}^{p-2}
$$

Proof First of all, recall that the trace is \mathbb{F}_{p}-linear by Hilbert Satz 90 (cf. Theorem 6.7.2). Therefore, since $\varepsilon=\alpha^{m} \in \mathbb{F}_{p}$ in (7.55) we have

$$
\begin{equation*}
\operatorname{Tr}\left(\alpha^{r+r^{\prime}+\left(s+s^{\prime}\right) m}\right)=\operatorname{Tr}\left(\alpha^{r+r^{\prime}} \varepsilon^{s+s^{\prime}}\right)=\varepsilon^{s+s^{\prime}} \operatorname{Tr}\left(\alpha^{r+r^{\prime}}\right) \tag{7.60}
\end{equation*}
$$

We consider two cases.
First case: $\operatorname{Tr}\left(\alpha^{r+r^{\prime}}\right) \neq 0$. Then $\operatorname{Tr}\left(\alpha^{r+r^{\prime}}\right)=\varepsilon^{\nu\left(r+r^{\prime}\right)}$ so that (7.55) becomes

$$
\left[C\left(r, r^{\prime}\right)\right]_{s, s^{\prime}}=\omega^{\varepsilon^{s+s^{\prime}+\nu\left(r+r^{\prime}\right)}}
$$

On the other hand, since $S_{p-1}^{-\ell}=\left(\delta_{i-\ell, j}\right)_{i, j=0}^{p-2}$, we have

$$
\left[C(p) S_{p-1}^{-\nu\left(r+r^{\prime}\right)}\right]_{s, s^{\prime}}=\sum_{t=0}^{p-1} \omega^{\varepsilon^{s+t}} \delta_{t-\nu\left(r+r^{\prime}\right), s^{\prime}}=\omega^{\varepsilon^{s+s^{\prime}+\nu\left(r+r^{\prime}\right)}}
$$

Second case: $\operatorname{Tr}\left(\alpha^{r+r^{\prime}}\right)=0$. Then, by means of (7.60), equation (7.55)
becomes

$$
C\left(r, r^{\prime}\right)=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

Moreover, since $\sum_{x \in \mathbb{F}_{p}} \omega^{x}=\sum_{k=0}^{p-1} \omega^{k}=\frac{\omega^{p}-1}{\omega-1}=0$, we have

$$
\left[C(p) S_{p-1}^{-\infty}\right]_{s, s^{\prime}}=-\sum_{t=0}^{p-2} \omega^{\varepsilon^{s+t}}=-\sum_{x \in \mathbb{F}_{p}^{*}} \omega^{x}=1 .
$$

It follows that

$$
C(p) S_{p-1}^{-\infty}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right)=C\left(r, r^{\prime}\right)
$$

Part III

Graphs and expanders

8

Graphs and their products

This chapter is an introduction to (finite) graph theory with emphasis on spectral analysis of k-regular graphs. In Section 8.2 we study strongly regular graphs with a description of the celebrated Petersen graph and the Clebsch graph: the latter, in particular, is also described in terms of number theory over the Galois field \mathbb{F}_{16}. In the subsequent sections, we describe bipartite graphs as well as three basic examples (the complete graph, the hypercube, and the discrete circle) based on the theories developed in Chapter 4. Other explicit examples can be found in Section 8.8, where we give a detailed exposition of various notions of graph products, culminating with the study of the lamplighter graph, of the replacement product and the zig-zag product, in Section 8.11, Section 8.12, and Section 8.13, respectively. See also our first monograph [29]. In Chapter 9 we shall focus on more advanced topics such as the Alon-Milman-Dodziuk theorem, the Alon-Boppana-Serre theorem, and explicit constructions of expanders.

8.1 Graphs and their adjacency matrix

An undirected graph is a triple $\mathcal{G}=(X, E, r)$, where X is a nonempty set of vertices, E is a set of edges, and $r: E \rightarrow \mathcal{P}(X)$ is a map from the edge set into the power set of X such that $0<|r(e)| \leq 2$ (as usual, $|\cdot|$ denotes cardinality). If $e \in E$ satisfies $r(e)=\{x\}$, then we say that e is a loop based at x. We denote by $E_{0}=\{e \in E:|r(e)|=1\}$ the set of all loops of \mathcal{G} and denote by $E_{1}=E \backslash E_{0}=\{e \in E:|r(e)|=2\}$ the set of remaining edges. Moreover, if there exist distinct edges $e, e^{\prime} \in E$ such that $r(e)=r\left(e^{\prime}\right)$, equivalently, if the map r is not injective, we say that the graph \mathcal{G} has multiple edges. On the other had, if the map r is injective, that is, \mathcal{G} has no multiple edges, one says that the graph is simple. Thus, a simple (undirected) graph without loops can be regarded just as a pair $\mathcal{G}=(X, E)$, where X is the set of vertices
and any edge $e \in E$ is a two-subset $\{x, y\}$ of (distinct) elements of X (we identify e with $r(e)$).

A directed graph is a triple $\mathcal{G}=(X, E, \vec{r})$, where X is a set of vertices, E is a set of (oriented) edges, and $\vec{r}: E \rightarrow X \times X$, called an orientation of \mathcal{G}, is a map from the edge set into the Cartesian square of X. Writing $\vec{r}(e)=\left(e_{-}, e_{+}\right)$, we say that e_{-}(respectively e_{+}) is the initial (respectively terminal) vertex of the oriented edge $e \in E$. Note that a directed graph $\mathcal{G}=(X, E, \vec{r})$ can be viewed as an undirected graph $\mathcal{G}=(X, E, r)$ by setting

$$
\begin{equation*}
r(e)=\left\{e_{-}, e_{+}\right\} \tag{8.1}
\end{equation*}
$$

for all $e \in E$. Clearly, $e \in E$ is a loop if and only if $e_{-}=e_{+}$. Conversely, given an undirected graph $\mathcal{G}=(X, E, r)$, for every $e \in E_{1}$ we may arbitrarily choose a labeling of the two elements in $r(e)$ and write $r(e)=\left\{e_{-}, e_{+}\right\}$. This defines an orientation $\vec{r}: E \rightarrow X \times X$ by setting

$$
\vec{r}(e)= \begin{cases}(x, x) & \text { if } e \in E_{0} \text { and } r(e)=\{x\} \\ \left(e_{-}, e_{+}\right) & \text {if } e \in E_{1} \text { and } r(e)=\left\{e_{-}, e_{+}\right\} .\end{cases}
$$

Note that there are exactly $2^{\left|E_{1}\right|}$ different orientations on \mathcal{G}. Moreover the undirected graph associated (via (8.1)) with the newly defined directed graph $\mathcal{G}=(X, E, \vec{r})$ is the original undirected graph $\mathcal{G}=(X, E, r)$.
From now on, unless otherwise specified, all graphs will be undirected.
Let $\mathcal{G}=(X, E, r)$ be an (undirected) graph.
Two vertices x and y are called neighbors or adjacent, and we write $x \sim y$, provided there exists $e \in E$ such that $r(e)=\{x, y\}$. We then say that the edge e joins the vertices x and y. Given a vertex $x \in X$, we denote by

$$
\mathcal{N}(x)=\{y \in X: y \sim x\} \subseteq X
$$

the neighborhood of x, by $E_{x}=\{e \in E: r(e) \ni x\}$ the set of edges incident to x, and by $\operatorname{deg} x=\left|E_{x}\right|$, the number of edges incident to x, called the degree of x. Note that a vertex $x \in V$ belongs to $\mathcal{N}(x)$ if and only if there exists a loop $e \in E$ based at x (that is, $r(e)=\{x\}$). When $\operatorname{deg}(\cdot)=k$ is constant, we say that the graph is regular of degree k, or k-regular. Note that if \mathcal{G} is simple then $|\mathcal{N}(x)|=\left|E_{x}\right|=\operatorname{deg} x$.
If X and E are both finite we say that \mathcal{G} is finite. Note that a simple graph $\mathcal{G}=(X, E)$ without loops is finite if (and only if) X is finite.
Let $\mathcal{F}=(Y, F, s)$ be another (undirected) graph.
\mathcal{F} is called a subgraph of \mathcal{G} provided $Y \subseteq X, F \subseteq E$, and $\left.r\right|_{F}=s$.
\mathcal{F} is said to be isomorphic to \mathcal{G} if there exists a pair $\Phi=(\phi, \varphi)$ of bijections
$\phi: X \rightarrow Y$ and $\varphi: E \rightarrow F$ such that

$$
s(\varphi(e))=\phi(r(e))
$$

for all $e \in E$. One then writes $\Phi: \mathcal{G} \rightarrow \mathcal{F}$ and calls it an isomorphism of the graphs \mathcal{G} and \mathcal{F}. Moreover, if \mathcal{G} and \mathcal{F} are both directed, then $\Phi=(\phi, \varphi)$ is a (directed graphs) isomorphism of \mathcal{G} and \mathcal{F} if

$$
\left(\phi\left(e_{-}\right), \phi\left(e_{+}\right)\right)=\left(\varphi(e)_{-}, \varphi(e)_{+}\right)
$$

for all $e \in E$.
A (finite) path in \mathcal{G} is a sequence $p=\left(x_{0}, e_{1}, x_{1}, e_{2}, x_{2} \ldots, e_{m}, x_{m}\right)$, with $x_{0}, x_{1}, \ldots, x_{m} \in X$ and $e_{1}, e_{2}, \ldots, e_{m} \in E$ such that $r\left(e_{i}\right)=\left\{x_{i-1}, x_{i}\right\}$ for all $i=1, \ldots, m$. The vertices x_{0} and x_{m} are called the initial and terminal vertices of p, respectively, and one says that p connects them. The nonnegative number $|p|=m$ is called the length of the path p. When $m=0$ one calls $p=\left(x_{0}\right)$ the trivial path based at x_{0}. If $x_{0}=x_{m}$ one says that the path is closed and p is also called a cycle. The inverse of a path $p=$ $\left(x_{0}, e_{1}, x_{1}, e_{2}, x_{2} \ldots, e_{m}, x_{m}\right)$ is the path $p^{-1}=\left(x_{m}, e_{m}, x_{m-1}, \ldots, x_{1}, e_{1}, x_{0}\right)$; note that $\left|p^{-1}\right|=|p|$. Given two paths $p=\left(x_{0}, e_{1}, x_{1}, e_{2}, x_{2} \ldots, e_{m}, x_{m}\right)$ and $p^{\prime}=\left(x_{0}^{\prime}, e_{1}^{\prime}, x_{1}^{\prime}, e_{2}^{\prime}, x_{2}^{\prime} \ldots, e_{n}^{\prime}, x_{n}^{\prime}\right)$ with $x_{m}=x_{0}^{\prime}$ we define their composition as the path $p \cdot p^{\prime}=\left(x_{0}, e_{1}, x_{1}, e_{2}, x_{2} \ldots, e_{m}, x_{m}=x_{0}^{\prime}, e_{1}^{\prime}, x_{1}^{\prime}, e_{2}^{\prime}, x_{2}^{\prime} \ldots, e_{n}^{\prime}, x_{n}^{\prime}\right)$; note that $\left|p \cdot p^{\prime}\right|=|p|+\left|p^{\prime}\right|$.

For $x, y \in X$ we write $x \approx y$ if there exists a path connecting them: clearly, \approx is an equivalence relation on the set X of vertices of \mathcal{G}. The equivalence classes are called the connected components of \mathcal{G}. One says that \mathcal{G} is connected if there exists a unique connected component, in other words, if any two vertices in X are connected by a path. If this is the case, the geodesic distance of two vertices $x, y \in X$, denoted $d(x, y)$, is the minimal length of a path connecting them.

The diameter of a finite connected graph \mathcal{G}, denoted $D(\mathcal{G})$, is the maximal distance of two vertices in \mathcal{G}, in formulæ,

$$
D(\mathcal{G})=\max \{d(x, y): x, y \in X\} .
$$

Proposition 8.1.1 Let $\mathcal{G}=(X, E, r)$ be a finite connected k-regular graph. Then

$$
D(\mathcal{G}) \geq \log _{k}[(k-1)|X|+1]-1
$$

Proof Fix a base vertex $x_{0} \in X$ and set $X_{j}=\left\{x \in X: d\left(x, x_{0}\right)=j\right\}$ for $j=$ $0,1,2, \ldots, D=D(\mathcal{G})$ (note that we may have $X_{j_{0}}=\varnothing$ for some $0<j_{0} \leq D$; then $X_{j}=\varnothing$ for all $\left.j_{0} \leq j \leq D\right)$. We have $\left|X_{0}\right|=\left|\left\{x_{0}\right\}\right|=1$ and, since \mathcal{G} is
k-regular, $\left|X_{1}\right| \leq k$ and, recursively, $\left|X_{j}\right| \leq\left|X_{j-1}\right|(k-1) \leq k(k-1)^{j-1}<k^{j}$, for $j \geq 2$. Indeed, each $y \in X_{j}$ is joined with at least one vertex $x \in X_{j-1}$ and, in turn, each such $x \in X_{j-1}$ is joined with at most $k-1$ vertices in X_{j}. It follows that

$$
|X|=\left|X_{0} \sqcup X_{1} \sqcup X_{2} \sqcup \cdots \sqcup X_{D}\right| \leq 1+k+k^{2}+\cdots+k^{D}=\frac{k^{D+1}-1}{k-1} .
$$

We deduce that $k^{D+1} \geq(k-1)|X|+1$ and, finally, $D \geq \log _{k}[(k-1)|X|+1]-1$.

Corollary 8.1.2 Let $\left(\mathcal{G}_{n}=\left(X_{n}, E_{n}, r_{n}\right)\right)_{n \in \mathbb{N}}$ be a family of finite connected k-regular graphs such that $\left|X_{n}\right| \underset{n \rightarrow \infty}{\rightarrow} \infty$. Then also $D\left(X_{n}\right) \underset{n \rightarrow \infty}{\rightarrow} \infty$.
Let $\mathcal{G}=(X, E, r)$ be a finite graph. The adjacency matrix associated with \mathcal{G} is the $X \times X$-matrix $A=(A(x, y))_{x, y \in X}$ defined by setting

$$
A(x, y)=\left|r^{-1}(\{x, y\})\right|
$$

for all $x, y \in X$. In other words, if $x \neq y$ we have $A(x, y)=\left|E_{x} \cap E_{y}\right|$ equals the number (possibly 0) of edges incident to both x and y, and $A(x, x)$ is the number (possibly 0) of loops based at x. Note that A is symmetric $(A(x, y)=A(y, x)$ for all $x, y \in X)$, that $A(x, y) \neq 0$ if and only if $x \sim y$, and $\operatorname{deg} x=\sum_{y \in X} A(x, y)$. Thus, \mathcal{G} is simple (respectively without loops) if and only if $A(x, y) \in\{0,1\}$ for all $x, y \in X$ (respectively $A(x, x)=0$ for all $x \in X)$. Often, we shall identify the matrix A with the corresponding linear operator $A: L(X) \rightarrow L(X)$, called the adjacency operator associated with \mathcal{G}, defined by setting

$$
[A f](x)=\sum_{y \in Y} A(x, y) f(y)=\sum_{y \in Y} A(y, x) f(y),
$$

for all $f \in L(X)$ and $x \in X$. Note that $A \delta_{x}=\sum_{y \sim x} A(x, y) \delta_{y}$, for all $x \in X$.
Moreover, as A is symmetric, it is diagonalizable and its $\operatorname{spectrum} \sigma(A)=$ $\{\mu \in \mathbb{C}: A-\mu I$ is not invertible $\}$ (that is, the set of its eigenvalues) is real $(\sigma(A) \subseteq \mathbb{R})$, and there exists an orthogonal basis of $L(X)$ made up of realvalued eigenfunctions (see [91]). One refers to $\sigma(A)$ as to the spectrum of the graph \mathcal{G}.

Remark 8.1.3 Warning that if $\mathcal{G}=(X, E, \vec{r})$ is directed, in this book we define its adjacency matrix as the adjacency matrix A of the associated undirected graph $\mathcal{G}=(X, E, r)$ (cf. (8.1)). In other contexts, one sets $A(x, y)=\left|(\vec{r})^{-1}(x, y)\right|$ for all $x, y \in X$ and therefore, in general, A is not symmetric. On the contrary, in our setting, A is always symmetric!

We recall (cf. Proposition 2.1.1) that $W_{0} \leq L(X)$ is the space of constant functions on X and $W_{1}=\left\{f \in L(X): \sum_{x \in X} f(x)=0\right\}$, so that $L(X)=$ $W_{0} \bigoplus W_{1}$ (cf. (2.4)).

Proposition 8.1.4 Let $\mathcal{G}=(X, E, r)$ be a finite graph, with adjacency matrix A. If \mathcal{G} is k-regular, then the decomposition $L(X)=W_{0} \oplus W_{1}$ is A-invariant and W_{0} is the eigenspace corresponding to the eigenvalue k. Conversely, if W_{0} is an eigenspace of A, then the graph is regular and the degree is given by the corresponding eigenvalue.

Proof Suppose first that \mathcal{G} is k-regular and let us show that W_{0} and W_{1} are A-invariant. Let $f_{0} \in W_{0}$ and $x \in X$. Then

$$
\begin{equation*}
\left[A f_{0}\right](x)=\sum_{y \in X} A(x, y) f_{0}(y)=\sum_{y \in X} A(x, y) f_{0}(x)=\operatorname{deg} x f_{0}(x) \tag{8.2}
\end{equation*}
$$

showing that $A f_{0}=k f_{0}$. Similarly, if $f_{1} \in W_{1}$ we have

$$
\begin{aligned}
\sum_{x \in X}\left[A f_{1}\right](x) & =\sum_{x \in X} \sum_{y \in X} A(x, y) f_{1}(y) \\
& =\sum_{y \in X} \sum_{x \in X} A(x, y) f_{1}(y)
\end{aligned}
$$

$$
\text { (since } \left.\sum_{x \in X} A(x, y)=\operatorname{deg} y=k\right)=k \sum_{y \in X} f_{1}(y)=0
$$

showing that $A f_{1} \in W_{1}$.
Conversely, assume that a nontrivial constant function $f_{0} \equiv c$ is an eigenvector of A, with eigenvalue α. Then, as in (8.2), $\left[A f_{0}\right](x)=(\operatorname{deg} x) c$, and as $A f_{0}=\alpha f_{0} \equiv \alpha c$ we deduce that $\operatorname{deg} x=\alpha$ for all $x \in X$.

Proposition 8.1.5 Let $\mathcal{G}=(X, E, r)$ be a finite k-regular graph. Let $\mu_{0} \geq$ $\mu_{1} \geq \cdots \geq \mu_{|X|-1}$ be the eigenvalues of the adjacency matrix A of \mathcal{G}. Then
(i) k is an eigenvalue and its multiplicity equals the number of connected components of \mathcal{G}; in particular, \mathcal{G} is connected if and only if the multiplicity of k is equal to 1 ;
(ii) $\left|\mu_{i}\right| \leq k$ for $i=0,1, \ldots,|X|-1$, so that $\mu_{0}=k$.

Proof (i) It follows from (8.2) that if $f \in L(X)$ is constant on each connected component of \mathcal{G}, then $A f=k f$. This shows that k is an eigenvalue of A and that its multiplicity is, at least, the number of connected components of \mathcal{G} (the characteristic functions of these connected components are, clearly, linearly independent). Conversely, suppose that $A f=k f$ with $f \in L(X)$
non-identically zero and real-valued. Let $X_{0} \subset X$ be a connected component of \mathcal{G} and suppose that $|f|$, restricted to X_{0}, attains its maximum at the point $x_{0} \in X_{0}$, i.e. $\left|f\left(x_{0}\right)\right| \geq|f(x)|$ for all $x \in X_{0}$. We may suppose, up to passing to $-f$, that $f\left(x_{0}\right)>0$ so that $f\left(x_{0}\right) \geq f(x)$ for all $x \in X_{0}$. Then

$$
\begin{aligned}
\sum_{x \in X_{0}} A\left(x_{0}, x\right)\left[f\left(x_{0}\right)-f(x)\right] & =\sum_{x \in X_{0}} A\left(x_{0}, x\right) f\left(x_{0}\right)-\sum_{x \in X_{0}} A\left(x_{0}, x\right) f(x) \\
& =k f\left(x_{0}\right)-k f\left(x_{0}\right)=0 .
\end{aligned}
$$

Since $A\left(x_{0}, x\right) \geq 0$ and $f\left(x_{0}\right)-f(x) \geq 0$ for all $x \in X_{0}$, we deduce that $f(x)=f\left(x_{0}\right)$ for all $x \sim x_{0}$. By induction on the geodesic distance from x_{0}, we deduce that $f(x)=f\left(x_{0}\right)$ for all $x \in X_{0}$, that is, f is constant on X_{0}. This shows that f is constant on the connected components of X. In particular, the multiplicity of k is at most, and therefore equal to, the number of connected components of \mathcal{G}.
(ii) Let μ be an eigenvalue and denote by $f \in L(X)$ a corresponding (nontrivial) real-valued eigenfunction. Suppose that $|f|$ attains its maximum at the point $x_{0} \in X$, i.e. $\left|f\left(x_{0}\right)\right| \geq|f(x)|$ for all $x \in X$. As before, up to passing to $-f$, we may assume that $f\left(x_{0}\right)>0$ so that $f\left(x_{0}\right) \geq|f(x)|$ for all $x \in X$. Then we have

$$
\begin{aligned}
|\mu| f\left(x_{0}\right) & =\left|\mu f\left(x_{0}\right)\right|=\left|\sum_{x \in X} A\left(x_{0}, x\right) f(x)\right| \\
& \leq \sum_{x \in X} A\left(x_{0}, x\right)|f(x)| \\
& \leq\left(\sum_{x \in X} A\left(x_{0}, x\right)\right) f\left(x_{0}\right), \\
& =k f\left(x_{0}\right),
\end{aligned}
$$

so that $|\mu| \leq k$.
Proposition 8.1.6 Let $\mathcal{G}=(X, E, r)$ be a finite graph and denote by $A=$ $(A(x, y))_{x, y \in X}$ the associated adjacency matrix. Then, denoting by $A^{\ell}=$ $\left(A^{(\ell)}(x, y)\right)_{x, y \in X}, \ell \in \mathbb{N}$, the ℓ-th power of A (with the convention that $A^{0}=$ I, the identity matrix; cf. Section 2.1), we have

$$
A^{(\ell)}(x, y)=\text { the number of paths of length } \ell \text { in } \mathcal{G} \text { connecting } x \text { and } y
$$

for all $x, y \in X$.
Proof Let $x, y \in X$. If $\ell=0$ the statement follows from the fact that
there is exactly one (respectively, no) path of length 0 , the trivial path at x, connecting x and y for $x=y$ (respectively, $x \neq y$). Now, every path

$$
p(x, y)=\left(x_{0}=x, e_{1}, x_{1}, e_{2}, x_{2}, \ldots, e_{\ell}, x_{\ell}=z, e_{\ell+1}, x_{\ell+1}=y\right)
$$

of length $\ell+1$ in \mathcal{G} connecting x to y is the composition of the path $p(x, z)=$ $\left(x_{0}=x, e_{1}, x_{1}, e_{2}, x_{2}, \ldots, e_{\ell}, x_{\ell}=z\right)$ of length ℓ connecting x to z, a neighbor of y, and the edge $e_{\ell+1} \equiv\left(z, e_{\ell+1}, y\right)$. By induction, the number of such paths $p(x, z)$ equals $A^{(\ell)}(x, z)$, and the number of edges $e \equiv(z, e, y)$ equals, by definition, $A(z, y)$. As a consequence, the number of paths of length $\ell+1$ connecting x to y is given by

$$
\sum_{\substack{e \in E: \\ r(e)=\{z, y\}}} A^{(\ell)}(x, z)=\sum_{z \in X} A^{(\ell)}(x, z) A(z, y)=A^{(\ell+1)}(x, y)
$$

8.2 Strongly regular graphs

This section contains a series of exercises on a remarkable family of regular graphs.

Definition 8.2.1 A finite simple graph $\mathcal{G}=(X, E)$ without loops is called strongly regular of parameters (v, k, λ, μ) if
(i) it is regular of degree k and $|X|=v$;
(ii) for all $\{x, y\} \in E$ there exist exactly λ vertices adjacent to both x and y;
(iii) for all $x, y \in X$ with $x \neq y$ and $\{x, y\} \notin E$ there exist exactly μ vertices adjacent to both x and y.

Note that, in the above definition, $0 \leq \lambda \leq k-1$ and $0 \leq \mu \leq k$. Moreover, if $\mu>0$ then \mathcal{G} is connected.

Exercise 8.2.2 Let $\mathcal{G}=(X, E)$ be a finite simple graph without loops and set $|X|=v$. Denote by A its adjacency matrix and set $J=\left(\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1\end{array}\right)$
(the $v \times v$ matrix with all 1 s). Show that \mathcal{G} is strongly regular with parameters (v, k, λ, μ) if and only if A satisfies the equations:

$$
\begin{equation*}
A J=k J \tag{8.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{2}+(\mu-\lambda) A+(\mu-k) I=\mu J \tag{8.4}
\end{equation*}
$$

Hint: (8.3) is equivalent to k-regularity; (8.4) may be written in the form

$$
A^{2}=k I+\lambda A+\mu(J-I-A)
$$

and one may use Proposition 8.1.6.
Exercise 8.2.3 Let \mathcal{G} be a connected strongly regular graph with parameters (v, k, λ, μ).
(1) Show that the adjacency matrix A of \mathcal{G} has exactly three eigenvalues, namely:

- k with multiplicity 1 ,
- $\theta=\frac{\lambda-\mu+\sqrt{\Delta}}{2}$,
- $\tau=\frac{\lambda-\mu-\sqrt{\Delta}}{2}$,
where $\Delta=(\lambda-\mu)^{2}+4(k-\mu)$.
Hint: use Proposition 8.1.6; apply (8.4) and use the fact that nonconstant eigenvectors f of A satisfy $J f=0$.
(2) Show that the multiplicities of θ and τ are

$$
\begin{aligned}
& m_{\theta}=\frac{1}{2}\left[(v-1)-\frac{2 k+(v-1)(\lambda-\mu)}{\sqrt{\Delta}}\right] \\
& m_{\tau}=\frac{1}{2}\left[(v-1)+\frac{2 k+(v-1)(\lambda-\mu)}{\sqrt{\Delta}}\right]
\end{aligned}
$$

Hint: $m_{\theta}+m_{\tau}=v-1$ and $0=\operatorname{Tr}(A)=\theta m_{\theta}+\tau m_{\tau}+k$.
Exercise 8.2.4 Let $m \geq 4$ and denote by X the set of all 2-subsets of $\{1,2, \ldots, m\}$. The triangular graph $T(m)$ is the finite graph with vertex set X and such that two distinct vertices are adjacent if they are not disjoint.

Show that $T(m)$ is strongly regular with parameters $v=\binom{m}{2}, k=2(m-2)$, $\lambda=m-2$, and $\mu=4$.

Exercise 8.2.5 Let $\mathcal{G}=(X, E)$ be a finite simple graph without loops. The complement of \mathcal{G} is the graph $\overline{\mathcal{G}}$ with vertex set X and edge set $\bar{E}=\{\{x, y\}$: $x, y \in X, x \neq y,\{x, y\} \notin E\}$.
(1) Show that if \mathcal{G} is strongly regular with parameters (v, k, λ, μ), then $\overline{\mathcal{G}}$ (which is not necessarily connected!) is strongly regular with parameters $(v, v-k-1, v-2 k+\mu-2, v-2 k+\lambda)$.

Fig. 8.1. The Petersen graph
(2) From (1) deduce that the parameters of a strongly regular graph satisfy the inequality $v-2 k+\mu-2 \geq 0$.
(3) Suppose that \mathcal{G} is strongly regular. Show that \mathcal{G} and $\overline{\mathcal{G}}$ are both connected if and only if $0<\mu<k<v-1$. If this is the case, one says that \mathcal{G} is primitive.
Hint: show that $\mu=0$ implies $\lambda=k-1$ and write $\mu<k$ in the form $v-2 k+\mu-2<(v-k-1)-1$.

The complement of the triangle graph $T(5)$ (see Exercise 8.2.4) is the celebrated Petersen graph (see Figure 8.1). The monograph [73] is entirely devoted to this graph which turned out to serve as a counterexample to several important conjectures.

Exercise 8.2.6 The Clebsch graph (see Figure 8.2) is defined as follows. The vertex set X consists of all subsets of even cardinality of $\{1,2,3,4,5\}$. Moreover, two vertices $A, B \in X$ are adjacent if $|A \triangle B|=4$ (here \triangle denotes the symmetric difference of two sets). Show that it is a $(16,5,0,2)$ strongly regular graph.

In the following, we shall present another description of the Clebsch graph by using methods of number theory. An edge coloring of a graph $\mathcal{G}=(X, E)$ is a map $c: E \rightarrow C$, where C is a set of colors. A monochromatic triangle in \mathcal{G} is a set of three vertices x, y, z such that $\{x, y\},\{y, z\},\{z, x\} \in E$ and have the same color. In the following exercise, we construct a very important coloring of the complete graph K_{16}, due to Greenwood and Gleason [67].

Exercise 8.2.7 Let $\mathbb{F}_{16}[x]$ denote the ring of polynomials in one indeterminate over the field \mathbb{F}_{16}.

Fig. 8.2. The Clebsch graph: for $1 \leq i<j<h<k \leq 5$ the string $i j$ (respectively $i j h k$) indicates the subset $\{i, j\}$ (respectively $\{i, j, h, k$,$\}). See also Figure 8.3.$

Fig. 8.3. The Clebsch graph (cf. Figure 8.2): now the vertices are identified with the elements of \mathbb{F}_{16}. Moreover, $\mathbb{F}_{16}=\left\{0,1, x, x^{2}, x^{3}, \ldots, x^{14}\right\}$, where x is a generator of the cyclic group \mathbb{F}_{16}^{*}.
(1) Show that

$$
x^{15}+1=\left(x^{4}+x+1\right)\left(x^{11}+x^{8}+x^{7}+x^{5}+x^{3}+x^{2}+x+1\right)
$$

(2) Show that the polynomial $p(x)=x^{4}+x+1$ is irreducible over \mathbb{F}_{2}. Let $\alpha \in \mathbb{F}_{16}^{*}$ be a root of p. Show that α is a generator of \mathbb{F}_{16}^{*} and deduce from Proposition 6.2 .5 that every element of \mathbb{F}_{16} may be uniquely represented in the form

$$
\begin{equation*}
\varepsilon_{0}+\varepsilon_{1} \alpha+\varepsilon_{2} \alpha^{2}+\varepsilon_{3} \alpha^{3} \tag{8.5}
\end{equation*}
$$

where $\varepsilon_{i} \in\{0,1\}$ for $0 \leq i \leq 3$.
(3) Let α be as in (2). Represent each element $\alpha^{k}, k=0,1, \ldots, 14$, in the form (8.5) and show that the five cubes in \mathbb{F}_{16}^{*} coincide with the elements

$$
1, \alpha^{3}, \alpha^{3}+\alpha^{2}, \alpha^{3}+\alpha, \text { and } \alpha^{3}+\alpha^{2}+\alpha+1 .
$$

Also show that the sum of two cubes in \mathbb{F}_{16}^{*} is not a cube.
Hint: for instance, $1+\alpha^{3}=\alpha^{14}$ in \mathbb{F}_{16}^{*}.
(4) Consider the elements of \mathbb{F}_{16} as the vertices of K_{16} (the complete graph on 16 vertices). Color the edges of K_{16} in the following way: if $a, b \in \mathbb{F}_{16}, a \neq b$ and $a-b=\alpha^{m}$, then

- if $m \equiv 0 \bmod 3$ (i.e. $a-b$ is a cube) the color of $\{a, b\}$ is red;
- if $m \equiv 1 \bmod 3$ the color of $\{a, b\}$ is blue;
- if $m \equiv 2 \bmod 3$ the color of $\{a, b\}$ is green.

Show that, with this coloring, K_{16} does not contain a monochromatic triangle.
Hint: show that if it contains a monochromatic triangle then it contains a red monochromatic triangle and then apply (3).
(5) Show that the graph $\left(\mathbb{F}_{16}, E\right)$, where E is the set of all red edges in (4), is isomorphic to the Clebsch graph (cf. Exercise 8.2.6).

Another important example of a strongly regular graph, namely the Paley graph, will be discuss in Exercise 9.4.5. For more on strongly regular graphs we refer to the monographs by van Lint and Wilson [97] and Godsil and Royle [64].

8.3 Bipartite graphs

Definition 8.3.1 A graph $\mathcal{G}=(X, E, r)$ is called bipartite if there exists a nontrivial partition $X=X_{0} \amalg X_{1}$ of the set of vertices such that every edge $e \in E$ joins a (unique) vertex in X_{0} with a (unique) vertex in X_{1} (that is, $\left|r(e) \cap X_{0}\right|=1=\left|r(e) \cap X_{1}\right|$ for all $\left.e \in E\right)$. The sets X_{0} and X_{1} are called partite sets.

Note that if a bipartite graph is connected, then the (nontrivial) partition of the set of vertices is unique. Moreover any bipartite graph has necessarily no loops.

Exercise 8.3.2 Let $\mathcal{G}=(X, E, r)$ be a graph. Show that the following conditions are equivalent:
(a) \mathcal{G} is bipartite;

Fig. 8.4. The bipartite graph $\mathcal{G}=(X, E)$ with vertex set $X=X_{0} \coprod X_{1}$, where $X_{0}=\{x, y\}$ and $X_{1}=\{u, v, z\}$, and edge set $E=\{\{x, u\},\{x, v\},\{y, v\},\{y, z\}\}$.
(b) \mathcal{G} is bicolorable, i.e. there exists a map $\phi: X \rightarrow\{0,1\}$ such that $x \sim y$ infers $\phi(x) \neq \phi(y)$;
(c) \mathcal{G} does not contain cycles of odd length.

Exercise 8.3.3 Let $\mathcal{G}=(X, E, r)$ be a finite bipartite graph with $X=$ $X_{0} \coprod X_{1}$ its partite sets partition. Consider the decomposition $L(X)=$ $L\left(X_{0}\right) \oplus L\left(X_{1}\right)$. Show that if A denotes the adjacency matrix of \mathcal{G} then we have:
(1) $A\left[L\left(X_{0}\right)\right] \subseteq L\left(X_{1}\right)$ (respectively $A\left[L\left(X_{1}\right)\right] \subseteq L\left(X_{0}\right)$;
(2) define $\varepsilon: L(X) \rightarrow L(X)$ (respectively $\tau: L(X) \rightarrow L(X)$) by setting

$$
[\varepsilon f](x)=\left\{\begin{array}{ll}
f(x) & \text { if } x \in X_{0} \\
-f(x) & \text { if } x \in X_{1}
\end{array} \quad \text { (respectively, } \tau f=-\varepsilon f\right. \text {) }
$$

for all $f \in L(X)$ and $x \in X$. Show that (i) $A \varepsilon=\tau A$, (ii) $\varepsilon^{2}=\tau^{2}=I$, and (iii) $\tau \varepsilon=\varepsilon \tau=-I$.

The following provides another example of a structural (geometrical) property that reflects on the spectral theory of the graph.

Proposition 8.3.4 Let $\mathcal{G}=(X, E, r)$ be a finite connected k-regular graph and denote by A the corresponding adjacency matrix. Then the following conditions are equivalent:
(a) \mathcal{G} is bipartite;
(b) the spectrum of A is symmetric with respect to 0 ;
(c) $-k$ is an eigenvalue of A.

Proof Suppose that \mathcal{G} is bipartite and let $X=X_{0} \amalg X_{1}$ be the corresponding partite sets partition. Let $\lambda \in \sigma(A)$ and denote by $f \in L(X)$ a corresponding
eigenfunction, so that, $A f=\lambda f$. Consider the function $g=\varepsilon f \in L(X)$ (cf. Exercise 8.3.3). Then we have (cf. Exercise 8.3.3):

$$
A g=A \varepsilon f=\tau A f=\lambda \tau f=-\lambda \varepsilon f=-\lambda g .
$$

It follows that $-\lambda$ is an eigenvalue (with eigenfunction g). This shows that $\sigma(A)$ is symmetric with respect to 0 , proving the implication (a) $\Rightarrow(\mathrm{b})$.
(b) \Rightarrow (c) follows immediately from Proposition 8.1.5.(i).
(c) \Rightarrow (a): suppose that $A f=-k f$ with $f \in L(X)$ nontrivial and realvalued. Denote by $x_{0} \in X$ a maximum point for $|f|$; then, up to switching f to $-f$, we may suppose that $f\left(x_{0}\right)>0$. Then the equality $-k f\left(x_{0}\right)=$ $[A f]\left(x_{0}\right)=\sum_{y \in X} A\left(x_{0}, y\right) f(y)$ may be rewritten $\sum_{y: y \sim x_{0}} A\left(x_{0}, y\right)\left[f\left(x_{0}\right)+\right.$ $f(y)]=0$. Since $f\left(x_{0}\right)+f(y) \geq 0$, we deduce $f(y)=-f\left(x_{0}\right)$ for all $y \sim x_{0}$. Set $X_{j}=\left\{y \in X: f(y)=(-1)^{j} f\left(x_{0}\right)\right\}$ for $j=0,1$. Arguing as in the proof of Proposition 8.1.5.(i), and using induction on the geodesic distance from x_{0}, we deduce that indeed $X=X_{0} \amalg X_{1}$ is a partite set decomposition, showing that X is bipartite.

Exercise 8.3.5 The complete bipartite graph $K_{n, m}=\left(X_{n, m}, E_{n, m}\right)$ on $n+m$ vertices, $n, m \geq 1$, is the (finite, simple and without loops) graph whose vertex set $X_{n, m}=X \sqcup Y$ is the disjoint union of a set X of cardinality n, and another set Y of cardinality m, and edge set $E_{n, m}=\{\{x, y\}: x \in X, y \in Y\}$. Show that the adjacency matrix of $K_{n, m}$ has the following eigenvalues:

- 0 with multiplicity $n+m-2$
- $\sqrt{n m}$ with multiplicity 1
- $-\sqrt{n m}$ with multiplicity 1 .

8.4 The complete graph

Definition 8.4.1 The complete graph on n vertices, $n \geq 1$, is the (finite, simple and without loops) graph $K_{n}=\left(X_{n}, E_{n}\right)$ with vertex set $X_{n}=$ $\{1,2, \ldots, n\}$ and edge set $E_{n}=\left\{\{x, y\}: x, y \in X_{n}, x \neq y\right\}$, that is, two vertices are connected if and only if they are distinct.

Fig. 8.5. The complete graphs K_{2}, K_{3}, K_{4} and K_{5}.

Note that K_{n} is regular: indeed, each vertex has degree $n-1$.
The adjacency matrix A of K_{n} is given by

$$
A(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

The graph K_{n} is always connected and it is bipartite if and only if $n=2$. Moreover (cf. Proposition 8.1.4), setting $W_{0}=\left\{f \in L\left(X_{n}\right): f\right.$ is constant $\}$ and $W_{1}=\left\{f \in L\left(X_{n}\right): \sum_{y \in X_{n}} f(y)=0\right\}$, we have, for $f \in W_{0}$,

$$
[A f](x)=\sum_{y \in X_{n}} A(x, y) f(y)=(n-1) f(x)
$$

and, for $f \in W_{1}$,

$$
[A f](x)=\sum_{y \in X_{n}} A(x, y) f(y)=\sum_{\substack{y \in X_{n} \\ y \neq x}} f(y)=\left(\sum_{y \in X_{n}} f(y)\right)-f(x)=-f(x)
$$

for all $x \in X_{n}$.
We deduce that (cf. Proposition 8.1.4):

- W_{0} is an eigenspace for A corresponding to the eigenvalue ($n-1$), whose multiplicity is equal to $\operatorname{dim} W_{0}=1$;
- W_{1} is an eigenspace for A corresponding to the eigenvalue -1 , whose multiplicity is equal to $\operatorname{dim} W_{1}=n-1$.

8.5 The hypercube

Definition 8.5.1 The n-dimensional hypercube, $n \in \mathbb{N}$, is the (finite, simple and without loops) graph $Q_{n}=\left(X_{n}, E_{n}\right)$ with vertex set $X_{n}=\{0,1\}^{n}$ and edge set $E_{n}=\{\{x, y\}: d(x, y)=1\}$, where

$$
d(x, y)=\left|\left\{i: x_{i} \neq y_{i}, 1 \leq i \leq n\right\}\right|
$$

is the Hamming distance of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X_{n}$.
It is clear from the definition that the adjacency matrix $A=(A(x, y))_{x, y \in X_{n}}$ of Q_{n} is given by

$$
A(x, y)= \begin{cases}1 & \text { if } d(x, y)=1 \\ 0 & \text { otherwise }\end{cases}
$$

for all $x, y \in X_{n}$.
We observe that X_{n}, equipped with the addition operation (that is, $(x+$

Fig. 8.6. The 3-dimensional hypercube Q_{3}.
$y)_{i}=x_{i}+y_{i} \bmod 2$, for all $x, y \in X_{n}$ and $\left.1 \leq i \leq n\right)$, is an Abelian group, with identity element $\mathbf{0}=(0,0, \ldots, 0)$, isomorphic to \mathbb{Z}_{2}^{n}. The characters (cf. Definition 2.3.1) of such a group are given by (cf. Proposition 2.3.3) the functions $\chi_{x} \in L\left(X_{n}\right), x \in X_{n}$, defined by setting

$$
\begin{equation*}
\chi_{x}(y)=(-1)^{x \cdot y} \tag{8.6}
\end{equation*}
$$

for all $y \in X_{n}$, where $x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}$.
Exercise 8.5.2 Show that $A \in \operatorname{End}\left(L\left(X_{n}\right)\right)$ satisfies the equivalent conditions in Theorem 2.4.10 (warning: the notation has changed), namely: A is \mathbb{Z}_{2}^{n}-invariant and it is the convolution operator with kernel $h \in L\left(X_{n}\right)$ defined by

$$
h(x)= \begin{cases}1 & \text { if } d(x, \mathbf{0})=1 \tag{8.7}\\ 0 & \text { otherwise }\end{cases}
$$

for all $x \in X_{n}$, so that its eigenfunctions are exactly the characters χ_{x}, $x \in \mathbb{Z}_{2}^{n}$.

For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X_{n}$ we define $w(x)=\left|\left\{j: x_{j}=1\right\}\right|$ the weight of x. Note that $d(x, y)=w(x-y)$ for all $x, y \in X_{n}$.
Keeping in mind Corollary 2.4.11, the following provides a complete list of the eigenvalues of A.

Proposition 8.5.3 The Fourier transform of the function $h \in L\left(X_{n}\right)$ in (8.7) is given by

$$
\begin{equation*}
\widehat{h}(x)=n-2 w(x) \tag{8.8}
\end{equation*}
$$

for all $x \in X_{n}$.

Proof Let $x \in X_{n}$. Then we have

$$
\begin{aligned}
\widehat{h}(x) & =\left\langle h, \chi_{x}\right\rangle \\
(\text { by }(8.6)) & =\sum_{y \in X_{n}} h(y)(-1)^{x \cdot y} \\
(\text { by }(8.7)) & =\sum_{j=1}^{n}(-1)^{x_{j}} \\
& =\sum_{j: x_{j}=1}(-1)^{x_{j}}+\sum_{j: x_{j}=0}(-1)^{x_{j}} \\
& =-w(x)+(n-w(x)) \\
& =n-2 w(x) .
\end{aligned}
$$

Note that, according to Proposition 8.3.4, the spectrum of A is symmetric with respect to 0 , as Q_{n} is bipartite: its partite set partition is $X_{n}=\{x \in$ $X_{n}: w(x)$ is odd $\} \coprod\left\{x \in X_{n}: w(x)\right.$ is even $\}$.

We now determine the multiplicities of the eigenvalues (8.8) of A. It is clear that, for $0 \leq k \leq n$, the eigenspace associated with the eigenvalue $n-2 k$ is the subspace

$$
V_{k}=\left\langle\chi_{x}: w(x)=k\right\rangle \leq L\left(X_{n}\right)
$$

Moreover, its dimension is given by $\operatorname{dim}\left(V_{k}\right)=\left|\left\{x \in X_{n}: w(x)=k\right\}\right|=\binom{n}{k}$.

8.6 The discrete circle

Definition 8.6.1 The discrete circle (or cycle graph) on $n \geq 3$ vertices, is the (finite, simple and without loops) graph $\mathcal{C}_{n}=\left(X_{n}, E_{n}\right)$, where $X_{n}=\mathbb{Z}_{n}$ and $x, y \in X_{n}$ are adjacent if $x-y= \pm 1$.

Note that \mathcal{C}_{n} is 2-regular and it is bipartite if and only if n is even. The associated adjacency matrix is circulant (see Exercise 2.4.16) and is given by

$$
A=\left(\begin{array}{cccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & & & & \ddots & & & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & \cdots & 0 & 1 & 0
\end{array}\right)
$$

Fig. 8.7. The discrete circle C_{n}.
Exercise 8.6.2 Show that $A \in \operatorname{End}\left(L\left(X_{n}\right)\right)$ satisfies the equivalent conditions in Theorem 2.4.10 (warning: the notation has changed), namely: A is \mathbb{Z}_{n}-invariant and it is the convolution operator with kernel $h=\delta_{1}+\delta_{-1} \in$ $L\left(X_{n}\right)$, so that its eigenfunctions are exactly the characters $\chi_{x}, x \in \mathbb{Z}_{n}$.

Recall (cf. Definition 2.2.1) that the characters of \mathbb{Z}_{n} are the functions $\chi_{x}, x \in \mathbb{Z}_{n}$, defined by

$$
\chi_{x}(y)=\omega^{x y}
$$

for all $y \in \mathbb{Z}_{n}$, where $\omega=\exp \left(\frac{2 \pi i}{n}\right)$. Moreover (cf. Exercise 2.4.4), the Fourier transform of a Dirac $\delta_{x}, x \in \mathbb{Z}_{n}$, is given by $\widehat{\delta_{x}}(y) \equiv \widehat{\delta_{x}}\left(\chi_{y}\right)=\overline{\chi_{y}(x)}$ for all $y \in \mathbb{Z}_{n}$. By linearity we have, for all $y \in \mathbb{Z}_{n}$,

$$
\begin{aligned}
\widehat{h}(y) & =\widehat{\delta_{1}}(y)+\widehat{\delta_{-1}}(y)=\overline{\chi_{1}}(y)+\overline{\chi-1}(y) \\
& =\exp \left(-\frac{2 \pi y i}{n}\right)+\exp \left(\frac{2 \pi y i}{n}\right) \\
& =2 \cos \left(\frac{2 \pi y}{n}\right) .
\end{aligned}
$$

We remark that $\widehat{h}(y)=\widehat{h}\left(y^{\prime}\right), y, y^{\prime} \in \mathbb{Z}_{n}$, if and only if $y= \pm y^{\prime}$. From Corollary 2.4.11 and the above remark, we deduce that the eigenvalues of A are exactly the numbers

$$
\begin{equation*}
2 \cos \left(\frac{2 \pi y}{n}\right), \quad y=0,1, \ldots,\left[\frac{n}{2}\right] . \tag{8.9}
\end{equation*}
$$

We now determine their multiplicities, arguing separately on the parity of n.
If n is even, then the eigenvalues (8.9) corresponding to $y=0$ and $y=$ $\left[\frac{n}{2}\right]=\frac{n}{2}$ (these are 2 and -2 , respectively) have multiplicity one, and all other have multiplicity two. Note that, according to Proposition 8.3.4, the spectrum of A is symmetric with respect to 0 as, in this case, \mathcal{C}_{n} is bipartite.

If n is odd, then the eigenvalue (8.9) corresponding to $y=0$ (namely, 2) has multiplicity one, and all other have multiplicity two. Moreover, in this case, \mathcal{C}_{n} is not bipartite.

Exercise 8.6.3 (The 2-regular segment) For $n \geq 2$ let $\mathcal{G}_{n}=\left(X_{n}, E_{n}, r_{n}\right)$ denote the simple graph (with loops!) where: $X_{n}=\{0,1,2, \ldots, n-1\}$, $E_{n}=\sqcup_{i=0}^{n-2}\{i, i+1\} \sqcup\{0\} \sqcup\{n-1\}$, and $r_{n}: E_{n} \rightarrow \mathcal{P}\left(X_{n}\right)$ is the restriction to E_{n} of the identity map on $\mathcal{P}\left(X_{n}\right)$. This is called the 2 -regular segment on $n \geq 1$ vertices.

Fig. 8.8. The 2-regular segment \mathcal{G}_{n}.

Show that the eigenvalues of \mathcal{G}_{n} are

$$
\begin{equation*}
2 \cos \frac{k \pi}{n}, \quad k=0,1, \ldots, n-1 \tag{8.10}
\end{equation*}
$$

Hint: see [29, Exercise A1.0.15] as well as the books by Feller [60] and Karlin and Taylor [84].

8.7 Tensor products

In this section we introduce some notation and preliminary results that we shall use both in the present chapter as well as in other parts of the book. For a similar approach see also the beginning of [124, Chapter 5]. This section is in the same spirit of Section 2.1 and contains some complements to that section. It is also connected with Section 5.3, where the Kroncecker products of matrices are introduced, and it will be generalized in Section 10.5, where we study tensor products of representations.

Let X and Y be two finite sets. The tensor product of two functions $f \in L(X)$ and $g \in L(Y)$ is the function $f \otimes g \in L(X \times Y)$ defined by setting

$$
\begin{equation*}
(f \otimes g)(x, y)=f(x) g(y) \tag{8.11}
\end{equation*}
$$

for all $(x, y) \in X \times Y$. This way, we have the natural identification $\delta_{(x, y)}=$ $\delta_{x} \otimes \delta_{y}$, so that the standard basis of $L(X \times Y)$ may be written in the form

$$
\left\{\delta_{x} \otimes \delta_{y}: x \in X, y \in Y\right\}
$$

It is also easy to check that, for $f, f^{\prime} \in L(X)$ and $g, g^{\prime} \in L(Y)$, we have:

$$
\begin{equation*}
\left\langle f \otimes g, f^{\prime} \otimes g^{\prime}\right\rangle_{L(X \times Y)}=\left\langle f, f^{\prime}\right\rangle_{L(X)} \cdot\left\langle g, g^{\prime}\right\rangle_{L(Y)} \tag{8.12}
\end{equation*}
$$

If V is a subspace of $L(X)$ and W a subspace of $L(Y)$ then their tensor product $V \otimes W$ is the subspace of $L(X \times Y)$ generated by all products $f \otimes g$ with $f \in V$ and $g \in W$.
Now suppose that $A \in \operatorname{End}(L(X))$ and $B \in \operatorname{End}(L(Y))$ are linear operators. We define their tensor product $A \otimes B \in \operatorname{End}(L(X \times Y))$ by setting

$$
\begin{equation*}
(A \otimes B)(f \otimes g)=A f \otimes B g \tag{8.13}
\end{equation*}
$$

for all $f \in L(X)$ and $g \in L(Y)$ (and then extending by linearity). It is easy to check that this definition is well posed. Indeed, we now derive the matrix representing $A \otimes B$. Suppose that $\left(a\left(x, x^{\prime}\right)\right)_{x, x^{\prime} \in X}$ (respectively, $\left.\left(b\left(y, y^{\prime}\right)\right)_{y, y^{\prime} \in Y}\right)$ is the matrix representing A (respectively, B) with respect to the standard basis of $L(X)$ (respectively, of $L(Y)$), see (2.2). Then, for all $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$,

$$
\begin{aligned}
\left\{[A \otimes B]\left(\delta_{x^{\prime}} \otimes \delta_{y^{\prime}}\right)\right\}(x, y) & =\left\{\left(A \delta_{x^{\prime}}\right) \otimes\left(B \delta_{y^{\prime}}\right)\right\}(x, y) & & (\text { by }(8.13)) \\
& =\left(A \delta_{x^{\prime}}\right)(x) \cdot\left(B \delta_{y^{\prime}}\right)(y) & & (\text { by }(8.11)) \\
& =a\left(x, x^{\prime}\right) b\left(y, y^{\prime}\right) & & (\text { by }(2.1)) .
\end{aligned}
$$

This shows that the matrix representing $A \otimes B$ with respect to the standard basis of $L(X \times Y)$ is

$$
\left(a\left(x, x^{\prime}\right) b\left(y, y^{\prime}\right)\right)_{(x, y),\left(x^{\prime}, y^{\prime}\right) \in X \times Y .}
$$

It is easy to see that this is a coordinate-free description of the Kronecker product introduced in Section 5.3: just take $X=\{1,2, \ldots, n\}$ and $Y=$ $\{1,2, \ldots, m\}$. We leave it to the reader to check the details.
The Kronecker sum of A and B is the operator $A \otimes I_{Y}+I_{X} \otimes B \in$ $\operatorname{End}(L(X \times Y))$; see the monograph by Lancaster and Tismenetsky [91]. Clearly, this sum is represented by the matrix

$$
\left(a\left(x, x^{\prime}\right) \delta_{y}\left(y^{\prime}\right)+\delta_{x}\left(x^{\prime}\right) b\left(y, y^{\prime}\right)\right)_{(x, y),\left(x^{\prime}, y^{\prime}\right) \in X \times Y .} .
$$

Now suppose that both A and B are symmetric, that is, $a\left(x, x^{\prime}\right)=a\left(x^{\prime}, x\right)$ and $b\left(y, y^{\prime}\right)=b\left(y^{\prime}, y\right)$ for all $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$. Then also $A \otimes B$ and $A \otimes I_{Y}+I_{X} \otimes B$ are symmetric. Recall that symmetric matrices are diagonalizable and have real eigenvalues. Let us denote by

- $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{|X|-1}$ (respectively, $\mu_{0}, \mu_{1}, \ldots, \mu_{|Y|-1}$) the eigenvalues of A (respectively, of B);
- $\left\{f_{0}, f_{1}, \ldots, f_{|X|-1}\right\}$ (respectively, $\left\{g_{0}, g_{1}, \ldots, g_{|Y|-1}\right\}$) an orthonormal basis of (real-valued) eigenvectors for A (respectively, for B)
so that

$$
\begin{equation*}
A f_{i}=\lambda_{i} f_{i} \text { and } B g_{j}=\mu_{j} g_{j} \tag{8.14}
\end{equation*}
$$

for all $i=0,1, \ldots,|X|-1$ and $j=0,1, \ldots,|Y|-1$. The proof of the following proposition is immediate.

Proposition 8.7.1 The set $\left\{f_{i} \otimes g_{j}: i=0,1, \ldots,|X|-1, j=0,1, \ldots,|Y|-\right.$ 1\} is an orthonormal basis of (real-valued) eigenvectors for both $A \otimes B$ and $A \otimes I_{Y}+I_{X} \otimes B$. Moreover, for all $i=0,1, \ldots,|X|-1$ and $j=0,1, \ldots,|Y|-1$,

$$
[A \otimes B]\left(f_{i} \otimes g_{j}\right)=\lambda_{i} \mu_{j}\left(f_{i} \otimes g_{j}\right)
$$

and

$$
\left[A \otimes I_{Y}+I_{X} \otimes B\right]\left(f_{i} \otimes g_{j}\right)=\left(\lambda_{i}+\mu_{j}\right)\left(f_{i} \otimes g_{j}\right) ;
$$

in particular, the eigenvalues of $A \otimes B$ are the $\lambda_{i} \mu_{j} s$ while those of $A \otimes I_{Y}+$ $I_{X} \otimes B$ are the $\left(\lambda_{i}+\mu_{j}\right) s$.

More generally, if F is a two variable complex polynomial, then the eigenvalues of $F(A, B)$ (here the powers of matrices are the usual powers, while the other products (respectively, sums) involved are tensor products (respectively, Kronecker sums)) are $F\left(\lambda_{i}, \mu_{j}\right), i=0,1, \ldots,|X|-1$ and $j=$ $0,1, \ldots,|Y|-1$ (this is Stephanov's theorem [153]: see the monograph by Lancaster and Tismenetsky [91, Theorem 1, Section 12.2]).

Recall (cf. Proposition 2.1.1) that W_{0} is the space of constant functions on X and $W_{1}=\left\{f \in L(X): \sum_{x \in X} f(x)=0\right\}$. We also denote by J_{Y} the matrix $\left(j\left(y, y^{\prime}\right)\right)_{y, y^{\prime} \in Y}$ with $j\left(y, y^{\prime}\right)=1$ for all $y, y^{\prime} \in Y$. This way, for $f \in L(Y)$ we have

$$
\begin{equation*}
J_{Y} f=\left(\sum_{y \in Y} f(y)\right) \mathbf{1}_{Y} \tag{8.15}
\end{equation*}
$$

Proposition 8.7.2 Let $A: L(X) \rightarrow L(X)$ and $B: L(Y) \rightarrow L(Y)$ be two linear operators and suppose that the decomposition $L(Y)=W_{0}(Y) \oplus W_{1}(Y)$ is B-invariant. Then the decomposition

$$
L(X \times Y)=\left[L(X) \otimes W_{0}(Y)\right] \oplus\left[L(X) \otimes W_{1}(Y)\right]
$$

is invariant for $A \otimes J_{Y}+I_{X} \otimes B$. Moreover,

$$
\begin{equation*}
W_{1}(X \times Y)=\left[W_{1}(X) \otimes W_{0}(Y)\right] \oplus\left[L(X) \otimes W_{1}(Y)\right] . \tag{8.16}
\end{equation*}
$$

Proof Just note that $W_{0}(Y)$ and $W_{1}(Y)$ are J_{Y}-invariant ($J_{Y}-I_{Y}$ is the adjacency matrix of the complete graph with vertex set Y; see Section 8.4). Also, (8.16) follows immediately after observing that $W_{0}(X \times Y)=W_{0}(X) \otimes$ $W_{0}(Y)$.

Following [128] we introduce a notation for the decomposition (8.16) (see also the generalizations in [28] and [44]).

For $f \in W_{1}(X \times Y)$ we define $f^{\|} \in L(X \times Y)$ by setting

$$
f^{\|}(x, y)=\frac{1}{|Y|} \sum_{z \in Y} f(x, z)
$$

for all $(x, y) \in X \times Y$. Clearly, $f^{\|}$does not depend on $y \in Y$, and $f^{\|} \in$ $W_{1}(X) \otimes W_{0}(Y)$. Moreover, setting

$$
f^{\perp}=f-f^{\|}
$$

so that

$$
f=f^{\|}+f^{\perp}
$$

we have $f^{\perp} \in L(X) \otimes W_{1}(Y)$.
Another useful notation is the following. For $f \in L(X \times Y)$ and $x \in X$ we define $f_{x} \in L(Y)$ by setting

$$
f_{x}(y)=f(x, y)
$$

for all $y \in Y$. Then

$$
\begin{equation*}
f=\sum_{x \in X} \delta_{x} \otimes f_{x} \tag{8.17}
\end{equation*}
$$

Moreover, setting

$$
\begin{equation*}
f_{x}^{\|}=\frac{1}{|Y|} J_{Y} f_{x} \quad \text { and } \quad f_{x}^{\perp}=f_{x}-f_{x}^{\|} \tag{8.18}
\end{equation*}
$$

we have

$$
\begin{equation*}
f^{\|}=\sum_{x \in X} \delta_{x} \otimes f_{x}^{\|} \tag{8.19}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\perp}=\sum_{x \in X} \delta_{x} \otimes f_{x}^{\perp} \tag{8.20}
\end{equation*}
$$

Finally, following again [128], we define $C: L(X \times Y) \rightarrow L(X)$ by setting

$$
\begin{equation*}
[C f](x)=\sum_{y \in Y} f(x, y) \tag{8.21}
\end{equation*}
$$

for all $f \in L(X \times Y)$ and $x \in X$. Note the similarity between $f^{\|}$and $C f$: however, the former is a function of two variables (constant with respect to the second variable), while the latter is a function of a single variable. Moreover, $f^{\|}$is normalized. Their relationship is expressed in (iv) of the following lemma.

Lemma 8.7.3

(i) $C\left(\delta_{x} \otimes \delta_{y}\right)=\delta_{x}$ for all $(x, y) \in X \times Y$;
(ii) $\left.C\right|_{W_{1}(X \times Y)}$ is a linear operator from $W_{1}(X \times Y)$ onto $W_{1}(X)$;
(iii) $(C f) \otimes \mathbf{1}_{Y}=\left(I_{X} \otimes J_{Y}\right) f$ for all $f \in L(X \times Y)$;
(iv) $C f^{\|}=C f$ for all $f \in L(X \times Y)$.

Proof (i) For $x, z \in X$ and $y \in Y$ we have

$$
\left[C\left(\delta_{x} \otimes \delta_{y}\right)\right](z)=\sum_{t \in Y}\left(\delta_{x} \otimes \delta_{y}\right)(z, t)=\delta_{x}(z)
$$

(ii) This is clear.
(iii) Using (8.17) we have, for all $f \in L(X \times Y)$,

$$
\begin{aligned}
\left(I_{X} \otimes J_{Y}\right) f & =\left(I_{X} \otimes J_{Y}\right) \sum_{x \in X}\left(\delta_{x} \otimes f_{x}\right) \\
(\text { by }(8.15)) & =\sum_{x \in X} \delta_{x} \otimes\left[\left(\sum_{y \in Y} f(x, y)\right) \mathbf{1}_{Y}\right] \\
& =\sum_{x \in X}\left([C f](x) \delta_{x}\right) \otimes \mathbf{1}_{Y} \\
& =(C f) \otimes \mathbf{1}_{Y}
\end{aligned}
$$

(iv) It is a simple computation: for $f \in L(X \times Y)$ and $x \in X$ we have

$$
\left[C f^{\|}\right](x)=\sum_{y \in Y} f^{\|}(x, y)=\sum_{y \in Y} \frac{1}{|Y|} \sum_{z \in Y} f(x, z)=\sum_{z \in Y} f(x, z)=[C f](x)
$$

Lemma 8.7.4 Let $f \in W_{1}(X \times Y)$. Then

$$
f^{\|}=\frac{1}{|Y|}\left(I_{X} \otimes J_{Y}\right) f=\frac{1}{|Y|}(C f) \otimes \mathbf{1}_{Y}
$$

Proof Using again (8.17) we have

$$
\begin{aligned}
\left(I_{X} \otimes J_{Y}\right) f & =\left(I_{X} \otimes J_{Y}\right) \sum_{x \in X} \delta_{x} \otimes f_{x} \\
& =\sum_{x \in X} \delta_{x} \otimes\left(J_{Y} f_{x}\right) \\
(\text { by }(8.18)) & =|Y| \sum_{x \in X} \delta_{x} \otimes f_{x}^{\|} \\
\text {(by (8.19)) } & =|Y| f^{\|} .
\end{aligned}
$$

The second equality follows from Lemma 8.7.3.(iii).
We use the notation Y^{X} to denote the space of all maps $f: X \rightarrow Y$ and refer to it as to an exponential set. Clearly,

$$
Y^{X}=\underbrace{Y \times Y \times \cdots \times Y}_{|X| \text { times }} .
$$

We introduce a coordinate-free description of the tensor product

$$
L\left(Y^{X}\right)=\underbrace{L(Y) \otimes L(Y) \otimes \cdots \otimes L(Y)}_{|X| \text { times }} .
$$

Given $\phi_{x} \in L(Y), x \in X$, we define the tensor product of the family $\left(\phi_{x}\right)_{x \in X}$ as in (8.11) by setting:

$$
\left(\bigotimes_{x \in X} \phi_{x}\right)(f)=\prod_{x \in X} \phi_{x}(f(x)),
$$

for all $f \in Y^{X}$. Analogously, given $A_{x} \in \operatorname{End}(L(Y)), x \in X$, the tensor product of the corresponding family of operators is defined as in (8.13) by setting:

$$
\begin{equation*}
\left(\bigotimes_{x \in X} A_{x}\right)\left(\bigotimes_{x \in X} \phi_{x}\right)=\bigotimes_{x \in X} A_{x} \phi_{x} \tag{8.22}
\end{equation*}
$$

for all tensors $\left(\otimes_{x \in X} \phi_{x}\right)$ (and then extended by linearity). Finally, note that for every $f \in Y^{X}$ we have

$$
\begin{equation*}
\delta_{f}=\bigotimes_{x \in X} \delta_{f(x)} . \tag{8.23}
\end{equation*}
$$

8.8 Cartesian, tensor, and lexicographic products of graphs

In this section we give a detailed definition of three basic notions of graph products. See Remark 8.8.2 for a shorter description.

Recall that we use the symbol \sim to denote the adjacency relation of vertices in a given graph.

Definition 8.8.1 Let $\mathcal{G}=(X, E, r)$ and $\mathcal{F}=(Y, F, s)$ be two finite graphs.
(i) The Cartesian product of \mathcal{G} and \mathcal{F} is the graph $\mathcal{G} \square \mathcal{F}=(X \times Y, E \square F, r \square s)$ where the edge set is

$$
E \square F=(E \times Y) \sqcup(X \times F)
$$

and $r \square$ $\square s:$ $E \square F \rightarrow \mathcal{P}(X \times Y)$ is defined by setting

$$
[r \square s](e, y)=r(e) \times\{y\} \quad \text { and } \quad[r \square s](x, f)=\{x\} \times s(f)
$$

for all $e \in E, y \in Y, x \in X$, and $f \in F$.
Note that if \mathcal{G} and \mathcal{F} are both directed, then $\mathcal{G} \square \mathcal{F}$ is also directed after defining the orientation $\vec{r} \square \vec{s}: E \square F \rightarrow X \times Y$ by setting

$$
[\vec{r} \square \vec{s}](e, y)=\left(\left(e_{-}, y\right),\left(e_{+}, y\right)\right) \quad \text { and } \quad[\vec{r} \square \vec{s}](x, f)=\left(\left(x, f_{-}\right),\left(x, f_{+}\right)\right)
$$

for all $e \in E, y \in Y, x \in X$, and $f \in F$.
Finally note that if \mathcal{G} and \mathcal{F} are both simple (respectively, without loops), then $\mathcal{G} \square \mathcal{F}$ is also simple, with edge set
$E \square F=\left\{\left\{(x, y),\left(x^{\prime}, y^{\prime}\right)\right\} \subseteq X \times Y:\left[x \sim x^{\prime}\right.\right.$ and $\left.y=y^{\prime}\right]$ or $\left[x=x^{\prime}\right.$ and $\left.\left.y \sim y^{\prime}\right]\right\}$
(respectively, without loops).

Fig. 8.9. An example of Cartesian product of graphs
(ii) Equip \mathcal{G} and \mathcal{F} with arbitrary orientations \vec{r} and \vec{s}, respectively: different orientations will produce isomorphic graph products (exercise). Also, we
denote, as usual, by $E_{0} \subseteq E$ (respectively, $F_{0} \subseteq F$) the set of all loops of \mathcal{G} (respectively, \mathcal{F}) and $E_{1}=E \backslash E_{0}$ (respectively, $F_{1}=F \backslash F_{0}$). Let also $\left(E_{1} \times F_{1}\right)_{e}$ and $\left(E_{1} \times F_{1}\right)_{o}$ be two disjoint copies of the Cartesian product of the edge subsets E_{1} and F_{1} (" e " stands for even and " o " for odd).
The tensor product of \mathcal{G} and \mathcal{F} is the (undirected) graph $\mathcal{G} \otimes \mathcal{F}=(X \times$ $Y, E \otimes F, \vec{r} \otimes \vec{s})$ where

$$
\begin{aligned}
E \otimes F & =\left((E \times F) \backslash\left(E_{1} \times F_{1}\right)\right) \sqcup\left(E_{1} \times F_{1}\right)_{e} \sqcup\left(E_{1} \times F_{1}\right)_{o} \\
& \equiv\left(E_{0} \times F_{0}\right) \sqcup\left(E_{0} \times F_{1}\right) \sqcup\left(E_{1} \times F_{0}\right) \sqcup\left(E_{1} \times F_{1}\right)_{e} \sqcup\left(E_{1} \times F_{1}\right)_{o}
\end{aligned}
$$

and

$$
[\vec{r} \otimes \vec{s}](e, f)= \begin{cases}r(e) \times s(f) & \text { if }(e, f) \in(E \times F) \backslash\left(E_{1} \times F_{1}\right) \\ \left\{\left(e_{-}, f_{-}\right),\left(e_{+}, f_{+}\right)\right\} & \text {if }(e, f) \in\left(E_{1} \times F_{1}\right)_{e} \\ \left\{\left(e_{-}, f_{+}\right),\left(e_{+}, f_{-}\right)\right\} & \text {if }(e, f) \in\left(E_{1} \times F_{1}\right)_{o}\end{cases}
$$

for all $(e, f) \in E \otimes F$. Note that if \mathcal{G} and \mathcal{F} have no loops one has $|E \otimes F|=$ $2|E| \cdot|F|$

The tensor product $\mathcal{G} \otimes \mathcal{F}$ admits the natural orientation $\vec{t}: E \otimes F \rightarrow X \times Y$ defined by setting

$$
\vec{t}(e, f)= \begin{cases}((x, y),(x, y)) & \text { if }(e, f) \in E_{0} \times F_{0} \\ \left(\left(e_{-}, y\right),\left(e_{+}, y\right)\right) & \text { if }(e, f) \in E_{1} \times F_{0} \\ \left(\left(x, f_{-}\right),\left(x, f_{+}\right)\right) & \text {if }(e, f) \in E_{0} \times F_{1} \\ \left(\left(e_{-}, f_{-}\right),\left(e_{+}, f_{+}\right)\right) & \text {if }(e, f) \in\left(E_{1} \times F_{1}\right)_{e} \\ \left(\left(e_{-}, f_{+}\right),\left(e_{+}, f_{-}\right)\right) & \text {if }(e, f) \in\left(E_{1} \times F_{1}\right)_{o}\end{cases}
$$

for all $(e, f) \in E \otimes F$.
Moreover, if \mathcal{G} and \mathcal{F} are both simple (respectively, without loops), then $\mathcal{G} \otimes \mathcal{F}$ is also simple, with edge set

$$
E \otimes F=\left\{\left\{(x, y),\left(x^{\prime}, y^{\prime}\right)\right\} \subseteq X \times Y: x \sim x^{\prime} \text { and } y \sim y^{\prime}\right\}
$$

(respectively, without loops).
(iii) Equip \mathcal{G} with an arbitrary orientation \vec{r} : different orientations will produce isomorphic graph products (exercise). The lexicographic product (or composition) of \mathcal{G} and \mathcal{F} is the (undirected) graph $\mathcal{G} \circ \mathcal{F}=(X \times Y, E \circ F, \vec{r} \circ s)$ where

$$
E \circ F=(E \times Y \times Y) \sqcup(X \times F)
$$

and

$$
[\vec{r} \circ s]\left(e, y, y^{\prime}\right)=\left\{\left(e_{-}, y\right),\left(e_{+}, y^{\prime}\right)\right\} \text { and }[\vec{r} \circ s](x, f)=\{x\} \times s(f)
$$

Fig. 8.10. An example of tensor product of graphs
for all $e \in E, y, y^{\prime} \in Y, x \in X$, and $f \in F$.

Fig. 8.11. An example of lexicographic product of graphs

Note that if also the second graph \mathcal{F} is directed, say with an orientation \vec{s}, then $\mathcal{G} \circ \mathcal{F}$ admits the orientation $\vec{t}: E \circ F \rightarrow X \times Y$ defined by setting

$$
\vec{t}\left(e, y, y^{\prime}\right)=\left(\left(e_{-}, y\right),\left(e_{+}, y^{\prime}\right)\right) \quad \text { and } \vec{t}(x, f)=\left(\left(x, f_{-}\right),\left(x, f_{+}\right)\right)
$$

for all $e \in E, y, y^{\prime} \in Y, x \in X$, and $f \in F$.
Also, we may regard the Cartesian product $\mathcal{G} \square \mathcal{F}$ as a subgraph of $\mathcal{G} \circ \mathcal{F}$ (via the injection $E \times Y \ni(e, y) \mapsto(e, y, y) \in E \times Y \times Y)$.

Finally note that if \mathcal{G} and \mathcal{F} are both simple (respectively, without loops), then $\mathcal{G} \circ \mathcal{F}$ is also simple, with edge set

$$
E \circ F=\left\{\left\{(x, y),\left(x^{\prime}, y^{\prime}\right)\right\} \subseteq X \times Y:\left[x \sim x^{\prime}\right] \text { or }\left[x=x^{\prime} \text { and } y \sim y^{\prime}\right]\right\}
$$

(respectively, without loops).

Remark 8.8.2 Summarizing, in all these products the vertex set is $X \times Y$. In the Cartesian product, two vertices (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are adjacent if and only if one of the following two conditions is satisfied: $x \sim x^{\prime}$ and $y=y^{\prime}$, or $x=x^{\prime}$ and $y \sim y^{\prime}$. In the tensor product they are adjacent if and only if $x \sim x^{\prime}$ and $y \sim y^{\prime}$. Finally, in the lexicographic product they are adjacent if and only if one of the following two conditions is satisfied: $x \sim x^{\prime}$ (edge of the first type), or $x=x^{\prime}$ and $y \sim y^{\prime}$ (edge of the second type). The more involved definitions given above are necessary in order to keep into account possible multiple edges and loops, as well as orientability.

Now denote by A (respectively, B) the adjacency matrix of \mathcal{G} (respectively, \mathcal{F}) and suppose that $\lambda_{0} \geq \lambda_{1} \geq \cdots \geq \lambda_{|X|-1}$ (respectively, $\mu_{0} \geq$ $\mu_{1} \geq \cdots \geq \mu_{|Y|-1}$) are the eigenvalues of A (respectively, of B). Let $\left\{f_{0}, f_{1}, \ldots, f_{|X|-1}\right\} \subset L(X)$ (respectively, $\left\{g_{0}, g_{1}, \ldots, g_{|Y|-1}\right\} \subset L(Y)$) be an orthonormal basis of eigenvectors, as in (8.14). Recall that J_{Y} denotes the matrix $\left(j\left(y, y^{\prime}\right)\right)_{y, y^{\prime} \in Y}$ with $j\left(y, y^{\prime}\right)=1$ for all $y, y^{\prime} \in Y$.

Proposition 8.8.3

(i) The adjacency matrix of $\mathcal{G} \square \mathcal{F}$ is $A \otimes I_{Y}+I_{X} \otimes B$, and its eigenvalues are $\lambda_{i}+\mu_{j}, i=0,1, \ldots,|X|-1, j=0,1, \ldots,|Y|-1$.
(ii) The adjacency matrix of $\mathcal{G} \otimes \mathcal{F}$ is $A \otimes B$, and its eigenvalues are $\lambda_{i} \mu_{j}$, $i=0,1, \ldots,|X|-1, j=0,1, \ldots,|Y|-1$.
(iii) The adjacency matrix of $\mathcal{G} \circ \mathcal{F}$ is $A \otimes J_{Y}+I_{X} \otimes B$. Moreover, if \mathcal{F} is k-regular, then its eigenvalues are:

- $\lambda_{i}|Y|+k, i=0,1, \ldots,|X|-1$;
- $\mu_{j}, j=1, \ldots,|Y|-1$, each of them with multiplicity $|X|$.

Proof (i) By definition, we have

$$
A_{\mathcal{G} \square \mathcal{F}}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=A\left(x, x^{\prime}\right) \delta_{y, y^{\prime}}+\delta_{x, x^{\prime}} B\left(y, y^{\prime}\right)
$$

for all $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$, proving the statement relative to the adjacency matrix. For the eigenvalues we apply Proposition 8.7.1.
(ii) We now have

$$
A_{\mathcal{G} \otimes \mathcal{F}}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=A\left(x, x^{\prime}\right) B\left(y, y^{\prime}\right)
$$

for all $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$, and Proposition 8.7.1 applies again.
(iii) In this final case we have

$$
\begin{aligned}
A_{\mathcal{G} \circ \mathcal{F}}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) & =A\left(x, x^{\prime}\right)+\delta_{x, x^{\prime}} B\left(y, y^{\prime}\right) \\
& =A\left(x, x^{\prime}\right) J_{Y}\left(y, y^{\prime}\right)+\delta_{x, x^{\prime}} B\left(y, y^{\prime}\right)
\end{aligned}
$$

for all $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$, proving the statement relative to the adjacency matrix. Suppose now that \mathcal{F} is k-regular so that $\mu_{0}=k, g_{0} \in W_{0}(Y)$ and $g_{j} \in W_{1}(Y)$ for all $j=1,2, \ldots,|Y|-1$. Then $J_{Y} g_{0}=|Y| g_{0}$ while $J_{Y} g_{j}=0$ for $j=1,2, \ldots,|Y|-1$. Therefore

$$
\left[A \otimes J_{Y}+I_{X} \otimes B\right]\left(f_{i} \otimes g_{0}\right)=\left(\lambda_{i}|Y|+k\right)\left(f_{i} \otimes g_{0}\right)
$$

for $i=0,1,2 \ldots,|X|-1$, while

$$
\left[A \otimes J_{Y}+I_{X} \otimes B\right]\left(f_{i} \otimes g_{j}\right)=\mu_{j}\left(f_{i} \otimes g_{j}\right)
$$

for $i=0,1,2 \ldots,|X|-1$ and $j=1,2, \ldots,|Y|-1$.
Remark 8.8.4 In [44], in the framework of the theory of Markov chains, the matrices $A \otimes I_{Y}+I_{X} \otimes B$ and $A \otimes J_{Y}+I_{X} \otimes B$ are called the crossed and nested products, respectively, and are combined to get a further generalization, called the crested product of the given Markov chains.

Corollary 8.8.5 Suppose that \mathcal{G} is h-regular and \mathcal{F} is k-regular. Then
(i) $\mathcal{G} \square \mathcal{F}$ is $(h+k)$-regular, $\mathcal{G} \otimes \mathcal{F}$ is $h k$-regular, and $\mathcal{G} \circ \mathcal{F}$ is $(|Y| h+k)$ regular.
(ii) $\mathcal{G} \square \mathcal{F}$ is connected if and only \mathcal{G} and \mathcal{F} are both connected; $\mathcal{G} \otimes \mathcal{F}$ is connected if and only if both factors are connected and at least one of them is nonbipartite; $\mathcal{G} \circ \mathcal{F}$ is connected if and only if \mathcal{G} is connected.
(iii) Assuming that it is connected, the graph $\mathcal{G} \square \mathcal{F}$ is bipartite if and only if both \mathcal{G} and \mathcal{F} are bipartite. Similarly, assuming that it is connected, the graph $\mathcal{G} \otimes \mathcal{F}$ is bipartite if and only if at least one of the factors is bipartite. Finally, assuming that it is connected, the graph $\mathcal{G} \circ \mathcal{F}$ is not bipartite.

Proof We have $\lambda_{0}=h$ (respectively, $\mu_{0}=k$), $A f_{0}=h f_{0}$ and f_{0} is a nonzero constant function (respectively, $B g_{0}=k g_{0}$ and g_{0} is a nonzero constant function).
(i) The function $f_{0} \otimes g_{0} \in L(X \times Y)$ is constant and it is a nontrivial eigenvector of

- $A \otimes I_{Y}+I_{X} \otimes B$, with eigenvalue $h+k$,
- $A \otimes B$, with eigenvalue $h k$,
- $A \otimes J_{Y}+I_{X} \otimes B$, with eigenvalue $|Y| h+k$.

In order to show regularity and determine the corresponding degree, we use the last statement in Proposition 8.1.4.
(ii) By virtue of Proposition 8.1.5, the graph $\mathcal{G} \square \mathcal{F}$ is connected if and only if $\lambda_{0}+\mu_{0}>\lambda_{i}+\mu_{j}$ for all $(i, j) \neq(0,0)$, that is if and only if $\lambda_{0}>\lambda_{1}$ and $\mu_{0}>\mu_{1}$, and this is equivalent to saying that \mathcal{G} and \mathcal{F} are both connected.
Similarly, $\mathcal{G} \otimes \mathcal{F}$ is connected if and only if

$$
\begin{equation*}
\lambda_{0} \mu_{0}>\lambda_{i} \mu_{j} \text { for all }(i, j) \neq(0,0) \tag{8.24}
\end{equation*}
$$

If both factors are connected and at least one of them, say \mathcal{G}, is non-bipartite, by Proposition 8.3 .4 we have $h=\lambda_{0}>\lambda_{1} \geq \cdots \lambda_{|X|-1}>-h$ and $k=\mu_{0}>$ $\mu_{1} \geq \cdots \mu_{|Y|-1} \geq-k$; an elementary case-by-case analysis shows that (8.24) is satisfied. Conversely, if one of the graphs, say \mathcal{G}, is not connected then $\lambda_{1}=\lambda_{0}=h$ so that $\lambda_{1} \mu_{0}=\lambda_{0} \mu_{0}$ and (8.24) is not verified; if both graphs are connected and bipartite then $\lambda_{|X|-1}=-h$ and $\mu_{|Y|-1}=-k$, so that $\lambda_{|X|-1} \mu_{|Y|-1}=(-h)(-k)=h k=\lambda_{0} \mu_{0}$ and, again, (8.24) is not verified.
Finally, observe that the eigenvalues of $\mathcal{G} \circ \mathcal{F}$ are
$h|Y|+k=\lambda_{0}|Y|+\mu_{0} \geq \lambda_{1}|Y|+\mu_{0} \geq \cdots \geq \lambda_{|X|-1}|Y|+\mu_{0} \geq \mu_{1} \geq \mu_{2} \geq \mu_{|Y|-1}$ and $\mathcal{G} \circ \mathcal{F}$ is connected if and only if the multiplicity of the eigenvalue $h|Y|+k$ is one, and this happens if and only if the multiplicity of $h=\lambda_{0}$ is one, that is, if and only if \mathcal{G} is connected.
(iii) We again apply Proposition 8.3.4. The number $-(h+k)$ is an eigenvalue of the adjacency matrix of $\mathcal{G} \square \mathcal{F}$ if and only if $\lambda_{|X|-1}=-h$ and $\mu_{|Y|-1}=-k$. Similarly, $-h k$ is an eigenvalue of the adjacency matrix of $\mathcal{G} \otimes \mathcal{F}$ if and only if $\lambda_{|X|-1}=-h$ or $\mu_{|Y|-1}=-k$. Finally, since

$$
\mu_{|Y|-1} \geq-\mu_{0}=-k>-(h|Y|+k),
$$

the number $-(h|Y|+k)$ cannot be an eigenvalue of the adjacency matrix of $\mathcal{G} \circ \mathcal{F}$.

Exercise 8.8.6 Give a direct combinatorial (i.e. not spectral) proof of Corollary 8.8.5.

Exercise 8.8.7 (The Hamming graph) Let n, m be two positive integers. The Hamming graph $\mathcal{H}_{n, m+1}=\left(X_{n, m+1}, E_{n, m+1}\right)$, is the (finite simple without loops) graph with vertex set
$X_{n, m+1}=\{0,1, \ldots, m\}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1}, x_{2}, \ldots, x_{n} \in\{0,1, \ldots, m\}\right\}$ and two vertices $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X_{n, m+1}$ are adjacent
if there exists $1 \leq j \leq n$ such that $x_{j} \neq y_{j}$ and $x_{i}=y_{i}$ for all $i \neq j$. The Hamming distance between two vertices $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is given by

$$
d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)=\left|\left\{j: x_{j} \neq y_{j}\right\}\right|
$$

Note that $\mathcal{H}_{n, 2}$ (i.e. $m=1$) coincides with the n-dimensional hypercube Q_{n} (cf. Section 8.5).
(1) Show that $\mathcal{H}_{n, m+1}$ is an $n m$-regular graph. Moreover show that the Hamming distance coincides with the geodesic distance on the graph.
(2) Show that $\mathcal{H}_{n, m+1}$ is the Cartesian product of n copies of the complete graph K_{m+1} (with vertices $\{0,1, \ldots, m\}$), that is, its adjacency matrix is

$$
\sum_{j=1}^{n} I_{m+1} \otimes \cdots \otimes I_{m+1} \otimes A \otimes I_{m+1} \otimes \cdots \otimes I_{m+1}
$$

where I_{m+1} is the $(m+1) \times(m+1)$ identity matrix and A (in the j-th position) is the adjacency matrix of K_{m+1}.
(3) For $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{0,1\}^{n}$ set $w(\mathbf{i})=\left|\left\{k: i_{k}=1\right\}\right|$ (the weight of i). Recalling the spectral decomposition (see Proposition 8.1.4 and Section 8.4)

$$
L\left(K_{m+1}\right)=W_{0} \oplus W_{1}
$$

for $0 \leq \ell \leq n$, we set

$$
V_{\ell}=\bigoplus_{w(\mathbf{i})=\ell} W_{i_{1}} \otimes W_{i_{2}} \otimes \cdots \otimes W_{i_{n}}
$$

In other words, V_{ℓ} is the subspace spanned by all tensor products $f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}$ where ℓ (respectively, the remaining $n-\ell$) of the f_{j} s belong to W_{1} (respectively, W_{0}). Show that

$$
L\left(X_{n, m+1}\right)=\oplus_{\ell=0}^{n} V_{\ell}
$$

is the spectral decomposition relative to the adjacency matrix of $\mathcal{H}_{n, m+1}$, that the eigenvalue corresponding to V_{ℓ} is $n m-\ell(m+1)$, and that $\operatorname{dim} V_{\ell}=m^{\ell}\binom{n}{\ell}$.

8.9 Wreath product of finite graphs

This section is based on [45]: in particular, for simplicity, we only consider (finite) simple graphs without loops.

Let X be a finite set and $\mathcal{F}=(Y, F)$ a finite simple graph without loops.

We endow the exponential set Y^{X} with a graph structure, denoted \mathcal{F}^{X}, by declaring that two vertices $f, f^{\prime} \in Y^{X}$ are adjacent (and, as usual, we write $\left.f \sim f^{\prime}\right)$ if there exists $x \in X$ such that $f(z)=f^{\prime}(z)$ for all $z \in X \backslash\{x\}$ and $f(x) \sim f^{\prime}(x)$ in \mathcal{F}. Note that \mathcal{F}^{X} is simple and without loops; moreover, if $|X|=2$ it coincides with the Cartesian square $\mathcal{F} \square \mathcal{F}$. Denote by B the adjacency operator of \mathcal{F} (that is, $B \delta_{y}=\sum_{y^{\prime} \sim y} \delta_{y^{\prime}}=\mathbf{1}_{\mathcal{N}(y)}$ for all $y \in Y$) and by \mathcal{B} the adjacency operator of \mathcal{F}^{X} (that is, $\mathcal{B} \delta_{f}=\sum_{f^{\prime} \sim f} \delta_{f^{\prime}}=\mathbf{1}_{\mathcal{N}(f)}$ for all $f \in Y^{X}$). Also, for all $x, x^{\prime} \in X$ we define the linear operator $B_{x, x^{\prime}}: L(Y) \rightarrow L(Y)$ by setting

$$
B_{x, x^{\prime}}= \begin{cases}B & \text { if } x=x^{\prime} \\ I_{Y} & \text { if } x \neq x^{\prime}\end{cases}
$$

We now generalize Proposition 8.8.3.(i).
Proposition 8.9.1 The adjacency operator \mathcal{B} of \mathcal{F}^{X} has the expression

$$
\mathcal{B}=\sum_{x \in X} \bigotimes_{x^{\prime} \in X} B_{x, x^{\prime}} .
$$

Proof Let $f \in Y^{X}$ and let us show that

$$
\begin{equation*}
\mathcal{B} \delta_{f}=\left(\sum_{x \in X} \bigotimes_{x^{\prime} \in X} B_{x, x^{\prime}}\right) \delta_{f} . \tag{8.25}
\end{equation*}
$$

For $x, x^{\prime} \in X$ define $\mathbf{1}_{x, x^{\prime}} \in L(Y)$ by setting

$$
\mathbf{1}_{x, x^{\prime}}= \begin{cases}\mathbf{1}_{\mathcal{N}(f(x))} & \text { if } x=x^{\prime} \tag{8.26}\\ \delta_{f\left(x^{\prime}\right)} & \text { if } x \neq x^{\prime}\end{cases}
$$

Note that setting

$$
\begin{equation*}
\mathcal{N}_{x}(f)=\left\{f^{\prime} \in Y^{X}:\left[f^{\prime}\left(x^{\prime}\right)=f\left(x^{\prime}\right) \text { for } x \neq x^{\prime}\right] \text { and }\left[f^{\prime}(x) \sim f(x)\right]\right\} \tag{8.27}
\end{equation*}
$$

for all $x \in X$, in the graph \mathcal{F}^{X} we have the partition

$$
\begin{equation*}
\mathcal{N}(f)=\coprod_{x \in X} \mathcal{N}_{x}(f) \tag{8.28}
\end{equation*}
$$

and the map $\alpha: \mathcal{N}(f(x)) \rightarrow \mathcal{N}_{x}(f)$ defined by

$$
\alpha(y)\left(x^{\prime}\right)= \begin{cases}y & \text { if } x^{\prime}=x \tag{8.29}\\ f\left(x^{\prime}\right) & \text { if } x^{\prime} \neq x\end{cases}
$$

for all $y \in \mathcal{N}(f(x))$ and $x^{\prime} \in X$, is a bijection. Then, on the one hand, we have

$$
\begin{aligned}
& \mathcal{B} \delta_{f}=\mathbf{1}_{\mathcal{N}(f)} \\
& (\operatorname{by}(8.28))=\sum_{x \in X} \mathbf{1}_{\mathcal{N}_{x}(f)} \\
& =\sum_{x \in X} \sum_{f^{\prime} \in \mathcal{N}_{x}(f)} \delta_{f^{\prime}} \\
& \text { (by }(8.23))=\sum_{x \in X} \sum_{f^{\prime} \in \mathcal{N}_{x}(f)} \bigotimes_{x^{\prime} \in X} \delta_{f^{\prime}\left(x^{\prime}\right)} \\
& =\sum_{x \in X} \sum_{f^{\prime} \in \mathcal{N}_{x}(f)}\left[\left(\bigotimes_{x^{\prime} \in X \backslash\{x\}} \delta_{f^{\prime}\left(x^{\prime}\right)}\right) \otimes \delta_{f^{\prime}(x)}\right] \\
& \text { (by }(8.27))=\sum_{x \in X} \sum_{f^{\prime} \in \mathcal{N}_{x}(f)}\left[\left(\bigotimes_{x^{\prime} \in X \backslash\{x\}} \delta_{f\left(x^{\prime}\right)}\right) \otimes \delta_{f^{\prime}(x)}\right] \\
& =\sum_{x \in X}\left[\left(\bigotimes_{x^{\prime} \in X \backslash\{x\}} \delta_{f\left(x^{\prime}\right)}\right) \otimes\left(\sum_{f^{\prime} \in \mathcal{N}_{x}(f)} \delta_{f^{\prime}(x)}\right)\right] \\
& =\sum_{x \in X}\left[\left(\bigotimes_{x^{\prime} \in X \backslash\{x\}} \delta_{f\left(x^{\prime}\right)}\right) \otimes\left(\sum_{y \in \mathcal{N}(f(x))} \delta_{\alpha(y)(x)}\right)\right] \\
& (\text { by }(8.29))=\sum_{x \in X}\left[\left(\bigotimes_{x^{\prime} \in X \backslash\{x\}} \delta_{f\left(x^{\prime}\right)}\right) \otimes\left(\sum_{y \in \mathcal{N}(f(x))} \delta_{y}\right)\right] \\
& =\sum_{x \in X}\left[\left(\bigotimes_{x^{\prime} \in X \backslash\{x\}} \delta_{f\left(x^{\prime}\right)}\right) \otimes \mathbf{1}_{\mathcal{N}(f(x))}\right] \\
& (\text { by }(8.26))=\sum_{x \in X} \bigotimes_{x^{\prime} \in X} \mathbf{1}_{x, x^{\prime}} \text {. }
\end{aligned}
$$

Moreover,

$$
B_{x, x^{\prime}} \delta_{f\left(x^{\prime}\right)}=\left\{\begin{array}{ll}
B \delta_{f(x)} & \text { if } x=x^{\prime} \tag{8.31}\\
I_{Y} \delta_{f\left(x^{\prime}\right)} & \text { if } x \neq x^{\prime}
\end{array}=\mathbf{1}_{x, x^{\prime}},\right.
$$

so that, on the other hand, keeping in mind (8.23), we have

$$
\begin{align*}
\left(\bigotimes_{x^{\prime} \in X} B_{x, x^{\prime}}\right) \delta_{f} & =\left[\left(\bigotimes_{x^{\prime} \in X} B_{x, x^{\prime}}\right)\left(\bigotimes_{x^{\prime} \in X} \delta_{f\left(x^{\prime}\right)}\right)\right] \\
(\text { by }(8.22)) & =\left[\left(\bigotimes_{x^{\prime} \in X} B_{x, x^{\prime}} \delta_{f\left(x^{\prime}\right)}\right)\right] \tag{8.32}\\
(\text { by }(8.31)) & =\bigotimes_{x^{\prime} \in X} \mathbf{1}_{x, x^{\prime}} .
\end{align*}
$$

Summing up (over $x \in X$) in (8.32), and comparing it with (8.30), we finally deduce (8.25).

Exercise 8.9.2 Show that the set of all eigenvalues of the adjacency operator \mathcal{B} of \mathcal{F}^{X} is given by

$$
\left\{\sum_{x \in X} \mu_{\xi(x)}: \quad \xi \in\{0,1, \ldots,|Y|-1\}^{X}\right\}
$$

where $\mu_{0}, \mu_{1}, \ldots, \mu_{|Y|-1}$ are the eigenvalues of \mathcal{F}. Deduce, as a particular case, the set of all eigenvalues of the hypercube (cf. Section 8.5) and of the Hamming graph (cf. Exercise 8.8.7).

Let now $\mathcal{G}=(X, E)$ and $\mathcal{F}=(Y, F)$ be two finite simple graphs without loops.

Definition 8.9.3 The wreath product of \mathcal{G} and \mathcal{F} is the graph $\mathcal{G} \backslash \mathcal{F}=$ $\left(Y^{X} \times X, \mathcal{E}\right)$ where the edge set is

$$
\begin{aligned}
& \mathcal{E}=\left\{\left\{(f, x),\left(f^{\prime}, x^{\prime}\right)\right\} \subseteq Y^{X} \times X:\left[x=x^{\prime} \text { and } f^{\prime} \in \mathcal{N}_{x}(f)\right]\right. \\
&\text { or } \left.\left[x \sim x^{\prime} \text { and } f=f^{\prime}\right]\right\}
\end{aligned}
$$

where $\mathcal{N}_{x}(f) \subseteq Y^{X}$ is as in (8.28). Moreover, $\left\{(f, x),\left(f^{\prime}, x^{\prime}\right)\right\} \in \mathcal{E}$ is called an edge of the first type (respectively, edge of the second type) provided $x=x^{\prime}$ and $f^{\prime} \in \mathcal{N}_{x}(f)$ (respectively, $x \sim x^{\prime}$ and $f=f^{\prime}$).

Remark 8.9.4 Note that, modulo the map $Y^{X} \times X \ni(f, x) \mapsto(x, f) \in$ $X \times Y^{X}$, the wreath product $\mathcal{G} \backslash \mathcal{F}$ can be viewed as a subgraph of the Cartesian product $\mathcal{G} \square \mathcal{F}^{X}$, and therefore of the lexicographic product $\mathcal{G} \circ \mathcal{F}^{X}$. Indeed, the set of all edges of the first type in $\mathcal{G} \backslash \mathcal{F}$ forms a subset of those edges of the Cartesian product that are given by the less restrictive condition $x=x^{\prime}$ and $f \sim f^{\prime}$; the set of all edges of the second type in $\mathcal{G} \backslash \mathcal{F}$ are defined
by the analogous condition in the Cartesian product (but they form a subset of the edges of the first type in the lexicographic product).

Theorem 8.9.5 The adjacency operator of the wreath product $\mathcal{G} \backslash \mathcal{F}$ has the expression

$$
\begin{equation*}
\sum_{x \in X}\left[\left(\bigotimes_{x^{\prime} \in X} B_{x, x^{\prime}}\right) \bigotimes \Delta_{x}\right]+I_{Y^{X}} \otimes A \tag{8.33}
\end{equation*}
$$

where $\Delta_{x} \in \operatorname{End}(L(X))$ is defined by setting $\Delta_{x}\left(\delta_{x^{\prime}}\right)=\delta_{x}\left(x^{\prime}\right) \delta_{x}$ for all $x, x^{\prime} \in X$.

Proof Let us show that the first summand in (8.33) takes into account all edges of the first type. Indeed, arguing as in the proof of Proposition 8.9.1, for $z \in X$ and $f \in Y^{X}$, we have:

$$
\begin{aligned}
\left\{\sum_{x \in X}\left[\left(\bigotimes_{x^{\prime} \in X} B_{x, x^{\prime}}\right) \bigotimes \Delta_{x}\right]\right\}\left(\delta_{f} \otimes \delta_{z}\right) & =\sum_{x \in X}\left[\left(\bigotimes_{x^{\prime} \in X} B_{x, x^{\prime}}\right)\left(\delta_{f}\right) \bigotimes \Delta_{x}\left(\delta_{z}\right)\right] \\
& =\left(\bigotimes_{x^{\prime} \in X} B_{z, x^{\prime}}\right)\left(\delta_{f}\right) \bigotimes \delta_{z} \\
(\text { by }(8.32)) & =\left(\bigotimes_{x^{\prime} \in X} \mathbf{1}_{z, x^{\prime}}\right) \bigotimes \delta_{z},
\end{aligned}
$$

where the last expression is precisely the characteristic function of the set of all vertices adjacent to (f, z) by an edge of the first type.

Finally, the term $I_{Y^{X}} \otimes A$ takes into account all edges of the second type; compare with the expression of the adjacency matrix of the Cartesian product in Proposition 8.8.3.(i).

In [45], D'Angeli and Donno introduced and used (8.33) as a definition of wreath product of matrices.

8.10 Lamplighter graphs and their spectral analysis

This section is based on our monograph [34] and the paper [136], but the version of the lamplighter that we analyze is the one described in [45, 57, 58].

Let $\mathcal{G}=(X, E)$ be a finite simple graph without loops.
Definition 8.10.1 The lamplighter graph associated with \mathcal{G} is the finite graph $\mathcal{L}=(\mathcal{X}, \mathcal{E})$ with vertex set

$$
\mathcal{X}=\{0,1\}^{X} \times X=\left\{(\omega, x): \omega \in\{0,1\}^{X}, x \in X\right\}
$$

and edge set

$$
\begin{array}{r}
\mathcal{E}=\{\{(\omega, x),(\theta, y)\}:[x=y, \omega(z)=\theta(z) \text { for all } z \neq x \text { and } \omega(x) \neq \theta(x)] \\
\text { or }[x \sim y \text { and } \omega=\theta]\} .
\end{array}
$$

Clearly, \mathcal{L} coincides with the wreath product $\mathcal{G}\} K_{2}$, where K_{2} is the complete graph on two vertices (cf. Figure 8.5).

Remark 8.10.2 Another description of the lamplighter graph is the following. We associate with each vertex $x \in X$ a lamp which may be either on or off. A configuration of the lamps is a map $\omega: X \rightarrow\{0,1\}$: the value $\omega(x)=1$ (respectively, $\omega(x)=0$) indicates that the lamp at x is on (respectively, off). A vertex of the lamplighter is a pair (ω, x) consisting of a configuration of the lamps and a vertex of X. Two vertices (ω, x) and (θ, y) of the lamplighter graph are adjacent if and only if one of these two conditions are satisfied:

$$
\begin{align*}
& x \sim y \text { and } \omega=\theta \quad \text { (a walk edge); } \tag{8.34}\\
& x=y \text { and } \omega \text { and } \theta \text { differ exactly in } x \quad \text { (a switch edge). }
\end{align*}
$$

This is the so-called walk or switch lamplighter: the neighbors of the vertex (ω, x) may be obtained by either walking to a neighbor of x in \mathcal{G} and leaving all the lamps at their current states, or remaining at x but changing the state of the lamp at x.

Finally note that two configurations ω and θ may be added: $(\omega+\theta)(x)=$ $\omega(x)+\theta(x) \bmod 2$.

In the literature, several variations on this construction have been analyzed; see [136], and, for infinite lamplighters and their spectral computations, [17, 68, 69, 94].
Let $\mathcal{A} \in \operatorname{End}(L(\mathcal{X}))$ denote the adjacency operator associated with the lamplighter graph \mathcal{L}, so that

$$
[\mathcal{A} \Phi](\omega, x)=\sum_{(\theta, y) \sim(\omega, x)} \Phi(\theta, y),
$$

for all $\Phi \in L(\mathcal{X})$ and $(\omega, x) \in \mathcal{X}$. Since $L(\mathcal{X}) \equiv L\left(\{0,1\}^{X}\right) \otimes L(X)$, it is useful to determine the \mathcal{A}-image of a tensor product of functions: if $F \in L\left(\{0,1\}^{X}\right)$ and $f \in L(X)$ we have

$$
\begin{equation*}
[\mathcal{A}(F \otimes f)](\omega, x)=F\left(\omega+\delta_{x}\right) f(x)+F(\omega) \sum_{y \sim x} f(y) \tag{8.35}
\end{equation*}
$$

for all $(\omega, x) \in\{0,1\}^{X} \times X$. Indeed, the first term corresponds to a switch
at x (δ_{x} is regarded as the configuration with only the lamp at x on) and the second to a walk from x.

With each $\theta \in\{0,1\}^{X}$ we associate the linear operator $A_{\theta}: L(X) \rightarrow L(X)$ defined by setting

$$
\begin{equation*}
\left[A_{\theta} f\right](x)=(-1)^{\theta(x)} f(x)+\sum_{y \sim x} f(y) \tag{8.36}
\end{equation*}
$$

for all $f \in L(X)$ and $x \in X$, and the character $\chi_{\theta} \in \widehat{\mathbb{Z}_{2}^{X}} \equiv \widehat{\{0,1\}^{X}} \subseteq$ $L\left(\{0,1\}^{X}\right)$ defined by setting

$$
\chi_{\theta}(\omega)=(-1)^{\sum_{x \in X} \theta(x) \omega(x)}
$$

for all $\omega \in\{0,1\}^{X}$ (cf. Section 8.5).
Theorem 8.10.3 For all $\theta \in\{0,1\}^{X}$ and $f \in L(X)$ we have:

$$
\begin{equation*}
\mathcal{A}\left(\chi_{\theta} \otimes f\right)=\chi_{\theta} \otimes A_{\theta} f \tag{8.37}
\end{equation*}
$$

Suppose also that $\lambda_{\theta, 1}, \lambda_{\theta, 2}, \ldots, \lambda_{\theta, h(\theta)}$ are the distinct eigenvalues of A_{θ} and $V_{\theta, j}$ is the eigenspace of A_{θ} corresponding to the eigenvalue $\lambda_{\theta, j}, j=$ $1, \ldots, h(\theta)$. Then

$$
\left\{\lambda_{\theta, j}: \theta \in\{0,1\}^{X}, j=1,2, \ldots, h(\theta)\right\}
$$

are the eigenvalues of \mathcal{A} (not necessarily distinct) and $\mathcal{W}_{\theta, j}=\left\{\chi_{\theta} \otimes f: f \in\right.$ $\left.V_{\theta, j}\right\}$ is the eigenspace of \mathcal{A} corresponding to $\lambda_{\theta, j}$.

Proof Applying (8.35) we get

$$
\begin{align*}
{\left[\mathcal{A}\left(\chi_{\theta} \otimes f\right)\right](\omega, x) } & =\chi_{\theta}\left(\omega+\delta_{x}\right) f(x)+\chi_{\theta}(\omega) \sum_{y \sim x} f(y) \\
& =\chi_{\theta}(\omega)\left[(-1)^{\theta(x)} f(x)+\sum_{y \sim x} f(y)\right] \tag{8.38}\\
& =\left[\chi_{\theta} \otimes A_{\theta} f\right](\omega, x)
\end{align*}
$$

The other statements follow easily from (8.37).

8.11 The lamplighter on the complete graph

This section is based on [45]. See also [34] and [136] for another version of the following construction.

Given a finite set X, we denote, as usual, by $W_{0}(X)$ the space of constant
functions on X and $W_{1}(X)=\left\{f \in L(X): \sum_{x \in X} f(x)=0\right\}$. Then (cf. Proposition 2.1.1), we have the decomposition

$$
\begin{equation*}
L(X)=W_{0}(X) \oplus W_{1}(X) . \tag{8.39}
\end{equation*}
$$

Let now $K_{n}=(X, E)$ be the complete graph on n vertices so that $X=$ $\{1,2, \ldots, n\}$ and $E=\{\{x, y\}: x, y \in X, x \neq y\})$. The eigenspaces of the adjacency operator on the complete graph on n vertices are $W_{0}(X)$ and $W_{1}(X)$, with corresponding eigenvalues $n-1$ and -1 , respectively; see Section 8.4. Let $\mathcal{L}=(\mathcal{X}, \mathcal{E})$ be the associated lamplighter graph. Let $\theta \in\{0,1\}^{X}$ and set

$$
X_{\theta}=\{x \in X: \theta(x)=0\} .
$$

For $f \in L(X)$ and $x \in X$, equation (8.36) becomes:

$$
\left[A_{\theta} f\right](x)= \begin{cases}f(x)+\sum_{\substack{y \in X_{\theta}: \\ y \neq x}} f(y)+\sum_{y \in X \backslash X_{\theta}} f(y) & \text { if } x \in X_{\theta} \tag{8.40}\\ -f(x)+\sum_{y \in X_{\theta}} f(y)+\sum_{\substack{y \in X \backslash X_{\theta}: \\ y \neq x}} f(y) & \text { if } x \in X \backslash X_{\theta} .\end{cases}
$$

Let $f \in L(X)$. If

$$
\begin{equation*}
\left.f\right|_{X_{\theta}} \in W_{1}\left(X_{\theta}\right) \text { and }\left.f\right|_{X \backslash X_{\theta}} \equiv 0 \tag{8.41}
\end{equation*}
$$

then (8.40) becomes

$$
\begin{aligned}
{\left[A_{\theta} f\right](x) } & = \begin{cases}f(x)+\sum_{\substack{y \in X_{\theta} \\
y \neq x}} f(y) & \text { if } x \in X_{\theta} \\
\sum_{y \in X_{\theta}} f(y) & \text { if } x \in X \backslash X_{\theta}\end{cases} \\
& =\sum_{y \in X_{\theta}} f(y)=0 \quad \text { (in both cases). }
\end{aligned}
$$

Therefore, the space of all functions satisfying the conditions in (8.41) constitutes an A_{θ}-eigenspace with eigenvalue 0 .

Similarly, if

$$
\begin{equation*}
\left.f\right|_{X \backslash X_{\theta}} \in W_{1}\left(X \backslash X_{\theta}\right) \text { and }\left.f\right|_{X_{\theta}} \equiv 0 \tag{8.42}
\end{equation*}
$$

then

$$
\begin{aligned}
& {\left[A_{\theta} f\right](x) }= \begin{cases}\sum_{y \in X \backslash X_{\theta}} f(y) & \text { if } x \in X_{\theta} \\
-f(x)+\sum_{\substack{y \in X \backslash X_{\theta}: \\
y \neq x}} f(y) & \text { if } x \in X \backslash X_{\theta}\end{cases} \\
&= \begin{cases}0 & \text { if } x \in X_{\theta} \\
-2 f(x) & \text { if } x \in X \backslash X_{\theta}\end{cases} \\
&=-2 f(x) \\
& \text { (in both cases). }
\end{aligned}
$$

Therefore, the space of all functions satisfying the conditions in (8.42) constitutes an A_{θ}-eigenspace with eigenvalue -2 .

Finally, suppose that $\left|X_{\theta}\right|=k$ with $0 \leq k \leq n$, and let $f=\alpha \mathbf{1}_{X_{\theta}}+\beta \mathbf{1}_{X \backslash X_{\theta}}$, for some $\alpha, \beta \in \mathbb{C}$. From (8.40) it follows that

$$
\left[A_{\theta} f\right](x)= \begin{cases}k \alpha+(n-k) \beta & \text { if } x \in X_{\theta} \\ k \alpha+(n-k-2) \beta & \text { if } x \in X \backslash X_{\theta}\end{cases}
$$

Note that if $k=0$ (respectively, $k=n$), that is, $X_{\theta}=\varnothing$ (respectively, $X_{\theta}=X$), then f is constant and is an A_{θ}-eigenvector with eigenvalue $n-2$ (respectively, n). When $1 \leq k \leq n-1$, elementary calculations show that the eigenvalues of the matrix $\left(\begin{array}{cc}k & n-k \\ k & n-k-2\end{array}\right)$ are $\lambda_{ \pm}^{(k)}=\frac{n-2 \pm \sqrt{(n-2)^{2}+8 k}}{2}$ and the corresponding eigenvectors are $\left(1, \omega_{ \pm}^{(k)}\right)^{T}$, where $\omega_{ \pm}^{(k)}=\frac{\lambda_{ \pm}^{(k)}}{2+\lambda_{ \pm}^{(k)}}$.

We then define the one-dimensional A_{θ}-eigenspaces (subspaces of $L(X)$)

$$
W_{\theta}^{ \pm}=\left\{f=\alpha \mathbf{1}_{X_{\theta}}+\omega_{ \pm}^{(k)} \alpha \mathbf{1}_{X \backslash X_{\theta}}: \alpha \in \mathbb{C}\right\}
$$

for $1 \leq\left|X_{\theta}\right| \leq n-1$, and

$$
W_{0}=\left\{f=\alpha \mathbf{1}_{X}: \alpha \in \mathbb{C}\right\}
$$

if $\left|X_{\theta}\right|=0, n$.
We also define the following subspaces of $L(\mathcal{X})$:

$$
\begin{aligned}
& \mathcal{W}_{0 ; 0}=\operatorname{span}\left(\mathbf{1} \otimes f: f \in W_{0}\right) \\
& \mathcal{W}_{n ; 0}=\operatorname{span}\left((-\mathbf{1}) \otimes f: f \in W_{0}\right)
\end{aligned}
$$

where $\mathbf{1}(\omega)=1$ and $[-\mathbf{1}](\omega)=(-1)^{\sum_{x \in X} \omega(x)}$, for all $\omega \in\{0,1\}^{X}$, and, for

$$
\begin{aligned}
& 1 \leq k \leq n-1 \\
& \quad \mathcal{W}_{k ; 0}^{ \pm}=\operatorname{span}\left(\chi_{\theta} \otimes f:\left|X_{\theta}\right|=k, f \in W_{\theta}^{ \pm}\right) \\
& \mathcal{W}_{k ; 1}=\operatorname{span}\left(\chi_{\theta} \otimes f:\left|X_{\theta}\right|=k,\left.f\right|_{X_{\theta}} \in W_{1}\left(X_{\theta}\right) \text { and }\left.f\right|_{X \backslash X_{\theta}} \equiv 0\right) \\
& \mathcal{W}_{k ; 2}=\operatorname{span}\left(\chi_{\theta} \otimes f:\left|X_{\theta}\right|=k,\left.f\right|_{X_{\theta}} \equiv 0 \text { and }\left.f\right|_{X \backslash X_{\theta}} \in W_{1}\left(X \backslash X_{\theta}\right)\right)
\end{aligned}
$$

Exercise 8.11.1 Show that

(1) $\mathcal{W}_{0 ; 0}$ is the \mathcal{A}-eigenspace with eigenvalue $n-2$;
(2) $\mathcal{W}_{n ; 0}$ is the \mathcal{A}-eigenspace with eigenvalue n;
(3) $\mathcal{W}_{k ; 0}^{ \pm}$is the \mathcal{A}-eigenspace with eigenvalue $\lambda_{ \pm}^{(k)}$, for $k=1,2, \ldots, n-1$;
(4) $\bigoplus_{k=1}^{n} \mathcal{W}_{k ; 1}$ is the \mathcal{A}-eigenspace with eigenvalue 0 ;
(5) $\bigoplus_{k=0}^{n-1} \mathcal{W}_{k ; 2}$ is the \mathcal{A}-eigenspace with eigenvalue -2 .

8.12 The replacement product

In this section, based on [57], we introduce the replacement product. This is a natural construction but it is worthwhile to introduce specific notation in order to get a precise description of it. This notation will be also used for the zig-zag product (cf. Section 8.13).

Let $\mathcal{G}=(X, E, r)$ be a finite d-regular graph possibly with multiple edges and loops.

Let x and y be two distinct vertices in X. Recall that E_{x} denotes the set of edges incident to x. This way, $E_{x} \cap E_{y}$ is the set of edges joining x and y (note that $x \nsim y$ if and only if $E_{x} \cap E_{y}=\varnothing$).

Set $[d]=\{1,2, \ldots, d\}$. Then for each $x \in X$ we (arbitrarily) choose a bijective labelling of the edges incident to x using $[d]$ as the set of labels, that is, a bijection $h_{x}: E_{x} \rightarrow[d]$. We refer to $\left(h_{x}\right)_{x \in X}$ as to the (edge) labelling of \mathcal{G} and we say that \mathcal{G} is a labelled graph. Given a vertex $x \in X$ and an edge $e \in E$ such that $r(e) \ni x$, the label $h=h_{x}(e)$ is called the color of the edge e near x and we also say that e is the h-edge near x. Note that, unless otherwise specified, if $x, y \in X$ are distinct and adjacent, and $e \in E_{x} \cap E_{y}$, then there is no relation between the color $h_{x}(e)$ of e near x and the color $h_{y}(e)$ of e near y. Moreover, if $r(e)=\{x\}$, that is, e is a loop at x, then e has only the color $h_{x}(e)$ near x.

Definition 8.12.1 The rotation map

$$
\operatorname{Rot}_{\mathcal{G}}: X \times[d] \longrightarrow X \times[d]
$$

associated with the labelling $\left(h_{x}\right)_{x \in X}$ is the (bijective) map defined by setting

$$
\begin{equation*}
\operatorname{Rot}_{\mathcal{G}}(x, i)=(y, j) \text { where } e=h_{x}^{-1}(i), r(e)=\{x, y\}, \text { and } j=h_{y}(e) \tag{8.43}
\end{equation*}
$$

for all $x \in X$ and $i \in[d]$.

In other words, if $e=h_{x}^{-1}(i) \in E$ is a loop at x, then $\operatorname{Rot}_{\mathcal{G}}(x, i)=(x, i)$, while if $r(e)=\{x, y\}$, with $y \neq x$, then $\operatorname{Rot}_{\mathcal{G}}(x, i)=(y, j)$, where j is the color of e near y. Note that

$$
\begin{equation*}
E=(X \times[d]) / \approx \tag{8.44}
\end{equation*}
$$

where \approx is the equivalence relation defined by setting $(x, i) \approx(x, i)$ and

$$
(x, i) \approx(y, j) \text { if }(y, j)=\operatorname{Rot}_{\mathcal{G}}(x, i)
$$

for all $x, y \in X$ and $i, j \in[d]$.
With the rotation map $\operatorname{Rot}_{\mathcal{G}}$ we associate the permutation matrix $R_{\mathcal{G}}$ indexed by $X \times[d]$ defined by setting, for all $(x, i),(y, j) \in X \times[d]$,

$$
R_{\mathcal{G}}((x, i),(y, j))= \begin{cases}1 & \text { if } \operatorname{Rot}_{\mathcal{G}}(x, i)=(y, j) \tag{8.45}\\ 0 & \text { otherwise }\end{cases}
$$

In the following proposition, we show the connection between the permutation matrix $R_{\mathcal{G}}$ and the adjacency matrix $A=A_{\mathcal{G}}$ of \mathcal{G}. We use the operator C in (8.21) and we think of $R_{\mathcal{G}}$ (respectively, A) as a linear endomorphism of $L(X \times[d])$ (respectively, $L(X)$).

Proposition 8.12.2 For all $f \in L(X)$ one has

$$
C R_{\mathcal{G}}\left(f \otimes \mathbf{1}_{[d]}\right)=A f
$$

Proof Clearly, for $(x, i) \in X \times[d]$ we have

$$
R_{\mathcal{G}}\left(\delta_{y} \otimes \delta_{j}\right)=\delta_{x} \otimes \delta_{i}
$$

where $(y, j)=\operatorname{Rot}_{\mathcal{G}}(x, i)$. Then

$$
R_{\mathcal{G}}\left(\delta_{x} \otimes \mathbf{1}_{[d]}\right)=\sum_{i \in[d]} R_{\mathcal{G}}\left(\delta_{x} \otimes \delta_{i}\right)=\sum_{i \in[d]} \sum_{\substack{(y, j) \in X \times[d]: \\ \operatorname{Rot}_{\mathcal{G}}(y, j)=(x, i)}}\left(\delta_{y} \otimes \delta_{j}\right)
$$

so that

$$
\begin{aligned}
C R_{\mathcal{G}}\left(\delta_{x} \otimes \mathbf{1}_{[d]}\right) & =\sum_{i \in[d]} \sum_{\substack{(y, j) \in X \times[d]: \\
\operatorname{Rot} \\
\mathcal{G}(y, j)=(x, i)}} C\left(\delta_{y} \otimes \delta_{j}\right) \\
\text { (by Lemma 8.7.3.(ii)) } & =\sum_{i \in[d]} \sum_{\substack{(y, j) \in X \times[d]: \\
\operatorname{Rot} \\
\mathcal{G}(y, j)=(x, i)}} \delta_{y} \\
& =\sum_{\substack{y \in X: \\
x \sim y}} \delta_{y} \mathrm{in} \mathcal{G} \\
& =A \delta_{x} .
\end{aligned}
$$

The general result follows by linearity.

Exercise 8.12.3 Show that, if X is a finite nonempty set, then a map Rot: $X \times[d] \longrightarrow X \times[d]$ is the rotation map of a labelled d-regular graph with vertex set X if and only if Rot o Rot is the identity map. Moreover, loops correspond to fixed-points of Rot.
Hint: Suppose RotoRot is the identity map. For $x \in X$ set $\bar{E}_{x}=\{\operatorname{Rot}(x, i)$: $i \in[d]\}$ and define $E=\left(\cup_{x \in X} \bar{E}_{x}\right) / \approx$, where \approx is as in (8.44). Moreover, $r: E \rightarrow \mathcal{P}(X)$ is defined by setting $r[\operatorname{Rot}(x, i)]=\{x, y\}$, where $\operatorname{Rot}(x, i)=$ (y, j), for all $x \in X$ and $i \in[d]$.

Definition 8.12.4 Let $\mathcal{G}=\left(X, E, r_{\mathcal{G}}\right)$ be a d-regular graph and $\mathcal{F}=$ $\left(Y, F, r_{\mathcal{F}}\right)$ a k-regular graph with $Y=[d]$. Assume that in both graphs we have defined a labelling and a rotation map as in Definition 8.12.1. Then their replacement product is the $(k+1)$-regular graph $\mathcal{G}(\mathcal{F}$ with vertex set $X \times[d]$ and the rotation map defined by setting, for $x \in X, i \in[d]$, and $j \in[k+1]$,

$$
\operatorname{Rot}_{\mathcal{G}(1)}((x, i), j)= \begin{cases}((x, m), h) & \text { if } j \in[k] \text { and } \operatorname{Rot}_{\mathcal{F}}(i, j)=(m, h) \\ \left(\operatorname{Rot}_{\mathcal{G}}(x, i), j\right) & \text { if } j=k+1\end{cases}
$$

Exercise 8.12.5 Show that $\operatorname{Rot}_{\mathcal{G}(1) \mathcal{F}} \circ \operatorname{Rot}_{\mathcal{G}(丅 \mathcal{F}}$ is the identity map so that, by Exercise 8.12.3, the definition of replacement product is well posed.

Remark 8.12.6 Actually, to define the replacement product it is not necessary to label \mathcal{F}. The definition may be modified by saying that $(x, i),(z, m) \in$
$X \times[d]$ are adjacent in $\mathcal{G}(\ulcorner\mathcal{F}$ if

$$
\begin{align*}
& x \sim z \text { and } \operatorname{Rot}_{\mathcal{G}}(x, i)=(z, m) \quad \text { (edges of the first type) } \\
& \text { or } \tag{8.46}\\
& x=z \text { and } i \sim m \text { in } \mathcal{F} \quad \text { (edges of the second type) }
\end{align*}
$$

Clearly, each vertex is incident to exactly one edge of the first type and to k edges of the second type. Note also that the replacement product is a subgraph of the lexicographic product (cf. Definition 8.8.1). Indeed, the edges of the first type (respectively, second type) in (8.46) are a subset of the edges of the first type (respectively, precisely the set of all edges of the second type) in the lexicographic product.

Remark 8.12.7 A d-regular graph $\mathcal{G}=(X, E, r)$ is d-edge-colorable if there exists a map $\phi: E \rightarrow[d]$ such that the restriction of ϕ to E_{x} is a bijection for each $x \in X$. In other words, \mathcal{G} is d-edge-colorable when we may assign a color to each edge in such a way that for each $x \in X$ and $j \in[d]$ there exists exactly one edge with color j incident to x. If such a map ϕ exists, we may use it to get a labelling of \mathcal{G} such that if $x, y \in X$ and $e \in E_{x} \cap E_{y}$ then e has the same color $\phi(e)$ both near x and near y. This way, in (8.43) we always have $i=j$. If this condition is satisfied, we may write the first condition in (8.46) in the form:
$x \sim z, i=m$, and the label of the edge connecting x and z is i.
Here is an informal description of the replacement product $\mathcal{G}(\mathcal{F}$; compare with the figures in Exercise 8.12.8. Replace each vertex of \mathcal{G} by a copy of \mathcal{F}. The edges of each copy of \mathcal{F} constitute the edges of the second type in (8.46). Then join the copies of \mathcal{F} by means of the edges of \mathcal{G}, taking into account the labelling of \mathcal{G}, as in (8.46) (edges of the first type).

Exercise 8.12.8 Prove that the replacement products $K_{5}()^{(} \mathcal{C}_{4}$ of the complete graph K_{5} on 5 vertices (with the corresponding labellings) and the 4 -circle \mathcal{C}_{4}, are as in Figures 8.12 and 8.13. These examples, taken from [1], show that the replacement product does depend on the labelling of the first graph.

Proposition 8.12.9 Let B be the adjacency matrix of \mathcal{F} and $R_{\mathcal{G}}$ the permutation matrix in (8.45). Then the adjacency matrix of the replacement

(r)

Fig. 8.12. The replacement product K_{5} (\mathcal{C}_{4} (with a given labelling of K_{5}).

Fig. 8.13. The replacement product $K_{5} \upharpoonright \mathcal{C}_{4}$ (with another labelling of K_{5}).
product $\mathcal{G} \mathbb{F} \mathcal{F}$ is given by

$$
M_{\mathcal{G} ® \mathcal{F}}=R_{\mathcal{G}}+I_{X} \otimes B
$$

Proof The matrix $R_{\mathcal{G}}$ (respectively, $I_{X} \otimes B$) takes into account all edges of the first type (respectively, second type) of $\mathcal{G} ®(\mathcal{F}$; compare with Proposition 8.8.3.(i).

We end this section by showing that the lamplighter construction in Section 8.10 may be obtained as a replacement product.

Let then $Q_{n}=(X, E)$ be the n-dimensional hypercube (see Section 8.5). Using the notation in both Section 8.10 and in the present section, we may identify X with $\{0,1\}^{[n]}$. Moreover, two vertices $\omega, \theta \in\{0,1\}^{[n]}$ are adjacent when there exists $j \in[n]$ such that: $\omega(j) \neq \theta(j)$ and $\omega(h)=\theta(h)$ for $h \neq j$. In this case, the edge $\{\omega, \theta\} \in E$ is labelled by the color j both near ω and near θ. This shows (cf. Remark 8.12.7) that the n-dimensional hypercube is n-edge-colorable.

Proposition 8.12.10 Let $\mathcal{F}=([n], E)$ be a simple graph without loops on n vertices. Then the product replacement $Q_{n} \odot \mathcal{F}$ obtained by means of the labelling described above is isomorphic to the lamplighter $\mathcal{F} \geqslant K_{2}$.

Proof In the terminology of Remarks 8.10.2, 8.12.6, and 8.12.7, a switch edge in \mathcal{F} 亿 K_{2} corresponds to an edge of the first type in $Q_{n} \bigcirc \mathcal{F}$: both the switch condition in (8.34) and the conditions in (8.47) become: $i=m$, $\omega \sim \theta$, and the color of the edge connecting ω with θ is i.

Similarly, a walk edge in $\mathcal{F}\} K_{2}$ corresponds to an edge of the second type in $Q_{n}\left(\bigcirc \mathcal{F}\right.$: for $(\omega, i),(\theta, m) \in Q_{n} \times[n]$ both the walk condition in (8.34) and the second condition in (8.46) become: $i \sim m$ and $\omega=\theta$.

8.13 The zig-zag product

This section is based on the exposition in [57]. The original sources are [74] and [128]. We assume all the notation in Section 8.12, in particular in Definition 8.12.4, so that $\mathcal{G}=\left(X, E, r_{\mathcal{G}}\right)$ is a d-regular graph and $\mathcal{F}=$ $\left(Y, F, r_{\mathcal{F}}\right)$ a k-regular graph with $Y=[d]$.

Definition 8.13.1 The zig-zag product of \mathcal{G} and \mathcal{F} is the k^{2}-regular graph $\mathcal{G}(2) \mathcal{F}$ with vertex set $X \times[d]$ and rotation map $\operatorname{Rot}_{\mathcal{G}(2) \mathcal{F}}$ described by the following conditions. We use the set $[k] \times[k]$ to label the edges of the graph and, for $x \in X, h \in[d]$, and $i, j \in[k]$,

$$
\operatorname{Rot}_{\mathcal{G}(2) \mathcal{F}}((x, h),(i, j))=\left((y, l),\left(j^{\prime}, i^{\prime}\right)\right),
$$

where $y \in X, l \in[d]$ and $i^{\prime}, j^{\prime} \in[k]$ are determined by means of the following steps:
(i) $\left(h^{\prime}, i^{\prime}\right)=\operatorname{Rot}_{\mathcal{F}}(h, i)$,
(ii) $\left(y, l^{\prime}\right)=\operatorname{Rot}_{\mathcal{G}}\left(x, h^{\prime}\right)$,
(iii) $\left(l, j^{\prime}\right)=\operatorname{Rot}_{\mathcal{F}}\left(l^{\prime}, j\right)$.

Remark 8.13.2 Here is a more detailed description of these steps. We replace each vertex x of \mathcal{G} with the vertices $(x, 1),(x, 2), \ldots,(x, d)$. Then the vertices $(x, h),(y, l) \in X \times[d]$ are adjacent in the zig-zag product \mathcal{G} (Z) \mathcal{F} if it is possible to connect them in the replacement product $\mathcal{G} \odot \mathcal{F}$ with a path of length three and of the following form.
(i) First of all, we choose an edge of the second type in $\mathcal{G}(\mathrm{r} \mathcal{F}$ incident to (x, h), that is, we choose a label $i \in[k]$ so that the vertex $\left(x, h^{\prime}\right)$ is determined by the rotation map: $\operatorname{Rot}_{\mathcal{F}}(h, i)=\left(h^{\prime}, i^{\prime}\right)$, this also yields the label $i^{\prime} \in[k]$; we refer to this as to a zig move.
(ii) It is then determined the unique edge of the first type in $\mathcal{G} ® \mathcal{F}$ incident to $\left(x, h^{\prime}\right)$, that is, the vertex $\left(y, l^{\prime}\right)=\operatorname{Rot}_{\mathcal{G}}\left(x, h^{\prime}\right)$; we refer to this as to the jump move.
(iii) Finally, we choose an edge of the second type in $\mathcal{G} ® \mathcal{F}$ incident to $\left(y, l^{\prime}\right)$, that is, we choose a label $j \in[k]$ so that the vertex (y, l) is determined by the rotation map: $\operatorname{Rot}_{\mathcal{F}}\left(l^{\prime}, j\right)=\left(l, j^{\prime}\right)$, which also yields the label $j^{\prime} \in[k]$; we refer to this as to a zag move.

Proposition 8.13.3 Using the notation in Proposition 8.12.9, the adjacency matrix of the zig-zag product is:

$$
\begin{equation*}
M_{\mathcal{G}(2) \mathcal{F}}=\left(I_{X} \otimes B\right) R_{\mathcal{G}}\left(I_{X} \otimes B\right) . \tag{8.48}
\end{equation*}
$$

Moreover, there exists a $\left[(k+1)^{3}-k^{2}\right]$-regular graph \mathcal{H} such that

$$
M_{\mathcal{G}(\mathbb{P} \mathcal{F}}^{3}=M_{\mathcal{G}(2) \mathcal{F}}+H,
$$

where H is the adjacency matrix of \mathcal{H}.
Proof Clearly, in (8.48) the two factors ($I_{X} \otimes B$) take into account the zig and zag moves, while $R_{\mathcal{G}}$ the jump move. Now consider the following graph \mathcal{C}. Its vertex set is again $X \times[d]$ and two vertices are adjacent in \mathcal{C} if there is a path in $\mathcal{G} ® \mathcal{F}$ of length three connecting them. By Proposition 8.1.6, the adjacency matrix of \mathcal{C} is $M_{\mathcal{G}(\mathbb{T} \mathcal{F}}^{3}$. Moreover, \mathcal{C} is regular of degree $(k+1)^{3}$, possibly with multiple edges and loops. Finally, we conclude by noting that $\mathcal{G}(2) \mathcal{F}$ is a subgraph of \mathcal{C} so that, denoting by $\mathcal{H}=(X \times[d], E(\mathcal{H}))$ the subgraph of \mathcal{C} with edge set $E(\mathcal{H})=E(\mathcal{C}) \backslash E(\mathcal{G}(2) \mathcal{F})$, we have, cf. Proposition 8.12.9,

$$
H=\left[R_{\mathcal{G}}+\left(I_{X} \otimes B\right)\right]^{3}-\left(I_{X} \otimes B\right) R_{\mathcal{G}}\left(I_{X} \otimes B\right) .
$$

Exercise 8.13.4 Using the first result in Exercise 8.12.8, prove that the zigzag product of the complete graph K_{5} on 5 vertices (with the given labelling) and the 4 -circle \mathcal{C}_{4}, is as in Figure 8.14.

Remark 8.13.5 Proposition 8.13.3 and Exercise 8.13.4 show that it is not necessary to introduce a labelling in \mathcal{F} in order to construct the zig-zag product. But the labelling of \mathcal{F} is necessary to get a $[k] \times[k]$-labelling on the zig-zag graph.

Exercise 8.13.6 Assume the notation in Proposition 8.12.10. Define the walk-switch-walk lamplighter as follows: $(\omega, i),(\theta, m) \in Q_{n} \times[n]$ are adjacent

(2)

Fig. 8.14. The zig-zag product $K_{5}(2) \mathcal{C}_{4}$.
if there exists $j \in[n]$ such that $i \sim j, j \sim m, \omega(h)=\theta(h)$ for $h \neq j$ and $\omega(j) \neq \theta(j)$. Show that this graph is isomorphic to the zig-zag product $Q_{n}(\mathbb{Z}) \mathcal{F}$.

8.14 Cayley graphs, semidirect products, replacement products, and zig-zag products

In this section we introduce the concepts of a Cayley graph of a (finite) group (with respect to a given generating subset) and of a semidirect product of two (finite) groups. Then, by means of several exercises, we illustrate the connections between the Cayley graph of a semidirect product of two groups and a modified version of the replacement and zig-zag products of the Cayely graphs of these groups (with respect to suitable generating subsets). They are based on the exposition in [57]. The original sources are [8] and [74].

Let G be a finite group. A subset $S \subseteq G$ is termed generating if every element $g \in G$ may be written as a product $g=s_{1} s_{2} \cdots s_{m}$ with $s_{1}, s_{2}, \ldots, s_{m} \in S \cup S^{-1}$ for some $m \geq 0$, where $S^{-1}=\left\{s^{-1}: s \in S\right\}$. A subset $S \subseteq G$ is said to be symmetric provided $S=S^{-1}$.

Let $S \subset G$ be a symmetric generating subset. Then the associated Cayley graph $\Gamma(G, S)$ is the graph with vertex set G and edge set $\{\{g, g s\}: s \in$ $S, g \in G\}$. In other words, two vertices $g, g^{\prime} \in G$ are adjacent if and only if $g^{-1} g^{\prime} \in S$. Note that $\Gamma(G, S)$ is undirected since S is symmetric: $g^{-1} g^{\prime} \in S$ if and only if $\left(g^{\prime}\right)^{-1} g=\left(g^{-1} g^{\prime}\right)^{-1} \in S$. Moreover, $\Gamma(G, S)$ has no multiple edges: if $g s=g s^{\prime}$ for some $g \in G$ and $s, s^{\prime} \in S$, then the cancellation property implies that $s=s^{\prime}$. Moreover, $\Gamma(G, S)$ has loops if and only if S
contains the identity element (and, if this is the case, then there is exactly one loop based at each vertex of $\Gamma(G, S)$). Finally, note that we may use the elements of S to get a labelling of $\Gamma(G, S)$: the rotation map (8.43) is then defined by setting

$$
\operatorname{Rot}_{\Gamma(G, S)}(g, s)=\left(g s, s^{-1}\right)
$$

for all $g \in G$ and $s \in S$.

Exercise 8.14.1

(1) Show that the discrete circle \mathcal{C}_{n} (cf. Definition 8.6.1) is the Cayley graph of the cyclic group \mathbb{Z}_{n} with respect to the (symmetric) generating set $S=\{1, n-1\}$.
(2) Show that the hypercube Q_{n} (cf. Definition 8.5.1) is the Cayley graph of the group \mathbb{Z}_{2}^{n} with respect to the (symmetric) generating set $S=$ $\{(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0,0, \ldots, 0,1)\}$.

We now recall the well known construction of a semidirect product of two (finite) groups (see, for instance, [12, pp. 20-24], [148, pp. 6-8]).

Definition 8.14.2 (Semidirect product) Let G be a finite group and $N, H \leq G$ two subgroups of G. Then G is the (internal) semidirect product of N by H and we write $G=N \rtimes H$, when the following conditions are satisfied:
(a) $N \unlhd G$;
(b) $G=N H$;
(c) $N \cap H=\left\{1_{G}\right\}$.

Proposition 8.14.3 Suppose that G is a semidirect product of N by H. Then
(i) $G / N \cong H$;
(ii) every $g \in G$ has a unique expression $g=n h$ with $n \in N$ and $h \in H$;
(iii) for any $h \in H$ and $n \in N$ set $\phi_{h}(n)=h n h^{-1}$. Then $\phi_{h} \in \operatorname{Aut}(N)$ for all $h \in H$ and the map

$$
\begin{array}{ccc}
H & \longrightarrow & \operatorname{Aut}(N) \\
h & \longmapsto & \phi_{h}
\end{array}
$$

is a homomorphism (conjugation homomorphism);
(iv) if $n h, n_{1} h_{1} \in G$ are as in (ii), then their product is given by

$$
\begin{equation*}
n_{1} h_{1} \cdot n_{2} h_{2}=\left[n_{1} \cdot h_{1} n_{2} h_{1}^{-1}\right] h_{1} h_{2}=\left[n_{1} \phi_{h_{1}}\left(n_{2}\right)\right] h_{1} h_{2} \tag{8.49}
\end{equation*}
$$

Conversely, suppose that H and N are two (finite) groups and we are given a homomorphism

$$
\begin{array}{ccc}
H & \longrightarrow & \operatorname{Aut}(N) \\
h & \longmapsto & \phi_{h} .
\end{array}
$$

Set $G=\{(n, h): n \in N, h \in H\}$ and define a product in G by setting

$$
(n, h)\left(n_{1}, h_{1}\right)=\left(n \phi_{h}\left(n_{1}\right), h h_{1}\right)
$$

for all $n, n_{1} \in N$ and $h, h_{1} \in H$ (compare with (8.49)). Then G is a group and it is isomorphic to the (inner) semidirect product of $\widetilde{N}=\left\{\left(n, 1_{H}\right): n \in\right.$ $N\} \cong N$ by $\widetilde{H}=\left\{\left(1_{N}, h\right): H \in H\right\} \cong H$. The group G is called the external semidirect product of N by H with respect to ϕ and it is usually denoted by $N \rtimes_{\phi} H$ Moreover, with the above notation, the following conditions are equivalent:
(a) G is isomorphic to the direct product $\widetilde{N} \times \widetilde{H}$;
(b) \widetilde{H} is normal in G;
(c) ϕ_{h} is the trivial automorphism of N for all $h \in H$.

Proof The proof is just an easy exercise and it is left to the reader.
Clearly, the internal and external semidirect products are equivalent constructions and we shall make no distinction between them.
Suppose now that $G=N \rtimes H$ is a semidirect product. For $n \in H$ we denote by n^{H} its orbit under the action of H, that is $n^{H}=\left\{h n h^{-1}: h \in\right.$ $H\}$. Let S_{H} (respectively, S_{N}) be a symmetric generating subset for H (respectively, N) and suppose that $n^{H} \in S_{N}$ for all $n \in S_{N}$ (in other words, S_{N} is H-invariant). Let then $x_{1}, x_{2}, \ldots, x_{k} \in S_{N}$ form a set of representative elements for the orbits of S_{N} under the action of H, that is,

$$
S_{N}=x_{1}^{H} \coprod x_{2}^{H} \coprod \cdots \coprod x_{k}^{H},
$$

and set $S_{N}^{\prime}=\left\{x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{k}^{ \pm 1}\right\}$. In the following exercises we ask the reader to investigate the connections between the construction in Sections 8.12 and 8.13 and the semidirect product of groups.

Exercise 8.14.4

(1) Show that

$$
S=S_{H} \cup S_{N}^{\prime}
$$

is a symmetric generating subset for G.
(2) Prove that the Cayley graph $\Gamma(G, S)$ is the modified replacement product

$$
\Gamma\left(N, S_{N}^{\prime}\right) \overparen{\curlyvee} \Gamma\left(H, S_{H}\right)
$$

defined as follows. The vertex set is $G \equiv N H$. Each $g=n h \in G$ is incident to $\left|S_{H}\right|$ edges of the second type, which connect it with the vertices $\left\{n h s: s \in S_{H}\right\}$; this is as in Remark 8.12.6. Moreover, $n h$ is also incident to $2 k$ edges of the first type, which connect it with the vertices

$$
\left\{n h x_{j}^{ \pm 1} \equiv\left(n \cdot h x_{j}^{ \pm 1} h^{-1}\right) h: j=1,2, \ldots, k\right\}
$$

(3) Show that the set

$$
\widetilde{S}=\left\{s x_{j}^{ \pm 1} t: s, t \in S_{H}, j=1,2, \ldots, k\right\}
$$

is another symmetric generating subset for G.
(4) Prove that the Cayley graph $\Gamma(G, \widetilde{S})$ is the modified zig-zag product

$$
\Gamma\left(N, S_{N}^{\prime}\right) \gtrless \Gamma\left(H, S_{H}\right)
$$

which may be defined as in Remark 8.13 .2 but using the modified replacement product in (2).

Remark 8.14.5 If $k=1$ and $x_{1}=x_{1}^{-1}$, then the modified replacement product in Exercise 8.14.4.(2) coincides with an ordinary replacement product. The same holds for the modified zig-zag product in Exercise 8.14.4.(4). In general, a modified product may be seen as a "union" of ordinary products.

9

Expanders and Ramanujan graphs

This chapter is an introduction to the theory of expanders and Ramanujan graphs. It is based mainly on the exposition in the monograph by Davidoff-Sarnak-Valette [48] and the paper [74]. First of all, we present the basic theorems of Alon-Milman and Dodziuk, and of Alon-Boppana-Serre, on the isoperimetric constant and the spectral gap of a (finite, undirected, connected) regular graph, and their connections. We discuss a few examples with explicit computations showing optimality of the bounds given by the above theorems. Then we give the basic definitions of expanders and describe three fundamental constructions due to Margulis, Alon-Schwartz-Schapira (based on the replacement product, cf. Section 8.12) and Reingold-VadhanWigderson [128] (based on the zig-zag product, cf. Section 8.13). In these constructions, the harmonic analysis on finite abelian groups (cf. Chapter 2) and finite fields (cf. Chapter 6) we developed so far, plays a crucial role.

The original motivation for expander graphs was to build economical robust networks (e.g., for phones or computers): an expander with bounded valence is precisely an asymptotic robust graph with the number of edges growing linearly with size (number of vertices), for all subsets. Since their definition, expanders have found extensive applications in several branches of science and technology, for instance: in computer science, in designing algorithms, error correcting codes, extractors, pseudorandom generators, sorting networks (Ajtai, Komlós, and Szemerédi, [6]), robust computer networks (as in their initial motivation), and in cryptography (in order to construct hash functions: these are used in hash tables to quickly locate a data record given its search key). From a more theoretical viewpoint, they have also been used in proofs of many important results in computational complexity theory, such as $\mathrm{SL}=\mathrm{L}$ (Reingold, [126]) and the PCP theorem (Dinur, [55]).

9.1 The Alon-Milman-Dodziuk Theorem

In this section we present the discrete analogues, due to Dodziuk [56] and Alon-Milman [9], of the well-known Cheeger-Buser inequalities in Riemannian geometry (cf. [38] and [26, 27]).
Let $\mathcal{G}=(X, E, r)$ be a finite (undirected) k-regular graph (possibly with multiple edges and loops). Recall that $E_{0}=\{e \in E:|r(e)|=1\}$ denotes the set of all loops of \mathcal{G} and $E_{1}=\{e \in E:|r(e)|=2\}=E \backslash E_{0}$.

Definition 9.1.1 Let $F \subseteq X$ be a set of vertices of \mathcal{G}. The boundary of F is the set

$$
\partial F=\{e \in E: r(e) \cap F \neq \varnothing \text { and } r(e) \cap(X \backslash F) \neq \varnothing\} \subseteq E_{1}
$$

of all edges in \mathcal{G} joining (vertices in) F with (vertices in) its complement $X \backslash F$.

The isoperimetric constant (also called the Cheeger constant) of \mathcal{G} is the nonnegative number

$$
h(\mathcal{G})=\min \left\{\frac{|\partial F|}{|F|}: F \subseteq X, 0<|F| \leq \frac{|X|}{2}\right\} .
$$

Note that one has

$$
\begin{equation*}
|\partial F|=\sum_{\substack{x \in F \\ y \in X \backslash F}} A(x, y)=\sum_{\{x, y\} \in r(\partial F)} A(x, y) . \tag{9.1}
\end{equation*}
$$

Moreover, $h(\mathcal{G})$ is strictly positive if and only if \mathcal{G} is connected, and

$$
\begin{equation*}
h(\mathcal{G}) \leq k . \tag{9.2}
\end{equation*}
$$

Indeed, if \mathcal{G} is connected, then ∂F is nonempty for all $\varnothing \neq F \varsubsetneqq X$, thus showing that $h(\mathcal{G})>0$. If \mathcal{G} is not connected, then there exists a connected component whose vertex set F satisfies $0<|F| \leq \frac{|X|}{2}$ and, clearly, $\partial F=\varnothing$, showing, in this case, that $h(\mathcal{G})=0$. Moreover, if $\varnothing \neq F \subseteq X$, since \mathcal{G} is k-regular, the total number of edges incident to some vertices in F is at most $|F| k$, so that $|\partial F| \leq|F| k$, and (9.2) follows.

Finally note that some papers (for instance [10]) use the normalized isoperimetric constant (or edge expansion constant) which is defined as $h^{\prime}(\mathcal{G})=\frac{h(\mathcal{G})}{k}$, and, by virtue of (9.2), satisfies $h^{\prime}(\mathcal{G}) \leq 1$.
Let A be the adjacency operator of \mathcal{G} and set $\Delta=k I-A \in \operatorname{End}(L(X))$, where, as usual, I denotes the identity map. Then, for $f \in L(X)$ and $x \in X$
we have that

$$
[\Delta f](x)=k f(x)-\sum_{y \in X} A(x, y) f(y)=k f(x)-\sum_{y \sim x} A(x, y) f(y)
$$

Moreover, keeping in mind Proposition 8.1.5 and the notation therein, we have that the eigenvalues of Δ are:

$$
\begin{equation*}
\lambda_{0}=0 \leq \lambda_{1}=k-\mu_{1} \leq \cdots \leq \lambda_{|X|-1}=k-\mu_{|X|-1} \tag{9.3}
\end{equation*}
$$

In the sequel we shall often use the following summation argument.

Remark 9.1.2 In our setting, for $a \in L(X \times X)$ symmetric (i.e. such that $a(x, y)=a(y, x)$ for all $x, y \in X)$ and $b \in L(X)$, we have

$$
\begin{equation*}
\sum_{\{x, y\} \in r\left(E_{1}\right)} a(x, y)=\frac{1}{2} \sum_{x \in X} \sum_{\substack{y \in X: \\ y \sim x \\ y \neq x}} a(x, y)=\frac{1}{2} \sum_{\substack{y \in X}} \sum_{\substack{x \in X: \\ x \sim y \\ x \neq y}} a(x, y) \tag{9.4}
\end{equation*}
$$

and, by the regularity of \mathcal{G} (namely, $\operatorname{deg} x=k$ for all $x \in X$),

$$
\begin{equation*}
\sum_{\{x, y\} \in r\left(E_{1}\right)} A(x, y)(b(x)+b(y))=\sum_{x \in X}(k-A(x, x)) b(x) \tag{9.5}
\end{equation*}
$$

In particular, taking $b=\mathbf{1}_{X}$ we get $2\left|E_{1}\right|=k|X|-\left|E_{0}\right|$, that is,

$$
\begin{equation*}
2\left|E_{1}\right|+\left|E_{0}\right|=k|X| \tag{9.6}
\end{equation*}
$$

Lemma 9.1.3 Let $f \in L(X)$ be real valued. Then

$$
\begin{equation*}
\langle\Delta f, f\rangle=\sum_{\{x, y\} \in r\left(E_{1}\right)} A(x, y)(f(x)-f(y))^{2} \tag{9.7}
\end{equation*}
$$

Proof We have

$$
\begin{aligned}
\sum_{\{x, y\} \in r\left(E_{1}\right)} A(x, y) & (f(x)-f(y))^{2} \\
& =\sum_{\{x, y\} \in r\left(E_{1}\right)} A(x, y)\left(f(x)^{2}+f(y)^{2}\right) \\
& -2 \sum_{\substack{\{x, y\} \in r\left(E_{1}\right)}} A(x, y) f(x) f(y) \\
& =\sum_{x \in X}(k-A(x, x)) f(x)^{2}-\sum_{\substack{x \in X}} \sum_{\substack{ \\
y \in X: \\
y \neq x \\
y \neq x}} A(x, y) f(x) f(y) \\
& =k \sum_{x \in X} f(x)^{2}-\sum_{x \in X} \sum_{\substack{y \in X: \\
y \sim x}} A(x, y) f(x) f(y) \\
& =k \sum_{x \in X} f(x)^{2}-\sum_{x \in X} \sum_{\substack{ \\
y \in X}} A(x, y) f(x) f(y) \\
& =k \sum_{x \in X} f(x)^{2}-\sum_{x \in X}[A f](x) f(x) \\
& =k\langle f, f\rangle-\langle A f, f\rangle \\
& =\langle\Delta f, f\rangle,
\end{aligned}
$$

where $=_{*}$ follows from (9.5) with $b(x)=f(x)^{2}$, and (9.4) with $a(x, y)=$ $A(x, y) f(x) f(y)$.

Definition 9.1.4 The operator $\Delta \in \operatorname{End}(L(X))$ is called the combinatorial Laplacian and the right hand side of (9.7) the Dirichlet form on \mathcal{G}.

The terminology in the above definition is based on the classical meanvalue property of harmonic functions on \mathbb{R}^{n} (which constitute the kernel of the Euclidean Laplace operator $\left.\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right)$.

Remark 9.1.5 Suppose that $\mathcal{G}=(X, E)$ is a finite simple graph without loops. Recall that we may identify the edge set E with the set of twoelements sets $\{x, y\} \subset X$ such that $x \sim y$. In this setting, the boundary of a subset $F \subset X$ is given by the set of edges

$$
\partial F=\{\{x, y\} \in E: x \in F \text { and } y \notin F\} \subseteq E .
$$

Moreover, if \mathcal{G} is k-regular, the combinatorial Laplacian and its associated

Dirichlet form (9.7) can be expressed as

$$
[\Delta f](x)=k f(x)-\sum_{y \sim x} f(y)
$$

and

$$
\langle\Delta f, f\rangle=\sum_{\{x, y\} \in E}(f(x)-f(y))^{2}
$$

respectively, for all $f \in L(X)$ and $x \in X$.
We recall (cf. Proposition 8.1.4) that if W_{0} is the space of constant functions on X and $W_{1}=\left\{f \in L(X): \sum_{x \in X} f(x)=0\right\}$, then $L(X)=W_{0} \oplus W_{1}$.

Lemma 9.1.6 Suppose that \mathcal{G} is connected. Then we have

$$
\begin{equation*}
\lambda_{1}=k-\mu_{1}=\min \left\{\frac{\langle\Delta f, f\rangle}{\langle f, f\rangle}: f \in W_{1}, f \neq 0\right\} \tag{9.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{1}=k-\lambda_{1}=\max \left\{\frac{\langle A f, f\rangle}{\langle f, f\rangle}: f \in W_{1}, f \neq 0\right\} \tag{9.9}
\end{equation*}
$$

Proof Since \mathcal{G} is connected, the multiplicity of the eigenvalue $\lambda_{0}=0$ of Δ is one: the corresponding eigenspace is W_{0} (cf. Proposition 8.1.5). Therefore, the other eigenvalues of Δ, namely $\lambda_{1} \leq \cdots \leq \lambda_{n-1} \quad(n=|X|)$, are all positive with corresponding eigenfunctions $\phi_{1}, \ldots, \phi_{n-1}$ that can be chosen to be real valued and to constitute an orthonormal basis of W_{1}. Then, for every $f=\alpha_{1} \phi_{1}+\cdots+\alpha_{n-1} \phi_{n-1} \in W_{1} \backslash\{0\}\left(\alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{C}\right)$ we have

$$
\begin{aligned}
\langle\Delta f, f\rangle= & \left\langle\Delta\left(\alpha_{1} \phi_{1}+\cdots+\alpha_{n-1} \phi_{n-1}\right), \alpha_{1} \phi_{1}+\cdots+\alpha_{n-1} \phi_{n-1}\right\rangle \\
& =\left\langle\lambda_{1} \alpha_{1} \phi_{1}+\cdots+\lambda_{n-1} \alpha_{n-1} \phi_{n-1}, \alpha_{1} \phi_{1}+\cdots+\alpha_{n-1} \phi_{n-1}\right\rangle \\
& =\lambda_{1}\left|\alpha_{1}\right|^{2}+\cdots+\lambda_{n-1}\left|\alpha_{n-1}\right|^{2} \\
(\text { by }(9.3)) & \geq \lambda_{1}\left|\alpha_{1}\right|^{2}+\cdots+\lambda_{1}\left|\alpha_{n-1}\right|^{2} \\
& =\lambda_{1}\left(\left|\alpha_{1}\right|^{2}+\cdots+\left|\alpha_{n-1}\right|^{2}\right) \\
& =\lambda_{1}\langle f, f\rangle,
\end{aligned}
$$

showing that $\lambda_{1} \leq \frac{\langle\Delta f, f\rangle}{\langle f, f\rangle}$. Since $\lambda_{1}=\frac{\left\langle\Delta \phi_{1}, \phi_{1}\right\rangle}{\left\langle\phi_{1}, \phi_{1}\right\rangle}$, (9.8) follows. The proof of (9.9) is analogous and is left to the reader.

Theorem 9.1.7 (Alon-Milman) Let $\mathcal{G}=(X, E, r)$ be a finite connected k-regular graph. Then

$$
\frac{k-\mu_{1}}{2} \leq h(\mathcal{G})
$$

Proof We apply Lemma 9.1 .6 to a suitable function in W_{1}. For $F \subseteq X$ such that $0<|F| \leq \frac{|X|}{2}$, we define $f_{F} \in L(X)$ by setting

$$
f_{F}(x)= \begin{cases}|X \backslash F| & \text { if } x \in F \\ -|F| & \text { if } x \in X \backslash F\end{cases}
$$

Then $\sum_{x \in X} f_{F}(x)=|X \backslash F| \cdot|F|-|F| \cdot|X \backslash F|=0$, so that $f_{F} \in W_{1}$, and

$$
\begin{aligned}
\left\langle f_{F}, f_{F}\right\rangle & =\sum_{x \in X} f_{F}(x)^{2}=|X \backslash F|^{2} \cdot|F|+|F|^{2} \cdot|X \backslash F| \\
& =|X \backslash F| \cdot|F| \cdot(|X \backslash F|+|F|)=|X \backslash F| \cdot|F| \cdot|X|
\end{aligned}
$$

Moreover,

$$
f_{F}(x)-f_{F}(y)= \begin{cases} \pm|X| & \text { if }\{x, y\} \in r(\partial F) \\ 0 & \text { otherwise }\end{cases}
$$

Therefore, by virtue of Lemma 9.1.3 we have

$$
\begin{aligned}
\left\langle\Delta f_{F}, f_{F}\right\rangle & =\sum_{\{x, y\} \in r\left(E_{1}\right)} A(x, y)\left(f_{F}(x)-f_{F}(y)\right)^{2} \\
& =|X|^{2} \sum_{\{x, y\} \in r(\partial F)} A(x, y) \\
\text { (by }(9.1)) & =|X|^{2} \cdot|\partial F| .
\end{aligned}
$$

Thus, from Lemma 9.1.6 we deduce that

$$
\frac{|X|}{|X \backslash F|} \cdot \frac{|\partial F|}{|F|}=\frac{|X|^{2} \cdot|\partial F|}{|X \backslash F| \cdot|F| \cdot|X|}=\frac{\left\langle\Delta f_{F}, f_{F}\right\rangle}{\left\langle f_{F}, f_{F}\right\rangle} \geq \lambda_{1}=k-\mu_{1}
$$

Since $|F| \leq \frac{|X|}{2}$, we have $\frac{|X \backslash F|}{|X|} \geq \frac{1}{2}$ and therefore

$$
\begin{equation*}
\frac{|\partial F|}{|F|} \geq\left(k-\mu_{1}\right) \frac{|X \backslash F|}{|X|} \geq \frac{k-\mu_{1}}{2} \tag{9.10}
\end{equation*}
$$

As the isoperimetric constant $h(\mathcal{G})$ is, by definition, the minimum of the left hand side values (with $0<|F| \leq \frac{|X|}{2}$) of (9.10), the statement follows.

In the following theorem we give an upper bound for the isoperimetric constant.

Theorem 9.1.8 (Dodziuk) Let $\mathcal{G}=(X, E, r)$ be a finite connected k-regular graph. Then

$$
h(\mathcal{G}) \leq \sqrt{2 k\left(k-\mu_{1}\right)}
$$

Proof Let $f \in L(X)$ be a nonnegative function and denote by $\alpha_{r}>\alpha_{r-1}>$ $\cdots>\alpha_{1}>\alpha_{0} \geq 0$ its values. Consider the map $j: X \rightarrow\{0,1, \ldots, r\}$ defined by

$$
f(x)=\alpha_{j(x)}
$$

for all $x \in X$ (such a map j is clearly well defined). We also define the level sets

$$
X_{i}=\left\{x \in X: f(x) \geq \alpha_{i}\right\} \equiv\{x \in X: j(x) \geq i\}
$$

for $i=0,1, \ldots, r$. Clearly, $X_{0}=X \supset X_{1} \supset \cdots \supset X_{r} \neq \varnothing$. Finally, set

$$
B_{f}=\sum_{\{x, y\} \in r(E)} A(x, y)\left|f(x)^{2}-f(y)^{2}\right|=\sum_{\{x, y\} \in r\left(E_{1}\right)} A(x, y)\left|f(x)^{2}-f(y)^{2}\right| .
$$

Claim 1.

$$
B_{f}=\sum_{h=1}^{r}\left|\partial X_{h}\right|\left(\alpha_{h}^{2}-\alpha_{h-1}^{2}\right)
$$

Proof of Claim 1. Given any $\{x, y\} \in r\left(E_{1}\right)$ we may suppose, up to exchanging x and y, that $f(x) \geq f(y)$, equivalently, $j(x) \geq j(y)$. This way, we have

$$
\begin{equation*}
r\left(\partial X_{h}\right)=\{\{x, y\}: j(y)<h \leq j(x)\} \tag{9.11}
\end{equation*}
$$

for all $h=1,2, \ldots, r$. Moreover,

$$
B_{f}=\sum_{\substack{\{x, y\} \in r\left(E_{1}\right): \\ j(x)>j(y)}} A(x, y)\left(\alpha_{j(x)}^{2}-\alpha_{j(y)}^{2}\right)=\sum_{\substack{\{x, y\} \in r\left(E_{1}\right): \\ j(x)>j(y)}} A(x, y) \sum_{h=j(y)+1}^{j(x)}\left(\alpha_{h}^{2}-\alpha_{h-1}^{2}\right)
$$

In the last expression, each "telescopic" summand $\left(\alpha_{h}^{2}-\alpha_{h-1}^{2}\right)$ appears exactly $A(x, y)$ times for every $\{x, y\} \in r\left(E_{1}\right)$ such that $j(x) \geq h>j(y)$, equivalently (cf. (9.11)), exactly $A(x, y)$ times for every $\{x, y\} \in r\left(\partial X_{h}\right)$. In other words, each "telescopic" summand appears exactly $\left|\partial X_{h}\right|$ times (cf. (9.1)). The claim follows.

Claim 2.

$$
B_{f} \leq \sqrt{2 k}\|f\|\langle\Delta f, f\rangle^{\frac{1}{2}}
$$

Proof of Claim 2. From the inequality $2 a b \leq a^{2}+b^{2}$, for all $a, b \in \mathbb{R}$, we deduce that

$$
\begin{equation*}
(f(x)+f(y))^{2}=f(x)^{2}+f(y)^{2}+2 f(x) f(y) \leq 2\left[f(x)^{2}+f(y)^{2}\right] \tag{9.12}
\end{equation*}
$$

for all $x, y \in X$. Now,

$$
\begin{aligned}
B_{f} & =\sum_{\{x, y\} \in r\left(E_{1}\right)} \sqrt{A(x, y)}|f(x)+f(y)| \cdot \sqrt{A(x, y)|f(x)-f(y)|} \\
& \leq_{(*)}\left\{\sum_{\{x, y\} \in r\left(E_{1}\right)} A(x, y)[f(x)+f(y)]^{2}\right\}^{\frac{1}{2}}\left\{\sum_{\{x, y\} \in r\left(E_{1}\right)} A(x, y)[f(x)-f(y)]^{2}\right\}^{\frac{1}{2}} \\
& \leq_{(* *)} \sqrt{2}\left\{\sum_{\{x, y\} \in r\left(E_{1}\right)} A(x, y)\left[f(x)^{2}+f(y)^{2}\right]\right\}^{\frac{1}{2}}\langle\Delta f, f\rangle^{\frac{1}{2}} \\
& ={ }_{(* * *)} \sqrt{2}\left\{\sum_{x \in X}(k-A(x, x)) f(x)^{2}\right\}^{\frac{1}{2}}\langle\Delta f, f\rangle^{\frac{1}{2}} \\
& \leq \sqrt{2 k}\left\{\sum_{x \in X} f(x)^{2}\right\}^{\frac{1}{2}}\langle\Delta f, f\rangle^{\frac{1}{2}}
\end{aligned}
$$

where $\leq_{(*)}$ follows from the Cauchy-Schwarz inequality, $\leq_{(* *)}$ follows from (9.12) and Lemma 9.1.3, and $=_{(* * *)}$ follows from (9.5).

We recall that the support of $f \in L(X)$ is the set

$$
\operatorname{supp}(f)=\{x \in X: f(x) \neq 0\}
$$

Claim 3. Suppose that

$$
|\operatorname{supp}(f)| \leq \frac{|X|}{2}
$$

Then

$$
B_{f} \geq h(\mathcal{G})\|f\|^{2}
$$

Proof of Claim 3. By our hypothesis on f, we have $\alpha_{0}=0$, so that $X_{1}=$ $\operatorname{supp}(f)$, and $0<\left|X_{h}\right| \leq \frac{|X|}{2}$ for every $h=1,2, \ldots, r$. Keeping in mind the definition of the isoperimetric constant, this implies that

$$
\begin{equation*}
\left|\partial X_{h}\right| \geq h(\mathcal{G})\left|X_{h}\right| \tag{9.13}
\end{equation*}
$$

for every $h=1,2 \ldots, r$. From Claim 1 we deduce that

$$
\begin{aligned}
B_{f}= & \sum_{h=1}^{r}\left|\partial X_{h}\right|\left(\alpha_{h}^{2}-\alpha_{h-1}^{2}\right) \\
(\text { by }(9.13)) \geq & h(\mathcal{G}) \sum_{h=1}^{r}\left|X_{h}\right|\left(\alpha_{h}^{2}-\alpha_{h-1}^{2}\right) \\
= & h(\mathcal{G})\left[\left|X_{r}\right|\left(\alpha_{r}^{2}-\alpha_{r-1}^{2}\right)+\left|X_{r-1}\right|\left(\alpha_{r-1}^{2}-\alpha_{r-2}^{2}\right)+\right. \\
& \left.\quad \cdots+\left|X_{2}\right|\left(\alpha_{2}^{2}-\alpha_{1}^{2}\right)+\left|X_{1}\right| \alpha_{1}^{2}\right] \\
= & h(\mathcal{G})\left[\left|X_{r}\right| \alpha_{r}^{2}+\left|X_{r-1} \backslash X_{r}\right| \alpha_{r-1}^{2}+\right. \\
& \quad\left|\left|X_{r-2} \backslash X_{r-1}\right| \alpha_{r-2}^{2}+\cdots+\left|X_{1} \backslash X_{2}\right| \alpha_{1}^{2}\right] \\
= & h(\mathcal{G})\|f\|^{2},
\end{aligned}
$$

where the last equality follows from the fact that $X_{h-1} \backslash X_{h}$ is the set on which f takes the value α_{h-1}.

Claim 4. Let $1 \leq i \leq n-1$. Denote by $\phi_{i} \in L(X)$ a real eigenfuntion associated with the eigenvalue $\lambda_{i}=k-\mu_{i}$ and define $f_{i} \in L(X)$ by setting

$$
f_{i}(x)=\max \left\{\phi_{i}(x), 0\right\}=\frac{\phi_{i}(x)+\left|\phi_{i}(x)\right|}{2}
$$

for all $x \in X$. Then

$$
\left[\Delta f_{i}\right](x) \leq \lambda_{i} \phi_{i}(x)
$$

for all $x \in X$ such that $\phi_{i}(x)>0$. Moreover, we have

$$
\left\langle\Delta f_{i}, f_{i}\right\rangle \leq \lambda_{i}\left\|f_{i}\right\|^{2}
$$

Proof of Claim 4. Let $x \in X$ such that $\phi_{i}(x)>0$. Then we have $f_{i}(x)=$ $\phi_{i}(x)$ and therefore

$$
\begin{aligned}
{\left[\Delta f_{i}\right](x) } & =k f_{i}(x)-\sum_{y \in X} A(x, y) f_{i}(y) \\
& =k \phi_{i}(x)-\sum_{\substack{y \in X: \\
\phi_{i}(y)>0}} A(x, y) \phi_{i}(y) \\
& \leq k \phi_{i}(x)-\sum_{y \in X} A(x, y) \phi_{i}(y) \\
& =\left[\Delta \phi_{i}\right](x) \\
& =\lambda_{i} \phi_{i}(x),
\end{aligned}
$$

proving the first part of the claim. On the other hand,

$$
\begin{aligned}
\left\langle\Delta f_{i}, f_{i}\right\rangle & =\sum_{x \in X}\left[\Delta f_{i}\right](x) f_{i}(x)=\sum_{\substack{x \in X: \\
\phi_{i}(x)>0}}\left[\Delta f_{i}\right](x) \phi_{i}(x) \\
& \leq \lambda_{i} \sum_{\substack{x \in X: \\
\phi_{i}(x)>0}} \phi_{i}(x)^{2}=\lambda_{i}\left\|f_{i}\right\|^{2},
\end{aligned}
$$

where the inequality follows form the first part of the claim.

We are now in position to complete the proof of Dodziuk's Theorem.
Let ϕ_{1} be a real eigenfunction associated with the eigenvalue $\lambda_{1}=k-\mu_{1}$. Switching ϕ_{1} with $-\phi_{1}$, if necessary, we may suppose that the subset $X_{+}=$ $\left\{x \in X: \phi_{1}(x)>0\right\}$ satisfies the condition $0<\left|X_{+}\right| \leq \frac{|X|}{2}$ (observe that since $\phi_{1} \in W_{1}$ and $\phi_{1} \not \equiv 0$, the set $\left\{x \in X: \phi_{1}(x)>0\right\}$ is nonempty). Taking into account, in order, Claim 3, Claim 2, and Claim 4 (and the notation therein), we deduce

$$
h(\mathcal{G})\left\|f_{1}\right\|^{2} \leq B_{f_{1}} \leq \sqrt{2 k}\left\langle\Delta f_{1}, f_{1}\right\rangle^{\frac{1}{2}}\left\|f_{1}\right\| \leq \sqrt{2 k\left(k-\mu_{1}\right)}\left\|f_{1}\right\|^{2}
$$

and the statement follows after dividing by $\left\|f_{1}\right\|^{2}$.
Definition 9.1.9 Let $\mathcal{G}=(X, E, r)$ be a finite connected k-regular graph. Denote by $k=\mu_{0}>\mu_{1} \geq \cdots \geq \mu_{n}$ the eigenvalues of the adjacency matrix of \mathcal{G}. The spectral gap of \mathcal{G} is the positive number

$$
\delta(\mathcal{G})=\mu_{0}-\mu_{1}=k-\mu_{1}
$$

Remark 9.1.10 The theorem of Alon-Milman ensures that, in order to have a "large" isoperimetric constant $h(\mathcal{G})$, it suffices to have a "large" spectral gap $\delta(\mathcal{G})$. Conversely, the theorem of Dodziuk ensures that this is also a necessary condition. More specifically:

$$
\begin{aligned}
& \delta(\mathcal{G}) \geq \delta \Rightarrow h(\mathcal{G}) \geq \frac{\delta}{2}(\text { Alon-Milman }) \\
& h(\mathcal{G}) \geq \varepsilon \Rightarrow \delta(\mathcal{G}) \geq \frac{\varepsilon^{2}}{2 k}(\text { Dodziuk })
\end{aligned}
$$

In the remaining of this section we compare the exact values of the isoperimetric constant with the estimates provided by the theorems of Alon-Milman and Dodziuk for some graphs (simple and without loops) presented in Chapter 8 .

Example 9.1.11 (The complete graph) Let K_{n} be the complete graph
on $n \geq 1$ vertices (cf. Section 8.4). Recall that the graph K_{n} is regular of degree $k=n-1$ and the eigenvalues of the associated adjacency matrix are $\mu_{0}=n-1$ (with multiplicity one) and $\mu_{1}=-1$ (with multiplicity $n-1$). As a consequence, by virtue of Theorem 9.1.7 and Theorem 9.1.8, the isoperimetric constant $h\left(K_{n}\right)$ satisfies

$$
\frac{n}{2}=\frac{k-\mu_{1}}{2} \leq h\left(K_{n}\right) \leq \sqrt{2 k\left(k-\mu_{1}\right)}=\sqrt{2(n-1) n} \leq \sqrt{2} n .
$$

Moreover, if $F_{h}=\{1,2, \ldots, h\}, h=1,2, \ldots, n$, we have $\left|\partial F_{h}\right|=h(n-h)$ so that $\frac{\left|\partial F_{h}\right|}{\left|F_{h}\right|}=n-h$. It follows that

$$
h\left(K_{n}\right)=\min _{1 \leq h \leq n / 2} \frac{\left|\partial F_{h}\right|}{\left|F_{h}\right|}=\frac{\left|\partial F_{[n / 2]}\right|}{\left|F_{[n / 2]}\right|}=n-[n / 2],
$$

where, as usual, [.] denotes the integer part (floor function). It follows that $h\left(K_{n}\right) \approx n / 2$ showing that the Alon-Milman inequality is asymptotically optimal; in fact, for n even we have $h\left(K_{n}\right)=n / 2$ and, in this case, the Alon-Milman inequality is indeed an equality.

Example 9.1.12 (The hypercube) Let $Q_{n}=\left(X_{n}, E_{n}\right)$ be the n-dimensional hypercube, $n \geq 1$ (cf. Section 8.5). Recall that $X_{n}=\{0,1\}^{n}$, the graph Q_{n} is regular of degree $k=n$, and that the second eigenvalue of the associated adjacency matrix is $\mu_{1}=n-2$. As a consequence, by virtue of Theorem 9.1.7 and Theorem 9.1.8, the isoperimetric constant $h\left(Q_{n}\right)$ satisfies

$$
\begin{equation*}
1=\frac{k-\mu_{1}}{2} \leq h\left(Q_{n}\right) \leq \sqrt{2 k\left(k-\mu_{1}\right)}=\sqrt{4 n}=2 \sqrt{n} . \tag{9.14}
\end{equation*}
$$

Moreover, if $F^{\prime}=\left\{x \in X_{n}: x_{1}=0\right\}$ is the hyperplane $x_{1}=0$, we have $\left|F^{\prime}\right|=\left|X_{n}\right| / 2=2^{n-1}$ and, for every $x \in F^{\prime}$, there exists exactly one edge in ∂F^{\prime} issuing from the vertex x, namely $\left\{x, x^{\prime}\right\}$, where $x_{1}^{\prime}=1$ and $x_{i}^{\prime}=x_{i}$ for $i=2,3, \ldots, n$. It follows that $\left|\partial F^{\prime}\right|=\left|F^{\prime}\right|$ and therefore from the Left Hand Side estimate in (9.14) we deduce

$$
1 \leq h\left(Q_{n}\right)=\min _{0<|F| \leq 2^{n-1}} \frac{|\partial F|}{|F|} \leq \frac{\left|\partial F^{\prime}\right|}{\left|F^{\prime}\right|}=1,
$$

showing that $h\left(Q_{n}\right)=1$. We remark that, as for the complete graph, the Alon-Milman inequality is indeed an equality.

Example 9.1.13 (The discrete circle) Let $\mathcal{C}_{n}=\left(X_{n}, E_{n}\right)$ be the discrete circle on $n \geq 3$ vertices (cf. Section 8.6). Recall that $X_{n}=\mathbb{Z}_{n}$, the graph
\mathcal{C}_{n} is regular of degree $k=2$, and that the second eigenvalue of the associated adjacency matrix is $\mu_{1}=2 \cos (2 \pi / n)$. As a consequence, by virtue of Theorem 9.1.7 and Theorem 9.1.8, the isoperimetric constant $h\left(\mathcal{C}_{n}\right)$ satisfies

$$
\begin{equation*}
1-\cos (2 \pi / n)=\frac{k-\mu_{1}}{2} \leq h\left(\mathcal{C}_{n}\right) \leq \sqrt{2 k\left(k-\mu_{1}\right)}=2 \sqrt{2(1-\cos (2 \pi / n))} \tag{9.15}
\end{equation*}
$$

Let $F_{h}=\{0,1, \ldots, h\}, h=0,1, \ldots,[n / 2]-1$. Then $0<\left|F_{h}\right|=h+1 \leq[n / 2]$ and ∂F_{h} consists of the two edges $\{n-1,0\}$ and $\{h, h+1\}$, so that $\left|\partial F_{h}\right|=2$ and $\frac{\left|\partial F_{h}\right|}{\left|F_{h}\right|}=\frac{2}{h}$. It is also clear that if $F \subseteq X_{n}, 0<|F| \leq[n / 2]$ is not connected (as a subgraph of \mathcal{C}_{n}), then $|\partial F|>2$. It follows that

$$
h\left(\mathcal{C}_{n}\right)=\min _{0<|F| \leq[n / 2]} \frac{|\partial F|}{|F|}=\min _{0<h \leq[n / 2]-1} \frac{2}{h+1}=\frac{2}{[n / 2]} \approx \frac{4}{n}
$$

Comparing with (9.15), since

$$
1-\cos (2 \pi / n)=2 \sin ^{2}(\pi / n) \approx \frac{2 \pi^{2}}{n^{2}}
$$

and

$$
2 \sqrt{2(1-\cos (2 \pi / n))}=4 \sin (\pi / n) \approx \frac{4 \pi}{n}
$$

we deduce that in this case the upper bound provided by Dodziuk (Theorem 9.1.8) is asymptotically better than the lower bound provided by AlonMilman (Theorem 9.1.7).

Example 9.1.14 (The 2-regular segment) Let $\mathcal{G}_{n}=\left(X_{n}, E_{n}, r_{n}\right)$ be the 2-regular segment on $n \geq 2$ vertices (cf. Exercise 8.6.3). Recall that $X_{n}=\{0,1,2, \ldots, n-1\}$ and that the second eigenvalue of the associated adjacency matrix is $\mu_{1}=2 \cos (\pi / n)(c f .(8.10))$. The isoperimetric constant $h\left(\mathcal{G}_{n}\right)$ then satisfies the inequalities

$$
\begin{equation*}
1-\cos (\pi / n)=\frac{k-\mu_{1}}{2} \leq h\left(\mathcal{G}_{n}\right) \leq \sqrt{2 k\left(k-\mu_{1}\right)}=2 \sqrt{2(1-\cos (\pi / n))} \tag{9.16}
\end{equation*}
$$

For $0 \leq h \leq k \leq[n / 2]-1$ we set $F_{h, k}=\{h, h+1, \ldots, k\}$. Then $\left|F_{h, k}\right|=$ $k-h+1 \leq[n / 2]$ and

$$
\partial F_{h, k}= \begin{cases}\{\{h-1, h\},\{k, k+1\}\} & \text { if } h>0 \\ \{\{k, k+1\}\} & \text { if } h=0\end{cases}
$$

We then have

$$
\frac{\left|\partial F_{h, k}\right|}{\left|F_{h, k}\right|} \geq \frac{\left|\partial F_{0, k}\right|}{\left|F_{0, k}\right|}=\frac{1}{k+1} \geq \frac{1}{[n / 2]}
$$

so that

$$
h\left(\mathcal{G}_{n}\right)=\min _{0<|F| \leq[n / 2]} \frac{|\partial F|}{|F|}=\min _{0<k \leq[n / 2]-1} \frac{1}{k+1}=\frac{1}{[n / 2]} \approx \frac{2}{n} .
$$

Comparing with (9.16), since

$$
1-\cos (\pi / n)=2 \sin ^{2}(\pi / 2 n) \approx \frac{\pi^{2}}{2 n^{2}}
$$

and

$$
2 \sqrt{2(1-\cos (\pi / n))}=4 \sin (\pi / 2 n) \approx \frac{2 \pi}{n}
$$

we deduce that, as for the discrete circle, the upper bound provided by Dodziuk is asymptotically better than the lower bound provided by AlonMilman.

9.2 The Alon-Boppana-Serre Theorem

In this section we present the Alon-Boppana-Serre Theorem. A weaker version (cf. Corollary 9.2.7) was originally proved by Alon and Boppana [7]. The present statement (cf. Theorem 9.2.6) is due to J.P. Serre [146] who studied eigenvalues of Hecke operators and their distribution. Our proof closely follows the presentation in the monograph by Davidoff, Sarnak, and Valette [48]. For another proof, due to Alon Nilli, we refer to the next section.
Let $\mathcal{G}=(X, E, r)$ be a finite connected k-regular graph.
Definition 9.2.1 (Hecke operators) A path $p=\left(x_{0}, e_{1}, x_{1}, e_{2}, \ldots, e_{r}, x_{r}\right)$ in \mathcal{G} is said to be non-backtracking if $e_{i+1} \neq e_{i}$ for all $i=1,2, \ldots, r-1$.
(a) For $r \geq 1$ define the $X \times X$ matrix A_{r} by setting

$$
A_{r}(x, y)=\mid\{\text { non-backtracking paths of length } r \text { from } x \text { to } y\} \mid
$$

for all $x, y \in X$.
(b) For $m \geq 1$ set

$$
T_{m}=\sum_{0 \leq r \leq[m / 2]} A_{m-2 r} .
$$

We also set $T_{0}=A_{0}=I$ the identity matrix.
Clearly, $A_{1}=T_{1}$ equals the adjacency matrix A of \mathcal{G}. Moreover, $T_{2}=$ $A_{0}+A_{2}$ and, more generally, for $h \geq 1$,

$$
\begin{equation*}
T_{2 h}=A_{0}+A_{2}+\cdots+A_{2 h} \text { and } T_{2 h+1}=A_{1}+A_{3}+\cdots+A_{2 h+1} . \tag{9.17}
\end{equation*}
$$

Proposition 9.2.2 (Hecke relations I) The matrices A_{j} 's satisfy the following relations:
(i) $A_{1}^{2}=A_{2}+k I$;
(ii) $A_{1} A_{r}=A_{r} A_{1}=A_{r+1}+(k-1) A_{r-1}$ for all $r \geq 2$.

Proof Let $x, y \in X$ and $r \in \mathbb{N}$. We first recall (cf. Proposition 8.1.6) that $A_{1}^{r}(x, y)$ equals the number of all paths of length r connecting x and y, in particular, $A_{1}(x, y) \neq 0$ if and only if $x \sim y$.
(i) If x and y are distinct, then a path of length 2 connecting x and y is necessarily non-backtracking. Therefore, $A_{1}^{2}(x, y)=A_{2}(x, y)$.

Suppose now that $x=y$. For every neighbor $z \sim x$ (possibly, $z=x$) there are exactly $A(x, z)$ edges connecting x and z. Thus, among all the $A(x, z)^{2}$-many paths $p=\left(x, e_{1}, z, e_{2}, x\right)$ of length 2 starting at x, passing by z, and returning at x (note that $A(x, z)^{2}=A(x, z) A(z, x)$), there are exactly $A(x, z)$-many which are backtracking $\left(e_{1}=e_{2}\right)$ and $A(x, z)(A(x, z)-1)$-many which are non-backtracking $\left(e_{1} \neq e_{2}\right)$. Altogether we have
$A^{2}(x, x)=\sum_{z \sim x} A(x, z)^{2}=\sum_{z \sim x} A(x, z)+\sum_{z \sim x} A(x, z)(A(x, z)-1)=k+A_{2}(x, x)$, showing that $A_{1}^{2}=A^{2}=A_{2}+k I$.
(ii) By definition we have

$$
\begin{equation*}
\left[A_{1} A_{r}\right](x, y)=\sum_{z \in X} A_{1}(x, z) A_{r}(z, y) \tag{9.18}
\end{equation*}
$$

Now, $A_{r}(z, y)$ counts the number of non-backtracking paths of length r connecting z and y. If ($z=x_{0}, e_{1}, x_{1}, e_{2}, \ldots, x_{r-1}, e_{r}, x_{r}=y$) is one of these paths, we have two possibilities:
(a) $x \neq x_{1}$: then for every $e \in E$ such that $r(e)=\{x, z\}$, we have that $\left(x, e, z=x_{0}, e_{1}, x_{1}, e_{2}, \ldots, x_{r-1}, e_{r}, x_{r}=y\right)$ is a non-backtracking path of length $r+1$ connecting x and y, and it contributes to the count of $A_{r+1}(x, y)$;
(b) $x=x_{1}$: then $\left(x=x_{1}, e_{2}, x_{2}, e_{3}, \ldots, x_{r-1}, e_{r}, x_{r}=y\right)$ is a nonbacktracking path of length $r-1$ connecting x and y : it contributes to the count of $A_{r-1}(x, y)$ and it appears exactly $(k-1)$ times in (9.18) since e_{1} can be any of the $(k-1)$-edges such that $r\left(e_{1}\right) \ni x$ and $e_{1} \neq e_{2}$.
This shows the equality $A_{1} A_{r}=A_{r+1}+(k-1) A_{r-1}$. The proof that $A_{r} A_{1}=$ $A_{r+1}+(k-1) A_{r-1}$ (thus yielding also $A_{1} A_{r}=A_{r} A_{1}$) is similar and it is left to the reader.

Corollary 9.2 .3 (Hecke relations II) For all $m \geq 1$ we have

$$
T_{m+1}=T_{m} T_{1}-(k-1) T_{m-1}
$$

Proof By Proposition 9.2.2.(i) we have

$$
T_{1}^{2}=A_{1}^{2}=A_{2}+k I=T_{2}+(k-1) T_{0}
$$

and the case $m=1$ immediately follows. In order to prove the general case observe that, for $h \geq 1$,

$$
\begin{aligned}
T_{2 h} T_{1} & =T_{2 h} A_{1} \\
(\text { by }(9.17)) & =A_{0} A_{1}+A_{2} A_{1}+\cdots+A_{2 h} A_{1} \\
\text { (by Proposition 9.2.2.(ii)) } & =A_{1}+A_{3}+\cdots+A_{2 h+1} \\
& +(k-1)\left(A_{1}+A_{3}+\cdots+A_{2 h-1}\right) \\
(\text { again by }(9.17))= & k T_{2 h-1}+A_{2 h+1}
\end{aligned}
$$

and, similarly,

$$
\begin{aligned}
T_{2 h+1} T_{1} & =A_{1}^{2}+A_{3} A_{1}+\cdots+A_{2 h+1} A_{1} \\
& =A_{2}+k A_{0}+A_{4}+\cdots+A_{2 h+2}+(k-1)\left(A_{2}+A_{4}+\cdots+A_{2 h}\right) \\
& =k A_{0}+A_{2 h+2}+k\left(A_{2}+\cdots+A_{2 h}\right) \\
& =k T_{2 h}+A_{2 h+2}
\end{aligned}
$$

In other words,

$$
T_{m} T_{1}=k T_{m-1}+A_{m+1}
$$

for all $m \geq 2$. From this we deduce

$$
\begin{aligned}
T_{m+1}-\left[T_{m} T_{1}-(k-1) T_{m-1}\right] & =T_{m+1}-k T_{m-1}-A_{m+1}+(k-1) T_{m-1} \\
& =T_{m+1}-T_{m-1}-A_{m+1} \\
& =0
\end{aligned}
$$

and the statement follows.
Let P_{m} denote the modified Chebyshev polynomial as in (A.4).

Theorem 9.2.4 For every $m \in \mathbb{N}$ we have

$$
T_{m}=P_{m}(A)
$$

Proof We proceed by induction on m. Clearly, $P_{0}=1$ so that $P_{0}(A)=I=$
T_{0}, while $P_{1}(x)=x$ so that $P_{1}(A)=A=T_{1}$. Moreover,

$$
\begin{aligned}
P_{m+1}(A) & =P_{m}(A) A-(k-1) P_{m-1}(A) \\
& =T_{m} T_{1}-(k-1) T_{m-1} \\
& =T_{m+1}
\end{aligned}
$$

where the first equality follows from Lemma A1.0.9, the second one from the inductive hypothesis, and the last one from Corollary 9.2.3.

Theorem 9.2.5 (Trace formula) Denoting by $\mu_{0} \geq \mu_{1} \geq \cdots \geq \mu_{n-1}$ the eigenvalues of A, we have

$$
\sum_{x \in X} \sum_{0 \leq r \leq[m / 2]} A_{m-2 r}(x, x)=\sum_{j=0}^{n-1} P_{m}\left(\mu_{j}\right)
$$

for all $m \geq 1$.

Proof First note that

$$
\begin{equation*}
\operatorname{Tr} A^{\ell}=\mu_{0}^{\ell}+\mu_{1}^{\ell}+\cdots+\mu_{n-1}^{\ell} \tag{9.19}
\end{equation*}
$$

for all $\ell \in \mathbb{N}$. Then we compute $\operatorname{Tr} T_{m}$ in two different ways. By definition of T_{m} (cf. Definition 9.2.1) we have

$$
\operatorname{Tr} T_{m}=\sum_{0 \leq r \leq[m / 2]} \operatorname{Tr} A_{m-2 r}=\sum_{0 \leq r \leq[m / 2]} \sum_{x \in X} A_{m-2 r}(x, x)
$$

On the other hand, from Theorem 9.2.4 we deduce that

$$
\operatorname{Tr} T_{m}=\operatorname{Tr} P_{m}(A)=\sum_{j=0}^{n-1} P_{m}\left(\mu_{j}\right)
$$

where the last equality follows from (9.19) and linearity of the trace.
Theorem 9.2.6 (Alon-Boppana-Serre) For every $\varepsilon>0$ and $k \geq 3$ there exists a positive constant $C(\varepsilon, k)$ such that for every finite connected k-regular graph $\mathcal{G}=(X, E, r)$ the number of eigenvalues of the corresponding adjacency matrix belonging to the interval $[(2-\varepsilon) \sqrt{k-1}, k]$ is at least $C(\varepsilon, k)|X|$. Note that $C(\varepsilon, k)$ does not depend on $|X|$ but only on ε and k.

Proof Let $\mathcal{G}=(X, E, r)$ be a finite connected k-regular graph with $|X|=$ n vertices and denote by $\mu_{0} \geq \mu_{1} \geq \cdots \geq \mu_{n-1}$ the eigenvalues of the
associated adjacency matrix. From Theorem 9.2 .5 and (A.6) we then deduce that

$$
\begin{equation*}
\sum_{j=0}^{n-1} X_{m}\left(\frac{\mu_{j}}{\sqrt{k-1}}\right) \geq 0 \tag{9.20}
\end{equation*}
$$

for all $m \in \mathbb{N}$. Let Z_{ε} be as in Corollary A1.0.14. Then, by (9.20) and Corollary A1.0.14.(i), we have

$$
\sum_{j=0}^{n-1} Z_{\varepsilon}\left(\frac{\mu_{j}}{\sqrt{k-1}}\right) \geq 0
$$

Set $q=q(\varepsilon, k)=\max _{[2-\varepsilon, k / \sqrt{k-1}]} Z_{\varepsilon}$ and observe that, by virtue of Corollary A1.0.14.(iii), we have $q>0$ (since $k \geq 3$ implies $\frac{k}{\sqrt{k-1}}>2$). If $\mu_{j} \geq$ $(2-\varepsilon) \sqrt{k-1}$ for all $j=0,1, \ldots, n-1$ there is noting to prove. Otherwise, there exists $0<j_{0} \leq n-1$ such that

$$
\begin{aligned}
& \mu_{j} \geq(2-\varepsilon) \sqrt{k-1} \text { for } 0 \leq j<j_{0} \\
& \mu_{j}<(2-\varepsilon) \sqrt{k-1} \text { for } j_{0} \leq j \leq n-1
\end{aligned}
$$

Then

$$
\sum_{j=0}^{j_{0}-1} Z_{\varepsilon}\left(\frac{\mu_{j}}{\sqrt{k-1}}\right) \leq q j_{0}
$$

while, by virtue of Corollary A1.0.14.(ii),

$$
\sum_{j=j_{0}}^{n-1} Z_{\varepsilon}\left(\frac{\mu_{j}}{\sqrt{k-1}}\right) \leq-\left(n-j_{0}\right)
$$

Therefore

$$
0 \leq \sum_{j=0}^{n-1} Z_{\varepsilon}\left(\frac{\mu_{j}}{\sqrt{k-1}}\right) \leq q j_{0}-\left(n-j_{0}\right)=-n+j_{0}(q+1)
$$

so that, the number j_{0} of eigenvalues in $[(2-\varepsilon) \sqrt{k-1}, k]$ satisfies

$$
j_{0} \geq \frac{n}{q+1}=\frac{1}{q+1}|X|
$$

and the proof is achieved by taking $C(\varepsilon, k)=\frac{1}{q+1}$.
Corollary 9.2.7 (Alon-Boppana) Let $\mathcal{G}_{n}=\left(X_{n}, E_{n}, r_{n}\right), n \in \mathbb{N}$, be a
family of finite connected k-regular graphs, $k \geq 2$, such that $\lim _{n \rightarrow \infty}\left|X_{n}\right|=$ $+\infty$. Then

$$
\liminf _{n \rightarrow \infty} \mu_{1}\left(\mathcal{G}_{n}\right) \geq 2 \sqrt{k-1}
$$

Proof For $k=2$, each \mathcal{G}_{n} is either a cycle or a 2-regular segment (cf. Exercise 8.6.3), and the result follows from (8.9) and Exercise 8.6.3, respectively. For $k \geq 3$, the statement follows from the previous theorem (since

$$
\liminf _{n \rightarrow \infty} \mu_{1}\left(\mathcal{G}_{n}\right) \geq(2-\varepsilon) \sqrt{k-1}
$$

for all $\varepsilon>0)$.

9.3 Nilli's proof of the Alon-Boppana-Serre theorem

We now give an alternative proof of the Alon-Boppana-Serre theorem given by Alon Nilli [122] (a pseudonym of Noga Alon: Nilli Alon is his daughter; see [5] for a picture of Nilli Alon when she was a child). Our proof extends the original proof in [122] to graphs with multiple edges but with no loops. See also the discussion in [74].

We begin with an elementary lemma.
Lemma 9.3.1 Let k and h be positive integers with $k \geq 3$. Set $\alpha=\frac{\pi}{2 h}$ and

$$
\beta_{i}=\frac{\cos [(i-h) \alpha]}{(k-1)^{i / 2}}
$$

for $i=0,1, \ldots, 2 h$. Then the sequence $\beta_{0}, \beta_{1}, \ldots, \beta_{2 h}$ is unimodal, that is, there exists $0 \leq i_{0} \leq 2 h$ such that

$$
\beta_{0}<\beta_{1} \cdots<\beta_{i_{0}}<\beta_{i_{0}+1} \geq \beta_{i_{0}+2} \geq \cdots \geq \beta_{2 h}
$$

More precisely:

- for $k=3, i_{0}=2$
- for $k=4, i_{0}=1$
- for $k \geq 5, i_{0}=0$.

Proof First of all, note that (recall that $\alpha=\frac{\pi}{2 h}$)

$$
\begin{equation*}
\cos [(i-h) \alpha]=\cos \left(\frac{i \pi}{2 h}-\frac{\pi}{2}\right)=\sin \frac{i \pi}{2 h}=\sin (i \alpha) \tag{9.21}
\end{equation*}
$$

Therefore, for $1 \leq i \leq 2 h-1$,

$$
\begin{equation*}
\frac{\beta_{i+1}}{\beta_{i}}=\frac{\sin [(i+1) \alpha]}{\sqrt{k-1} \sin (i \alpha)} \tag{9.22}
\end{equation*}
$$

The function

$$
g(\alpha)=i \sin [(i+1) \alpha]-(i+1) \sin (i \alpha)
$$

satisfies $g(0)=0$ and

$$
g^{\prime}(\alpha)=i(i+1)(\cos [(i+1) \alpha]-\cos (i \alpha)) \leq 0
$$

for $0 \leq i \alpha \leq(i+1) \alpha \leq \pi$. This is the case since $(i+1) \alpha \leq 2 h \frac{\pi}{2 h}=\pi$. Then $0=g(0) \geq g(\alpha)$ and therefore, from (9.22), it follows that

$$
\begin{equation*}
\frac{\beta_{i+1}}{\beta_{i}} \leq \frac{i+1}{i \sqrt{k-1}} \tag{9.23}
\end{equation*}
$$

for $1 \leq i \leq 2 h-1$. On the other hand, by the addition formulas for the sine function applied to the numerator of (9.22), we get

$$
\begin{equation*}
\frac{\beta_{i+1}}{\beta_{i}}=\frac{\cos \alpha+\cot (i \alpha) \sin \alpha}{\sqrt{k-1}} \tag{9.24}
\end{equation*}
$$

so that $\frac{\beta_{i+1}}{\beta_{i}}$ is decreasing for $1 \leq i \leq 2 h-1$. Moreover, from (9.21) $\beta_{0}=$ $0<\beta_{1}=\frac{1}{\sqrt{k-1}} \sin \frac{\pi}{2 h}$. Then we can take $i_{0}+1$ as the smallest $1 \leq i \leq 2 h-1$ such that the quantity in (9.24) is smaller than 1: this exists because for $i=h$ the quantity in (9.24) is equal to $\frac{\cos \alpha}{\sqrt{k-1}}<1$ (recall that $k \geq 3$).

We now determine the values of i_{0} for all $k \geq 3$.
$\underline{\text { Case } k=3 .}$ For $i=3$, from (9.23) we get $\frac{\beta_{4}}{\beta_{3}} \leq \frac{4}{3 \sqrt{2}}<1$. Note that for $i=2$, from (9.22) we get

$$
\frac{\beta_{3}}{\beta_{2}}=\frac{\sin 3 \alpha}{\sqrt{2} \sin 2 \alpha} \underset{h \rightarrow+\infty}{\rightarrow} \frac{3}{2 \sqrt{2}}>1,
$$

so that $i_{0}=2$ is the correct index which works for all h.
Case $k=4$. Again from (9.23) for $i=2$ we get $\frac{\beta_{3}}{\beta_{2}} \leq \frac{3}{2 \sqrt{3}}<1$. For $i=1$ we have $\frac{\beta_{2}}{\beta_{1}}=\frac{\sin 2 \alpha}{\sqrt{3} \sin \alpha} \underset{h \rightarrow+\infty}{\rightarrow} \frac{2}{\sqrt{3}}$. Therefore, $i_{0}=1$.
Case $k \geq 5$. From (9.22), for $i=1$ we get

$$
\frac{\beta_{2}}{\beta_{1}}=\frac{\sin 2 \alpha}{\sqrt{k-1} \sin \alpha}=\frac{2 \cos \alpha}{\sqrt{k-1}} \leq 1
$$

Then we have $i_{0}=0$.
Let now $\mathcal{G}=(X, E, r)$ be a finite graph. Given two subsets $Y, Z \subseteq X$ we set

$$
\begin{equation*}
A(Y, Z)=\sum_{(y, z) \in Y \times Z} A(y, z) \tag{9.25}
\end{equation*}
$$

In other words, $A(Y, Z)$ equals the number of edges that join a vertex in Y with a vertex in Z. Note that $A(\{y\},\{z\})=A(y, z)$, so that we shall also write $A(y, Z)$ instead of $A(\{y\}, Z)$, for all $y, z \in X$ and $Z \subseteq X$. Moreover, if $x_{1}, x_{2} \in Y \cap Z$ are distinct and adjacent, then in the sum (9.25) the equal summands $A\left(x_{1}, x_{2}\right)$ and $A\left(x_{2}, x_{1}\right)$ both appear, giving altogether a contribution of $2 A\left(x_{1}, x_{2}\right)$; in other words, the edges in $r^{-1}\left(\left\{x_{1}, x_{2}\right\}\right)$ are counted twice.
For k and h positive integers, with $k \geq 3$, we set

$$
\begin{equation*}
\gamma_{i}=\beta_{i+i_{0}} \quad \text { for } 0 \leq i \leq 2 h-i_{0}, \tag{9.26}
\end{equation*}
$$

where the β_{i} 's and i_{0} are as in Lemma 9.3.1. Note that $\gamma_{2 h-i_{0}}=\beta_{2 h}=$ $\cos \frac{\pi}{2}=0$.
We now give a second lemma, of a pure combinatorial nature, which is the core of the proof of the main theorem of this section.

Lemma 9.3.2 Let $\mathcal{G}=(X, E, r)$ be a finite connected k-regular graph, with $k \geq 3$, and denote by A its adjacency matrix. Suppose there exists a vertex $x_{0} \in X$ with no loops based at it, and define $f \in L(X)$ by setting

$$
f(x)= \begin{cases}\gamma_{i} & \text { if } 0 \leq d\left(x, x_{0}\right)=i<2 h-i_{0} \\ 0 & \text { if } d\left(x, x_{0}\right) \geq 2 h-i_{0}\end{cases}
$$

where the γ_{i} 's are as in (9.26). Then

$$
\langle A f, f\rangle_{L(X)} \geq\langle f, f\rangle_{L(X)} 2 \sqrt{k-1} \cos \alpha
$$

Proof Set $X_{i}=\left\{x \in X: d\left(x, x_{0}\right)=i\right\}$ and $n_{i}=\left|X_{i}\right|$. By our assumption on x_{0} we have $A\left(x_{0}, x_{0}\right)=0$ and therefore

$$
\begin{equation*}
A\left(x_{0}, X_{1}\right)=k=\left|X_{1}\right|=n_{1} . \tag{9.27}
\end{equation*}
$$

Moreover, for $i \geq 1$,

$$
\begin{equation*}
A\left(X_{i-1}, X_{i}\right) \geq\left|X_{i}\right|=n_{i} \tag{9.28}
\end{equation*}
$$

and

$$
\begin{equation*}
A\left(X_{i-1}, X_{i}\right)+A\left(X_{i}, X_{i}\right)+A\left(X_{i+1}, X_{i}\right)=k n_{i} \tag{9.29}
\end{equation*}
$$

because the left hand side counts all edges with a vertex in X_{i} (and the edges with both vertices in X_{i}, but which are not loops, are counted twice). Then

$$
\begin{equation*}
\langle f, f\rangle_{L(X)}=\sum_{x \in X} f(x)^{2}=\sum_{i=0}^{2 h-i_{0}-1} \sum_{x \in X_{i}} f(x)^{2}=\sum_{i=0}^{2 h-i_{0}-1} n_{i} \gamma_{i}^{2} \tag{9.30}
\end{equation*}
$$

and

$$
\begin{align*}
\langle A f, f\rangle_{L(X)} & =\sum_{x \in X} \sum_{\substack{y \in X: \\
y \sim x}} A(x, y) f(x) f(y) \\
& =\sum_{i=0}^{2 h-i_{0}-1} \gamma_{i} \sum_{x \in X_{i}} \sum_{\substack{y \in X: \\
y \sim x}} A(x, y) f(y) \\
& =\gamma_{0} \gamma_{1} A\left(x_{0}, X_{1}\right)+ \\
& +\sum_{i=1}^{2 h-i_{0}-1} \gamma_{i}\left[\gamma_{i-1} A\left(X_{i-1}, X_{i}\right)+\gamma_{i} A\left(X_{i}, X_{i}\right)+\gamma_{i+1} A\left(X_{i+1}, X_{i}\right)\right] . \tag{9.31}
\end{align*}
$$

In order to give a lower bound for (9.31), we first note that from $0 \leq \gamma_{0}<$ γ_{1} (cf. Lemma 9.3.1) and (9.27) we deduce that

$$
\begin{equation*}
\gamma_{0} \gamma_{1} A\left(x_{0}, X_{1}\right) \geq \gamma_{0}^{2} A\left(x_{0}, X_{1}\right)=\gamma_{0}^{2} k \geq[2 \sqrt{k-1} \cos \alpha] \gamma_{0}^{2} \tag{9.32}
\end{equation*}
$$

(the last inequality follows immediately from $(k-2)^{2} \geq 0$ and $\cos \alpha \leq 1$).
In the last line of (9.31), for the first term of the sum, corresponding to $i=1$, keeping in mind (9.27) and $\gamma_{1} \geq \gamma_{2}$, we have

$$
\begin{aligned}
\gamma_{0} A\left(X_{0}, X_{1}\right) & +\gamma_{1} A\left(X_{1}, X_{1}\right)+\gamma_{2} A\left(X_{2}, X_{1}\right) \\
& \geq \gamma_{0} A\left(X_{0}, X_{1}\right)+\gamma_{2}\left[A\left(X_{1}, X_{1}\right)+A\left(X_{2}, X_{1}\right)\right] \\
\text { (by }(9.29)) & =\gamma_{0} A\left(X_{0}, X_{1}\right)+\gamma_{2}\left[k n_{1}-A\left(X_{0}, X_{1}\right)\right] \\
\text { (by }(9.27)) & =\gamma_{0} k+\gamma_{2}\left[k^{2}-k\right] \\
& =k\left[\gamma_{0}+(k-1) \gamma_{2}\right] \\
\text { (by }(9.27)) & =n_{1}\left[\gamma_{0}+(k-1) \gamma_{2}\right] .
\end{aligned}
$$

As the terms corresponding to $i \geq 2$ are concerned, keeping in mind that $\gamma_{i-1} \geq \gamma_{i} \geq \gamma_{i+1}$, from (9.28) and (9.29) we deduce that

$$
\begin{aligned}
& \gamma_{i-1} A\left(X_{i-1}, X_{i}\right)+\gamma_{i} A\left(X_{i}, X_{i}\right)+\gamma_{i+1} A\left(X_{i+1}, X_{i}\right) \\
& \geq \gamma_{i-1} A\left(X_{i-1}, X_{i}\right)+\gamma_{i+1}\left[A\left(X_{i}, X_{i}\right)+A\left(X_{i+1}, X_{i}\right)\right] \\
& =\gamma_{i-1}\left[n_{i}-n_{i}+A\left(X_{i-1}, X_{i}\right)\right]+\gamma_{i+1}\left[A\left(X_{i}, X_{i}\right)+A\left(X_{i+1}, X_{i}\right)\right] \\
& =\gamma_{i-1} n_{i}+\gamma_{i-1}\left[A\left(X_{i-1}, X_{i}\right)-n_{i}\right]+\gamma_{i+1}\left[A\left(X_{i}, X_{i}\right)+A\left(X_{i+1}, X_{i}\right)\right] \\
& \geq \gamma_{i-1} n_{i}+\gamma_{i+1}\left[A\left(X_{i-1}, X_{i}\right)-n_{i}\right]+\gamma_{i+1}\left[A\left(X_{i}, X_{i}\right)+A\left(X_{i+1}, X_{i}\right)\right] \\
& =\gamma_{i-1} n_{i}+\gamma_{i+1}\left[-n_{i}+A\left(X_{i-1}, X_{i}\right)+A\left(X_{i}, X_{i}\right)+A\left(X_{i+1}, X_{i}\right)\right] \\
& =\gamma_{i-1} n_{i}+\gamma_{i+1}(k-1) n_{i} \\
& =n_{i}\left[\gamma_{i-1}+(k-1) \gamma_{i+1}\right] .
\end{aligned}
$$

Moreover, for all $i \geq 1$ we have

$$
\begin{aligned}
n_{i}\left[\gamma_{i-1}\right. & \left.+(k-1) \gamma_{i+1}\right] \\
& =\frac{\sqrt{k-1}}{(k-1)^{\left(i+i_{0}\right) / 2}} n_{i}\left\{\cos \left[\left(i+i_{0}-h-1\right) \alpha\right]+\cos \left[\left(i+i_{0}-h+1\right) \alpha\right]\right\} \\
& =\frac{2 \sqrt{k-1}}{(k-1)^{\left(i+i_{0}\right) / 2}} n_{i} \cos \alpha \cos \left[\left(i+i_{0}-h\right) \alpha\right] \\
& =[2 \sqrt{k-1} \cos \alpha] n_{i} \frac{\cos \left[\left(i+i_{0}-h\right) \alpha\right]}{(k-1)^{\left(i+i_{0}\right) / 2}} \\
& =[2 \sqrt{k-1} \cos \alpha] n_{i} \gamma_{i}
\end{aligned}
$$

where the first equality follows from (9.26).
Using the above estimates, we get the desired lower bound for (9.31):

$$
\begin{aligned}
& \langle A f, f\rangle_{L(X)} \geq[2 \sqrt{k-1} \cos \alpha] \sum_{i=0}^{2 h-i_{0}-1} n_{i} \gamma_{i}^{2} \\
& (\text { by }(9.30))=[2 \sqrt{k-1} \cos \alpha]\langle f, f\rangle_{L(X)}
\end{aligned}
$$

To derive the main result of this section, we need to recall the CourantFischer min-max formula for the eigenvalues of a Hermitian operator.

Exercise 9.3.3 (Courant-Fischer min-max formula) Let W be an n dimensional vector space and $T: W \rightarrow W$ a Hermitian operator. Denote by $\mu_{0} \geq \mu_{1} \geq \cdots \geq \mu_{n-1}$ the (real) eigenvalues of T and by $\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$ a corresponding orthonormal basis of eigenvectors. Let $0 \leq s \leq n-1$. Denote by $\mathbb{G}(W, s)$ the Grassmann variety of all s-dimensional subspaces of W and set $U_{s}=\left\langle u_{s}, u_{s+1}, \ldots, u_{n-1}\right\rangle$.
(1) Prove that for each $V \in \mathbb{G}(W, s+1)$ one has $\operatorname{dim}\left(V \cap U_{s}\right) \geq 1$ (Hint: use the Grassmann identity).
(2) Show that

$$
\max \left\{\langle T w, w\rangle: w \in U_{s},\|w\|=1\right\}=\mu_{s}
$$

(3) From (1) and (2) deduce that for each $V \in \mathbb{G}(W, s+1)$

$$
\min \{\langle T v, v\rangle: v \in V,\|v\|=1\} \leq \mu_{s}
$$

(4) Show that if $V=\left\langle u_{0}, u_{1}, \ldots, u_{s}\right\rangle$ then

$$
\min \{\langle T v, v\rangle: v \in V,\|v\|=1\}=\mu_{s}
$$

(5) From (3) and (4) deduce the Courant-Fischer min-max formula

$$
\max _{V \in \mathbb{G}(W, s+1)} \min \{\langle T v, v\rangle: v \in V,\|v\|=1\}=\mu_{s} .
$$

We are now in position to present some fundamental estimates for the eigenvalues of a k-regular graph.

Theorem 9.3.4 Let $\mathcal{G}=(X, E, r)$ be a finite connected k-regular graph, $k \geq 3$, with no loops. Suppose that there exist a positive integer h and $s+1$ vertices $x_{1}, x_{2}, \ldots, x_{s+1} \in X$ such that $d\left(x_{i}, x_{j}\right) \geq 4 h$, for $i \neq j$. Then

$$
\begin{equation*}
\mu_{s}(\mathcal{G}) \geq 2 \sqrt{k-1} \cos \frac{\pi}{2 h} . \tag{9.33}
\end{equation*}
$$

Proof For $j=1,2, \ldots, s+1$ define $f_{j} \in L(X)$ by setting

$$
f_{j}(x)= \begin{cases}\gamma_{i} & \text { if } 0 \leq d\left(x, x_{j}\right)=i \leq 2 h-i_{0} \\ 0 & \text { if } d\left(x, x_{j}\right)>2 h-i_{0}\end{cases}
$$

where the γ_{i} 's are as in (9.26). Then $\left\langle f_{j}, f_{k}\right\rangle_{L(X)}=0$ (because f_{j} and f_{k} have disjoint supports) for $1 \leq j \neq k \leq s+1$, so that $U=\left\langle f_{1}, f_{2}, \ldots, f_{s+1}\right\rangle$ is an $(s+1)$-dimensional subspace of $L(X)$. Moreover, from Lemma 9.3.2 (where x_{0} therein is replaced time after time by $x_{1}, x_{2}, \ldots, x_{s+1}$) we deduce that

$$
\begin{equation*}
\langle A f, f\rangle_{L(X)} \geq\langle f, f\rangle_{L(X)} 2 \sqrt{k-1} \cos \frac{\pi}{2 h} \tag{9.34}
\end{equation*}
$$

for all $f \in U$.
From Exercise 9.3.3 (the Courant-Fischer min-max formula) and with the notation therein we deduce

$$
\begin{equation*}
\mu_{s}=\max _{V \in \mathbb{G}(L(X), s+1)} \min \left\{\langle A f, f\rangle_{L(X)}: f \in V,\|f\|_{L(X)}=1\right\} . \tag{9.35}
\end{equation*}
$$

Then (9.33) follows from (9.35) and (9.34).
Corollary 9.3.5 Let \mathcal{G} be a finite connected k-regular graph, $k \geq 3$, with no loops. Suppose that the diameter of \mathcal{G} satisfies that $D(\mathcal{G}) \geq 4 h$ for some positive integer h. Then

$$
\mu_{1}(\mathcal{G}) \geq 2 \sqrt{k-1}\left(1-\frac{\pi^{2}}{8 h^{2}}\right)
$$

Proof Apply Theorem 9.3.4 with $s=1$ and the estimate $\cos \theta \geq 1-\frac{\theta^{2}}{2}$.

Corollary 9.3.6 (Alon-Boppana-Serre: II proof) Let $\varepsilon>0$ and $k \geq 3$. Then there exists a positive constant $C(\varepsilon, k)$ such that the following holds. For every finite connected k-regular graph $\mathcal{G}=(X, E, r)$ with no loops, the number of eigenvalues of the corresponding adjacency matrix belonging to the interval $[(2-\varepsilon) \sqrt{k-1}, k]$ is at least $C(\varepsilon, k)|X|$. Explicitly, we may choose

$$
C(\varepsilon, k)= \begin{cases}2^{-\frac{2 \pi}{\sqrt{\varepsilon}}-5} & \text { if } k=3 \\ (k-1)^{-\frac{2 \pi}{\sqrt{\varepsilon}}-4} & \text { if } k \geq 4 .\end{cases}
$$

Proof We start by denoting by h the (positive) integer satisfying

$$
\begin{equation*}
h \geq \frac{\pi}{2 \sqrt{\varepsilon}}>h-1, \tag{9.36}
\end{equation*}
$$

so that $\varepsilon \geq \frac{\pi^{2}}{4 h^{2}}$ and therefore (recall that $\cos \theta \geq 1-\frac{\theta^{2}}{2}$)

$$
2 \sqrt{k-1} \cos \frac{\pi}{2 h} \geq 2 \sqrt{k-1}\left(1-\frac{\pi^{2}}{8 h^{2}}\right) \geq \sqrt{k-1}(2-\varepsilon) .
$$

(We want to use the inequality in Theorem 9.3.4, that is,

$$
\begin{equation*}
\mu_{0}, \mu_{1}, \ldots, \mu_{s} \geq 2 \sqrt{k-1} \cos \frac{\pi}{2 h} \geq \sqrt{k-1}(2-\varepsilon) \tag{9.37}
\end{equation*}
$$

with the best possible, that is, the smallest, h.) According to Theorem 9.3.4, choose the largest s such that the hypotheses therein are satisfied, and let $x_{1}, x_{2}, \ldots, x_{s+1} \in X$ be the corresponding points. Then, for every $x \in X$ there exists $1 \leq j \leq s+1$ such that $d\left(x, x_{j}\right) \leq 4 h-1$. Arguing as in the proof of Proposition 8.1.1, we conclude that

$$
\begin{aligned}
|X| & \leq(s+1)\left[1+k+k(k-1)+\cdots+k(k-1)^{4 h-2}\right] \\
& =(s+1)\left[1+k \frac{(k-1)^{4 h-1}-1}{k-2}\right]
\end{aligned}
$$

From (9.37) we deduce that such a constant $C(\varepsilon, k)$ exists and satisfies

$$
\begin{equation*}
C(\varepsilon, k) \geq \frac{s+1}{|X|} \geq\left[1+k \frac{(k-1)^{4 h-1}-1}{k-2}\right]^{-1} \tag{9.38}
\end{equation*}
$$

Now, for $k \geq 4$ we have

$$
\begin{equation*}
1+k \frac{(k-1)^{4 h-1}-1}{k-2} \leq(k-1)^{4 h} \tag{9.39}
\end{equation*}
$$

because this is equivalent to

$$
-2+k(k-1)^{4 h-1} \leq(k-2)(k-1)^{4 h}
$$

which is certainly satisfied as $k \leq(k-2)(k-1)$ for $k \geq 4$. Therefore,

$$
C(\varepsilon, k) \geq(k-1)^{-4 h} \geq(k-1)^{-2 \pi / \sqrt{\varepsilon}-4}
$$

where the first inequality follows from (9.38) and (9.39), and the second from (9.36). Finally, for $k=3$ we may use

$$
1+\left.k \frac{(k-1)^{4 h-1}-1}{k-2}\right|_{k=3}=3 \cdot 2^{4 h-1}-2 \leq 2^{4 h+1}
$$

in place of (9.39).

9.4 Ramanujan graphs

Definition 9.4.1 Let $\mathcal{G}=(X, E, r)$ be a finite connected k-regular graph. Denote by $k=\mu_{0}>\mu_{1} \geq \cdots \geq \mu_{n-1}$ the eigenvalues of the adjacency matrix of \mathcal{G}. Setting

$$
\begin{equation*}
\mu(\mathcal{G})=\max \left\{\left|\mu_{i}\right|:\left|\mu_{i}\right| \neq k, i=1,2, \ldots, n-1\right\} \tag{9.40}
\end{equation*}
$$

one says that \mathcal{G} is a Ramanujan graph provided

$$
\mu(\mathcal{G}) \leq 2 \sqrt{k-1}
$$

Note that if \mathcal{G} is bipartite then (cf. Proposition 8.3.4) \mathcal{G} is Ramanujan if and only if

$$
\mu_{1} \leq 2 \sqrt{k-1}
$$

Exercise 9.4.2 (see [99]) Let \mathcal{G} be a connected strongly regular graph with parameters (v, k, λ, μ) (cf. Definition 8.2.1). Show that \mathcal{G} is Ramanujan if and only if

$$
2|\lambda-\mu| \sqrt{k-1} \leq 3 k+\mu-4
$$

In the remaining of this section, we apply methods and results on finite fields established in Section 7.1 to introduce and describe the Paley graph which constitutes an interesting example of a Ramanujan graph. We follow the approach in the monograph by van Lint and Wilson [97].

Let p be an odd prime and $q=p^{n}$. The Legendre symbol on \mathbb{F}_{q} may be defined, as in Definition 4.4.7, by setting

$$
\eta(y)= \begin{cases}1 & \text { if } y \neq 0 \text { is a square in } \mathbb{F}_{q} \\ -1 & \text { if } y \neq 0 \text { is not a square in } \mathbb{F}_{q} \\ 0 & \text { if } y=0\end{cases}
$$

(see also Proposition 6.4.4).
Exercise 9.4.3 Let $q=p^{n}$ with p an odd prime.
(1) Show that η is a multiplicative character of \mathbb{F}_{q} and that, in the notation of (7.11), we have

$$
\eta\left(x^{k}\right)=\exp (\pi i k) \quad \text { for } k=0,1, \ldots, q-1
$$

(2) Prove that, for $z \neq 0$,

$$
\sum_{y \in \mathbb{F}_{q}} \eta(y) \eta(y+z)=-1
$$

Hint: for $y \neq 0, \eta(y) \eta(y+z)=\eta\left(y^{2}\right) \eta\left(1+y^{-1} z\right)$.
(3) Prove that -1 is a square in \mathbb{F}_{q} if and only if $q \equiv 1 \bmod 4$.
(4) Define a matrix $R=(r(x, y))_{x, y \in \mathbb{F}_{q}}$ by setting

$$
r(x, y)=\eta(x-y) \quad \text { for all } x, y \in \mathbb{F}_{q} .
$$

Prove that

- R is symmetric (resp. antisymmetric) if $q \equiv 1 \bmod 4($ resp. $q \equiv 3$ $\bmod 4)$.
- $R J=J R=0$, where J is as in Exercise 8.2.2.(1).
- $R R^{T}=q I-J$

Hint: Use (2).
Example 9.4.4 (The Paley graph) Let p be an odd prime and $q=p^{n}$. Suppose that $q \equiv 1 \bmod 4$. The Paley Graph $P(q)$ has vertex set \mathbb{F}_{q} and two distinct vertices $x, y \in \mathbb{F}_{q}$ are joined if $x-y$ is a square. Note that, by virtue of Exercise 9.4.3.(3), $x-y$ is a square if and only if $y-x$ is a square. We deduce that $P(q)$ is an undirected simple graph without loops.

Fig. 9.1. The Paley graph $P(13)$

Exercise 9.4.5 We use the same notation as in Exercise 9.4.3 and Example 9.4.4.
(1) Show that the adjacency matrix of $P(q)$ is

$$
A=\frac{1}{2}(R+J-I)
$$

(2) Deduce that $P(q)$ is a strongly regular graph with parameters $\left(q, \frac{1}{2}(q-\right.$ 1), $\left.\frac{1}{4}(q-5), \frac{1}{4}(q-1)\right)$

Hint: See Exercise 8.2.2 and Exercise 9.4.3.(4).
(3) $[99,161]$ Show that $P(q)$ is a Ramanujan graph Hint: Use Exercise 9.4.2.

9.5 Expander graphs

Definition 9.5.1 Let $\mathcal{G}_{n}=\left(X_{n}, E_{n}, r_{n}\right), n \in \mathbb{N}$, be a sequence of finite (undirected) graphs. Suppose that there exist and integer $k \geq 2$ and $\varepsilon>0$ such that

- \mathcal{G}_{n} is k-regular for all $n \in \mathbb{N}$;
- $\left|X_{n}\right| \rightarrow+\infty$ as $n \rightarrow+\infty$;
- $h\left(\mathcal{G}_{n}\right) \geq \varepsilon$ for all $n \in \mathbb{N}$,
where $h(\cdot)$ denotes the isoperimetric constant (cf. Definition 9.1.1). Then we say that $\left(\mathcal{G}_{n}\right)_{n \in \mathbb{N}}$ is a family of expander graphs (briefly, expanders).

Remark 9.5.2 From (9.6) \dagger we deduce that if $\left(\mathcal{G}_{n}\right)_{n \in \mathbb{N}}$ is a family of k-regular graphs, then

$$
\frac{k}{2}\left|X_{n}\right| \leq\left|E_{n}\right| \leq k\left|X_{n}\right|
$$

for all $n \in \mathbb{N}$, that is, the number of edges grows linearly with the size, i.e. with the number of vertices, of the graphs \mathcal{G}_{n} (because k is fixed).

Also, the condition $h\left(\mathcal{G}_{n}\right) \geq \varepsilon$ ensures a good connectivity of the graph \mathcal{G}_{n} in the following sense: if $A_{n} \subseteq X_{n}$ is a subset such that $\left|A_{n}\right| \leq \frac{\left|X_{n}\right|}{2}$, then, in order to "disconnect" A_{n} from its complement $X_{n} \backslash A_{n}$, that is, to remove ∂A_{n}, we need to "cut" at least $\varepsilon\left|A_{n}\right|$ edges of \mathcal{G}_{n}. Note that if $\left|A_{n}\right| \approx$ $\left|X_{n}\right|$, then the quantity $\varepsilon\left|A_{n}\right|$ grows linearly with $\left|X_{n}\right|$. In other words, expanders provide a solution to the following min-max problem: to minimize the number of edges and to maximize the connectivity of the graphs.

Moreover, keeping k fixed and letting $\left|X_{n}\right| \rightarrow+\infty$ for $n \rightarrow+\infty$, the
\dagger Note that in (9.6), E_{0} (respectively, E_{1}) is not the edge set of \mathcal{G}_{0} (respectively, \mathcal{G}_{1}), but denotes the loops (respectively, $E \backslash E_{0}$) of a generic graph $\mathcal{G}=(X, E, r)$.
graphs \mathcal{G}_{n} become more and more "sparse", that is, they have a large number $\left|X_{n}\right|$ of vertices, but each vertex has a "small" fixed number k of neighbours.

Recalling Remark 9.1.10, we immediately have the following equivalent definition of expanders.

Definition 9.5.3 (Spectral definition of expanders) Let $\mathcal{G}_{n}=\left(X_{n}, E_{n}, r_{n}\right)$, $n \in \mathbb{N}$, be a sequence of finite connected graphs. Suppose that there exist and integer $k \geq 2$ and $\delta>0$ such that

- \mathcal{G}_{n} is k-regular for all $n \in \mathbb{N}$;
- $\left|X_{n}\right| \rightarrow+\infty$ as $n \rightarrow+\infty$;
- $\delta\left(\mathcal{G}_{n}\right) \geq \delta$ for all $n \in \mathbb{N}$,
where $\delta(\cdot)$ denotes the spectral gap (cf. Definition 9.1.9). Then $\left(\mathcal{G}_{n}\right)_{n \in \mathbb{N}}$ is a family of expanders.

Remark 9.5.4 We may reformulate Corollary 9.2 .7 as follows:

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \delta\left(\mathcal{G}_{n}\right)=k-\liminf _{n \rightarrow \infty} \mu_{1}(G) \leq k-2 \sqrt{k-1} \tag{9.41}
\end{equation*}
$$

As a consequence, if $\delta\left(\mathcal{G}_{n}\right) \geq \delta$ for all $n \in \mathbb{N}$, then necessarily

$$
\begin{equation*}
\delta \leq k-2 \sqrt{k-1} \tag{9.42}
\end{equation*}
$$

Example 9.5.5 Let $\left(\mathcal{G}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of finite connected k-regular Ramanujan graphs. Suppose that $\left|X_{n}\right| \rightarrow+\infty$ as $n \rightarrow+\infty$. Then $\left(\mathcal{G}_{n}\right)_{n \in \mathbb{N}}$ is a family of expanders with $\delta=k-2 \sqrt{k-1}$ (cf. Definition 9.5.3). It follows from Remark 9.5.4 that a sequence of Ramanujan graphs is asymptotically optimal within the sequences of expanders.

The construction of a single Ramanujan graph is not difficult (see Exercise 9.4.2 and Exercise 9.4.5). On the contrary, the construction of a sequence of Ramanujan graphs of fixed degree (and increasing size) requires very deep results from number theory. One of these results is the so-called Ramanujan conjecture, eventually proved by several mathematicians including Deligne and Drinfeld. For this reason, although Ramanujan never worked in graph theory, these expanders were named after him.

The first explicit construction of a sequence of Ramanujan graphs (of constant degree k and increasing size) were given for the following values of k :

- $k=p+1$, with p an odd prime, by Lubotzky, Phillips, and Sarnak [101], and Margulis [112] in 1988;
- $k=3$, by Chiu [40] in 1992;
- $k=q+1$, with $q=p^{r}, p$ prime and $r \geq 1$, by Morgenstern [116] in 1994.

An elementary account of the Lubotzky-Phillips-Sarnak graphs and Margulis graphs is in the monograph by Davidoff, Sarnak, and Valette [48] where, however, the authors do not provide a full proof of the Ramanujan property but only a weaker explicit estimate of the spectral gap (the construction of these graphs is relatively easy, but the proof of the Ramanujan property is indeed the difficult point). Se also the monographs by Winnie Li [95], Lubotzky [99], and Sarnak [135, Chapter 3].

Very recently, in 2015, Marcus, Spielman, and Srivastava [109] proved that there exist infinite families of regular bipartite Ramanujan graphs of every degree $k \geq 3$. Later, in [110] they proved the existence of regular bipartite Ramanujan graphs of every degree and every number of vertices. With respect to the previous work, this is more elementary (although based on the probabilistic method, cf. [11]), but it does not provide an explicit construction. On the other hand, however, the construction of expanders is much more elementary: in the following sections we shall give several examples.

9.6 The Margulis example

In 1973 Margulis constructed the first example of a family of expanders [111]. His approach was quite abstract, based on the notion of Kazhdan property (T) (cf. the monograph by Bekka, de la Harpe, and Valette [19]). In 1981 Gabber and Galil [63], using classical Fourier analysis, were able to simplify Margulis example and to provide a lower bound of the spectral gap. Similar improvements were obtained in 1987 by Jimbo and Marouka [83] who used Fourier analysis on the finite group $\mathbb{Z}_{n} \oplus \mathbb{Z}_{n}$. Further simplifications were made by Hoory, Linial, and Wigderson [74], although they attributed the merit to Boppana. Our exposition is strictly based on this last reference.

We start by introducing some basic notation taken from Chapter 1 and Chapter 2. Let $n \geq 1$. Write the group $A=\mathbb{Z}_{n} \oplus \mathbb{Z}_{n}$ as a set of column vectors:

$$
A=\left\{\binom{x_{1}}{x_{2}}: x_{1}, x_{2} \in \mathbb{Z}_{n}\right\}
$$

equipped with the usual componentwise addition, and denote by $0=\binom{0}{0}$ the zero of A. We also consider 2×2 matrices with entries in \mathbb{Z}_{n}. Clearly, a
$\operatorname{matrix}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, with $a, b, c, d \in \mathbb{Z}_{n}$, is invertible if and only if its determinant $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c$ is invertible in \mathbb{Z}_{n}. Moreover, if this is the case, we have the usual formula

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\left(\begin{array}{cc}
d(a d-b c)^{-1} & -b(a d-b c)^{-1} \\
-c(a d-b c)^{-1} & a(a d-b c)^{-1}
\end{array}\right)
$$

Let us set $\omega=e^{2 \pi i / n}$ and, for $x=\binom{x_{1}}{x_{2}}$ and $y=\binom{y_{1}}{y_{2}} \in A$, write $\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}$. Arguing as in Section 2.4, we can write the Fourier transform of a function $f \in L(A)$ as

$$
\widehat{f}(y)=\sum_{x \in A} f(x) \omega^{-\langle x, y\rangle} \quad \forall y \in A
$$

Then, the inversion formula (cf. Theorem 2.4.2) takes the form

$$
f(x)=\frac{1}{n^{2}} \sum_{y \in A} \widehat{f}(y) \omega^{\langle x, y\rangle} \quad \forall x \in A
$$

while the Plancherel and Parseval formulas (cf. Theorem 2.4.3) become respectively:

$$
\sqrt{\sum_{y \in A}|\widehat{f}(y)|^{2}}=n \cdot \sqrt{\sum_{x \in A}|f(x)|^{2}} \quad \forall f \in L(A)
$$

and

$$
\sum_{y \in A} \widehat{f}_{1}(y) \overline{\hat{f}_{2}(y)}=n^{2} \sum_{x \in A} f_{1}(x) \overline{f_{2}(x)} \quad \forall f_{1}, f_{2} \in L(A)
$$

Note also that $\widehat{f}(0)=\sum_{x \in A} f(x)$ so that

$$
\begin{equation*}
\widehat{f}(0)=0 \Leftrightarrow \sum_{x \in A} f(x)=0 \tag{9.43}
\end{equation*}
$$

The following result is elementary but new.
Proposition 9.6.1 Let $f \in L(A), B a 2 \times 2$ invertible matrix with entries in \mathbb{Z}_{n}, and $b \in A$. Define $g \in L(A)$ by setting $g(x)=f(B x+b)$ for all $x \in A$. Then,

$$
\widehat{g}(y)=\omega^{\left\langle B^{-1} b, y\right\rangle} \widehat{f}\left(\left(B^{-1}\right)^{T} y\right)
$$

for all $y \in A$.

Proof Let $y \in A$. Then we have

$$
\begin{aligned}
\widehat{g}(y) & =\sum_{x \in A} f(B x+b) \omega^{-\langle x, y\rangle} \\
(z=B x+b) & =\sum_{z \in A} f(z) \omega^{-\left\langle B^{-1} z-B^{-1} b, y\right\rangle} \\
& =\omega^{\left\langle B^{-1} b, y\right\rangle} \sum_{z \in A} f(z) \omega^{-\left\langle z,\left(B^{-1}\right)^{T} y\right\rangle} \\
& =\omega^{\left\langle B^{-1} b, y\right\rangle} \widehat{f}\left(\left(B^{-1}\right)^{T} y\right) .
\end{aligned}
$$

In what follows, a special role will be played by the following 2×2 matrices with entries in \mathbb{Z}_{n} :

$$
T_{1}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \quad \text { and } \quad T_{2}=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)
$$

whose inverses are

$$
T_{1}^{-1}=\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right) \quad \text { and } \quad T_{2}^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)
$$

Clearly,

$$
\begin{align*}
& T_{1}\binom{x_{1}}{x_{2}}=\binom{x_{1}+2 x_{2}}{x_{2}}, \quad T_{1}^{-1}\binom{x_{1}}{x_{2}}=\binom{x_{1}-2 x_{2}}{x_{2}} \\
& T_{2}\binom{x_{1}}{x_{2}}=\binom{x_{1}}{2 x_{1}+x_{2}}, \quad T_{2}^{-1}\binom{x_{1}}{x_{2}}=\binom{x_{1}}{-2 x_{1}+x_{2}} \tag{9.44}
\end{align*}
$$

(everything $\bmod n$). Moreover, we identify \mathbb{Z}_{n} with the integral interval $\left[-\frac{n}{2}, \frac{n}{2}\right)=\left\{k \in \mathbb{Z}:-\frac{n}{2} \leq k<\frac{n}{2}\right\}$. Clearly,

$$
\left[-\frac{n}{2}, \frac{n}{2}\right)= \begin{cases}{[-m, m)} & \text { if } n=2 m \text { is even } \\ {[-m, m]} & \text { if } n=2 m+1 \text { is odd }\end{cases}
$$

Then we can identify A with the set

$$
\left\{\binom{x_{1}}{x_{2}}: x_{1}, x_{2} \in\left[-\frac{n}{2}, \frac{n}{2}\right)\right\} .
$$

The diamond in A is the set (see Figure 9.2)

$$
D=\left\{\binom{x_{1}}{x_{2}} \in A:\left|x_{1}\right|+\left|x_{2}\right|<\frac{n}{2}\right\} .
$$

Fig. 9.2. The diamond D in A.

We define a partial order in A by setting

$$
\binom{x_{1}}{x_{2}}>\binom{y_{1}}{y_{2}} \text { if }\left\{\begin{array}{l}
\left|x_{1}\right|>\left|y_{1}\right| \text { and }\left|x_{2}\right| \geq\left|y_{2}\right| \\
\text { or } \\
\left|x_{1}\right| \geq\left|y_{1}\right| \text { and }\left|x_{2}\right|>\left|y_{2}\right|
\end{array}\right.
$$

We now present a series of technical lemmas which are essential for our subsequent calculations.

Lemma 9.6.2 Let $x=\binom{x_{1}}{x_{2}} \in D \backslash\{0\}$.
(i) If $\left|x_{1}\right|=\left|x_{2}\right|$ then two of the four points

$$
\begin{equation*}
T_{1} x, \quad T_{1}^{-1} x, \quad T_{2} x, \quad T_{2}^{-1} x \tag{9.45}
\end{equation*}
$$

are strictly greater than x and the other two are incomparable with x;
(ii) if $\left|x_{1}\right| \neq\left|x_{2}\right|$ and $x_{1} \neq 0 \neq x_{2}$, then three of the points in (9.45) are strictly greater than x and the other one is strictly smaller;
(iii) if $\left|x_{1}\right| \neq\left|x_{2}\right|$ but either $x_{1}=0$ or $x_{2}=0$, then two of the points in (9.45) are strictly greater than x and the other two are equal to x.

Proof (i) Suppose first that $x_{1}=x_{2}$. Then

$$
T_{1}^{-1} x=T_{1}^{-1}\binom{x_{1}}{x_{1}}=\binom{-x_{1}}{x_{1}} \quad \text { and } \quad T_{2}^{-1} x=T_{2}^{-1}\binom{x_{1}}{x_{1}}=\binom{x_{1}}{-x_{1}}
$$

are incomparable with x. Moreover,

$$
\left|x_{1}\right|+\left|x_{1}\right|<\frac{n}{2} \Rightarrow\left|x_{1}\right|<\frac{n}{4}
$$

and therefore

$$
T_{1} x=T_{1}\binom{x_{1}}{x_{1}}=\binom{3 x_{1}}{x_{1}} \quad \text { and } \quad T_{2} x=T_{2}\binom{x_{1}}{x_{1}}=\binom{x_{1}}{3 x_{1}}
$$

First case: suppose $-\frac{n}{6} \leq x_{1}<\frac{n}{6}$. Then $-\frac{n}{2} \leq 3 x_{1}<\frac{n}{2}$ and therefore $\left|3 x_{1}\right|>\left|x_{1}\right|$ ensures that $T_{1} x>x$ and $T_{2} x>x$.
Second case: suppose $-\frac{n}{4}<x_{1}<-\frac{n}{6}$. Then $-\frac{3}{4} n<3 x_{1}<-\frac{n}{2}$ so that

$$
\frac{n}{4}<3 x_{1}+n<\frac{n}{2}
$$

and we must take $3 x_{1}+n$ to represent $3 x_{1}$ in the range $\left[-\frac{n}{2}, \frac{n}{2}\right)$. This gives $\left|3 x_{1}+n\right|>\frac{n}{4}>\left|x_{1}\right|$ so that $T_{1} x>x$ and $T_{2} x>x$.
Third case: suppose $\frac{n}{6} \leq x_{1}<\frac{n}{4}$. Then $\frac{n}{2} \leq 3 x_{1}<\frac{3}{4} n$ so that

$$
-\frac{n}{2} \leq 3 x_{1}-n<-\frac{n}{4}
$$

and we must take $3 x_{1}-n$ to represent $3 x_{1}$ in the range $\left[-\frac{n}{2}, \frac{n}{2}\right)$. This gives $\left|3 x_{1}-n\right|>\frac{n}{4}>\left|x_{1}\right|$ and, again, $T_{1} x>x$ and $T_{2} x>x$.

When $x_{1}=-x_{2}$ we may argue similarly: now $T_{1}^{-1} x>x$ and $T_{2}^{-1} x>x$, while $T_{1} x$ and $T_{2} x$ are incomparable with x. We leave the easy details to the reader.
(ii) By (9.44) it suffices to compare $\left|x_{1}+2 x_{2}\right|$ and $\left|x_{1}-2 x_{2}\right|$ with $\left|x_{1}\right|$, and $\left|x_{2}+2 x_{1}\right|$ and $\left|x_{2}-2 x_{1}\right|$ with $\left|x_{2}\right|$. It is easy to check (exercise) that, by means of the symmetries

$$
x_{1} \leftrightarrow-x_{1}, \quad x_{2} \leftrightarrow-x_{2}, \quad \text { and } x_{1} \leftrightarrow x_{2},
$$

we may reduce to the case

$$
0<x_{2}<x_{1}
$$

Clearly, we also have $x_{1}<\frac{n}{2}, x_{1}+x_{2}<\frac{n}{2}$, and $x_{2}<\frac{n}{4}$.
First comparison: We have

$$
\left|x_{1}-2 x_{2}\right|= \begin{cases}x_{1}-2 x_{2}<x_{1} & \text { if } x_{2}<\frac{x_{1}}{2} \\ 2 x_{2}-x_{1}=x_{2}-\left(x_{1}-x_{2}\right)<x_{1} & \text { if } \frac{x_{1}}{2} \leq x_{2}<x_{1}\end{cases}
$$

and therefore $T_{1}^{-1} x<x$.
Second comparison:
If $x_{1}+2 x_{2}<\frac{n}{2}$ then $\left|x_{1}+2 x_{2}\right|=x_{1}+2 x_{2}>x_{1}$.
If $x_{1}+2 x_{2} \geq \frac{n}{2}$ then $x_{2}<\frac{n}{4}$ yields $\frac{n}{2} \leq x_{1}+2 x_{2} \leq \frac{3}{4} n$ which in turn implies that $-\frac{n}{2} \leq-n+x_{1}+2 x_{2}<-\frac{n}{4}$, so that $-n+x_{1}+2 x_{2}$ represents $x_{1}+2 x_{2}$ in the range $\left[-\frac{n}{2}, \frac{n}{2}\right)$ and $\left|-n+x_{1}+2 x_{2}\right|=n-x_{1}-2 x_{2}>x_{1}$, since $x_{1}+x_{2}<\frac{n}{2}$.

In both cases, $T_{1} x>x$.
Third comparison:
If $2 x_{1}+x_{2}<\frac{n}{2}$ then $\left|2 x_{1}+x_{2}\right|=2 x_{1}+x_{2}>x_{2}$.
If $2 x_{1}+x_{2} \geq \frac{n}{2}$ then, from $2 x_{1}+x_{2}=\left(x_{1}+x_{2}\right)+x_{1}<\frac{n}{2}+\frac{n}{2}=n$ we deduce that $\frac{n}{2} \leq 2 x_{1}+x_{2}<n$ which in turn implies that $-\frac{n}{2} \leq 2 x_{1}+x_{2}-n<0$, so that $2 x_{1}+x_{2}-n$ represents $2 x_{1}+x_{2}$ in $\left[-\frac{n}{2}, \frac{n}{2}\right)$ and $\left|2 x_{1}+x_{2}-n\right|=$ $n-2 x_{1}-x_{2}>x_{2}$, because $x_{1}+x_{2}<\frac{n}{2}$.
In both cases, $T_{2} x>x$.
Fourth comparison:
If $-2 x_{1}+x_{2} \geq-\frac{n}{2}$ then $\left|-2 x_{1}+x_{2}\right|=2 x_{1}-x_{2}>x_{2}$.
If $-2 x_{1}+x_{2}<-\frac{n}{2}$, from $x_{1}<\frac{n}{2}$ we deduce that $-2 x_{1}+x_{2}>-n$ which in turn implies that $0<-2 x_{1}+x_{2}+n<\frac{n}{2}$, so that $-2 x_{1}+x_{2}+n$ represents $-2 x_{1}+x_{2}$ in $\left[-\frac{n}{2}, \frac{n}{2}\right)$ and $\left|-2 x_{1}+x_{2}+n\right|=n-2 x_{1}+x_{2}>x_{2}$ (because $x_{1}<\frac{n}{2}$).

In both cases, $T_{2}^{-1} x>x$.
(iii) Arguing as in (ii), we may reduce to the case $0=x_{2}<x_{1}$. Then $T_{1}^{ \pm 1} x=x, T_{2} x=\left(x_{1}, 2 x_{1}\right)^{T}>x$ and $T_{2}^{-1} x=\left(x_{1},-2 x_{1}\right)^{T}>x$.

Lemma 9.6.3 Let $\gamma: A \times A \rightarrow \mathbb{R}$ denote the function defined by setting

$$
\gamma(x, y)= \begin{cases}\frac{5}{4} & \text { if } x>y \\ \frac{4}{5} & \text { if } y>x \\ 1 & \text { otherwise }\end{cases}
$$

for all $x, y \in A$. Then

$$
\begin{equation*}
\gamma(x, y) \gamma(y, x)=1 \tag{9.46}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma(x, y) \leq \frac{5}{4} \tag{9.47}
\end{equation*}
$$

for all $x, y \in A$. Moreover, if $x=\binom{x_{1}}{x_{2}} \in A \backslash\{0\}$, we have
$\left|\cos \frac{\pi x_{1}}{n}\right| \cdot\left[\gamma\left(x, T_{2} x\right)+\gamma\left(x, T_{2}^{-1} x\right)\right]+\left|\cos \frac{\pi x_{2}}{n}\right| \cdot\left[\gamma\left(x, T_{1} x\right)+\gamma\left(x, T_{1}^{-1} x\right)\right] \leq 3.65$.

Proof (9.46) and (9.47) are obvious. We divide the proof of (9.48) into two cases.
First case: x is outside the diamond D. By virtue of (9.47), the left hand
side of (9.48) is bounded above by

$$
\begin{equation*}
\frac{5}{2}\left(\left|\cos \frac{\pi x_{1}}{n}\right|+\left|\cos \frac{\pi x_{2}}{n}\right|\right) \tag{9.49}
\end{equation*}
$$

Since the cosine function is even, we may assume that $0 \leq x_{1}, x_{2} \leq \frac{n}{2}$ so that $0 \leq \frac{\pi x_{2}}{n} \leq \frac{\pi}{2}$ and $x_{2} \mapsto \cos \frac{\pi x_{2}}{n}$ is positive and decreasing. It follows that the maximum of (9.49) is achieved on the boundary of the diamond, and therefore (9.49) is bounded above by (here the max is over all $0 \leq x_{1} \leq \frac{n}{2}$):

$$
\begin{aligned}
\max \left(\frac{5}{2}\left(\left|\cos \frac{\pi x_{1}}{n}\right|+\left|\cos \frac{\pi\left(n / 2-x_{1}\right)}{n}\right|\right)\right) & =\max \left(\frac{5}{2}\left(\cos \frac{\pi x_{1}}{n}+\sin \frac{\pi x_{1}}{n}\right)\right) \\
& \leq \frac{5 \sqrt{2}}{2}<3.65
\end{aligned}
$$

Second case: x is inside the diamond D. Now, using the trivial estimate $|\cos \theta| \leq 1$ we get that the left hand side of (9.48) is bounded by

$$
\begin{equation*}
\gamma\left(x, T_{1} x\right)+\gamma\left(x, T_{1}^{-1} x\right)+\gamma\left(x, T_{2} x\right)+\gamma\left(x, T_{2}^{-1} x\right) \tag{9.50}
\end{equation*}
$$

If $\left|x_{1}\right|=\left|x_{2}\right|$ by Lemma 9.6.2.(i) and the definition of γ we have that (9.50) is bounded above by $1+1+\frac{4}{5}+\frac{4}{5}=3.6<3.65$. Suppose now that $\left|x_{1}\right| \neq\left|x_{2}\right|$. If $x_{1} \neq 0 \neq x_{2}$, then by Lemma 9.6.2.(ii) we have that (9.50) is bounded above by $3 \cdot \frac{4}{5}+\frac{5}{4}=3.65$. If either x_{1} or x_{2} is equal to zero, then by Lemma 9.6.2.(iii), we again have that (9.50) is bounded above by $1+1+\frac{4}{5}+\frac{4}{5}=3.6<3.65$.

Lemma 9.6.4 Let $G: A \rightarrow \mathbb{R}$ be a non-negative function such that $G(0)=0$. Then

$$
\begin{equation*}
\sum_{x \in A} 2 G(x)\left[G\left(T_{2}^{-1} x\right)\left|\cos \frac{\pi x_{1}}{n}\right|+G\left(T_{1}^{-1} x\right)\left|\cos \frac{\pi x_{2}}{n}\right|\right] \leq 3.65 \sum_{x \in A} G(x)^{2} \tag{9.51}
\end{equation*}
$$

Proof Let $x, y \in A$. From (9.46) we deduce that

$$
2 G(x) G(y) \leq \gamma(x, y) G(x)^{2}+\gamma(y, x) G(y)^{2}
$$

Then, the left hand side of (9.51) is bounded above by

$$
\begin{align*}
& \sum_{x \in A}\left\{\left|\cos \frac{\pi x_{1}}{n}\right| \cdot\left[\gamma\left(x, T_{2}^{-1} x\right) G(x)^{2}+\gamma\left(T_{2}^{-1} x, x\right) G\left(T_{2}^{-1} x\right)^{2}\right]+\right. \\
& \left.\quad+\left|\cos \frac{\pi x_{2}}{n}\right| \cdot\left[\gamma\left(x, T_{1}^{-1} x\right) G(x)^{2}+\gamma\left(T_{1}^{-1} x, x\right) G\left(T_{1}^{-1} x\right)^{2}\right]\right\} \tag{9.52}
\end{align*}
$$

Setting $x^{\prime}=T_{2}^{-1} x$ and observing that $x_{1}^{\prime}=x_{1}$ (that is, T_{2} and T_{2}^{-1} do not change x_{1}, see (9.44)), we get

$$
\sum_{x \in A}\left|\cos \frac{\pi x_{1}}{n}\right| \gamma\left(T_{2}^{-1} x, x\right) G\left(T_{2}^{-1} x\right)^{2}=\sum_{x^{\prime} \in A}\left|\cos \frac{\pi x_{1}^{\prime}}{n}\right| \gamma\left(x^{\prime}, T_{2} x^{\prime}\right) G\left(x^{\prime}\right)^{2}
$$

Similarly, with the change of variable $x^{\prime \prime}=T_{1}^{-1} x$, we have $x_{2}^{\prime \prime}=x_{2}$ and

$$
\sum_{x \in A}\left|\cos \frac{\pi x_{2}}{n}\right| \gamma\left(T_{1}^{-1} x, x\right) G\left(T_{1}^{-1} x\right)^{2}=\sum_{x^{\prime \prime} \in A}\left|\cos \frac{\pi x_{2}^{\prime \prime}}{n}\right| \gamma\left(x^{\prime \prime}, T_{1} x^{\prime \prime}\right) G\left(x^{\prime \prime}\right)^{2}
$$

Therefore, recalling that $\cos \frac{\pi x_{1}^{\prime}}{n}=\cos \frac{\pi x_{1}}{n}$ and $\cos \frac{\pi x_{2}^{\prime \prime}}{n}=\cos \frac{\pi x_{2}}{n}$, the upper bound (9.52) equals

$$
\begin{aligned}
\sum_{x \in A} G(x)^{2}\left\{| \operatorname { c o s } \frac { \pi x _ { 1 } } { n } | \cdot \left[\gamma\left(x, T_{2} x\right)\right.\right. & \left.+\gamma\left(x, T_{2}^{-1} x\right)\right] \\
& \left.+\left|\cos \frac{\pi x_{2}}{n}\right| \cdot\left[\gamma\left(x, T_{1} x\right)+\gamma\left(x, T_{1}^{-1} x\right)\right]\right\}
\end{aligned}
$$

which, by virtue of Lemma 9.6.3 and the hypothesis $G(0)=0$, is bounded above by $3.65 \sum_{x \in A} G(x)^{2}$.

Finally, we state a result which is a consequence of the previous lemmas and that will quickly lead to the proof that the Margulis graphs are expanders. Recall that $W_{1}(A)=\left\{f \in L(A): \sum_{x \in A} f(x)=0\right\}$, and set $e_{1}=(1,0)^{T}$ and $e_{2}=(0,1)^{T}$.

Theorem 9.6.5 For all real valued $f \in W_{1}(A)$ we have

$$
\begin{equation*}
\sum_{x \in A} f(x)\left[f\left(T_{1} x\right)+f\left(T_{1} x+e_{1}\right)+f\left(T_{2} x\right)+f\left(T_{2} x+e_{2}\right)\right] \leq 3.65\|f\|_{L(A)}^{2} \tag{9.53}
\end{equation*}
$$

Proof First of all, note that, by virtue of Proposition 9.6.1, if F denotes the Fourier transform of f, then the Fourier transform of the function

$$
x \mapsto f\left(T_{1} x\right)+f\left(T_{1} x+e_{1}\right)+f\left(T_{2} x\right)+f\left(T_{2} x+e_{2}\right)
$$

is the function

$$
x=\binom{x_{1}}{x_{2}} \mapsto F\left(T_{2}^{-1} x\right)+F\left(T_{2}^{-1} x\right) \omega^{x_{1}}+F\left(T_{1}^{-1} x\right)+F\left(T_{1}^{-1} x\right) \omega^{x_{2}}
$$

because $\left(T_{1}^{-1}\right)^{T}=T_{2}^{-1},\left(T_{2}^{-1}\right)^{T}=T_{1}^{-1}, T_{1}^{-1} e_{1}=e_{1}$, and $T_{2}^{-1} e_{2}=e_{2}$. Therefore, by the identities of Plancherel and Parseval, (9.53) is equivalent
to

$$
\begin{equation*}
\sum_{x \in A} \overline{F(x)}\left[F\left(T_{2}^{-1} x\right)\left(1+\omega^{x_{1}}\right)+F\left(T_{1}^{-1} x\right)\left(1+\omega^{x_{2}}\right)\right] \leq 3.65\|F\|_{L(A)}^{2} \tag{9.54}
\end{equation*}
$$

while condition $\sum_{x \in A} f(x)=0$ is equivalent to $F(0)=0$ (see (9.43)). Since

$$
\begin{aligned}
\left|1+\omega^{t}\right|^{2} & =\left|1+\cos \frac{2 \pi t}{n}+i \sin \frac{2 \pi t}{n}\right|^{2} \\
& =2\left(1+\cos \frac{2 \pi t}{n}\right) \\
& =4 \cos ^{2} \frac{\pi t}{n}
\end{aligned}
$$

then (9.54) follows from Lemma 9.6 .4 and the triangular inequality (by setting $G=|F|)$.

We now present the Gabber-Galil version of the Margulis construction.
Definition 9.6.6 (Margulis expanders) For every integer $n \geq 1$, we define the 8-regular graph $\mathcal{M}_{n}=\left(X_{n}, E, r_{\mathcal{M}_{n}}\right)$, where $X_{n}=\mathbb{Z}_{n}^{2}$, equipped with the rotation map (cf. Exercise 8.12.3) $\operatorname{Rot}_{\mathcal{M}_{n}}: X_{n} \times[8] \rightarrow X_{n} \times[8]$ defined by setting

$$
\operatorname{Rot}_{\mathcal{M}_{n}}(x, i)=\left(y_{i}, i+4 \bmod 8\right)
$$

for all $x \in X_{n}$ and $i \in[8]$, where

$$
\begin{align*}
& y_{1}=T_{1} x, \quad y_{2}=T_{2} x, \quad y_{3}=T_{1} x+e_{1}, \quad y_{4}=T_{2} x+e_{2} \\
& y_{5}=T_{1}^{-1} x, \quad y_{6}=T_{2}^{-1} x, \quad y_{7}=T_{1}^{-1} x-e_{1}, \quad y_{8}=T_{2}^{-1} x-e_{2}, \tag{9.55}
\end{align*}
$$

for all $x \in X$.
Observe that the second line of (9.55) can be rewritten as

$$
\begin{equation*}
x=T_{1} y_{5}=T_{2} y_{6}=T_{1} y_{7}+e_{1}=T_{2} y_{8}+e_{2} \tag{9.56}
\end{equation*}
$$

showing, in particular, that $\operatorname{Rot}_{\mathcal{M}_{n}}$ is indeed a rotation map (cf. Exercise 8.12.3).

Note also that \mathcal{M}_{n} may have multiple edges and loops. For instance, $T_{1} 0=T_{2} 0=T_{1}^{-1} 0=T_{2}^{-1} 0=0$ so that there are (exactly) four loops at 0.

Exercise 9.6.7

(1) Show that, if n is divisible by 4 , then there are two (distinct) edges connecting $\binom{x_{1}}{n / 4}$ and $\binom{x_{1}+n / 2}{n / 4}$.
(2) Show that, if $n-1$ is divisible by 4 , then there are two (distinct) edges connecting $\binom{x_{1}}{(n-1) / 4}$ and $\binom{x_{1}+(n-1) / 2}{(n-1) / 4}$.

Theorem 9.6.8 The 8 -regular graphs $\mathcal{M}_{n}=\left(X_{n}, E_{n}, r_{\mathcal{M}_{n}}\right)$ satisfy:

$$
\mu_{1}\left(\mathcal{M}_{n}\right) \leq 7.3
$$

for all $n \in \mathbb{N}$. In particular, $\left(\mathcal{M}_{n}\right)_{n \geq 1}$ is a family of expanders.
Proof Let $n \geq 5$. For $f \in W_{1}$ real valued we have

$$
\begin{aligned}
\left\langle A_{\mathcal{M}_{n}} f, f\right\rangle= & \sum_{x \in X_{n}}\left[A_{\mathcal{M}_{n}} f\right](x) f(x) \\
= & \sum_{x \in X_{n}} f(x)\left[f\left(T_{1} x\right)+f\left(T_{2} x\right)+f\left(T_{1} x+e_{1}\right)+f\left(T_{2} x+e_{2}\right)\right. \\
& \left.\quad+f\left(T_{1}^{-1} x\right)+f\left(T_{2}^{-1} x\right)+f\left(T_{1}^{-1} x-e_{1}\right)+f\left(T_{2}^{-1} x-e_{2}\right)\right] \\
(\text { by }(9.56))= & 2 \sum_{x \in X_{n}} f(x)\left[f\left(T_{1} x\right)+f\left(T_{2} x\right)+f\left(T_{1} x+e_{1}\right)+f\left(T_{2} x+e_{2}\right)\right] \\
\leq & 7.3\|f\|_{L\left(X_{n}\right)}^{2}
\end{aligned}
$$

where the inequality follows from Theorem 9.6.5. From (9.9) we deduce that $\mu_{1}\left(\mathcal{M}_{n}\right) \leq 7.3$ and therefore

$$
0.7=8-7.3 \leq k-\mu_{1}\left(\mathcal{M}_{n}\right)=\delta\left(\mathcal{M}_{n}\right)
$$

Thus, in accordance with Definition 9.5.3, $\left(\mathcal{M}_{n}\right)_{n \in \mathbb{N}}$ is a family of expanders with spectral gap $\delta \geq 0.7$.

9.7 The Alon-Schwartz-Shapira estimate

This section is an exposition of the main result in [10], where the authors - using, however, a slightly different definition of a replacement product give a lower bound for the isoperimetric constant of a replacement product. This result is interesting because it does not rely on spectral techniques but on a direct combinatorial argument.

We use the notation of Definition 8.12.4.

Theorem 9.7.1 Let $\mathcal{G}=\left(X, E, r_{\mathcal{G}}\right)$ be a d-regular graph and $\mathcal{F}=\left(Y, F, r_{\mathcal{F}}\right)$ a k-regular graph with $Y=[d]$. Assume that in both graphs we have defined
a labelling and a rotation map as in Definition 8.12.1. Then:

$$
\begin{equation*}
h(\mathcal{G} ® \mathcal{F}) \geq \min \left\{\frac{1}{40}\left[\frac{h(\mathcal{G})}{d}\right]^{2} h(\mathcal{F}), \frac{1}{8} \frac{h(\mathcal{G})}{d}\right\} \tag{9.57}
\end{equation*}
$$

Proof First of all, for $x \in X$ we set $\Xi_{x}=\{x\} \times[d]$, so that we can regard the vertex set $X \times[d]$ of $\mathcal{G} ® \mathcal{F}$ as the disjoint union $\coprod_{x \in X} \Xi_{x}$ (observe that each Ξ_{x} is a copy of \mathcal{F} and the $\Xi_{x} \mathrm{~S}$ are joined according to the structure of \mathcal{G}, as explained in Definition 8.12.4 and Remark 8.12.6).

Let now $\Gamma \subseteq X \times[d]$ such that

$$
\begin{equation*}
|\Gamma| \leq \frac{1}{2}|X \times[d]|=\frac{|X| d}{2} \tag{9.58}
\end{equation*}
$$

Set

- $\Gamma_{x}=\Gamma \cap \Xi_{x}$;
- $X^{\prime}=\left\{x \in X:\left|\Gamma_{x}\right| \leq d-\frac{h(\mathcal{G})}{4}\right\}$ and $X^{\prime \prime}=X \backslash X^{\prime}$;
- $\Gamma^{\prime}=\coprod_{x \in X^{\prime}} \Gamma_{x}$ and $\Gamma^{\prime \prime}=\coprod_{x \in X^{\prime \prime}} \Gamma_{x}\left(\right.$ clearly, $\left.\Gamma^{\prime} \coprod \Gamma^{\prime \prime}=\Gamma\right)$.

We distinguish two cases.
First case:

$$
\begin{equation*}
\left|\Gamma^{\prime}\right| \geq \frac{1}{10} \frac{h(\mathcal{G})}{d}|\Gamma| \tag{9.59}
\end{equation*}
$$

Note that, by definition, for $x \in X^{\prime}$ we have

$$
\left|\Xi_{x} \backslash \Gamma_{x}\right|=d-\left|\Gamma_{x}\right| \geq \frac{h(\mathcal{G})}{4}
$$

so that (observing that $\left|\Gamma_{x}\right| \leq d$)

$$
\left|\Xi_{x} \backslash \Gamma_{x}\right| \geq \frac{h(\mathcal{G})}{4 d} d \geq \frac{h(\mathcal{G})}{4 d}\left|\Gamma_{x}\right|
$$

Similarly, from (9.2) we deduce that $\frac{h(\mathcal{G})}{4 d} \leq \frac{1}{4}<1$, so that

$$
\left|\Gamma_{x}\right| \geq \frac{h(\mathcal{G})}{4 d}\left|\Gamma_{x}\right|
$$

Then, both in the case $\left|\Gamma_{x}\right| \leq \frac{d}{2}$ and in the case $\left|\Xi \backslash \Gamma_{x}\right| \leq \frac{d}{2}$, by definition of $h(\mathcal{F})$, we deduce that there are at least $\frac{h(\mathcal{G})}{4 d}\left|\Gamma_{x}\right| h(\mathcal{F})$ edges (of the second kind) connecting Γ_{x} and its complement $\Xi_{x} \backslash \Gamma_{x}$ (a copy of \mathcal{F}). Then, by our assumption (9.59), the edges connecting Γ and its complement are at least

$$
\frac{1}{10} \frac{h(\mathcal{G})}{d} \frac{h(\mathcal{G})}{4 d}|\Gamma| h(\mathcal{F})=\frac{1}{40}\left(\frac{h(\mathcal{G})}{d}\right)^{2}|\Gamma| h(\mathcal{F})
$$

After dividing by $|\Gamma|$, this yields the first term in the minimum in (9.57).

Second case:

$$
\begin{equation*}
\left|\Gamma^{\prime}\right|<\frac{1}{10} \frac{h(\mathcal{G})}{d}|\Gamma| . \tag{9.60}
\end{equation*}
$$

Since $\Gamma=\Gamma^{\prime} \coprod \Gamma^{\prime \prime}$, this gives

$$
\begin{equation*}
\left|\Gamma^{\prime \prime}\right|>\left(1-\frac{h(\mathcal{G})}{10 d}\right)|\Gamma| \tag{9.61}
\end{equation*}
$$

Moreover, since, by definition, $\left|\Gamma_{x}\right|>d-\frac{h(\mathcal{G})}{4}$ for each $x \in X^{\prime \prime}$, summing up over $X^{\prime \prime}$ we get $\left|\Gamma^{\prime \prime}\right|>\left|X^{\prime \prime}\right|\left(d-\frac{h(\mathcal{G})}{4}\right)$, and therefore

$$
\left|X^{\prime \prime}\right|<\frac{\left|\Gamma^{\prime \prime}\right|}{d-\frac{h(\mathcal{G})}{4}} \leq \frac{|\Gamma|}{d-\frac{h(\mathcal{G})}{4}} \leq \frac{\frac{1}{2} d|X|}{d-\frac{h(\mathcal{G})}{4}}
$$

(where the last inequality follows from (9.58)). From the inequality $h(\mathcal{G}) \leq d$ we deduce that

$$
\frac{\frac{d}{2}}{d-\frac{h(\mathcal{G})}{4}} \leq \frac{2}{3}
$$

so that

$$
\begin{equation*}
\left|X^{\prime \prime}\right| \leq \frac{2}{3}|X| \tag{9.62}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
\left|X^{\prime \prime}\right| \geq \frac{1}{d}\left|\Gamma^{\prime \prime}\right| \tag{9.63}
\end{equation*}
$$

simply because

$$
\left|\Gamma^{\prime \prime}\right|=\left|\coprod_{x \in X^{\prime \prime}} \Gamma_{x}\right| \leq\left|\coprod_{x \in X^{\prime \prime}} \Xi_{x}\right|=d\left|X^{\prime \prime}\right|
$$

We claim that

$$
\min \left\{\left|X^{\prime}\right|,\left|X^{\prime \prime}\right|\right\} \geq \frac{\left|X^{\prime \prime}\right|}{2}
$$

Indeed, from (9.62) we deduce that

$$
\left|X^{\prime}\right|=|X|-\left|X^{\prime \prime}\right| \geq \frac{1}{3}|X| \geq \frac{1}{2}\left|X^{\prime \prime}\right|
$$

By definition of $h(\mathcal{G})$, it follows that there exists a set F of edges of \mathcal{G} such that

$$
|F| \geq \frac{1}{2} h(\mathcal{G})\left|X^{\prime \prime}\right|
$$

and F connects X^{\prime} with $X^{\prime \prime}$. Denote by Φ the corresponding set of edges (of the first type) in $\mathcal{G} ® \mathcal{F}$ (so that they connect vertices in $\coprod_{x \in X^{\prime}} \Xi_{x}$ with
vertices in $\coprod_{x \in X^{\prime \prime}} \Xi_{x}$). Since for $x \in X^{\prime \prime}$ we have $\left|\Gamma_{x}\right|>d-\frac{h(\mathcal{G})}{4}$ then $\left|\Xi_{x} \backslash \Gamma_{x}\right|<\frac{h(\mathcal{G})}{4}$ so that at most $\frac{h(\mathcal{G})}{4}\left|X^{\prime \prime}\right|$ of the edges in Φ connect a vertex in $\coprod_{x \in X^{\prime \prime}}\left(\Xi_{x} \backslash \Gamma_{x}\right)$ with a vertex in $\coprod_{x \in X^{\prime}} \Xi_{x}$ (recall that each vertex is incident to exactly one edge of the first type, cf. Remark 8.12.6). Therefore, if we denote by Φ_{2} the subset of Φ of all edges that connect vertices of $\Gamma^{\prime \prime}$ with vertices in $\coprod_{x \in X^{\prime}} \Xi_{x}$, then

$$
\begin{equation*}
\left|\Phi_{2}\right| \geq|\Phi|-\frac{h(\mathcal{G})}{4}\left|X^{\prime \prime}\right| \geq \frac{1}{4} h(\mathcal{G})\left|X^{\prime \prime}\right| . \tag{9.64}
\end{equation*}
$$

Consider the decomposition $\Phi_{2}=\Phi_{3} \amalg \Phi_{4}$, where Φ_{3} are the edges that connect vertices of $\Gamma^{\prime \prime}$ with vertices in Γ^{\prime} and Φ_{4} its complement (so that an edge of Φ_{4} connects a vertex of $\Gamma^{\prime \prime} \subseteq \Gamma$ with a vertex in the complement of Γ). Then

$$
\begin{aligned}
\left|\Phi_{3}\right| & \leq\left|\Gamma^{\prime}\right| \\
(\text { by }(9.60)) & \leq \frac{1}{10} \frac{h(\mathcal{G})}{d}|\Gamma| \\
(\text { by }(9.61)) & \leq \frac{h(\mathcal{G}) / 10 d}{1-h(\mathcal{G}) / 10 d}\left|\Gamma^{\prime \prime}\right| \\
\text { (because } h(\mathcal{G}) \leq d) & \leq \frac{h(\mathcal{G})}{9 d}\left|\Gamma^{\prime \prime}\right| \\
(\text { by }(9.63)) & \leq \frac{h(\mathcal{G})}{9}\left|X^{\prime \prime}\right| .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\Phi_{4}\right| & =\left|\Phi_{2}\right|-\left|\Phi_{3}\right| \\
(\text { by }(9.64)) & \geq\left(\frac{1}{4}-\frac{1}{9}\right) h(\mathcal{G})\left|X^{\prime \prime}\right| \\
(\text { by }(9.63)) & \geq \frac{5}{36} \frac{h(\mathcal{G})}{d}\left|\Gamma^{\prime \prime}\right| \\
(\text { by }(9.61)) & \geq \frac{5}{36} \frac{h(\mathcal{G})}{d}\left(1-\frac{h(\mathcal{G})}{10 d}\right)|\Gamma| \\
\text { (because } \left.1-\frac{h(\mathcal{G})}{10 d} \geq \frac{9}{10}\right) & \geq \frac{1}{8} \frac{h(\mathcal{G})}{d}|\Gamma| .
\end{aligned}
$$

This computation yields the second term in the min of (9.57), ending the proof of the theorem.
Theorem 9.7.1 applies to situations where we have a lower bound for the normalized isoperimetric constant of \mathcal{G}. Here, we give an example.

Corollary 9.7.2 Let $\left(\mathcal{G}_{n}\right)_{n \in \mathbb{N}}$ be a family of regular graphs such that

- the degree of \mathcal{G}_{n} is d_{n} and $d_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$;
- \mathcal{G}_{n} has a_{n} vertices and $a_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$;
- there exists $\delta>0$ such that $\frac{h\left(\mathcal{G}_{n}\right)}{d_{n}} \geq \delta$ for all $n \in \mathbb{N}$.

Let also $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ be a family of k-degree expander graphs. Suppose that \mathcal{F}_{n} has d_{n} vertices and there exists $\epsilon>0$ such that $h\left(\mathcal{F}_{n}\right) \geq \epsilon$ for all $n \in \mathbb{N}$. Then $\mathcal{G}_{n}\left(\mathcal{F}_{n}\right.$ is a family of $(k+1)$-degree expanders with $a_{n} d_{n}$ vertices and

$$
h\left(\mathcal{G}_{n} ® \mathcal{F}_{n}\right) \geq \min \left(\frac{\delta^{2} \epsilon}{40}, \frac{\delta}{8}\right)
$$

for all $n \in \mathbb{N}$.

Proof It is an immediate consequence of Theorem 9.7.1.
Following [10], we construct a family of graphs that may take the role of \mathcal{G}_{n} in Corollary 9.7.2.

Let p be a prime number, $q=p^{t}$ for some positive integer t, and denote by \mathbb{F}_{q} the field of order q. Given a positive integer r, we define the finite graph $\mathrm{LD}(q, r)$ as follows. The vertex set is $\mathbb{F}_{q}^{r+1}=\left\{\left(a_{0}, a_{1}, \ldots, a_{r}\right): a_{j} \in \mathbb{F}, j=\right.$ $0,1, \ldots, r\}$. For each $a=\left(a_{0}, a_{1}, \ldots, a_{r}\right) \in \mathbb{F}_{q}^{r+1}$ and for each $(x, y) \in \mathbb{F}_{q}^{2}$ there is a edge connecting a with

$$
a+y\left(1, x, x^{2}, \ldots, x^{r}\right)=\left(a_{0}+y, a_{1}+y x, \ldots, a_{r}+y x^{r}\right)
$$

This way, there are q loops at each vertex (these correspond to the case $y=0$), and all other edges are simple. It follows that $\operatorname{LD}(q, r)$ is regular of degree q^{2} and has q^{r+1} vertices.

Theorem 9.7.3 Suppose that $1 \leq r \leq q$. Then

$$
\mu_{1}(\mathrm{LD}(q, r)) \leq q r
$$

Proof We give a complete spectral analysis of the graph $\mathrm{LD}(q, r)$, by exhibiting an orthonormal set of eigenvectors and by computing the relative eigenvalues. Actually, the eigenvectors are the character of the additive Abelian group \mathbb{F}_{q}^{r+1}, but, in our exposition, we prefer to follow the original sources and derive their properties from scratch. Fix a nontrivial linear map $L: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$. For instance, thinking of \mathbb{F}_{q} as a t-dimensional vector space over \mathbb{F}_{p} (i.e., $\mathbb{F}_{q}=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right): \alpha_{i} \in \mathbb{F}_{p}, i=1,2, \ldots, t\right\}$), then we can take $L\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)=\alpha_{1}$. Another choice could be the trace map $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}}$ (cf. Section 6.7). Also, for $a=\left(a_{0}, a_{1}, \ldots, a_{r}\right)$ and $b=\left(b_{0}, b_{1}, \ldots, b_{r}\right) \in \mathbb{F}_{q}^{r+1}$
we set

$$
a \cdot b=\sum_{j=0}^{r} a_{j} b_{j}
$$

Let $\omega=e^{2 \pi i / p}$ be a primitive p-th root of the unity and, for $a \in \mathbb{F}_{q}^{r+1}$, define $v_{a}: \mathbb{F}_{q}^{r+1} \rightarrow \mathbb{C}$ by setting

$$
v_{a}(b)=\omega^{L(a \cdot b)}
$$

for all $b \in \mathbb{F}_{q}^{r+1}$.
Note that

$$
\begin{equation*}
\overline{v_{a}}=v_{-a}, \quad v_{a}(b)=v_{b}(a), \quad \text { and } \quad v_{a}(b+c)=v_{a}(b) v_{a}(c) \tag{9.65}
\end{equation*}
$$

for all $a, b, c \in \mathbb{F}_{q}^{r+1}$.
We claim that for $a \neq(0,0, \ldots, 0)$

$$
\begin{equation*}
\sum_{b \in \mathbb{F}_{q}^{r+1}} v_{a}(b)=0 \tag{9.66}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\sum_{b \in \mathbb{F}_{q}^{r+1}} v_{a}(b) & =\sum_{b \in \mathbb{F}_{q}^{r+1}} \omega^{L(a \cdot b)} \\
& =\sum_{h \in \mathbb{F}_{p}} \sum_{\substack{b \in \mathbb{F}_{q}^{r+1} \\
L(a \cdot b)=h}} \omega^{h} \\
& =K \sum_{h \in \mathbb{F}_{p}} \omega^{h} \\
& =0
\end{aligned}
$$

where

$$
K=\left|\left\{b \in \mathbb{F}_{q}^{r+1}: L(a \cdot b)=h\right\}\right|=\frac{\left|\mathbb{F}_{q}^{r+1}\right|}{\left|\mathbb{F}_{q}\right|} \cdot \frac{\left|\mathbb{F}_{q}\right|}{p}
$$

is independent of h, and the last equality follows from the fact that ω is a primitive p-th root of the unity (recall Lemma 2.2.3). The claim is proved.

As a consequence, for $a, b \in \mathbb{F}_{q}^{r+1}$ from (9.65) and (9.66) we deduce

$$
\left\langle v_{a}, v_{b}\right\rangle_{L\left(\mathbb{F}_{q}^{r+1}\right)}=\sum_{c \in \mathbb{F}_{q}^{r+1}} v_{a}(c) \overline{v_{b}(c)}=\sum_{c \in \mathbb{F}_{q}^{r+1}} v_{a-b}(c)=\delta_{a, b}\left|\mathbb{F}_{q}^{r+1}\right|
$$

that is, the set $\left\{v_{a}: a \in \mathbb{F}_{q}^{r+1}\right\}$ is an orthogonal basis in $L\left(\mathbb{F}_{q}^{r+1}\right)$. More precisely, $\left(v_{a}\right)_{a \in \mathbb{F}_{q}^{r+1}}$ constitutes a parameterization of the characters of \mathbb{F}_{q}^{r+1}.

We now show that the functions $v_{a} \in L\left(\mathbb{F}_{q}^{r+1}\right)$ are eigenvectors of the adjacency matrix A of the graph $\operatorname{LD}(q, r)$. Indeed, for $a, b \in \mathbb{F}_{q}^{r+1}$ we have

$$
\begin{aligned}
{\left[A v_{a}\right](b) } & =\sum_{x, y \in \mathbb{F}_{q}} v_{a}\left(b+y\left(1, x, x^{2}, \ldots, x^{r}\right)\right) \\
(\text { by }(9.65)) & =\left(\sum_{x, y \in \mathbb{F}_{q}} v_{a}\left(y\left(1, x, x^{2}, \ldots, x^{r}\right)\right)\right) v_{a}(b)
\end{aligned}
$$

so that, setting $p_{a}(x)=\sum_{j=0}^{r} a_{j} x^{j}$, we have that v_{a} is an eigenvector whose corresponding eigenvalue μ_{a} is given by

$$
\begin{align*}
\mu_{a} & =\sum_{x, y \in \mathbb{F}_{q}} v_{a}\left(y\left(1, x, x^{2}, \ldots, x^{r}\right)\right) \\
& =\sum_{x, y \in \mathbb{F}_{q}} \omega^{L\left(y p_{a}(x)\right)} \tag{9.67}\\
& =\sum_{\substack{x \in \mathbb{F}_{q} \\
p_{a}(x)=0}} \sum_{y \in \mathbb{F}_{q}} \omega^{L\left(y p_{a}(x)\right)} \\
& =\left|\mathbb{F}_{q}\right| \cdot\left|\left\{x \in \mathbb{F}_{q}: p_{a}(x)=0\right\}\right|,
\end{align*}
$$

where the two last equalities follow from the identity $\sum_{y \in \mathbb{F}_{q}} \omega^{L\left(y p_{a}(x)\right)}=$ $\left|\mathbb{F}_{q}\right| \delta_{0, p_{a}(x)}$. Now, if $a=(0,0, \ldots, 0)$, then $\mu_{a}=\left|\mathbb{F}_{q}\right|^{2}=q^{2}$: this is the largest eigenvalue (recall that $\operatorname{LD}(q, r)$ is q^{2}-regular). If $a \neq(0,0, \ldots, 0)$, then the polynomial $p_{a}(x)$ has at most r roots in \mathbb{F}_{q} and therefore $\mu_{a} \leq\left|\mathbb{F}_{q}\right| r=q r$.

Corollary 9.7.4 Suppose that $1 \leq r \leq q / 2$. Then

$$
h(\mathrm{LD}(q, r)) \geq \frac{q^{2}}{4}
$$

Proof This follows from Theorem 9.7.3 and the Alon-Milman theorem (Theorem 9.1.7):

$$
h(\mathrm{LD}(q, r)) \geq \frac{q^{2}-\mu_{1}(\mathrm{LD}(q, r))}{2} \geq \frac{q^{2}-q r}{2} \geq \frac{q^{2}}{4}
$$

Example 9.7.5 For $n \in \mathbb{N}$ let

$$
\mathcal{G}_{n}=\mathrm{LD}\left(2^{n}, 2^{n-1}\right)
$$

and

$$
\mathcal{F}_{n}=\mathcal{M}_{2^{n}}
$$

the Margulis graph (cf. Definition 9.6.6). Recall that \mathcal{G}_{n} has $2^{n\left(2^{n-1}+1\right)}$ vertices and degree $d\left(\mathcal{G}_{n}\right)=2^{2 n}$. Moreover, by Corollary 9.7.4, $h\left(\mathcal{G}_{n}\right) \geq \frac{2^{2 n}}{4}$ so that

$$
\frac{h\left(\mathcal{G}_{n}\right)}{d\left(\mathcal{G}_{n}\right)} \geq \frac{1}{4}
$$

Also, \mathcal{F}_{n} has $2^{2 n}$ vertices and constant degree $d\left(\mathcal{F}_{n}\right)=8$. Moreover, by virtue of Theorem 9.6.8 and the Alon-Milman theorem (Theorem 9.1.7), we have

$$
h\left(\mathcal{F}_{n}\right) \geq \frac{8-\mu_{1}\left(\mathcal{F}_{n}\right)}{2} \geq \frac{8-7.3}{2}=\frac{7}{20} .
$$

Then by Corollary 9.7.2 (with $\varepsilon=\frac{7}{20}$ and $\delta=\frac{1}{4}$) we have that $\left\{\mathcal{G}_{n}(1) \mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ is a family of 9 -degree expanders. In fact, for every $n \in \mathbb{N}$, the graph $\mathcal{G}_{n}\left(\mathcal{F}_{n}\right.$ has $2^{n\left(2^{n-1}+1\right)} \cdot 2^{2 n}=2^{n\left(2^{n-1}+3\right)}$ vertices and its isoperimetric constant satisfies

$$
h\left(\mathcal{G}_{n}\left(\mathbb{T} \mathcal{F}_{n}\right) \geq \min \left(\frac{1}{40} \cdot \frac{1}{16} \cdot \frac{7}{20}, \frac{1}{8} \cdot \frac{1}{4}\right)=\frac{7}{12800} .\right.
$$

9.8 Estimates of the first nontrivial eigenvalue for the Zig-Zag product

In this section, following [128], we give an upper bound for the first nontrivial eigenvalue of a zig-zag product in terms of the first nontrivial eigenvalues of its factors.

We first need to introduce a slightly modified version of $\mu_{1}(\mathcal{G})$. Keeping the notation of Proposition 8.1.5, for a connected k-regular graph \mathcal{G} we set

$$
\tilde{\mu_{1}}(\mathcal{G})=\max \left\{\left|\mu_{1}\right|,\left|\mu_{n-1}\right|\right\} .
$$

In other words, $\tilde{\mu_{1}}(\mathcal{G})$ is the largest (in absolute value) eigenvalue of the adjacency matrix of \mathcal{G} different from $\mu_{0}=k$. Note that, if \mathcal{G} is bipartite, then, by Proposition 8.3.4, $\tilde{\mu_{1}}(\mathcal{G})=k$. Moreover, $\mu_{1}(\mathcal{G}) \leq \tilde{\mu_{1}}(\mathcal{G})$ and, by replacing μ_{1} by $\tilde{\mu_{1}}$, we obtain a variant of the spectral definition of expanders (cf. Definition 9.1.9 and Definition 9.5.3).
In the notation of Proposition 8.1.4 and Lemma 9.1.6 we have

$$
\begin{equation*}
\tilde{\mu_{1}}(\mathcal{G})=\max _{f \in W_{1}, f \neq 0} \frac{\|A f\|}{\|f\|}=\max _{f \in W_{1}, f \neq 0} \frac{|\langle A f, f\rangle|}{\|f\|^{2}} . \tag{9.68}
\end{equation*}
$$

Indeed, if $v_{0}, v_{1}, \ldots, v_{n-1}$ is an orthonormal basis of $L(X)$ such that $A v_{j}=$
$\mu_{j} v_{j}$ for $j=0,1, \ldots, n-1$, then v_{1}, \ldots, v_{n-1} is an orthonormal basis of W_{1}. Thus, if $f=\sum_{j=1}^{n-1} \alpha_{j} v_{j}$ we have $A f=\sum_{j=1}^{n-1} \alpha_{j} \mu_{j} v_{j}$ and

$$
\langle A f, A f\rangle=\sum_{j=1}^{n-1}\left|\alpha_{j}\right|^{2} \mu_{j}^{2} \leq \tilde{\mu_{1}}(\mathcal{G})^{2}\|f\|^{2}
$$

so that

$$
\frac{\langle A f, A f\rangle}{\|f\|^{2}} \leq \tilde{\mu_{1}}(\mathcal{G})^{2}
$$

On the other hand, if $\left|\mu_{j}\right|=\tilde{\mu_{1}}(\mathcal{G})(j=1$ or $j=n-1)$ then

$$
\frac{\left\langle A v_{j}, A v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}}=\tilde{\mu_{1}}(\mathcal{G})^{2}
$$

The proof of the other equality is similar.

Remark 9.8.1 It is important to notice that since the adjacency ma$\operatorname{trix} A$ of \mathcal{G} is real and symmetric, we can select the orthonormal basis $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ of $L(X)$ made up of real-valued functions. Thus, denoting by $L_{\mathbb{R}}(X)$ the space of all real-valued functions on X, in (9.68) we can replace W_{1} by $W_{1} \cap L_{\mathbb{R}}(X)$.

In the following we shall use the notation in Sections 8.7, 8.12, and 8.13.

Lemma 9.8.2 Let $f \in W_{1}(X \times[d])$. Then

$$
\begin{equation*}
\left(I_{X} \otimes B\right) f^{\perp} \in L(X) \otimes W_{1}([d]) \tag{9.69}
\end{equation*}
$$

and

$$
\left\|\left(I_{X} \otimes B\right) f^{\perp}\right\| \leq \tilde{\mu_{1}}(\mathcal{F})\left\|f^{\perp}\right\|
$$

Proof First of all, using (8.20) we have

$$
\left(I_{X} \otimes B\right) f^{\perp}=\left(I_{X} \otimes B\right)\left(\sum_{x \in X} \delta_{x} \otimes f_{x}^{\perp}\right)=\sum_{x \in X} \delta_{x} \otimes B f_{x}^{\perp}
$$

Then, using again (8.20) and the B-invariance of $W_{1}([d])$ (cf. Proposition 8.1.4), (9.69) follows. Moreover, by (9.68)

$$
\left\|B f_{x}^{\perp}\right\|_{L([d])} \leq \tilde{\mu_{1}}(\mathcal{F})\left\|f_{x}^{\perp}\right\|_{L([d])}
$$

for all $x \in X$ so that

$$
\begin{aligned}
\left\|\left(I_{X} \otimes B\right) f^{\perp}\right\|_{L(X \times[d])}^{2} & \leq \sum_{x \in X}\left\|\delta_{x} \otimes B f_{x}^{\perp}\right\|_{L(X \times[d])}^{2} \\
(\text { by }(8.12)) & =\sum_{x \in X}\left\|B f_{x}^{\perp}\right\|_{L([d])}^{2} \\
& \leq \tilde{\mu_{1}}(\mathcal{F})^{2} \sum_{x \in X}\left\|f_{x}^{\perp}\right\|_{L([d])}^{2} \\
& =\tilde{\mu_{1}}(\mathcal{F})^{2}\left\|f^{\perp}\right\|_{L(X \times[d])}^{2}
\end{aligned}
$$

Lemma 9.8.3 Let $f \in W_{1}(X \times[d])$. Then

$$
\left|\left\langle R_{\mathcal{G}} f^{\|}, f^{\|}\right\rangle\right| \leq \frac{\tilde{\mu_{1}}(\mathcal{G})}{d}\left\|f^{\|}\right\|^{2}
$$

Proof First of all, note that, from Lemma 8.7.4 and Proposition 8.12.2, it follows that

$$
\begin{equation*}
C R_{\mathcal{G}} f^{\|}=\frac{1}{d} C R_{\mathcal{G}}\left[(C f) \otimes \mathbf{1}_{[d]}\right]=\frac{1}{d} A C f \tag{9.70}
\end{equation*}
$$

Then, again by Lemma 8.7.4, we have

$$
\begin{aligned}
\left\langle R_{\mathcal{G}} f^{\|}, f^{\|}\right\rangle & =\frac{1}{d}\left\langle R_{\mathcal{G}} f^{\|},(C f) \otimes \mathbf{1}_{[d]}\right\rangle_{L(X \times[d])} \\
& =\frac{1}{d} \sum_{(x, i) \in X \times[d]}\left(R_{\mathcal{G}} f^{\|}\right)(x, i) \overline{[C f](x)} \\
\text { (by (8.21))} & =\frac{1}{d}\left\langle C R_{\mathcal{G}} f^{\|}, C f\right\rangle_{L(X)} \\
\text { (by (9.70)) } & =\frac{1}{d^{2}}\langle A C f, C f\rangle_{L(X)} \text {. }
\end{aligned}
$$

Now, by Lemma 8.7.3.(ii), $C f \in W_{1}(X)$ and therefore

$$
\begin{aligned}
\qquad\left|\left\langle R_{\mathcal{G}} f^{\|}, f^{\|}\right\rangle\right| & =\frac{1}{d^{2}}|\langle A C f, C f\rangle| \\
(\text { by }(9.68)) & \leq \frac{\tilde{\mu_{1}}(\mathcal{G})}{d^{2}}\|C f\|_{L(X)}^{2} \\
(\text { by }(8.12)) & =\frac{\tilde{\mu_{1}}(\mathcal{G})}{d^{3}}\left\|(C f) \otimes \mathbf{1}_{[d]}\right\|_{L(X \times[d])}^{2} \\
(\text { by Lemma } 8.7 .4) & =\frac{\tilde{\mu_{1}}(\mathcal{G})}{d}\left\|f^{\|}\right\|^{2} \text {. }
\end{aligned}
$$

Fig. 9.3. The decomposition $f=f_{1}+f_{2}$, with $f_{1} \in V_{1}$ and $f_{2} \in V_{2}$.

Recall that $L_{\mathbb{R}}(X \times[d])$ denotes the space of all real valued functions defined on $X \times[d]$. Since $R_{\mathcal{G}}$ is a symmetric matrix, $L_{\mathbb{R}}(X \times[d])$ decomposes into eigenspaces of $R_{\mathcal{G}}$ and, since $R_{\mathcal{G}}^{2}=I_{X \times[d]}$, we deduce that $R_{\mathcal{G}}$ has only 1 and -1 as eigenvalues. Set

- $V_{1}=\left\{f \in L_{\mathbb{R}}(X \times[d]): R_{\mathcal{G}} f=f\right\}$
- $V_{2}=\left\{f \in L_{\mathbb{R}}(X \times[d]): R_{\mathcal{G}} f=-f\right\}$.

Then

$$
L_{\mathbb{R}}(X \times[d])=V_{1} \oplus V_{2}
$$

is the orthogonal decomposition of $L_{\mathbb{R}}(X \times[d])$ into eigenspaces of $R_{\mathcal{G}}$.
Lemma 9.8.4 Let $f \in L_{\mathbb{R}}(X \times[d])$. Then we have

$$
\left\langle R_{\mathcal{G}} f, f\right\rangle=\cos (2 \theta)\|f\|^{2}
$$

where θ is the angle between f and V_{1}.

Proof Write $f=f_{1}+f_{2}$, with $f_{1} \in V_{1}$ and $f_{2} \in V_{2}$, so that

$$
\left\|f_{1}\right\|=\cos \theta\|f\| \quad \text { and } \quad\left\|f_{2}\right\|=\sin \theta\|f\|
$$

as shown in Figure 9.3.

Then

$$
\begin{aligned}
\left\langle R_{\mathcal{G}} f, f\right\rangle & =\left\langle f_{1}-f_{2}, f_{1}+f_{2}\right\rangle \\
& =\left\|f_{1}\right\|^{2}-\left\|f_{2}\right\|^{2} \\
& =\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\|f\|^{2} \\
& =\cos (2 \theta)\|f\|^{2}
\end{aligned}
$$

We now introduce an auxiliary function: for $0 \leq \alpha, \beta \leq 1$ we set

$$
\Phi(\alpha, \beta)=\frac{1}{2}\left(1-\beta^{2}\right) \alpha+\frac{1}{2} \sqrt{\left(1-\beta^{2}\right)^{2} \alpha^{2}+4 \beta^{2}}
$$

The elementary properties of this function are described in the next lemma.
Lemma 9.8.5 Let $0 \leq \alpha, \beta \leq 1$. Then the following holds.
(i) $\Phi(\alpha, 0)=\alpha, \Phi(0, \beta)=\beta$, and $\Phi(\alpha, 1)=\Phi(1, \beta)=1$.
(ii) For $\beta<1$ fixed, the function $\alpha \mapsto \Phi(\alpha, \beta)$ is strictly increasing.
(iii) For $\alpha<1$ fixed, the function $\beta \mapsto \Phi(\alpha, \beta)$ is strictly increasing.
(iv) If $\alpha, \beta<1$ then $\Phi(\alpha, \beta)<1$.
(v) $\Phi(\alpha, \beta) \leq\left(1-\beta^{2}\right) \alpha+\beta \leq \alpha+\beta \quad$ (First upper bound).
(vi) $\Phi(\alpha, \beta) \leq 1-\frac{1}{2}(1-\alpha)\left(1-\beta^{2}\right) \quad$ (Second upper bound).
(vii) $\Phi(\alpha, \beta) \geq \frac{2 \beta^{2}}{1-\alpha+\beta^{2}(1+\alpha)} \quad$ (Lower bound).

Proof (i) and (ii) are obvious. (iii) requires some elementary algebra. For the moment, suppose that $0 \leq \alpha<1$ and $0 \leq \beta_{1}<\beta_{2} \leq 1$. Set $A_{1}=\left(1-\beta_{1}^{2}\right) \alpha$ and $A_{2}=\left(1-\beta_{2}^{2}\right) \alpha$. We have to prove that

$$
\begin{equation*}
A_{1}+\sqrt{A_{1}^{2}+4 \beta_{1}^{2}}<A_{2}+\sqrt{A_{2}^{2}+4 \beta_{2}^{2}} \tag{9.71}
\end{equation*}
$$

First of all, note that $A_{1}>A_{2}$ and

$$
\begin{aligned}
A_{1}^{2}-A_{2}^{2} & =\alpha^{2}\left(\beta_{2}^{2}-\beta_{1}^{2}\right)\left(2-\beta_{1}^{2}-\beta_{2}^{2}\right) \\
& \leq 2\left(\beta_{2}^{2}-\beta_{1}^{2}\right) \\
& <4\left(\beta_{2}^{2}-\beta_{1}^{2}\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
A_{1}^{2}+4 \beta_{1}^{2}<A_{2}^{2}+4 \beta_{2}^{2} \tag{9.72}
\end{equation*}
$$

We then write (9.71) in the form

$$
A_{1}-A_{2}<\sqrt{A_{2}^{2}+4 \beta_{2}^{2}}-\sqrt{A_{1}^{2}+4 \beta_{1}^{2}}
$$

which, by virtue of (9.72), is equivalent to (by squaring both sides)

$$
\sqrt{A_{2}^{2}+4 \beta_{2}^{2}} \sqrt{A_{1}^{2}+4 \beta_{1}^{2}}<A_{1} A_{2}+2 \beta_{1}^{2}+2 \beta_{2}^{2}
$$

Squaring again both sides, with some elementary calculations, (9.71) is in turn equivalent to

$$
\begin{equation*}
A_{1}^{2} \beta_{2}^{2}+A_{2}^{2} \beta_{1}^{2}<\left(\beta_{1}^{2}-\beta_{2}^{2}\right)^{2}+A_{1} A_{2}\left(\beta_{1}^{2}+\beta_{2}^{2}\right) \tag{9.73}
\end{equation*}
$$

Now recalling that $A_{j}=\left(1-\beta_{j}^{2}\right) \alpha$ for $j=1,2$ one easily checks that

$$
A_{1}^{2} \beta_{2}^{2}+A_{2}^{2} \beta_{1}^{2}=\alpha^{2}\left(\beta_{1}^{2}-\beta_{2}^{2}\right)^{2}+A_{1} A_{2}\left(\beta_{1}^{2}+\beta_{2}^{2}\right)
$$

and (9.73) follows. This shows (9.71).
(iv) follows from (i) and (ii) (or (iii)), but we give a straightforward direct proof. If $0 \leq \alpha, \beta<1$ then $\left(1-\beta^{2}\right) \alpha<1-\beta^{2}$ so that

$$
\begin{aligned}
\Phi(\alpha, \beta) & =\frac{1}{2}\left(1-\beta^{2}\right) \alpha+\frac{1}{2} \sqrt{\left(1-\beta^{2}\right)^{2} \alpha^{2}+4 \beta^{2}} \\
& <\frac{1}{2}\left(1-\beta^{2}\right)+\frac{1}{2} \sqrt{\left(1-\beta^{2}\right)^{2}+4 \beta^{2}} \\
& =\frac{1}{2}\left(1-\beta^{2}\right)+\frac{1}{2}\left(1+\beta^{2}\right)=1
\end{aligned}
$$

(v) Completing the square inside the square root we have

$$
\begin{aligned}
\Phi(\alpha, \beta) & \leq \frac{1}{2}\left(1-\beta^{2}\right) \alpha+\frac{1}{2} \sqrt{\left(1-\beta^{2}\right)^{2} \alpha^{2}+4 \beta^{2}+4 \beta\left(1-\beta^{2}\right) \alpha} \\
& =\frac{1}{2}\left(1-\beta^{2}\right) \alpha+\frac{1}{2}\left[\left(1-\beta^{2}\right) \alpha+2 \beta\right] \\
& =\left(1-\beta^{2}\right) \alpha+\beta
\end{aligned}
$$

(vi) The inequality

$$
\Phi(\alpha, \beta) \leq 1-\frac{1}{2}(1-\alpha)\left(1-\beta^{2}\right)
$$

is equivalent to

$$
\sqrt{\left(1-\beta^{2}\right)^{2} \alpha^{2}+4 \beta^{2}} \leq 1+\beta^{2}
$$

Squaring both sides this becomes

$$
\alpha^{2}\left(1-\beta^{2}\right)^{2} \leq\left(1-\beta^{2}\right)^{2}
$$

which is satisfied since $\alpha^{2} \leq 1$.
(vii) If $\frac{2 \beta^{2}}{1-\alpha+\beta^{2}(1+\alpha)} \leq \frac{1}{2}\left(1-\beta^{2}\right) \alpha$ then there is nothing to prove. Otherwise, we can write the inequality in the form

$$
\frac{2 \beta^{2}}{1-\alpha+\beta^{2}(1+\alpha)}-\frac{1}{2}\left(1-\beta^{2}\right) \alpha \leq \frac{1}{2} \sqrt{\left(1-\beta^{2}\right)^{2} \alpha^{2}+4 \beta^{2}}
$$

and squaring both sides (the left hand side is positive) we get

$$
4 \beta^{2} \leq 2 \alpha\left(1-\beta^{2}\right)\left[(1-\alpha)+\beta^{2}(1+\alpha)\right]+\left[(1-\alpha)+\beta^{2}(1+\alpha)\right]^{2}
$$

that is,

$$
\begin{aligned}
4 \beta^{2}+\alpha^{2}\left(1-\beta^{2}\right)^{2} & \leq\left\{\alpha\left(1-\beta^{2}\right)+\left[(1-\alpha)+\beta^{2}(1+\alpha)\right]\right\}^{2} \\
& =\left(1+\beta^{2}\right)^{2}
\end{aligned}
$$

which becomes

$$
\alpha^{2}\left(1-\beta^{2}\right)^{2} \leq\left(1-\beta^{2}\right)^{2} .
$$

This is clearly satisfied since $\alpha^{2} \leq 1$.
Remark 9.8.6 The first upper bound is useful when α and β are small, while the second upper bound is useful when α and β are close to one. Moreover, it is an easy exercise to show that if $\beta<1$ then

$$
\alpha\left(1-\beta^{2}\right)+\beta \leq 1-\frac{1}{2}(1-\alpha)\left(1-\beta^{2}\right)
$$

if and only if

$$
\alpha \leq \frac{1-\beta}{1+\beta} .
$$

In [127] the authors use the function $\Psi(\alpha, \beta)=1-(1-\alpha)(1-\beta)^{2}$ in place of Φ. This is also useful when α and β are close to one. We just note that

$$
1-\frac{1}{2}(1-\alpha)\left(1-\beta^{2}\right) \leq 1-(1-\alpha)(1-\beta)^{2}
$$

if and only if $\beta \geq \frac{1}{3}$. As a consequence, as soon as $\beta \geq \frac{1}{3}$, the second upper bound in Lemma 9.8.5 yields a better estimate than the one provided by Ψ in [127].

We are now in position to state and prove the main result of this section.
Theorem 9.8.7 [Reingold-Vadhan-Wigderson] In the notation of Section 8.13 we have the following inequality for the first nontrivial eigenvalue of a zig-zag product:

$$
\tilde{\mu_{1}}\left(\mathcal{G}(\widetilde{Z} \mathcal{F}) \leq k^{2} \Phi\left(\frac{\tilde{\mu_{1}}(\mathcal{G})}{d}, \frac{\tilde{\mu_{1}}(\mathcal{F})}{k}\right),\right.
$$

where Φ is the function in Lemma 9.8.5.
Proof Let $0 \neq f \in W_{1}(X \times[d]) \cap L_{\mathbb{R}}(X \times[d])$ (cf. Remark 9.8.1). By virtue of Lemma 8.7.4 (recall that B is the adjacency matrix of \mathcal{F}) we have

$$
\begin{aligned}
\left(I_{X} \otimes B\right) f^{\|} & =\frac{1}{d}\left(I_{X} \otimes B\right)\left[(C f) \otimes \mathbf{1}_{[d]}\right] \\
\left(\text { as } B \mathbf{1}_{[d]}=k \mathbf{1}_{[d]}\right) & =\frac{1}{d}\left[(C f) \otimes k \mathbf{1}_{[d]}\right] \\
& =k f^{\|} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left(I_{X} \otimes B\right) f=\left(I_{X} \otimes B\right)\left(f^{\|}+f^{\perp}\right)=k f^{\|}+\left(I_{X} \otimes B\right) f^{\perp} \tag{9.74}
\end{equation*}
$$

Setting $\tilde{B}=\frac{1}{k}\left(I_{X} \otimes B\right)$ and recalling Proposition 8.13 .3 we have

$$
\begin{aligned}
\left\langle M_{\mathcal{G}(\mathbb{Z} \mathcal{F}} f, f\right\rangle & =\left\langle\left(I_{X} \otimes B\right) R_{\mathcal{G}}\left(I_{X} \otimes B\right) f, f\right\rangle \\
& =\left\langle R_{\mathcal{G}}\left(I_{X} \otimes B\right) f,\left(I_{X} \otimes B\right) f\right\rangle \\
(\text { by }(9.74)) & =k^{2}\left\langle R_{\mathcal{G}}\left(f^{\|}+\tilde{B} f^{\perp}\right), f^{\|}+\tilde{B} f^{\perp}\right\rangle \\
\text { (by Lemma 9.8.4) } & =k^{2} \cos 2 \theta\left\|f^{\|}+\tilde{B} f^{\perp}\right\|^{2}
\end{aligned}
$$

(where $\theta \in[0, \pi / 2]$ is the angle between $f^{\|}+\tilde{B} f^{\perp}$ and V_{1}) so that

$$
\begin{equation*}
\frac{\left\langle M_{\mathcal{G}(Z) \mathcal{F}} f, f\right\rangle}{\|f\|^{2}}=k^{2} \cos 2 \theta \frac{\left\|f^{\|}+\tilde{B} f^{\perp}\right\|^{2}}{\left\|f^{\|}+f^{\perp}\right\|^{2}} \tag{9.75}
\end{equation*}
$$

By virtue of (9.68), the remaining part of the proof is devoted to get an upper bound for the modulus of the right hand side of the above equality. We introduce three further angles:

- $\varphi \in[0, \pi / 2]$ is the angle between $f^{\|}$and $f=f^{\|}+f^{\perp}$ (see Figure 9.4);

Fig. 9.4. $\varphi \in[0, \pi / 2]$ is the angle between $f^{\|}$and $f=f^{\|}+f^{\perp}$.

- φ^{\prime} is the angle between $f^{\|}$and $f^{\|}+\tilde{B} f^{\perp}$ (see Figure 9.5);

Fig. 9.5. φ^{\prime} is the angle between $f^{\|}$and $f^{\|}+\tilde{B} f^{\perp}$.

- $\psi \in[0, \pi / 2]$ is the angle between $f^{\|}$and V_{1}.

Fig. 9.6. $\psi \in[0, \pi / 2]$ is the angle between $f^{\|}$and V_{1}.

By (9.69) we have that $f^{\|} \perp \tilde{B} f^{\perp}$ so that $\varphi^{\prime} \in[0, \pi / 2]$. We claim that

$$
\theta \in\left[\psi-\varphi^{\prime}, \psi+\varphi^{\prime}\right]
$$

By simmetry, it sufficies to prove that $\theta \leq \psi+\varphi^{\prime}$, because by switching the role of ψ and θ (that is, switching $f^{\|}$with $f^{\|}+\tilde{B} f^{\perp}$, see Figure 9.5) the inequality $\psi \leq \varphi^{\prime}+\theta$ follows. Let h be the orthogonal projection of $f^{\|}$into V_{1} and denote by $\tilde{\theta}$ the angle between $f^{\|}+\tilde{B} f^{\perp}$ and h. Then, ψ is the angle between h and $f^{\|}, \tilde{\theta} \leq \psi+\varphi^{\prime}$, by virtue of the triangular inequality for angles in a three dimensional real space and $\theta \leq \tilde{\theta}$ because θ is the minimal angle between $f^{\|}+\tilde{B} f^{\perp}$ and a vector $\tilde{h} \in V_{1}$.

Keeping in mind Figure 9.4 and Figure 9.5, and by virtue of Lemma 9.8.2, we have

$$
\begin{equation*}
\frac{\tan \varphi^{\prime}}{\tan \varphi}=\frac{\left\|f^{\|}\right\| \tan \varphi^{\prime}}{\left\|f^{\|}\right\| \tan \varphi}=\frac{\left\|\tilde{B} f^{\perp}\right\|}{\left\|f^{\perp}\right\|} \leq \frac{1}{k} \tilde{\mu}_{1}(\mathcal{F}) \tag{9.76}
\end{equation*}
$$

By Lemma 9.8.3, Lemma 9.8.4 and the definition of ψ

$$
\begin{equation*}
\cos 2 \psi=\frac{\left\langle R_{\mathcal{G}} f^{\|}, f^{\|}\right\rangle}{\left\|f^{\|}\right\|^{2}} \leq \frac{\tilde{\mu_{1}}(\mathcal{G})}{d} \tag{9.77}
\end{equation*}
$$

By Figure 9.4 and Figure 9.5,

$$
\frac{\left\|f^{\|}+\tilde{B} f^{\perp}\right\|^{2}}{\left\|f^{\|}+f^{\perp}\right\|^{2}}=\frac{\frac{1}{\cos ^{2} \varphi^{\prime}}\left\|f^{\|}\right\|^{2}}{\frac{1}{\cos ^{2} \varphi}\left\|f^{\|}\right\|^{2}}=\frac{\cos ^{2} \varphi}{\cos ^{2} \varphi^{\prime}}
$$

In conclusion (see equation (9.75) and the observation following it), we have to maximize

$$
k^{2}|\cos 2 \theta| \frac{\left\|f^{\|}+\tilde{B} f^{\perp}\right\|^{2}}{\left\|f^{\|}+f^{\perp}\right\|^{2}}=k^{2}|\cos 2 \theta| \frac{\cos ^{2} \varphi}{\cos ^{2} \varphi^{\prime}}
$$

subject to the constraints:
(1) $\varphi, \varphi^{\prime}, \psi \in\left[0, \frac{\pi}{2}\right]$;
(2) $\theta \in\left[\psi-\phi^{\prime}, \psi+\varphi^{\prime}\right]$;
(3) $\beta=\frac{\tan \varphi^{\prime}}{\tan \varphi} \leq \frac{\tilde{\mu_{1}}(\mathcal{F})}{k}($ cf. (9.76));
(4) $\alpha=|\cos 2 \psi| \leq \frac{\tilde{\mu_{1}}(\mathcal{G})}{d}($ cf. (9.77)).

We distinguish two cases, namely

$$
0, \frac{\pi}{2} \notin\left[\psi-\varphi^{\prime}, \psi+\varphi^{\prime}\right] \Leftrightarrow \varphi^{\prime}<\min \left\{\psi, \frac{\pi}{2}-\psi\right\} \Leftrightarrow \varphi^{\prime}<\psi<\frac{\pi}{2}-\varphi^{\prime}
$$

(this condition ensures that $\cos 2 \psi<1$) and

$$
\varphi^{\prime} \geq \min \left\{\psi, \frac{\pi}{2}-\psi\right\}
$$

(now $\cos 2 \psi=1$ is possible).
Case I: $\varphi^{\prime}<\min \left\{\psi, \frac{\pi}{2}-\psi\right\}$.
First of all, note that since

$$
0<\psi-\varphi^{\prime} \leq \theta \leq \psi+\varphi^{\prime}<\frac{\pi}{2}
$$

we have

$$
\begin{aligned}
|\cos 2 \theta| & \leq \max \left\{\left|\cos 2\left(\psi+\varphi^{\prime}\right)\right|,\left|\cos 2\left(\psi-\varphi^{\prime}\right)\right|\right\} \\
& =\max \left\{\left|\cos 2 \psi \cos 2 \varphi^{\prime}-\sin 2 \psi \sin 2 \varphi^{\prime}\right|,\left|\cos 2 \psi \cos 2 \varphi^{\prime}+\sin 2 \psi \sin 2 \varphi^{\prime}\right|\right\} \\
& =* \begin{cases}\cos 2 \psi \cos 2 \varphi^{\prime}+\sin 2 \psi \sin 2 \varphi^{\prime} & \text { if } \cos 2 \psi \cos 2 \varphi^{\prime} \geq 0 \\
-\cos 2 \psi \cos 2 \varphi^{\prime}+\sin 2 \psi \sin 2 \varphi^{\prime} & \text { if } \cos 2 \psi \cos 2 \varphi^{\prime}<0\end{cases} \\
& =\left|\cos 2 \psi \cos 2 \varphi^{\prime}\right|+\sin 2 \psi \sin 2 \varphi^{\prime},
\end{aligned}
$$

where $=_{*}$ follows from $\sin 2 \psi \sin 2 \varphi^{\prime} \geq 0$. Therefore

$$
\begin{align*}
|\cos 2 \theta| \frac{\cos ^{2} \varphi}{\cos ^{2} \varphi^{\prime}} & \leq\left|\frac{\cos ^{2} \varphi}{\cos ^{2} \varphi^{\prime}} \cos 2 \varphi^{\prime} \cos 2 \psi\right|+\frac{\cos ^{2} \varphi}{\cos ^{2} \varphi^{\prime}} \sin 2 \psi \sin 2 \varphi^{\prime} \\
& =\frac{1}{2}\left|\left(1-\beta^{2}\right) \cos 2 \psi+\left(1+\beta^{2}\right) \cos 2 \psi \cos 2 \varphi\right|+\beta \sin 2 \psi \sin 2 \varphi \tag{9.78}
\end{align*}
$$

where $\beta=\frac{\tan \varphi^{\prime}}{\tan \varphi}$ as in (3), and the last equality follows from two elementary trigonometric identities, namely

$$
\frac{\cos ^{2} \varphi}{\cos ^{2} \varphi^{\prime}} \cos 2 \varphi^{\prime}=\frac{1}{2}\left[1-\beta^{2}+\left(1+\beta^{2}\right) \cos 2 \varphi\right]
$$

which has a long but elementary proof, left to the reader, and

$$
\frac{\cos ^{2} \varphi}{\cos ^{2} \varphi^{\prime}} \sin 2 \varphi^{\prime}=\frac{\frac{\sin 2 \varphi}{2 \tan \varphi}}{\frac{\sin 2 \varphi^{\prime}}{2 \tan \varphi^{\prime}}} \sin 2 \varphi^{\prime}=\frac{\frac{1}{\tan \varphi}}{\frac{1}{\tan \varphi^{\prime}}} \sin 2 \varphi=\beta \sin 2 \varphi
$$

Finally, the triangular inequality applied to (9.78) (recall that $|\beta|<1$ by (9.76)) yields

$$
\begin{aligned}
&|\cos 2 \theta| \frac{\cos ^{2} \varphi}{\cos ^{2} \varphi^{\prime}} \leq \frac{1}{2}\left(1-\beta^{2}\right)|\cos 2 \psi| \\
&+\frac{1}{2}\left(1+\beta^{2}\right)|\cos 2 \psi| \cdot|\cos 2 \varphi|+\frac{1}{2} \cdot 2 \beta \sin 2 \psi \cdot \sin 2 \varphi \\
& \leq \\
&+\frac{1}{2} \sqrt{\left(1+\beta^{2}\right)^{2}(\cos 2 \psi)^{2}+4 \beta^{2}(\sin 2 \psi)^{2}} \\
&\left(1-\beta^{2}\right)|\cos 2 \psi| \\
&(\text { by }(4))= \frac{1}{2}\left(1-\beta^{2}\right) \alpha+\frac{1}{2} \sqrt{\left(1-\beta^{2}\right)^{2} \alpha^{2}+4 \beta^{2}} \\
&= \Phi(\alpha, \beta)
\end{aligned}
$$

where $\leq_{* *}$ follows by applying the Cauchy-Schwarz inequality. We then conclude by invoking Lemma 9.8.5.(ii) and (iii), and keeping in mind the inequalities in (3) and (4).

Case II: $\varphi^{\prime} \geq \min \left\{\psi, \frac{\pi}{2}-\psi\right\}$.
We now have $\psi-\varphi^{\prime} \leq 0$ or $\psi+\varphi^{\prime} \geq \frac{\pi}{2}$ so that

$$
\begin{align*}
|\cos 2 \theta| \frac{\cos ^{2} \varphi}{\cos ^{2} \varphi^{\prime}} & \leq \frac{\cos ^{2} \varphi}{\cos ^{2} \varphi^{\prime}} \\
& =\frac{\tan ^{2} \varphi^{\prime}}{\tan ^{2} \varphi}+\left(1-\frac{\tan ^{2} \varphi^{\prime}}{\tan ^{2} \varphi}\right) \cos ^{2} \varphi \tag{9.79}\\
(\text { by }(3)) & =\beta^{2}+\left(1-\beta^{2}\right) \cos ^{2} \varphi
\end{align*}
$$

where the first equality is an elementary trigonometric identity, whose proof is left to the reader. Now, since $\varphi^{\prime} \geq \min \left\{\psi, \frac{\pi}{2}-\psi\right\}$, we have

$$
\left\{\begin{array} { l }
{ 2 \varphi ^ { \prime } \geq 2 \psi } \\
{ \text { or } } \\
{ 2 \varphi ^ { \prime } \geq \pi - 2 \psi }
\end{array} \Rightarrow \left\{\begin{array}{l}
\cos 2 \varphi^{\prime} \leq \cos 2 \psi \\
\text { or } \\
\cos 2 \varphi^{\prime} \leq-\cos 2 \psi
\end{array} \quad \Rightarrow \cos 2 \varphi^{\prime} \leq|\cos 2 \psi|=\alpha\right.\right.
$$

Since

$$
\cos 2 \varphi^{\prime}=\frac{\left(1+\beta^{2}\right) \cos ^{2} \varphi-\beta^{2}}{\left(1-\beta^{2}\right) \cos ^{2} \varphi+\beta^{2}}
$$

(another trigonometric identity whose proof is left as an exercise) we get

$$
\frac{\left(1+\beta^{2}\right) \cos ^{2} \varphi-\beta^{2}}{\left(1-\beta^{2}\right) \cos ^{2} \varphi+\beta^{2}} \leq \alpha
$$

which is equivalent to

$$
\cos ^{2} \varphi \leq \frac{\beta^{2}(1+\alpha)}{\beta^{2}(1+\alpha)+1-\alpha} .
$$

Applying this inequality to (9.79) we get

$$
\begin{aligned}
|\cos 2 \theta| \frac{\cos ^{2} \varphi}{\cos ^{2} \varphi^{\prime}} & \leq \beta^{2}+\left(1-\beta^{2}\right) \frac{\beta^{2}(1+\alpha)}{\beta^{2}(1+\alpha)+1-\alpha} \\
& =\frac{2 \beta^{2}}{1-\alpha+\beta^{2}(1+\alpha)} \\
& \leq \Phi(\alpha, \beta),
\end{aligned}
$$

where the last inequality follows from Lemma 9.8.5.(vii). The statement then follows, as in the previous case, from Lemma 9.8.5.(ii) and (iii), together with the inequalities in (3) and (4).

9.9 Explicit construction of expanders via the Zig-Zag product

In this section we present the basic recursive construction that uses the estimates in Theorem 9.8.7 to construct a family of expander graphs. Let $\mathcal{G}=(X, E, r)$ be a finite connected graph. We define the non-oriented square of \mathcal{G} as the graph $\mathcal{G}^{2}=(X, F, s)$ with the same vertex set of \mathcal{G}, edge set defined as
$F=\left\{\left\{x, e_{1}, y, e_{2}, z\right\}: x, y, z \in X, e_{1}, e_{2} \in E, r\left(e_{1}\right)=\{x, y\}, r\left(e_{2}\right)=\{y, z\}\right\}$,
where $\left\{x, e_{1}, y, e_{2}, z\right\}$ should be thought of as the pair of paths $\left(x, e_{1}, y, e_{2}, z\right)$ and $\left(z, e_{2}, y, e_{1}, x\right)$, and $s\left(\left\{x, e_{1}, y, e_{2}, z\right\}\right)=\{x, z\}$ for all $\left\{x, e_{1}, y, e_{2}, z\right\} \in F$ (note that x, y, z are not necessarily distinct). In other words, F is the set of all (non-oriented) paths of length two in \mathcal{G}.

Clearly, if A is the adjacency matrix of \mathcal{G}, then A^{2} is the adjacency matrix of \mathcal{G}^{2} (see Proposition 8.1.6). Moreover, it is immediate to see that \mathcal{G}^{2} is connected if and only if \mathcal{G} is not bipartite: the reader is invited to find a direct proof of this fact and, in the case \mathcal{G} is k-regular, to deduce it from Proposition 8.3.4 and Proposition 8.1.5.
Finally, if \mathcal{G} is k-regular we clearly have

$$
\begin{equation*}
\tilde{\mu_{1}}\left(\mathcal{G}^{2}\right)=\tilde{\mu_{1}}(\mathcal{G})^{2} . \tag{9.80}
\end{equation*}
$$

Theorem 9.9.1 Let \mathcal{G} be a d-regular graph with d^{4} vertices, $d \geq 2$ and suppose that

$$
\tilde{\mu_{1}}(\mathcal{G}) \leq \frac{d}{4} .
$$

Set

$$
\mathcal{G}_{1}=\mathcal{G}^{2} \quad \text { and } \quad \mathcal{G}_{n+1}=\mathcal{G}_{n}^{2}(\mathbb{Z}) \mathcal{G} \text { for } n \geq 1
$$

Then \mathcal{G}_{n} is a d^{2}-regular graph with $d^{4 n}$ vertices and

$$
\begin{equation*}
\tilde{\mu_{1}}\left(\mathcal{G}_{n}\right) \leq \frac{d^{2}}{2} \tag{9.81}
\end{equation*}
$$

In particular, the sequence $\left(\mathcal{G}_{n}\right)_{n \in \mathbb{N}}$ is a family of expanders.
Proof By construction, \mathcal{G}_{1} has d^{4} vertices, is regular of degree d^{2}, and satisfies $\tilde{\mu_{1}}\left(\mathcal{G}_{1}\right) \leq \frac{d^{2}}{16}($ by $(9.80))$. We proceed by induction. Suppose that \mathcal{G}_{n} is a d^{2}-regular graph with $d^{4 n}$ vertices and (9.81) holds. Then \mathcal{G}_{n}^{2} has $d^{4 n}$ vertices, is regular of degree d^{4}, and satisfies $\tilde{\mu_{1}}\left(\mathcal{G}_{n}^{2}\right) \leq \frac{d^{4}}{4}$. Therefore \mathcal{G}_{n+1} has $d^{4 n} \cdot d^{4}=d^{4(n+1)}$ vertices, is regular of degree d^{2} (by Definition 8.13.1), and, by Theorem 9.8.7 and Lemma 9.8.5.(v),

$$
\tilde{\mu_{1}}\left(\mathcal{G}_{n+1}\right) \leq d^{2}\left(\frac{1}{4}+\frac{1}{4}\right)=\frac{d^{2}}{2}
$$

The sequence $\left(\mathcal{G}_{n}\right)_{n \in \mathbb{N}}$ then forms a family of expanders (cf. Definition 9.5.3).

Example 9.9.2 Consider the graph $\mathrm{LD}(q, r)$ introduced in Section 9.7, where $q=p^{t}$ with p prime, and t, r positive integers. We use the notation in the proof of Theorem 9.7.3. Recall (cf. (9.67)) that the eigenvalues of $\mathrm{LD}(q, r)$ are given by

$$
\mu_{a}=\sum_{\substack{x \in \mathbb{F}_{q} \\ p_{a}(x)=0}} \sum_{y \in \mathbb{F}_{q}} \omega^{L\left(y p_{a}(x)\right)},
$$

$a \in \mathbb{F}_{q}^{r+1}$. Now, for $a \neq(0,0, \ldots, 0)$, the polynomial $p_{a}(x)$ has at most r roots in \mathbb{F}_{q} and therefore (cf. the end of the proof of Theorem 9.7.3)

$$
\begin{equation*}
\left|\mu_{a}\right| \leq q r . \tag{9.82}
\end{equation*}
$$

Then, for $r=7$ and $q \geq 4 r$ the graph $\mathcal{G}=\mathrm{LD}(q, 7)$ satisfies the hypotheses of Theorem 9.9.1. Indeed, \mathcal{G} is d-regular of degree $d=q^{2}$, the number of its vertices is $q^{r+1}=q^{8}=d^{4}$, and (cf. (9.82))

$$
\tilde{\mu_{1}}(\mathcal{G}) \leq r \sqrt{d} \leq \frac{d}{4}
$$

Part IV

Harmonic Analysis on Finite Linear Groups

Representation theory of finite groups

In this chapter we give a concise but quite detailed and complete exposition of the basic representation theory of finite groups. This may be considered as a noncommutative analogue of Chapter 2. Indeed, we emphasize the harmonic analytic point of view, focusing on unitary representations and Fourier transforms. Our exposition is based on our previous books [29], [33]. We also refer to the useful monographs by: Alperin and Bell [12], Diaconis [52], Fulton and Harris [62], Naimark and Stern [119], Serre [145], Simon [148], and Sternberg [154].

10.1 Representations, irreducibility and equivalence

Let G be a finite group and V a finite dimensional vector space over \mathbb{C}. We denote by $\operatorname{End}(V)$ the algebra (see Section 10.3) of all linear maps $T: V \rightarrow$ V and by $\mathrm{GL}(V)$ the general linear group of V consisting of all invertible elements in $\operatorname{End}(V)$.

Definition 10.1.1 A representation of G over V is a homomorphism $\rho: G \rightarrow$ $\mathrm{GL}(V)$. In other words, we have:

- $\rho(g): V \rightarrow V$ is linear and invertible for all $g \in G$;
- $\rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \rho\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$;
- $\rho\left(g^{-1}\right)=\rho(g)^{-1}$ for all $g \in G$;
- $\rho\left(1_{G}\right)=I_{V}$ where 1_{G} is the identity element in G and $I_{V}: V \rightarrow V$ is the identity map (and thus the identity element in $\mathrm{GL}(V)$).

We shall denote a representation by a pair (ρ, V). Note also that ρ may be seen as an action $(g, v) \mapsto \rho(g) v$ of G on V, where $\rho(g)$ is an invertible linear map for all $g \in G$. Denoting by n the dimension $\operatorname{dim}(V)$ of V, since $\mathrm{GL}(V)$ is isomorphic to $\mathrm{GL}(n, \mathbb{C})$, the group of invertible n-by- n complex
matrices, we can regard a representation of G as a group homomorphism $\rho: G \rightarrow \operatorname{GL}(n, \mathbb{C})$. Then n is the dimension or degree of ρ and it will be usually denoted by d_{ρ}.
The kernel of the representation (ρ, V) is $\operatorname{Ker} \rho=\left\{g \in G: \rho(g)=I_{V}\right\}$. The representation (ρ, V) is called faithful if $\operatorname{Ker} \rho=\left\{1_{G}\right\}$. In other words, ρ is faithful if and only if it is an isomorphism between G and a subgroup of GL (V).

Let (ρ, V) be a representation of G and suppose that $W \leq V$ is a subspace. We say that W is G-invariant (or ρ-invariant) if $\rho(g) w \in W$ for all $g \in G$ and $w \in W$. Then, denoting by $\rho_{W}(g)$ the restriction of $\rho(g)$ to the subspace W, that is, $\rho_{W}(g) w=\rho(g) w$ for all $g \in G$ and $w \in W$, we say that $\left(\rho_{W}, W\right)$ is the restriction of ρ to the (invariant) subspace W and call it a sub-representation of (ρ, V). We also say that ρ_{W} is contained in ρ and write $\left(\rho_{W}, W\right) \preceq(\rho, V)$, or simply $\rho_{W} \preceq \rho$. One also says that an element $v \in V$ is a G-invariant vector, provided $\rho(g) v=v$ for all $g \in G$. It is clear that the set of G-invariant vector is a G-invariant subspace $V^{G} \leq V$, which we call the subspace of G invariant vectors. Clearly, every representation is a sub-representation of itself.
Let $K \leq G$ be a subgroup of G. Then setting $\left[\operatorname{Res}_{K}^{G} \rho\right](k)=\rho(k)$ for all $k \in K$, yields a K-representation $\left(\operatorname{Res}_{K}^{G} \rho, V\right)$. This is called the restriction of ρ to the subgroup K.
The representation (ρ, V) is called irreducible if the only G-invariant subspaces are trivial: $W \leq V$ and $\rho(g) W \leq W$ for all $g \in G$ implies that either $W=\{0\}$ or $W=V$.
The direct sum of given G-representations $\left(\rho_{j}, W_{j}\right), j=1,2, \ldots, k$, is the G-representation (ρ, V) where $V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}$ is the direct sum of the corresponding spaces, and $\rho=\rho_{1} \oplus \rho_{2} \oplus \cdots \oplus \rho_{k}$ is defined by setting

$$
\rho(g) v=\rho_{1}(g) w_{1}+\rho_{2}(g) w_{2}+\cdots+\rho_{k}(g) w_{k}
$$

for all $v=w_{1}+w_{2}+\cdots+w_{k} \in V, w_{i} \in W_{i}$, and $g \in G$. Conversely, if (ρ, V) is a G-representation and

$$
\begin{equation*}
V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k} \tag{10.1}
\end{equation*}
$$

is a direct sum decomposition into G-invariant subspaces, then $\rho=\rho_{1} \oplus \rho_{2} \oplus$ $\cdots \oplus \rho_{k}$, where $\rho_{j}=\rho_{W_{j}}, j=1,2, \ldots, k$; we then say that (10.1) constitutes a (direct sum) decomposition of ρ.
Let (ρ, V) and (θ, W) be two representations of the same group G. Suppose that there exists a linear isomorphism $T: V \rightarrow W$ such that, for all $g \in G$,

$$
\begin{equation*}
\theta(g) T=T \rho(g) . \tag{10.2}
\end{equation*}
$$

Then one says that the two representations are equivalent and we write $\rho \sim \theta$. Note that \sim is an equivalence relation and that two equivalent representations have the same degree. We write $\rho \nsim \theta$ to denote that ρ and θ are not equivalent. We will also use the notation $V \cong W$ to indicate that the representations of G on V and W are equivalent. However, in expressions as (10.1) we prefer to use equality to emphasize that we have a concrete decomposition on V into direct sum of subspaces.
Suppose now that the complex vector space V is unitary, that is, it is endowed with an inner product that we shall denote by $\langle\cdot, \cdot\rangle_{V}$ (with associated norm $\|\cdot\|_{V}$); the subscript will be usually omitted when the space V is clear from the context. We recall (see [93, 91, 75]) that the adjoint of a linear operator $T: W \rightarrow V$ between two unitary spaces W, V is the unique linear operator $T^{*}: V \rightarrow W$ such that $\langle T w, v\rangle_{V}=\left\langle w, T^{*} v\right\rangle_{W}$, for all $w \in W, v \in V$. Moreover, an endomorphism $U: V \rightarrow V$ is unitary if $U^{*} U=I=U U^{*}$ and this is equivalent to the condition $\left\langle U v_{1}, U v_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle$ for all $v_{1}, v_{2} \in V$. Moreover, if U is a unitary matrix then $U^{*}=\bar{U}^{T}$, the conjugate transpose of U.

A representation (ρ, V) is called unitary if $\rho(g)$ is unitary for all $g \in G$, that is, $\left\langle\rho(g) v_{1}, \rho(g) v_{2}\right\rangle=\langle v, w\rangle$ for all and $v_{1}, v_{2} \in V$. We shall then say that the inner product $\langle\cdot, \cdot\rangle$ is ρ-invariant (or G-invariant).

Exercise 10.1.2 Show that every one-dimensional representation is unitary. Hint: Show that every inner product on \mathbb{C} is of the form $\left\langle z_{1}, z_{2}\right\rangle=\alpha z_{1} \overline{z_{2}}$, where $\alpha>0$, for all $z_{1}, z_{2} \in \mathbb{C}$.

Given an arbitrary representation (ρ, V) of a finite group G it is always possible to endow V with an inner product making ρ unitary. If $\langle\cdot, \cdot\rangle$ is an arbitrary inner product on V, we define, for all v_{1} and v_{2} in V,

$$
\begin{equation*}
(v, w)=\sum_{g \in G}\langle\rho(g) v, \rho(g) w\rangle . \tag{10.3}
\end{equation*}
$$

Proposition 10.1.3 The representation (ρ, V) is unitary with respect to the scalar product (\cdot, \cdot). In particular, every representation of G is equivalent to a unitary representation.

Proof First of all, it is easy to see that (10.3) defines an inner product on
V. Moreover, for all $v_{1}, v_{2} \in V$ and $h \in G$ we have

$$
\begin{aligned}
\left(\rho(h) v_{1}, \rho(h) v_{2}\right) & =\sum_{g \in G}\left\langle\rho(g) \rho(h) v_{1}, \rho(g) \rho(h) v_{2}\right\rangle \\
& =\sum_{g \in G}\left\langle\rho(g h) v_{1}, \rho(g h) v_{2}\right\rangle \\
(t=g h) & =\sum_{t \in G}\left\langle\rho(t) v_{1}, \rho(t) v_{2}\right\rangle \\
& =(v, w) .
\end{aligned}
$$

This shows that the inner product (\cdot, \cdot) is G-invariant.
We are mostly interested in equivalence classes of representations, thus we might confine ourselves to unitary representations. Thus, from now on, given a G-representation (ρ, V), it is understood that V is a finite dimensional (complex) vector space endowed with a G-invariant inner product and that $\rho(g)$ is unitary for all $g \in G$: note that, under these assumptions, we thus have

$$
\begin{equation*}
\rho\left(g^{-1}\right)=\rho(g)^{-1}=\rho(g)^{*} \tag{10.4}
\end{equation*}
$$

for all $g \in G$. Also, we shall use the polar decomposition of a linear operator (see any book of linear algebra, for instance [75]) in the following form: if $T: V \rightarrow W$ is a linear invertible map between two unitary spaces V and W then there exist a unique positive, self-adjoint operator $|T|: V \rightarrow V$ (that is, $\langle | T|v, v\rangle_{V}>0$ and $\langle | T\left|v_{1}, v_{2}\right\rangle_{V}=\left\langle v_{1},\right| T\left|v_{2}\right\rangle_{V}$ for all $\left.v, v_{1}, v_{2} \in V, v \neq 0\right)$ and a unique unitary isomorphism $U: V \rightarrow W$ such that $T=U|T|$. We also recall that $|T|$ is the unique positive square root of the positive operator $T^{*} T$: this means that $|T|^{2}=T^{*} T$ and $|T|$ is positive.

Lemma 10.1.4 Let (ρ, V) and (θ, W) be two unitary representations of a finite group G and suppose that they are equivalent. Then they are also unitarily equivalent, that is, there exists a unitary isomorphism $U: V \rightarrow W$ such that $\rho(g)=U^{-1} \theta(g) U$ for all $g \in G$.

Proof Let $g \in G$. Since ρ and θ are equivalent, we write (10.2) in the form

$$
\begin{equation*}
\rho(g)=T^{-1} \theta(g) T . \tag{10.5}
\end{equation*}
$$

Taking adjoints, using (10.4), and replacing g by g^{-1}, we have

$$
\rho(g)=T^{*} \theta(g)\left(T^{*}\right)^{-1} .
$$

From (10.5) we then deduce that $T^{*} T \rho(g)\left(T^{*} T\right)^{-1}=T^{*} \theta(g)\left(T^{*}\right)^{-1}=\rho(g)$,
equivalently,

$$
\begin{equation*}
\rho(g)^{-1}\left(T^{*} T\right) \rho(g)=T^{*} T . \tag{10.6}
\end{equation*}
$$

Now we use the polar decomposition of T : since $|T|^{2}=T^{*} T$ we have, $\rho(g)^{-1}|T|^{2} \rho(g)=|T|^{2}$, that is, $\left[\rho(g)^{-1}|T| \rho(g)\right]^{2}=|T|^{2}$, and $\rho(g)^{-1}|T| \rho(g)$ is positive:

$$
\left\langle\rho(g)^{-1}\right| T|\rho(g) v, v\rangle=\langle | T|\rho(g) v, \rho(g) v\rangle>0
$$

for all $v \in V, v \neq 0$. Since $\rho(g)^{-1}|T| \rho(g)$ is the square root of the left hand side of (10.6), by the uniqueness of the positive square root we have $\rho(g)^{-1}|T| \rho(g)=|T|$, that we write in the form

$$
\begin{equation*}
|T| \rho(g)|T|^{-1}=\rho(g) . \tag{10.7}
\end{equation*}
$$

Then, if $T=U|T|$ is the polar decomposition of T, we have

$$
\begin{aligned}
U^{-1} \theta(g) U & =|T| T^{-1} \theta(g) T|T|^{-1} \\
\text { (by }(10.5)) & =|T| \rho(g)|T|^{-1} \\
\text { (by }(10.7)) & =\rho(g)
\end{aligned}
$$

This shows that ρ is unitarily equivalent to θ.
The assumption that the representation ρ is unitary has a simple but fundamental consequence: if W is a G-invariant subspace of V then $W^{\perp}=$ $\{v \in V:\langle v, w\rangle=0, \forall w \in W\}$, the orthogonal complement of W, is also G invariant. Indeed, if $v \in W^{\perp}$ and $g \in G$ one has $\langle\rho(g) v, w\rangle=\left\langle v, \rho\left(g^{-1}\right) w\right\rangle=$ 0 for all $w \in W$. Moreover, V can be expressed as the direct sum of the orthogonal subspaces W and W^{\perp}, namely $V=W \oplus W^{\perp}$ and $\rho=\rho_{W} \oplus \rho_{W^{\perp}}$.

Lemma 10.1.5 Every representation of G is the orthogonal direct sum of a finite number of irreducible representations.

Proof Let (ρ, V) be a representation of G. If ρ is irreducible there is nothing to prove. If not, as above we get a nontrivial orthogonal decomposition into G-invariant subspaces of the form $V=W \oplus W^{\perp}$. Then the proof follows by an easy inductive argument on the dimension of V, because $\operatorname{dim} W<\operatorname{dim} V$ and $\operatorname{dim} W^{\perp}<\operatorname{dim} V$.

Definition 10.1.6 (Dual) Let G be a finite group. We denote by \widehat{G}, called the dual of G, a complete set of irreducible pairwise non-equivalent (unitary) representations of G (in other words, \widehat{G} contains exactly one element in each equivalence class of irreducible G-representations).

We will also use the following notation: if $\rho, \theta \in \widehat{G}$ then

$$
\delta_{\rho, \theta}= \begin{cases}1 & \text { if } \rho=\theta \\ 0 & \text { if } \rho \neq \theta,\end{cases}
$$

(note that if $\rho, \theta \in \widehat{G}$ then $\rho \nsim \theta$ is the same thing as $\rho \neq \theta$). We end this section by illustrating some fundamental examples.

Example 10.1.7 For any finite group G we define the trivial representation (ι, \mathbb{C}) as the one-dimensional representation of G defined by setting $\iota(g)=$ $\mathrm{Id}_{\mathbb{C}}$ for all $g \in G$. As it is one-dimensional, it is also unitary (cf. Exercise 10.1.2) and irreducible.

Example 10.1.8 Let G be a finite group. Denote by $L(G)=\{f: G \rightarrow \mathbb{C}\}$ the space of all complex valued functions on G; it is a vector space with respect to the pointwise linear combinations: $\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)(g)=\alpha_{1} f_{1}(g)+$ $\alpha_{2} f_{2}(g)$ for all $f_{1}, f_{2} \in L(G), \alpha_{1}, \alpha_{2} \in \mathbb{C}$ and $g \in G$. Introduce in $L(G)$ the inner product

$$
\begin{equation*}
\left\langle f_{1}, f_{2}\right\rangle=\sum_{g \in G} f_{1}(g) \overline{f_{2}(g)} \tag{10.8}
\end{equation*}
$$

for all $f_{1}, f_{2} \in L(G)$. Then the representation $\left(\lambda_{G}, L(G)\right)$ defined by

$$
\begin{equation*}
\left[\lambda_{G}(g) f\right](h)=f\left(g^{-1} h\right) \tag{10.9}
\end{equation*}
$$

for all $g, h \in G$ and $f \in L(G)$, is called the left regular representation of G. It is easy to show that it is indeed a representation: if $g_{1}, g_{2}, g \in G$ and $f \in L(G)$ then we have

$$
\begin{aligned}
{\left[\lambda_{G}\left(g_{1}\right) \lambda_{G}\left(g_{2}\right) f\right](g) } & =\left\{\lambda_{G}\left(g_{1}\right)\left[\lambda_{G}\left(g_{2}\right) f\right]\right\}(g) \\
& =\left[\lambda_{G}\left(g_{2}\right) f\right]\left(g_{1}^{-1} g\right) \\
& =f\left(g_{2}^{-1} g_{1}^{-1} g\right) \\
& =\left[\lambda_{G}\left(g_{1} g_{2}\right) f\right](g),
\end{aligned}
$$

that is, $\lambda_{G}\left(g_{1}\right) \lambda_{G}\left(g_{2}\right)=\lambda_{G}\left(g_{1} g_{2}\right)$. Moreover, λ_{G} is unitary: if $g \in G$ and $f_{1}, f_{2} \in L(G)$ then we have

$$
\begin{aligned}
\left\langle\lambda_{G}(g) f_{1}, \lambda_{G}(g) f_{2}\right\rangle & =\sum_{h \in G} f_{1}\left(g^{-1} h\right) \overline{f_{2}\left(g^{-1} h\right)} \\
\left(t=g^{-1} h\right) & =\sum_{t \in G} f_{1}(t) \overline{f_{2}(t)} \\
& =\left\langle f_{1}, f_{2}\right\rangle .
\end{aligned}
$$

Analogously, the representation $\left(\rho_{G}, L(G)\right)$ defined by

$$
\begin{equation*}
\left[\rho_{G}(g) f\right](h)=f(h g) \tag{10.10}
\end{equation*}
$$

for all $g, h \in G$ and $f \in L(G)$, is again a unitary representation, called the right regular representation. Note that these two representations commute: $\lambda_{G}(g) \rho_{G}(h)=\rho_{G}(h) \lambda_{G}(g)$ for all $g, h \in G$.

As in Section 2.1, we denote by $\delta_{g} \in L(G)$ the Dirac function at $g \in G$, defined by

$$
\delta_{g}(h)= \begin{cases}1 & \text { if } h=g \\ 0 & \text { otherwise }\end{cases}
$$

It is clear that $\left\{\delta_{g}: g \in G\right\}$ is an orthonormal basis in $L(G)$. Note also that $\lambda_{G}(h) \delta_{g}=\delta_{h g}$, for all $h, g \in G$ so that we may represent every $f \in L(G)$ in the form

$$
\begin{equation*}
f=\sum_{g \in G} f(g) \delta_{g}=\sum_{g \in G} f(g) \lambda_{G}(g) \delta_{1_{G}} \tag{10.11}
\end{equation*}
$$

Remark 10.1.9 In many books, the inner product (10.8) is normalized, that is $\left\langle f_{1}, f_{2}\right\rangle_{L(G)}=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) \overline{f_{2}(g)}$ and this changes many formulæ given in the following chapters by a factor of $1 /|G|$. Our choice makes the Dirac functions an orthonormal basis. The normalized scalar product comes from the theory of compact groups, where the Haar measure is normalized in order to be a probability measure; see the monographs by Bump [23] and Simon [148].

Example 10.1.10 Let $G=S_{n}$ be the symmetric group of degree n, that is, the group of all permutations on n elements. The sign representation is the one-dimensional representation $(\varepsilon, \mathbb{C})$ defined by setting $\varepsilon(g)=(-1)^{\operatorname{sign}(g)} \operatorname{Id}_{\mathbb{C}}$, where $\operatorname{sign}(g)$, the sign of the permutation $g \in S_{n}$, is defined to be 1 if g is an even permutation (that is, g is the product of an even number of transpositions, equivalently $g \in A_{n}$, the alternating group), and -1 if g is an odd permutation (that is, $g \in S_{n} \backslash A_{n}$). As the map sign: $G \rightarrow S_{n} / A_{n} \equiv C_{2}$ is a group homomorphism, we have $\varepsilon\left(g_{1} g_{2}\right)=\varepsilon\left(g_{1}\right) \varepsilon\left(g_{2}\right)$ for all $g_{1}, g_{2} \in S_{n}$, so that ε is indeed a representation. As it is one-dimensional, it is also unitary (cf. Exercise 10.1.2) and irreducible.

Example 10.1.11 Let A be an Abelian group. Then its characters (see Section 2.3) are unitary representations of A and its dual \widehat{A} is itself a group (cf. Definition 2.3.1; see also Corollary 10.2.7 and Example 10.2.27).

10.2 Schur's lemma and the orthogonality relations

Given two finite dimensional vector spaces V and W, recall that $\operatorname{Hom}(V, W)$ (respectively, $\operatorname{End}(V)$) denotes the vector space of all linear maps $T: V \rightarrow W$ (respectively, $T: V \rightarrow V)$. Let G be a finite group and suppose that (ρ, V) and (θ, W) are two representations of G.

Definition 10.2.1 One says that $L \in \operatorname{Hom}(V, W)$ intertwines ρ and θ if

$$
L \rho(g)=\theta(g) L
$$

for all $g \in G$. We will denote by $\operatorname{Hom}_{G}(V, W)\left(\right.$ or $\left.\operatorname{Hom}_{G}(\rho, \theta)\right)$ the space of all such intertwiners; it is called the commutant of ρ and θ. When $W=V$ and $\theta=\rho$ it is denoted by $\operatorname{End}_{G}(V)\left(\operatorname{or~}_{\operatorname{End}}^{G}(\rho)\right)$, and it is simply called the commutant of ρ.

We begin with an elementary but useful property.
Proposition 10.2.2 A linear map $L: V \rightarrow W$ belongs to $\operatorname{Hom}_{G}(V, W)$ if and only if L^{*} belongs to $\operatorname{Hom}_{G}(W, V)$.

Proof For all $g \in G$ we have

$$
L^{*} \theta(g)=L^{*} \theta\left(g^{-1}\right)^{*}=\left(\theta\left(g^{-1}\right) L\right)^{*} \text { and } \rho(g) L^{*}=\rho\left(g^{-1}\right)^{*} L^{*}=\left(L \rho\left(g^{-1}\right)\right)^{*}
$$ so that $L^{*} \theta(g)=\rho(g) L^{*}$ if and only if $\theta\left(g^{-1}\right) L=L \rho\left(g^{-1}\right)$.

The map $L \rightarrow L^{*}$ is an antilinear isomorphism between $\operatorname{Hom}_{G}(V, W)$ and $\operatorname{Hom}_{G}(W, V)$: indeed, $\left(\alpha T_{1}+\beta T_{2}\right)^{*}=\bar{\alpha} T_{1}^{*}+\bar{\beta} T_{2}^{*}$, for $\alpha, \beta \in \mathbb{C}, T_{1}, T_{2} \in$ $\operatorname{Hom}_{G}(V, W)$.

We now illustrate the fundamental results that relate the notion of reducibility of a representation with the existence of intertwiners.

Lemma 10.2.3 (Schur) Let (ρ, V) and (θ, W) be two irreducible representations of G. If $L \in \operatorname{Hom}_{G}(V, W)$ then either L is the zero homomorphism, or it is an isomorphism.

Proof Consider the kernel $\operatorname{Ker} L=\{v \in V: L v=0\} \leq V$ and the range $\operatorname{Ran} L=\{L v: v \in V\} \leq W$ of L. If L intertwines ρ and θ then $\operatorname{Ker} L$ and $\operatorname{Ran} L$ are ρ - and θ-invariant, respectively:

$$
v \in \operatorname{Ker} L \Rightarrow L v=0 \Rightarrow L \rho(g) v=\theta(g) L v=0 \Rightarrow \rho(g) v \in \operatorname{Ker} L
$$

and

$$
w \in \operatorname{Ran} L \Rightarrow \exists v \in V: w=L v \Rightarrow \theta(g) w=L \rho(g) v \in \operatorname{Ran} L
$$

By irreducibility, either $\operatorname{Ker} L=V$ (and necessarily $\operatorname{Ran} L=\{0\}$) or $\operatorname{Ker} L=$ $\{0\}$ (and necessarily $\operatorname{Ran} L=W$). In the first case L vanishes, in the second case it is an isomorphism.

Corollary 10.2.4 Let (ρ, V) be an irreducible representation of G and suppose that $L \in \operatorname{End}_{G}(V)$ (that is, L intertwines ρ with itself: $L \rho(g)=\rho(g) L$ for all $g \in G)$. Then L is a multiple of the identity: there exists $\lambda \in \mathbb{C}$ such that $L=\lambda I_{V}$.

Proof Let λ be an eigenvalue of L (which exists because V is a complex vector space and \mathbb{C} is algebraically closed). Then $\left(L-\lambda I_{V}\right) \in \operatorname{End}_{G}(V)$ and, by Schur's lemma, it is either an isomorphism or the zero homomorphism. But, by definition of an eigenvalue, it cannot be invertible, and therefore necessarily $L=\lambda I_{V}$.

The last corollary may be expressed in the form: if V is G-irreducible then

$$
\operatorname{End}_{G}(V)=\left\{\lambda I_{V}: \lambda \in \mathbb{C}\right\} \equiv \mathbb{C} I_{V}
$$

Corollary 10.2.5 Suppose that (ρ, V) and (θ, W) are irreducible equivalent G-representations. Then $\operatorname{dimHom}_{G}(V, W)=1$

Proof Let $T_{1}, T_{2} \in \operatorname{Hom}_{G}(V, W) \backslash\{0\}$. Then, by Proposition 10.2.2 $T_{2}^{*} T_{1} \in$ $\operatorname{End}_{G}(V)$ so that, by Corollary 10.2.4, there exists $\lambda \in \mathbb{C}$ such that $T_{2}^{*} T_{1}=$ λI_{V}, equivalently, $T_{1}=\lambda T_{2}$.

Corollary 10.2.6 Suppose that (ρ, V) and (η, U) are G-representations. Then $\operatorname{Hom}_{G}(V, U)$ is nontrivial if and only if ρ and η contain a common isomorphic irreducible G-representation.

Proof Suppose that $T \in \operatorname{Hom}_{G}(V, U)$ is nontrivial. Then $(\operatorname{Ker} T)^{\perp} \leq V$ is nontrivial, ρ-invariant, and therefore it contains an irreducible representation $W \leq V$ (recall Lemma 10.1.5). Clearly, $\left.T\right|_{W}$ is an isomorphism intertwining W and $T(W) \leq U$. The proof of the converse is left as an exercise (see also Exercise 10.6.9).

Corollary 10.2.7 Let G be a (finite) Abelian group. A representation (ρ, V) of G is irreducible if and only if it is one dimensional (so that it is a character).

Proof Let us use multiplicative notation for G. Then, for all $g, h \in G$ we
have $\rho(g) \rho(h)=\rho(h) \rho(g)$, so that $\rho(g) \in \operatorname{End}_{G}(\rho)$. By Corollary 10.2.4, there exists a function $\chi: G \rightarrow \mathbb{C}$ such that $\rho(g)=\chi(g) I_{V}, \forall g \in G$. Then every subspace of V is ρ-invariant so that ρ is irreducible if and only if $\operatorname{dim} V=1$. We leave it to the reader to check that χ is indeed a character.

Exercise 10.2.8 Show that if $\rho \in \widehat{G}$ and g is in the center $Z(G)=\{z \in G$: $z h=h z$ for all $h \in G\}$ of G, then there exists $\lambda \in \mathbb{C}$ such that $\rho(g)=\lambda I_{V}$.

Exercise 10.2.9 (Converse to Schur's lemma) Suppose that the commutant of a G-representation (ρ, V) is trivial, that is, $\operatorname{End}_{G}(V)=\mathbb{C} I_{V}$. Show that ρ is irreducible (see also Corollary 10.6.4).

Let (ρ, V) be a representation of G. Given $v, w \in V$ the element $u_{v, w}^{\rho} \in$ $L(G)$ defined by $u_{v, w}^{\rho}(g)=\langle\rho(g) w, v\rangle$ for all $g \in G$, is called a (matrix) coefficient of the representation ρ; we will omit the superscript " ρ " when the representation ρ is clear from the context. If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthonormal basis for V, then $\rho(g)$, viewed as an n-by- n matrix, coincides with the matrix $\left(u_{v_{i}, v_{j}}^{\rho}(g)\right)_{i, j=1}^{n}$ (see Lemma 10.2.13.(ii)).
Note that if $f \in L(G)$ and $g \in G$, then (cf. (10.11)) one has

$$
f(g)=\left\langle\lambda_{G}(g) \delta_{1_{G}}, \bar{f}\right\rangle=u_{\delta_{1_{G}}, \bar{f}}^{\lambda_{G}}(g),
$$

where λ_{G} is the left regular representation of G and $\delta_{1_{G}}$ is the Dirac function at the identity element 1_{G} of G. This shows that any $f \in L(G)$ may be realized as a coefficient of a (unitary) representation.

Lemma 10.2.10 Let (ρ, V) and (θ, W) be two irreducible, non equivalent representations of G. Then all coefficients of ρ are orthogonal to all coefficients of θ.

Proof Let $v_{1}, v_{2} \in V$ and $w_{1}, w_{2} \in W$. Our goal is to show that the functions $u_{v_{2}, v_{1}}^{\rho}(g)=\left\langle\rho(g) v_{1}, v_{2}\right\rangle_{V}$ and $u_{w_{2}, w_{1}}^{\theta}(g)=\left\langle\theta(g) w_{1}, w_{2}\right\rangle_{W}$ are orthogonal in $L(G)$. Consider the linear transformation $L: V \rightarrow W$ defined by

$$
\begin{equation*}
L v=\left\langle v, v_{2}\right\rangle_{V} w_{2} \tag{10.12}
\end{equation*}
$$

for all $v \in V$. Then, the linear transformation $\tilde{L}: V \rightarrow W$ defined by

$$
\widetilde{L}=\sum_{g \in G} \theta\left(g^{-1}\right) L \rho(g)
$$

belongs to $\operatorname{Hom}_{G}(\rho, \theta)$. Indeed, for every $g \in G$,

$$
\begin{aligned}
\widetilde{L} \rho(g) & =\sum_{h \in G} \theta\left(h^{-1}\right) L \rho(h g) \\
(k=h g) & =\sum_{k \in G} \theta\left(g k^{-1}\right) L \rho(k) \\
& =\theta(g) \widetilde{L} .
\end{aligned}
$$

Thus, by virtue of Schur's lemma, we have that either \widetilde{L} is invertible or $\widetilde{L}=0$. As $\rho \nsim \theta$, necessarily the second possibility occurs and therefore

$$
\begin{aligned}
0=\left\langle\widetilde{L} v_{1}, w_{1}\right\rangle_{W} & =\sum_{g \in G}\left\langle L \rho(g) v_{1}, \theta(g) w_{1}\right\rangle_{W} \\
(\text { by }(10.12)) & =\sum_{g \in G}\left\langle\rho(g) v_{1}, v_{2}\right\rangle_{V} \cdot\left\langle w_{2}, \theta(g) w_{1}\right\rangle_{W} \\
& =\sum_{g \in G}\left\langle\rho(g) v_{1}, v_{2}\right\rangle_{V} \cdot \overline{\left\langle\theta(g) w_{1}, w_{2}\right\rangle_{W}} \\
& =\sum_{g \in G} u_{v_{2}, v_{1}}^{\rho}(g) \overline{u_{w_{2}, w_{1}}^{\theta}(g)} \\
& =\left\langle u_{v_{2}, v_{1}}^{\rho}, u_{w_{2}, w_{1}}^{\theta}\right\rangle_{L(G)} .
\end{aligned}
$$

Theorem 10.2.11 Let G be a finite group. Then there exist only finitely many pairwise inequivalent irreducible unitary representations. In other words, $|\widehat{G}|<\infty$.

Proof The space $L(G)$ is finite dimensional and contains only finitely many distinct pairwise orthogonal functions, and the statement follows from previous lemma.

Let now (ρ, V) be an irreducible G-representation, $d=\operatorname{dim} V$, and choose an orthonormal basis $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ of V. Recall that the trace of a linear operator $T: V \rightarrow V$ is given by $\operatorname{Tr}(T)=\sum_{j=1}^{n}\left\langle T v_{j}, v_{j}\right\rangle$. It is easy to check that $\operatorname{Tr}: \operatorname{End}(V) \rightarrow \mathbb{C}$ is a linear map, that it does not depend on the choice of the basis and that it satisfies the following central properties:

$$
\begin{gather*}
\operatorname{Tr}(T S)=\operatorname{Tr}(S T) \quad \text { for all } S, T \in \operatorname{End}(V) \\
\operatorname{Tr}\left(T^{-1} S T\right)=\operatorname{Tr}(S) \quad \text { for all } S \in \operatorname{End}(V) \text { and } T \in \operatorname{GL}(V) . \tag{10.13}
\end{gather*}
$$

Lemma 10.2.12 The coefficients

$$
\begin{equation*}
u_{i, j}^{\rho}(g)=\left\langle\rho(g) v_{j}, v_{i}\right\rangle_{V}, \quad i, j=1,2, \ldots, d \tag{10.14}
\end{equation*}
$$

are pairwise orthogonal in $L(G)$. In formualæ,

$$
\left\langle u_{i, j}^{\rho}, u_{k, h}^{\rho}\right\rangle_{L(G)}=\frac{|G|}{d} \delta_{i k} \delta_{j h}
$$

for all $i, j, h, k=1,2, \ldots, d$.

Proof Fix indices $1 \leq i, k \leq d$ and define $L_{i k} \in \operatorname{End}(V)$ by setting

$$
L_{i k}(v)=\left\langle v, v_{i}\right\rangle v_{k},
$$

for all $v \in V$. It is easy to check that $\operatorname{Tr}\left(L_{i k}\right)=\delta_{i k}$. Now set

$$
\widetilde{L}_{i k}=\frac{1}{|G|} \sum_{g \in G} \rho\left(g^{-1}\right) L_{i k} \rho(g)
$$

and observe that $\widetilde{L}_{i k} \in \operatorname{End}_{G}(\rho)$ (see the proof of Lemma 10.2.10). As ρ is irreducible, from Corollary 10.2.4 we deduce that $\widetilde{L}_{i k}=\alpha I_{V}$, for a suitable $\alpha \in \mathbb{C}$. Indeed, $\alpha=\delta_{i k} / d:$

$$
\begin{aligned}
d \alpha & =\operatorname{Tr}\left(\widetilde{L}_{i k}\right) \\
& =\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}\left[\rho\left(g^{-1}\right) L_{i k} \rho(g)\right]
\end{aligned}
$$

$$
(\text { by }(10.13))=\operatorname{Tr}\left(L_{i k}\right)
$$

It follows that $\widetilde{L}_{i k}=(1 / d) \delta_{i k} I_{V}$ and therefore $\left\langle\widetilde{L}_{i k} v_{j}, v_{h}\right\rangle_{V}=(1 / d) \delta_{j h} \delta_{i k}$. Since

$$
\begin{aligned}
\left\langle\widetilde{L}_{i k} v_{j}, v_{h}\right\rangle_{V} & =\frac{1}{|G|} \sum_{g \in G}\left\langle L_{i k} \rho(g) v_{j}, \rho(g) v_{h}\right\rangle_{V} \\
& =\frac{1}{|G|} \sum_{g \in G}\left\langle\rho(g) v_{j}, v_{i}\right\rangle_{V} \cdot\left\langle v_{k}, \rho(g) v_{h}\right\rangle_{V} \\
& =\frac{1}{|G|}\left\langle u_{i, j}^{\rho}, u_{k, h}^{\rho}\right\rangle_{L(G)}
\end{aligned}
$$

this ends the proof.
The following lemma presents further properties of the matrix coefficients; these do not require the irreducibility of ρ.

Lemma 10.2.13 Let (ρ, V) be a G-representation and let $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ be an orthonormal basis of V. With the notation in (10.14) one has:
(i) $u_{i, j}^{\rho}\left(g^{-1}\right)=\overline{u_{j, i}^{\rho}(g)}$;
(ii) $\rho(g) v_{j}=\sum_{i=1}^{d} v_{i} u_{i, j}^{\rho}(g)$;
(iii) $u_{i, j}^{\rho}\left(g_{1} g_{2}\right)=\sum_{h=1}^{d} u_{i, h}^{\rho}\left(g_{1}\right) u_{h, j}^{\rho}\left(g_{2}\right)$;
(iv) $\sum_{j=1}^{d} \overline{u_{i, j}^{\rho}(g)} u_{k, j}^{\rho}(g)=\delta_{i, k}$ and $\sum_{i=1}^{d} \overline{u_{i, j}^{\rho}(g)} u_{i, k}^{\rho}(g)=\delta_{j, k}$ (dual orthogonality relations)
for all $g, g_{1}, g_{2} \in G$ and $i, j, k=1,2, \ldots, d$.
Proof
(i) This follows immediately from $\rho(g)^{*}=\rho\left(g^{-1}\right)$ and $\langle v, w\rangle=\overline{\langle w, v\rangle}$ for all $g \in G$ and $v, w \in V$.
(ii) This is obvious, since for all $v \in V$ one has $v=\sum_{h=1}^{n} v_{h}\left\langle v, v_{h}\right\rangle$.
(iii) From (ii) we deduce that

$$
\sum_{h=1}^{d} v_{h} u_{h, j}^{\rho}\left(g_{1} g_{2}\right)=\rho\left(g_{1} g_{2}\right) v_{j}=\rho\left(g_{1}\right) \rho\left(g_{2}\right) v_{j}=\sum_{h=1}^{d} \rho\left(g_{1}\right) v_{h} u_{h, j}^{\rho}\left(g_{2}\right)
$$

and taking the scalar product with v_{i} we get the desired equality.
(iv) This is an immediate consequence of the unitarity of $\rho(g)$, that is, of the relation $\rho(g) \rho(g)^{*}=\rho(g)^{*} \rho(g)=I_{V}$, for all $g \in G$.

In the following, we shall refer to $\left(u_{i, j}^{\rho}(g)\right)_{i, j=1}^{n}$ as a matrix realization of the representation ρ.

Definition 10.2.14 Let (ρ, V) be a G-representation. Then the map $\chi^{\rho} \in$ $L(G)$ defined by setting

$$
\chi^{\rho}(g)=\operatorname{Tr}[\rho(g)] \text { for all } g \in G
$$

is called the character of ρ.
Note that, for every $g \in G$, we have that $\rho(g)$, being unitary, is diagonalizable and therefore its trace $\operatorname{Tr}[\rho(g)]=\chi^{\rho}(g)$ coincides with the sum of its eigenvalues. From (10.13) it follows that two equivalent representations have the same character: indeed, $\operatorname{Tr}\left[T \rho(g) T^{-1}\right]=\operatorname{Tr}[\rho(g)]$ for every invertible operator T. Therefore, with each equivalence class of irreducible representations is associated a character. Clearly, using a matrix realization of ρ, one has $\operatorname{Tr}\left[\rho(g)\left[=\sum_{i=1}^{n} u_{i, i}^{\rho}(g)\right.\right.$ and this sum does not depend on the
particular choice of the orthonormal system $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ in V. We observe that if ρ is one-dimensional, then $\rho(g)=\chi^{\rho}(g) I_{V}$ for all $g \in G$ and, by abuse of language, we say that the representation ρ coincides with its character and write $\rho=\chi^{\rho}$.

Proposition 10.2.15 Let (ρ, V) be a G-representation. Then we have:
(i) $\chi^{\rho}\left(1_{G}\right)=\operatorname{dim} V$;
(ii) $\chi^{\rho}\left(s^{-1}\right)=\overline{\chi^{\rho}(s)}$, for all $s \in G$;
(iii) $\chi^{\rho}\left(t^{-1} s t\right)=\chi^{\rho}(s)$, for all $s, t \in G$.
(iv) If $\rho=\rho_{1} \oplus \rho_{2}$ then $\chi^{\rho}=\chi^{\rho_{1}}+\chi^{\rho_{2}}$.
(v) With the notation as in Lemma 10.2 .13 we have:

$$
\begin{equation*}
\chi^{\rho}=\sum_{i=1}^{d} u_{i, i}^{\rho} \tag{10.15}
\end{equation*}
$$

Proof

(i) This is easy: $\rho\left(1_{G}\right)=I_{V}$ and $\operatorname{Tr}\left(I_{V}\right)=\operatorname{dim} V=d$.
(ii) We have

$$
\chi^{\rho}\left(s^{-1}\right)=\operatorname{Tr}\left[\rho\left(s^{-1}\right)\right]=\operatorname{Tr}\left[\rho(s)^{*}\right]=\overline{\chi^{\rho}(s)}
$$

since $\rho(s)$ is unitary and $\operatorname{Tr}\left(A^{*}\right)=\overline{\operatorname{Tr}(A)}$ for all $A \in G L(V)$.
(iii) This follows again from the central property of the trace.
(iv) This is easy and left as an exercise.
(v) This is obvious.

Exercise 10.2.16

Let ρ be a G-representation and let $n=|G|$.
(1) Show that the eigenvalues of $\rho(g), g \in G$ are nth roots of the unity;
(2) deduce that $\left|\chi^{\rho}(g)\right| \leq d_{\rho}$ for all $g \in G$.

Proposition 10.2.17 (Orthogonality relations for characters) Let $\rho, \theta \in \widehat{G}$. Then

$$
\begin{equation*}
\left\langle\chi^{\rho}, \chi^{\theta}\right\rangle_{L(G)}=|G| \delta_{\rho, \theta} . \tag{10.16}
\end{equation*}
$$

In particular, two non-equivalent irreducible G-representations have different characters.

Proof From (10.15), Lemma 10.2.10 and Lemma 10.2.12 we get

$$
\left\langle\chi^{\rho}, \chi^{\theta}\right\rangle_{L(G)}=\sum_{i=1}^{d_{\rho}} \sum_{j=1}^{d_{\theta}}\left\langle u_{i, i}^{\rho}, u_{j, j}^{\theta}\right\rangle_{L(G)}=\sum_{i=1}^{d_{\rho}} \sum_{j=1}^{d_{\theta}} \delta_{\rho, \theta} \delta_{i, j} \frac{|G|}{d_{\rho}}=|G| \delta_{\rho, \theta}
$$

We thus have that the characters of irreducible representations constitute an orthogonal system in $L(G)$ (in general not complete: see Theorem 10.3.13). Therefore they are finitely many and their cardinality equals the number of equivalence classes of irreducible representations (cf. Proposition 10.2.17 and the comments after Definition 10.2.14).

Proposition 10.2.18 Let ρ and θ be two G-representations. Suppose that $\rho=\rho_{1} \oplus \rho_{2} \oplus \cdots \oplus \rho_{k}$ is a decomposition of ρ into irreducible subrepresentations and that θ is irreducible. Then, setting $m_{\theta}=\left|\left\{j: \rho_{j} \sim \theta\right\}\right|$, one has

$$
\begin{equation*}
m_{\theta}=\frac{1}{|G|}\left\langle\chi^{\rho}, \chi^{\theta}\right\rangle_{L(G)} \tag{10.17}
\end{equation*}
$$

In particular, m_{θ} does not depend on the particular decomposition of ρ.
Proof From Proposition 10.2.15.(iv) it follows that $\chi^{\rho}=\sum_{j=1}^{k} \chi^{\rho_{j}}$. Therefore, from Proposition 10.2.17 we deduce that

$$
\left\langle\chi^{\rho}, \chi^{\theta}\right\rangle_{L(G)}=\sum_{j=1}^{k}\left\langle\chi^{\rho_{j}}, \chi^{\theta}\right\rangle_{L(G)}=\sum_{j=1}^{k}|G| \delta_{\rho_{j}, \theta}=|G| m_{\theta}
$$

Corollary 10.2.19 Let (ρ, V) be a representation of G. Then, with the notation as in Proposition 10.2.18, one has

$$
\rho \sim \bigoplus_{\theta \in \widehat{G}} m_{\theta} \theta
$$

where $m_{\theta} \theta=\theta \oplus \theta \oplus \cdots \oplus \theta$ is the direct sum of m_{θ} copies of θ, and

$$
V \cong \bigoplus_{\theta \in \widehat{G}} m_{\theta} W_{\theta}
$$

where $m_{\theta} W_{\theta}=W_{\theta} \oplus W_{\theta} \oplus \cdots \oplus W_{\theta}$ is the direct sum of m_{θ} copies of W_{θ}, the representation space of θ. Moreover,

$$
\chi^{\rho}=\sum_{\theta \in \widehat{G}} m_{\theta} \chi^{\theta}
$$

Definition 10.2.20 The number m_{θ} in (10.17) is called the multiplicity of θ as a sub-representation of ρ. If θ is not contained in ρ then clearly $m_{\theta}=0$. The subspace (of V which is isomorphic to) $m_{\theta} W_{\theta}$ is called the θ-isotypic component of V.

Example 10.2.21 Let (ρ, V) be a G-representation. Then the dimension $\operatorname{dim}\left(V^{G}\right)$ of the subspace of G-invariant vectors equals the multiplicity m_{ι} of the trivial representation ι of G as a sub-representation of ρ.

Corollary 10.2.22 Let ρ, η be two representations of G. Suppose that $\rho=\oplus_{\theta \in \widehat{G}} m_{\theta} \theta$ and $\eta=\oplus_{\theta \in \widehat{G}} n_{\theta} \theta$ are their decompositions into irreducible subrepresentations, so that the numbers m_{θ} 's and n_{θ} 's are the corresponding multiplicities. Then, denoting by J the set of common irreducible representations, that is, $J=\left\{\theta \in \widehat{G}: m_{\theta}>0\right.$ and $\left.n_{\theta}>0\right\}$, we have

$$
\frac{1}{|G|}\left\langle\chi^{\rho}, \chi^{\eta}\right\rangle=\sum_{\theta \in J} m_{\theta} n_{\theta}
$$

Corollary 10.2.23 A G-representation ρ is irreducible if and only if $\left\|\chi^{\rho}\right\|_{L(G)}=$ $\sqrt{|G|}$.

Corollary 10.2.24 Two G-representations ρ and θ are equivalent if and only if $\chi^{\rho}=\chi^{\theta}$.

Theorem 10.2.25 (Peter-Weyl) Let G be a finite group and denote by $\left(\lambda_{G}, L(G)\right)$ its left regular representation (see Example 10.1.8). Then the following hold:
(i) Every irreducible representation $\theta \in \widehat{G}$ appears in the decomposition of λ_{G} with multiplicity equal to its dimension d_{θ}, that is,

$$
\begin{equation*}
L(G) \cong \bigoplus_{\theta \in \widehat{G}} d_{\theta} W_{\theta} \tag{10.18}
\end{equation*}
$$

where W_{θ} denotes the representation space of θ. Moreover,

$$
\begin{equation*}
\sum_{\theta \in \widehat{G}} d_{\theta} \chi^{\theta}=|G| \delta_{1_{G}} \tag{10.19}
\end{equation*}
$$

(ii) $|G|=\sum_{\theta \in \widehat{G}} d_{\theta}^{2}$;
(iii) denoting by $u_{i, j}^{\theta}$ the matrix coefficient of $\theta \in \widehat{G}$ with respect to an
orthonormal basis (see (10.14)), then the set

$$
\left\{\sqrt{\frac{d_{\theta}}{|G|}} u_{i, j}^{\theta}: i, j=1, \ldots, d_{\theta}, \theta \in \widehat{G}\right\}
$$

is a complete orthonormal system in $L(G)$.

Proof

(i) Denote by

$$
\begin{equation*}
\lambda_{G} \sim \bigoplus_{\theta \in \widehat{G}} m_{\theta} \theta \tag{10.20}
\end{equation*}
$$

the decomposition of λ_{G} into irreducibles, as in Corollay 10.2.19, so that the integer m_{θ} denotes the multiplicity in the irreducible representation $\theta \in \widehat{G}$ in λ_{G}. Using the complete orthonormal system $\left\{\delta_{g}: g \in G\right\}$ of Dirac deltas in $L(G)$ and the identity $\lambda_{G}(h) \delta_{g}=\delta_{h g}$, we immediately obtain that

$$
\chi^{\lambda_{G}}(g)=\sum_{h \in G}\left\langle\lambda_{G}(g) \delta_{h}, \delta_{h}\right\rangle=\sum_{h \in G}\left\langle\delta_{g h}, \delta_{h}\right\rangle= \begin{cases}|G| & \text { if } g=1_{G} \tag{10.21}\\ 0 & \text { if } g \neq 1_{G}\end{cases}
$$

for all $g \in G$; in other words,

$$
\begin{equation*}
\chi^{\lambda_{G}}=|G| \delta_{1_{G}} \tag{10.22}
\end{equation*}
$$

From Proposition 10.2.18, (10.22) and Proposition 10.2.15, we deduce

$$
\begin{equation*}
m_{\theta}=\frac{1}{|G|}\left\langle\chi^{\lambda_{G}}, \chi^{\theta}\right\rangle=\chi^{\theta}\left(1_{G}\right)=d_{\theta} \tag{10.23}
\end{equation*}
$$

Then, (10.18) follows from (10.20) and (10.23), while (10.19) follows from, in order, (10.22), (10.20), and (10.23).
(ii) Taking dimensions in (10.18), we deduce that $|G| \equiv \operatorname{dim} L(G)=$ $\sum_{\theta \in \widehat{G}} d_{\theta}^{2}$.
(iii) From Lemma 10.2.10 and Lemma 10.2.12 we have that the functions

$$
\sqrt{\frac{d_{\theta}}{|G|}} u_{i, j}^{\theta}: i, j=1,2, \ldots, d_{\theta}, \theta \in \widehat{G}
$$

constitute an orthonormal system in $L(G)$. This system is indeed complete since its cardinality $\sum_{\theta \in \widehat{G}} d_{\theta}^{2}=|G|$ equals the dimension of the space $L(G)$.

The structure of the Peter-Weyl theorem will be examined further in Sections 10.3 and 10.5. For future reference, it is convenient to state explicitly the orthogonality relations for matrix coefficients in the following form, which immediately follows from Lemma 10.2.10 and Lemma 10.2.12. Let (θ, W) and (ρ, U) be two irreducible G-representations. Then

$$
\begin{equation*}
\left\langle u_{i, j}^{\theta}, u_{h, k}^{\rho}\right\rangle=\frac{|G|}{d_{\theta}} \delta_{\theta, \rho} \delta_{i, h} \delta_{j, k} . \tag{10.24}
\end{equation*}
$$

We now present a useful formula for irreducible characters.
Proposition 10.2.26 Let $(\theta, W) \in \widehat{G}, w \in W$ be a vector of norm 1, and $\phi(g)=\langle\theta(g) w, w\rangle$ the diagonal matrix coefficient associated with w. Then

$$
\begin{equation*}
\chi^{\theta}(g)=\frac{d_{\theta}}{|G|} \sum_{h \in G} \phi\left(h^{-1} g h\right) \tag{10.25}
\end{equation*}
$$

for all $g \in G$.
Proof Let $\left\{v_{1}=w, v_{2}, \ldots, v_{d_{\theta}}\right\}$ be an orthonormal basis of W and let $u_{i, j}^{\theta}$ be as in (10.14) (note that $\phi=u_{1,1}^{\theta}$). Then

$$
\begin{aligned}
\sum_{h \in G} \phi\left(h^{-1} g h\right) & =\sum_{h \in G}\left\langle\theta(g) \theta(h) v_{1}, \theta(h) v_{1}\right\rangle \\
\text { (by Lemma 10.2.13.(ii)) } & =\sum_{i, j=1}^{d_{\theta}} \sum_{h \in G} u_{i, 1}^{\theta}(h) \overline{u_{j, 1}^{\theta}(h)}\left\langle\theta(g) v_{i}, v_{j}\right\rangle \\
\text { (by (10.24) and (10.15)) } & =\frac{|G|}{d_{\theta}} \chi^{\theta}(g) .
\end{aligned}
$$

Example 10.2.27 Let A be a finite Abelian group. In Corollary 10.2.7 we have shown that its irreducible representations coincide with its characters. Now we can also deduce that A has exactly $|A|$ distinct characters: this agrees with Proposition 2.3.3.

Example 10.2.28 Let $D_{n}=\left\langle a, b: a^{n}=b^{2}=1, b a b=a^{-1}\right\rangle$ denote the dihedral group of degree n, i.e. the group of isometries of a regular polygon with n vertices. Recall that $\left|D_{n}\right|=2 n$ and that any element of D_{n} may be written uniquely in the form $a^{k} b^{\epsilon}$, where $0 \leq k \leq n-1$ and $\epsilon \in\{0,1\}$.

Moreover, the product of two elements is given by the following rule:

$$
a^{h} b^{\delta} \cdot a^{k} b^{\epsilon}=a^{h}\left(b^{\delta} a^{k} b^{\delta}\right) b^{\delta+\epsilon}= \begin{cases}a^{h-k} b^{1+\varepsilon} & \text { if } \delta=1 \\ a^{h+k} b^{\varepsilon} & \text { if } \delta=0\end{cases}
$$

for all $h, k=0,1, \ldots, n-1$ and $\delta, \epsilon \in\{0,1\}$. Alternatively, D_{n} may be seen as the group of matrices generated by

$$
a=\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{-1}
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

where $\omega=e^{2 \pi i / n} \equiv \cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$ (compare with the representation ρ_{1} below).

In the following, we determine $\widehat{D_{n}}$. We consider first the case when \underline{n} is even. We have four one-dimensional representations (we identify these with the corresponding characters), $\chi^{i}, i=1,2,3,4$, defined by

$$
\begin{align*}
& \chi^{1}\left(a^{k} b^{\epsilon}\right)=1 \\
& \chi^{2}\left(a^{k} b^{\epsilon}\right)=(-1)^{\epsilon} \\
& \chi^{3}\left(a^{k} b^{\epsilon}\right)=(-1)^{k} \tag{10.26}\\
& \chi^{4}\left(a^{k} b^{\epsilon}\right)=(-1)^{k+\epsilon}
\end{align*}
$$

for all $\epsilon=0,1$ and $k=0,1, \ldots, n-1$. Setting $\omega=e^{2 \pi i / n}$ as above, we also define the two-dimensional representations $\rho_{t}, t=0,1, \ldots, n$, by setting

$$
\rho_{t}\left(a^{k}\right)=\left(\begin{array}{cc}
\omega^{t k} & 0 \\
0 & \omega^{-t k}
\end{array}\right) \quad \text { and } \quad \rho_{t}\left(a^{k} b\right)=\left(\begin{array}{cc}
0 & \omega^{t k} \\
\omega^{-t k} & 0
\end{array}\right)
$$

for all $k=0,1, \ldots, n-1$.

Exercise 10.2.29

(1) Show that each ρ_{t} is indeed a representation.
(2) Show that $\rho_{t} \sim \rho_{n-t}$.
(3) Show that $\chi^{\rho_{0}}=\chi^{1}+\chi^{2}$ and $\chi^{\rho_{n / 2}}=\chi^{3}+\chi^{4}$.
(4) Show that ρ_{t}, with $1 \leq t \leq \frac{n}{2}-1$, are pairwise non equivalent irreducible representations in two different ways, namely:
(i) by inspecting the invariant subspaces and intertwining operators;
(ii) by computing the characters and their inner products.
(5) Conclude that $\chi^{1}, \chi^{2}, \chi^{3}, \chi^{4}, \rho_{t}$, with $1 \leq t<n / 2$, constitute a complete list of irreducible representations of D_{n}.

Solution of $(2): \rho_{n-t}(g)=\rho_{t}(b) \rho_{t}(g) \rho_{t}(b)$ for all $g \in D_{n}$.

Exercise 10.2.30 Determine a complete list of irreducible representations of D_{n} in the case n is odd.
Solution: $\widehat{D_{n}}$ consists of χ^{1}, χ^{2}, and ρ_{t} with $t=1,2, \ldots, \frac{n-1}{2}$.
Exercise 10.2.31 The generalized quaternion group is $Q_{n}=\left\langle a, b: b^{2}=\right.$ $\left.a^{n}, b^{-1} a b=a^{-1}\right\rangle$. Note that Q_{2} is the classical quaternionic group.
(1) Show that $b^{2}=a^{-n}, b^{4}=1, a^{2 n}=1$ and that every element $g \in Q_{n}$ may be written in the form $g=a^{k} b^{h}$ with $0 \leq k \leq 2 n-1$ and $h \in\{0,1\}$.
(2) Show that Q_{n} may be seen as the group of matrices generated by $a=\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{-1}\end{array}\right)$ and $b=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, where $\omega=e^{\pi i / n}$. Deduce that the expression $g=a^{k} b^{h}$ is unique and that Q_{n} has $4 n$ elements.
(3) Show that if n is even then $Q_{n} /\left\langle a^{2}\right\rangle \cong C_{2} \times C_{2}$ while if n is odd then $Q_{n} /\left\langle a^{2}\right\rangle \cong C_{4}$.
(4) Denote by $\pi: Q_{n} \rightarrow Q_{n} /\left\langle a^{2}\right\rangle$ the canonical quotient map. For every $\psi \in \widehat{Q_{n} /\left\langle a^{2}\right\rangle}$ set $\bar{\psi}=\psi \circ \pi$: this is called the inflation of ψ (cf. Section 11.6). Show that the inflations $\bar{\psi}$, with $\psi \in \widehat{Q_{n} /\left\langle a^{2}\right\rangle}$, are four one-dimensional, nonequivalent representations of Q_{n}.
(5) For $t=0,1, \ldots, n-1$ set

$$
\rho_{t}(a)=\left(\begin{array}{cc}
\omega^{t} & 0 \tag{10.27}\\
0 & \omega^{-t}
\end{array}\right) \quad \text { and } \quad \rho_{t}(b)=\left(\begin{array}{cc}
0 & (-1)^{t} \\
1 & 0
\end{array}\right) .
$$

Show that (10.27) define $n-1$ irreducible, nonequivalent representations of Q_{n} which, added to the four one-dimensional representations determined in (4), form a complete list for \widehat{Q}_{n}.

10.3 The group algebra and the Fourier transform

An (associative) algebra over \mathbb{C} (or complex algebra) is a vector space \mathcal{A} over \mathbb{C} endowed with a multiplication operation, the product, such that \mathcal{A} is a ring with respect to the sum and the product, and the following associative law holds for the product and multiplication by a scalar:

$$
\alpha(A B)=(\alpha A) B=A(\alpha B)
$$

for all $\alpha \in \mathbb{C}$ and $A, B \in \mathcal{A}$. The basic example is $\operatorname{End}(V)$, where V is a finite-dimensional vector space over \mathbb{C}, with the usual operations of sum and product of operators, and of multiplication by scalars.

Let \mathcal{A} be a complex algebra. A subalgebra of \mathcal{A} is a subspace $\mathcal{B} \leq \mathcal{A}$ which is closed under multiplication. For instance, if V is a finite-dimensional
vector space over \mathbb{C}, fix a basis $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ of V. An operator $T \in$ $\operatorname{End}(V)$ is called \mathcal{B}-diagonal provided there exist scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d} \in \mathbb{C}$ such that $T v_{i}=\alpha_{i} v_{i}$ for all $i=1,2, \ldots, d$. Then the \mathcal{B}-diagonal operators constitute a subalgebra of $\operatorname{End}(V)$.

An involution in \mathcal{A} is a bijective map $A \mapsto A^{*}$ such that

- $\left(A^{*}\right)^{*}=A$
- $(\alpha A+\beta B)^{*}=\bar{\alpha} A^{*}+\bar{\beta} B^{*}$
- $(A B)^{*}=B^{*} A^{*}$ (anti-multiplicative property)
for all $\alpha, \beta \in \mathbb{C}$ and $A, B \in \mathcal{A}$. For instance, if $\mathcal{A}=\operatorname{End}(V)$, then the map $T \mapsto T^{*}$ (where T^{*} is the adjoint of T) is an involution on \mathcal{A}; similarly for $\operatorname{End}_{G}(V)$ (see Proposition 10.2.2). An algebra with involution is called an involutive algebra or $*$-algebra. An element A in a $*$-algebra \mathcal{A} such that $A=A^{*}$ is called self-adjoint.
\mathcal{A} is unital if it has a unit, that is, there exists an element $I \in \mathcal{A}$ such that $A I=I A=A$ for all for all $A \in \mathcal{A}$. Note that a unit is necessarily unique and self-adjoint. Indeed, if I and I^{\prime} are units in \mathcal{A}, then $I=I I^{\prime}=I^{\prime}$. Moreover, if $A \in \mathcal{A}$

$$
I^{*} A=\left(\left(I^{*} A\right)^{*}\right)^{*}=\left(A^{*}\left(I^{*}\right)^{*}\right)^{*}=\left(A^{*} I\right)^{*}=\left(A^{*}\right)^{*}=A
$$

and, similarly, $A I^{*}=A$. Thus $I=I^{*}$, by uniqueness of the unit.
The dimension of \mathcal{A} is simply its dimension as a complex vector space.
In the following, we shall consider only finite-dimensional, unital, involutive, complex algebras.

The algebra \mathcal{A} is commutative (or Abelian) if it is commutative as a ring, namely if $A B=B A$ for all $A, B \in \mathcal{A}$. A basic example is the following: let J be a finite set and denote by \mathbb{C}^{J} the space of all functions $f: J \rightarrow \mathbb{C}$ with multiplication and involution given respectively by:

$$
\begin{equation*}
\left(f_{1} f_{2}\right)(j)=f_{1}(j) f_{2}(j) \text { and } f^{*}(j)=\overline{f(j)} \tag{10.28}
\end{equation*}
$$

for all $f, f_{1}, f_{2} \in \mathbb{C}^{J}$ and $j \in J$. Clearly, \mathbb{C}^{J} is isomorphic to the subalgebra of \mathcal{B}-diagonal operators in $\operatorname{End}(V)$ (for any basis \mathcal{B} of V and) for any vector space V with $\operatorname{dim} V=|J|$, as well as to the direct sum $\underbrace{\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{|J| \text {-times }}$.

The center $\mathcal{Z}(\mathcal{A})$ of \mathcal{A} is the commutative subalgebra

$$
\mathcal{Z}(\mathcal{A})=\{B \in \mathcal{A}: A B=B A \text { for all } A \in \mathcal{A}\}
$$

The direct sum $\mathcal{A} \oplus \mathcal{B}$ of two algebras \mathcal{A}, \mathcal{B} is the vector space direct sum with the product defined componentwise: $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}, b_{1} b_{2}\right)$, for all $a_{1}, a_{2} \in \mathcal{A}, b_{1}, b_{2} \in \mathcal{B}$.

Let \mathcal{A}_{1} and \mathcal{A}_{2} be two involutive algebras and let $\phi: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ be a map. One says that ϕ is a $*$-homomorphism provided that

- $\phi(\alpha A+\beta B)=\alpha \phi(A)+\beta \phi(B) \quad$ (linearity)
- $\phi(A B)=\phi(A) \phi(B) \quad$ (multiplicative property)
- $\phi\left(A^{*}\right)=[\phi(A)]^{*} \quad$ (preservation of involution)
for all $\alpha, \beta \in \mathbb{C}$ and $A, B \in \mathcal{A}_{1}$. If in addition ϕ is a bijection, then it is called a $*$-isomorphism between \mathcal{A}_{1} and \mathcal{A}_{2} and one says that \mathcal{A}_{1} and \mathcal{A}_{2} are $*$-isomorphic. On the other hand, ϕ is a $*$-anti-homomorphism if the multiplicative property is replaced by

$$
\phi(A B)=\phi(B) \phi(A) \quad \text { (anti-multiplicative property) }
$$

for all $A, B \in \mathcal{A}_{1}$. Finally, ϕ is a $*$-anti-isomorphism if it is a bijective $*-$ anti-homomorphism. If such a $*$-anti-isomorphism exists, then one says that \mathcal{A}_{1} and \mathcal{A}_{2} are ${ }^{*}$-anti-isomorphic.

Let G be a finite group. Recall that $L(G)$ denotes the vector space of all functions $f: G \rightarrow \mathbb{C}$.

Definition 10.3.1 Let $f, f_{1}, f_{2} \in L(G)$. We define the convolution of f_{1} and f_{2} and the adjoint of f as the functions $f_{1} * f_{2} \in L(G)$ and $f^{*} \in L(G)$ defined by setting

$$
\begin{equation*}
\left[f_{1} * f_{2}\right](g)=\sum_{h \in G} f_{1}\left(g h^{-1}\right) f_{1}(h) \tag{10.29}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{*}(g)=\overline{f\left(g^{-1}\right)} \tag{10.30}
\end{equation*}
$$

for all $g \in G$, respectively.
Note that the convolution (10.29) may be also written in the following equivalent ways:

$$
\begin{align*}
& {\left[f_{1} * f_{2}\right](g)=\sum_{s, t \in G: s t=g} f_{1}(s) f_{2}(t)} \\
& \quad=\sum_{h \in G} f_{1}(h) f_{2}\left(h^{-1} g\right)=\sum_{h \in G} f_{1}(h)\left[\lambda_{G}(h) f_{2}\right](g) \tag{10.31}
\end{align*}
$$

Proposition 10.3.2 The vector space $L(G)$ endowed with the the convolution product (10.29) and the involution (10.30) is a unital, involutive algebra, with unit $\delta_{1_{G}}$. It is called the group algebra of G.

Proof We leave it as an exercise to prove that the convolution is distributive with respect to the sum, and that $\delta_{1_{G}}$ is the unit.

Let $f_{1}, f_{2}, f_{3} \in L(G)$ and $g \in G$. Then we have:

$$
\begin{aligned}
{\left[f_{1} *\left(f_{2} * f_{3}\right)\right](g) } & =\sum_{h \in G} f_{1}\left(g h^{-1}\right)\left(f_{2} * f_{3}\right)(h) \\
& =\sum_{h \in G} \sum_{t \in G} f_{1}\left(g h^{-1}\right) f_{2}\left(h t^{-1}\right) f_{3}(t) \\
\text { (setting } h=s t) & =\sum_{t \in G} \sum_{s \in G} f_{1}\left(g t^{-1} s^{-1}\right) f_{2}(s) f_{3}(t) \\
& =\sum_{t \in G}\left(f_{1} * f_{2}\right)\left(g t^{-1}\right) f_{3}(t)=\left[\left(f_{1} * f_{2}\right) * f_{3}\right](g) .
\end{aligned}
$$

This shows the associativity of the convolution product. Finally,

$$
\begin{aligned}
{\left[f_{1}^{*} * f_{2}^{*}\right](g) } & =\sum_{s \in G} f_{1}^{*}(g s) f_{2}^{*}\left(s^{-1}\right) \\
& =\sum_{s \in G} \overline{f_{1}\left(s^{-1} g^{-1}\right) f_{2}(s)} \\
& =\overline{\left[f_{2} * f_{1}\right]\left(g^{-1}\right)} \\
& =\left[f_{2} * f_{1}\right]^{*}(g)
\end{aligned}
$$

which shows the anti-multiplicative property of the involution.

Proposition 10.3.3

(i) For $s, t \in G$ we have $\delta_{s} * \delta_{t}=\delta_{s t}$.
(ii) For $s \in G, f \in L(G)$ we have: $\delta_{s} * f=\lambda_{G}(s) f$ and $f * \delta_{s}=\rho_{G}\left(s^{-1}\right) f$.
(iii) The center $\mathcal{Z}[L(G)]$ of the group algebra coincides with the set of all functions $f \in L(G)$ which are constant on each conjugacy class of G, that is, $f\left(s^{-1} t s\right)=f(t)$ for all $s, t \in G$. Such functions are termed central or class functions.
(iv) $L(G)$ is commutative if and only if G is Abelian.

Proof Let $g, s, t \in G$ and $f \in L(G)$.
(i) $\left(\delta_{s} * \delta_{t}\right)(g)=\sum_{h \in G} \delta_{s}\left(g h^{-1}\right) \delta_{t}(h)=\delta_{s}\left(g t^{-1}\right)=\delta_{s t}(g)$.
(ii)

$$
\left(\delta_{s} * f\right)(g)=\sum_{h \in G} \delta_{s}(h) f\left(h^{-1} g\right)=f\left(s^{-1} g\right)=\left[\lambda_{G}(s) f\right](g)
$$

and similarly $\left(f * \delta_{s}\right)(g)=f\left(g s^{-1}\right)=\left[\rho_{G}\left(s^{-1}\right) f\right](g)$.
(iii) f belongs to the center if and only if $f * \delta_{s}=\delta_{s} * f$ for all $s \in L(G)$, that is if and only if $\delta_{s} * f * \delta_{s^{-1}}=f$ and this is equivalent to saying that f is central since, by (ii), $\delta_{s} * f * \delta_{s^{-1}}(t)=f\left(s^{-1} t s\right)$.
(iv) $L(G)$ is commutative if and only if $\delta_{s t}=\delta_{s} * \delta_{t}=\delta_{t} * \delta_{s}=\delta_{t s}$ for all $s, t \in G$, that is, if and only if G is Abelian. Alternatively, $L(G)$ is commutative if and only if it coincides with its center, that is, by (iii), if and only if each conjugacy class consists of one single element, and this is again equivalent to saying that G is Abelian.

Exercise 10.3.4 Show that $f \in L(G)$ is a class function if and only if $f\left(g_{1} g_{2}\right)=f\left(g_{2} g_{1}\right)$ for all $g_{1}, g_{2} \in G$.

Given $f \in L(G)$ the convolution operator with kernel f is the linear operator $T_{f} \in \operatorname{End}(L(G))$ defined by setting:

$$
\begin{equation*}
T_{f} f^{\prime}=f^{\prime} * f \tag{10.32}
\end{equation*}
$$

for all $f^{\prime} \in L(G)$.
Proposition 10.3.5 $T_{f} \in \operatorname{End}_{G}(L(G))$ for every $f \in L(G)$; here, $\operatorname{End}_{G}(L(G))$ is the commutant (cf. Definition 10.2.1) of the left regular representation of G. Moreover, the map

$$
\begin{array}{ccc}
L(G) & \longrightarrow & \operatorname{End}_{G}(L(G)) \\
f & \longmapsto & T_{f} \tag{10.33}
\end{array}
$$

is $a *$-anti-isomorphism of algebras, that is

$$
\begin{equation*}
T_{f_{1} * f_{2}}=T_{f_{2}} T_{f_{1}} \quad \text { and } \quad T_{f^{*}}=\left(T_{f}\right)^{*} \tag{10.34}
\end{equation*}
$$

for all $f_{1}, f_{2}, f \in L(G)$.
Proof First of all, for $f, f^{\prime} \in L(G)$ and $g, g_{0} \in G$ we have:

$$
\begin{aligned}
{\left[T_{f} \lambda_{G}(g) f^{\prime}\right]\left(g_{0}\right) } & =\left(\left[\lambda_{G}(g) f^{\prime}\right] * f\right)\left(g_{0}\right) \\
& =\sum_{h \in G}\left[\lambda_{G}(g) f^{\prime}\right]\left(g_{0} h\right) f\left(h^{-1}\right) \\
& =\sum_{h \in G} f^{\prime}\left(g^{-1} g_{0} h\right) f\left(h^{-1}\right) \\
& =\left[T_{f} f^{\prime}\right]\left(g^{-1} g_{0}\right) \\
& =\left(\lambda_{G}(g)\left[T_{f} f^{\prime}\right]\right)\left(g_{0}\right)
\end{aligned}
$$

so that $T_{f} \lambda_{G}(g)=\lambda_{G}(g) T_{f}$. This shows that $T_{f} \in \operatorname{End}_{G}(L(G))$. Moreover, if $f, f_{1}, f_{2} \in L(G)$ then, by associativity of the convolution product,

$$
T_{f_{1}}\left(T_{f_{2}} f\right)=\left(f * f_{2}\right) * f_{1}=f *\left(f_{2} * f_{1}\right)=T_{f_{2} * f_{1}} f
$$

so that $T_{f_{1}} T_{f_{2}}=T_{f_{2} * f_{1}}$. Moreover,

$$
\begin{aligned}
\left\langle T_{f} f_{1}, f_{2}\right\rangle_{L(G)} & =\sum_{g \in G} \sum_{s \in G} f_{1}(g s) f\left(s^{-1}\right) \overline{f_{2}(g)} \\
\left(\text { setting } g=t s^{-1}\right) & =\sum_{t \in G} \sum_{s \in G} f_{1}(t) f\left(s^{-1}\right) \overline{f_{2}\left(t s^{-1}\right)} \\
& =\sum_{t \in G} \sum_{s \in G} f_{1}(t) \overline{f^{*}(s) f_{2}\left(t s^{-1}\right)} \\
& =\left\langle f_{1}, T_{f^{*}} f_{2}\right\rangle_{L(G)},
\end{aligned}
$$

that is, $\left(T_{f}\right)^{*}=T_{f^{*}}$. We now prove that the map $f \mapsto T_{f}$ is a bijection by showing that if $T \in \operatorname{End}_{G}(L(G))$, then there exists a unique element $f \in L(G)$ such that $T=T_{f}$ and that, indeed, $f=T \delta_{1_{G}}$. Uniqueness is clear: let $f_{1}, f_{2} \in L(G)$ and suppose that $T_{f_{1}}=T_{f_{2}}$. Then, recalling that $\delta_{1_{G}}$ is the unit in $L(G)$, we deduce that $f_{1}=\delta_{1_{G}} * f_{1}=T_{f_{1}} \delta_{1_{G}}=T_{f_{2}} \delta_{1_{G}}=\delta_{1_{G}} * f_{2}=f_{2}$. Finally, if $f^{\prime} \in L(G)$, then, using (10.11), we have

$$
\begin{aligned}
T f^{\prime} & =T\left[\sum_{g \in G} f^{\prime}(g) \lambda_{G}(g) \delta_{1_{G}}\right] \\
\left(\text { since } T \in \operatorname{End}_{G}(L(G))\right. & =\sum_{g \in G} f^{\prime}(g) \lambda_{G}(g) T \delta_{1_{G}} \\
(\text { by }(10.31)) & =f^{\prime} *\left(T \delta_{1_{G}}\right) .
\end{aligned}
$$

We now compute the convolution of matrix coefficients and characters. From now on, for each $\theta \in \widehat{G}$ we fix an orthonormal basis $\left\{v_{j}^{\theta}: j=\right.$ $\left.1,2, \ldots, d_{\theta}\right\}$ in the representation space V_{θ} and denote by $u_{i, j}^{\theta}, i, j=1,2, \ldots, d_{\theta}$, the corresponding matrix coefficients (as in (10.14)).

Proposition 10.3.6 For all $\theta, \sigma \in \widehat{G}$ we have:

$$
\begin{equation*}
u_{i, j}^{\theta} * u_{h, k}^{\sigma}=\frac{|G|}{d_{\theta}} \delta_{\theta, \sigma} \delta_{j, h} u_{i, k}^{\theta} \tag{10.35}
\end{equation*}
$$

for all $1 \leq i, j \leq d_{\theta}$ and $1 \leq h, k \leq d_{\sigma}$. Moreover,

$$
\begin{equation*}
\chi^{\theta} * \chi^{\sigma}=|G| \delta_{\theta, \sigma} \chi^{\theta} \tag{10.36}
\end{equation*}
$$

Proof For all $g \in G$ we jave

$$
\left[u_{i, j}^{\theta} * u_{h, k}^{\sigma}\right](g)=\sum_{s \in G} u_{i, j}^{\theta}(g s) u_{h, k}^{\sigma}\left(s^{-1}\right)
$$

(by (i) and (iii) in Proposition 10.2.13) $=\sum_{\ell=1}^{d_{\theta}} u_{i, \ell}^{\theta}(g) \sum_{s \in G} u_{\ell, j}^{\theta}(s) \overline{u_{k, h}^{\sigma}(s)}$

$$
\begin{aligned}
(\text { by }(10.24)) & =\sum_{\ell=1}^{d_{\theta}} u_{i, \ell}^{\theta}(g) \delta_{\theta, \sigma} \delta_{\ell, k} \delta_{j, h} \frac{|G|}{d_{\theta}} \\
& =\frac{|G|}{d_{\theta}} \delta_{\theta, \sigma} \delta_{j, h} u_{i, k}^{\theta}(g)
\end{aligned}
$$

The convolutional property of the characters (10.36) then follows from (10.15) and (10.35).

Definition 10.3.7 Let $f \in L(G)$ and $\left(\theta, W_{\theta}\right) \in \widehat{G}$. The Fourier transform of f with respect to θ is the linear operator $\widehat{f}(\theta) \in \operatorname{End}\left(W_{\theta}\right)$ defined by setting

$$
\widehat{f}(\theta)=\sum_{g \in G} f(g) \theta(g)
$$

Proposition 10.3.8 Let $f_{1}, f_{2}, f \in L(G)$ and $\theta \in \widehat{G}$. Then we have

$$
\begin{equation*}
\widehat{f_{1} * f_{2}}(\theta)=\widehat{f_{1}}(\theta) \widehat{f}_{2}(\theta) \tag{10.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{f^{*}}(\theta)=\widehat{f}(\theta)^{*} \tag{10.38}
\end{equation*}
$$

Proof We have

$$
\begin{aligned}
\widehat{f_{1} * f_{2}}(\theta) & =\sum_{g \in G}\left[\sum_{h \in G} f_{1}\left(g h^{-1}\right) f_{2}(h)\right] \theta(g) \\
& =\sum_{g \in G} \sum_{h \in G} f_{1}\left(g h^{-1}\right) f_{2}(h) \theta\left(g h^{-1}\right) \theta(h) \\
& =\sum_{h \in G}\left[\sum_{g \in G} f_{1}\left(g h^{-1}\right) \theta\left(g h^{-1}\right)\right] f_{2}(h) \theta(h) \\
& =\widehat{f}_{1}(\theta) \widehat{f}_{2}(\theta)
\end{aligned}
$$

This shows (10.37). For $v, w \in W_{\theta}$ we have:

$$
\begin{aligned}
\left\langle\widehat{f^{*}}(\theta) v, w\right\rangle & =\sum_{g \in G} \overline{f\left(g^{-1}\right)}\langle\theta(g) v, w\rangle \\
& =\left\langle v, \sum_{g \in G} f\left(g^{-1}\right) \theta(g)^{*} w\right\rangle \\
& =\left\langle v, \sum_{g \in G} f\left(g^{-1}\right) \theta\left(g^{-1}\right) w\right\rangle \\
& =\langle v, \widehat{f}(\theta) w\rangle
\end{aligned}
$$

and (10.38) follows as well.
Proposition 10.3.9 Let $f \in \mathcal{Z}(L(G))$ and $\left(\theta, W_{\theta}\right) \in \widehat{G}$. Then the Fourier transform of f with respect to θ is a scalar multiple of the identity, more precisely,

$$
\widehat{f}(\theta)=\lambda I_{W} \quad \text { with } \quad \lambda=\frac{1}{d_{\theta}} \sum_{g \in G} f(g) \chi^{\theta}(g)=\frac{1}{d_{\theta}}\left\langle f, \overline{\chi^{\theta}}\right\rangle
$$

Proof Observe that

$$
\theta(g) \widehat{f}(\theta) \theta\left(g^{-1}\right)=\sum_{h \in G} f(h) \theta(g) \theta(h) \theta\left(g^{-1}\right)=\sum_{h \in G} f(h) \theta\left(g h g^{-1}\right)
$$

(by Proposition 10.3.3.(iii)) $=\sum_{h \in G} f\left(g h g^{-1}\right) \theta\left(g h g^{-1}\right)=\widehat{f}(\theta)$,
so that $\widehat{f}(\theta) \in \operatorname{End}_{G}\left(W_{\theta}\right)$. By Corollary 10.2.4 we deduce that $\widehat{f}(\theta)=\lambda I_{W}$. Computing the trace, we obtain

$$
\lambda d_{\theta}=\operatorname{Tr}\left(\lambda I_{W}\right)=\operatorname{Tr}[\widehat{f}(\theta)]=\sum_{h \in G} f(h) \chi^{\theta}(h)=\left\langle f, \overline{\chi^{\theta}}\right\rangle
$$

which yields the desired value of λ.
Theorem 10.3.10 (Fourier's inversion formula) For $f \in L(G)$ one has

$$
\begin{equation*}
f(g)=\frac{1}{|G|} \sum_{\theta \in \widehat{G}} d_{\theta} \operatorname{Tr}\left[\theta\left(g^{-1}\right) \widehat{f}(\theta)\right] \tag{10.39}
\end{equation*}
$$

for all $g \in G$. In particular, if $f_{1}, f_{2} \in L(G)$ satisfy the condition $\widehat{f}_{1}(\theta)=$ $\widehat{f_{2}}(\theta)$ for every $\theta \in \widehat{G}$, then one has $f_{1}=f_{2}$.

Proof Let $\left\{v_{1}^{\theta}, v_{2}^{\theta}, \ldots, v_{d_{\theta}}^{\theta}\right\}$ be an orthonormal basis for W_{θ} for all $\theta \in \widehat{G}$. By virtue of Theorem 10.2.25, the corresponding (normalized) coefficients $\frac{\sqrt{d_{\theta}}}{|G|} u_{i, j}^{\theta}, i, j=1,2, \ldots, d_{\theta}, \theta \in \widehat{G}$, constitute an orthonormal basis in $L(G)$. As a consequence, also their conjugates $\frac{\sqrt{d_{\theta}}}{|G|} \overline{u_{i, j}^{\theta}}$ constitute an orthonormal basis and thus for every function $f \in L(G)$ we have

$$
\begin{equation*}
f(g)=\frac{1}{|G|} \sum_{\theta \in \widehat{G}} d_{\theta} \sum_{i, j=1}^{d_{\theta}}\left\langle f, \overline{u_{i, j}^{\theta}}\right\rangle \overline{u_{i, j}^{\theta}(g)} \tag{10.40}
\end{equation*}
$$

for all $g \in G$. Now, recalling that $\widehat{f}(\theta)=\sum_{g \in G} f(g) \theta(g)$ we have

$$
\begin{equation*}
\left\langle f, \overline{u_{i, j}^{\theta}}\right\rangle=\sum_{g \in G} f(g) u_{i, j}^{\theta}(g)=\sum_{g \in G} f(g)\left\langle\theta(g) v_{j}^{\theta}, v_{i}^{\theta}\right\rangle=\left\langle\widehat{f}(\theta) v_{j}^{\theta}, v_{i}^{\theta}\right\rangle \tag{10.41}
\end{equation*}
$$

and

$$
\begin{aligned}
\sum_{i, j=1}^{d_{\theta}}\left\langle f, \overline{u_{i, j}^{\theta}}\right\rangle \overline{u_{i, j}^{\theta}(g)} & =\sum_{i, j=1}^{d_{\theta}}\left\langle\widehat{f}(\theta) v_{j}^{\theta}, v_{i}^{\theta}\right\rangle\left\langle v_{i}^{\theta}, \theta(g) v_{j}^{\theta}\right\rangle \\
& =\sum_{j=1}^{d_{\theta}}\left\langle\widehat{f}(\theta) v_{j}^{\theta}, \theta(g) v_{j}^{\theta}\right\rangle \\
& =\sum_{j=1}^{d_{\theta}}\left\langle\theta\left(g^{-1}\right) \widehat{f}(\theta) v_{j}^{\theta}, v_{j}^{\theta}\right\rangle \\
& =\operatorname{Tr}\left[\theta\left(g^{-1}\right) \widehat{f}(\theta)\right] .
\end{aligned}
$$

Thus, replacing this expression in (10.40), we deduce (10.39).
Exercise 10.3.11 Deduce the Fourier inversion formula (10.39) from (10.19), first in the case $f=\delta_{g}, g \in G$, and then, using linearity, in the general case (cf. (10.11)).

The Fourier inversion Theorem shows that every function in $L(G)$ is uniquely determined by its Fourier transforms $\widehat{f}(\theta), \theta \in \widehat{G}$. Note that although the expression of f, with respect to an orthonormal system made up of matrix coefficients is not unique but depends on the choice of an orthonormal basis in each representation space $W_{\theta}, \theta \in \widehat{G}$, the Fourier inversion formula, however, does not depend on the choice of such bases.

Finally, from this analysis we deduce that the algebra $L(G)$ is isomorphic to a direct sum of matrix algebras, namely, $L(G) \cong \oplus_{\theta \in \widehat{G}} \mathfrak{M}_{d_{\theta}}(\mathbb{C})$, where $\mathfrak{M}_{d_{\theta}}(\mathbb{C}) \cong \operatorname{End}\left(W_{\theta}\right)$ is the algebra of d_{θ}-by- d_{θ} matrices over \mathbb{C}. In order to
formulate more explicitly the properties of the Fourier transform as a linear map, we define the complex algebra

$$
C(\widehat{G})=\bigoplus_{\theta \in \widehat{G}} \operatorname{End}\left(W_{\theta}\right)
$$

Clearly, $C(\widehat{G})$ is a direct sum of algebras and every element $T \in C(\widehat{G})$ will be written in the form $T=\oplus_{\theta \in \widehat{G}} T(\theta)$, where $T(\theta) \in \operatorname{End}\left(W_{\theta}\right)$ for each $\theta \in \widehat{G}$. It is also involutive with respect to the map $T \mapsto T^{*}=\oplus_{\theta \in \widehat{G}} T(\theta)^{*}$.

Corollary 10.3.12 The Fourier transform

$$
\begin{aligned}
L(G) & \longrightarrow C(\widehat{G}) \\
f & \longmapsto
\end{aligned}
$$

is $a *$-isomorphism of *-algebras and its inverse is given by the map (inverse Fourier transform)

$$
\begin{array}{clc}
C(\widehat{G}) & \longrightarrow L(G) \\
T & \longmapsto & T^{\vee}
\end{array}
$$

where $T^{\vee}(g)=\frac{1}{|G|} \sum_{\theta \in \widehat{G}} d_{\theta} \operatorname{Tr}\left[\theta\left(g^{-1}\right) T(\theta)\right]$.
Theorem 10.3.13 The Fourier inversion formula for a central function f has the form

$$
f=\frac{1}{|G|} \sum_{\theta \in \widehat{G}}\left\langle f, \overline{\chi^{\theta}}\right\rangle_{L(G)} \overline{\chi^{\theta}}
$$

In particular:
(i) the characters $\chi^{\theta}, \theta \in \widehat{G}$, constitute an orthogonal basis for the subspace of central functions;
(ii) $|\widehat{G}|$ equals the number of conjugacy classes in G.

Proof The inversion formula follows from Proposition 10.3.9, taking into account that $\operatorname{Tr} \theta\left(g^{-1}\right)=\overline{\chi^{\theta}(g)}$ for all $g \in G$. Note also that from Proposition 10.2.15 and Proposition 10.2 .17 it follows that the characters of irreducible representations form an orthogonal system in the space of central functions; the inversion formula ensures that it is also complete. Since the dimension of the space of central functions is equal to the number of conjugacy classes (recall Proposition 10.3.3.(iii)), this dimension must also equal the number of irreducible representations of G.

Corollary 10.3.14 (Dual orthogonality relations for characters) Let
$\mathcal{L} \subseteq G$ be a set of representatives for the conjugacy classes of G and denote by $\mathcal{C}(t)=\left\{g^{-1} t g: g \in G\right\}$ the conjugacy class of $t \in \mathcal{L}$. Then

$$
\begin{equation*}
\sum_{\theta \in \widehat{G}} \chi^{\theta}(t) \overline{\chi^{\theta}\left(t^{\prime}\right)}=\frac{|G|}{|\mathcal{C}(t)|} \delta_{t, t^{\prime}} \tag{10.42}
\end{equation*}
$$

for all $t, t^{\prime} \in \mathcal{L}$.
Proof We begin by observing that (10.16) may be rewritten in the form

$$
\sum_{t \in \mathcal{L}} \frac{|\mathcal{C}(t)|}{|G|} \chi^{\theta_{1}}(t) \overline{\chi^{\theta_{2}}(t)}=\delta_{\theta_{1}, \theta_{2}}
$$

thus showing that the square (recall that $|\mathcal{L}|=|\widehat{G}|)$ matrix $U=\left(U_{\theta, t}\right)_{\theta \in \widehat{G}, t \in \mathcal{L}}$, with $U_{\theta, t}=\sqrt{\frac{|\mathcal{C}(t)|}{|G|}} \chi^{\theta}(t)$, is unitary. Therefore

$$
\sum_{\theta \in \widehat{G}} \sqrt{\frac{\left|\mathcal{C}\left(t_{1}\right)\right|}{|G|}} \chi^{\theta}\left(t_{1}\right) \cdot \sqrt{\frac{\left|\mathcal{C}\left(t_{2}\right)\right|}{|G|}} \overline{\chi^{\theta}\left(t_{2}\right)}=\delta_{t_{1}, t_{2}}
$$

and the statement follows.

Exercise 10.3.15 Deduce (10.42) from the dual orthogonality relations for matrix coefficients (cf. Lemma 10.2.13).

Exercise 10.3.16 Let G be a finite group.
(1) Use Theorem 10.3 .13 to prove that G is Abelian if and only if its irreducible representations are all one-dimensional.
(2) More generally, prove that if G contains an Abelian subgroup A, then $d_{\theta} \leq|G / A|$ for all $\theta \in \widehat{G}$.
Solution of (2): Let $(\theta, V) \in \widehat{G}$. Consider the restriction $\left(\operatorname{Res}_{A}^{G} \theta, V\right)$ and let $W \leq V$ be a non-trivial $\operatorname{Res}_{A}^{G} \theta$-irreducible subspace. By (1) we have that W is one-dimensional. Set $H=\{g \in G: \theta(g) W \subseteq W\}$ and denote by $\mathcal{T} \subset G$ a complete set of representatives for the left cosets of H in G, so that $G=\coprod_{t \in \mathcal{T}} t H$. Clearly $A \leq H, \theta(g) W \in\{\theta(t) W: t \in \mathcal{T}\}$ for all $g \in G$, and $\operatorname{dim} \theta(t) W=1$ for all $t \in \mathcal{T}$. Since, by irreducibility, $V=\oplus_{t \in \mathcal{T}} \theta(t) W$, we deduce that $d_{\theta}=|\mathcal{T}|=|G / H| \leq|G / A|$.

Theorem 10.3.17 (Plancherel formula) For all $f_{1}, f_{2} \in L(G)$ we have:

$$
\begin{equation*}
\left\langle f_{1}, f_{2}\right\rangle_{L(G)}=\frac{1}{|G|} \sum_{\theta \in \widehat{G}} d_{\theta} \operatorname{Tr}\left[\widehat{f}_{1}(\theta) \widehat{f}_{2}(\theta)^{*}\right] \tag{10.43}
\end{equation*}
$$

Proof From Theorem 10.2.25.(iii) we deduce that

$$
\left\langle f_{1}, f_{2}\right\rangle=\sum_{\theta \in \widehat{G}} \frac{d_{\theta}}{|G|} \sum_{i, j=1}^{d_{\theta}}\left\langle f_{1}, \overline{u_{i, j}^{\theta}}\right\rangle\left\langle\overline{u_{i, j}^{\theta}}, f_{2}\right\rangle,
$$

and then, applying (10.41), we get

$$
\begin{aligned}
\left\langle f_{1}, f_{2}\right\rangle & =\frac{1}{|G|} \sum_{\theta \in \widehat{G}} d_{\theta} \sum_{i, j=1}^{d_{\theta}}\left\langle\widehat{f}_{1}(\theta) v_{j}^{\theta}, v_{i}^{\theta}\right\rangle \cdot\left\langle v_{i}^{\theta}, \widehat{f}_{2}(\theta) v_{j}^{\theta}\right\rangle= \\
& =\frac{1}{|G|} \sum_{\theta \in \widehat{G}} d_{\theta} \operatorname{Tr}\left[\widehat{f}_{1}(\theta) \widehat{f}_{2}(\theta)^{*}\right]
\end{aligned}
$$

10.4 Group actions and permutation characters

In the present section we suppose that the finite group G acts on a finite set X. We recall that this means that we have a map

$$
\begin{array}{ccc}
G \times X & \longrightarrow & X \\
(g, x) & \longmapsto & g x
\end{array}
$$

such that

- for each $g \in G$ the map $x \mapsto g x$ is a bijection (a permutation) of X, that we denote $\pi(g)$;
- the map $g \mapsto \pi(g)$ is a homomorphism between G and $\operatorname{Sym}(X)$, the group of all permutations of X.

This is equivalent to saying that $\left(g_{1} g_{2}\right) x=g_{1}\left(g_{2} x\right)$ and $1_{G} x=x$ so that, in particular, $x \mapsto g^{-1} x$ is the inverse permutation $\pi(g)^{-1}$, for all $g_{1}, g_{2} \in G$ and $x \in X$. We usually call $g x$ the g-image of x.

For $x \in X$ denote by $\operatorname{Stab}_{G}(x)=\{g \in G: g x=x\}\left(\right.$ or $\left.G_{x}\right)$ and $\operatorname{Orb}_{G}(x)=$ $\{g x: g \in G\}$ (or $G x$) the stabilizer and the G-orbit of x. It is easy to see that the orbits form a partition of X (see Exercise 10.4.1); the action is transitive if there is a single orbit, that is $\operatorname{Orb}_{G}(x)=X$ (and this clearly holds for all $x \in X)$. Equivalently, it is transitive if and only if for all $x_{1}, x_{2} \in X$ there exists $g \in G$ such that $g x_{1}=x_{2}$. If G acts transitively on X we also say that X is a (homogeneous) G-space.

Exercise 10.4.1 Let X be a G-space.
(1) Show that $\operatorname{Stab}_{G}(g x)=g \operatorname{Stab}_{G}(x) g^{-1}$, for all $g \in G$ and $x \in X$.
(2) Show that for $x, x^{\prime} \in X$, the relation $x \sim x^{\prime}$ if x and x^{\prime} belong to the same G-orbit is an equivalence relation on X, so that the G-orbits on X constitute the corresponding partition of X.

Lemma 10.4.2 Let X be a G-space. Then

$$
\begin{equation*}
|G|=\left|\operatorname{Stab}_{G}(x)\right| \cdot\left|\operatorname{Orb}_{G}(x)\right| \tag{10.44}
\end{equation*}
$$

for all $x \in X$. Moreover,

$$
\frac{1}{|G|} \sum_{x \in X}\left|\operatorname{Stab}_{G}(x)\right|=\text { number of } G \text {-orbits in } X \text {. }
$$

Proof Let $x \in X$ and consider the map $\phi: G \rightarrow \operatorname{Orb}_{G}(x)$ which maps g to $g x$. By definition it is surjective; moreover one has $\phi^{-1}(x)=\operatorname{Stab}_{G}(x)$ and, more generally, $\phi^{-1}(g x)=\left\{g k: k \in \operatorname{Stab}_{G}(x)\right\}=g \operatorname{Stab}_{G}(x)$ so that, in particular, $\left|\phi^{-1}\left(x^{\prime}\right)\right|=\left|\phi^{-1}(x)\right|=\left|\operatorname{Stab}_{G}(x)\right|$ for all $x^{\prime} \in \operatorname{Orb}_{G}(x)$. Thus ϕ is a surjective $\left|\operatorname{Stab}_{G}(x)\right|$-to-one map and (10.44) follows. Moreover, if $X_{1}, X_{2}, \ldots, X_{h}$ are the orbits of G on X then

$$
\begin{aligned}
\frac{1}{|G|} \sum_{x \in X}\left|\operatorname{Stab}_{G}(x)\right| & =\frac{1}{|G|} \sum_{i=1}^{h} \sum_{x \in X_{i}}\left|\operatorname{Stab}_{G}(x)\right| \\
(\text { by }(10.44)) & =\frac{1}{|G|} \sum_{i=1}^{h} \sum_{x \in X_{i}} \frac{|G|}{\left|X_{i}\right|} \\
& =\sum_{i=1}^{h} \frac{1}{\left|X_{i}\right|} \cdot\left|X_{i}\right| \\
& =h .
\end{aligned}
$$

Example 10.4.3 Let X be a G-space. As in Section 2.1, let $L(X)$ denote the vector space of all complex valued functions defined on X endowed with the inner product defined by $\left\langle f_{1}, f_{2}\right\rangle_{L(X)}=\sum_{x \in X} f_{1}(x) \overline{f_{2}(x)}$, for all $f_{1}, f_{2} \in$ $L(X)$. The permutation representation of G on X is the G-representation ($\lambda, L(X)$) defined by

$$
[\lambda(g) f](x)=f\left(g^{-1} x\right)
$$

for all $f \in L(X), g \in G$ and $x \in X$. As in Example 10.1.8 (which is actually a particular case of the present construction), it is easy to check that this is a unitary representation and that the Dirac functions $\delta_{x}, x \in X$, form an orthonormal basis (now, $\delta_{x}(x)=1$ and $\delta_{x}(y)=0$ if $y \neq x$). Moreover,
$\lambda(g) \delta_{x}=\delta_{g x}$ for all $g \in G, x \in X$, and $f=\sum_{x \in X} f(x) \delta_{x}$ for all $f \in L(X)$. Let now $X=\coprod_{j=1}^{h} X_{j}$ be the decomposition of X into G-orbits. Then

$$
\begin{equation*}
L(X)=\bigoplus_{j=1}^{h} L\left(X_{j}\right) \tag{10.45}
\end{equation*}
$$

is clearly a direct sum decomposition into G-invariant subspaces. Indeed, any $f \in L(X)$ may be written in the form $f=\sum_{j=1}^{h} f_{j}$, where $f_{j} \in L(X)$ is defined by setting

$$
f_{j}(x)= \begin{cases}f(x) & \text { if } x \in X_{j} \tag{10.46}\\ 0 & \text { otherwise }\end{cases}
$$

for all $j=1,2, \ldots, h$, so that f_{j} may be naturally identified with a function in $L\left(X_{j}\right)$. Moreover, (10.46) implies G-invariance of the decomposition (10.45). For this reason, it is customary, in representation theory, to consider only transitive actions (that is, the case $h=1$). Note also that even in this case, a permutation representation on a set X with more that one element is not irreducible because the $(|X|-1)$-dimensional space $W_{1}=\{f \in L(X)$: $\left.\sum_{x \in X} f(x)=0\right\}$ is always G-invariant: if $f \in W_{1}$ and $g \in G$ then

$$
\sum_{x \in X}[\lambda(g) f](x)=\sum_{x \in X} f\left(g^{-1} x\right)=\sum_{y \in X} f(y)=0
$$

so that $\lambda(g) f \in W_{1}$. Note also that, as in Section 2.1, we have the orthogonal decomposition $L(X)=W_{0} \oplus W_{1}$, where $W_{0}=\{f \in L(X): f$ constant $\}=$ W_{1}^{\perp}. More explicitly, for any $f \in L(X)$ we have

$$
f=\frac{1}{|X|} \sum_{x \in X} f(x)+\left[f-\frac{1}{|X|} \sum_{x \in X} f(x)\right]
$$

where the first summand (the mean value) belongs to W_{0} and the second one to W_{1}. Another important consequence of transitivity is the following: the trivial representation of G is contained in $L(X)$ with multiplicity exactly one and coincides with W_{0}. Indeed, if $\lambda(g) f=f$ for all $g \in G$ then transitivity implies that f is constant (in general, the multiplicity of the trivial representation in $(\lambda, L(X))$ equals the number of G-orbits). In Exercise 10.4.16 we will give a necessary and sufficient condition for the irreducibility of W_{1}.

Example 10.4.4 Let $G=S_{n}$ be the symmetric group of degree n (cf. Example 10.1.10). The natural permutation representation of S_{n} is n-dimensional representation constructed as in Example 10.4.3, using the natural action of S_{n} on $X=1,2, \ldots, n$. See also Exercise 10.4.16.

Example 10.4.5 (The affine group over \mathbb{F}_{q}) Let \mathbb{F}_{q} be the finite field with $q=p^{m}$ elements, where p is a prime number and $m \geq 1$ (see Chapter 6). The (general) affine group (of degree one) over \mathbb{F}_{q} is the group of matrices

$$
\operatorname{Aff}\left(\mathbb{F}_{q}\right)=\left\{\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right): a \in \mathbb{F}_{q}^{*}, b \in \mathbb{F}_{q}\right\}
$$

The terminology is due to the fact that $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ acts (transitively: this is an easy exercise) on $\mathbb{F}_{q} \equiv\left\{\binom{x}{1}: x \in \mathbb{F}_{q}\right\}$ by multiplication

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\binom{x}{1}=\binom{a x+b}{1}
$$

and the maps $x \mapsto a x+b$ (with $a \in \mathbb{F}_{q}^{*}, b \in \mathbb{F}_{q}$) are the affine transformations of \mathbb{F}_{q}. For this reason, one often also refers to $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ as to the finite $a x+b$ group.

This defines a permutation representation of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$, that will be examined in Exercise 10.4.7 and Exercise 10.4.16. In Section 12.1 we shall fully describe all irreducible representations of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$.

Consider the permutation representation of G on $L(X)$ defined in Example 10.4.3. The corresponding character χ^{λ} is called the permutation character of the action of G on X. In the following, we prove a basic formula for χ^{λ}.

Proposition 10.4.6 (Fixed point character formula) Let $g \in G$. Then we have

$$
\begin{equation*}
\chi^{\lambda}(g)=|\{x \in X: g x=x\}| \tag{10.47}
\end{equation*}
$$

that is, $\chi^{\lambda}(g)$ equals the number of points in X which are fixed by g.
Proof Recall that the set $\left\{\delta_{x}: x \in X\right\}$ is an orthonormal basis in $L(X)$ and therefore

$$
\chi^{\lambda}(g)=\sum_{x \in X}\left\langle\lambda(g) \delta_{x}, \delta_{x}\right\rangle_{L(X)}=\sum_{x \in X}\left\langle\delta_{g x}, \delta_{x}\right\rangle_{L(X)}
$$

This clearly counts the points in X which are fixed by g (compare with (10.21), which is just a special case).

Another formula for χ^{λ}, in the case of a transitive permutation representation, will be given in Corollary 11.1.14.

Example 10.4.7 Consider the permutation representation λ of the finite
affine group $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ (cf. Example 10.4.5). The corresponding permutation character χ^{λ} is given by

$$
\chi^{\lambda}\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)= \begin{cases}1 & \text { if } a \neq 1 \\
q & \text { if } a=1 \text { and } b=0 \\
0 & \text { otherwise }\end{cases}
$$

for all $a \in \mathbb{F}_{q}^{*}$ and $b \in \mathbb{F}_{q}$. Indeed, solving the equation $a x+b=x$, that is, $(a-1) x+b=0$, we find:

- if $a \neq 1$ there is a unique solution given by $x=-\frac{b}{a-1}$;
- if $a=1$ and $b=0$ then each $x \in \mathbb{F}_{q}$ is a solution (the identity fixes every point);
- if $a=1$ and $b \neq 0$ there are no solutions.

The following lemma is usually called "the Burnside lemma", but it was known already to Cauchy (see [21, 121, 169]).

Lemma 10.4.8 (Burnside's lemma) Let G be a finite group acting on a finite set X and denote by $(\lambda, L(X))$ the corresponding permutation representation. Then we have:

$$
\frac{1}{|G|} \sum_{g \in G} \chi^{\lambda}(g)=\text { number of } G \text {-orbits on } X \text {. }
$$

Proof We clearly have

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} \chi^{\lambda}(g)=\frac{1}{|G|}\left\langle\chi^{\lambda}, \mathbf{1}_{G}\right\rangle_{L(G)} \tag{10.48}
\end{equation*}
$$

where $\mathbf{1}_{G}=\chi^{\iota}$, the character of the trivial representation of G. By Proposition 10.2.18, the right hand side of (10.48) equals the multiplicity of the trivial representation as a sub-representation of the permutation representation λ. Since (cf. Example 10.4.3) $L(X)^{G}=\oplus_{i=1}^{h} \mathbb{C} \mathbf{1}_{X_{i}}$, where $\mathbf{1}_{X_{i}}$ denotes the characteristic function of the orbit $X_{i}, i=1,2, \ldots, h$, and (cf. Example 10.2 .21) the multiplicity of the trivial representation in any G-representation V equals the dimension of the subspace V^{G} of G-invariant vectors, the right hand side of (10.48) is therefore equal to $\operatorname{dim}\left(L(X)^{G}\right)=h$, the number of G-orbits on X.

Exercise 10.4.9 Deduce Burnside's Lemma from Lemma 10.4.2 and Proposition 10.4.6.

Form now on, we assume that G acts transitively on X, that $K \leq G$ is the stabilizer of a fixed element $x_{0} \in X$, and that \mathcal{T} is a complete set of representatives for the left cosets of K in G, that is,

$$
\begin{equation*}
G=\coprod_{t \in \mathcal{T}} t K \tag{10.49}
\end{equation*}
$$

Then the map

$$
\begin{array}{llll}
\Psi: & G / K & \rightarrow X \\
& \rightarrow K & \mapsto g x_{0}, \tag{10.50}
\end{array}
$$

where G / K is the set of all left cosets of K in G, is a bijection. Indeed, for $g_{1}, g_{2} \in G$ we have $g_{1} x_{0}=g_{2} x_{0}$ if and only if $g_{1}^{-1} g_{2} \in K$, that is, $g_{1} K=g_{2} K$. Define an action of G on G / K by setting $g\left(g_{0} K\right)=\left(g g_{0}\right) K$. It is easy to see that the map (10.50) is G-equivariant (or, that the G-spaces X and G / K are isomorphic), that is,

$$
g \Psi\left(g_{0} K\right)=\Psi\left(g\left(g_{0} K\right)\right) \quad \forall g, g_{0} \in G
$$

In other words, every transitive G-space is isomorphic to a G-space G / K (where K, as above, is the stabilizer of a point in X).

Exercise 10.4.10 (1) Let $H, K \leq G$ be two subgroups. Show that G / H and G / K are isomorphic as G-spaces if and only if H and K are conjugate in G (there exists $g \in G$ such that $H=g^{-1} K g$).
(2) Let X be a transitive G-space. Let $x_{0}, x_{0}^{\prime} \in X$ and denote by $K, K^{\prime} \leq$ G the corresponding stabilizers. Using Exercise 10.4.1 and (1) show that the G-spaces G / K and G / K^{\prime} are isomorphic.

Given an action of a group G on a set X, the corresponding diagonal action of G on $X \times X$ is defined by setting

$$
g\left(x_{1}, x_{2}\right)=\left(g x_{1}, g x_{2}\right), \quad g \in G, x_{1}, x_{2} \in X
$$

We denote by $\left(\lambda^{2}, L(X \times X)\right)$ the corresponding permutation representation.

Proposition 10.4.11 Let X be a G-space and denote by $(\lambda, L(X)$) and $\left(\lambda^{2}, L(X \times X)\right)$ the corresponding permutation representations. Then

$$
\chi^{\lambda^{2}}=\left(\chi^{\lambda}\right)^{2}
$$

Proof Let $g \in G$. From the fixed point character formula (10.47) we deduce
that

$$
\begin{aligned}
\left(\chi^{\lambda}(g)\right)^{2} & =|\{x \in X: g x=x\}|^{2} \\
& =\left|\left\{x_{1} \in X: g x_{1}=x_{1}\right\}\right| \cdot\left|\left\{x_{2} \in X: g x_{2}=x_{2}\right\}\right| \\
& =\left|\left\{\left(x_{1}, x_{2}\right) \in X \times X: g\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)\right\}\right| \\
\text { (again by }(10.47)) & =\chi^{\lambda^{2}}(g)
\end{aligned}
$$

Proposition 10.4.12 Let X be a G-space and denote, as usual, by $K \leq G$ the stabilizer of a fixed point $x_{0} \in X$. Let $X=\Omega_{0} \amalg \Omega_{1} \amalg \cdots \coprod \Omega_{n}$ denote the decomposition of X into K-orbits (with $\Omega_{0}=\left\{x_{0}\right\}$) and choose $x_{i} \in \Omega_{i}$, $i=1,2, \ldots, n$. Then the sets

$$
G\left(x_{i}, x_{0}\right)=\left\{\left(g x_{i}, g x_{0}\right): g \in G\right\} \subseteq X \times X
$$

$i=0,1,2, \ldots, n$, are the orbits of the diagonal action of G on $X \times X$.
Proof First of all, note that if $(x, y) \in X \times X$ then there exist $g \in G, k \in K$, and $i \in\{0,1, \ldots, n\}$ such that $g x_{0}=y(G$ is transitive on $X)$ and $g k x_{i}=x$ (let $K x_{i}=\Omega_{i}$ be the K-orbit containing $g^{-1} x$). Therefore,

$$
(x, y)=\left(g k x_{i}, g x_{0}\right)=\left(g k x_{i}, g k x_{0}\right) \in G\left(x_{i}, x_{0}\right)
$$

This shows that

$$
\begin{equation*}
X \times X=\bigcup_{i=0}^{n} G\left(x_{i}, x_{0}\right) \tag{10.51}
\end{equation*}
$$

It is also easy to show that $G\left(x_{i}, x_{0}\right) \cap G\left(x_{j}, x_{0}\right)=\emptyset$ if $i \neq j$: indeed if $g_{1}, g_{2} \in G$ satisfy $g_{1} x_{i}=g_{2} x_{j}$ and $g_{1} x_{0}=g_{2} x_{0}$ then, necessarily, $g_{2}^{-1} g_{1} \in K$, and this forces $i=j$. Therefore (10.51) is in fact a disjoint union.

Conversely, we may rephrase the above result as follows.
Corollary 10.4.13 Let Θ be a G-orbit on $X \times X$. Then the set $\Omega=\{x \in$ $\left.X:\left(x, x_{0}\right) \in \Theta\right\}$ is an orbit of K on X and the map $\Theta \mapsto \Omega$ is a bijection between the set of orbits of G on $X \times X$ (with the diagonal action) and those of K on X.

The following result was surely known to Schur and possibly even to Frobenius. Since a standard reference for it is the book by Wielandt [167], for convenience we refer to it as to "Wielandt's lemma". Another proof will be indicated in Exercise 11.4.9.

Lemma 10.4.14 (Wielandt) Let X be a G-space. Suppose that $L(X)=$ $\oplus_{i=0}^{N} m_{i} V_{i}$ is the decomposition of $L(X)$ into irreducible G-representations, where m_{i} denotes the multiplicity of V_{i}. Then

$$
\begin{equation*}
\sum_{i=0}^{N} m_{i}^{2}=\text { number of } G \text {-orbits on } X \times X=\text { number of } K \text {-orbits on } X \tag{10.52}
\end{equation*}
$$

Proof Denote again by χ^{λ} the permutation character associated with the G-action on X. From Corollary 10.2.22 we deduce that:

$$
\begin{aligned}
\sum_{i=1}^{h} m_{i}^{2} & =\frac{1}{|G|}\left\langle\chi^{\lambda}, \chi^{\lambda}\right\rangle_{L(G)} \\
\left(\chi^{\lambda}=\overline{\chi^{\lambda}}\right. \text { by Proposition 10.4.6) } & =\frac{1}{|G|} \sum_{g \in G} \chi^{\lambda}(g)^{2} \\
(\text { by Proposition 10.4.11) } & =\frac{1}{|G|} \sum_{g \in G} \chi^{\lambda^{2}}(g) \\
\text { (by Lemma 10.4.8) } & =\text { number of } G \text {-orbits on } X \times X \\
\text { (by Corollary 10.4.13) } & =\text { number of } K \text {-orbits on } X .
\end{aligned}
$$

In other words, by Proposition 10.2.18,

$$
\frac{1}{|G|}\left\langle\chi^{\lambda}, \chi^{\lambda}\right\rangle=\frac{1}{|G|}\left\langle\left(\chi^{\lambda}\right)^{2}, \mathbf{1}_{G}\right\rangle=\frac{1}{|G|}\left\langle\chi^{\lambda^{2}}, \mathbf{1}_{G}\right\rangle
$$

is equal to the multiplicity of the trivial representation in the permutation representation of G on $X \times X$.

The following is a slight but useful generalization of the previous result.
Exercise 10.4.15 Let G act transitively on two finite sets $X=G / K$ and $Y=G / H$. Define the diagonal action of G on $X \times Y$ by setting, for all $x \in X, y \in Y$ and $g \in G$

$$
g(x, y)=(g x, g y)
$$

(1) Show that the number of G-orbits on $X \times Y$ equals the number of H-orbits on X which in turn equals the number of K-orbits on Y.
(2) Let $L(X)=\oplus_{i \in I} m_{i} V_{i}$ and $L(Y)=\oplus_{j \in J} n_{j} V_{j}$ denote the decomposition of the permutation representations $L(X)$ and $L(Y)$ into irreducible representations. Denoting by $I \cap J$ the set of indices corresponding to common (equivalent) sub-representations, show that the number of G-orbits on $X \times Y$ equals the sum $\sum_{i \in I \cap J} m_{i} n_{i}$.

An action of G on X is called doubly transitive if for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in$ $(X \times X) \backslash\{(x, x): x \in X\}$ there exists $g \in G$ such that $g x_{i}=y_{i}$ for $i=1,2$.

Exercise 10.4.16 Suppose that G acts transitively on X.
(1) Prove that G is doubly transitive on X if and only if K is transitive on $X \backslash\left\{x_{0}\right\}$.
(2) Let W_{0} and W_{1} be as in Example 10.4.3. Prove that $L(X)=W_{0} \oplus$ W_{1} is the decomposition of the permutation representation into irreducibles if and only if G acts doubly transitively on X.
(3) Prove that if the action of G on $X=G / K$ is doubly transitive, then K is a maximal subgroup ($K<H \leq G$ infers $H=G$).
Solution. Suppose that $K<H \leq G$ and let $h \in H \backslash K$ and $g \in$ $G \backslash K$. By double transitivity applied to $(K, h K),(K, g K) \in(X \times$ $X) \backslash\{(x, x): x \in X\}$, there exists $g^{\prime} \in G$ such that $g^{\prime} K=K$ and $g^{\prime} h K=g K$. But then $g^{\prime} \in K, g^{\prime} h \in H$ and therefore $g \in H$. This shows that $H=G$.
(4) Show that the action of S_{n} on $\{1,2, \ldots, n\}$ is doubly transitive.
(5) Show that the action of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ on \mathbb{F}_{q} defined in Exemple 10.4.5 is doubly transitive. Deduce that the corresponding permutation representation decomposes into the sum of the trivial representation and of a $(q-1)$-dimensional, irreducible representation. See also Section 12.1.

Exercise 10.4.17 Consider the dihedral group D_{n} in Example 10.2.28 and define an action of D_{n} on the additive cyclic group \mathbb{Z}_{n} by setting $a h=h+1$ and $b h=-h$ for all $h \in \mathbb{Z}_{n}$. Show that this coincides with the natural action of D_{n} on the regular polygon with n sides. Also show that the corresponding permutation representation λ decomposes as follows:

$$
\lambda= \begin{cases}\chi_{0} \oplus \chi_{3} \oplus\left(\bigoplus_{j=1}^{\frac{n}{2}-1} \rho_{j}\right) & \text { if } n \text { is even } \\ \chi_{0} \oplus\left(\bigoplus_{j=1}^{\frac{n-1}{2}} \rho_{j}\right) & \text { if } n \text { is odd }\end{cases}
$$

10.5 Conjugate representations and tensor products

The present section is devoted to two basic constructions in linear and multilinear algebra, namely dual spaces and tensor products, in the framework of the representation theory of finite groups. We recall all basics notions but
only for finite dimensional, complex unitary spaces.
Let V be a finite dimensional complex vector spaces. The dual V^{\prime} of V is the space of all linear functionals $f: V \rightarrow \mathbb{C}$. If V is unitary, then the Riesz representation theorem ensures that for each $f \in V^{\prime}$ there exists a unique vector $\xi(f) \in V$ such that:

$$
\begin{equation*}
f(v)=\langle v, \xi(f)\rangle, \quad \text { for all } v \in V \tag{10.53}
\end{equation*}
$$

The Riesz map $\xi=\xi_{V}: V^{\prime} \rightarrow V$ is anti-linear, i.e. $\xi\left(\alpha f_{1}+\beta f_{2}\right)=\bar{\alpha} \xi\left(f_{1}\right)+$ $\bar{\beta} \xi\left(f_{2}\right)$, for all $\alpha, \beta \in \mathbb{C}$ and $f_{1}, f_{2} \in V^{\prime}$, and bijective. In V^{\prime} we introduce an inner product by setting, for all f_{1} and $f_{2} \in V^{\prime}$,

$$
\begin{equation*}
\left\langle f_{1}, f_{2}\right\rangle_{V^{\prime}}=\left\langle\xi\left(f_{2}\right), \xi\left(f_{1}\right)\right\rangle_{V} \tag{10.54}
\end{equation*}
$$

Thus, for $f \in V^{\prime}$ and $v \in V$ one has

$$
f(v)=\langle v, \xi(f)\rangle_{V}=\left\langle f, \xi^{-1}(v)\right\rangle_{V^{\prime}}
$$

which shows that $V^{\prime \prime}=\left(V^{\prime}\right)^{\prime}$, the bi-dual of V, is isometrically identified with V by means of ξ^{-1}.

Definition 10.5.1 Let G be a finite group and (ρ, V) a unitary representation of G. We define the adjoint or conjugate representation ($\rho^{\prime}, V^{\prime}$) of (ρ, V) by setting, for all $f \in V^{\prime}, v \in V$ and $g \in G$

$$
\begin{equation*}
\left[\rho^{\prime}(g) f\right](v)=f\left[\rho\left(g^{-1}\right) v\right] . \tag{10.55}
\end{equation*}
$$

It is easy to check that ρ^{\prime} is a linear representation of G and ρ^{\prime} is irreducible if and only if ρ is irreducible: this is an immediate consequences of the next proposition.

Proposition 10.5.2 For all $g \in G$ we have:

$$
\begin{equation*}
\rho^{\prime}(g)=\xi^{-1} \rho(g) \xi . \tag{10.56}
\end{equation*}
$$

Proof For all $g \in G, v \in V$ and $f \in V^{\prime}$ we have:

$$
\begin{aligned}
\left\langle v, \xi\left[\rho^{\prime}(g) f\right]\right\rangle & =\left[\rho^{\prime}(g) f\right](v) & & \text { by }(10.53) \\
& =f\left[\rho\left(g^{-1}\right) v\right] & & \text { by }(10.55) \\
& =\left\langle\rho\left(g^{-1}\right) v, \xi(f)\right\rangle & & \text { by }(10.53) \\
& =\langle v, \rho(g)[\xi(f)]\rangle & &
\end{aligned}
$$

so that $\xi \rho^{\prime}(g)=\rho(g) \xi$.

Remark 10.5.3 Note that, despite (10.56), in general $\rho^{\prime} \nsim \rho$: recall that the map ξ is anti-linear! However, the following result holds true (modulo the identification of $V^{\prime \prime}$ and V).

Corollary 10.5.4 The double adjoint $\left(\rho^{\prime}\right)^{\prime}$ coincides with ρ.
Proof We first observe that

$$
\begin{equation*}
\xi_{V^{\prime}}=\left(\xi_{V}\right)^{-1} \tag{10.57}
\end{equation*}
$$

Thus, by applying Proposition 10.5.2 twice and (10.57), we obtain

$$
\left(\rho^{\prime}\right)^{\prime}(g)=\xi_{V^{\prime}}^{-1} \rho^{\prime}(g) \xi_{V^{\prime}}=\xi_{V} \xi_{V}^{-1} \rho(g) \xi_{V} \xi_{V}^{-1}=\rho(g)
$$

for all $g \in G$.
We now fix an orthonormal basis $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ of V and denote by $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ the orthonormal basis in V^{\prime} which is dual to $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$, that is, such that $f_{i}\left(v_{j}\right)=\delta_{i, j}$ (or, equivalently, $f_{i}=\xi^{-1}\left(v_{i}\right)$), for all $i, j=1,2, \ldots, d$.

Proposition 10.5.5 The matrix coefficients $u_{i, j}^{\prime}(g)$ of ρ^{\prime} with respect to the dual basis $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ are the conjugates of those of ρ, in fomulce:

$$
\begin{equation*}
u_{i, j}^{\prime}(g)=\overline{u_{i, j}(g)} \tag{10.58}
\end{equation*}
$$

for all $g \in G$ and $i, j=1,2, \ldots, d$.

Proof Keeping in mind (10.14), we have

$$
\begin{aligned}
u_{i, j}^{\prime}(g) & =\left\langle\rho^{\prime}(g) f_{j}, f_{i}\right\rangle_{V^{\prime}} \\
(\text { by }(10.54)) & =\left\langle\xi\left(f_{i}\right), \xi\left[\rho^{\prime}(g) f_{j}\right]\right\rangle_{V} \\
\left(\text { since } \xi\left(f_{i}\right)=v_{i} \text { and by }(10.56)\right) & =\left\langle v_{i}, \rho(g) v_{j}\right\rangle_{V} \\
& =\overline{\left\langle\rho(g) v_{j}, v_{i}\right\rangle_{V}} \\
& =\overline{u_{i, j}(g)}
\end{aligned}
$$

for all $g \in G$ and $i, j=1,2, \ldots, d$.
Corollary 10.5.6 The character of ρ^{\prime} is the conjugate of the character of ρ :

$$
\begin{equation*}
\chi^{\rho}(g)=\overline{\chi^{\rho^{\prime}}(g)} \tag{10.59}
\end{equation*}
$$

for all $g \in G$.

For instance, if $\chi^{k}(0 \leq k \leq n-1)$ is a character of the cyclic group \mathbb{Z}_{n} as in Section 2.2, then the character of the corresponding adjoint representation is χ^{-k}.

Exercise 10.5.7 (Fourier transform of a character) Prove that for θ and σ in \widehat{G} we have $\widehat{\chi^{\sigma}}(\theta)=\delta_{\theta, \sigma^{\prime}} \frac{|G|}{d_{\theta}} I_{V_{\theta}}$.

Remark 10.5.8 A representation $\rho \in \widehat{G}$ is self-conjugate when ρ and ρ^{\prime} are equivalent; it is complex when it is not self-conjugate. By virtue of (10.59), we may say that ρ is self-conjugate if and only if $\chi^{\rho}(g) \in \mathbb{R}$ for all $g \in G$, that is, its character is a real valued function. Similarly, ρ is complex if and only if $\chi^{\rho}(g) \in \mathbb{C} \backslash \mathbb{R}$ for some $g \in G$. The class of self-conjugate representations can be further split into two subclasses (real and quaternionic); we refer to [29, Section 9.7] for more details.

Now we apply the notion of a conjugate representation to the decomposition of the group algebra. Suppose that our choice of the elements of the dual \widehat{G} of G makes it invariant under conjugation: for all $\theta \in \widehat{G}$, also $\theta^{\prime} \in \widehat{G}$. Using the notation in Theorem 10.2.25, for each $\theta \in \widehat{G}$ we set:

$$
\begin{aligned}
M_{i, *}^{\theta} & =\left\langle u_{i, j}^{\theta}: \quad j=1,2, \ldots, d_{\theta}\right\rangle, i=1,2, \ldots, d_{\theta} \\
M_{*, j}^{\theta} & =\left\langle u_{i, j}^{\theta}: i=1,2, \ldots, d_{\theta}\right\rangle, j=1,2, \ldots, d_{\theta} \\
M^{\theta} & =\left\langle u_{i, j}^{\theta}: \quad i, j=1,2, \ldots, d_{\theta}\right\rangle
\end{aligned}
$$

where $\langle\cdots\rangle$ indicates \mathbb{C}-linear span. Recall also the definition of the left (respectively right) regular representation in Example 10.1.8.

Theorem 10.5.9 The following orthogonal decompositions hold:
(i) $L(G)=\oplus_{\theta \in \widehat{G}} M^{\theta}$ and each M^{θ} is both $\lambda_{G^{-}}$and $\rho_{G^{-} \text {-invariant; }}$
(ii) $M^{\theta}=\oplus_{i=1}^{d_{\theta}} M_{i, *}^{\theta}$; each $M_{i, *}^{\theta}$ is ρ_{G}-invariant and the restriction of ρ_{G} to $M_{i, *}^{\theta}$ is equivalent to θ;
(iii) $M^{\theta}=\oplus_{j=1}^{d_{\theta}} M_{*, j}^{\theta}$; each $M_{*, j}^{\theta}$ is λ_{G}-invariant and the restriction of λ to $M_{*, j}^{\theta}$ is equivalent to θ^{\prime}.

Proof
(i) The decomposition $L(G)=\bigoplus_{\theta \in \widehat{G}} M^{\theta}$ is just the Peter-Weyl theorem (Theorem 10.2.25); the $\lambda_{G^{-}}$and $\rho_{G^{-}}$invariance are proved below.
(ii) Let $g, g_{1} \in G$ and $i, j \in\left\{1,2, \ldots, d_{\theta}\right\}$. Then, by Lemma 10.2.13.(iii),

$$
\left[\rho_{G}(g) u_{i, j}^{\theta}\right]\left(g_{1}\right)=u_{i, j}^{\theta}\left(g_{1} g\right)=\sum_{k=1}^{d_{\theta}} u_{i, k}^{\theta}\left(g_{1}\right) u_{k, j}^{\theta}(g)
$$

i.e.

$$
\rho_{G}(g) u_{i, j}^{\theta}=\sum_{k=1}^{d_{\theta}} u_{i, k}^{\theta} u_{k, j}^{\theta}(g)
$$

Since, by Lemma 10.2.13.(ii), $\theta(g) v_{j}^{\theta}=\sum_{k=1}^{d_{\theta}} v_{k}^{\theta} u_{k, j}^{\theta}(g)$, we conclude that the $\operatorname{map} v_{j}^{\theta} \mapsto u_{i, j}^{\theta}, j=1,2, \ldots, d_{\theta}$, extends to an invertible operator that intertwines θ with $\left.\rho_{G}\right|_{M_{i, *}}$.
(iii) Let $g, g_{1} \in G$ and $i, j \in\left\{1,2, \ldots, d_{\theta}\right\}$. Then, by Lemma 10.2.13.(iii), Lemma 10.2.13.(i), and (10.58), we have

$$
\begin{aligned}
{\left[\lambda_{G}(g) u_{i, j}^{\theta}\right]\left(g_{1}\right) } & =u_{i, j}^{\theta}\left(g^{-1} g_{1}\right) \\
& =\sum_{k=1}^{d_{\theta}} u_{i, k}^{\theta}\left(g^{-1}\right) u_{k, j}^{\theta}\left(g_{1}\right) \\
& =\sum_{k=1}^{d_{\theta}} \overline{u_{k, i}^{\theta}(g)} u_{k, j}^{\theta}\left(g_{1}\right) \\
& =\sum_{k=1}^{d_{\theta}} u_{k, i}^{\theta^{\prime}}(g) u_{k, j}^{\theta}\left(g_{1}\right)
\end{aligned}
$$

i.e. $\lambda_{G}(g) u_{i, j}^{\theta}=\sum_{k=1}^{d_{\theta}} u_{k, j}^{\theta} u_{k, i}^{\theta^{\prime}}(g)$. Again by Lemma 10.2.13.(ii) we have $\theta^{\prime}(g) v_{i}^{\theta^{\prime}}=\sum_{k=1}^{d_{\theta}} v_{k}^{\theta^{\prime}} u_{k, i}^{\theta^{\prime}}(g)$, and this shows that the map $v_{i}^{\theta^{\prime}} \mapsto$ $u_{i, j}^{\theta}, i=1,2, \ldots, d_{\theta}$, extends to an invertible operator that intertwines θ^{\prime} with $\left.\lambda_{G}\right|_{M_{*, j}^{\theta}}$.

The representation M^{θ} is the θ-isotypic component of $L(G)$ (see Definition 10.2.20).

Exercise 10.5.10 Show that the orthogonal projection $E_{\theta}: L(G) \rightarrow M^{\theta}$ is given by $E_{\theta} f=\frac{1}{|G|} f * \chi^{\theta}$, for all $f \in L(G)$.

We now turn to the second fundamental construction in linear and multilinear algebra in the framework of representation theory of finite groups we alluded to above, namely tensor products. In Section 8.7 we have already given an elementary introduction to tensor products

Let then V and W be two finite dimensional, complex, unitary spaces. A $\operatorname{map} B: V \times W \rightarrow \mathbb{C}$ is said to be bi-antilinear provided

$$
\begin{aligned}
B\left(v_{1}+v_{2}, w\right) & =B\left(v_{1}, w\right)+B\left(v_{2}, w\right) \\
B\left(v, w_{1}+w_{2}\right) & =B\left(v, w_{1}\right)+B\left(v, w_{2}\right) \\
B(\alpha v, \beta w) & =\overline{\alpha \beta} B(v, w)
\end{aligned}
$$

for all $v_{1}, v_{2} \in V, w_{1}, w_{2} \in W$ and $\alpha, \beta \in \mathbb{C}$. Clearly, the set of all such bi-antilinear maps is a complex vector space in a natural way; we denote it by $V \otimes W$ and call it the tensor product of V and W.

For $v \in V$ and $w \in W$ we denote by $v \otimes w$ the element in $V \otimes W$ defined by

$$
[v \otimes w]\left(v^{\prime}, w^{\prime}\right)=\left\langle v, v^{\prime}\right\rangle_{V}\left\langle w, w^{\prime}\right\rangle_{W}
$$

for all $v^{\prime} \in V$ and $w^{\prime} \in W$. Elements of this kind are called simple tensors. Note that the map

$$
\begin{array}{rll}
V \times W & \longrightarrow & V \otimes W \\
(v, w) & \longmapsto & v \otimes w
\end{array}
$$

is bilinear, that is,

$$
\begin{aligned}
& \left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right) \otimes\left(\beta_{1} w_{1}+\beta_{2} w_{2}\right) \\
& \quad=\alpha_{1} \beta_{1} v_{1} \otimes w_{1}+\alpha_{1} \beta_{2} v_{1} \otimes w_{2}+\alpha_{2} \beta_{1} v_{2} \otimes w_{1}+\alpha_{2} \beta_{2} v_{2} \otimes w_{2}
\end{aligned}
$$

for all $\alpha_{i}, \beta_{i} \in \mathbb{C}, v_{i} \in V$ and $w_{i} \in W, i=1,2$. We claim that the corresponding image spans the whole $V \otimes W$. Indeed, if $\left\{v_{i}\right\}_{i=1}^{d_{V}}$ and $\left\{w_{j}\right\}_{j=1}^{d_{W}}$ denote two bases for V and W, respectively, then for all $B \in V \otimes W$ we clearly have

$$
B=\sum_{i=1}^{d_{V}} \sum_{j=1}^{d_{W}} B\left(v_{i}, w_{j}\right) v_{i} \otimes v_{j}
$$

This incidentally shows that the simple tensors $v_{i} \otimes w_{j}, i=1, \ldots, d_{V}$ and $j=1, \ldots, d_{W}$, generate $V \bigotimes W$. Since these are also linearly independent (exercise), they constitute a basis for $V \bigotimes W$, so that, in particular, $\operatorname{dim}(V \otimes W)=\operatorname{dim}(V) \cdot \operatorname{dim}(W)$.

We now endow $V \otimes W$ with a scalar product $\langle\cdot, \cdot\rangle_{V} \otimes W$ by setting

$$
\begin{equation*}
\left\langle v_{1} \otimes w_{1}, v_{2} \otimes w_{2}\right\rangle_{V \otimes W}=\left\langle v_{1}, v_{2}\right\rangle_{V}\left\langle w_{1}, w_{2}\right\rangle_{W} \tag{10.60}
\end{equation*}
$$

and then extending by linearity. This way, if the bases $\left\{v_{i}\right\}_{i=1}^{d_{V}}$ and $\left\{w_{j}\right\}_{j=1}^{d_{W}}$ are orthonormal in V and W, respectively, then so is $\left\{v_{i} \otimes w_{j}\right\}_{\substack{i=1, \ldots, d_{V} \\ j=1, \ldots, d_{W}}}$ in $V \otimes W$.

Let now $A \in \operatorname{End}(V)$ and $B \in \operatorname{End}(W)$. Define $A \otimes B \in \operatorname{End}(V \otimes W)$ by setting, for all $C \in V \bigotimes W$,

$$
\{[A \otimes B](C)\}\left(v^{\prime}, w^{\prime}\right)=C\left(A^{*} v^{\prime}, B^{*} w^{\prime}\right)
$$

for all $v^{\prime} \in V$ and $w^{\prime} \in W$, where $A^{*} \in \operatorname{End}(V)$ and $B^{*} \in \operatorname{End}(W)$ are the adjoint operators. For $v, v^{\prime} \in V$ and $w, w^{\prime} \in W$ we then have

$$
\begin{aligned}
\{[A \otimes B](v \otimes w)\}\left(v^{\prime}, w^{\prime}\right) & =[v \otimes w]\left(A^{*} v^{\prime}, B^{*} w^{\prime}\right) \\
& =\left\langle v, A^{*} v^{\prime}\right\rangle_{V}\left\langle w, B^{*} w^{\prime}\right\rangle_{W} \\
& =\left\langle A v, v^{\prime}\right\rangle_{V}\left\langle B w, w^{\prime}\right\rangle_{W} \\
& =[(A v) \otimes(B w)]\left(v^{\prime}, w^{\prime}\right)
\end{aligned}
$$

This shows that

$$
\begin{equation*}
[A \otimes B](v \otimes w)=(A v) \otimes(B w) \tag{10.61}
\end{equation*}
$$

Lemma 10.5.11 Let $A \in \operatorname{End}(V)$ and $B \in \operatorname{End}(W)$. Then $\operatorname{Tr}(A \otimes B)=$ $\operatorname{Tr}(A) \operatorname{Tr}(B)$.

Proof Let $\left\{v_{i}\right\}_{i=1}^{d_{V}}$ and $\left\{w_{j}\right\}_{j=1}^{d_{W}}$ be two orthonormal bases in V and W, respectively. Then

$$
\begin{aligned}
\operatorname{Tr}(A \otimes B) & =\sum_{\substack{i=1, \ldots, d_{V} \\
j=1, \ldots, d_{W}}}\left\langle[A \otimes B]\left(v_{i} \otimes w_{j}\right), v_{i} \otimes w_{j}\right\rangle_{V} \otimes W \\
(\text { by }(10.61)) & =\sum_{\substack{i=1, \ldots, d_{V} \\
j=1, \ldots, d_{W}}}\left\langle\left(A v_{i}\right) \otimes\left(B w_{j}\right), v_{i} \otimes w_{j}\right\rangle_{V} \otimes W \\
(\text { by }(10.60)) & =\sum_{\substack{i=1, \ldots, d_{V} \\
j=1, \ldots, d_{W}}}\left\langle A v_{i}, v_{i}\right\rangle_{V}\left\langle B w_{j}, w_{j}\right\rangle_{W} \\
& =\operatorname{Tr}(A) \operatorname{Tr}(B)
\end{aligned}
$$

Exercise 10.5.12

(1) Show that the bilinear map

$$
\begin{aligned}
\phi: V \times W & \rightarrow V \otimes W \\
(v, w) & \mapsto v \otimes w
\end{aligned}
$$

is universal in the sense that if Z is another complex vector space and $\psi: V \times W \rightarrow Z$ is bilinear, then there exists a unique linear map
$\theta: V \otimes W \rightarrow Z$ such that $\theta(v \otimes w)=\phi(v, w)$, that is, such that the diagram

is commutative (i.e. $\psi=\theta \circ \phi$).
(2) Show that the above universal property characterizes the tensor product: let U be a complex vector space and let $\psi: V \times W \rightarrow U$ be a bilinear map such that
(a) $\psi(V \times W)=\{\psi(v, w): v \in V, w \in W\}$ generates U;
(b) for any complex vector space Z and any bilinear map $\tau: V \times W \rightarrow Z$ there exists a unique linear map $\theta: U \rightarrow Z$ such that $\tau=\theta \circ \psi$.

Then there exists a linear isomorphism $\alpha: V \otimes W \rightarrow U$ such that $\psi=\alpha \circ \phi$.

Exercise 10.5.13 Let V, W and Z be finite dimensional, complex unitary spaces. Prove that the following natural isomorphisms hold:
(1) $V \bigotimes W \cong W \bigotimes V ;$
(2) $\mathbb{C} \otimes V \cong V$;
(3) $(V \otimes W) \otimes Z \cong V \bigotimes(W \otimes Z)$;
(4) $(V \bigoplus W) \otimes Z \cong(V \otimes Z) \bigoplus(W \otimes Z)$.

Note that the third isomorphism, namely the associativity of the tensor product, may be recursively extended to the tensor product of k vector spaces: we then denote by $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{k}$ the set of all k-antilinear maps $B: V_{1} \times V_{2} \times \cdots \times V_{k} \rightarrow \mathbb{C}$.

We now introduce and study two kinds of tensor product of representations.

Definition 10.5.14 Let G_{1} and G_{2} be two finite groups and let $\left(\rho_{1}, V_{1}\right)$ and $\left(\rho_{2}, V_{2}\right)$ be representations of G_{1} and G_{2}, respectively. We define the outer tensor product of ρ_{1} and ρ_{2} as the representation $\left(\rho_{1} \boxtimes \rho_{2}, V_{1} \otimes V_{2}\right)$ of $G_{1} \times G_{2}$ defined by setting

$$
\left[\rho_{1} \boxtimes \rho_{2}\right]\left(g_{1}, g_{2}\right)=\rho_{1}\left(g_{1}\right) \otimes \rho_{2}\left(g_{2}\right) \in \operatorname{End}\left(V_{1} \bigotimes V_{2}\right)
$$

for all $g_{i} \in G_{i}, i=1,2$.

When $G_{1}=G_{2}=G$ the internal tensor product of ρ_{1} and ρ_{2} is the G representation $\left(\rho_{1} \otimes \rho_{2}, V_{1} \otimes V_{2}\right)$ defined by setting

$$
\left[\rho_{1} \otimes \rho_{2}\right](g)=\rho_{1}(g) \otimes \rho_{2}(g) \in \operatorname{End}\left(V_{1} \bigotimes V_{2}\right)
$$

for all $g \in G$.

In the above definition, we have used the symbols " " and " \otimes " to make a distinction between these two notions of tensor product (compare with [62]). Note that, however, in both cases the space will be simply denoted by $V_{1} \otimes V_{2}$. Moreover, it is obvious that, modulo the isomorphism between G and $\widetilde{G}=\{(g, g): g \in G\} \leq G \times G$, the internal tensor product $\rho_{1} \otimes \rho_{2}$ is unitarily equivalent to the restriction $\operatorname{Res} \underset{\widetilde{G}}{G \times G}\left(\rho_{1} \boxtimes \rho_{2}\right)$.

Lemma 10.5.15 Let ρ_{1} and ρ_{2} be two representations of two finite groups G_{1} and G_{2}, respectively, and denote by $\chi^{\rho_{1}}$ and $\chi^{\rho_{2}}$ their characters. Then, the character of $\rho_{1} \boxtimes \rho_{2}$ is given by

$$
\begin{equation*}
\chi^{\rho_{1} \boxtimes \rho_{2}}\left(g_{1}, g_{2}\right)=\chi^{\rho_{1}}\left(g_{1}\right) \chi^{\rho_{2}}\left(g_{2}\right) \tag{10.62}
\end{equation*}
$$

for all $g_{1} \in G_{1}$ and $g_{2} \in G_{2}$. In particular, if both ρ_{1} and ρ_{2} are onedimensional, so that they coincide with their characters, then one has that $\rho_{1} \boxtimes \rho_{2}=\chi^{\rho_{1}} \boxtimes \chi^{\rho_{2}}=\chi^{\rho_{1}} \chi^{\rho_{2}}$, the pointwise product of the characters. When $G_{1}=G_{2}=G$, as the internal tensor product is concerned, (10.62) becomes

$$
\begin{equation*}
\chi^{\rho_{1} \otimes \rho_{2}}(g)=\chi^{\rho_{1}}(g) \chi^{\rho_{2}}(g) \tag{10.63}
\end{equation*}
$$

for all $g \in G$

Proof This follows immediately from Definition 10.2.14 and Lemma 10.5.11.

Theorem 10.5.16 Let G_{1} and G_{2} be two finite groups and let $\theta_{1} \in \widehat{G_{1}}$ and $\theta_{2} \in \widehat{G_{2}}$. Then $\theta_{1} \boxtimes \theta_{2}$ is an irreducible representation of $G_{1} \times G_{2}$. Moreover, if also $\sigma_{1} \in \widehat{G_{1}}$ and $\sigma_{2} \in \widehat{G_{2}}$ then $\theta_{1} \boxtimes \theta_{2} \sim \sigma_{1} \boxtimes \sigma_{2}$ if and only if $\theta_{1}=\sigma_{1}$ and $\theta_{2}=\sigma_{2}$.

Proof By Proposition 10.2.17 and Corollary 10.2.23 it suffices to check that $\left\langle\chi^{\theta_{1} \boxtimes \theta_{2}}, \chi^{\sigma_{1} \boxtimes \sigma_{2}}\right\rangle$ is either $\left|G_{1} \times G_{2}\right| \equiv\left|G_{1}\right| \cdot\left|G_{2}\right|$ if $\sigma_{1}=\theta_{1}$ and $\sigma_{2}=\theta_{2}$, or 0
otherwise. Now we have

$$
\left\langle\chi^{\theta_{1} \boxtimes \theta_{2}}, \chi^{\sigma_{1} \boxtimes \sigma_{2}}\right\rangle=\sum_{\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}} \chi^{\theta_{1} \boxtimes \theta_{2}}\left(g_{1}, g_{2}\right) \overline{\chi^{\sigma_{1} \boxtimes \sigma_{2}}\left(g_{1}, g_{2}\right)}
$$

(by Lemma 10.5.15)

$$
=\sum_{\substack{g_{1} \in G_{1} \\ g_{2} \in G_{2}}} \chi^{\theta_{1}}\left(g_{1}\right) \chi^{\theta_{2}}\left(g_{2}\right) \overline{\chi^{\sigma_{1}}\left(g_{1}\right) \chi^{\sigma_{2}}\left(g_{2}\right)}
$$

$$
=\sum_{g_{1} \in G_{1}} \chi^{\theta_{1}}\left(g_{1}\right) \overline{\chi^{\sigma_{1}}\left(g_{1}\right)} \sum_{g_{2} \in G_{2}} \chi^{\theta_{2}}\left(g_{2}\right) \overline{\chi^{\sigma_{2}}\left(g_{2}\right)}
$$

$$
=\left\langle\chi^{\theta_{1}}, \chi^{\sigma_{1}}\right\rangle \cdot\left\langle\chi^{\theta_{2}}, \chi^{\sigma_{2}}\right\rangle
$$

(by Proposition 10.2.17)

$$
= \begin{cases}\left|G_{1}\right| \cdot\left|G_{2}\right| & \text { if } \theta_{1}=\sigma_{1} \text { and } \theta_{2}=\sigma_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Corollary 10.5.17 Let G_{1} and G_{2} be two finite groups. Then the map

$$
\begin{align*}
\widehat{G_{1}} \times \widehat{G_{2}} & \longrightarrow \widehat{G_{1} \times G_{2}} \tag{10.64}\\
\left(\theta_{1}, \theta_{2}\right) & \longmapsto \theta_{1} \boxtimes \theta_{2}
\end{align*}
$$

is a bijection.

Proof We first observe that every conjugacy class in $G_{1} \times G_{2}$ is the Cartesian product of a conjugacy class in G_{1} by one in G_{2}, and vice versa. Thus, keeping in mind Theorem 10.3.13, we have that $\left|\widehat{G_{1} \times G_{2}}\right|$ equals the number of conjugacy classes in $G_{1} \times G_{2}$ which in turn equals the product of the numbers of conjugacy classes in G_{1} and G_{2}, and therefore, again by Theorem 10.3.13, equals $\left|\widehat{G_{1}}\right| \cdot\left|\widehat{G_{2}}\right|$. Therefore, by the previous theorem, the map (10.64) is indeed a bijection. Alternatively, it is immediate to check (exercise) that

$$
\sum_{\theta_{1} \in \widehat{G_{1}}} \sum_{\theta_{2} \in \widehat{G_{2}}}\left(d_{\theta_{1} \boxtimes \theta_{2}}\right)^{2}=\left|G_{1} \times G_{2}\right|
$$

and then we may invoke Theorem 10.2.25.(iii).
Exercise 10.5.18 Let G (respectively H) be a finite group and let X (respectively Y) be a finite homogenous G-space (respectively H-space). Let λ and μ denote the corresponding permutation representations. In Section 8.7 we showed that the map $\delta_{x} \otimes \delta_{y} \mapsto \delta_{(x, y)}, x \in X, y \in Y$, yields a natural isomorphism $L(X) \otimes L(Y) \cong L(X \times Y)$.
(1) Show that $\lambda \boxtimes \mu$ is equivalent to the permutation representation of $G \times H$ on $X \times Y$.
(2) Show that if $G=H$ and $X=Y$, then the internal tensor product $\lambda \otimes \mu$ is equivalent to the permutation representation associated with the diagonal action of G on $X \times X$.

By means of the two basic constructions (adjoints and tensor products), we now reinterpret the decomposition of the group algebra (cf. Theorem 10.5.9).

First of all, we recall that if V is a finite dimensional vector space and V^{\prime} denotes its dual, then $\operatorname{End}(V) \cong V^{\prime} \otimes V$. An explicit isomorphism is given by linearly extending to the whole of $V^{\prime} \otimes V$ the map

$$
\begin{array}{rlc}
V^{\prime} \otimes V & \longrightarrow & \operatorname{End}(V) \tag{10.65}\\
f \otimes v & \longmapsto & T_{f, v}
\end{array}
$$

where $T_{f, v}(w)=f(w) v$ for all $w \in V$.
Exercise 10.5.19 Fill up all the details relative to (10.65).
Now consider the action of $G \times G$ on G given by

$$
\left(g_{1}, g_{2}\right) \cdot g=g_{1} g g_{2}^{-1}
$$

for all $g, g_{1}, g_{2} \in G$, and the associated $(G \times G)$-permutation representation ($\eta, L(G)$) given by

$$
\left[\eta\left(g_{1}, g_{2}\right) f\right](g)=f\left(g_{1}^{-1} g g_{2}\right)
$$

for all $f \in L(G)$ and $g, g_{1}, g_{2} \in G$. Note that, in terms of the left and right regular representations, we have $\eta\left(g_{1}, g_{2}\right)=\lambda_{G}\left(g_{1}\right) \rho_{G}\left(g_{2}\right)=\rho_{G}\left(g_{2}\right) \lambda_{G}\left(g_{1}\right)$, for all $g_{1}, g_{2} \in G$. The stabilizer of the point 1_{G} is the diagonal subgroup $\widetilde{G}=\{(g, g): g \in G\}$, clearly isomorphic to G, and in the present setting (10.50) yields:

$$
G=(G \times G) / \widetilde{G}
$$

Theorem 10.5.20 With the notation as in Theorem 10.5.9, the restriction of η to M^{θ} is equivalent to $\theta^{\prime} \boxtimes \theta$. In particular, it is irreducible.

Proof For $f \in W_{\theta^{\prime}}$ and $v \in W_{\theta}$ define $F_{f, v}^{\theta} \in L(G)$ by setting

$$
\begin{equation*}
F_{f, v}^{\theta}(g)=f(\theta(g) v), \tag{10.66}
\end{equation*}
$$

for all $g \in G$. Noticing that, for all $i, j=1,2, \ldots, d_{\theta}$ and $g \in G$, one has

$$
\begin{aligned}
u_{i, j}^{\theta}(g) & =\left\langle\theta(g) v_{j}^{\theta}, v_{i}^{\theta}\right\rangle \\
(\text { by }(10.53)) & =\left[\xi^{-1}\left(v_{i}^{\theta}\right)\right]\left(\theta(g) v_{j}^{\theta}\right) \\
& =F_{\xi^{-1}\left(v_{i}^{\theta}\right), v_{j}^{\theta}}^{\theta}(g),
\end{aligned}
$$

we deduce that the $F_{f, v}^{\theta} \mathrm{s}$ span the whole of M^{θ}. Moreover, if $\left(g_{1}, g_{2}\right) \in G \times G$ and $g \in G$, we have

$$
\begin{aligned}
{\left[\eta\left(g_{1}, g_{2}\right) F_{f, v}^{\theta}\right](g) } & =F_{f, v}^{\theta}\left(g_{1}^{-1} g g_{2}\right) \\
(\text { by }(10.66)) & =f\left(\theta\left(g_{1}^{-1} g g_{2}\right) v\right) \\
(\text { by }(10.53)) & =\left\langle\theta\left(g_{1}^{-1} g g_{2}\right) v, \xi(f)\right\rangle \\
(\text { by }(10.56)) & =\left\langle\theta(g) \theta\left(g_{2}\right) v, \xi\left[\theta^{\prime}\left(g_{1}\right) f\right]\right\rangle \\
& =\left[\theta^{\prime}\left(g_{1}\right) f\right]\left(\theta(g) \theta\left(g_{2}\right) v\right) \\
& =F_{\theta^{\prime}\left(g_{1}\right) f, \theta\left(g_{2}\right) v}^{\theta}(g)
\end{aligned}
$$

so that the surjective map

$$
\begin{aligned}
W_{\theta^{\prime}} \otimes W_{\theta} & \longrightarrow M^{\theta} \\
f \otimes v & \longmapsto F_{f, v}^{\theta}
\end{aligned}
$$

intertwines $\theta^{\prime} \boxtimes \theta$ with $\left.\eta\right|_{M^{\theta}}$. The irreducibility of $\theta^{\prime} \boxtimes \theta$ follows from Theorem 10.5.16.

Recalling Corollary 10.3.12, the Fourier transform may be seen as an isomorphism between $L(G)$ and $\bigoplus_{\theta \in \widehat{G}}\left(W_{\theta}^{\prime} \otimes W_{\theta}\right)$, if we identify $\operatorname{End}\left(W_{\theta}\right)$ with $W_{\theta}^{\prime} \otimes W_{\theta}$ as in (10.65).

Exercise 10.5.21 Using the notation in (10.65), (10.66), and in Corollary 10.3.12, show that the inverse Fourier transform of a tensor product $f \otimes v \in$ $W_{\theta}^{\prime} \otimes W_{\theta}$ is given by:

$$
(f \otimes v)^{\vee}(g)=\frac{d_{\theta}}{|G|} F_{f, v}^{\theta}\left(g^{-1}\right)
$$

for all $g \in G$.

10.6 The commutant of a representation

In this section we study the commutant $\operatorname{End}_{G}(V)$ of a G-representation (ρ, V). First of all, we recall some basic facts on projections (see any book on linear algebra, for instance [91]). Let V be finite dimensional unitary
space. A linear transformation $E \in \operatorname{End}(V)$ is called a projection if it is idempotent, that is, $E^{2}=E$. If the range $W=\operatorname{Ran} E$ is orthogonal to the null space $\operatorname{Ker} E$, we say that E is an orthogonal projection of V onto W. It is easy to see that a projection E is orthogonal if and only if it is self-adjoint, that is, $E=E^{*}$.

Let now (V, ρ) be a representation of a finite group G and suppose that

$$
\begin{equation*}
V \cong \bigoplus_{\theta \in J} m_{\theta} W_{\theta} \tag{10.67}
\end{equation*}
$$

is the decomposition into irreducibles as in Corollary 10.2.19 (with $J=\{\theta \in$ $\left.\widehat{G}: m_{\theta}>0\right\}$). We can decompose the isotypic component $m_{\theta} W_{\theta}$ by choosing suitable operators $I_{\theta, 1}, I_{\theta, 2}, \ldots, I_{\theta, m_{\theta}} \in \operatorname{Hom}_{G}\left(W_{\theta}, V\right)$, in such a way that

$$
\begin{equation*}
V=\bigoplus_{\theta \in J} \bigoplus_{j=1}^{m_{\theta}} I_{\theta, j} W_{\theta} \tag{10.68}
\end{equation*}
$$

is an orthogonal decomposition, and

$$
\begin{equation*}
\left\langle I_{\theta, i} w_{1}, I_{\sigma, j} w_{2}\right\rangle_{V}=\delta_{\theta, \sigma} \delta_{i, j}\left\langle w_{1}, w_{2}\right\rangle_{W_{\theta}} \tag{10.69}
\end{equation*}
$$

for all $\theta, \sigma \in J, i=1,2, \ldots, m_{\theta}, j=1,2, \ldots, m_{\sigma}, w_{1} \in W_{\theta}$ and $w_{2} \in W_{\sigma}$. In particular, each $I_{\theta, j}$ is an isometry and the $I_{\theta, j} \mathrm{~s}$ are linearly independent in $\operatorname{Hom}_{G}(W, V)$, Then any vector $v \in V$ may be uniquely written in the form $v=\sum_{\theta \in J} \sum_{j=1}^{m_{\theta}} v_{\theta, j}$, with $v_{\theta, j} \in I_{\theta, j} W_{\theta}$. The operator $E_{\theta, j} \in \operatorname{End}(V)$, defined by setting $E_{\theta, j}(v)=v_{\theta, j}$ for all $v \in V$, is the orthogonal projection from V onto $I_{\theta, j} W_{\theta}$. In particular, $I_{V}=\sum_{\theta \in J} \sum_{j=1}^{m_{\theta}} E_{\theta, j}$.

Observe that if $v=\sum_{\theta \in J} \sum_{j=1}^{m_{\theta}} v_{\theta, j}$ then $\rho(g) v=\sum_{\theta \in J} \sum_{j=1}^{m_{\theta}} \rho(g) v_{\theta, j}$. As $\rho(g) v_{\theta, j} \in I_{\theta, j} W_{\theta}$, by the uniqueness of such a decomposition, we have that $E_{\theta, j} \rho(g) v=\rho(g) v_{\theta, j}=\rho(g) E_{\theta, j} v$. Therefore, $E_{\theta, j} \in \operatorname{End}_{G}(V)$.

Lemma 10.6.1 With the above notation the following hold.
(i) The space $\operatorname{Hom}_{G}\left(W_{\theta}, V\right)$ is spanned by $I_{\theta, 1}, I_{\theta, 2}, \ldots, I_{\theta, m_{\theta}}$. In particular, $m_{\theta}=\operatorname{dimHom}_{G}\left(W_{\theta}, V\right)$.
(ii) We have

$$
\begin{equation*}
I_{\theta, k}^{*} I_{\sigma, j}=\delta_{\sigma, \theta} \delta_{j, k} I_{W_{\theta}} \tag{10.70}
\end{equation*}
$$

for all $\theta, \sigma \in J, k=1,2, \ldots, m_{\theta}, j=1,2, \ldots, m_{\sigma}$; in particular, $I_{\theta, j}^{*} \mid I_{\theta, j} W_{\theta}$ is the inverse of $I_{\theta, j}: W_{\theta} \rightarrow I_{\theta, j} W_{\theta}(\leq V)$.

Proof
(i) If $T \in \operatorname{Hom}_{G}\left(W_{\theta}, V\right)$, then

$$
T=I_{V} T=\sum_{\sigma \in J} \sum_{k=1}^{m_{\sigma}} E_{\sigma, k} T
$$

Since $\operatorname{Ran} E_{\sigma, k}=I_{\sigma, k} W_{\sigma}$, if follows from Lemma 10.2.3 that, if $\sigma \neq \theta$, then $E_{\sigma, k} T=0$. Moreover, from Corollary 10.2.5, one deduces that $E_{\theta, k} T=\alpha_{k} I_{\theta, k}$ for some $\alpha_{k} \in \mathbb{C}$. Thus,

$$
T=\sum_{k=1}^{m_{\theta}} E_{\theta, k} T=\sum_{k=1}^{m_{\theta}} \alpha_{k} I_{\theta, k}
$$

(ii) By Proposition 10.2.2, $I_{\theta, j}^{*} I_{\theta, j} \in \operatorname{End}_{G}\left(W_{\theta}\right)$ so that, by Schur's Lemma, $I_{\theta, j}^{*} I_{\theta, j}=\alpha I_{W_{\theta}}$ for some $\alpha \in \mathbb{C}$. Moreover, from (10.69) it follows that

$$
\left\langle I_{\theta, j}^{*} I_{\theta, j} w, w\right\rangle_{W_{\theta}}=\left\langle I_{\theta, j} w, I_{\theta, j} w\right\rangle_{V}=\|w\|_{W_{\theta}}^{2}
$$

for all $w \in W_{\theta}$, so that necessarily $\alpha=1$. On the other hand, if $(\sigma, j) \neq(\theta, k)$ then, again by means of (10.69), we deduce that

$$
\left\langle I_{\theta, k}^{*} I_{\sigma, j} w, u\right\rangle_{W_{\theta}}=\left\langle I_{\sigma, j} w, I_{\theta, k} u\right\rangle_{V}=0
$$

Clearly, the decomposition of the θ-isotypic component of V into irreducible sub-representations is not unique: it corresponds to the choice of a basis in $\operatorname{Hom}_{G}\left(W_{\theta}, V\right)$.

Now, for all $\theta \in J$ and $1 \leq j, k \leq m_{\theta}$, define $T_{k, j}^{\theta} \in \operatorname{End}_{G}(V)$ by setting

$$
T_{k, j}^{\theta} v= \begin{cases}I_{\theta, k} I_{\theta, j}^{*} v & \text { if } v \in I_{\theta, j} W_{\theta} \tag{10.71}\\ 0 & \text { if } v \in V \ominus I_{\theta, j} W_{\theta}\end{cases}
$$

where $V \ominus I_{\theta, j} W_{\theta}$ is the orthogonal complement of $I_{\theta, j} W_{\theta}$ in V.
Lemma 10.6.2 With the above notation, we have:

$$
\begin{gather*}
\operatorname{Ran} T_{k, j}^{\theta}=I_{\theta, k} W_{\theta}, \quad \operatorname{Ker} T_{k, j}^{\theta}=V \ominus I_{\theta, j} W_{\theta} \\
T_{k, j}^{\sigma} T_{s, t}^{\theta}=\delta_{\sigma, \theta} \delta_{j, s} T_{k, t}^{\theta} \tag{10.72}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(T_{k, j}^{\theta}\right)^{*}=T_{j, k}^{\theta} \tag{10.73}
\end{equation*}
$$

In particular,

$$
T_{j, j}^{\theta} \equiv E_{\theta, j}
$$

and

$$
\operatorname{Hom}_{G}\left(I_{\theta, j} W_{\theta}, I_{\theta, k} W_{\theta}\right)=\mathbb{C} T_{k, j}^{\theta} .
$$

Proof From (10.70) and (10.71) we deduce that, for all $w \in W_{\theta}$,

$$
\begin{equation*}
T_{k, j}^{\theta} I_{\theta, j} w=I_{\theta, k} I_{\theta, j}^{*} I_{\theta, j} w=I_{\theta, k} w \tag{10.74}
\end{equation*}
$$

so that $\operatorname{Ran} T_{k, j}^{\theta}=I_{\theta, k} W_{\theta}$. The same arguments yield $\operatorname{Ker} T_{k, j}^{\theta}=V \ominus I_{\theta, j} W_{\theta}$,

$$
\begin{aligned}
T_{k, j}^{\sigma} T_{s, t}^{\theta} v & = \begin{cases}T_{k, j}^{\sigma} I_{\theta, s} I_{\theta, t}^{*} v & \text { if } v \in I_{\theta, t} W_{\theta} \\
0 & \text { if } v \in V \ominus I_{\theta, t} W_{\theta} .\end{cases} \\
& =\delta_{\sigma, \theta} \delta_{j, s} T_{k, t}^{\theta} v,
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle T_{k, j}^{\theta} v_{1}, v_{2}\right\rangle_{V} & = \begin{cases}\left\langle I_{\theta, k} I_{\theta, j}^{*} v_{1}, v_{2}\right\rangle_{V} & \text { if } v_{1} \in I_{\theta, j} W_{\theta} \text { and } v_{2} \in I_{\theta, k} W_{\theta} \\
0 & \text { otherwise }\end{cases} \\
& =\left\langle v_{1}, T_{j, k}^{\theta} v_{2}\right\rangle .
\end{aligned}
$$

Finally, from (10.71) and (10.74) we deduce that $T_{j j}^{\theta} I_{\sigma, k} w=\delta_{\sigma, \theta} \delta_{j, k} I_{\theta, j} w$, which yields $T_{j, j}^{\theta} \equiv E_{\theta, j}$, while Corollary 10.2.5 ensures that every operator $T \in \operatorname{Hom}_{G}\left(I_{\theta, j} W_{\theta}, I_{\theta, k} W_{\theta}\right)$ is a scalar multiple of $T_{k, j}^{\theta}$.

Theorem 10.6.3 With the above notation, the set

$$
\begin{equation*}
\left\{T_{k, j}^{\theta}: \theta \in J, k, j=1,2, \ldots, m_{\theta}\right\} \tag{10.75}
\end{equation*}
$$

is a vector space basis for $\operatorname{End}_{G}(V)$. Moreover, the map

$$
\begin{aligned}
\operatorname{End}_{G}(V) & \longrightarrow \oplus_{\theta \in J} \mathfrak{M}_{m_{\theta}}(\mathbb{C}) \\
T & \longmapsto \bigoplus_{\theta \in J}\left(\alpha_{k, j}^{\theta}\right)_{k, j=1}^{m_{\theta}}
\end{aligned}
$$

where the $\alpha_{k, j}^{\theta}$ s are the coefficients of T with respect to the basis (10.75), that is,

$$
T=\sum_{\theta \in J} \sum_{k, j=1}^{m_{\theta}} \alpha_{k, j}^{\theta} T_{k, j}^{\theta},
$$

is $a *$-isomorphism of algebras.

Proof Let $T \in \operatorname{End}_{G}(V)$. We have

$$
\begin{aligned}
T=I_{V} T I_{V} & =\left(\sum_{\sigma \in J} \sum_{k=1}^{m_{\sigma}} E_{\sigma, k}\right) T\left(\sum_{\theta \in J} \sum_{j=1}^{m_{\theta}} E_{\theta, j}\right) \\
& =\sum_{\sigma, \theta \in J} \sum_{k=1}^{m_{\sigma}} \sum_{j=1}^{m_{\theta}} E_{\sigma, k} T E_{\theta, j}
\end{aligned}
$$

Observe that

- $\operatorname{Ran} E_{\sigma, k} T E_{\theta, j} \leq \operatorname{Ran} E_{\sigma, k}=I_{\sigma, k} W_{\sigma} ;$
- $\operatorname{Ker} E_{\sigma, k} T E_{\theta, j} \geq \operatorname{Ker} E_{\theta, j}=V \ominus I_{\theta, j} W_{\theta}$;
- the restriction to $I_{\theta, j} W_{\theta}$ of $E_{\sigma, k} T E_{\theta, j}$ is in $\operatorname{Hom}_{G}\left(I_{\theta, j} W_{\theta}, I_{\sigma, k} W_{\sigma}\right)$.

From Lemma 10.2.3, it follows that $E_{\sigma, k} T E_{\theta, j}=0$ if $\sigma \neq \theta$, while, if $\sigma=\theta$, by Corollary 10.2 .5 one has that $E_{\theta, k} T E_{\theta, j}$ is a multiple of $T_{k, j}^{\theta}$, that is, there exist $\alpha_{k, j}^{\theta} \in \mathbb{C}$ such that

$$
E_{\theta, k} T E_{\theta, j}=\alpha_{k, j}^{\theta} T_{k, j}^{\theta}
$$

This proves that the $T_{k, j}^{\theta}$ s generate $\operatorname{End}_{G}(V)$. To prove independence, suppose that we can express the 0 -operator as

$$
0=\sum_{\theta \in J} \sum_{k, j=1}^{m_{\theta}} \alpha_{k, j}^{\theta} T_{k, j}^{\theta}
$$

For $v \in I_{\theta, j} W_{\theta}, v \neq 0$, we obtain that $0=\sum_{k=1}^{m_{\theta}} \alpha_{k, j}^{\theta} T_{k, j}^{\theta} v$ and this in turn implies that $\alpha_{k, j}^{\theta}=0$ for all $k=1,2, \ldots, m_{\theta}$, as $T_{k^{\prime}, j}^{\theta} v$ and $T_{k, j}^{\theta} v$ belong to independent subspaces in V if $k \neq k^{\prime}$.

The isomorphism of the algebras follows from (10.72):

$$
\begin{aligned}
\left(\sum_{\theta \in J} \sum_{k, j=1}^{m_{\theta}} \alpha_{k, j}^{\theta} T_{k, j}^{\theta}\right)\left(\sum_{\sigma \in J} \sum_{h, i=1}^{m_{\sigma}} \beta_{h, i}^{\sigma} T_{h, i}^{\sigma}\right) & =\sum_{\theta, \sigma \in J} \sum_{k, j=1}^{m_{\theta}} \sum_{h, i=1}^{m_{\sigma}} \alpha_{k, j}^{\theta} \beta_{h, i}^{\sigma} \delta_{\sigma, \theta} \delta_{j, h} T_{k, i}^{\theta} \\
& =\sum_{\theta \in J} \sum_{k, i=1}^{m_{\theta}}\left(\sum_{j=1}^{m_{\theta}} \alpha_{k, j}^{\theta} \beta_{j, i}^{\theta}\right) T_{k, i}^{\theta} .
\end{aligned}
$$

The fact that it is also a $*$-isomorphism easily follows from (10.73).
Corollary 10.6.4 With the above notation we have that

$$
\operatorname{dimEnd}_{G}(V)=\sum_{\theta \in J} m_{\theta}^{2}
$$

In particular, V is irreducible if and only if $\operatorname{dimEnd}_{G}(V)=1$.

Definition 10.6.5 A representation (ρ, V) is multiplicity-free if $m_{\theta}=1$ for all $\theta \in J$.

Corollary 10.6.6 A representation (ρ, V) is multiplicity-free if and only if $\operatorname{End}_{G}(V)$ is commutative.

Observe that

$$
E_{\theta}=\sum_{j=1}^{m_{\theta}} E_{\theta, j} \equiv \sum_{j=1}^{m_{\theta}} T_{j, j}^{\theta}
$$

is the projection from V onto the θ-isotypic component $m_{\theta} W_{\theta}$. It is called the minimal central projection associated with θ.

Recall the definition of the product in \mathbb{C}^{J} in (10.28).
Corollary 10.6.7 The center $\mathcal{Z}=\mathcal{Z}\left(\operatorname{End}_{G}(V)\right)$ is isomorphic to \mathbb{C}^{J}. Moreover, the minimal central projections $E_{\theta}, \theta \in J$, constitute a basis for \mathcal{Z}.

Proof The space $\operatorname{End}_{G}(V)$ is isomorphic to the direct sum $\bigoplus_{\theta \in J} \mathfrak{M}_{m_{\theta}}(\mathbb{C})$. But $A \in \mathfrak{M}_{m_{\theta}}(\mathbb{C})$ commutes with any other $B \in \mathfrak{M}_{m_{\theta}}(\mathbb{C})$ if and only if it is a scalar multiple of the identity: $A \in \mathbb{C} I_{m_{\theta}}$.

Exercise 10.6.8 Show that $E_{\theta}=\frac{d_{\theta}}{|G|} \sum_{g \in G} \rho(g) \chi^{\theta^{\prime}}(g)$. Compare with Exercise 10.5.7 and Exercise 10.5.10.

Exercise 10.6.9 Let (ρ, V) and (η, U) be two G-representations. Suppose that $V \cong \bigoplus_{\theta \in J} m_{\theta} W_{\theta}$ and $U \cong \bigoplus_{\theta \in K} n_{\theta} W_{\theta}, J, K \subseteq \widehat{G}$, are the decompositions of V and U into irreducible representations. Show that we have an isomorphism

$$
\operatorname{Hom}_{G}(U, V) \cong \bigoplus_{\theta \in K \cap J} \mathfrak{M}_{n_{\theta}, m_{\theta}}(\mathbb{C})
$$

as vector spaces.

Exercise 10.6.10 Let V and W be two inner product vector spaces.
(1) Show that

$$
\left\langle T_{1}, T_{2}\right\rangle_{\operatorname{Hom}(W, V)}=\frac{1}{\operatorname{dim} W} \operatorname{Tr}\left(T_{2}^{*} T_{1}\right)
$$

with $T_{1}, T_{2} \in \operatorname{Hom}(W, V)$, defines an inner product in $\operatorname{Hom}(W, V)$ (called the normalized Hilbert-Schmidt inner product).
(2) Show that if $\operatorname{dim} W \leq \operatorname{dim} V$ and $T \in \operatorname{Hom}(W, V)$ is an isometry then $\|T\|_{\operatorname{Hom}_{(W, V)}}=1$.

Exercise 10.6.11 Let (ρ, V) and (θ, W) be two G-representations. Suppose that (θ, W) is irreducible and denote by $m=\operatorname{dimHom}_{G}(W, V)$ the multiplicity of θ in (ρ, V). Let also $T_{1}, T_{2}, \ldots, T_{m} \in \operatorname{Hom}_{G}(W, V)$. Show that the following facts are equivalent:
(a) $\left\langle T_{i} w_{1}, T_{j} w_{2}\right\rangle_{V}=\left\langle w_{1}, w_{2}\right\rangle_{W} \delta_{i, j}$, for all $w_{1}, w_{2} \in W$ and $i, j=1,2, \ldots, m$;
(b) the W-isotypic component of V is equal to the orthogonal direct sum

$$
T_{1} W \oplus T_{2} W \oplus \cdots \oplus T_{m} W
$$

and each operator T_{j} is a isometry from W onto $T_{j} W$;
(c) the operators $T_{1}, T_{2}, \ldots, T_{m}$ form an orthonormal basis for $\operatorname{Hom}_{G}(W, V)$ (with respect to the normalized Hilbert-Schmidt inner product).
(d) $T_{j}^{*} T_{i}=\delta_{i, j} I_{W}$, for all $i, j=1,2, \ldots, m$.

Exercise 10.6.12 In the notation of Corollary 10.3.12, see also Exercise 10.5.21,
(1) show that Fourier transform is an isometric $*$-isomorphism between the group algebra $L(G)$ and $C(\widehat{G})$, where the scalar product is defined by setting

$$
\langle T, S\rangle_{C(\widehat{G})}=\frac{1}{|G|} \sum_{\theta \in \widehat{G}} d_{\theta} \operatorname{Tr}\left[S(\theta)^{*} T(\theta)\right]
$$

for all $S, T \in C(\widehat{G})$.
(2) Show that the Fourier transform and the inverse Fourier transform are one the adjoint of the other, that is, if we identify M^{θ} with $W_{\theta}^{\prime} \otimes W_{\theta}$ by means of Theorem 10.5.20, then

$$
\left\langle F,(f \otimes v)^{\vee}\right\rangle_{L(G)}=\langle\widehat{F}, f \otimes v\rangle_{C(\widehat{G})}
$$

for all $F \in L(G), v \in W_{\theta}, f \in W_{\theta}^{\prime}$, and $\theta \in \widehat{G}$.

Solution. Fix $\theta \in \widehat{G}$ and let $\left\{v_{1}, v_{2}, \ldots, v_{d_{\theta}}\right\}$ be an orthonormal basis in W_{θ}.

Then, for $v \in W_{\theta}$ and $f \in W_{\theta}^{\prime}$ one has

$$
\begin{aligned}
\left\langle F,(f \otimes v)^{\vee}\right\rangle_{L(G)} & =\frac{d_{\theta}}{|G|} \sum_{g \in G} F(g) \overline{f\left[\theta\left(g^{-1}\right) v\right]} \\
& =\frac{d_{\theta}}{|G|} \sum_{g \in G} F(g) f\left(\sum_{i=1}^{d_{\theta}}\left\langle\theta\left(g^{-1}\right) v, v_{i}\right\rangle_{W_{\theta}} v_{i}\right) \\
& =\frac{d_{\theta}}{|G|} \sum_{i=1}^{d_{\theta}} \overline{f\left(v_{i}\right)} \sum_{g \in G}\left\langle F(g) \theta(g) v_{i}, v\right\rangle_{W_{\theta}} \\
& =\frac{d_{\theta}}{|G|} \sum_{i=1}^{d_{\theta}} \overline{f\left(v_{i}\right)}\left\langle\widehat{F}(\theta) v_{i}, v\right\rangle_{W_{\theta}} \\
& =\frac{d_{\theta}}{|G|} \sum_{i=1}^{d_{\theta}}\left\langle\widehat{F}(\theta) v_{i},[f \otimes v]\left(v_{i}\right)\right\rangle_{W_{\theta}} \\
& =\langle\widehat{F}, f \otimes v\rangle_{C(\widehat{G})} .
\end{aligned}
$$

10.7 A noncommutative FFT

The aim of this section is to present a noncommutative version of the FFT developed by Diaconis and Rockmore in [53]. Let G be a finite group, $K \leq G$ a subgroup, and $\mathcal{T} \subset G$ a complete set of representatives for the left cosets of K (cf. (10.49)). Given an irreducible G-representation (θ, W), we consider an orthogonal decomposition

$$
\begin{equation*}
\operatorname{Res}_{K}^{G} W=\bigoplus_{j=1}^{m} V_{\sigma_{j}} \tag{10.76}
\end{equation*}
$$

of its restriction to K, into irreducible K-representations. Note that in (10.76) the K-representations $\left(\sigma_{j}, V_{\sigma_{j}}\right), j=1,2, \ldots, m$, are not necessarily pairwise inequivalent. Then, by choosing an orthonormal basis in each $V_{\sigma_{j}}$ in (10.76), we get an orthonormal basis for W such that, identifying a linear operator with the associated matrix,

$$
\theta(k)=\left(\begin{array}{cccc}
\sigma_{1}(k) & & & \tag{10.77}\\
& \sigma_{2}(k) & & \\
& & \ddots & \\
& & & \sigma_{m}(k)
\end{array}\right)
$$

for all $k \in K$.

Exercise 10.7.1 Check the details of (10.77).
The orthogonal basis for W that leads to (10.77) is called an adapted basis to the decomposition in (10.76). Then, for $f \in L(G)$, its Fourier transform evaluated at θ is given by

$$
\begin{align*}
\widehat{f}(\theta) & =\sum_{g \in G} f(g) \theta(g) \\
& =\sum_{t \in \mathcal{T}} \theta(t) \sum_{k \in K} f_{t}(k) \theta(k) \tag{10.78}
\end{align*}
$$

where $f_{t} \in L(K), t \in \mathcal{T}$, is defined by $f_{t}(k)=f(t k)$ for all $k \in K$. By virtue of (10.77), we have, for all $t \in \mathcal{T}$,

$$
\sum_{k \in K} f_{t}(k) \theta(k)=\left(\begin{array}{llll}
\widehat{f}_{t}\left(\sigma_{1}\right) & & & \tag{10.79}\\
& \widehat{f}_{t}\left(\sigma_{2}\right) & & \\
& & \ddots & \\
& & & \widehat{f}_{t}\left(\sigma_{m}\right)
\end{array}\right)
$$

By combining (10.78) and (10.79), we get an algorithm that reduces the computation of $\widehat{f}(\theta)$ to the computation of smaller (dimension) Fourier transforms (the $\widehat{f}_{t}\left(\sigma_{j}\right) \mathrm{s}$) and then to multiplications of these by the matrices $\theta(t) \mathrm{s}$.

Exercise 10.7.2 Denote by $T(G)$ (respectively $T(K)$) the number of operations required to compute the Fourier transform of a given $f \in L(G)$ at each irreducible representation of G (respectively of K), and by $M(d)$ the number of operations needed to compute the product of two $(d \times d)$-matrices. Show that

$$
T(G)=|\mathcal{T}| \cdot T(K)+(|\mathcal{T}|-1) \sum_{\sigma \in \widehat{K}} M\left(d_{\sigma}\right)
$$

Exercise 10.7.3 Show that the Cooley-Tuckey algorithm in (5.62) is a particular case of the algorithm considered in this section.

Hint. Just observe that $G=\mathbb{Z}_{n m}$ and $K=\mathbb{Z}_{m}$.
Diaconis and Rockmore also considered recursive applications of this basic algorithm when a chain

$$
G=G_{0} \geq G_{1} \geq G_{2} \geq \cdots \geq G_{m} \geq G_{m+1}=\left\{1_{G}\right\}
$$

of subgroups is available, providing several specific examples.

11

Induced representations and Mackey theory

In this chapter we introduce the theory of induced representations. This is a central topic in the representation theory of finite groups. We emphasize the analytic approach and include a detailed treatment of Mackey's theory, which will play a fundamental role in the following chapters, and of the little group method, due to Mackey and Wigner, that will be used extensively in Chapter 12. Other treatments of these topics are in the books by Naimark and Stern [119], Sternberg [154], Simon [148], Serre [145], by Curtis and Reiner [42, 43], Huppert [78], Shaw [147], and Bump [23]. See also our previous monographs [33, 34] and the expository paper [30].

11.1 Induced representations

Throughout this section, G is a finite group, K a subgroup of G and (σ, V) a finite dimensional unitary representation of K. We suppose that \mathcal{T} is a system of representatives for the set G / K of left cosets of K in G as in (10.49). We also assume that $1_{G} \in \mathcal{T}$ is the representative of K. We denote by $V[G]$ the vector space of all functions $f: G \rightarrow V$.

Definition 11.1.1 (Induced representation) The induced representation of a K-representation (σ, V) is the G-representation $\left(\lambda, \operatorname{Ind}_{K}^{G} V\right)$ whose representation space is

$$
\begin{equation*}
\operatorname{Ind}_{K}^{G} V=\left\{f \in V[G]: f(g k)=\sigma\left(k^{-1}\right) f(g), \text { for all } g \in G, k \in K\right\}, \tag{11.1}
\end{equation*}
$$

with the action λ given by

$$
\begin{equation*}
\left[\lambda\left(g_{1}\right) f\right]\left(g_{2}\right)=f\left(g_{1}^{-1} g_{2}\right), \quad \text { for all } g_{1}, g_{2} \in G \text { and } f \in \operatorname{Ind}_{K}^{G} V . \tag{11.2}
\end{equation*}
$$

Note that $\lambda(g) f \in \operatorname{Ind}_{K}^{G} V$ for all $g \in G$ and $f \in \operatorname{Ind}_{K}^{G} V$, and that λ is indeed a representation (compare with the definition of the left regular representation in (10.9)). Sometimes we shall denote λ by $\operatorname{Ind}_{K}^{G} \sigma$.

In $\operatorname{Ind}_{K}^{G} V$ we can define an invariant scalar product by setting

$$
\begin{equation*}
\left\langle f_{1}, f_{2}\right\rangle_{\operatorname{Ind}_{K}^{G} V}=\frac{1}{|K|} \sum_{g \in G}\left\langle f_{1}(g), f_{2}(g)\right\rangle_{V} \tag{11.3}
\end{equation*}
$$

for $f_{1}, f_{2} \in \operatorname{Ind}_{K}^{G} V$; it is easy to check that $\left(\lambda, \operatorname{Ind}_{K}^{G} V\right)$ is unitary with respect to this scalar product. We also use the following reduced form of (11.3):

$$
\begin{equation*}
\left\langle f_{1}, f_{2}\right\rangle_{\operatorname{Ind}_{K}^{G} V}=\sum_{t \in \mathcal{T}}\left\langle f_{1}(t), f_{2}(t)\right\rangle_{V} \tag{11.4}
\end{equation*}
$$

Indeed, if $g \in G$ and $g=t k, k \in K, t \in \mathcal{T}$, then from (11.1) and the unitarity of σ we deduce that $\left\langle f_{1}(g), f_{2}(g)\right\rangle_{V}=\left\langle\sigma\left(k^{-1}\right) f_{1}(t), \sigma\left(k^{-1}\right) f_{2}(t)\right\rangle_{V}=$ $\left\langle f_{1}(t), f_{2}(t)\right\rangle_{V}$.

Now we explore the structure of an induced representation. For every $v \in V$ define the function $f_{v} \in V[G]$ by setting

$$
f_{v}(g)= \begin{cases}\sigma\left(g^{-1}\right) v & \text { if } g \in K \tag{11.5}\\ 0 & \text { otherwise }\end{cases}
$$

It is easy to check that $f_{v} \in \operatorname{Ind}_{K}^{G} V$ and that the subspace $\widetilde{V}=\left\{f_{v}: v \in V\right\}$ of $\operatorname{Ind}_{K}^{G} V$ is K-invariant and K-isomorphic to V; indeed,

$$
\begin{equation*}
\lambda(k) f_{v}=f_{\sigma(k) v} \tag{11.6}
\end{equation*}
$$

for all $k \in K$.

Proposition 11.1.2 With the same notation as in (10.49), we have the direct sum decomposition

$$
\begin{equation*}
\operatorname{Ind}_{K}^{G} V=\bigoplus_{t \in \mathcal{T}} \lambda(t) \tilde{V} \tag{11.7}
\end{equation*}
$$

Proof Take $f \in \operatorname{Ind}_{K}^{G} V$ and set $v_{t}=f(t) \in V$ for every $t \in \mathcal{T}$. Then, for $t_{0} \in \mathcal{T}$ and $k \in K$, we have $t^{-1} t_{0} k \in K$ if and only if $t=t_{0}$, and therefore

$$
\begin{aligned}
\sum_{t \in \mathcal{T}} \lambda(t) f_{v_{t}}\left(t_{0} k\right)=\sum_{t \in \mathcal{T}} f_{v_{t}}\left(t^{-1} t_{0} k\right)= & f_{v_{t_{0}}}(k) \\
& =\sigma\left(k^{-1}\right) v_{t_{0}}=\sigma\left(k^{-1}\right) f\left(t_{0}\right)=f\left(t_{0} k\right)
\end{aligned}
$$

that is, since $t_{0} k \in G$ is arbitrary,

$$
\begin{equation*}
f=\sum_{t \in \mathcal{T}} \lambda(t) f_{v_{t}} \tag{11.8}
\end{equation*}
$$

Note also that such an expression is unique: indeed, from (11.1) it follows that every $f \in \operatorname{Ind}_{K}^{G} V$ is uniquely determined by its values on \mathcal{T}.

Conversely, we have:
Lemma 11.1.3 Let (τ, W) be a representation of G and V a K-invariant subspace such that the direct decomposition

$$
\begin{equation*}
W=\bigoplus_{t \in \mathcal{T}} \tau(t) V \tag{11.9}
\end{equation*}
$$

holds. Then the G-representations W and $\operatorname{Ind}_{K}^{G} V$ are isomorphic.
Proof If we define \widetilde{V} as in (11.7) it follows that $\operatorname{Ind}_{K}^{G} V$ and W are G isomorphic. The easy details are left as an exercise.

Remark 11.1.4 In some books, as for instance Serre's monograph [145], induced representations are defined by means of the property in Lemma 11.1.3.

We observe that the dimension of the induced representation is given by

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{Ind}_{K}^{G} V\right)=[G: K] \cdot \operatorname{dim}(V) \tag{11.10}
\end{equation*}
$$

as it immediately follows from (11.7) and observing that $|\mathcal{T}|=[G: K]$. We now prove that induction is transitive.

Proposition 11.1.5 (Induction in stages) Let $K \leq H \leq G$ be finite groups and (σ, V) a K-representation.
(i) The map $f \mapsto F$ given by $F(g, h)=[f(g)](h)$, for all $f \in(V[H])[G]$, $F \in V[G \times H], g \in G$, and $h \in H$, yields a vector space isomorphism between $(V[H])[G]$ and $V[G \times H]$. By restriction, it yields an isomorphism between the G-representations $\operatorname{Ind}_{H}^{G}\left(\operatorname{Ind}_{K}^{H} V\right)$ and

$$
\begin{align*}
\left\{F \in V[G \times H]: F\left(g h, h^{\prime} k\right)=\right. & \sigma\left(k^{-1}\right) F\left(g, h h^{\prime}\right) \\
& \left.\forall g \in G, h, h^{\prime} \in H, k \in K\right\} \tag{11.11}
\end{align*}
$$

(ii) The map $F \mapsto \widetilde{F}$, where F is in the space (11.11) and $\widetilde{F} \in V[G]$ is defined by setting $\widetilde{F}(g)=F\left(g, 1_{G}\right)$, for all $g \in G$, yields an isomorphism
between the G-representations (11.11) and $\operatorname{Ind}_{K}^{G} V$. The corresponding inverse map is given by $\widetilde{F} \mapsto F$, where $F(g, h)=\widetilde{F}(g h)$, for all $h \in H, g \in G$.
(iii) The following isometric isomorphism of G-representations holds:

$$
\begin{equation*}
\operatorname{Ind}_{H}^{G}\left(\operatorname{Ind}_{K}^{H} V\right) \cong \operatorname{Ind}_{K}^{G} V \tag{11.12}
\end{equation*}
$$

Proof (i) The isomorphism $(V[H])[G] \cong V[G \times H]$ induced by the map $f \mapsto$ F is obvious. Moreover, from the definition of an induced representation, we get

$$
\operatorname{Ind}_{K}^{H} V=\left\{f^{\prime} \in V[H]: f^{\prime}(h k)=\sigma\left(k^{-1}\right) f^{\prime}(h), \forall h \in H, k \in K\right\}
$$

and, setting $\theta=\operatorname{Ind}_{K}^{H} \sigma$,

$$
\operatorname{Ind}_{H}^{G}\left(\operatorname{Ind}_{K}^{H} V\right)=\left\{f \in\left(\operatorname{Ind}_{K}^{H} V\right)[G]: f(g h)=\theta\left(h^{-1}\right) f(g), \forall g \in G, h \in H\right\}
$$

We deduce that if $f \in \operatorname{Ind}_{H}^{G}\left(\operatorname{Ind}_{K}^{H} V\right)$ then we have

$$
\begin{aligned}
F\left(g h, h^{\prime} k\right) & =[f(g h)]\left(h^{\prime} k\right) \\
& =\sigma\left(k^{-1}\right)\left([f(g h)]\left(h^{\prime}\right)\right) \\
& =\sigma\left(k^{-1}\right)\left[\theta\left(h^{-1}\right) f(g)\right]\left(h^{\prime}\right) \\
& =\sigma\left(k^{-1}\right)[f(g)]\left(h h^{\prime}\right) \\
& =\sigma\left(k^{-1}\right) F\left(g, h h^{\prime}\right)
\end{aligned}
$$

for all $g \in G, h, h^{\prime} \in H$, and $k \in K$. This shows that F belongs to (11.11). By means of the same arguments, it is easy to check that each F in (11.11) is the image of some $f \in \operatorname{Ind}_{H}^{G}\left(\operatorname{Ind}_{K}^{H} V\right)$.
(ii) Let F be in the space (11.11). It is immediate to check that $F(g, h)=$ $F\left(g h, 1_{G}\right)$, for all $g \in G$ and $h \in H$, so that F is uniquely determined by its values on $G \times\left\{1_{G}\right\}$. As a consequence, we have

$$
\widetilde{F}(g k)=F\left(g k, 1_{G}\right)=F(g, k)=\sigma\left(k^{-1}\right) F\left(g, 1_{G}\right)=\sigma\left(k^{-1}\right) \widetilde{F}(g)
$$

for all $g \in G$ and $k \in K$, so that $\widetilde{F} \in \operatorname{Ind}_{K}^{G} V$.
(iii) The isomorphism follows immediately from (i) and (ii). Finally, it is immediate to check that, modulo the identifications in (i) and (ii), one has $\|\widetilde{F}\|_{\operatorname{Ind}_{K}^{G} V}=\|F\|_{\operatorname{Ind}_{H}^{G} \operatorname{Ind}_{K}^{H} V}$.

Example 11.1.6 (Permutation representation) Let G be a finite group acting transitively on a finite set X. Choose $x_{0} \in X$ and let $K=\{g \in G$: $\left.g x_{0}=x_{0}\right\}$ be its stabilizer. As in Example 10.4.3, we denote by $(\lambda, L(X))$
the corresponding permutation representation of G. Let now $\left(\iota_{K}, \mathbb{C}\right)$ denote the trivial (one dimensional) representation of K. Then

$$
\operatorname{Ind}_{K}^{G} \mathbb{C}=\{f \in L(G): f(g k)=f(g), \forall g \in G, k \in K\}=L(G)^{K}
$$

(the space of all right- K-invariant functions on G). The latter is isomorphic to $L(X)$: the map $f \mapsto \widetilde{f}$, where $f \in L(X)$ and $\widetilde{f} \in L(G)^{K}$ is given by

$$
\begin{equation*}
\widetilde{f}(g)=f\left(g x_{0}\right) \tag{11.13}
\end{equation*}
$$

for all $g \in G$, yields the desired G-isomorphism. We can rephrase the above discussion by saying that the permutation representation λ and the induced representation $\operatorname{Ind}_{K}^{G} \iota_{K}$ are equivalent. Recalling the identification $X=G / K$ as G-spaces, we can thus write:

$$
\begin{equation*}
(\lambda, L(G / K)) \sim\left(\operatorname{Ind}_{K}^{G} \iota_{K}, L(G)^{K}\right) \tag{11.14}
\end{equation*}
$$

Exercise 11.1.7 Suppose that $K \leq H \leq G$, set $X=G / K, Y=G / H$, $Z=H / K$, and suppose that $x_{0} \in X$ (respectively, $y_{0} \in Y$) is the point stabilized by K (respectively H).
(1) Show that there exists a unique surjective map $\pi: X \rightarrow Y$ such that $\pi\left(x_{0}\right)=y_{0}$ and $\pi(g x)=g \pi(x)$ for all $x \in X$ and $g \in G$ (that is, π is G-equivariant).
(2) Show that, in the present setting, transitivity of induction has the following more explicit form: $L(X) \cong \operatorname{Ind}_{H}^{G} L(Z) \cong \oplus_{y \in Y} L\left(\pi^{-1}(y)\right)$. See [138] for some examples and applications of these simple facts.

Example 11.1.8 Let G be a finite group and $N \leq G$ a normal subgroup. Denote by $\lambda_{G / N}$ the left regular representation of G / N and by $\bar{\lambda}$ the permutation representation of G on G / N (note that the corresponding representation spaces are the same, namely $L(G / N))$. Then

$$
\begin{equation*}
\bar{\lambda}(g)=\lambda_{G / N}(g N) \tag{11.15}
\end{equation*}
$$

for all $g \in G$. Indeed, if $f \in L(G / N)$ and $g, g_{0} \in G$, one has

$$
\left[\lambda_{G / N}(g N) f\right]\left(g_{0} N\right)=f\left[(g N)^{-1}\left(g_{0} N\right)\right]=f\left(g^{-1} g_{0} N\right)=[\bar{\lambda}(g) f]\left(g_{0} N\right) .
$$

Example 11.1.9 Let G be a finite group and $K \leq G$ a subgroup. Let also χ be a one-dimensional representation of K. Recall that $\chi: K \rightarrow \mathbb{C}$ satisfies: $\left|\chi\left(k_{1}\right)\right|=1, \chi\left(k_{1} k_{2}\right)=\chi\left(k_{1}\right) \chi\left(k_{2}\right)$, so that $\chi\left(k^{-1}\right)=\chi(k)^{-1}=\overline{\chi(k)}$, for all $k_{1}, k_{2}, k \in G$, and $\chi\left(1_{K}\right)=1$. Then the representation space of $\operatorname{Ind}_{K}^{G} \chi$, that we denote by $\operatorname{Ind}_{K}^{G} \mathbb{C}$, is made up of all $f \in L(G)$ such that

$$
\begin{equation*}
f(g k)=\overline{\chi(k)} f(g) \tag{11.16}
\end{equation*}
$$

for all $k \in K$ and $g \in G$. The corresponding G-action is again given by left translation:

$$
\left[\operatorname{Ind}_{K}^{G} \chi(g) f\right]\left(g^{\prime}\right)=f\left(g^{-1} g^{\prime}\right)
$$

for all $f \in \operatorname{Ind}_{K}^{G} \mathbb{C}$ and $g, g^{\prime} \in G$.
Now (11.7) becomes

$$
\begin{equation*}
\operatorname{Ind}_{K}^{G} \mathbb{C}=\bigoplus_{t \in \mathcal{T}} \lambda(t)(\mathbb{C} \bar{\chi}) \tag{11.17}
\end{equation*}
$$

where χ is extended to the whole G by setting $\chi(g)=0$ for all $g \in G \backslash K$ (note that, this way, $f=\bar{\chi} \in L(G)$ satisfies (11.16)).

Exercise 11.1.10 Suppose that A, B are finite Abelian groups, $B \leq A$ and let χ be a character of B. Show that a character ψ of A is contained in $\operatorname{Ind}_{B}^{A} \chi$ if and only if $\psi(b)=\chi(b)$ for all $b \in B$ and, if this is the case, its multiplicity is equal to 1 .

Now we give a formula for the matrix coefficients and the character of an induced representation.

Theorem 11.1.11 Let G be a finite group, $K \leq G$ a subgroup, and $\mathcal{T} \subseteq G$ a complete set of representatives for the left cosets of K in G. Let also (σ, V) be a K-representation, $\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ an orthonormal basis for V and denote by $\lambda=\operatorname{Ind}_{K}^{G} \sigma$ the corresponding induced representation. Define $f_{e_{j}} \in \operatorname{Ind}_{K}^{G} V$ as in (11.5) and $f_{t, j}=\lambda(t) f_{e_{j}} \in \operatorname{Ind}_{K}^{G} V$ for all $t \in \mathcal{T}$ and $j=1,2, \ldots, d$. Then $\left\{f_{t, j}: t \in \mathcal{T}, j=1,2, \ldots, d\right\}$ is an orthonormal basis for $\operatorname{Ind}_{K}^{G} V$ with respect to the scalar product (11.3) and the corresponding matrix coefficients of λ are given by the formula

$$
\left\langle\lambda(g) f_{t, j}, f_{s, i}\right\rangle_{\operatorname{Ind}_{K}^{G} V}= \begin{cases}\left\langle\sigma\left(s^{-1} g t\right) e_{j}, e_{i}\right\rangle_{V} & \text { if } s^{-1} g t \in K \\ 0 & \text { otherwise }\end{cases}
$$

for all $s, t \in \mathcal{T}$ and $i, j=1,2, \ldots, d$.
Proof The fact that $\left\{f_{t, j}: t \in \mathcal{T}, j=1,2, \ldots, n\right\}$ is an orthonormal basis easily follows from (11.4) and the formula $f_{t, j}(s)=\delta_{s t} e_{j}$, for $s, t \in \mathcal{T}$. Now suppose that $g \in G$ and $r \in \mathcal{T}$. Then there exist $t_{1} \in \mathcal{T}$ and $k \in K$ such that $g^{-1} r=t_{1} k$ and therefore

$$
\begin{aligned}
{\left[\lambda(g) f_{t, j}\right](r) } & =f_{t, j}\left(g^{-1} r\right) \\
& =f_{t, j}\left(t_{1} k\right) \\
& =\delta_{t, t_{1}} \sigma\left(k^{-1}\right) e_{j} .
\end{aligned}
$$

Since $k=t_{1}^{-1} g^{-1} r$ and

$$
t=t_{1} \quad \Longleftrightarrow g^{-1} r \in t K \quad \Longleftrightarrow \quad r^{-1} g t \in K
$$

we deduce that

$$
\left[\lambda(g) f_{t, j}\right](r)= \begin{cases}\sigma\left(r^{-1} g t\right) e_{j} & \text { if } r^{-1} g t \in K \\ 0 & \text { otherwise }\end{cases}
$$

We can use this formula and (11.4) to compute the matrix coefficients of the induced representation λ : for $s, t \in \mathcal{T}$ and $i, j=1,2, \ldots, d$, we have

$$
\begin{aligned}
\left\langle\lambda(g) f_{t, j}, f_{s, i}\right\rangle_{\operatorname{Ind}_{K}^{G} V} & =\sum_{r \in \mathcal{T}}\left\langle\left[\lambda(g) f_{t, j}\right](r), f_{s, i}(r)\right\rangle_{V}= \\
& = \begin{cases}\left\langle\sigma\left(s^{-1} g t\right) e_{j}, e_{i}\right\rangle_{V} & \text { if } s^{-1} g t \in K \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Corollary 11.1.12 (Frobenius character formula) Let G be a finite group, $K \leq G$ a subgroup and (σ, V) a K-representation. Then the character of the induced representation $\operatorname{Ind}_{K}^{G} \sigma$ is given by

$$
\begin{equation*}
\chi^{\operatorname{Ind}_{K}^{G} \sigma}(g)=\sum_{\substack{t \in \mathcal{T}: \\ t^{-1} g t \in K}} \chi^{\sigma}\left(t^{-1} g t\right) \tag{11.18}
\end{equation*}
$$

Proof Let $u_{i, j}^{\sigma}$ denote the matrix coefficients of σ and $u_{s, i ; t, j}^{\lambda}$ those of λ. Then Theorem 11.1.11 yields:

$$
u_{s, i ; t, j}^{\lambda}(g)= \begin{cases}u_{i, j}^{\sigma}\left(s^{-1} g t\right) & \text { if } s^{-1} g t \in K \tag{11.19}\\ 0 & \text { otherwise }\end{cases}
$$

that is, if $U(k)=\left(u_{i, j}^{\sigma}(k)\right)_{i, j=1}^{d}$, then the matrix $\left(u_{t, i ; s, j}^{\lambda}(g)\right)_{\substack{i, j=1,2, \ldots, d \\ t, s \in \mathcal{T}}}$ is given in block form by $\left(U\left(t^{-1} g s\right)\right)_{t, s \in \mathcal{T}}$, where $U\left(t^{-1} g s\right)=0$ whenever $t^{-1} g s \notin K$. By taking the trace of this block matrix, we immediately get the expression for the character of λ in terms of the character of σ.

There is another useful way to write Frobenius character formula. If \mathcal{C} is a conjugacy class in G, then $\mathcal{C} \cap K$ is invariant under conjugation by elements of K so that it is partitioned as

$$
\begin{equation*}
\mathcal{C} \cap K=\coprod_{i=1}^{m} \mathcal{D}_{i} \tag{11.20}
\end{equation*}
$$

where the \mathcal{D}_{i} 's are conjugacy classes in K.

Proposition 11.1.13 Let G be a finite group, $K \leq G$ a subgroup and (σ, V) a K-representation. Then we have:

$$
\begin{equation*}
\chi^{\operatorname{Ind}_{K}^{G} \sigma}(\mathcal{C})=\frac{|G|}{|K| \cdot|\mathcal{C}|} \sum_{i=1}^{m}\left|\mathcal{D}_{i}\right| \chi^{\sigma}\left(\mathcal{D}_{i}\right) \tag{11.21}
\end{equation*}
$$

where $\chi(\mathcal{C})$ denotes the value $\chi(c)$ of the character χ in each $c \in \mathcal{C}$.

Proof If $c, c^{\prime} \in \mathcal{C}$, then

$$
\begin{equation*}
\left|\left\{g \in G: g^{-1} c g=c^{\prime}\right\}\right|=\frac{|G|}{|\mathcal{C}|} \tag{11.22}
\end{equation*}
$$

Indeed, G acts transitively on \mathcal{C} by conjugation $\left(c \mapsto g^{-1} c g\right.$, for all $c \in \mathcal{C}$ and $g \in G$), and the stabilizer of c coincides with its centralizer, whose order is $|G| /|\mathcal{C}|$; see Lemma 10.4.2. Therefore, by Frobenius character formula, for $c \in \mathcal{C}$ we have

$$
\begin{aligned}
\chi^{\operatorname{Ind}_{K}^{G} \sigma}(\mathcal{C}) & =\sum_{\substack{t \in \mathcal{T}: \\
t^{-1} c t \in K}} \chi^{\sigma}\left(t^{-1} c t\right) \\
& =\frac{1}{|K|} \sum_{k \in K} \sum_{\substack{t \in \mathcal{T}: \\
t^{-1} c t \in K}} \chi^{\sigma}\left(k^{-1} t^{-1} c t k\right) \\
(g=t k) & =\frac{1}{|K|} \sum_{\substack{g \in G: \\
g^{-1} c g \in K}} \chi^{\sigma}\left(g^{-1} c g\right) \\
(\text { by }(11.22)) & =\frac{1}{|K|} \sum_{i=1}^{m} \frac{|G|}{|\mathcal{C}|} \sum_{k \in \mathcal{D}_{i}} \chi^{\sigma}(k) \\
& =\frac{|G|}{|K| \cdot|\mathcal{C}|} \sum_{i=1}^{m}\left|\mathcal{D}_{i}\right| \chi^{\sigma}\left(\mathcal{D}_{i}\right) .
\end{aligned}
$$

Corollary 11.1.14 For a permutation representation $(\lambda, L(X)$) (cf. Example 11.1.6), formula (11.21) becomes:

$$
\chi^{\lambda}(\mathcal{C})=\frac{|X|}{|\mathcal{C}|}|\mathcal{C} \cap K|
$$

Exercise 11.1.15 Deduce the fixed point character formula (Proposition 10.4.6) from Frobenius character formula.

In the last part of this section, we illustrate two fundamental results that connect tensor products (cf. Section 10.5) and induced representations.

Theorem 11.1.16 Let G be a finite group and $K \leq G$ a subgroup. Let (θ, W) be a G-representation and (σ, V) a K-representation. Then the map

$$
\begin{equation*}
\phi: W \bigotimes \operatorname{Ind}_{K}^{G} V \rightarrow \operatorname{Ind}_{K}^{G}\left[\left(\operatorname{Res}_{K}^{G} W\right) \bigotimes V\right] \tag{11.23}
\end{equation*}
$$

defined by setting

$$
[\phi(w \otimes f)](g)=\theta\left(g^{-1}\right) w \otimes f(g),
$$

for all $w \in W, f \in \operatorname{Ind}_{K}^{G} V$, and $g \in G$, is an isometric isomorphism of G-representations, so that, in particular,

$$
\phi \in \operatorname{Hom}_{G}\left(\theta \otimes \operatorname{Ind}_{K}^{G} \sigma, \operatorname{Ind}_{K}^{G}\left[\operatorname{Res}_{K}^{G} \theta \otimes \sigma\right]\right) .
$$

Proof The space $W \otimes \operatorname{Ind}_{K}^{G} V$ is spanned by all products $w \otimes f$ where $w \in W$ and $f \in V[G]$ satisfies $f(g k)=\sigma\left(k^{-1}\right) f(g)$, for all $k \in K$ and $g \in G$. Let us set, as usual, $\lambda=\operatorname{Ind}_{K}^{G} \sigma$. The space $\operatorname{Ind}_{K}^{G}\left[\left(\operatorname{Res}_{K}^{G} W\right) \otimes V\right]$ is made up of all functions $F \in(W \otimes V)[G]$ such that

$$
\begin{equation*}
F(g k)=\left[\theta\left(k^{-1}\right) \otimes \sigma\left(k^{-1}\right)\right] F(g), \tag{11.24}
\end{equation*}
$$

for all $k \in K$ and $g \in G$, and it is spanned by all functions of the form $\lambda_{1}(g) F_{w \otimes v}$, for $g \in G, w \in W, v \in V$, where $\lambda_{1}=\operatorname{Ind}_{K}^{G}\left[\left(\operatorname{Res}_{K}^{G} \theta\right) \otimes \sigma\right]$ is as in (11.2) and $F_{w \otimes v}$ is given by (11.5). First of all, observe that $\phi(w \otimes f) \in$ $\operatorname{Ind}_{K}^{G}\left[\left(\operatorname{Res}_{K}^{G} W\right) \otimes V\right]$. Indeed, $\phi(w \otimes f) \in(W \otimes V)[G]$ and satisfies (11.24):

$$
\begin{aligned}
{[\phi(w \otimes f)](g k) } & =\theta\left(k^{-1} g^{-1}\right) w \otimes f(g k) \\
& =\left[\theta\left(k^{-1}\right) \otimes \sigma\left(k^{-1}\right)\right]\left(\theta\left(g^{-1}\right) w \otimes f(g)\right) \\
& =\left[\theta\left(k^{-1}\right) \otimes \sigma\left(k^{-1}\right)\right](\phi(w \otimes f))(g) .
\end{aligned}
$$

Let us show that the map (11.23) is G-equivariant: for all $g, g_{0} \in G$ we have

$$
\begin{aligned}
(\phi\{[\theta(g) w] \otimes[\lambda(g) f]\})\left(g_{0}\right) & =\theta\left(g_{0}^{-1} g\right) w \otimes f\left(g^{-1} g_{0}\right) \\
& =[\phi(w \otimes f)]\left(g^{-1} g_{0}\right) \\
& =\left[\lambda_{1}(g) \phi(w \otimes f)\right]\left(g_{0}\right),
\end{aligned}
$$

that is, ϕ intertwines $\theta \otimes \lambda$ and λ_{1}. Now we prove that the map ϕ is surjective. For $w \in W, v \in V$, and $k \in K$ we have

$$
\left[\phi\left(w \otimes f_{v}\right)\right](k)=\theta\left(k^{-1}\right) w \otimes f_{v}(k)=\theta\left(k^{-1}\right) w \otimes \sigma\left(k^{-1}\right) v=F_{w \otimes v}(k)
$$

and $\left[\phi\left(w \otimes f_{v}\right)\right](g)=0=F_{w \otimes v}(g)$ if $g \in G \backslash K$, so that $\phi\left(w \otimes f_{v}\right)=F_{w \otimes v}$.

Since the functions of the form $\lambda_{1}(g) F_{w \otimes v}$ span $\operatorname{Ind}_{K}^{G}\left[\left(\operatorname{Res}_{K}^{G} W\right) \otimes V\right]$, we conclude that ϕ is surjective. Since

$$
\operatorname{dim}\left[W \bigotimes \operatorname{Ind}_{K}^{G} V\right]=\operatorname{dim} W \operatorname{dim} V|G / K|=\operatorname{dim}\left\{\operatorname{Ind}_{K}^{G}\left[\left(\operatorname{Res}_{K}^{G} W\right) \bigotimes V\right]\right\}
$$

it is also injective, so that it is an isomorphism. We leave it to the reader to check that ϕ is indeed an isometry.

Corollary 11.1.17 Let G be a finite group, $K \leq G$ a subgroup, and $x_{0} \in$ $X=G / K$ be the point stabilized by K. Let (θ, W) (respectively, $(\lambda, L(X))$) be a representation (respectively, the corresponding permutation representation) of G. Then the map

$$
\phi: W \bigotimes L(X) \rightarrow \operatorname{Ind}_{K}^{G} \operatorname{Res}_{K}^{G} W
$$

defined by setting

$$
[\phi(w \otimes f)](g)=f\left(g x_{0}\right) \theta\left(g^{-1}\right) w
$$

for all $f \in L(X), w \in W$, and $g \in G$, is an isometric isomorphism.
Proof Apply Theorem 11.1.16 with $\sigma=\iota_{K}$ the trivial representation of K. In this case $\operatorname{Ind}_{K}^{G} V \cong L(X)$ (see Example 11.1.6, in particular (11.14)) and $\left(\operatorname{Res}_{K}^{G} W\right) \otimes V=\left(\operatorname{Res}_{K}^{G} W\right) \otimes \mathbb{C} \cong \operatorname{Res}_{K}^{G} W$.
In the last corollary, we have shown that $\operatorname{Ind}_{K}^{G} \operatorname{Res}_{K}^{G} W$ is isomorphic to $W \otimes L(X)$. This is the first elementary result that connects induction and restriction. Sections 11.2, 11.4, and 11.5 are devoted to deeper results of this kind. In particular, Mackey's lemma in Section 11.5 examines the structure of $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{K}^{G} V$, where V is a K-representation and $H \leq G$ is another subgroup.

Another property of the induction operation is additivity.
Proposition 11.1.18 Let G be a finite group and $K \leq G$ a subgroup. Let $\left(\sigma_{1}, V_{1}\right)$ and $\left(\sigma_{2}, V_{2}\right)$ be two representations of K. Then

$$
\operatorname{Ind}_{K}^{G}\left(\rho_{1} \bigoplus \rho_{2}\right) \sim \operatorname{Ind}_{K}^{G}\left(\rho_{1}\right) \bigoplus \operatorname{Ind}_{K}^{G}\left(\rho_{2}\right)
$$

Proof We leave it to the reader to check that the map

$$
\Phi:\left(\operatorname{Ind}_{K}^{G} V_{1} \oplus \operatorname{Ind}_{K}^{G} V_{2}\right) \rightarrow \operatorname{Ind}_{K}^{G}\left(V_{1} \oplus V_{2}\right),
$$

defined by $\left[\Phi\left(f_{1}+f_{2}\right)\right](g)=f_{1}(g)+f_{2}(g)$, for all $f_{i} \in \operatorname{Ind}_{K}^{G} V_{i}, i=1,2$ and $g \in G$ is a bijective map in $\operatorname{Hom}_{G}\left(\operatorname{Ind}_{K}^{G}\left(\rho_{1}\right) \bigoplus \operatorname{Ind}_{K}^{G}\left(\rho_{2}\right), \operatorname{Ind}_{K}^{G}\left(\rho_{1} \bigoplus \rho_{2}\right)\right)$.

Exercise 11.1.19 Let G be a finite group and $K \leq G$ a subgroup. Let (σ, V) be a K-representation. Consider the tensor product $L(G) \otimes V$, its subspace \mathcal{V} spanned by $\left\{\delta_{g k} \otimes v-\delta_{g} \otimes \sigma(k) v: g \in G, k \in K, v \in V\right\}$, and the G-representation $(\gamma, L(G) \otimes V)$ given by

$$
\gamma(g)\left(\delta_{g^{\prime}} \otimes v\right)=\delta_{g g^{\prime}} \otimes v
$$

for all $g, g^{\prime} \in G$ and $v \in V$. Show that \mathcal{V} is γ-invariant and that $\operatorname{Ind}_{K}^{G} V \cong$ $[L(G) \otimes V] / \mathcal{V}$ as G-representations.

The above yields a classical, more algebraic, definition of an induced representation; see the monograph by Alperin and Bell [12].

11.2 Frobenius reciprocity

This section is devoted to the first fundamental result, due to Frobenius, that relates the operations of induction and restriction for group representations. We assume all the notation in Section 11.1; in particular, we suppose that (θ, W) is a G-representation (with $d_{\theta}=\operatorname{dim} W$) and (σ, V) is a K representation. For a more detailed analysis of Frobenius reciprocity, we refer to [137, 140, 37].

Theorem 11.2.1 (Frobenius reciprocity) For each $T \in \operatorname{Hom}_{G}\left(W, \operatorname{Ind}_{K}^{G} V\right)$ define $\hat{T}: W \rightarrow V$ by setting, for every $w \in W$,

$$
\begin{equation*}
\stackrel{\wedge}{T} w=[T w]\left(1_{G}\right) \tag{11.25}
\end{equation*}
$$

Then $\stackrel{\wedge}{T} \in \operatorname{Hom}_{K}\left(\operatorname{Res}_{K}^{G} W, V\right)$ and the map

$$
\begin{array}{ccc}
\operatorname{Hom}_{G}\left(W, \operatorname{Ind}_{K}^{G} V\right) & \longrightarrow & \operatorname{Hom}_{K}\left(\operatorname{Res}_{K}^{G} W, V\right) \\
T & \longmapsto & \stackrel{\wedge}{T}
\end{array}
$$

is an isomorphism of vector spaces. Its inverse is the map $L \mapsto \stackrel{\vee}{L}$ where, for $L \in \operatorname{Hom}_{K}\left(\operatorname{Res}_{K}^{G} W, V\right)$,

$$
\begin{equation*}
[\stackrel{\vee}{L} w](g)=L \theta\left(g^{-1}\right) w \tag{11.26}
\end{equation*}
$$

for all $w \in W$ and $g \in G$.

Proof First of all, we show that $\hat{T} \in \operatorname{Hom}_{K}\left(\operatorname{Res}_{K}^{G} W, V\right)$:

$$
\begin{aligned}
\hat{T} \theta(k) w & =\{T[\theta(k) w]\}\left(1_{G}\right) \\
\left(T \in \operatorname{Hom}_{G}\left(W, \operatorname{Ind}_{K}^{G} V\right)\right) & =[\lambda(k)(T w)]\left(1_{G}\right) \\
\left(\operatorname{by~}^{\prime}(11.2)\right) & =[T w]\left(k^{-1}\right) \\
(\text { by }(11.1)) & =\sigma(k)[T w]\left(1_{G}\right) \\
& =\sigma(k) \hat{T} w
\end{aligned}
$$

for all $k \in K$ and $w \in W$.
Conversely, if $L \in \operatorname{Hom}_{K}\left(\operatorname{Res}_{K}^{G} W, V\right)$ then from (11.26) we deduce that

$$
[\stackrel{\vee}{L} w](g k)=L \theta\left(k^{-1}\right) \theta\left(g^{-1}\right) w=\sigma\left(k^{-1}\right) L \theta\left(g^{-1}\right) w=\sigma\left(k^{-1}\right)[\stackrel{\vee}{L} w](g)
$$

for all $w \in W, k \in K$ and $g \in G$, so that $\stackrel{\vee}{L} w \in \operatorname{Ind}_{K}^{G} V$. Moreover, if also $g_{0} \in G$ we have

$$
\begin{aligned}
& \left.[\stackrel{\vee}{L} \theta(g) w]\left(g_{0}\right)=L \theta\left(g_{0}^{-1}\right) \theta(g) w=L \theta\left[\left(g^{-1} g_{0}\right)^{-1}\right)\right] w \\
& =[\stackrel{\vee}{L} w]\left(g^{-1} g_{0}\right)=[\lambda(g) \stackrel{\vee}{L} w]\left(g_{0}\right)
\end{aligned}
$$

and this shows that $\stackrel{\vee}{L} \in \operatorname{Hom}_{G}\left(W, \operatorname{Ind}_{K}^{G} V\right)$. Finally,

$$
\begin{aligned}
& {\left[(\hat{T})^{\vee} w\right](g)=\stackrel{\wedge}{T} \theta\left(g^{-1}\right) w=\left[T \theta\left(g^{-1}\right) w\right]\left(1_{G}\right) } \\
&=\left[\lambda\left(g^{-1}\right)(T w)\right]\left(1_{G}\right)=[T w](g)
\end{aligned}
$$

and

$$
(\stackrel{\vee}{L})^{\wedge} w=[\stackrel{\vee}{L} w]\left(1_{G}\right)=L w
$$

for all $w \in W$ and $g \in G$, that is, $(\hat{T})^{\vee}=T$ and $(\stackrel{\vee}{L})^{\wedge}=L$. It follows that the linear maps $T \mapsto \stackrel{\wedge}{T}$ and $L \mapsto L$ are one inverse to the other, and therefore are isomorphisms.

From Theorem 11.2.1, Lemma 10.6.1.(i), and Lemma 10.6.2 we deduce the following:

Corollary 11.2.2 Suppose that W and V are irreducible. Then the multiplicity of W in $\operatorname{Ind}_{K}^{G} V$ equals the multiplicity of V in $\operatorname{Res}_{K} W$.

Corollary 11.2.3 Suppose that W and V are irreducible, and that W is contained in $\operatorname{Ind}_{K}^{G} V$ with multiplicity m. Then

$$
\operatorname{dim} W \geq m \operatorname{dim} V
$$

In particular, if $\operatorname{dim} W=1$ one has $\operatorname{dim} V=1$ and $m=1$.
Proof $\operatorname{Res}_{K}^{G} W$ contains m copies of V and $\operatorname{dimRes}{ }_{K}^{G} W=\operatorname{dim} W$.
From the point of view of character theory, Frobenius reciprocity may be formulated in the following form:

Proposition 11.2.4

$$
\frac{1}{|G|}\left\langle\chi^{\theta}, \chi^{\operatorname{Ind}_{K}^{G} \sigma}\right\rangle_{L(G)}=\frac{1}{|K|}\left\langle\chi^{\operatorname{Res}_{K}^{G} \theta}, \chi^{\sigma}\right\rangle_{L(K)}
$$

Proof Although this may be deduced from Corollary 11.2.2 (see Exercise 11.2.5), we reproduce the easy proof based on Frobenius character formula. Let $\mathcal{C}_{j}, j=1,2, \ldots, n$ be the conjugacy classes of G and suppose that $\mathcal{C}_{j} \cap$ $K=\coprod_{i=1}^{m_{j}} \mathcal{D}_{i, j}$ (with $\mathcal{D}_{i, j} \subset \mathcal{C}_{j}$ a K-equivalence class) as in (11.20). Then we have:

$$
\begin{aligned}
\frac{1}{|G|}\left\langle\chi^{\theta}, \chi^{\operatorname{Ind}_{K}^{G} \sigma}\right\rangle_{L(G)} & =\frac{1}{|G|} \sum_{j=1}^{n}\left|\mathcal{C}_{j}\right| \chi^{\theta}\left(\mathcal{C}_{j}\right) \overline{\chi^{\operatorname{Ind}_{K}^{G} \sigma\left(\mathcal{C}_{j}\right)}} \\
(\text { by }(11.21)) & =\frac{1}{|K|} \sum_{j=1}^{n} \sum_{i=1}^{m_{j}}\left|\mathcal{D}_{i, j}\right| \chi^{\theta}\left(\mathcal{D}_{i, j}\right) \overline{\chi^{\sigma}\left(\mathcal{D}_{i, j}\right)} \\
& =\frac{1}{|K|}\left\langle\chi^{\operatorname{Res}_{K}^{G} \theta}, \chi^{\sigma}\right\rangle_{L(K)}
\end{aligned}
$$

Exercise 11.2.5 Deduce Proposition 11.2.4 from Proposition 10.2 .18 and Corollary 11.2.2.

Exercise 11.2.6 With the notation as in Theorem 11.2.1, show that the $\operatorname{map} T \mapsto \sqrt{|G / K|} \hat{T}$ is an isometry with respect to the scalar product in Exercise 10.6.10.

Exercise 11.2.7 (The other side of Frobenius reciprocity) For each $T \in \operatorname{Hom}_{G}\left(\operatorname{Ind}_{K}^{G} V, W\right)$ define $\stackrel{\circ}{T} \in \operatorname{Hom}(V, W)$ by setting $\stackrel{\circ}{T} v=T f_{v}$, for all $v \in V\left(f_{v}\right.$ is as in (11.5)).
(1) Show that $\stackrel{\circ}{T} \in \operatorname{Hom}_{K}\left(V, \operatorname{Res}_{K}^{G} W\right)$.
(2) Show that $\left(T^{*}\right)^{\circ}=(\hat{T})^{*}$.
(3) Show that the map

$$
\begin{array}{ccc}
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{K}^{G} V, W\right) & \longrightarrow & \operatorname{Hom}_{K}\left(V, \operatorname{Res}_{K}^{G} W\right) \\
T & \longmapsto & \stackrel{\circ}{T}
\end{array}
$$

is an isometric isomorphism of vector spaces and that its inverse is the map $L \mapsto \stackrel{\diamond}{L}$ defined by setting $\stackrel{\diamond}{L} f=\sum_{t \in \mathcal{T}} \theta(t) L f(t)$ for all $L \in \operatorname{Hom}_{K}\left(V, \operatorname{Res}_{K}^{G} W\right)$ and $f \in \operatorname{Ind}_{K}^{G} V$.

We now examine Frobenius reciprocity in a particular case: from now on, the K-representation (σ, V) is one-dimensional and we shall identify it with its character $\chi=\chi^{\sigma}$. We then denote by $\operatorname{Ind}_{K}^{G} \mathbb{C}$ the representation space of $\lambda=\operatorname{Ind}_{K}^{G} \chi$ (see also Example 11.1.9).

We denote by $W^{K, \chi}$ the χ-isotypic component in $\operatorname{Res}_{K}^{G} W$, that is,

$$
\begin{equation*}
W^{K, \chi}=\{w \in W: \theta(k) w=\chi(k) w \text { for all } k \in K\} \tag{11.27}
\end{equation*}
$$

Note that when $\chi=\iota_{K}$ is the trivial K-representation, then

$$
W^{K, \iota_{K}}=W^{K}=\{w \in W: \theta(k) w=w \text { for all } k \in K\}
$$

is the subspace of K-invariant vectors in W.
Proposition 11.2.8 Suppose that $W^{K, \chi}$ is non-trivial. With each $u \in W^{K, \chi}$ we associate a linear map $T_{u}: W \rightarrow L(G)$ defined by setting

$$
\begin{equation*}
\left[T_{u} w\right](g)=\sqrt{\frac{d_{\theta}}{|G / K|}}\langle w, \theta(g) u\rangle_{W} \tag{11.28}
\end{equation*}
$$

for all $w \in W$ and $g \in G$. Then:
(i) for all $u \in W^{K, \chi}$ we have $T_{u} \in \operatorname{Hom}_{G}\left(\theta, \operatorname{Ind}_{K}^{G} \chi\right)$;
(ii) if (θ, W) is irreducible and $\|u\|_{W}=1$ then $T_{u}: W \rightarrow \operatorname{Ind}_{K}^{G} \mathbb{C}$ is isometric.

Proof (i) Let $u \in W^{K, \chi}$ and define a linear functional $L: W \rightarrow \mathbb{C}$ by setting $L w=\langle w, u\rangle_{W}$, for all $w \in W$ (that is, in the notation of (10.53), $\left.L=\xi^{-1}(u)\right)$. Then $L \in \operatorname{Hom}_{K}\left(\operatorname{Res}_{K}^{G} W, \chi\right)$:

$$
L \theta(k) w=\langle\theta(k) w, u\rangle_{W}=\left\langle w, \theta\left(k^{-1}\right) u\right\rangle_{W}=\chi(k)\langle w, u\rangle_{W}=\chi(k) L w
$$

for all $w \in W, k \in K$. Since $T_{u}=\sqrt{\frac{d_{\theta}}{|G / K|}} \downarrow$, from Theorem 11.2.1 we deduce that $T_{u} \in \operatorname{Hom}_{G}\left(\theta, \operatorname{Ind}_{K}^{G} \chi\right)$.
(ii) Suppose that $\left\{u_{i}: i=1,2, \ldots, d_{\theta}\right\}$ is an orthonormal basis in W with $u_{1}=u$. Then, for every $w=\sum_{i=1}^{d_{\theta}} \alpha_{i} u_{i} \in W, \alpha_{i} \in \mathbb{C}$, we have (cf. (11.3)):

$$
\begin{aligned}
\left\|T_{u} w\right\|_{\mathrm{Ind}_{K}^{G} \chi}^{2} & =\frac{1}{|K|} \cdot \frac{d_{\theta}}{|G / K|} \sum_{g \in G}\langle w, \sigma(g) u\rangle_{W} \overline{\langle w, \sigma(g) u\rangle_{W}} \\
& =\frac{d_{\theta}}{|G|} \sum_{i, j=1}^{d_{\theta}} \alpha_{i} \overline{\alpha_{j}} \sum_{g \in G}\left\langle u_{i}, \sigma(g) u_{1}\right\rangle_{W} \overline{\left\langle u_{j}, \sigma(g) u_{1}\right\rangle_{W}} \\
(\operatorname{by}(10.24)) & =\sum_{i=1}^{d_{\theta}}\left|\alpha_{i}\right|^{2} \\
& =\|w\|_{W}^{2} .
\end{aligned}
$$

This shows that T_{u} is an isometry.

11.3 Preliminaries on Mackey's theory

In the present and next two sections, we use all the notation of Section 11.1. We also suppose that H is another subgroup of G and that (ν, U) is an H representation. We set $\lambda_{1}=\operatorname{Ind}_{H}^{G} \nu$. Moreover, we assume that \mathcal{S} is a set of representatives for the set $H \backslash G / K$ of all $H-K$ double cosets in G, so that

$$
\begin{equation*}
G=\coprod_{s \in \mathcal{S}} H s K \tag{11.29}
\end{equation*}
$$

with $1_{G} \in \mathcal{S}$ (this is the representative of $H K$). For each $s \in \mathcal{S}$, we set

$$
\begin{equation*}
G_{s}=H \cap s K s^{-1} \tag{11.30}
\end{equation*}
$$

Clearly, G_{s} is a subgroup of H while $s^{-1} G_{s} s$ is a subgroup of K. We start with a simple but useful Lemma.

Lemma 11.3.1 Let $h, h_{1} \in H, k, k_{1} \in K$ and $s \in \mathcal{S}$. Then we have

$$
h s k=h_{1} s k_{1} \Leftrightarrow \exists x \in G_{s} \text { such that } h_{1}=h x \text { and } k_{1}=s^{-1} x^{-1} s k .
$$

Proof We have $h s k=h_{1} s k_{1}$ if and only if $s k k_{1}^{-1} s^{-1}=h^{-1} h_{1}$. By (11.30), this holds if and only if $h_{1}=h x$ and $k_{1}=s^{-1} x^{-1} s k$ with $x=h^{-1} h_{1}(=$ $\left.s k k_{1}^{-1} s^{-1}\right) \in G_{s}$.

Remark 11.3.2 From the lemma above it follows that

$$
|H s K|=\frac{|H||K|}{\left|G_{s}\right|}
$$

Indeed, for each $g \in H s K$ there exist exactly $\left|G_{s}\right|$ pairs $(h, k) \in H \times K$ such that $g=h s k$. Observe also that $H \backslash G / K$ can be interpreted as the set of H-orbits on $X=G / K$: if $x_{0} \in X$ is the point stabilized by K, then these orbits are

$$
\left\{H s x_{0}: s \in \mathcal{S}\right\}
$$

Moreover, the subgroup G_{s} can be identified with the stabilizer in H of the point $s x_{0}$.

We leave it as an exercise to check the above statements.
For all $s \in \mathcal{S}$, we denote by $\left(\sigma_{s}, V_{s}\right)$ the representation of G_{s} on $V_{s}=V$ defined by setting

$$
\begin{equation*}
\sigma_{s}(x)=\sigma\left(s^{-1} x s\right) \tag{11.31}
\end{equation*}
$$

for all $x \in G_{s}$. We also define

$$
\begin{equation*}
\mathcal{S}_{0}=\left\{s \in \mathcal{S}: \operatorname{Hom}_{G_{s}}\left(\operatorname{Res}_{G_{s}}^{H} \nu, \sigma_{s}\right) \text { is nontrivial }\right\} . \tag{11.32}
\end{equation*}
$$

11.4 Mackey's formula for invariants

In this section, we expose a series of results of Mackey on the space of intertwining operators between two induced representations. The particular case of the commutant of the representation obtained by inducing a one dimensional representation will be analyzed more closely in Chapter 13. See also [140] and [37].

We assume the notation from the previous section.
Definition 11.4.1 We denote by $\mathcal{V}=\mathcal{V}(G, H, K, \nu, \sigma)$ the set of all maps $F: G \rightarrow \operatorname{Hom}(U, V)$ such that

$$
F(h g k)=\sigma\left(k^{-1}\right) F(g) \nu\left(h^{-1}\right)
$$

for all $g \in G, h \in H$, and $k \in K$.

Lemma 11.4.2

(i) For $s \in \mathcal{S}_{0}$ and $T \in \operatorname{Hom}_{G_{s}}\left(\operatorname{Res}_{G_{s}}^{H} \nu, \sigma_{s}\right)$ define $\mathcal{L}_{T}: G \rightarrow \operatorname{Hom}(U, V)$ by setting

$$
\mathcal{L}_{T}(g)= \begin{cases}\sigma\left(k^{-1}\right) T \nu\left(h^{-1}\right) & \text { if } g=h s k \in H s K \tag{11.33}\\ 0 & \text { otherwise } .\end{cases}
$$

Then \mathcal{L}_{T} is well defined and belongs to \mathcal{V}.
(ii) Let $F \in \mathcal{V}$. Then $F(s) \in \operatorname{Hom}_{G_{s}}\left(\operatorname{Res}_{G_{s}}^{H} \nu, \sigma_{s}\right)$ for all $s \in \mathcal{S}$.
(iii) Let $F \in \mathcal{V}$. Then $F=\sum_{s \in \mathcal{S}_{0}} \mathcal{L}_{F(s)}$ and the nontrivial elements in this sum are linearly independent.
(iv) The map

$$
\begin{array}{ccc}
\mathcal{V} & \longrightarrow & \bigoplus_{s \in \mathcal{S}_{0}} \operatorname{Hom}_{G_{s}}\left(\operatorname{Res}_{G_{s}}^{H} \nu, \sigma_{s}\right) \tag{11.34}\\
F & \longmapsto & \oplus_{s \in \mathcal{S}_{0}} F(s)
\end{array}
$$

is an isomorphism of vector spaces.
Proof (i) It suffices to show that \mathcal{L}_{T} is well defined. Indeed, if $h s k=h_{1} s k_{1}$, then, by Lemma 11.3.1, $h_{1}=h x$ and $k_{1}=s^{-1} x^{-1} s k$ with $x \in G_{s}$, so that

$$
\begin{aligned}
\sigma\left(k_{1}^{-1}\right) T \nu\left(h_{1}^{-1}\right) & =\sigma\left(k^{-1} s^{-1} x s\right) T \nu\left(x^{-1} h^{-1}\right) \\
(\operatorname{by}(11.31)) & =\sigma\left(k^{-1}\right) \sigma_{s}(x) T \nu\left(x^{-1} h^{-1}\right) \\
\left(T \in \operatorname{Hom}_{G_{s}}\left(\operatorname{Res}_{G_{s}}^{H} \nu, \sigma_{s}\right)\right) & =\sigma\left(k^{-1}\right) T \nu(x) \nu\left(x^{-1} h^{-1}\right) \\
& =\sigma\left(k^{-1}\right) T \nu\left(h^{-1}\right) .
\end{aligned}
$$

(ii) For all $x \in G_{s}$, by definition of \mathcal{V}, we have

$$
\begin{aligned}
F(s) \nu(x) & =F\left(x^{-1} s\right) \\
& =F\left(s \cdot s^{-1} x^{-1} s\right) \\
& =\sigma\left(s^{-1} x s\right) F(s) \\
& =\sigma_{s}(x) F(s)
\end{aligned}
$$

that is, $F(s) \in \operatorname{Hom}_{G_{s}}\left(\operatorname{Res}_{G_{s}}^{H} \nu, \sigma_{s}\right)$.
(iii) Clearly, F is determined by its values on \mathcal{S} : indeed if $g=h s k$, with $h \in H, k \in K$, and $s \in \mathcal{S}$, we have

$$
F(g)=F(h s k)=\sigma\left(k^{-1}\right) F(s) \nu\left(h^{-1}\right)=\mathcal{L}_{F(s)}(g)
$$

Moreover, this vanishes on the cosets $H s K$ with $s \notin \mathcal{S}_{0}$. As a consequence, $F=\sum_{s \in \mathcal{S}_{0}} \mathcal{L}_{F(s)}$ and the nontrivial elements in this sum are linearly independent because they are supported on different double cosets.
(iv) Surjectivity of the map follows from (11.33). Indeed, T is the image of \mathcal{L}_{T}. Injectivity is a consequence of (iii).

For $F \in \mathcal{V}$ define the operator $\xi(F) \in \operatorname{Hom}\left(\operatorname{Ind}_{H}^{G} U, \operatorname{Ind}_{K}^{G} V\right)$ by setting

$$
\begin{equation*}
[\xi(F) f](g)=\sum_{r \in G} F\left(r^{-1} g\right) f(r) \tag{11.35}
\end{equation*}
$$

for all $f \in \operatorname{Ind}_{H}^{G} U$ and $g \in G$. It is then immediate to check that $\xi(F) f \in$ $\operatorname{Ind}_{K}^{G} V$.

Also, for $T \in \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} U, \operatorname{Ind}_{K}^{G} V\right)$ define the map $F_{T}: G \rightarrow \operatorname{Hom}(U, V)$ by setting

$$
\begin{equation*}
F_{T}(g) u=\frac{1}{|H|}\left[T f_{u}\right](g) \tag{11.36}
\end{equation*}
$$

for all $u \in U$ and $g \in G$, where f_{u} is as in (11.5) (but with K, V now replaced by H, U, respectively).

Theorem 11.4.3 We have $\xi(F) \in \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} U, \operatorname{Ind}_{K}^{G} V\right)$ for all $F \in \mathcal{V}$ and the map

$$
\xi: \mathcal{V} \longrightarrow \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} U, \operatorname{Ind}_{K}^{G} V\right)
$$

is an isomorphism of vector spaces. The corresponding inverse map is given by $T \mapsto F_{T}$.

Proof Let $F \in \mathcal{V}, f \in \operatorname{Ind}_{H}^{G} U$ and $g_{0}, g \in G$. Then we have

$$
\begin{aligned}
{[\lambda(g) \xi(F) f]\left(g_{0}\right) } & =[\xi(F) f]\left(g^{-1} g_{0}\right) \\
& =\sum_{r \in G} F\left(r^{-1} g^{-1} g_{0}\right) f(r) \\
(\text { setting } q=g r) & =\sum_{q \in G} F\left(q^{-1} g_{0}\right) f\left(g^{-1} q\right) \\
& =\sum_{q \in G} F\left(q^{-1} g_{0}\right)\left[\lambda_{1}(g) f\right](q) \\
& =\left[\xi(F) \lambda_{1}(g) f\right]\left(g_{0}\right),
\end{aligned}
$$

that is, $\lambda(g) \xi(F)=\xi(F) \lambda_{1}(g)$. This shows that $\xi(F) \in \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} U, \operatorname{Ind}_{K}^{G} V\right)$.
Let now $h \in H, k \in K, g \in G, u \in U$ and $T \in \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} U, \operatorname{Ind}_{K}^{G} V\right)$.
Then we have

$$
\begin{aligned}
F_{T}(h g k) u & =\frac{1}{|H|}\left[T f_{u}\right](h g k) \\
\left(T \in \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} U, \operatorname{Ind}_{K}^{G} V\right)\right) & =\sigma\left(k^{-1}\right)\left\{\frac{1}{|H|}\left[T \lambda_{1}\left(h^{-1}\right) f_{u}\right](g)\right\} \\
(\operatorname{by}(11.6)) & =\sigma\left(k^{-1}\right)\left\{\frac{1}{|H|}\left[T f_{\nu\left(h^{-1}\right) u}\right](g)\right\} \\
& =\sigma\left(k^{-1}\right) F_{T}(g) \nu\left(h^{-1}\right) u
\end{aligned}
$$

This shows that $F_{T} \in \mathcal{V}$.
We now prove that ξ is a bijection. Let $T \in \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} U, \operatorname{Ind}_{K}^{G} V\right)$ and
$F \in \mathcal{V}$. Since the functions $\lambda_{1}(g) f_{u}, g \in G$ and $u \in U$, span $\operatorname{Ind}_{H}^{G} U(\mathrm{cf}$. Proposition 11.1.2), we have that $\xi(F)=T$ if and only if

$$
\begin{equation*}
\xi(F) \lambda_{1}(g) f_{u}=T \lambda_{1}(g) f_{u} \tag{11.37}
\end{equation*}
$$

for all $g \in G$ and $u \in U$.
We have

$$
\begin{align*}
{\left[T \lambda_{1}(g) f_{u}\right]\left(g_{0}\right) } & =\left[\lambda(g) T f_{u}\right]\left(g_{0}\right) \quad\left(T \in \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} U, \operatorname{Ind}_{K}^{G} V\right)\right) \\
& =\left[T f_{u}\right]\left(g^{-1} g_{0}\right) \\
& =|H| F_{T}\left(g^{-1} g_{0}\right) u \quad \quad(\text { by }(11.36)) \tag{11.36}
\end{align*}
$$

and

$$
\begin{array}{rlr}
{\left[\xi(F) \lambda_{1}(g) f_{u}\right]\left(g_{0}\right)} & =\sum_{r \in G} F\left(r^{-1} g_{0}\right) f_{u}\left(g^{-1} r\right) & \quad(\text { by }(11.35)) \\
& =\sum_{h \in H} F\left(h^{-1} g^{-1} g_{0}\right) \nu\left(h^{-1}\right) u & \left(\text { by }(11.5) \text { with } g^{-1} r=h\right) \\
& =|H| \cdot F\left(g^{-1} g_{0}\right) u . & \quad \text { (by Definition 11.4.1) }
\end{array}
$$

for all $u \in U, g, g_{0} \in G$. From (11.37) we then deduce that $\xi(F)=T$ if and only if $F=F_{T}$.

From Lemma 11.4.2.(iv) and Theorem 11.4.3 we deduce the following:
Corollary 11.4.4 (Mackey's formula for invariants) The map

$$
\begin{array}{ccc}
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} \nu, \operatorname{Ind}_{K}^{G} \sigma\right) & \longrightarrow & \bigoplus_{s \in \mathcal{S}_{0}} \operatorname{Hom}_{G_{s}}\left(\operatorname{Res}_{G_{s}}^{H} \nu, \sigma_{s}\right) \tag{11.38}\\
T & \longmapsto & \oplus_{s \in \mathcal{S}_{0}} F_{T}(s)
\end{array}
$$

is an isomorphism of vector spaces.
Proof This map is nothing but the composition of the isomorphisms ξ^{-1} and (11.34).

By taking dimensions we deduce:

Corollary 11.4.5 (Mackey's intertwining number theorem)

$$
\operatorname{dimHom}_{G}\left(\operatorname{Ind}_{H}^{G} \nu, \operatorname{Ind}_{K}^{G} \sigma\right)=\sum_{s \in \mathcal{S}} \operatorname{dimHom}_{G_{s}}\left(\operatorname{Res}_{G_{s}}^{H} \nu, \sigma_{s}\right)
$$

Note that in the above sum the only contribution to the right hand side comes from the elements $s \in \mathcal{S}_{0}$. The following is one of the most useful results in Mackey's theory.

Corollary 11.4.6 (Mackey's irreducibility criterion) Suppose $H=K$ and $\nu=\sigma$. Then $\operatorname{Ind}_{K}^{G} \sigma$ is irreducible if and only if the following conditions are both met:
(a) (σ, V) is irreducible;
(b) for every $s \in \mathcal{S} \backslash\left\{1_{G}\right\}$, the G_{s}-representations $\operatorname{Res}_{G_{s}}^{K} \sigma$ and σ_{s} contain no common irreducible subrepresentations.

Proof First of all, note that $G_{1_{G}}=K$ and $\sigma_{1_{G}}=\sigma$, so that Mackey's intertwining number theorem (Corollary 11.4.5) yields

$$
\operatorname{dimHom}_{G}\left(\operatorname{Ind}_{K}^{G} \sigma, \operatorname{Ind}_{K}^{G} \sigma\right)=\operatorname{dimHom}_{K}(\sigma, \sigma)+\sum_{s \in \mathcal{S} \backslash\left\{1_{G}\right\}} \operatorname{dim}_{\operatorname{Hom}_{G_{s}}}\left(\operatorname{Res}_{G_{s}}^{K} \sigma, \sigma_{s}\right)
$$

We conclude by recalling that from Corollary 10.6.4 it follows that $\operatorname{Ind}_{K}^{G} \sigma$ is irreducible if and only if $\operatorname{dimHom}{ }_{G}\left(\operatorname{Ind}_{K}^{G} \sigma, \operatorname{Ind}_{K}^{G} \sigma\right)=1$ and then invoking Corollary 10.2.6 (see also Problem 10.6.9).

Remark 11.4.7 Now we explain the terminology for "invariant" in Corollary 11.4.4. If (θ, W) is a G-representation, its invariant subspace is $\{w \in W$: $\theta(g) w=w, \forall g \in G\}$, that is, the isotypic component of the trivial representation ι_{G} in θ. If (ξ, Z) is another representation of G, then, defining a G-representation $(\eta, \operatorname{Hom}(W, Z))$ by setting

$$
\eta(g) T=\xi(g) T \theta\left(g^{-1}\right)
$$

for all $g \in G$ and $T \in \operatorname{Hom}(W, Z)$, we have that $\operatorname{Hom}_{G}(W, Z)$ is exactly the invariant subspace of η.

Exercise 11.4.8 Show that, for $H=G$ and $(\nu, U)=(\theta, W)$, Mackey's formula for invariants (11.38) reduces to Frobenius reciprocity (Theorem 11.2.1). More precisely, show that the maps (11.25) and (11.26) and their properties may be deduced from (11.33), (11.35) and (11.36). Examine the connections between the case $K=G$ and the other side of Frobenius reciprocity in Exercise 11.2.7.

Exercise 11.4.9 Deduce Lemma 10.4.14 from Corollary 11.4.5, taking into account Remark 11.3.2.

Remark 11.4.10 We now examine the case in which $\sigma=\chi$ and $\nu=\psi$ are one-dimensional (see Example 11.1.9). We have $U=V=\mathbb{C}$ and $\mathcal{S}_{0}=$ $\left\{s \in \mathcal{S}: \operatorname{Res}_{G_{s}}^{H} \psi=\chi_{s}\right\}$. Moreover, in the map (11.38), we have $F_{T}(s)=$
$\frac{1}{|H|}[T \bar{\psi}](s) \in \mathbb{C}$, and the intertwining number theorem (Corollary 11.4.5) is just the formula

$$
\operatorname{dim}^{\operatorname{Hom}_{G}}\left(\operatorname{Ind}_{H}^{G} \psi, \operatorname{Ind}_{K}^{G} \chi\right)=\left|\mathcal{S}_{0}\right|
$$

Finally, in the case $H=K$ and $\psi=\chi$, the representation $\operatorname{Ind}_{K}^{G} \chi$ is irreducible if and only if $\operatorname{Res}_{G_{s}}^{K} \chi \neq \chi_{s}$ for all $s \in \mathcal{S} \backslash\left\{1_{G}\right\}$ (equivalently, $\mathcal{S}_{0}=\left\{1_{G}\right\}$)

Exercise 11.4.11 Suppose that $H=K$ and $\nu=\sigma$. Define a multiplication operation in $\mathcal{V}=\mathcal{V}(G, K, K, \sigma, \sigma)$ (cf. Definition 11.4.1) by setting [$F_{1} *$ $\left.F_{2}\right](g)=\sum_{g_{1} \in G} F_{1}\left(g_{1}^{-1} g\right) F_{2}\left(g_{1}\right)$ for all $F_{1}, F_{2} \in \mathcal{V}$ and $g \in G$. Also define the map $F \mapsto F^{*}$ by setting $F^{*}(f)=\left[F\left(g^{-1}\right)\right]^{*}$, for all $F \in \mathcal{V}, g \in G$.
(1) Show that \mathcal{V} is an involutive algebra.
(2) Show that if $\xi: \mathcal{V} \rightarrow \operatorname{Hom}_{G}\left(\operatorname{Ind}_{K}^{G} \sigma, \operatorname{Ind}_{K}^{G} \sigma\right)$ is as in (11.35), then we gave $\xi\left(F_{1} * F_{2}\right)=\xi\left(F_{1}\right) \xi\left(F_{2}\right)$ and $\xi\left(F^{*}\right)=\xi(F)^{*}$. Taking into account Theorem 11.4.3, deduce that ξ is a $*$-isomorphism.
(3) With the notation in (10.49) and (11.5), show that $\left[\xi(F) \lambda(t) f_{v}\right](g)=$ $|K| \cdot F\left(t^{-1} g\right) v$, for all $F \in \mathcal{V}, v \in V, t \in \mathcal{T}$ and $g \in G$.
(4) Deduce that $\operatorname{Tr}[\xi(F)]=|G| \cdot \operatorname{Tr}\left[F\left(1_{G}\right)\right]$.
$\underset{\sim}{\text { Exercise 11.4.12 Let }} \xi: \mathcal{V}(G, H, K, \nu, \sigma) \rightarrow \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} \nu, \operatorname{Ind}_{K}^{G} \sigma\right)$ and $\widetilde{\xi}: \mathcal{V}(G, H, H, \nu, \nu) \rightarrow \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} \nu, \operatorname{Ind}_{H}^{G} \nu\right)$ be as in (11.35).
(1) Let $F_{1}, F_{2} \in \mathcal{V}(G, H, K, \nu, \sigma)$ and define $F: G \rightarrow \operatorname{Hom}\left(\operatorname{Ind}_{H}^{G} \nu, \operatorname{Ind}_{H}^{G} \nu\right)$ by setting

$$
F(g)=\frac{|H|}{|K|} \sum_{g_{1} \in G}\left[F_{2}\left(g^{-1} g_{1}\right)\right]^{*} F_{1}\left(g_{1}\right)
$$

for all $g \in G$. Show that $F \in \mathcal{V}(G, H, H, \nu, \nu)$ and $\xi\left(F_{2}\right)^{*} \xi\left(F_{1}\right)=$ $\widetilde{\xi}(F)$.
(2) Given two finite-dimensional vector spaces \widetilde{U} and \widetilde{V} and $T_{1}, T_{2} \in$ $\operatorname{Hom}(\widetilde{U}, \widetilde{V})$, set

$$
\left\langle T_{1}, T_{2}\right\rangle_{\operatorname{Hom}(\widetilde{U}, \widetilde{V})}=\operatorname{Tr}\left(T_{2}^{*} T_{1}\right)
$$

$$
\begin{aligned}
& \text { Taking into account Exercise } 11.4 .11, \text { deduce that } \\
& \begin{aligned}
\left\langle\xi\left(F_{1}\right), \xi\left(F_{2}\right)\right\rangle^{\operatorname{Hom}\left(\operatorname{Ind}_{H}^{G} U, \operatorname{Ind}_{K}^{G} V\right)} & =\frac{|H|^{2}}{|K|} \sum_{g \in G}\left\langle F_{1}(g), F_{2}(g)\right\rangle_{\operatorname{Hom}(U, V)} \\
& \equiv|H|^{3} \sum_{s \in \mathcal{S}} \frac{1}{\left|G_{s}\right|}\left\langle F_{1}(s), F_{2}(s)\right\rangle_{\operatorname{Hom}(U, V)} .
\end{aligned}
\end{aligned}
$$

11.5 Mackey's lemma

In Corollary 11.1.17 we have examined the composition IndoRes. The following famous lemma, due to Mackey, considers the inverse composition, namely Res o Ind. It essentially constitutes a representation theoretic analogue of the decomposition (11.29).

We assume the notation from Section 11.3.
Theorem 11.5.1 (Mackey's lemma) The map

$$
\begin{align*}
& \operatorname{Res}_{H}^{G} \operatorname{Ind}_{K}^{G} V \longrightarrow \bigoplus_{s \in \mathcal{S}} \operatorname{Ind}_{G_{s}}^{H} V_{s} \tag{11.39}\\
& F \longmapsto \\
& \oplus_{s \in \mathcal{S}} f_{s}
\end{align*}
$$

where $f_{s} \in \operatorname{Ind}_{G_{s}}^{H} V_{s}$ is defined by setting $f_{s}(h)=F(h s)$ for all $h \in H$, is an isomorphism of vector spaces. Moreover, the subspace Z_{s} of $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{K}^{G} V$ isomorphic to $\operatorname{Ind}_{G_{s}}^{H} V_{s}$ is given by
$Z_{s}=\left\{F \in V[G]: F\left(h s^{\prime} k\right)=\delta_{s, s^{\prime}} \sigma\left(k^{-1}\right) F(h s), \forall h \in H, k \in K\right.$ and $\left.s^{\prime} \in \mathcal{S}\right\}$, that is, it is made up of all functions in $\operatorname{Ind}_{K}^{G} V$ that vanish outside $H s K$.

Proof By definition of $\operatorname{Ind}_{K}^{G} V$ and Z_{s}, it is clear that

$$
\begin{equation*}
\operatorname{Ind}_{K}^{G} V=\bigoplus_{s \in \mathcal{S}} Z_{s} \tag{11.40}
\end{equation*}
$$

Suppose that $F \in Z_{s}$ and $f_{s}: H \rightarrow V$ is as in the statement. Then, if $x \in G_{s}$ we have

$$
f_{s}(h x)=F(h x s)=F\left(h s s^{-1} x s\right)=\sigma\left(s^{-1} x^{-1} s\right) F(h s)=\sigma_{s}\left(x^{-1}\right) f_{s}(h)
$$

so that $f_{s} \in \operatorname{Ind}_{G_{s}}^{H} V_{s}$. Vice versa, given $f \in \operatorname{Ind}_{G_{s}}^{H} V_{s}$ consider the map $F_{s}: G \rightarrow V_{s}$ defined by $F_{s}\left(h s^{\prime} k\right)=\delta_{s, s^{\prime}} \sigma\left(k^{-1}\right) f(h)$ for $k \in K, h \in H$ and $s^{\prime} \in \mathcal{S}$. We claim that F_{s} is well defined: indeed if $h s k=h_{1} s k_{1}$, by Lemma 11.3.1 we have $h_{1}=h x$ and $k_{1}=s^{-1} x^{-1} s k$ with $x \in G_{s}$, so that

$$
\begin{aligned}
\sigma\left(k_{1}^{-1}\right) f\left(h_{1}\right) & =\sigma\left(k^{-1}\right)\left[\sigma\left(s^{-1} x s\right) f\left(h_{1}\right)\right] \\
& =\sigma\left(k^{-1}\right)\left[\sigma_{s}(x) f\left(h_{1}\right)\right] \\
& =\sigma\left(k^{-1}\right) f\left(h_{1} x^{-1}\right) \\
& =\sigma\left(k^{-1}\right) f(h)
\end{aligned}
$$

Moreover,

$$
F_{s}\left(h s^{\prime} k\right)=\delta_{s, s^{\prime}} \sigma\left(k^{-1}\right) f(h)=\sigma\left(k^{-1}\right) F_{s}(h s)
$$

so that $F_{s} \in Z_{s}$. This shows that the $\operatorname{map} F \mapsto f_{s}$ is an isomorphism between Z_{s} and $\operatorname{Ind}_{G_{s}}^{H} V_{s}$; since H acts on both spaces by left translation, we deduce
that this map is also an intertwiner. Recalling (11.40), this ends the proof.

Exercise 11.5.2 Show that the isomorphism in Corollary 11.4.4 may be deduced from the isomorphism in Exercise 11.2.7.(3), from Mackey's lemma (Theorem 11.5.1), and Frobenius reciprocity (Theorem 11.2.1). Deduce also the explicit form of the isomorphism (11.34).

Theorem 11.5.3 (Mackey's tensor product theorem)

$$
\operatorname{Ind}_{H}^{G} \nu \otimes \operatorname{Ind}_{K}^{G} \sigma \sim \bigoplus_{s \in \mathcal{S}} \operatorname{Ind}_{G_{s}}^{G}\left[\operatorname{Res}_{G_{s}}^{H} \nu \otimes \sigma_{s}\right] .
$$

Proof We have:
$\operatorname{Ind}_{H}^{G} \nu \otimes \operatorname{Ind}_{K}^{G} \sigma \sim \operatorname{Ind}_{H}^{G}\left[\nu \otimes \operatorname{Res}_{H}^{G}\left(\operatorname{Ind}_{K}^{G} \sigma\right)\right]$ (by Theorem 11.1.16)

$$
\sim \operatorname{Ind}_{H}^{G}\left[\nu \otimes\left(\bigoplus_{s \in \mathcal{S}} \operatorname{Ind}_{G_{s}}^{H} \sigma_{s}\right)\right] \text { (by Mackey's lemma) }
$$

$\sim \operatorname{Ind}_{H}^{G}\left\{\bigoplus_{s \in \mathcal{S}} \operatorname{Ind}_{G_{s}}^{H}\left[\operatorname{Res}_{G_{s}}^{H} \nu \otimes \sigma_{s}\right]\right\}$ (by Theorem 11.1.16)

$$
\sim \bigoplus_{s \in \mathcal{S}} \operatorname{Ind}_{G_{s}}^{G}\left[\operatorname{Res}_{G_{s}}^{H} \nu \otimes \sigma_{s}\right]
$$

where the last equivalence follows from Proposition 11.1.5 and Proposition 11.1.18.

11.6 The Mackey-Wigner little group method

In this section we present a powerful method to construct irreducible representations (sometimes exhausting the whole dual) for a class of finite groups. We actually examine a particular case that will suffice for our subsequent purposes. For a more general treatment, we refer to our monograph [34] (see also [31]).

Let G be a finite group and suppose that $A \leq G$ is an Abelian normal subgroup. We assume the notation in Section 2.3.
There is a natural action of G on the dual of A : if $\chi \in \widehat{A}$ and $g \in G$ we define the g-conjugate ${ }^{g} \chi \in \widehat{A}$ of χ by setting

$$
\begin{equation*}
{ }^{g} \chi(a)=\chi\left(g^{-1} a g\right) \tag{11.41}
\end{equation*}
$$

for all $a \in A$. It is easy to check that ${ }^{g_{1}\left(g_{2} \chi\right)}={ }^{g_{1} g_{2}} \chi$ for all $g_{1}, g_{2} \in G$ and
that ${ }^{1}{ }_{G} \chi=\chi$, so that G-conjugation is indeed an action on \widehat{A}. The stabilizer of an element $\chi \in \widehat{A}$ is the subgroup

$$
K_{\chi}=\operatorname{Stab}_{G}(\chi)=\left\{g \in G:{ }^{g} \chi=\chi\right\}
$$

which is called the inertia group of χ. Note that $A \leq K_{\chi}$ since A is Abelian. We say that $\chi \in \widehat{A}$ has an extension to K_{χ} if there exists a one-dimensional representation $\widetilde{\chi}$ of K_{χ} such that $\widetilde{\chi}(a)=\chi(a)$ for all $a \in A$, that is, $\operatorname{Res}_{A}^{K_{\chi}} \widetilde{\chi}=$ χ. Now consider the quotient group K_{χ} / A. Given $\psi \in \widehat{K_{\chi} / A}$ we define its inflation to K_{χ} as the irreducible representation $\bar{\psi}$ of K_{χ} given by setting $\bar{\psi}(h)=\psi(h A)$ for all $h \in K_{\chi}$ (compare with (11.15)). Clearly, this is just the composition of the canonical homomorphism $K_{\chi} \rightarrow K_{\chi} / A$ with $\psi: K_{\chi} / A \rightarrow V_{\psi}$, where V_{ψ} is the representation space of ψ.

Theorem 11.6.1 Let $\chi \in \widehat{A}$ and suppose that χ has an extension $\widetilde{\chi}$ to K_{χ}. Then

$$
\begin{equation*}
\operatorname{Ind}_{A}^{K_{\chi}} \chi=\bigoplus_{\psi \in \widehat{K_{\chi} / A}} d_{\psi}(\tilde{\chi} \otimes \bar{\psi}) \tag{11.42}
\end{equation*}
$$

where, as usual, d_{ψ} denotes the dimension of $\psi \in \widehat{K_{\chi} / A}$. Moreover, the G-representations

$$
\begin{equation*}
\operatorname{Ind}_{K_{\chi}}^{G}(\widetilde{\chi} \otimes \bar{\psi}), \quad \psi \in \widehat{K_{\chi} / A} \tag{11.43}
\end{equation*}
$$

are irreducible and pairwise inequivalent.
Proof From (11.23) we deduce that
$\operatorname{Ind}_{A}^{K_{\chi}} \chi=\operatorname{Ind}_{A}^{K_{\chi}}\left(\chi \otimes \iota_{A}\right)=\operatorname{Ind}_{A}^{K_{\chi}}\left[\left(\operatorname{Res}_{A}^{K_{\chi}} \tilde{\chi}\right) \otimes \iota_{A}\right]=\widetilde{\chi} \otimes \operatorname{Ind}_{A}^{K_{\chi}} \iota_{A}=\widetilde{\chi} \otimes \bar{\lambda}$, where ι_{A} denotes the trivial representation of A and $\bar{\lambda}$ is the inflation of the regular representation λ of K_{χ} / A (cf. Example 11.1.8). Since $\lambda=$ $\oplus_{\psi \in \widehat{K_{\chi} / A}} d_{\psi} \psi$, we have $\bar{\lambda}=\oplus_{\psi \in \widehat{K_{\chi} / A}} d_{\psi} \bar{\psi}$, from which (11.42) immediately follows.
Now suppose that \mathcal{S} is a complete set of representatives for the double K_{χ} cosets in G (with $1_{G} \in \mathcal{S}$) and, as in (11.30) and (11.31) (with $H=K=K_{\chi}$), set $G_{s}=K_{\chi} \cap s K_{\chi} s^{-1}$ and

$$
(\widetilde{\chi} \otimes \bar{\psi})_{s}(x)=(\tilde{\chi} \otimes \bar{\psi})\left(s^{-1} x s\right),
$$

for all $x \in G_{s}$ and $s \in \mathcal{S}$. Since s^{-1} as $\in A$ for all $a \in A$, we have $\psi\left(s^{-1} a s A\right)=\psi(A)$, and therefore

$$
(\widetilde{\chi} \otimes \bar{\psi})_{s}(a)={ }^{s} \chi(a) \psi(A)
$$

for all $a \in A$, so that (recalling Proposition 10.2.15.(i))

$$
\operatorname{Res}_{A}^{G_{s}}(\widetilde{\chi} \otimes \bar{\psi})_{s} \sim d_{\psi}^{s} \chi
$$

In particular, for $s \neq 1_{G}$ the $G_{s^{\prime}}$-representations $\operatorname{Res}_{G_{s}}^{K_{\chi}}(\widetilde{\chi} \otimes \bar{\psi})$ and $(\widetilde{\chi} \otimes \bar{\psi})_{s}$ cannot have common irreducible subrepresentations because these would lead to common subrepresentations between their restrictions to A, but ${ }^{s} \chi \neq \chi$ because $s \notin K_{\chi}$. From Corollary 11.4.6 we deduce that $\operatorname{Ind}_{K_{\chi}}^{G}(\widetilde{\chi} \otimes \bar{\psi})$ is irreducible.

Finally, denote now by μ the representation $\operatorname{Ind}_{K_{\chi}}^{G}(\widetilde{\chi} \otimes \bar{\psi})$ and by Z its representation space. If $f \in Z$ and $a \in A$ then, for all $g \in G$, we have:

$$
[\mu(a) f](g)=f\left(a^{-1} g\right)=f\left(g \cdot g^{-1} a^{-1} g\right)=(\widetilde{\chi} \otimes \bar{\psi})\left(g^{-1} a g\right) f(g)={ }^{g} \chi(a) f(g)
$$

It follows that, in the notation as in Theorem 11.5.1 (with $\nu=\sigma=\widetilde{\chi} \otimes \bar{\psi}$) we have: $Z_{1_{G}}=\{f \in Z: \mu(a) f=\chi(a) f, \forall a \in A\}$. Indeed, $Z_{1_{G}}$ is the space of all $f \in Z$ supported on K_{χ}. Moreover, in the decomposition

$$
\operatorname{Res}_{K_{\chi}}^{G} \operatorname{Ind}_{K_{\chi}}^{G}(\widetilde{\chi} \otimes \bar{\psi}) \cong \bigoplus_{s \in \mathcal{S}} \operatorname{Ind}_{G_{s}}^{K_{\chi}}(\widetilde{\chi} \otimes \bar{\psi})_{s}
$$

$Z_{1_{G}}$ is the representation space of $\widetilde{\chi} \otimes \bar{\psi}$ (because $G_{1_{G}}=K_{\chi}$). This means that the action of G on the χ-isotypic component of $\operatorname{Res}_{A}^{G} \operatorname{Ind}_{K_{\chi}}^{G}(\widetilde{\chi} \otimes \bar{\psi})$ corresponds exactly to $\widetilde{\chi} \otimes \bar{\psi}$, and this implies that the representations in (11.43) are pairwise inequivalent, because different representations come from different ψ s. In other words, $\operatorname{Ind}_{K_{\chi}}^{G}(\widetilde{\chi} \otimes \bar{\psi})$ uniquely determines ψ.

Theorem 11.6.2 (The little group method) Suppose that every $\chi \in \widehat{A}$ has an extension $\tilde{\chi}$ to its inertia group K_{χ}. Define on \widehat{A} an equivalence relation \approx by setting $\chi_{1} \approx \chi_{2}$ if there exists $g \in G$ such that ${ }^{g} \chi_{1}=\chi_{2}$. Let X be a complete set of representatives of the corresponding quotient space \widehat{A} / \approx. Then

$$
\begin{equation*}
\widehat{G}=\left\{\operatorname{Ind}_{K_{\chi}}^{G}(\widetilde{\chi} \otimes \bar{\psi}): \chi \in X, \psi \in \widehat{K_{\chi} / A}\right\} \tag{11.44}
\end{equation*}
$$

More precisely, the right hand side in (11.44) is a complete list of all irreducible G-representations and, for different values of χ and ψ, the corresponding representations are inequivalent.

Proof From Theorem 11.6.1 it follows that the representations in the list are irreducible. Moreover, from (11.42) and transitivity of induction (cf.

Proposition 11.1.5), for any $\chi \in X$ we deduce that

$$
\begin{equation*}
\operatorname{Ind}_{A}^{G} \chi \cong \bigoplus_{\psi \in \widehat{K_{\chi} / A}} d_{\psi} \operatorname{Ind}_{K_{\chi}}^{G}(\widetilde{\chi} \otimes \bar{\psi}) . \tag{11.45}
\end{equation*}
$$

Suppose that \mathcal{T} is a complete set of left (in this case, also right and double) cosets of A if G. Set $\lambda=\operatorname{Ind}_{A}^{G} \chi$ and denote by $\operatorname{Ind}_{A}^{G} \mathbb{C}$ the corresponding representation space (cf. Example 11.1.9). For $t \in \mathcal{T}$ and $g \in G$, we have $[\lambda(t) \bar{\chi}](g) \neq 0$ only if $g=a_{1} t \in A t=t A$ and

$$
\begin{aligned}
& {[\lambda(a) \lambda(t) \bar{\chi}](g)=\bar{\chi}\left(t^{-1} a^{-1} g\right)=\bar{\chi}\left(t^{-1} g \cdot g^{-1} a^{-1} g\right)} \\
& \quad={ }^{g} \chi(a) \bar{\chi}\left(t^{-1} g\right)={ }^{t} \chi(a)[\lambda(t) \bar{\chi}](g) .
\end{aligned}
$$

Thus,

$$
\lambda(a)[\lambda(t) \bar{\chi}]={ }^{t} \chi(a)[\lambda(t) \bar{\chi}],
$$

and (11.17) now implies that

$$
\begin{equation*}
\operatorname{Res}_{A}^{G} \operatorname{Ind}_{A}^{G} \chi \sim \bigoplus_{t \in \mathcal{T}}^{t} \chi, \tag{11.46}
\end{equation*}
$$

which is clearly a particular case of (11.39). It follows that if $\chi_{1}, \chi_{2} \in X$ are distinct, then two irreducible representations of the form $\operatorname{Ind}_{K_{\chi_{1}}}^{G}\left(\widetilde{\chi_{1}} \otimes \overline{\psi_{1}}\right)$ and $\operatorname{Ind}_{K_{\chi_{2}}}^{G}\left(\widetilde{\chi_{2}} \otimes \overline{\psi_{2}}\right)$ as in (11.44) cannot be equivalent because, by virtue of (11.45) and (11.46), their restrictions to A contain inequivalent representations (the G-conjugates of χ_{1} and χ_{2}, respectively). The inequivalence of two representations of the form $\operatorname{Ind}_{K_{\chi}}^{G}\left(\widetilde{\chi} \otimes \overline{\psi_{1}}\right)$ and $\operatorname{Ind}_{K_{\chi}}^{G}\left(\widetilde{\chi} \otimes \overline{\psi_{2}}\right)$, with the same χ but $\psi_{1} \neq \psi_{2}$, has been already proved in Theorem 11.6.1.
Now suppose that (θ, W) is a G-irreducible representation. Then $\operatorname{Res}_{A}^{G} \theta$ decomposes into the direct sum of characters of A. If $\xi \in \widehat{A}$ is contained in $\operatorname{Res}_{A}^{G} \theta$ then there exists $w \in W, w \neq 0$, such that $\theta(a) w=\xi(a) w$. For any $g \in G$ we have:

$$
\begin{aligned}
& \theta(a)[\theta(g) w]=\theta\left(g \cdot g^{-1} a g\right) w=\theta(g) \theta\left(g^{-1} a g\right) w \\
&=\xi\left(g^{-1} a g\right) \theta(g) w={ }^{g} \xi(a)[\theta(g) w],
\end{aligned}
$$

that is, $\operatorname{Res}{ }_{A}^{G} \theta$ contains all the g-conjugates of ξ and, in particular, an element $\chi \in X$. By Frobenius reciprocity, θ is contained in $\operatorname{Ind}_{A}^{G} \chi$. Keeping in mind (11.45), this implies that θ equals one of the representations in (11.44).

11.7 Semidirect products with an Abelian group

In this section we apply the little group method to an important class of semidirect products (cf. Section 8.14), namely we suppose that the normal subgroup is Abelian.

Theorem 11.7.1 Let G be a finite group and suppose that $G=A \rtimes H$ with A an Abelian (normal) subgroup. Given $\chi \in \widehat{A}$, its inertia group K_{χ} coincides with $A \rtimes H_{\chi}$, where $H_{\chi}=\operatorname{Stab}_{H}(\chi)=\left\{h \in H:{ }^{h} \chi=\chi\right\}$. Moreover, any $\chi \in \widehat{A}$ may be extended to a one-dimensional representation $\widetilde{\chi} \in \widehat{A \rtimes H_{\chi}}$ by setting

$$
\begin{equation*}
\widetilde{\chi}(a h)=\chi(a) \quad \forall a \in A, h \in H_{\chi} \tag{11.47}
\end{equation*}
$$

Finally, with the notation used in Theorem 11.6.2, we have:

$$
\widehat{G}=\left\{\operatorname{Ind}_{A \rtimes H_{\chi}}^{G}(\widetilde{\chi} \otimes \bar{\psi}): \chi \in X, \psi \in \widehat{H_{\chi}}\right\}
$$

Proof For $a, a_{1} \in A$ and $h \in H$ we have

$$
\begin{aligned}
{ }^{a h} \chi\left(a_{1}\right)=\chi\left(h^{-1} a^{-1} a_{1} a h\right)=\chi\left(h^{-1} a^{-1} h\right) \chi\left(h^{-1} a_{1} h\right) & \chi\left(h^{-1} a h\right) \\
& =\chi\left(h^{-1} a_{1} h\right)={ }^{h} \chi\left(a_{1}\right)
\end{aligned}
$$

thus showing that the inertia subgroup of χ coincides with $A \rtimes H_{\chi}$. Let $\chi \in \widehat{A}$ and let us show that the extension of χ defined by (11.47) is a representation. By definition of H_{χ}, we have that χ is invariant by conjugation with elements in H_{χ} so that, if $a_{1}, a_{2} \in A$ and $h_{1}, h_{2} \in H_{\chi}$, we have

$$
\begin{aligned}
\widetilde{\chi}\left(a_{1} h_{1} \cdot a_{2} h_{2}\right)=\widetilde{\chi}\left(a_{1} h_{1} a_{2} h_{1}^{-1} \cdot h_{1} h_{2}\right)= & \chi\left(a_{1} h_{1} a_{2} h_{1}^{-1}\right) \\
& =\chi\left(a_{1}\right) \chi\left(a_{2}\right)=\widetilde{\chi}\left(a_{1} h_{1}\right) \widetilde{\chi}\left(a_{2} h_{2}\right)
\end{aligned}
$$

Finally, the last statement is just an application of Theorem 11.6.2.

12

Fourier analysis on finite affine groups and finite Heisenberg groups

In this chapter we study the representation theory of two finite matrix groups, the affine group (or $a x+b$ group) and the Heisenberg group, with entries in a finite field or in the finite ring $\mathbb{Z} / n \mathbb{Z}$.

We consider specific problems of Harmonic Analysis: our main results (taken from [15]), consist in a revisitation of the Discrete Fourier Transform and of the Fast Fourier Transform from the point of view of the representation theory of the Heisenberg group. Other sources are the monograph by Terras [159], our book on the representation theory of wreath products of finite groups [34], and [142]. The results of Section 12.1 will play a fundamental role in Chapter 14.

We closely follow Notation 1.1.17, that is, we use \mathbb{Z}_{n} when we want to emphasize that our arguments are based only on the structure of the additive Abelian group of the integers mod n, while we use $\mathbb{Z} / n \mathbb{Z}$ when the whole structure of a finite ring is used, that is, multiplication enters the picture. We think that this distinction is important in view of possible generalizations of some of our arguments, for instance to more general Abelian (or even noncommutative) groups, and to other rings.

12.1 Representation theory of the affine group $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$

Let q be a power of a prime number and denote by \mathbb{F}_{q} the field with q elements (as in Chapter 6). Recall, cf. Example 10.4.5, that the (general) affine group (of degree one) over \mathbb{F}_{q} is the subgroup $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$ defined by

$$
\operatorname{Aff}\left(\mathbb{F}_{q}\right)=\left\{\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right): a \in \mathbb{F}_{q}^{*}, b \in \mathbb{F}_{q}\right\} .
$$

Note that $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ acts doubly transitively (cf. Exercise 10.4.16.(5)) on
$\mathbb{F}_{q} \equiv\left\{\binom{x}{1}: x \in \mathbb{F}_{q}\right\}$ by multiplication:

$$
\left(\begin{array}{ll}
a & b \tag{12.1}\\
0 & 1
\end{array}\right)\binom{x}{1}=\binom{a x+b}{1}
$$

We begin with some elementary algebraic properties and use the notion of a semidirect product of groups (cf. Definition 8.14.2). Consider the following Abelian subgroups of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$:

$$
A=\left\{\left(\begin{array}{ll}
a & 0 \tag{12.2}\\
0 & 1
\end{array}\right): a \in \mathbb{F}_{q}^{*}\right\} \cong \mathbb{F}_{q}^{*} \text { and } U=\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right): b \in \mathbb{F}_{q}\right\} \cong \mathbb{F}_{q}
$$

Lemma 12.1.1

(i) The inverse of $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in \operatorname{Aff}\left(\mathbb{F}_{q}\right)$ is $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{cc}a^{-1} & -a^{-1} b \\ 0 & 1\end{array}\right)$;
(ii) the subgroup U is normal and one has

$$
\begin{equation*}
\operatorname{Aff}\left(\mathbb{F}_{q}\right) \cong U \rtimes A \equiv \mathbb{F}_{q} \rtimes \mathbb{F}_{q}^{*} \tag{12.3}
\end{equation*}
$$

(iii) the conjugacy classes of the group $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ are the following:

- $\mathcal{C}_{0}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\} ;$
- $\mathcal{C}_{1}=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right): b \in \mathbb{F}_{q}^{*}\right\} ;$
- $\mathcal{C}_{a}=\left\{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right): b \in \mathbb{F}_{q}\right\}$, where $a \in \mathbb{F}_{q}^{*}, a \neq 1$.

Proof
(i) This is a trivial calculation. From this, one easily deduces the identity

$$
\left(\begin{array}{ll}
u & v \tag{12.4}\\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
u & v \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a & (1-a) v+b u \\
0 & 1
\end{array}\right)
$$

for all $u, a \in \mathbb{F}_{q}^{*}$ and $v, b \in \mathbb{F}_{q}$.
(ii) The normality of U follows from (12.4), after taking $a=1$. Since

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & a^{-1} b \\
0 & 1
\end{array}\right)
$$

for all $a \in \mathbb{F}_{q}^{*}$ and $b \in \mathbb{F}_{q}$, we deduce that $\operatorname{Aff}\left(\mathbb{F}_{q}\right)=A U$. Then (12.3)
follows from the fact that $A \cap U=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}=\left\{1_{\text {Aff }\left(\mathbb{F}_{q}\right)}\right\}$.
(iii) This is a case-by-case analysis by means of (12.4).

Since $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ is a semidirect product with an Abelian normal subgroup (cf. (12.3)), we can apply the little group method (Theorem 11.7.1) in order to get a complete list of all irreducible representations of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$. As usual, $\widehat{\mathbb{F}_{q}}$ (respectively $\widehat{\mathbb{F}_{q}^{*}}$) will denote the dual of the additive group \mathbb{F}_{q} (respectively of the multiplicative group \mathbb{F}_{q}^{*}).
From Lemma 12.1.1.(ii) and (12.4), after identifying A with the multiplicative group \mathbb{F}_{q}^{*} (via the map $\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \mapsto a$) and U with the additive group \mathbb{F}_{q} (via the map $\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \mapsto b$), it follows that the conjugacy action (cf. (11.41)) of $A \equiv \mathbb{F}_{q}^{*}$ on $\widehat{U} \equiv \widehat{\mathbb{F}_{q}}$ is given by

$$
\begin{equation*}
{ }^{a} \chi(b)=\chi\left(a^{-1} b\right) \tag{12.5}
\end{equation*}
$$

for all $\chi \in \widehat{U}, b \in \mathbb{F}_{q}$, and $a \in \mathbb{F}_{q}^{*}$.
Denote by $\chi_{0} \equiv 1$ the trivial character of U.
Lemma 12.1.2 The action of A on \hat{U} has exactly two orbits, namely $\left\{\chi_{0}\right\}$ and $\widehat{\mathbb{F}_{q}} \backslash\left\{\chi_{0}\right\}$. Moreover, the stabilizer of $\chi \in \widehat{U}$ is given by

$$
\operatorname{Stab}_{A}(\chi)= \begin{cases}\left\{1_{A}\right\} & \text { if } \chi \neq \chi_{0} \\ A & \text { if } \chi=\chi_{0}\end{cases}
$$

Proof It is clear that χ_{0} is a fixed point. From now on, let $\chi \in \widehat{U}$ be a nontrivial character. For $a \in \mathbb{F}_{q}$ let us set

$$
{ }^{a} \chi^{*}= \begin{cases}a^{-1} \chi & \text { if } a \in \mathbb{F}_{q}^{*} \\ \chi_{0} & \text { if } a=0\end{cases}
$$

that is, ${ }^{a} \chi^{*}(x)=\chi(a x)$ for all $x \in \mathbb{F}_{q}$. We claim that the map $a \mapsto{ }^{a} \chi^{*}$ yields an isomorphism from \mathbb{F}_{q} onto $\widehat{\mathbb{F}_{q}}$. Indeed, it is straightforward to check that ${ }^{(a+b)} \chi^{*}(x)={ }^{a} \chi^{*}(x)^{b} \chi^{*}(x)$ for all $a, b, x \in \mathbb{F}_{q}$. Moreover, if $a \neq 0$ we have ${ }^{a} \chi^{*} \neq \chi_{0}$ since the map $x \mapsto a x$ is a bijection of \mathbb{F}_{q}. This shows that the homomorphism $a \mapsto{ }^{a} \chi^{*}$ is injective. Since $\left|\mathbb{F}_{q}\right|=\left|\widehat{\mathbb{F}_{q}}\right|$, it is in fact bijective. As a consequence, we have that $\left\{{ }^{a} \chi: a \neq 0\right\}=\left\{{ }^{a} \chi^{*}: a \neq 0\right\}$ coincides with the set of all nontrivial characters.

Theorem 12.1.3 The group $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ has exactly $q-1$ one-dimensional representations and one ($q-1$)-dimensional irreducible representation. The first
ones are obtained by associating with each $\psi \in \widehat{A}$ the group homomorphism $\Psi: \operatorname{Aff}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{T}$ defined by

$$
\Psi\left(\begin{array}{ll}
a & b \tag{12.6}\\
0 & 1
\end{array}\right)=\psi(a)
$$

for all $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in \operatorname{Aff}\left(\mathbb{F}_{q}\right)$. The $(q-1)$-dimensional irreducible representation is given by

$$
\begin{equation*}
\pi=\operatorname{Ind}_{U}^{\operatorname{Aff}\left(\mathbb{F}_{q}\right)} \chi \tag{12.7}
\end{equation*}
$$

where χ is any nontrivial character of U. Moreover, the character χ^{π} of π is given by:

$$
\chi^{\pi}\left(\begin{array}{ll}
a & b \tag{12.8}\\
0 & 1
\end{array}\right)= \begin{cases}q-1 & \text { if } a=1 \text { and } b=0 \\
-1 & \text { if } a=1 \text { and } b \neq 0 \\
0 & \text { otherwise } .\end{cases}
$$

Proof This is just an application of the little group method (Theorem 11.7.1). Indeed, by Lemma 12.1.2, the inertia group of the trivial character $\chi_{0} \in \widehat{U}$ is $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$. This provides the $q-1$ one-dimensional representations simply by taking any character $\psi \in \widehat{A}$. Moreover, the inertia group of any nontrivial character $\chi \in \widehat{U}$ is U since, by Lemma 12.1.2, $\operatorname{Stab}_{A}(\chi)=\left\{1_{A}\right\}$.
Finally, from (11.18) with $\mathcal{T}=A$, and using again (12.5), we immediately get

$$
\chi^{\pi}\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)= \begin{cases}\sum_{\alpha \in \mathbb{F}_{q}^{*}} \chi\left(\alpha^{-1} b\right) & \text { if } a=1 \\
0 & \text { oterwise } .\end{cases}
$$

Then (12.8) follows from Corollary 7.1.3.
We now give a concrete realization of π.
Proposition 12.1.4 Fix $\chi \in \widehat{\mathbb{F}_{q}} \backslash\left\{\chi_{0}\right\}$ and set

$$
\left[\pi^{\sharp}\left(\begin{array}{ll}
a & b \tag{12.9}\\
0 & 1
\end{array}\right) f\right](x)=\chi\left(b x^{-1}\right) f\left(a^{-1} x\right),
$$

for all $f \in L\left(\mathbb{F}_{q}^{*}\right),\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in \operatorname{Aff}\left(\mathbb{F}_{q}\right)$ and $x \in \mathbb{F}_{q}^{*}$. Then $\left(\pi^{\sharp}, L\left(\mathbb{F}_{q}^{*}\right)\right)$ is a representation of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ and

$$
\pi^{\sharp} \sim \pi=\operatorname{Ind}_{U}^{\operatorname{Aff}^{\left.-\mathbb{F}_{q}\right)}} \chi .
$$

Proof From Definition 11.1.1 it follows that the representation space of π is

$$
W=\left\{\widetilde{f}: \operatorname{Aff}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{C}: \widetilde{f}(g u)=\overline{\chi(u)} \widetilde{f}(g), \forall g \in \operatorname{Aff}\left(\mathbb{F}_{q}\right), u \in U\right\}
$$

Then for $\tilde{f} \in W$ and $\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right) \in \operatorname{Aff}\left(\mathbb{F}_{q}\right)$ we have

$$
\tilde{f}\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\widetilde{f}\left[\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & b a^{-1} \\
0 & 1
\end{array}\right)\right]=\overline{\chi\left(b a^{-1}\right)} \tilde{f}\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)
$$

so that the map $W \ni \tilde{f} \mapsto f \in L\left(\mathbb{F}_{q}^{*}\right)$, where $f(x)=\tilde{f}\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right)$ for all $x \in \mathbb{F}_{q}^{*}$, is a well defined isomorphism of vector spaces. Moreover,

$$
\begin{aligned}
{\left[\pi\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \tilde{f}\right]\left(\begin{array}{cc}
x & 0 \\
0 & 1
\end{array}\right) } & =\tilde{f}\left(\begin{array}{cc}
a^{-1} x & -a^{-1} b \\
0 & 1
\end{array}\right) \\
& =\overline{\chi\left(-b x^{-1}\right)} f\left(a^{-1} x\right) \\
& =\chi\left(b x^{-1}\right) f\left(a^{-1} x\right)
\end{aligned}
$$

Corollary 12.1.5

$$
\operatorname{Res}_{A}^{\operatorname{Aff}\left(\mathbb{F}_{q}\right)} \pi \sim \bigoplus_{\psi \in \widehat{A}} \psi
$$

Proof If $\psi \in \widehat{A}\left(\cong \widehat{\mathbb{F}_{q}^{*}}\right)$, then $\psi \in L\left(\mathbb{F}_{q}^{*}\right)$ satisfies

$$
\left[\pi\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right) \psi\right](x)=\psi\left(a^{-1} x\right)=\overline{\psi(a)} \psi(x)
$$

for all $a, x \in \mathbb{F}_{q}^{*}$.
Exercise 12.1.6 Check that π^{\sharp}, defined by (12.9), is an irreducible representation of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ without using the theory of induced representations.

Corollary 12.1.7

$$
\operatorname{Res}_{U}^{\operatorname{Aff}\left(\mathbb{F}_{q}\right)} \pi=\bigoplus_{\chi \in \widehat{U} \backslash\left\{\chi_{0}\right\}} \chi
$$

Proof Since $\pi=\operatorname{Ind}_{U}^{\mathrm{Aff}\left(\mathbb{F}_{q}\right)} \chi$ for any nontrivial character $\chi \in \widehat{U}$ and $\operatorname{dim} \pi=$ $q-1$ equals the cardinality of the set of all nontrivial characters of U, the statement follows from Frobenius reciprocity.

Exercise 12.1.8 Recalling the notation in (12.6) and (12.8), directly prove the following:
(1) $\operatorname{Res}_{U}^{\operatorname{Aff}\left(\mathbb{F}_{q}\right)} \Psi=\chi_{0}$ and $\operatorname{Res}_{A}{ }^{\operatorname{Aff}\left(\mathbb{F}_{q}\right)} \Psi=\psi$.
(2) Deduce (by using Frobenius reciprocity and Corollary 12.1.5) that

$$
\operatorname{Ind}_{U}^{\operatorname{Aff}\left(\mathbb{F}_{q}\right)} \chi_{0}=\oplus_{\psi \in \widehat{A}} \Psi \quad \text { and } \quad \operatorname{Ind}_{A}^{\mathrm{Aff}\left(\mathbb{F}_{q}\right)} \psi=\pi \oplus \Psi
$$

(3) Show a connection between (12.8) and the character formula in Example 10.4.7, taking into account Exercise 10.4.16.

Exercise 12.1.9 Consider \mathbb{F}_{q} as a subfield of $\mathbb{F}_{q^{m}}, m \geq 2$; see Section 6.6.
(1) Denote by π_{q} (resp. $\pi_{q^{m}}$) the $(q-1)$-dimensional irreducible representation of \mathbb{F}_{q} (resp. the $\left(q^{m}-1\right)$-dimensional of $\left.\mathbb{F}_{q^{m}}\right)$. Prove that $\operatorname{Ind}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{\mathrm{Aff}\left(\mathbb{F}_{q}\right)} \pi_{q}=q^{m-1} \pi_{q^{m}}$.
Hint: the restrictions of the one-dimensional representations of $\operatorname{Aff}\left(\mathbb{F}_{q^{m}}\right)$ cannot contain π_{q}.
(2) For $\xi \in \widehat{\mathbb{F}_{q^{m}}}$, set $\xi^{\sharp}=\operatorname{Res}_{\mathbb{F}_{q}}^{\mathbb{F}_{q} m} \xi$ and denote by Ξ the corresponding one-dimensional representation of $\operatorname{Aff}\left(\mathbb{F}_{q^{m}}\right)$. Prove that

$$
\operatorname{Ind}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{\operatorname{Aff}\left(\mathbb{F}_{q^{m}}\right)} \psi=\frac{q^{m-1}-1}{q-1} \pi_{q^{m}} \oplus\left(\underset{\substack{\xi \in \widehat{q^{m}}: \\ \xi^{\sharp}=\psi}}{\bigoplus} \Xi\right)
$$

Hint: Examine $\operatorname{Res}^{\operatorname{Aff}^{\operatorname{Aff}\left(\mathbb{F}_{q}\right)}}{ }_{\left.q^{m}\right)} \Xi$.
See [140] for a detailed analysis of the commutant of $\operatorname{Ind}_{\operatorname{Aff}\left(\mathbb{F}_{q}\right)}^{\operatorname{Aff}\left(\mathbb{F}_{q}\right)} \pi_{q}$.
We end this section with a brief treatment of the automorphism group of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$. First we recall some elementary facts of group theory; see the monongraphs by Robinson [129], Rotman [132], and Machì [103], for more details.

Let G be a finite group and denote by $\operatorname{Aut}(G)$ its automorphism group. With each $g \in G$ we associate the inner automorphism given by: $\xi_{g}(h)=$ $g h g^{-1}$, for all $h \in G$. The inner automorphisms form a subgroup of $\operatorname{Aut}(G)$, denoted $\operatorname{Inn}(G)$. If $g \in G$ and $\alpha \in \operatorname{Aut}(G)$ then $\alpha \circ \xi_{g} \circ \alpha^{-1}=\xi_{\alpha(g)}$; in particular, $\operatorname{Inn}(G)$ is normal in $\operatorname{Aut}(G)$.

A subgroup N is characteristic if it is invariant with respect to every automorphism of $G: \alpha(N)=N$ for all $\alpha \in \operatorname{Aut}(G)$. Cleary, a subgroup is normal if and only if it is invariant with respect to every inner automorphism and
therefore a characteristic subgroup is also normal. Two particular characteristic groups are: the center $Z(G)=\{g \in G: g h=h g$ for all $h \in G\}$ and the derived subgroup G^{\prime}, which is the subgroup generated by all commutators, namely, the elements of the form $g h g^{-1} h^{-1}, g, h \in G$. Recall that if N is normal in G then the quotient group G / N is abelian if and only if $G^{\prime} \leq N$, and that, if $G^{\prime} \leq H \leq G$, then H is normal in G. Finally, given $g \in G$, the inner automorphism ξ_{g} is trivial if and only if $g \in Z(G)$. As a consequence, $\operatorname{Inn}(G) \cong G / Z(G)$.

Exercise 12.1.10 Verify all the statements in the last two paragraphs.

Exercise 12.1.11

(1) Prove that the center of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ is trivial while its derived subgroup is U.
(2) For $u \in \mathbb{F}_{q}^{*}$ and $v \in \mathbb{F}_{q}$ denote by $\xi_{u, v}$ the inner automorphism of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ associated with the element $\left(\begin{array}{ll}u & v \\ 0 & 1\end{array}\right)$, that is, $\xi_{u, v}\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)=$ $\left(\begin{array}{cc}a & (1-a) v+b u \\ 0 & 1\end{array}\right)$ for all $a \in \mathbb{F}_{q}^{*}$ and $b \in \mathbb{F}_{q}$. Prove that for all choices of $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in \operatorname{Aff}\left(\mathbb{F}_{q}\right)$, with $a \neq 1$ and $\left(\begin{array}{ll}1 & c \\ 0 & 1\end{array}\right) \in U$ with $c \neq 0$, there exists $\xi_{u, v}$ such that

$$
\xi_{u, v}\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \in A \quad \text { and } \quad \xi_{u, v}\left(\begin{array}{ll}
1 & c \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

(3) Deduce the following fact: for each nontrivial $\alpha \in \operatorname{Aut}\left(\operatorname{Aff}\left(\mathbb{F}_{q}\right)\right)$ there exists $\xi_{u, v} \in \operatorname{Inn}\left(\operatorname{Aff}\left(\mathbb{F}_{q}\right)\right)$ such that:

$$
\xi_{u, v} \circ \alpha(A)=A \quad \text { and } \quad \xi_{u, v} \circ \alpha\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

(4) Suppose that $q=p^{n}, p$ prime number, and denote by σ the Frobenius automorphism of \mathbb{F}_{q} (cf. Section 6.4). With the notation in (3), let us set $\beta=\xi_{u, v} \circ \alpha$. Prove that there exists $0 \leq k \leq n-1$ such that $\beta\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}\sigma^{k}(a) & \sigma^{k}(b) \\ 0 & 1\end{array}\right)$ for all $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in \operatorname{Aff}\left(\mathbb{F}_{q}\right)$.
Hint First of all, consider the restrictions $\left.\beta\right|_{A}$ and $\left.\beta\right|_{U}$. Then apply β to (12.4) with $a=b=1$ and $v=0$.
(5) Deduce that $\operatorname{Aut}\left(\operatorname{Aff}\left(\mathbb{F}_{q}\right)\right) \cong \operatorname{Aff}\left(\mathbb{F}_{q}\right) \rtimes \operatorname{Aut}\left(\mathbb{F}_{q}\right)$.

12.2 Representation theory of the affine group $\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})$

In this section we examine the representation theory of the group

$$
\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})=\left\{\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right): a \in \mathcal{U}(\mathbb{Z} / n \mathbb{Z}), b \in \mathbb{Z} / n \mathbb{Z}\right\}
$$

that is, the affine group over the ring $\mathbb{Z} / n \mathbb{Z}$. As far as we know, most of the result presented here are new. We use the notation in Chapter 1. Clearly, for $n=p$ prime we have $\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})=\operatorname{Aff}\left(\mathbb{F}_{p}\right)$.

First of all, in order to generalize the arguments in the proof of Lemma 12.1.2, we study the action γ of $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ on $\mathbb{Z} / n \mathbb{Z}$ given by multiplication:

$$
\gamma(a) b=a b
$$

for all $a \in \mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ and $b \in \mathbb{Z} / n \mathbb{Z}$. From the results in Section 1.5 it follows that it coincides with the action of $\operatorname{Aut}\left(\mathbb{Z}_{n}\right)$ on \mathbb{Z}_{n}. This action has been extensively studied in [4]. We limit ourselves to report some basic results, which form an interesting complement to Gauss' results in Proposition 1.1.20 and Proposition 1.2.13. We first introduce the following notation: for $n \in \mathbb{N}$, we denote by $D(n)$ the set of all positive divisors of n. Moreover for $r \in D(n)$ we set $A(r)=\{0 \leq k \leq n-1: \operatorname{gcd}(k, n)=n / r\}$ (cf. (1.6)), and regard $A(r)$ as a subset of $\mathbb{Z} / n \mathbb{Z}$. In particular, $A(n) \equiv \mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ and $A(1)=\{0\}$.

Theorem 12.2.1 The decomposition of $\mathbb{Z} / n \mathbb{Z}$ into the orbits of γ is

$$
\begin{equation*}
\mathbb{Z} / n \mathbb{Z}=\coprod_{r \in D(n)} A(r) \tag{12.10}
\end{equation*}
$$

Moreover, the stabilizer of $\frac{n}{r} \in A(r)$ is

$$
\begin{equation*}
\mathcal{U}_{r}(\mathbb{Z} / n \mathbb{Z})=\{a \in \mathcal{U}(\mathbb{Z} / n \mathbb{Z}): a \equiv 1 \bmod r\} \tag{12.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathcal{U}(\mathbb{Z} / n \mathbb{Z})}{\mathcal{U}_{r}(\mathbb{Z} / n \mathbb{Z})} \cong \mathcal{U}(\mathbb{Z} / r \mathbb{Z}) \tag{12.12}
\end{equation*}
$$

Proof For each $r \in D(n)$ let

$$
\operatorname{Orb}(n / r)=\left\{a \frac{n}{r} \bmod n: a \in \mathcal{U}(\mathbb{Z} / n \mathbb{Z})\right\}
$$

be the orbit containing n / r, Clearly, if $\operatorname{gcd}(a, n)=1$ then also $\operatorname{gcd}(a, r)=1$, so that $\operatorname{gcd}(a n / r, n)=\operatorname{gcd}(a, r) n / r=n / r$, and this yields

$$
\begin{equation*}
\operatorname{Orb}(n / r) \subseteq A(r) \tag{12.13}
\end{equation*}
$$

The solutions $a \in \mathbb{Z}$ of the congruence equation $a \frac{n}{r} \equiv \frac{n}{r} \bmod n$ are given
by Proposition 1.2.13 (and its proof): selecting 1 as a fixed solution, they are:

$$
1+j r, \quad j=0,1, \ldots, \frac{n}{r}-1
$$

Among these numbers, we must select those belonging to $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$, and this proves (12.11).

Now consider the map

$$
\Theta: \mathcal{U}(\mathbb{Z} / n \mathbb{Z}) \equiv A(n) \rightarrow \mathcal{U}(\mathbb{Z} / r \mathbb{Z})
$$

given by $\Theta(a)=b$, if $a=b+j r$ with $0 \leq b \leq r-1$ and $j \geq 0$, that is, b is the remainder of the division of a by r. Clearly, it is well defined: if $\operatorname{gcd}(a, n)=1$ then $\operatorname{gcd}(b, r)=1$. Indeed, $\operatorname{gcd}(b, r) \mid a$ and $r \mid n$ force $\operatorname{gcd}(b, r) \mid \operatorname{gcd}(a, n)$. Moreover, it is straightforward to check that it is a homomorphism, namely $\Theta\left(a_{1} a_{2}\right) \equiv \Theta\left(a_{1}\right) \Theta\left(a_{2}\right) \bmod r$. Let us prove that it is surjective. Let $b \in$ $\mathcal{U}(\mathbb{Z} / r \mathbb{Z})$, that is $0 \leq b \leq r-1$ and $\operatorname{gcd}(b, r)=1$. Consider the integer

$$
a=b+p_{1} p_{2} \cdots p_{m} r
$$

where $p_{1}, p_{2}, \ldots, p_{m}$ are the (distinct) primes that divide n but not b. Now, if p is a prime and $p \mid n$ then we have two possibilities:

- if $p \mid b$ then $p \nmid p_{1} p_{2} \cdots p_{m} r$ and therefore p cannot divide a;
- if $p \nmid b$ then $p \mid p_{1} p_{2} \cdots p_{m}$ and therefore again p cannot divide a.

In conclusion, p does not divide a and we have proved that $\operatorname{gcd}(a, n)=1$. As, clearly, $b=\Theta(a)$, this ensures that Θ is surjective. Finally, from (12.11) we deduce that $\mathcal{U}_{r}(\mathbb{Z} / n \mathbb{Z})=\operatorname{Ker} \Theta$ and this implies (12.12). In particular,

$$
\left|\mathcal{U}_{r}(\mathbb{Z} / n \mathbb{Z})\right|=\frac{\varphi(n)}{\varphi(r)}
$$

where φ is the Euler totient function (see Definition 1.1.18). Then we have:

$$
\begin{align*}
\varphi(r) & =|A(r)| \tag{1.8}\\
& \geq|\operatorname{Orb}(n / r)| \tag{12.13}\\
& =\frac{|\mathcal{U}(\mathbb{Z} / n \mathbb{Z})|}{\left|\mathcal{U}_{r}(\mathbb{Z} / n \mathbb{Z})\right|} \tag{10.44}\\
& =\varphi(r)
\end{align*}
$$

which forces the equality in (12.13), and (12.10) follows.
We recall (cf. Definition 1.1.6 and Exercise 1.1.5) that the greatest common divisor $\operatorname{gcd}(m, n, k)$ of three integers m, n, k is the largest positive integer that divides each of m, n, k and it equals the smallest positive integer that may be
written in the form $u m+v n+w k$, with $u, v, w \in \mathbb{Z}$; in fact $\{u m+v n+w k$: $u, v, w \in \mathbb{Z}\}$ is the principal ideal in \mathbb{Z} generated by $\operatorname{gcd}(m, n, k)$. Compare with Section 1.1. See also the monographs by Apostol [13] and Nathanson [118]. In the following, we consider the action of $\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})$ on $\mathbb{Z} / n \mathbb{Z}$, in analogy with (12.1), as well as the subgroups (cf. (12.2))

$$
A=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right): a \in \mathcal{U}(\mathbb{Z} / n \mathbb{Z})\right\} \text { and } U=\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right): b \in \mathbb{Z} / n \mathbb{Z}\right\}
$$

Lemma 12.2.2

(i) The subgroup U is normal and one has

$$
\begin{equation*}
\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z}) \cong U \rtimes A \equiv \mathbb{Z}_{n} \rtimes \mathcal{U}(\mathbb{Z} / n \mathbb{Z}) ; \tag{12.14}
\end{equation*}
$$

(ii) the conjugacy classes of the group $\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})$ are listed as follows:

- $\mathcal{C}_{0}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\} ;$
- $\mathcal{C}_{r}=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right): b \in A(r)\right\}$, where $r \in D(n)$;
- $\mathcal{C}_{a, d}=\left\{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right): b \in \mathbb{Z} / n \mathbb{Z}\right.$ and $\left.\operatorname{gcd}(a-1, n, b)=d\right\}$, where $a \in$ $\mathcal{U}(\mathbb{Z} / n \mathbb{Z}), a \neq 1$, and $d \in D(\operatorname{gcd}(a-1, n))$.

Proof (i) See the proof of the corresponding statement in Lemma 12.1.1.
(ii) By (12.4), for $a=1$ the computation of the conjugacy orbits reduces to the computation of the γ-orbits in Theorem 12.2.1 and, this way, we determine the orbits $\mathcal{C}_{r}, r \in D(n)$.

Now suppose that $a \in \mathcal{U}(\mathbb{Z} / n \mathbb{Z}), a \neq 1$, and $b \in \mathbb{Z} / n \mathbb{Z}$. Again by (12.4), we have to determine those $c \in \mathbb{Z} / n \mathbb{Z}$ such that the equation

$$
\begin{equation*}
v(1-a)+u b=c \tag{12.15}
\end{equation*}
$$

has solutions $u \in \mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ and $v \in \mathbb{Z} / n \mathbb{Z}$. First of all, note that if we think of a, b, c, u, v as integers, then this equation may be rewritten in the form

$$
\begin{equation*}
v(1-a)+u b+k n=c \text { and } \operatorname{gcd}(u, n)=1, \tag{12.16}
\end{equation*}
$$

with $v, u, k \in \mathbb{Z}$ (k serves as another unknown). By the properties of the gcd, equation (12.16) has a solution only if $\operatorname{gcd}(1-a, b, n) \mid c$. Since we can switch the role of b and c in (12.15) (because u is invertible $\bmod n$), we conclude that this equation has a solution only if $\operatorname{gcd}(1-a, b, n)=\operatorname{gcd}(1-a, c, n)$.
Now suppose that $\operatorname{gcd}(1-a, b, n)=\operatorname{gcd}(1-a, c, n)$; we want to show that (12.16) has a solution. Set $r=\operatorname{gcd}(1-a, n)$, so that $\operatorname{gcd}(b, r)=$
$\operatorname{gcd}(1-a, b, n)=\operatorname{gcd}(1-a, c, n)=\operatorname{gcd}(c, r)$. Then there exist $v, k \in \mathbb{Z}$ such that $r=v(1-a)+k n$. With this position, (12.16) becomes:

$$
u b+r=c \text { and } \operatorname{gcd}(u, n)=1
$$

Moreover, in the last equation r may be replaced by any of its multiples $h r, h \in \mathbb{Z}$, because this corresponds to the replacement of v, k by $v h, k h$, respectively. Therefore, to solve (12.16) it sufficies to solve $u b \equiv c \bmod r$ which, multiplied by $\frac{n}{r}$, yields the equivalent equation

$$
u \frac{n b}{r} \equiv \frac{n c}{r} \bmod n \text { and } \operatorname{gcd}(u, n)=1
$$

By Theorem 12.2.1 the last equation has a solution because

$$
\operatorname{gcd}\left(\frac{n b}{r}, n\right)=\operatorname{gcd}\left(\frac{n}{r} b, \frac{n}{r} r\right)=\frac{n}{r} \operatorname{gcd}(b, r)=\frac{n}{r} \operatorname{gcd}(c, r)=\operatorname{gcd}\left(\frac{n c}{r}, n\right)
$$

Since $\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})$ is a semidirect product with an Abelian normal subgroup (cf. (12.14)), we can again apply Theorem 11.7.1 (the little group method) to get a complete list of all irreducible representations of $\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})$. As usual, $\widehat{\mathbb{Z} / n \mathbb{Z}}$ (respectively $\widehat{\mathcal{U}(\mathbb{Z} / n \mathbb{Z})}$) will denote the dual of the additive group $\mathbb{Z} / n \mathbb{Z}$ (respectively the multiplicative group $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$). After identifying A with the multiplicative group $\mathcal{U}(\mathbb{Z} / n \mathbb{Z})$ (via the map $\left.\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \mapsto a\right)$ and U with the additive group $\mathbb{Z} / n \mathbb{Z}$ (via the $\operatorname{map}\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \mapsto b$), it follows from (12.4) that the conjugacy action (cf. (11.41)) of A on $\widehat{U} \equiv \widehat{\mathbb{Z} / n \mathbb{Z}}$ is given by

$$
\begin{equation*}
{ }^{a} \chi(b)=\chi\left(a^{-1} b\right) \tag{12.17}
\end{equation*}
$$

for all $\chi \in \widehat{U}, b \in \mathbb{Z} / n \mathbb{Z}$, and $a \in \mathcal{U}(\mathbb{Z} / n \mathbb{Z})$. For $0 \leq k \leq n-1$, denote by χ_{k} the character of U given by: $\chi_{k}(b)=\exp \frac{2 \pi k b i}{n}$, for all $0 \leq b \leq n-1$, so that (12.17) becomes: ${ }^{a} \chi_{k}=\chi_{a^{-1} k}$.

Lemma 12.2.3 The orbits of the action of A on \widehat{U} are:

$$
\Omega_{r}=\left\{\chi_{k}: k \in A(r)\right\}, \quad r \in D(n)
$$

Moreover, the stabilizer of $\chi_{n / r} \in \Omega_{r}$ is the group $\mathcal{U}_{r}(\mathbb{Z} / n \mathbb{Z})$.
Proof This is an immediate consequence of Theorem 12.2.1.
Now we may apply the little group method.

Theorem 12.2.4

$\widehat{\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})}=\left\{\pi_{r, \psi}=\operatorname{Ind}_{U \rtimes \mathcal{U}_{r}(\mathbb{Z} / n \mathbb{Z})}^{\mathrm{Aff}(\mathbb{Z} / n \mathbb{Z})}\left(\widetilde{\chi_{n / r}} \otimes \bar{\psi}\right): r \in D(r), \psi \in \mathcal{U}_{r} \widehat{(\mathbb{Z} / n \mathbb{Z})}\right\}$.
More precisely, the right hand side is a complete list of irreducible, pairwise inequivalent representations of $\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})$. Moreover,

$$
\operatorname{dim} \pi_{r, \psi}=\varphi(r)
$$

and $\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})$ has $\frac{\varphi(n)}{\varphi(r)}$ irreducible, pairwise inequivalent representations of dimension $\varphi(r)$.

Note that

$$
\begin{aligned}
\sum_{r \in D(n)} \sum_{\psi \in \mathcal{U}_{r}(\mathbb{Z} / n \mathbb{Z})}\left(\operatorname{dim} \pi_{r, \psi}\right)^{2} & =\sum_{r \in D(n)} \frac{\varphi(n)}{\varphi(r)} \cdot \varphi(r)^{2}=\varphi(n) \sum_{r \in D(n)} \varphi(r) \\
\text { (by Proposition 1.1.20) } & =\varphi(n) n \\
\text { (by (12.14)) } & =|\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})|
\end{aligned}
$$

in agreement with Theorem 10.2.25.(iii).

12.3 Representation theory of the Heisenberg group $H_{3}(\mathbb{Z} / n \mathbb{Z})$

This section is based on [142]. A recent application of the material in this section is in [24].

The Heisenberg group over $\mathbb{Z} / n \mathbb{Z}$ is the matrix group

$$
H_{3}(\mathbb{Z} / n \mathbb{Z})=\left\{\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{Z} / n \mathbb{Z}\right\}
$$

Exercise 12.3.1

Show that $H_{3}(\mathbb{Z} / n \mathbb{Z})$ is isomorphic to the direct product $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \times$ $\mathbb{Z} / n \mathbb{Z}$ endowed with the multiplication

$$
\begin{equation*}
(x, y, z) \cdot(u, v, w)=(x+u, y+v, x v+w+z) \tag{12.18}
\end{equation*}
$$

for all $x, y, z, u, v, w \in \mathbb{Z} / n \mathbb{Z}$. In particular, check that

$$
\begin{gather*}
(x, y, z)^{-1}=(-x,-y,-z+x y) \tag{12.19}\\
(x, y, z)^{-1}(u, v, w)=(u-x, v-y, w-z+x y-x v) \tag{12.20}\\
(x, y, z)(u, v, w)(x, y, z)^{-1}=(u, v, w+x v-y u) \tag{12.21}
\end{gather*}
$$

and

$$
\begin{equation*}
(x, y, z)=(0, y, z)(x, 0,0)=(0,0, z) \cdot(0, y, 0) \cdot(x, 0,0) \tag{12.22}
\end{equation*}
$$

In what follows, we use the notation in Exercise 12.3.1 rather than the matrix notation.

Proposition 12.3.2 The conjugacy classes of $H_{3}(\mathbb{Z} / n \mathbb{Z})$ are:

$$
\mathcal{C}_{a, b, c}=\left\{\left(a, b, c+k \operatorname{gcd}(a, b, n): k=0,1, \ldots, \frac{n}{\operatorname{gcd}(a, b, n)}-1\right\},\right.
$$

$a, b \in \mathbb{Z} / n \mathbb{Z}$ and $c=0,1, \ldots, \operatorname{gcd}(a, b, n)-1$.
Proof By (12.21), the conjugacy class containing a fixed element $(a, b, c) \in$ $H_{3}(\mathbb{Z} / n \mathbb{Z})$ is

$$
\{(a, b, c+x b-y a): x, y \in \mathbb{Z} / n \mathbb{Z}\} .
$$

We argue as in the proof of Lemma 12.2.2(ii). We fix an element $m \in \mathbb{Z} / n \mathbb{Z}$ and study the equation $x b-y a=m$ in the unknowns $x, y \in \mathbb{Z} / n \mathbb{Z}$. This is equivalent to

$$
\begin{equation*}
x b-y a+k n=m \tag{12.23}
\end{equation*}
$$

in the unknowns $x, y, k \in \mathbb{Z}$ (we think of a, b, m as integers). Clearly, (12.23) has a solution if and only if $\operatorname{gcd}(a, b, n) \mid m$. Therefore, two elements $(a, b, c),(u, v, w) \in H_{3}(\mathbb{Z} / n \mathbb{Z})$ are conjugate if and only if $a=u, b=v$, and $c \equiv w \bmod \operatorname{gcd}(a, b, n)$.

Proposition 12.3.3 The Heisenberg group is the semidirect product

$$
\begin{equation*}
H_{3}(\mathbb{Z} / n \mathbb{Z}) \cong \mathbb{Z}_{n}^{2} \rtimes_{\phi} \mathbb{Z}_{n} \tag{12.24}
\end{equation*}
$$

where $\mathbb{Z}_{n}^{2}=\left\{(0, v, w): v, w \in \mathbb{Z}_{n}\right\}$ and $\mathbb{Z}_{n}=\left\{(x, 0,0): x \in \mathbb{Z}_{n}\right\}$ are viewed as additive groups, and ϕ is the \mathbb{Z}_{n}-action on \mathbb{Z}_{n}^{2} given by

$$
\phi_{x}(v, w)=(v, w+x v),
$$

for all $x \in \mathbb{Z}_{n}$ and $(v, w) \in \mathbb{Z}_{n}^{2}$ (here x, v, w are viewed as elements in $\mathbb{Z} / n \mathbb{Z}$).
Proof This follows from (12.21) and (12.22). Just note that, in particular, $(x, 0,0)(0, v, w)(x, 0,0)^{-1}=(0, v, w+x v)$.

We next apply Theorem 11.7.1, with

$$
G=H_{3}(\mathbb{Z} / n \mathbb{Z}), \quad A=\mathbb{Z}_{n}^{2}, \quad \text { and } H=\mathbb{Z}_{n}
$$

To this end, we need some preliminary results. Recall that the elements of \widehat{A} are the characters $\chi_{s, t}, s, t=0,1, \ldots, n-1$, given by

$$
\begin{equation*}
\chi_{s, t}(v, w)=\exp \left(\frac{2 \pi i}{n}(s v+t w)\right) \tag{12.25}
\end{equation*}
$$

for all $u, v \in \mathbb{Z}_{n}$; see Section 2.3.
Proposition 12.3.4 The orbits of H on \widehat{A} are:

$$
\mathcal{R}_{k, t}=\left\{\chi_{s, t}: s \equiv k \bmod \operatorname{gcd}(t, n)\right\}
$$

for $0 \leq t \leq n-1$ and $0 \leq k \leq \operatorname{gcd}(t, n)-1$. Moreover, the stabilizer of $\chi_{s, t} \in \mathcal{R}_{k, t}$ does not depend on the choice of s and it is given by

$$
H_{\chi_{s, t}}=\left\{(x, 0,0) \in H: x \equiv 0 \bmod \frac{n}{\operatorname{gcd}(t, n)}\right\} \cong \mathbb{Z}_{\operatorname{gcd}(t, n)}
$$

Proof The action of H on \widehat{A} is given explicitely by:

$$
\begin{aligned}
{ }^{(x, 0,0)} \chi_{s, t}(v, w) & =\chi_{s, t}(v, w-x v) \\
& =\exp \left[\frac{2 \pi i}{n}[s v+t(w-x v)]\right] \\
& =\exp \left\{\frac{2 \pi i}{n}[(s-t x) v+t w]\right\} \\
& =\chi_{s-t x, t}(v, w)
\end{aligned}
$$

Then $\chi_{s_{1}, t_{1}}$ and $\chi_{s_{2}, t_{2}}$ belong to the same H-orbit if and only if $t_{1}=t_{2}=t$ and there exists $x \in \mathbb{Z}$ such that $s_{1}-t x \equiv s_{2} \bmod n$. By Proposition 1.2.13 this equation has a solution if and only if $s_{1} \equiv s_{2} \bmod \operatorname{gcd}(t, n)$. Finally, we observe that the stabilizer of $\chi_{s, t}$ is made up of those $x \in H$ such that $x t=0 \bmod n$.

In more explicit form,

$$
\mathcal{R}_{k, t}=\left\{\chi_{s, t}: s=k+j \operatorname{gcd}(t, n), 0 \leq j \leq \frac{n}{\operatorname{gcd}(n, t)}-1\right\}
$$

and

$$
H_{\chi_{s, t}}=\left\{\left(j \frac{n}{\operatorname{gcd}(t, n)}, 0,0\right): 0 \leq j \leq \operatorname{gcd}(n, t)-1\right\}
$$

Moreover, for a given t with $0 \leq t \leq n-1$ we have the following particular cases:

- If $t=0$ then $\operatorname{gcd}(0, n)=n$ and $\mathcal{R}_{k, 0}=\left\{\chi_{k, 0}\right\}, k=0,1, \ldots, n-1$: now each orbit consists of a single element and its stabilizer is $H_{\chi_{k, 0}}=H$.
- If $\operatorname{gcd}(t, n)=1$ then we have exactly one orbit of n elements, namely $\mathcal{R}_{0, t}=\left\{\chi_{s, t}: s=0,1, \ldots, n-1\right\}$, and the stabilizer is trivial: $H_{\chi_{s, t}}=$ $\{(0,0,0)\}$.

According to the preceding analysis, we can choose

$$
X=\left\{\chi_{k, t}: 0 \leq t \leq n-1,0 \leq k \leq \operatorname{gcd}(t, n)-1\right\}
$$

as a set of representatives of the quotient space \widehat{A} / \approx (cf. Theorem 11.6.2). By (11.47) and (12.22) we deduce that the extension of these characters to $A \rtimes H_{\chi_{k, t}}$ is given by

$$
\begin{equation*}
\widetilde{\chi_{k, t}}(x, y, z)=\chi_{k, t}(y, z), \tag{12.26}
\end{equation*}
$$

for all $(x, y, z) \in A \rtimes H_{\chi_{k, t}}$. We also need a parameterization of the characters of the groups $H_{\chi_{k, t}} \cong \mathbb{Z}_{\operatorname{gcd}(t, n)}$: they are given by

$$
\psi_{\operatorname{gcd}(t, n), h}(j)=\exp \left(\frac{2 \pi i}{\operatorname{gcd}(t, n)} h j\right)
$$

$h, j=0,1, \ldots, \operatorname{gcd}(t, n)-1$. Their inflation to $A \rtimes H_{\chi_{k, t}}$ is given by

$$
\overline{\psi_{\operatorname{gcd}(t, n), h}}(x, y, z)=\psi_{\operatorname{gcd}(t, n), h}\left(\frac{x \operatorname{gcd}(t, n)}{n}\right) \equiv \exp \left(\frac{2 \pi i}{n} h x\right)
$$

for all $(x, y, z) \in A \rtimes H_{\chi_{k, t}}$ (so that $\left.\left.\frac{n}{\operatorname{gcd}(t, n)} \right\rvert\, x\right)$. We now have all necessary tools needed to apply Theorem 11.7.1.

Theorem 12.3.5

$$
\begin{align*}
\left.H_{3} \widehat{(\mathbb{Z} / n} \mathbb{Z}\right)=\{ & \pi_{k, t, h}=\operatorname{Ind}_{A \rtimes H_{\chi_{k, t}}}^{H_{3}(\mathbb{Z} / n \mathbb{Z})}\left(\widetilde{\chi_{k, t}} \otimes \overline{\psi_{\operatorname{gcd}(t, n), h}}\right): \\
& 0 \leq t \leq n-1,0 \leq h, k \leq \operatorname{gcd}(t, n)-1\} \tag{12.27}
\end{align*}
$$

More precisely, the right hand side is a complete list of irreducible, pairwise inequivalent representations of $H_{3}(\mathbb{Z} / n \mathbb{Z})$. Moreover,

$$
\operatorname{dim} \pi_{k, t, h}=\frac{n}{\operatorname{gcd}(t, n)}
$$

and, for each $d \in D(n)$, the group $H_{3}(\mathbb{Z} / n \mathbb{Z})$ has exactly $d^{2} \varphi(n / d)$ irreducible, pairwise inequivalent representations of dimension $\frac{n}{d}$. In particular, it has n^{2} one-dimensional representations (case $d=n$) and $\varphi(n)$ irreducible representations of maximal dimension $n($ case $d=1)$.

As for $\operatorname{Aff}(\mathbb{Z} / n \mathbb{Z})$, note that

$$
\begin{aligned}
\sum_{d \in D(n)} \sum_{\substack{0 \leq t \leq n-1: \\
\operatorname{gcd}(t, n)=d}} \sum_{k, h=1}^{d-1}\left(\operatorname{dim} \pi_{k, t, h}\right)^{2} & =\sum_{d \in D(n)}\left(\frac{n}{d}\right)^{2} \cdot d^{2} \varphi(n / d) \\
\quad \text { by Proposition 1.1.20) } & =n^{3} \\
& =\left|H_{3}(\mathbb{Z} / n \mathbb{Z})\right|
\end{aligned}
$$

in agreement with Theorem 10.2.25.(iii).
Proposition 12.3.6 Fix $0 \leq t \leq n-1$ and $0 \leq h, k \leq d-1$, where $d=\operatorname{gcd}(t, n)$. Then a matrix form of $\pi_{k, t, h}$ is given by the map

$$
H_{3}(\mathbb{Z} / n \mathbb{Z}) \ni(x, y, z) \rightarrow \Pi_{k, t, h}(x, y, z)=\left(\Pi_{k, t, h ; r, s}(x, y, z)\right)_{r, s=0}^{\frac{n}{d}-1}
$$

where $\Pi_{k, t, h ; r, s}(x, y, z)=0$ if $\frac{n}{d} \nmid(x+s-r)$ and

$$
\begin{equation*}
\Pi_{k, t, h ; r, s}(x, y, z)=\exp \left(\frac{2 \pi i}{n}[k y+t(z-r y)+h(x+s-r)]\right) \tag{12.28}
\end{equation*}
$$

otherwise.
Proof If $(x, y, z) \in H_{3}(\mathbb{Z} / n \mathbb{Z})$ we may compute the remainder of x modulo $\frac{n}{d}$, namely the integer $0 \leq r \leq \frac{n}{d}-1$ given by the Euclidean division: $x=q \frac{n}{d}+r$. Therefore $(x, y, z)=(r, 0,0)\left(q \frac{n}{d}, y, z-r y\right)$, where $\left(q \frac{n}{d}, y, z-r y\right) \in A \rtimes H_{\chi_{k, t}}$ and

$$
\begin{equation*}
H_{3}(\mathbb{Z} / n \mathbb{Z})=\coprod_{r=0}^{\frac{n}{d}-1}(r, 0,0)\left(A \rtimes H_{\chi_{k, t}}\right) \tag{12.29}
\end{equation*}
$$

is the decomposition of $H_{3}(\mathbb{Z} / n \mathbb{Z})$ into left cosets of $A \rtimes H_{\chi_{k, t}}$; see (10.49). Moreover, if $0 \leq r, s \leq \frac{n}{d}-1$ then

$$
(r, 0,0)^{-1}(x, y, z)(s, 0,0)=(x+s-r, y, z-r y)
$$

belongs to $A \rtimes H_{\chi_{k, t}}$ if and only if $\left.\frac{n}{d} \right\rvert\,(x+s-r)$. If this is the case, we have

$$
\left(\widetilde{\chi_{k, t}} \otimes \overline{\psi_{d, h}}\right)(x+s-r, y, z-r y)=\chi_{k, t}(y, z-r y) \psi_{d, h}\left(\frac{(x+s-r) d}{n}\right)
$$

Then (12.28) follows from (11.19), taking into account the explicit formulas for $\widetilde{\chi_{k, t}}$ and $\overline{\psi_{d, h}}$.

We now study some particular cases of (12.28).

- For $t=0$ we get the n^{2} one-dimensional representations, given by:

$$
\Pi_{k, 0, h}(x, y, z)=\exp \left[\frac{2 \pi i}{n}(k y+h x)\right],
$$

for $(x, y, z) \in H_{3}(\mathbb{Z} / n \mathbb{Z}), 0 \leq k, h \leq n-1$.

- Suppose that $x=1$ and $y=z=0$. Then the number $1+s-r$ is divisible by $\frac{n}{d}$ in the following two cases: if $1+s-r=0$, and therefore the corresponding entry is equal to 1 , and if $s=\frac{n}{d}-1, r=0$, so that the entry is equal to $\exp \left(\frac{2 \pi i}{d} h\right)$. Therefore,

$$
\Pi_{k, t, h}(1,0,0)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & & \ddots & 1 \\
\exp \left(\frac{2 \pi i}{d} h\right) & 0 & 0 & \cdots & 0
\end{array}\right) .
$$

- For $y=z=0$ we have $(x, 0,0)=(1,0,0)^{x}$ and therefore:

$$
\Pi_{k, t, h}(x, 0,0)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \tag{12.30}\\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & & \ddots & 1 \\
\exp \left(\frac{2 \pi i}{d} h\right) & 0 & 0 & \cdots & 0
\end{array}\right)^{x} .
$$

- Suppose that $x=0$. Then $\left.\frac{n}{d} \right\rvert\,(s-r)$ if and only if $s=r$, so that the matrix is diagonal and the r-th coefficient is

$$
\exp \left(\frac{2 \pi i}{n}[k y+t(z-r y)]\right)=\exp \left[\frac{2 \pi i}{n}(k y+t z)\right] \exp \left(-r t y \frac{2 \pi i}{n}\right) .
$$

Therefore

$$
\begin{align*}
& \Pi_{k, t, h}(0, y, z)=\exp \left[\frac{2 \pi i}{n}(k y+t z)\right] \\
& \tag{12.31}\\
& \cdot\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & \exp \left(-t y \frac{2 \pi i}{n}\right) & 0 & \cdots & 0 \\
0 & 0 & \exp \left(-2 t y \frac{2 \pi i}{n}\right) & & \vdots \\
\vdots & \vdots & & \ddots & 0 \\
0 & 0 & 0 & \cdots & \exp \left[-\left(\frac{n}{d}-1\right) t y \frac{2 \pi i}{n}\right]
\end{array}\right)
\end{align*}
$$

In particular, if also $y=0$, then the matrix is scalar: $\Pi_{k, t, h}(0,0, z)=$ $\exp \left(\frac{2 \pi i}{n} t z\right) I_{n / d}$.

- Finally, we observe that we can use (12.22) to reduce the computation of $\Pi_{k, t, h}(x, y, z)$ to the cases (12.30) and (12.31), because $\Pi_{k, t, h}(x, y, z)=$ $\Pi_{k, t, h}(0, y, z) \Pi_{k, t, h}(x, 0,0)$.

Exercise 12.3.7 Prove the following explicit expression for the character $\chi_{k, t, h}$ of the representation $\pi_{k, t, h}$:

$$
\begin{equation*}
\chi_{k, t, h}(x, y, z)=\mathbf{1}_{n / d}(x) \mathbf{1}_{n / d}(y) \frac{n}{d} \exp \left[\frac{2 \pi i}{n}(h x+k y+t z)\right] \tag{12.32}
\end{equation*}
$$

where

$$
\mathbf{1}_{n / d}(x)= \begin{cases}1 & \text { if } \left.\frac{n}{d} \right\rvert\, x \\ 0 & \text { otherwise }\end{cases}
$$

Exercise 12.3.8

(1) By means of Proposition 10.2.18 and (12.32) prove that

$$
\operatorname{Res}_{H}^{H_{3}(\mathbb{Z} / n \mathbb{Z})} \pi_{k, t, h}=\bigoplus_{\substack{0 \leq \ell \leq n-1: \\ \ell \equiv h \bmod d}} \chi_{\ell}
$$

and

$$
\operatorname{Res}_{A}^{H_{3}(\mathbb{Z} / n \mathbb{Z})} \pi_{k, t, h}=\bigoplus_{\substack{0 \leq s \leq n-1: \\ s \equiv k \bmod d}} \chi_{s, t},
$$

where $\chi_{\ell}(x)=\exp \left(\frac{2 \pi i}{n} \ell x\right)$ for all $0 \leq x \leq n-1$ (characters of $\left.H \equiv \mathbb{Z}_{n}\right)$ and $\chi_{s, t}$ is as in (12.25).
(2) By means of Frobenius reciprocity, deduce that

$$
\operatorname{Ind}_{H}^{H_{3}(\mathbb{Z} / n \mathbb{Z})} \chi_{\ell} \quad \sim \bigoplus_{\substack{0 \leq t \leq n-1 \\ 0 \leq k \leq \operatorname{gcd}(t, n)-1}}^{\sim} \pi_{k, t, h(t, \ell)}
$$

where $h(t, \ell)$ is the remainder of the division of ℓ by $\operatorname{gcd}(t, n)$, and

$$
\operatorname{Ind}_{A}^{H_{3}(\mathbb{Z} / n \mathbb{Z})} \chi_{s, t} \sim \bigoplus_{0 \leq h \leq d-1} \pi_{k, t, h}
$$

where k is the remainder of the division of s by d.

12.4 The DFT revisited

The connection between classical Fourier analysis and the continuous Heisenberg group has been well studied and we refer to the expository paper [76], and Folland's monograph [61]. In one of our main sources, namely [15], this connection is extended to the finite case and our purpose is to give a clear exposition of these facts; see also [142]. We focus on the key point: by means of suitable realizations of the irreducible representation $\pi_{0,1,0}$, the Heisenberg group may be seen as a group of unitary transformations of $L(\mathbb{Z} / n \mathbb{Z})$, and the Fourier transform intertwines two different such realizations.
For the moment, we fix a positive integer n and we set $\chi(k)=\exp \left(\frac{2 \pi i}{n} k\right)$, for $k \in \mathbb{Z}$. Also, to simplify notation, we set $G=H_{3}(\mathbb{Z} / n \mathbb{Z})$. Moreover, in the notation of (12.27), we set $\pi=\pi_{0,1,0}$ and we denote by V_{π} its representation space. From (11.16), and (12.18) with $u=0$, it follows that V_{π} is made up of all functions $f: G \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
f(x, y+v, x v+z+w)=\chi(-w) f(x, y, z), \tag{12.33}
\end{equation*}
$$

for all $(x, y, z) \in G$ and $v, w \in \mathbb{Z} / n \mathbb{Z}$. Indeed, in (12.25) we have $\chi_{0,1}(v, w)=$ $\chi(w)$, in (12.26) and (12.27) the subgroup $H_{\chi_{0,1}}$ is trivial, and, finally, $\pi=$ $\operatorname{Ind}_{A}^{G} \chi_{0,1}$. From (12.33) and the identity $(x, y, z)=(x, 0,0)(0, y, z-x y)$, it follows that $f \in L(G)$ belongs to V_{π} if and only if it satisfies the condition:

$$
\begin{equation*}
f(x, y, z)=\chi(-z+x y) f(x, 0,0) \tag{12.34}
\end{equation*}
$$

for all $(x, y, z) \in G$, so that it is determined by its values on the subgroup H. In other words, in (11.17) $\mathcal{T} \equiv H$ (actually, this is a particular case of (12.29)). Finally, we observe that from (12.20) with $v=w=0$ it follows that

$$
\begin{equation*}
[\pi(x, y, z) f](u, 0,0)=f(u-x,-y,-z+x y) \tag{12.35}
\end{equation*}
$$

We now translate π into an equivalent representation on $L(\mathbb{Z} / n \mathbb{Z})$ showing its relevance to the DFT on a cyclic group. We need a series of notation and identities. First of all, invoking (12.34) we can define the linear operator $U: V_{\pi} \rightarrow L(\mathbb{Z} / n \mathbb{Z})$ by setting

$$
\begin{equation*}
[U f](x)=f(x, 0,0), \tag{12.36}
\end{equation*}
$$

for all $f \in V_{\pi}$ and $x \in \mathbb{Z} / n \mathbb{Z}$. Its inverse is given by

$$
\begin{equation*}
\left[U^{-1} f\right](x, y, z)=\chi(-z+x y) f(x), \tag{12.37}
\end{equation*}
$$

for all $f \in L(\mathbb{Z} / n \mathbb{Z})$ and $(x, y, z) \in G$. It is immediate to show that U
(and therefore U^{-1}) is an isometric isomorphism; just recall the definition of scalar product in an induced representation (11.3). Then we set

$$
\begin{equation*}
\pi^{\sharp}(x, y, z)=U \pi(x, y, z) U^{-1} \tag{12.38}
\end{equation*}
$$

for all $(x, y, z) \in G$. Clearly, π^{\sharp} is a unitary representation of G on $L(\mathbb{Z} / n \mathbb{Z})$, equivalent to π. But another description of π^{\sharp} will reveal its importance. We introduce three unitary operators T_{x} (translation operator), M_{y} (multiplier operator) and S_{z} on $L(\mathbb{Z} / n \mathbb{Z})$ by setting:
$\left[T_{x} f\right](u)=f(u-x), \quad\left[M_{y} f\right](u)=\chi(-y u) f(u), \quad\left[S_{z} f\right](u)=\chi(z) f(u)$,
for all $f \in L(\mathbb{Z} / n \mathbb{Z})$ and $x, y, z, u \in \mathbb{Z} / n \mathbb{Z}$. Note that T_{x} has already been defined in Section 2.4.

Lemma 12.4.1 We have the following commutation relation:

$$
\begin{equation*}
T_{x} M_{y}=S_{x y} M_{y} T_{x} \tag{12.39}
\end{equation*}
$$

for all $x, y \in \mathbb{Z} / n \mathbb{Z}$.

Proof Let $f \in L(\mathbb{Z} / n \mathbb{Z})$ and $x, y, u \in \mathbb{Z} / n \mathbb{Z}$. Then

$$
\begin{aligned}
& {\left[T_{x} M_{y} f\right](u)=\left[M_{y} f\right](u-x)=\chi(-y u+x y) f(u-x)} \\
& \quad=\chi(-y u+x y)\left[T_{x} f\right](u)=\chi(x y)\left[M_{y} T_{x} f\right](u)=\left[S_{x y} M_{y} T_{x} f\right](u)
\end{aligned}
$$

The Fourier transform intertwines T_{x} and M_{y} : from Exercise 2.4.7 (see also Lemma 4.1.1) it follows that

$$
\begin{equation*}
\mathcal{F} T_{x}=M_{x} \mathcal{F} \quad \text { and } \quad \mathcal{F} M_{y}=T_{-y} \mathcal{F} \tag{12.40}
\end{equation*}
$$

We use the normalized Fourier transform, see Section 4.1. Note also the analogous identities for the inverse Fourier transform: $\mathcal{F}^{-1} T_{x}=M_{-x} \mathcal{F}^{-1}$ and $\mathcal{F}^{-1} M_{y}=T_{y} \mathcal{F}^{-1}$.

Theorem 12.4.2

(i) The irreducible representation π^{\sharp} defined in (12.38) may be expressed in the form:

$$
\begin{equation*}
\pi^{\sharp}(x, y, z)=S_{z} M_{y} T_{x}, \tag{12.41}
\end{equation*}
$$

$(x, y, z) \in G$. Moreover, it is a faithful representation of G as a group of unitary operators on $L(\mathbb{Z} / n \mathbb{Z})$.
(ii) The map $J: G \rightarrow G$ defined by setting $J(x, y, z)=(-y, x, z-x y)$, for all $(x, y, z) \in G$, is an order four automorphism of G.
(iii) The G-representation $\pi^{b}=\pi^{\sharp} \circ J$ is equivalent to π^{\sharp} and the equivalence is realized by the Fourier transform:

$$
\begin{equation*}
\mathcal{F} \pi^{\sharp}(x, y, z)=\pi^{b}(x, y, z) \mathcal{F} \tag{12.42}
\end{equation*}
$$

for all $(x, y, z) \in G$.

Proof (i) For all $f \in L(\mathbb{Z} / n \mathbb{Z}),(x, y, z) \in G$, and $u \in \mathbb{Z} / n \mathbb{Z}$, we have:

$$
\begin{aligned}
{\left[\pi^{\sharp}(x, y, z) f\right](u) } & =\left[U \pi(x, y, z) U^{-1} f\right](u) \\
(\text { by }(12.36)) & =\left[\pi(x, y, z) U^{-1} f\right](u, 0,0) \\
(\text { by }(12.35)) & =\left[U^{-1} f\right](u-x,-y,-z+x y) \\
(\text { by }(12.37)) & =\chi(z-u y) f(u-x) \\
& =\left[S_{z} M_{y} T_{x} f\right](u) .
\end{aligned}
$$

Moreover, if $(x, y, z) \in \operatorname{Ker} \pi^{\sharp}$ then $\pi^{\sharp}(x, y, z) \delta_{0}=\delta_{0}$, that is, $\chi(z-u y) \delta_{x}(u)=$ $\delta_{0}(u)$ for all $u \in \mathbb{Z} / n \mathbb{Z}$. It follows that $x=0=y=z$.
(ii) This follows from easy calculations. For instance, $J^{2}(x, y, z)=(-x,-y, z)$ yields $J^{4}=\operatorname{Id}_{G}$.
(iii) First of all, note that from (12.41) and (12.39) we deduce that:

$$
\pi^{b}(x, y, z)=\pi^{\sharp}(-y, x, z-x y)=S_{z-x y} M_{x} T_{-y}=S_{z} T_{-y} M_{x}
$$

Therefore, using the identities in (12.40) we get:

$$
\mathcal{F} \pi^{\sharp}(x, y, z)=\mathcal{F} S_{z} M_{y} T_{x}=S_{z} T_{-y} \mathcal{F} T_{x}=S_{z} T_{-y} M_{x} \mathcal{F}=\pi^{b}(x, y, z) \mathcal{F}
$$

Note that, in the proof above, we have also obtained the following explicit form of π^{\sharp} :

$$
\begin{equation*}
\left[\pi^{\sharp}(x, y, z) f\right](u)=\chi(z-u y) f(u-x) . \tag{12.43}
\end{equation*}
$$

In other words, G may be seen as the group generated by the translation operators T_{x} and the multiplier operators M_{y}; then the operators S_{z} enter the picture by virtue of the commutation relation (12.39). The automorphism J switches the role of x and y, giving a different realization of G as a group of unitary operators. The Fourier transform intertwines the translation and multiplier operators and therefore also the different realizations of G. That is, J corresponds to the conjugation by \mathcal{F}, in formulæ $\pi^{b}=\mathcal{F} \pi^{\sharp} \mathcal{F}^{-1}$. Note also that the order of J as an automorphism of G coincides with the order
of \mathcal{F} as a unitary operator; see Proposition 4.1.2. We may also express all of this by saying that the diagram in Figure 12.1 is commutative

Fig. 12.1. The commutative diagram showing that the Fourier transform \mathcal{F} intertwines the representations π^{b} and π^{\sharp}. Here, $\mathfrak{U}(L(\mathbb{Z} / n \mathbb{Z}))$ is the group of unitary operators on $L(\mathbb{Z} / n \mathbb{Z})$, and $\mathcal{F}(\cdot) \mathcal{F}^{-1}$ indicates conjugation by \mathcal{F}.

Finally, note that the J-image of the group \mathbb{Z}_{n}^{2} in (12.24) is nothing but $\left\{(u, 0, w): u, w \in \mathbb{Z}_{n}\right\}$.

Exercise 12.4.3 Define π^{\sharp} by means of (12.41). Then, using the commutation relations (12.39), prove that π^{\sharp} is a representation of G and, furthermore, using the converse to Schur's lemma (Exercise 10.2.9) and Theorem 2.4.10, prove that it is irreducible.

12.5 The FFT revisited

In this section, following again [15], we derive an operator form of the Fast Fourier Transform by means of intertwining operators between different realizations of the representation $\pi_{0,1,0}$. We begin by fixing two integers $m, n \geq 2$ and setting $G=H_{3}(\mathbb{Z} / n m \mathbb{Z})$. We introduce the subgroups

$$
K_{1}=\{(r n, s m, 0): 0 \leq r \leq m-1,0 \leq s \leq n-1\}
$$

and

$$
K_{2}=\{(s m, r n, 0): 0 \leq r \leq m-1,0 \leq s \leq n-1\}
$$

both isomorphic to $\mathbb{Z}_{m} \oplus \mathbb{Z}_{n}$. Clearly, an element $(x, y, z) \in G$ belongs to K_{1} if and only if $z=0, n \mid x$, and $m \mid y$, while it belongs to K_{2} if and only if $z=0, m \mid x$, and $n \mid y$. In what follows, we use some notation similar to that in Chapter 5. In particular, for $0 \leq u, v \leq n m-1$ we set

$$
\begin{equation*}
u=\widetilde{s}+r n, v=\widetilde{r}+s m, \quad \text { with } 0 \leq s, \widetilde{s} \leq n-1,0 \leq r, \widetilde{r} \leq m-1 \tag{12.44}
\end{equation*}
$$

We also use the notation $\chi(u)=\exp \left(\frac{2 \pi i}{m n} u\right)$ and π^{\sharp}, π^{b} as in Section 12.4 , but now n is replaced with $n m$. Then we define Z_{1} as the space of all $f \in L(G)$
such that:

$$
\begin{equation*}
f(u, v, w)=\chi(s \widetilde{s} m-w) f(\widetilde{s}, \widetilde{r}, 0) \tag{12.45}
\end{equation*}
$$

for all $(u, v, w) \in G$, where u, v are as in (12.44). Finally, we define the Weil-Berezin map $W_{1}: L(\mathbb{Z} / n m \mathbb{Z}) \rightarrow L(G)$ by setting

$$
\begin{equation*}
\left[W_{1} f\right](x, y, z)=\frac{1}{m \sqrt{n}} \chi(x y-z) \sum_{\ell=0}^{m-1} f(\ell n+x) \chi(\ell n y) \tag{12.46}
\end{equation*}
$$

for all $f \in L(\mathbb{Z} / n m \mathbb{Z})$ and $(x, y, z) \in G$.

Proposition 12.5.1

(i) In the notation of Example 11.1.6, $L\left(G / K_{1}\right)$ is the space of all $f \in$ $L(G)$ such that:

$$
\begin{equation*}
f(u, v, w)=f(\widetilde{s}, \widetilde{r}, w-s \widetilde{s} m) \tag{12.47}
\end{equation*}
$$

for all $(u, v, w) \in G$, where $s, \widetilde{s}, r, \widetilde{r}$ are as in (12.44).
(ii) Z_{1} is a subspace of $L\left(G / K_{1}\right)$ and it is invariant with respect to the left regular representation λ of G.
(iii) Denote by λ_{1} the restriction of the left regular representation of G to Z_{1} and endow this space with the norm of $L\left(G / K_{1}\right)$ (recall (11.3)). Then the W_{1}-image of $L(\mathbb{Z} / n m \mathbb{Z})$ is exactly Z_{1} and W_{1} is an isometry that intertwines π^{\sharp} with λ_{1} : for all $(x, y, z) \in G$

$$
\begin{equation*}
W_{1} \pi^{\sharp}(x, y, z)=\lambda_{1}(x, y, z) W_{1} . \tag{12.48}
\end{equation*}
$$

Proof (i) A function $f \in L(G)$ is right K_{1}-invariant if and only if

$$
\begin{equation*}
f(u+r n, v+s m, w+u s m)=f(u, v, w) \tag{12.49}
\end{equation*}
$$

for all $(u, v, w) \in G$ and $(r n, s m, 0) \in K_{1}$. Moreover, in the notation of (12.44), each element of G may be written uniquely in the form

$$
(u, v, w)=(\widetilde{s}, \widetilde{r}, w-s \widetilde{s} m)(r n, s m, 0)
$$

Therefore

$$
\{(\widetilde{s}, \widetilde{r}, w): 0 \leq \widetilde{s} \leq n-1,0 \leq \widetilde{r} \leq m-1,0 \leq w \leq m n-1,\}
$$

is a set of representatives for the left cosets of K_{1} in G and our assertion is a particular case of (11.7) and (11.17); see also Example 11.1.6.
(ii) If f satisfies (12.45), then it also satisfies (12.47). Indeed, (12.45), with $s=r=0$ and w replaced with $w-s \widetilde{s} m$, yields

$$
\begin{equation*}
f(\widetilde{s}, \widetilde{r}, w-s \widetilde{s} m)=\chi(s \widetilde{s} m-w) f(\widetilde{s}, \widetilde{r}, 0) \tag{12.50}
\end{equation*}
$$

and therefore, for arbitrary u, v, w,

$$
\begin{array}{rlrl}
f(u, v, w) & =\chi(s \widetilde{s} m-w) f(\widetilde{s}, \widetilde{r}, 0) \\
& =f(\widetilde{s}, \widetilde{r}, w-s \widetilde{s} m) . & (\text { by }(12.45)) \\
(\text { by }(12.50))
\end{array}
$$

It follows that $Z_{1} \leq L\left(G / K_{1}\right)$. Note also that if $f \in Z_{1}$ then

$$
\begin{equation*}
f(u, v, w)=\chi(-w) f(u, v, 0), \tag{12.51}
\end{equation*}
$$

because both sides are equal to $\chi(-w) \chi(s \widetilde{s} m) f(\widetilde{s}, \widetilde{r}, 0)$. Moreover, it is easy to check that Z_{1} is exactly the set of all $f \in L(G)$ that verify both (12.47) and (12.51). Finally, by means of (12.20), we deduce that if f satisfies (12.51) then

$$
\begin{aligned}
{[\lambda(x, y, z) f](u, v, w) } & =f(u-x, v-y, w-z+x y-x v) \\
& =\chi(-w) \chi(z-x y+x v) f(u-x, v-y, 0) \\
& =\chi(-w) f(u-x, v-y,-z+x y-x v) \\
& =\chi(-w)[\lambda(x, y, z) f](u, v, 0) .
\end{aligned}
$$

That is, the space of all functions satisfying condition (12.51) is λ-invariant. Therefore, also Z_{1} is λ-invariant, because it is the subspace of all functions in $L\left(G / K_{1}\right)$ satisfying (12.51).
(iii) For $f \in L(\mathbb{Z} / n m \mathbb{Z})$ and assuming (12.44), we have:

$$
\begin{aligned}
m \sqrt{n}\left[W_{1} f\right](u, v, w)= & m \sqrt{n}\left[W_{1} f\right](\widetilde{s}+r n, \widetilde{r}+s m, w) \\
& =\chi(-w+\widetilde{s} \widetilde{s} s m+\widetilde{r} r n) \\
& =\chi(-w+\widetilde{s} \widetilde{s}+\widetilde{s} s m+\widetilde{r} r n) \sum_{\ell=0}^{m-1} f(\ell n+r n+\widetilde{s}) \chi(\ell(\widetilde{r}+s m) n) \\
& =x) n+\widetilde{s}) \chi(\ell \widetilde{r} n) \\
(t=\ell+r) \quad & =\chi(-w+\widetilde{s} \widetilde{r}+\widetilde{s} s m) \sum_{t=0}^{m-1} f(t n+\widetilde{s}) \chi(t \widetilde{r} n) \\
& =m \sqrt{n} \chi(-w+\widetilde{s} s m)\left[W_{1} f\right](\widetilde{s}, \widetilde{r}, 0) .
\end{aligned}
$$

Therefore, by (12.45), the image of W_{1} is contained in Z_{1}. Moreover, for
$f_{1}, f_{2} \in L(\mathbb{Z} / n m \mathbb{Z})$ we have:

$$
\begin{aligned}
\left\langle W_{1} f_{1}, W_{1} f_{2}\right\rangle_{Z_{1}} & =\frac{1}{n m} \sum_{(x, y, z) \in G}\left[W_{1} f_{1}\right](x, y, z) \overline{\left[W_{1} f_{2}\right](x, y, z)} \\
& =\frac{1}{n^{2} m^{3}} \sum_{z \in \mathbb{Z} / n m \mathbb{Z}} \sum_{\ell_{1}, \ell_{2}=0}^{m-1} \sum_{x \in \mathbb{Z} / n m \mathbb{Z}} f_{1}\left(\ell_{1} n+x\right) \overline{f_{2}\left(\ell_{2} n+x\right)} \\
(\text { by }(2.7)) & =\frac{1}{m} \sum_{y \in \mathbb{Z} / n m \mathbb{Z}} \chi\left(\ell_{1} n y\right) \overline{\chi\left(\ell_{2} n y\right)} \\
& =\left\langle f_{1}, f_{2}\right\rangle_{L(\mathbb{Z} / n m \mathbb{Z})} .
\end{aligned}
$$

It follows that W_{1} is an isometry. Finally, for $(x, y, z),(u, v, w) \in G$ and $f \in L(\mathbb{Z} / n m \mathbb{Z})$ we have:

$$
\begin{aligned}
{\left[\lambda_{1}(x, y, z) W_{1} f\right](u, v, w)=} & {\left[W_{1} f\right](u-x, v-y,-z+x y+w-x v) } \\
= & \frac{1}{m \sqrt{n}} \chi(z-w+u v-u y) \\
& \cdot \sum_{\ell=0}^{m-1} f(\ell n+u-x) \chi(\ell n(v-y)) \\
(\text { by }(12.43))= & \frac{1}{m \sqrt{n}} \chi(-w+u v) \\
& =\left[W_{1} \pi^{\sharp}(x, y, z) f\right](u, v, w) .
\end{aligned}
$$

In Exercise 12.5 .9 we outline a different proof of the fact that W_{1} is an intertwining operator, also showing how to derive its expression.

Now we concentrate on K_{2}. First of all, we change the notation in (12.44): for $0 \leq u, v \leq n m-1$ we set

$$
\begin{equation*}
u=\widetilde{r}+s m, v=\widetilde{s}+r n, \quad \text { with } 0 \leq s, \widetilde{s} \leq n-1,0 \leq r, \widetilde{r} \leq m-1 \tag{12.52}
\end{equation*}
$$

Then we define Z_{2} as the space of all $f \in L(G)$ such that

$$
\begin{equation*}
f(u, v, w)=\chi(r \widetilde{r} n-w) f(\widetilde{r}, \widetilde{s}, 0) \tag{12.53}
\end{equation*}
$$

for all $(u, v, w) \in G$, where u, v are as in (12.52). Moreover, we define $W_{2}: L(\mathbb{Z} / n m \mathbb{Z}) \rightarrow L(G)$ by setting

$$
\begin{equation*}
\left[W_{2} f\right](x, y, z)=\frac{1}{n \sqrt{m}} \chi(x y-z) \sum_{t=0}^{n-1} f(t m-x) \chi(-t m y) \tag{12.54}
\end{equation*}
$$

for all $f \in L(\mathbb{Z} / n m \mathbb{Z}),(x, y, z) \in G$. Finally, we define $M: L(G) \rightarrow L(G)$ by setting $M f=f \circ J$, where J is as in Theorem 12.4.2(ii), that is,

$$
[M f](x, y, z)=f(-y, x, z-x y)
$$

for all $f \in L(G)$ and $(x, y, z) \in G$.

Proposition 12.5.2

(i) Z_{2} is a subspace of $L\left(G / K_{2}\right)$ and it is the M-image of Z_{1}.
(ii) If we set $\lambda_{2}(x, y, z)=M \lambda_{1}(x, y, z) M^{-1}$, that is,

$$
\begin{equation*}
M \lambda_{1}(x, y, z)=\lambda_{2}(x, y, z) M \tag{12.55}
\end{equation*}
$$

then λ_{2} is a representation of G on Z_{2} equivalent to λ_{1} (by means of (12.55)). Moreover,

$$
\left[\lambda_{2}(x, y, z) f\right](u, v, w)=f(y-u, v+x, w-z-y v)
$$

for all $(x, y, z),(u, v, w) \in G$ and $f \in Z_{2}$.
(iii) Endow the space Z_{2} with the norm of $L\left(G / K_{2}\right)$ (recall (11.3)). Then the W_{2}-image of $L(\mathbb{Z} / n m \mathbb{Z})$ is exactly Z_{2} and W_{2} is an isometry that intertwines π^{b} with λ_{2}. Moreover, if \mathcal{F} is the Fourier transform on $\mathbb{Z}_{n m}$ then

$$
\begin{equation*}
W_{2}=M W_{1} \mathcal{F}^{-1} \tag{12.56}
\end{equation*}
$$

Proof (i) The proof that $Z_{2} \leq L\left(G / K_{2}\right)$ is the same of that in Proposition 12.5.1(ii); see also Exercise 12.5.3. Moreover, using the notation in (12.52), for all $f \in Z_{1}$ we have:

$$
\begin{aligned}
{[M f](\widetilde{r}+s m, \widetilde{s}+r n, w) } & =f(-\widetilde{s}-r n, \widetilde{r}+s m, w-\widetilde{r} \widetilde{s}-\widetilde{r} r n-\widetilde{s} s m) \\
(\text { by }(12.51)) & =\chi(-w+\widetilde{r} r n) f(-\widetilde{s}-r n, \widetilde{r}+s m,-\widetilde{r} \widetilde{s}-\widetilde{s} s m) \\
(\text { by }(12.49)) & =\chi(-w+\widetilde{r} r n) f(-\widetilde{s}, \widetilde{r},-\widetilde{r} \widetilde{s}) \\
& =\chi(-w+\widetilde{r} r n)[M f](\widetilde{r}, \widetilde{s}, 0)
\end{aligned}
$$

so that $M f \in Z_{2}$.
(ii) From its definition and the fact that M is an isometry between Z_{1}
and Z_{2} it follows that λ_{2} is a G-representation on Z_{2}. Moreover, for all $(x, y, z),(u, v, w) \in G$, we get

$$
\begin{aligned}
{\left[M \lambda_{1}(x, y, z) M^{-1} f\right](u, v, w) } & =\left[\lambda_{1}(x, y, z) M^{-1} f\right](-v, u, w-u v) \\
(\text { by }(12.20)) & =\left[M^{-1} f\right](-v-x, u-y, w-u v-z+x y-x u) \\
& =f(u-y, v+x, w-z-y v) .
\end{aligned}
$$

(iii) For all $(x, y, z) \in G$, we have:

$$
\begin{array}{rlr}
M W_{1} \mathcal{F}^{-1} \pi^{b}(x, y, z) & =M W_{1} \pi^{\sharp}(x, y, z) \mathcal{F}^{-1} & \quad(\text { by }(12.42)) \\
& =M \lambda_{1}(x, y, z) W_{1} \mathcal{F}^{-1} & \quad(\text { by }(12.48)) \\
& =\lambda_{2}(x, y, z) M W_{1} \mathcal{F}^{-1} & \\
(\text { by }(12.55)) .
\end{array}
$$

Therefore, it suffices to prove directly (12.56). Indeed, for every $f \in L(\mathbb{Z} / n m \mathbb{Z})$ we have:

$$
\begin{aligned}
{\left[M W_{1} \mathcal{F}^{-1} f\right](x, y, z) } & =\left[W_{1} \mathcal{F}^{-1} f\right](-y, x, z-x y) \\
(\text { by }(12.46)) & =\frac{\chi(-z)}{m \sqrt{n}} \sum_{\ell=0}^{m-1}\left[\mathcal{F}^{-1} f\right](\ell n-y) \chi(\ell n x) \\
& =\frac{\chi(-z)}{n m \sqrt{m}} \sum_{\ell=0}^{m-1} \sum_{u=0}^{n m-1} f(u) \chi(u(\ell n-y)) \chi(\ell n x) \\
& =\frac{\chi(-z)}{n m \sqrt{m}} \sum_{u=0}^{n m-1} f(u) \chi(-u y) \sum_{\ell=0}^{m-1} \chi(\ell(x+u) n) \\
(\text { by }(2.7)) & =\frac{\chi(-z)}{n \sqrt{m}} \sum_{u=0}^{n m-1} f(u) \chi(-u y) \\
(u=-x+t m) & =\frac{\chi(x y-z)}{n \sqrt{m}} \sum_{t=0}^{n-1} f(t m-x) \chi(-t m y) .
\end{aligned}
$$

Exercise 12.5.3

(1) Let G be a finite group, J an automorphism of $G, K \subset G$ a subgroup, and set $[M f](g)=f(J(g))$, for all $g \in G$ and $f \in L(G)$. Prove that the M-image of $L(G / K)$ is $L\left(G / J^{-1}(K)\right)$.
(2) Prove that $Z_{2} \leq L\left(G / K_{2}\right)$ (cfr. Proposition 12.5.2.(i)) by showing that $J^{-1}\left(K_{1}\right)=K_{2}$.

As a direct consequence of (12.56), we get immediately the first formulation of the main result of this section.

Corollary 12.5.4 The Discrete Fourier Transform on $\mathbb{Z}_{n m}$ has the following factorization:

$$
\begin{equation*}
\mathcal{F}=W_{2}^{-1} M W_{1} \tag{12.57}
\end{equation*}
$$

In other words, the diagram in Figure 12.2 is commutative.

Fig. 12.2. The commutative diagram representing the factorization (12.57) of the Fourier transform \mathcal{F}. Compare it with the diagram in Figure 12.1: note that, in both cases, the DFT is connected with the action of the automorphism J.

We now introduce some notation in order to give a second version of (12.57). We define the linear operators $C_{1}: Z_{1} \rightarrow L(\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z})$ and $C_{2}: Z_{2} \rightarrow L(\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z})$ by setting

$$
\left[C_{1} f_{1}\right](\widetilde{s}, \widetilde{r})=f_{1}(\widetilde{s}, \widetilde{r}, 0) \quad \text { and } \quad\left[C_{2} f_{2}\right](\widetilde{r}, \widetilde{s})=f_{1}(\widetilde{r}, \widetilde{s}, 0)
$$

for all $f_{j} \in Z_{j}, j=1,2,0 \leq \widetilde{s} \leq n-1$ and $0 \leq \widetilde{r} \leq m-1$. From (12.45) and (12.53) it follows that C_{1} and C_{2} are isomorphisms of vector spaces. Then we set

$$
\widetilde{W}_{1}=C_{1} W_{1} \quad \text { and } \quad \widetilde{W}_{2}=C_{2} W_{2}
$$

That is, $\left[\widetilde{W}_{1} f_{1}\right](\widetilde{s}, \widetilde{r})=\left[W_{1} f_{1}\right](\widetilde{s}, \widetilde{r}, 0)$, and similarly for \widetilde{W}_{2}. Finally, we define $\widetilde{M}: L(\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}) \rightarrow L(\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z})$ by setting

$$
[\widetilde{M} f](\widetilde{r}, \widetilde{s})=\chi(\widetilde{r} \widetilde{s}) f(-\widetilde{s}, \widetilde{r})
$$

Proposition 12.5.5

(i) We have $\widetilde{M}=C_{2} M C_{1}^{-1}$, that is, the diagram

is commutative.
(ii) The Discrete Fourier Transform on $\mathbb{Z}_{m n}$ may be factorized in the form:

$$
\begin{equation*}
\mathcal{F}=\widetilde{W}_{2}^{-1} \widetilde{M} \widetilde{W}_{1} \tag{12.58}
\end{equation*}
$$

Proof (i) For $f \in L(\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z})$ and $(\widetilde{r}, \widetilde{s}) \in \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ we have:

$$
\begin{aligned}
{\left[C_{2} M C_{1}^{-1} f\right](\widetilde{r}, \widetilde{s}) } & =\left[M C_{1}^{-1} f\right](\widetilde{r}, \widetilde{s}, 0)=\left[C_{1}^{-1} f\right](-\widetilde{s}, \widetilde{r},-\widetilde{s} \widetilde{r}) \\
(\text { by }(12.51)) & =\chi(\widetilde{s} r) f(-\widetilde{s}, \widetilde{r})
\end{aligned}
$$

(ii) From the definition of $\widetilde{W}_{1}, \widetilde{W}_{2}$, from (i) and from (12.57) it follows that

$$
\widetilde{W}_{2}^{-1} \widetilde{M} \widetilde{W}_{1}=W_{2}^{-1} C_{2}^{-1} \widetilde{M} C_{1} W_{1}=W_{2}^{-1} M W_{1}=\mathcal{F}
$$

In other words, also the diagram in Figure 12.5 is commutative.

Fig. 12.3. The commutative diagram representing the factorization (12.58) of the Fourier transform \mathcal{F}. Compare it with the diagram in Figure 12.2.

In order to give the third and final factorization of the DFT, we introduce the following five operators

$$
\begin{aligned}
& D_{1}: L(\mathbb{Z} / n m \mathbb{Z}) \longrightarrow L(\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}) \\
& D_{2}: L(\mathbb{Z} / n m \mathbb{Z}) \longrightarrow L(\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}) \\
& R_{1}: L(\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}) \longrightarrow L(\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}) \\
& R_{2}: L(\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}) \longrightarrow L(\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}) \\
& T: L(\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}) \longrightarrow L(\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z})
\end{aligned}
$$

defined by setting

$$
\begin{aligned}
& {\left[D_{1} f\right](\widetilde{s}, \widetilde{r})=f(\widetilde{r} n+\widetilde{s})} \\
& {\left[D_{2} f\right](\widetilde{r}, \widetilde{s})=f(\widetilde{s} m+\widetilde{r})} \\
& {\left[R_{1} f_{1}\right](\widetilde{s}, \widetilde{r})=\chi(\widetilde{s} \widetilde{r}) f_{1}(\widetilde{s},-\widetilde{r})} \\
& {\left[R_{2} f_{2}\right](\widetilde{r}, \widetilde{s})=\chi(-\widetilde{s} \widetilde{r}) f_{2}(-\widetilde{r},-\widetilde{s})} \\
& {\left[T f_{1}\right](\widetilde{r}, \widetilde{s})=\chi(-\widetilde{s} \widetilde{r}) f_{1}(\widetilde{s}, \widetilde{r}),}
\end{aligned}
$$

for all $f \in L(\mathbb{Z} / n m \mathbb{Z}), f_{1} \in L(\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}), f_{2} \in L(\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z})$, and $0 \leq \widetilde{s} \leq n-1,0 \leq \widetilde{r} \leq m-1$. Finally, we introduce the following notation: we denote by \mathcal{F}_{k} (respectively $\mathcal{F}_{k}^{-1}, I_{k}$) the normalized Fourier transform,
cf. Exercise 2.4.13, (respectively its inverse, the identity operator) on $\mathbb{Z} / k \mathbb{Z}$. Moreover, we identify $L(\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z})$ with $L(\mathbb{Z} / n \mathbb{Z}) \otimes L(\mathbb{Z} / m \mathbb{Z})$; see Section 8.7 and Section 10.5.

Proposition 12.5.6 We have:

$$
\begin{aligned}
& \left(I_{n} \otimes \mathcal{F}_{m}\right) D_{1}=\sqrt{n m} R_{1} \widetilde{W}_{1} \\
& \left(I_{m} \otimes \mathcal{F}_{n}^{-1}\right) D_{2}=\sqrt{n m} R_{2} \widetilde{W}_{2}
\end{aligned}
$$

and

$$
R_{2} \widetilde{M} R_{1}=T
$$

Proof Indeed, for $f \in L(\mathbb{Z} / n m \mathbb{Z}),(\widetilde{s}, \widetilde{r}) \in \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$, we have:

$$
\begin{aligned}
{\left[\left(I_{n} \otimes \mathcal{F}_{m}\right) D_{1} f\right](\widetilde{s}, \widetilde{r}) } & =\frac{1}{\sqrt{m}} \sum_{\ell=0}^{m-1}\left[D_{1} f\right](\widetilde{s}, \ell) \chi(-\ell n \widetilde{r}) \\
& =\frac{1}{\sqrt{m}} \sum_{\ell=0}^{m-1} f(\ell n+\widetilde{s}) \chi(-\ell n \widetilde{r}) \\
(\text { by }(12.46)) & =\sqrt{n m} \chi(\widetilde{s} \widetilde{r})\left[W_{1} f\right](\widetilde{s},-\widetilde{r}, 0) \\
& =\sqrt{n m}\left[R_{1} \widetilde{W}_{1} f\right](\widetilde{s}, \widetilde{r})
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
{\left[\left(I_{m} \otimes \mathcal{F}_{n}^{-1}\right) D_{2} f\right](\widetilde{r}, \widetilde{s}) } & =\frac{1}{\sqrt{n}} \sum_{t=0}^{n-1}\left[D_{2} f\right](\widetilde{r}, t) \chi(t m \widetilde{s}) \\
& =\frac{1}{\sqrt{n}} \sum_{t=0}^{n-1} f(t m+\widetilde{r}) \chi(t m \widetilde{s}) \\
& =\sqrt{n m} \chi(-\widetilde{s} \widetilde{r})\left[W_{2} f\right](-\widetilde{r},-\widetilde{s}, 0) \\
& =\sqrt{n m}\left[R_{2} \widetilde{W}_{2} f\right](\widetilde{r}, \widetilde{s})
\end{aligned}
$$

Finally, for $f \in L(\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z})$,

$$
\begin{aligned}
{\left[R_{2} \widetilde{M} R_{1} f\right](\widetilde{r}, \widetilde{s}) } & =\chi(-\widetilde{s} \widetilde{r})\left[\widetilde{M} R_{1} f\right](-\widetilde{r},-\widetilde{s}) \\
& =\left[R_{1} f\right](\widetilde{s},-\widetilde{r}) \\
& =\chi(-\widetilde{s} \widetilde{r}) f(\widetilde{s}, \widetilde{r})
\end{aligned}
$$

Finally, we are in position to present the third version of (12.57), which is an operator version of the matrix factorizations in Section 5.5; see, in particular, the Vector Form in Exercise 5.5.1.

Theorem 12.5.7

$$
\begin{equation*}
\mathcal{F}_{n m}=D_{2}^{-1}\left(I_{m} \otimes \mathcal{F}_{n}\right) T\left(I_{n} \otimes \mathcal{F}_{m}\right) D_{1} \tag{12.59}
\end{equation*}
$$

Proof From Proposition 12.5.5.(ii) and Proposition 12.5.6, noting also that $R_{1}^{-1}=R_{1}$, we get:

$$
\begin{aligned}
\mathcal{F} & =\widetilde{W}_{2}^{-1} \widetilde{M} \widetilde{W}_{1} \\
& =D_{2}^{-1}\left(I_{m} \otimes \mathcal{F}_{n}\right) R_{2} \cdot \widetilde{M} \cdot R_{1}\left(I_{n} \otimes \mathcal{F}_{m}\right) D_{1} \\
& =D_{2}^{-1}\left(I_{m} \otimes \mathcal{F}_{n}\right) T\left(I_{n} \otimes \mathcal{F}_{m}\right) D_{1} .
\end{aligned}
$$

The factorization (12.59) is equivalent to the commutativity of the following diagram:

Clearly, the significance of the machinery developed in this section is not in the proof of (12.59) (see the following exercise), but in the group theoretic interpretation of each operator involved and of the various formulas obtained.

Exercise 12.5.8 Give a direct proof of (12.59), based only on the definition of the operators involved.

In the following exercise, we present an alternative approach to Proposition 12.5.1.(ii). In particular, we show how the machinery developed in Chapter 10 and Chapter 11 may be used to derive the exact form of the Weil-Berezin map (12.46).

Exercise 12.5.9

(1) Let d be a divisor of $m n$. Set $d_{1}=\operatorname{gcd}(m, d), m_{1}=m / d_{1}, d_{2}=d / d_{1}$, and $d_{3}=\operatorname{gcd}(n, d), n_{1}=n / d_{3}, d_{4}=d / d_{3}$. Prove that $d_{2} \mid d_{3}$ and give an example in which $d_{3}>d_{2}$.
(2) Arguing as in Exercise 12.3.8, and with the preceding notation, prove that the multiplicity of $\pi_{k, t, h}$ in the permutation representation $L\left(G / K_{1}\right)$ is equal to d_{3} / d_{2} if $h \equiv 0 \bmod d_{1}$ and $k \equiv 0 \bmod d_{3}$, and, otherwise, it is equal to zero. In particular, $L\left(G / K_{1}\right)$ is not generally multiplicitiy free.
(3) Show that the multiplicity of $\pi_{0,1,0}$ in $L\left(G / K_{1}\right)$ is equal to 1 in two ways: (i) by using the results in (2); (ii) by showing that the space of K_{1}-invariant vectors in $L(\mathbb{Z} / m n \mathbb{Z})$ with respect to the representation π^{\sharp} is one-dimensional and it is spanned by the function $\varphi=\frac{1}{\sqrt{m}} \sum_{r=0}^{m-1} \delta_{r n}$.
(4) Use Proposition 11.2 .8 and (3) to prove Proposition 12.5.1.(iii), in particular to get the expression for W_{1} in (12.46) (that is, $W_{1}=T_{\varphi}$).

12.6 Representation theory of the Heisenberg group $H_{3}\left(\mathbb{F}_{q}\right)$

This section is based on Chapter 18 of Terras' monograph [159]; see also the exposition in [34]. Some details are similar to those in Section 12.3 so that they are omitted and/or left as exercises.

Let \mathbb{F}_{q} be a finite field, $q=p^{r}$ with p a prime number. The Heisenberg group over \mathbb{F}_{q} is the matrix group

$$
H_{3}\left(\mathbb{F}_{q}\right)=\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{F}_{q}\right\}
$$

Clearly, all the identities in Exercise 12.3 .1 still hold. In particular, we shall denote the elements of $H_{3}\left(\mathbb{F}_{q}\right)$ by $(x, y, z) \in \mathbb{F}_{q} \times \mathbb{F}_{q} \times \mathbb{F}_{q} \equiv \mathbb{F}_{q}^{3}$ with the multiplication as in (12.18).

Exercise 12.6.1

(1) From (12.21) deduce that the conjugacy classes of $H_{3}\left(\mathbb{F}_{q}\right)$ are:

- $\mathcal{C}_{w}=\{(0,0, w)\}, w \in \mathbb{F}_{q}$ (q one-element classes);
- $\mathcal{C}_{u, v}=\left\{(u, v, w): w \in \mathbb{F}_{q}\right\}, u, v \in \mathbb{F}_{q},(u, v) \neq(0,0)$ ($q^{2}-1$ classes of q elements each).
(2) Prove also that

$$
H_{3}\left(\mathbb{F}_{q}\right) \cong \mathbb{F}_{q}^{2} \rtimes_{\phi} \mathbb{F}_{q}
$$

where $\mathbb{F}_{q}^{2}=\left\{(0, v, w): v, w \in \mathbb{F}_{q}\right\}$ and $\mathbb{F}_{q}=\left\{(x, 0,0): x \in \mathbb{F}_{q}\right\}$ are viewed as additive groups and ϕ is the \mathbb{F}_{q}-action on \mathbb{F}_{q}^{2} given by

$$
\phi_{x}(v, w)=(v, w+x v)
$$

with $x, v, w \in \mathbb{F}_{q}$.
Using the notation from Theorem 11.7.1 (with $G=H_{3}\left(\mathbb{F}_{q}\right), A=\mathbb{F}_{q}^{2}$ and $H=\mathbb{F}_{q}$), given $\chi_{s, t} \in \widehat{A}(c f .(7.4))$, we have

$$
H_{\chi_{s, t}}= \begin{cases}\left\{1_{H}\right\} & \text { if } t \neq 0 \\ H & \text { if } t=0\end{cases}
$$

Indeed, from

$$
\begin{aligned}
{ }^{(x, 0,0)} \chi_{s, t}(v, w) & =\chi_{s, t}(v, w-x v) \\
& =\chi_{\text {princ }}(s v+t(w-x v)) \\
& =\chi_{\text {princ }}((s-t x) v+t w) \\
& =\chi_{s-t x, t}(v, w)
\end{aligned}
$$

we deduce that ${ }^{(x, 0,0)} \chi_{s, t}=\chi_{s, t}$ if and only if either $t=0$ (in this case, the \approx equivalence class of each $\chi_{s, 0}$ reduces to the element $\chi_{s, 0}$ itself, and therefore $H_{\chi_{s, 0}}=H$), or $t \neq 0$ and $x=0$ (so that $H_{\chi_{s, t}}=\left\{1_{H}\right\}$).

According to the preceding analysis, we can choose

$$
X=\left\{\chi_{s, 0}: s \in \mathbb{F}_{q}\right\} \cup\left\{\chi_{0, t}: t \in \mathbb{F}_{q}, t \neq 0\right\}
$$

as a set of representatives of the quotient space \widehat{A} / \approx (cf. Theorem 11.6.2). Then, for every $s, u \in \mathbb{F}_{q}$ if we denote by $\psi_{s, u} \in \widehat{H_{3}\left(\mathbb{F}_{q}\right)}$ the character defined by

$$
\psi_{s, u}(x, y, z)=\chi_{p r i n c}(s y+u x)
$$

recalling that $H_{\chi_{s, 0}}=H$ (so that $A \rtimes H_{\chi_{s, 0}}=H_{3}\left(\mathbb{F}_{q}\right)$) and that $\overline{\chi_{u}} \in \widehat{H_{3}\left(\mathbb{F}_{q}\right)}$ denotes the inflation of $\chi_{u} \in \widehat{H_{3}\left(\mathbb{F}_{q}\right)} / A=\widehat{H}=\widehat{\mathbb{F}_{q}}$, we have

$$
\begin{aligned}
\operatorname{Ind}_{A \rtimes H_{\chi_{s, 0}}}^{H_{3}\left(\mathbb{F}_{q}\right)}\left(\widetilde{\chi_{s, 0}} \otimes \overline{\chi_{u}}\right)(x, y, z) & =\left(\widetilde{\chi_{s, 0}} \otimes \overline{\chi_{u}}\right)(x, y, z) \\
& =\chi_{s, 0}(y, z) \chi_{u}(x) \\
& =\chi_{p r i n c}(s y+u x) \\
& =\psi_{s, u}(x, y, z)
\end{aligned}
$$

so that

$$
\operatorname{Ind}_{A \rtimes H_{\chi_{s, 0}}}^{H_{3}\left(\mathbb{F}_{q}\right)}\left(\widetilde{\chi_{s, 0}} \otimes \overline{\chi_{u}}\right)=\psi_{s, u}
$$

On the other hand, if $t \neq 0$, then $H_{\chi_{0, t}}=\left\{1_{H}\right\}$ (so that $A \rtimes H_{\chi_{0, t}}=A$) and we may set

$$
\begin{equation*}
\pi_{t}:=\operatorname{Ind}_{A \rtimes H_{\chi 0, t}}^{H_{3}\left(\mathbb{F}_{q}\right)}\left(\widetilde{\chi_{0, t}}\right)=\operatorname{Ind}_{A}^{H_{3}\left(\mathbb{F}_{q}\right)} \chi_{0, t} \in \widehat{H_{3}\left(\mathbb{F}_{q}\right)} . \tag{12.60}
\end{equation*}
$$

From Theorem 11.7.1 we deduce that $\widehat{H_{3}\left(\mathbb{F}_{q}\right)}$ consists exactly of the q^{2} onedimensional representations $\psi_{s, u}, s, u \in \mathbb{F}_{q}$, and the $q-1$ representations π_{t}, $t \in \mathbb{F}_{q}^{*}$, of dimension $\left[H_{3}\left(\mathbb{F}_{q}\right): A\right]=|H|=\left|\mathbb{F}_{q}\right|=q$.

Exercise 12.6.2 Use (12.60) to show that a matrix realization of $\pi_{t}, t \in \mathbb{F}_{q}^{*}$, is given by

$$
U(x, y, z)=\chi_{p r i n c}(t z) D(t y) W(x)
$$

for all $x, y, z \in \mathbb{F}_{q}$, where $D(t y)$ is the $q \times q$ diagonal matrix

$$
D(t y)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
0 & \chi(-t y) & 0 & 0 & \cdots & 0 \\
0 & 0 & \chi(-\alpha t y) & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \chi\left(-\alpha^{q-2} t y\right)
\end{array}\right)
$$

α being a generator of the cyclic group \mathbb{F}_{q}^{*}, and $W(x)$ being the $q \times q$ permutation matrix defined by

$$
W(x)_{i, j}=\delta_{i}(j+x)
$$

for all $i, j \in \mathbb{F}_{q}$.
Hint. Use equation (12.22) and observe that $S=\left\{(i, 0,0): i \in \mathbb{F}_{q}\right\}=H=$ \mathbb{F}_{q} is a system of representatives for the left cosets of $A=\mathbb{F}_{q}^{2}$ in $G=H_{3}\left(\mathbb{F}_{q}\right)$. Use the identities

$$
\begin{aligned}
& (-i, 0,0)(0,0, z)(j, 0,0)=(j-i, 0, z) \\
& (-i, 0,0)(0, y, 0)(j, 0,0)=(j-i, y,-i y) \\
& (-i, 0,0)(x, 0,0)(j, 0,0)=(j-i+x, 0,0)
\end{aligned}
$$

for all $i, j, x, y, z \in \mathbb{F}_{q}$. To get the matrix $D(t y)$ set $i, j=0,1, \alpha, \alpha^{2}, \ldots, \alpha^{q-2}$.

13

Hecke algebras and multiplicity-free triples

In this chapter we develop the basic theory of finite multiplicity-free triples. This is a subject which has not yet received the attention it deserves. As far as we know, the only book that treats this topic is Macdonald's [105]. The classical theory of finite Gelfand pairs, which constitutes a particular yet fundamental case, was essentially covered in our first monograph [29]. Other references on the material of this chapter include [139, 140], [37], [152], and [25].

13.1 Preliminaries and notation

Let G be a finite group and $K \leq G$ a subgroup. We assume all the basic notation in Section 11.1 and Section 11.3 (the latter with $H=K$). In addition, we suppose that χ is a one-dimensional representation of K. We consider the representation space $\operatorname{Ind}_{K}^{G} \mathbb{C}$ of $\operatorname{Ind}_{K}^{G} \chi$ as a subspace of the group algebra $L(G)$ (see Example 11.1.9) and we define $\psi \in L(K)$ by setting

$$
\begin{equation*}
\psi(k)=\frac{1}{|K|} \overline{\chi(k)} \equiv \frac{1}{|K|} \chi\left(k^{-1}\right) \tag{13.1}
\end{equation*}
$$

for all $k \in K$. Then, regarding $L(K)$ as a subalgebra of $L(G)$, we define the convolution operator $P: L(G) \rightarrow L(G)$ by setting $P f=f * \psi$, that is,

$$
[P f](g)=\frac{1}{|K|} \sum_{k \in K} f(g k) \chi(k)
$$

for all $f \in L(G)$ and $g \in G$.

Proposition 13.1.1 The function ψ satisfies the identities

$$
\begin{equation*}
\psi * \psi=\psi \quad \text { and } \quad \psi^{*}=\psi \tag{13.2}
\end{equation*}
$$

Moreover, P is the orthogonal projection of $L(G)$ onto $\operatorname{Ind}_{K}^{G} \mathbb{C}$. In other words,

$$
\begin{equation*}
\operatorname{Ind}_{K}^{G} \mathbb{C}=\{f * \psi: f \in L(G)\} \equiv\{f \in L(G): f * \psi=f\} \tag{13.3}
\end{equation*}
$$

Proof The first identity in (13.2) follows from (10.36) and, together with the first formula in (10.34), ensures that P is an idempotent. The second identity follows immediately from the analogous properties of characters (cf. Proposition 10.2.15.(ii)). This, together with the second formula in (10.34), implies that P is self-adjoint. This shows that P is an orthogonal projection. Moreover, from (11.16) we deduce that

$$
[P f](g)=[f * \psi](g)=\frac{1}{|K|} \sum_{k \in K} f(g k) \chi(k)=f(g) \frac{1}{|K|} \sum_{k \in K} 1=f(g)
$$

for all $f \in \operatorname{Ind}_{K}^{G} \mathbb{C}$ and $g \in G$, that is, $\operatorname{Pf}=f$ (and, in particular, $\operatorname{Ran} P \supseteq$ $\operatorname{Ind}_{K}^{G} \mathbb{C}$). Finally, let us show that the range of P is contained in (and therefore equals) $\operatorname{Ind}_{K}^{G} \mathbb{C}$. Indeed, for all $f \in L(G), g \in G$ and $k_{1} \in K$ we have

$$
\begin{aligned}
{[P f]\left(g k_{1}\right) } & =\frac{1}{|K|} \sum_{k \in K} f\left(g k_{1} k\right) \chi(k) \\
\left(k_{2}=k_{1} k\right) & =\frac{1}{|K|} \sum_{k_{2} \in K} f\left(g k_{2}\right) \chi\left(k_{1}^{-1} k_{2}\right) \\
& =\overline{\chi\left(k_{1}\right)}[P f](g),
\end{aligned}
$$

that is, $P f$ satisfies (11.16) and therefore $P f \in \operatorname{Ind}_{K}^{G} \mathbb{C}$. We conclude that $\operatorname{Ran} P=\operatorname{Ind}_{K}^{G} \mathbb{C}$.

Let now $J \subseteq \widehat{G}$ denote the set of all irreducible G-representations contained in $\operatorname{Ind}_{K}^{G} \chi$. For $\left(\theta, W_{\theta}\right) \in J$, denote by $m_{\theta}>0$ its multiplicity in $\operatorname{Ind}_{K}^{G} \chi$, that is,

$$
\begin{equation*}
\operatorname{Ind}_{K}^{G} \chi \sim \bigoplus_{\theta \in J} m_{\theta} \theta \tag{13.4}
\end{equation*}
$$

From Corollary 10.6 .6 we deduce that $\operatorname{Ind}_{K}^{G} \chi$ is multiplicity free (that is, $m_{\theta}=1$ for all $\left.\theta \in J\right)$ if and only if $\operatorname{End}_{G}\left(\operatorname{Ind}_{K}^{G} \chi\right)$ is commutative, and, if this is the case, Corollary 10.6.7 ensures that

$$
\begin{equation*}
\operatorname{End}_{G}\left(\operatorname{Ind}_{K}^{G} \mathbb{C}\right) \cong \mathbb{C}^{J} \tag{13.5}
\end{equation*}
$$

Finally, note that now (11.30) becomes $G_{s}=K \cap s K s^{-1}$, and (11.32) becomes

$$
\begin{equation*}
\mathcal{S}_{0}=\left\{s \in \mathcal{S}: \chi(x)=\chi\left(s^{-1} x s\right), \forall x \in G_{s}\right\} \tag{13.6}
\end{equation*}
$$

13.2 Hecke algebras

Definition 13.2.1 The Hecke algebra $\mathcal{H}(G, K, \chi)$ associated with G, K and χ, is
$\mathcal{H}(G, K, \chi)=\left\{f \in L(G): f\left(k_{1} g k_{2}\right)=\overline{\chi\left(k_{1} k_{2}\right)} f(g)\right.$, for all $\left.g \in G, k_{1}, k_{2} \in K\right\}$.
Note that, in the notation of Definition 11.4.1, we have

$$
\mathcal{H}(G, K, \chi)=\mathcal{V}(G, K, K, \chi, \chi)
$$

Remark 13.2.2 When $\chi=\iota_{K}$ (see Example 11.1.6), the Hecke algebra $\mathcal{H}(G, K, \chi)$ equals the subalgebra of all bi-K-invariant functions

$$
L(K \backslash G / K)=\left\{f \in L(G): f\left(k_{1} g k_{2}\right)=f(g), \text { for all } g \in G, k_{1}, k_{2} \in K\right\}
$$

Note that, under the isomorphism (11.13), $L(K \backslash G / K)$ corresponds the the subpace $L(G / K)^{K}$ of all functions in $L(G / K)$ that are invariant under the action of K, that is, that are constant on the orbits of K on G / K.

Theorem 13.2.3 $\mathcal{H}(G, K, \chi)$ is an involutive subalgebra of $L(G)$. Moreover,
(i) $\mathcal{H}(G, K, \chi)$ is contained in $\operatorname{Ind}_{K}^{G} \mathbb{C}$ and in fact

$$
\mathcal{H}(G, K, \chi)=\{\psi * f * \psi: f \in L(G)\} \equiv\{f \in L(G): f=\psi * f * \psi\}
$$

(ii) The map

$$
\begin{array}{rll}
\mathcal{H}(G, K, \chi) & \longrightarrow & \operatorname{End}_{G}\left(\operatorname{Ind}_{K}^{G} \mathbb{C}\right) \tag{13.7}\\
f & \longmapsto & \left.T_{f}\right|_{\operatorname{Ind}_{G}^{G}}
\end{array}
$$

is a *-anti-isomorphism of algebras and

$$
\operatorname{Ker} T_{f} \supseteq\left[\operatorname{Ind}_{K}^{G} \mathbb{C}\right]^{\perp} \equiv \operatorname{Ker} P
$$

(see Proposition 13.1.1), for all $f \in \mathcal{H}(G, K, \chi)$.

Proof We leave it to the reader the easy task to check that the vector space $\mathcal{H}(G, K, \psi)$ is closed under convolution and involution, thus showing that it is an involutive subalgebra of $L(G)$.
(i) Suppose that $f=\psi * f * \psi$, that is, $f=\frac{1}{|K|^{2}} \bar{\chi} * f * \bar{\chi}$. Then for all
$k_{1}, k_{2} \in K, g \in G$, we have

$$
\begin{aligned}
f\left(k_{1} g k_{2}\right) & =\frac{1}{|K|^{2}}[\bar{\chi} * f * \bar{\chi}]\left(k_{1} g k_{2}\right) \\
& =\frac{1}{|K|^{2}} \sum_{\substack{r \in k_{2}^{-1} g^{-1} K \\
k \in K}} \overline{\chi\left(k_{1} g k_{2} r\right)} f\left(r^{-1} k\right) \overline{\chi\left(k^{-1}\right)} \\
\left(u=k_{2} r \text { and } h=k_{2} k\right) & =\frac{1}{|K|^{2}} \sum_{\substack{u \in g^{-1} K \\
h \in K}} \overline{\chi\left(k_{1} g u\right)} f\left(u^{-1} h\right) \overline{\chi\left(h^{-1} k_{2}\right)} \\
& =\frac{1}{|K|^{2}} \sum_{\substack{u \in g^{-1} K \\
h \in K}} \overline{\chi\left(k_{1}\right) \chi(g u)} f\left(u^{-1} h\right) \overline{\chi\left(h^{-1}\right) \chi\left(k_{2}\right)} \\
& =\frac{1}{|K|^{2}} \overline{\chi\left(k_{1}\right)} \cdot[\bar{\chi} * f * \bar{\chi}](g) \cdot \overline{\chi\left(k_{2}\right)} \\
& =\frac{\overline{\chi\left(k_{1}\right)} f(g) \overline{\chi\left(k_{2}\right)},}{}
\end{aligned}
$$

so that $f \in \mathcal{H}(G, K, \chi)$.
Vice versa, if $f \in \mathcal{H}(G, K, \chi)$ then, for all $g \in G$ and $k_{1}, k_{2} \in K$, we have:

$$
\begin{aligned}
{[\psi * f * \psi](g) } & =\frac{1}{|K|^{2}}[\bar{\chi} * f * \bar{\chi}](g) \\
& =\frac{1}{|K|^{2}} \sum_{\substack{r \in g^{-1} K \\
k_{2} \in K}} \overline{\chi(g r)} f\left(r^{-1} k_{2}\right) \overline{\chi\left(k_{2}^{-1}\right)} \\
\left(\text { setting } k_{1}=g r\right) \quad & =\frac{1}{|K|^{2}} \sum_{k_{1}, k_{2} \in K} \overline{\chi\left(k_{1}\right)} f\left(k_{1}^{-1} g k_{2}\right) \overline{\chi\left(k_{2}^{-1}\right)} \\
(f \in \mathcal{H}(G, K, \chi)) \quad & =f(g) .
\end{aligned}
$$

It is now easy to check that $\mathcal{H}(G, K, \psi)$ is contained in $\operatorname{Ind}_{K}^{G} \mathbb{C}$: indeed, if $f=\psi * f * \psi$ then

$$
\begin{equation*}
P f=f * \psi=\psi * f * \psi * \psi=\psi * f * \psi=f \tag{13.8}
\end{equation*}
$$

and we can invoke (13.3).
(ii) Let $f \in \mathcal{H}(G, K, \chi)$. Then if $f^{\prime} \in \operatorname{Ker} P$ we have

$$
T_{f} f^{\prime}=f^{\prime} * f=f^{\prime} * \psi * f * \psi=\left[P f^{\prime}\right] * f * \psi=0
$$

so that $f^{\prime} \in \operatorname{Ker} T_{f}$. This shows the inclusion $\operatorname{Ker} P \subseteq \operatorname{Ker} T_{f}$.
Also, if $f^{\prime \prime} \in \operatorname{Ind}_{K}^{G} \mathbb{C}$ we have

$$
P\left(T_{f} f^{\prime \prime}\right)=P\left(f^{\prime \prime} * f\right)=P\left(f^{\prime \prime} * \psi * f\right)=f^{\prime \prime} * \psi * f * \psi=f^{\prime \prime} * f=T_{f} f^{\prime \prime}
$$

that is, $T_{f}\left(\operatorname{Ind}_{K}^{G} \mathbb{C}\right) \subseteq \operatorname{Ind}_{K}^{G} \mathbb{C}$. It follows that the restriction of the antiisomomorphism (10.33) to the subalgebra $\mathcal{H}(G, K, \chi)$ yields the desired antiisomomorphism (13.7).

The following is a useful computational rule.

Lemma 13.2.4 For all $f_{1} \in \mathcal{H}(G, K, \chi)$ and $f_{2} \in L(G)$ we have

$$
\begin{equation*}
\left[f_{1} * \psi * f_{2} * \psi\right]\left(1_{G}\right)=\left[f_{1} * f_{2}\right]\left(1_{G}\right) \tag{13.9}
\end{equation*}
$$

Proof Indeed, from (13.8) we deduce $f_{1} * \psi * f_{2} * \psi=f_{1} * f_{2} * \psi$ so that

$$
\begin{aligned}
& {\left[f_{1} * \psi * f_{2} * \psi\right]\left(1_{G}\right)=\left[f_{1} * f_{2} * \psi\right]\left(1_{G}\right)} \\
& \quad=\sum_{h \in G} \sum_{k \in K} f_{1}(k h) f_{2}\left(h^{-1}\right) \psi\left(k^{-1}\right)=\left[\psi * f_{1} * f_{2}\right]\left(1_{G}\right)=\left[f_{1} * f_{2}\right]\left(1_{G}\right)
\end{aligned}
$$

Definition 13.2.5 The Curtis and Fossum basis of $\mathcal{H}(G, K, \chi)$ is the set $\left\{a_{s}: s \in \mathcal{S}_{0}\right\}$ of functions in $L(G)$ defined by setting

$$
a_{s}(g)= \begin{cases}\frac{1}{|K|} \overline{\chi\left(k_{1}\right) \chi\left(k_{2}\right)} & \text { if } g=k_{1} s k_{2} \text { for some } k_{1}, k_{2} \in K \tag{13.10}\\ 0 & \text { if } g \notin K s K\end{cases}
$$

for all $g \in G$.
Note that (13.10) is well-defined: indeed, if $k_{1} s k_{2}=k_{3} s k_{4}$ then by Lemma 11.3.1 there exists $x \in G_{s}$ such that $k_{1}=k_{3} x$ and $k_{2}=s^{-1} x^{-1} s k_{4}$, and therefore

$$
\chi\left(k_{1}\right) \chi\left(k_{2}\right)=\chi\left(k_{3}\right) \chi\left(k_{4}\right) \chi(x) \chi\left(s^{-1} x^{-1} s\right)=\chi\left(k_{3}\right) \chi\left(k_{4}\right)
$$

because $s \in \mathcal{S}_{0}$ (see (13.6)). See also Lemma 13.2.6 below.
Clearly, for each $f \in \mathcal{H}(G, K, \chi)$ we have:

$$
\begin{equation*}
f=|K| \sum_{s \in \mathcal{S}_{0}} f(s) a_{s} \tag{13.11}
\end{equation*}
$$

Moreover, for $s, t \in \mathcal{S}_{0}$

$$
\begin{equation*}
\left\langle a_{s}, a_{t}\right\rangle_{L(G)}=\delta_{s, t} \frac{1}{\left|G_{s}\right|} \tag{13.12}
\end{equation*}
$$

Indeed, for $s \neq t$ the supports of a_{s} and a_{t} are disjoint, so that these functions
are orthogonal. For $s=t$ we have: $\sum_{g \in K s K}\left|a_{s}(g)\right|^{2}=\frac{|K s K|}{|K|^{2}}=\frac{1}{\left|G_{s}\right|}$ (see Remark 11.3.2). From (13.11) and (13.12) we deduce that

$$
\begin{equation*}
f(s)=\frac{\left|G_{s}\right|}{|K|}\left\langle f, a_{s}\right\rangle_{L(G)} . \tag{13.13}
\end{equation*}
$$

Note also that changing the double cosets representatives will multiply each basis element by some root of 1 (if $\chi=\iota_{K}$, such a root is just 1). Finally, $a_{1_{G}} \equiv \psi$ and, more generally, $a_{s}\left(k_{1} s k_{2}\right)=|K| \psi\left(k_{1}\right) \psi\left(k_{2}\right)$, for all $k_{1}, k_{2} \in K$.

Lemma 13.2.6 For all $s \in \mathcal{S}_{0}$ we have

$$
a_{s}=\frac{|K|}{\left|G_{s}\right|} \psi * \delta_{s} * \psi .
$$

Proof Let $s \in \mathcal{S}_{0}$. First of all, observe that

$$
\begin{equation*}
\left[\psi * \delta_{s} * \psi\right](g)=\frac{1}{|K|^{2}} \sum_{\substack{t \in g^{-1} K \\ k \in K}} \overline{\chi(g t)} \delta_{s}\left(t^{-1} k\right) \overline{\chi\left(k^{-1}\right)} \tag{13.14}
\end{equation*}
$$

for all $g \in G$. Moreover, $\delta_{s}\left(t^{-1} k\right) \neq 0$ only if $t^{-1} k=s$ and this forces

$$
g=g t \cdot t^{-1}=g t \cdot s \cdot k^{-1} \in K s K
$$

so that if $g \notin K s K$ then the above convolution is 0 . Let $g=k_{1} s k_{2}$ with $k_{1}, k_{2} \in K$. Then (13.14) becomes (setting $t=k s^{-1}$)

$$
\begin{aligned}
{\left[\psi * \delta_{s} * \psi\right]\left(k_{1} s k_{2}\right) } & =\frac{1}{|K|^{2}} \sum_{k \in K} \overline{\chi\left(k_{1} s k_{2} k s^{-1}\right) \chi\left(k^{-1}\right)} \\
\left(x=s k_{2} k s^{-1}\right) & =\frac{1}{|K|^{2}} \sum_{x \in G_{s}} \overline{\chi\left(k_{1}\right) \chi(x) \chi\left(s^{-1} x^{-1} s k_{2}\right)} \\
\left(\chi(x)=\chi_{s}(x)\right) & =\frac{1}{|K|^{2}} \overline{\chi\left(k_{1}\right) \chi\left(k_{2}\right)} \sum_{x \in G_{s}} \overline{\chi(x)} \chi(x) \\
& =\frac{\left|G_{s}\right|}{|K|^{2}} \overline{\chi\left(k_{1}\right) \chi\left(k_{2}\right)} \\
& =a_{s}\left(k_{1} s k_{2}\right) .
\end{aligned}
$$

For all $r, s \in \mathcal{S}_{0}$ there exist complex numbers $\mu_{r s t}, t \in \mathcal{S}_{0}$, such that

$$
\begin{equation*}
a_{r} * a_{s}=\sum_{t \in \mathcal{S}_{0}} \mu_{r s t} a_{t} . \tag{13.15}
\end{equation*}
$$

The numbers $\mu_{r s t}, r, s, t \in \mathcal{S}_{0}$, are called the structure constants of the Hecke algebra $\mathcal{H}(G, K, \chi)$ relative to the basis $\left\{a_{s}: s \in \mathcal{S}_{0}\right\}$.

Lemma 13.2.7 The structure constants are given by the following formula:

$$
\mu_{r s t}=|K| \sum_{g \in(K r K) \cap\left(t K s^{-1} K\right)} a_{r}(g) a_{s}\left(g^{-1} t\right),
$$

for all $r, s, t \in \mathcal{S}_{0}$

Proof On the one hand, from (13.10) and (13.15) we have

$$
\begin{equation*}
\left[a_{r} * a_{s}\right](t)=\frac{1}{|K|} \mu_{r s t} \tag{13.16}
\end{equation*}
$$

for all $r, s, t \in \mathcal{S}_{0}$. On the other hand, just computing the convolution, we get:

$$
\begin{align*}
{\left[a_{r} * a_{s}\right](t) } & =\sum_{g \in G} a_{r}(g) a_{s}\left(g^{-1} t\right) \\
& =\sum_{g \in(K r K) \cap\left(t K s^{-1} K\right)} a_{r}(g) a_{s}\left(g^{-1} t\right) \tag{13.17}
\end{align*}
$$

Comparing (13.16) and (13.17), the lemma follows.

13.3 Commutative Hecke algebras

Definition 13.3.1 Let G be a finite group, $K \subset G$ a subgroup, and χ a onedimensional K-representation. We say that (G, K, χ) is a multiplicity-free triple provided the Hecke algebra $\mathcal{H}(G, K, \chi)$ is commutative.

Moreover, we say that (G, K) is a Gelfand pair provided that $\left(G, K, \iota_{K}\right)$ is a multiplicity-free triple, that is, $\mathcal{H}\left(G, K, \iota_{k}\right)(\cong L(K \backslash G / K))$ is commutative.

Theorem 13.3.2 The following conditions are equivalent.
(a) (G, K, χ) is a multiplicity-free triple;
(b) the induced representation $\operatorname{Ind}_{K}^{G} \chi$ decomposes without multiplicity;
(c) $\operatorname{dim} W_{\theta}^{K, \chi} \leq 1$ for each irreducible G-representation $\left(\theta, W_{\theta}\right)$ (cf. Definition (11.27)).
Moreover, if these equivalent conditions are satisfied, with the notation of Remark 11.4.10 (with $H=K$ and $\nu=\chi$) and (13.4), we have

$$
\operatorname{dim} \mathcal{H}(G, K, \chi)=|J|=\left|\mathcal{S}_{0}\right|
$$

Proof From Corollary 10.6 .6 it follows that (G, K, χ) is a multiplicity-free triple if and only if $\operatorname{Ind}_{K}^{G} \chi$ decomposes without multiplicity; see also (13.5). Moreover, from Frobenius reciprocity (Theorem 11.2.1) this is equivalent to the fact that χ has multiplicity at most one in the restriction to K of each irreducible G-representation. Finally, if $\operatorname{Ind}_{K}^{G} \chi$ is multiplicity free, we may invoke Remark 11.4.10, (13.5) and (13.6) to conclude that $\operatorname{dim} \mathcal{H}(G, K, \chi)=$ $\operatorname{dim} \mathbb{C}^{J}=|J|=\left|\mathcal{S}_{0}\right|$.

Now we examine a series of sufficient conditions for the commutativity of the Hecke algebra. An anti-automorphism of G is a bijective map $\tau: G \rightarrow G$ such that:

$$
\tau\left(g_{1} g_{2}\right)=\tau\left(g_{2}\right) \tau\left(g_{1}\right)
$$

for all $g_{1}, g_{2} \in G$. It is involutive if $\tau^{2}=\operatorname{id}_{G}$, where id_{G} is the identity map on G. Clearly, $\tau\left(1_{G}\right)=1_{G}$ and $\tau\left(g^{-1}\right)=\tau(g)^{-1}$ for all $g \in G$. Note that the map inv: $G \rightarrow G$, defined by $\operatorname{inv}(g)=g^{-1}$ for all $g \in G$, is an involutory anti-automorphism, while if τ is as above, then $g \mapsto \tau\left(g^{-1}\right)$ is an automorphism of G.

Let τ be an anti-automorphism of G. We define a linear map

$$
\begin{aligned}
L(G) & \longrightarrow L(G) \\
f & \longmapsto f^{\tau}
\end{aligned}
$$

by setting

$$
\begin{equation*}
f^{\tau}(g)=f(\tau(g)) \tag{13.18}
\end{equation*}
$$

for all $f \in L(G), g \in G$.
Given an algebra \mathcal{A}, a bijective linear map $\varphi: \mathcal{A} \rightarrow \mathcal{A}$ such that $\varphi\left(a_{1} a_{2}\right)=$ $\varphi\left(a_{2}\right) \varphi\left(a_{1}\right)$ for all $a_{1}, a_{2} \in \mathcal{A}$, is called an anti-automorphism of \mathcal{A}. If in addition, $\varphi^{2}=\operatorname{id}_{\mathcal{A}}$, where $\operatorname{id}_{\mathcal{A}}$ is the identity map on \mathcal{A}, then one says that φ is involutive.

Lemma 13.3.3 Let τ be an (involutive) anti-automorphism of G. Then the map $f \mapsto f^{\tau}$ is an (involutive) anti-automorphism of $L(G)$.

Proof It is clear that the map $f \mapsto f^{\tau}$ is a linear isomorphism. Let $f_{1}, f_{2}, f \in$
$L(G)$ and $g \in G$. We have

$$
\begin{aligned}
\left(f_{1} * f_{2}\right)^{\tau}(g) & =\left(f_{1} * f_{2}\right)(\tau(g))=\sum_{h \in G} f_{1}(\tau(g) h) f_{2}\left(h^{-1}\right) \\
& =\sum_{h \in G} f_{1}\left(\tau\left[\tau^{-1}(h) g\right]\right) f_{2}\left(\tau\left[\tau^{-1}(h)^{-1}\right]\right) \\
& =\sum_{h \in G} f_{2}^{\tau}\left(\tau^{-1}(h)^{-1}\right) f_{1}^{\tau}\left(\tau^{-1}(h) g\right) \\
& =\left(f_{2}^{\tau} * f_{1}^{\tau}\right)(g)
\end{aligned}
$$

Moreover, if τ is involutive, so is the maps $f \mapsto f^{\tau}$. Indeed,

$$
\left[\left(f^{\tau}\right)^{\tau}\right](g)=\left[f^{\tau}\right](\tau(g))=f\left(\tau^{2}(g)\right)=f(g)
$$

The next proposition is just a generalization of the following well known and easy fact: if \mathcal{A} is a subalgebra of the full matrix algebra $\mathcal{M}_{n}(\mathbb{F}), n \in$ \mathbb{N} where \mathbb{F} is any field, and each matrix $A \in \mathcal{A}$ is symmetric, then \mathcal{A} is commutative.

Proposition 13.3.4 Let τ be an anti-automorphism of G and \mathcal{A} a subalgebra of $L(G)$ such that $f^{\tau}=f$ for all $f \in \mathcal{A}$. Then \mathcal{A} is commutative.

Proof For all $f_{1}, f_{2} \in \mathcal{A}$ we have:

$$
f_{1} * f_{2}=\left(f_{1} * f_{2}\right)^{\tau}=f_{2}^{\tau} * f_{1}^{\tau}=f_{2} * f_{1}
$$

Remark 13.3.5 In Proposition 13.3.4, the anti-automophism $f \mapsto f^{\tau}$ may be replaced by any anti-automorphism $\Phi: L(G) \rightarrow L(G)$.

Corollary 13.3.6 Let τ be an anti-automorphism of G. Suppose that

$$
\begin{equation*}
f^{\tau}=f \quad \text { for all } f \in \mathcal{H}(G, K, \chi) \tag{13.19}
\end{equation*}
$$

Then (G, K, χ) is a multiplicity-free triple.
Moreover, condition (13.19) is satisfied if:
(i) (Bump and Ginzburg [25]) $\tau(K)=K, \chi^{\tau}=\chi$, and for every $s \in \mathcal{S}_{0}$ there exist $k_{1}, k_{2} \in K$ such that $\tau(s)=k_{1}$ sk k_{2} and $\chi\left(k_{1}\right) \chi\left(k_{2}\right)=1$;
(ii) (symmetric Gelfand pairs) $\chi=\iota_{K}, \tau=$ inv, and $g^{-1} \in K g K$ for all $g \in G$.

Proof (i) In this case, it is immediate to check that the elements in the Curtis-Fossum basis (Definition 13.2.5) satisfy $a_{s}^{\tau}=a_{s}$, for all $s \in \mathcal{S}_{0}$.
(ii) This is just a particular case of (i).

Exercise 13.3.7 Assume the notation in Proposition 10.4.12 with $X=$ G / K. Prove that (G, K) is a symmetric Gelfand pair (i.e. satisfies the conditions in (ii) of Corollary 13.3.6) if and only if the orbits of G on $X \times X$ are symmetric, that is, for all $x, y \in X$, the pairs (x, y) and (y, x) belong to the same G-orbit.

A group G is said to be ambivalent if g^{-1} is conjugate to g for all $g \in G$.
Exercise 13.3.8 Denote by \widetilde{G} the diagonal subgroup of $G \times G$, that is, $\widetilde{G}=\{(g, g): g \in G\} \cong G$.
(1) Prove that $L(G)=\oplus_{\sigma \in \widehat{G}} M^{\sigma}$ (see Theorem 10.5.9) is the decomposition of $L(G)$ into irreducible $G \times G$-representations.
(2) Deduce that $(G \times G, \widetilde{G})$ is a Gelfand pair.
(3) Prove that the Gelfand pair ($G \times G, \widetilde{G}$) is symmetric if and only if G is ambivalent.

Exercise 13.3 .9 (Weakly symmetric Gelfand pairs) Suppose that there exists $\xi \in \operatorname{Aut}(G)$ such that $g^{-1}=K \xi(g) K$, for all $g \in G$. Show that (G, K) is a Gelfand pair; see [52].

Exercise 13.3.10 $\left(\operatorname{Aff}\left(\mathbb{F}_{q}\right), U\right)$ is a Gelfand pair: this follows immediately from Exercise 12.1.8. Use the characterization of the automorphisms of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ in Exercise 12.1.11 to deduce that it is not weakly symmetric.

13.4 Spherical functions: intrinsic theory

In this section we introduce and develop the theory of spherical function (associated with a multiplicity-free triple) in an intrinsic way, that is, we consider and analyze all the properties of spherical functions without appealing to their explicit form as matrix coefficients (this will be treated in Section 13.5).
Let (G, K, χ) be a multiplicity-free triple.
Definition 13.4.1 An element $\phi \in \mathcal{H}(G, K, \chi)$ is called a spherical function if it satisfies the following conditions:

$$
\begin{equation*}
\phi\left(1_{G}\right)=1 \tag{13.20}
\end{equation*}
$$

and, for all $f \in \mathcal{H}(G, K, \chi)$ there exists $\lambda_{\phi, f} \in \mathbb{C}$ such that

$$
\begin{equation*}
\phi * f=\lambda_{\phi, f} \phi \tag{13.21}
\end{equation*}
$$

Condition (13.21) may be reformulated in the following way: ϕ is an eigenvector of the convolution operator T_{f}, for every $f \in \mathcal{H}(G, K, \chi)$. Moreover, by means of (13.20) and (13.21) we get $\lambda_{\phi, f}=[\phi * f]\left(1_{G}\right)$. As a consequence, the following equivalent formulation of (13.21) holds (recall that, by definition of a multiplicity-free triple, the Hecke algebra $\mathcal{H}(G, K, \chi)$ is commutative):

$$
\begin{equation*}
\phi * f=[\phi * f]\left(1_{G}\right) \phi=[f * \phi]\left(1_{G}\right) \phi=f * \phi . \tag{13.22}
\end{equation*}
$$

Now we give the basic functional identity satisfied by all spherical functions; it involves the function ψ defined in (13.1).

Theorem 13.4.2 A function $\phi \in L(G), \phi \neq 0$, is spherical if and only if it satisfies the functional identity

$$
\begin{equation*}
\sum_{k \in K} \phi(g k h) \overline{\psi(k)}=\phi(g) \phi(h) \tag{13.23}
\end{equation*}
$$

for all $g, h \in G$.

Proof Suppose that $\phi \in L(G), \phi \neq 0$, satisfies (13.23). Choose $h \in G$ such that $\phi(h) \neq 0$; writing (13.23) in the form $\phi(g)=\frac{1}{\phi(h)} \sum_{k \in K} \phi(g k h) \overline{\psi(k)}$ we get

$$
\begin{aligned}
{[\phi * \psi](g) } & =\frac{1}{\phi(h)} \sum_{k, k_{1} \in K} \phi\left(g k_{1} k h\right) \overline{\psi(k)} \psi\left(k_{1}^{-1}\right) \\
\left(k_{1} k=k_{2}\right) & =\frac{1}{\phi(h)} \sum_{k_{2} \in K} \phi\left(g k_{2} h\right) \overline{[\psi * \psi]\left(k_{2}\right)} \\
(\text { by }(13.2)) & =\frac{1}{\phi(h)} \sum_{k_{2} \in K} \phi\left(g k_{2} h\right) \overline{\psi\left(k_{2}\right)} \\
(\text { by }(13.23)) & =\phi(g)
\end{aligned}
$$

for all $g \in G$, showing that $\phi * \psi=\phi$. Similarly, one proves that $\psi * \phi=\phi$. As a consequence, $\psi * \phi * \psi=\psi * \phi=\phi$, that is, (cf. Theorem 13.2.3.(i)) $\phi \in \mathcal{H}(G, K, \chi)$. Then, taking $h=1_{G}$ in (13.23) we get

$$
\phi(g) \phi\left(1_{G}\right)=\sum_{k \in K} \phi(g k) \overline{\psi(k)}=[\phi * \psi](g)=\phi(g)
$$

for all $g \in G$, and therefore (recall that $\phi \neq 0$) $\phi\left(1_{G}\right)=1$. Finally, for all $f \in \mathcal{H}(G, K, \chi)$ and $g \in G$, we have

$$
\begin{aligned}
{[\phi * f](g) } & =[\phi * f * \psi](g) \\
& =\sum_{h \in G} \sum_{k \in K} \phi(g k h) f\left(h^{-1}\right) \overline{\psi(k)} \\
& =\phi(g) \sum_{h \in G} \phi(h) f\left(h^{-1}\right) \\
& =[\phi * f]\left(1_{G}\right) \phi(g)
\end{aligned}
$$

so that also (13.22) is satisfied. It follows that ϕ is spherical.
Conversely, suppose that ϕ is spherical. For all $g \in G$, define $F_{g} \in L(G)$ by setting

$$
F_{g}(h)=\sum_{k \in K} \phi(g k h) \overline{\psi(k)}
$$

for all $h \in G$. For $f \in \mathcal{H}(G, K, \chi)$ and $g, g_{1} \in G$ we then have

$$
\begin{align*}
{\left[F_{g} * f\right]\left(g_{1}\right) } & =\sum_{k \in K} \sum_{h \in G} \phi\left(g k g_{1} h\right) f\left(h^{-1}\right) \overline{\psi(k)} \\
(\text { by }(13.22)) & =[\phi * f]\left(1_{G}\right) \sum_{k \in K} \phi\left(g k g_{1}\right) \overline{\psi(k)} \tag{13.24}\\
& =[\phi * f]\left(1_{G}\right) F_{g}\left(g_{1}\right) .
\end{align*}
$$

For all $g \in G$, we also define $J_{g} \in L(G)$ by setting

$$
J_{g}(h)=\sum_{k \in K} f(h k g) \overline{\psi(k)}
$$

for all $h \in G$. We claim that $J_{g} \in \mathcal{H}(G, K, \chi)$. Indeed,

$$
\begin{aligned}
{\left[\psi * J_{g} * \psi\right](h) } & =\sum_{k, k_{1}, k_{2} \in K} \psi\left(k_{1}\right) f\left(k_{1}^{-1} h k_{2}^{-1} k g\right) \psi\left(k_{2}\right) \overline{\psi(k)} \\
\left(k_{3}=k_{2}^{-1} k\right) & =\sum_{k, k_{3} \in K}[\psi * f]\left(h k_{3} g\right) \psi\left(k k_{3}^{-1}\right) \psi\left(k^{-1}\right) \\
& =\sum_{k_{3} \in K} f\left(h k_{3} g\right)[\psi * \psi]\left(k_{3}^{-1}\right) \\
& =\sum_{k_{3} \in K} f\left(h k_{3} g\right) \overline{\psi\left(k_{3}\right)} \\
& =J_{g}(h)
\end{aligned}
$$

This shows that $\psi * J_{g} * \psi=J_{g}$. Moreover, for $g_{1} \in G$ we have

$$
\begin{align*}
{\left[\phi * J_{g_{1}}\right]\left(1_{G}\right) } & =\sum_{h \in G} \phi\left(h^{-1}\right) \sum_{k \in K} f\left(h k g_{1}\right) \overline{\psi(k)} \\
(h k=t) & =\sum_{t \in G}\left[\sum_{k \in K} \psi\left(k^{-1}\right) \phi\left(k t^{-1}\right)\right] f\left(t g_{1}\right) \\
& =\sum_{t \in G}[\psi * \phi]\left(t^{-1}\right) f\left(t g_{1}\right) \tag{13.25}\\
& =\sum_{t \in G} \phi\left(t^{-1}\right) f\left(t g_{1}\right) \\
& =[\phi * f]\left(g_{1}\right) \\
\text { (by }(13.22)) & =[\phi * f]\left(1_{G}\right) \phi\left(g_{1}\right) .
\end{align*}
$$

It follows that, for $g, g_{1} \in G$,

$$
\begin{align*}
{\left[F_{g} * f\right]\left(g_{1}\right) } & =\sum_{h \in G} \sum_{k \in K} \phi\left(g k g_{1} h\right) \overline{\psi(k)} f\left(h^{-1}\right) \\
\left(k g_{1} h=t\right) & =\sum_{t \in G} \phi(g t) \sum_{k \in K} \overline{\psi(k)} f\left(t^{-1} k g_{1}\right) \tag{13.26}\\
& =\left[\phi * J_{g_{1}}\right](g) \\
(\text { by }(13.22)) & =\left[\phi * J_{g_{1}}\right]\left(1_{G}\right) \phi(g) \\
(\text { by }(13.25)) & =[\phi * f]\left(1_{G}\right) \phi\left(g_{1}\right) \phi(g) \text {. }
\end{align*}
$$

From (13.24) and (13.26) we get

$$
[\phi * f]\left(1_{G}\right) F_{g}\left(g_{1}\right)=[\phi * f]\left(1_{G}\right) \phi\left(g_{1}\right) \phi(g)
$$

and taking $f \in \mathcal{H}(G, K, \chi)$ such that $[\phi * f]\left(1_{G}\right) \neq 0$ this yields

$$
\sum_{k \in K} \phi\left(g k g_{1}\right) \overline{\psi(k)}=F_{g}\left(g_{1}\right)=\phi\left(g_{1}\right) \phi(g)
$$

which is exactly (13.23) with h replaced by g_{1}. In order to complete the proof, we are only left to show the existence of such an f. Since $\phi \neq 0$, we can find $f_{1} \in L(G)$ such that $\left[\phi * f_{1}\right]\left(1_{G}\right) \neq 0$. Then, keeping in mind (13.9), we have that $f=\psi * f_{1} * \psi \in \mathcal{H}(G, K, \chi)$ satisfies $[\phi * f]\left(1_{G}\right) \neq 0$.

Definition 13.4.3 A linear functional $\Phi: \mathcal{H}(G, K, \chi) \rightarrow \mathbb{C}$ is multiplicative if

$$
\Phi\left(f_{1} * f_{2}\right)=\Phi\left(f_{1}\right) \Phi\left(f_{2}\right)
$$

for all $f_{1}, f_{2} \in \mathcal{H}(G, K, \chi)$.

Theorem 13.4.4 Let ϕ be a spherical function and set

$$
\begin{equation*}
\Phi(f)=\sum_{g \in G} f(g) \phi\left(g^{-1}\right) \equiv[f * \phi]\left(1_{G}\right) \tag{13.27}
\end{equation*}
$$

for all $f \in \mathcal{H}(G, K, \chi)$. Then Φ is a linear multiplicative functional on $\mathcal{H}(G, K, \chi)$. Moreover, any nontrivial linear multiplicative functional on $\mathcal{H}(G, K, \chi)$ is of this form.

Proof Let Φ as in (13.27). For $f_{1}, f_{2} \in \mathcal{H}(G, K, \chi)$, by means of a repeated application of (13.22), we get:

$$
\begin{aligned}
\Phi\left(f_{1} * f_{2}\right) & =\left[\left(f_{1} * f_{2}\right) * \phi\right]\left(1_{G}\right) \\
& =\left[f_{1} *\left(f_{2} * \phi\right)\right]\left(1_{G}\right) \\
& =\left[\left[f_{2} * \phi\right]\left(1_{G}\right) f_{1} * \phi\right]\left(1_{G}\right) \\
& =\left[f_{1} * \phi\right]\left(1_{G}\right)\left[f_{2} * \phi\right]\left(1_{G}\right) \\
& =\Phi\left(f_{1}\right) \Phi\left(f_{2}\right)
\end{aligned}
$$

This shows that Φ is multiplicative. Conversely, suppose that Φ is a nontrivial multiplicative linear functional on $\mathcal{H}(G, K, \chi)$. We extend Φ to a linear functional on the whole $L(G)$ by considering the map $f_{2} \mapsto \Phi\left(\psi * f_{2} * \psi\right)$ for all $f_{2} \in L(G)$. By Riesz theorem, we can find an element $\varphi \in L(G)$ such that

$$
\begin{equation*}
\Phi\left(\psi * f_{2} * \psi\right)=\sum_{g \in G} f_{2}(g) \varphi\left(g^{-1}\right) \tag{13.28}
\end{equation*}
$$

for all $f_{2} \in L(G)$. From (13.9) we deduce that if $f_{1} \in \mathcal{H}(G, K, \chi)$ then

$$
\Phi\left(f_{1}\right)=\left[f_{1} * \varphi\right]\left(1_{G}\right)=\left[f_{1} * \psi * \varphi * \psi\right]\left(1_{G}\right)
$$

Therefore, setting $\phi=\psi * \varphi * \psi \in \mathcal{H}(G, K, \chi)$, we then have

$$
\begin{equation*}
\Phi\left(f_{1}\right)=\left[\phi * f_{1}\right]\left(1_{G}\right) \tag{13.29}
\end{equation*}
$$

for all $f_{1} \in \mathcal{H}(G, K, \chi)$. With this position, (13.9) also yields

$$
\Phi\left(\psi * f_{2} * \psi\right)=\left[\phi * \psi * f_{2} * \psi\right]\left(1_{G}\right)=\left[\phi * f_{2}\right]\left(1_{G}\right)=\sum_{h \in G} \phi(h) f_{2}\left(h^{-1}\right)
$$

for all $f_{2} \in L(G)$, and therefore in (13.28) the function φ may be replaced by the function ϕ. Since Φ is multiplicative, for $f_{1} \in \mathcal{H}(G, K, \chi)$ and $f_{2} \in L(G)$
the expression

$$
\begin{aligned}
\Phi\left(f_{1} * \psi * f_{2} * \psi\right) & =\left[\phi * f_{1} * \psi * f_{2} * \psi\right]\left(1_{G}\right) \\
(\text { by }(13.9)) & =\left[\phi * f_{1} * f_{2}\right]\left(1_{G}\right) \\
& =\sum_{h \in G}\left[\phi * f_{1}\right](h) f_{2}\left(h^{-1}\right)
\end{aligned}
$$

must be equal to

$$
\Phi\left(f_{1}\right) \Phi\left(\psi * f_{2} * \psi\right)=\sum_{h \in G} \Phi\left(f_{1}\right) \phi(h) f_{2}\left(h^{-1}\right)
$$

Since $f_{2} \in L(G)$ was arbitrary, we get the equality $\left[\phi * f_{1}\right](h)=\Phi\left(f_{1}\right) \phi(h)$, so that, in particular, ϕ satisfies condition (13.21). Taking $h=1_{G}$ and choosing $f_{1} \in \mathcal{H}(G, K, \chi)$ such that $\Phi\left(f_{1}\right) \neq 0$ (recall that Φ is nontrivial), and keeping in mind (13.29), this gives $\Phi\left(f_{1}\right)=\left[\phi * f_{1}\right]\left(1_{G}\right)=\Phi\left(f_{1}\right) \phi\left(1_{G}\right)$. It follows that $\phi\left(1_{G}\right)=1$. In conclusion, ϕ is a spherical function.

Corollary 13.4.5 The number of distinct spherical functions is equal to $|J|$, the number of irreducible G-representations contained in $\operatorname{Ind}_{K}^{G} \chi$.

Proof We have $\mathcal{H}(G, K, \chi) \cong \mathbb{C}^{J}$ (see (13.5)) and every linear multiplicative functional on \mathbb{C}^{J} is of the form $\mathbb{C}^{J} \ni \lambda \mapsto \lambda(\theta)$, for a fixed $\theta \in J$.

In the following we use the notation in (10.9).
Proposition 13.4.6 Let ϕ and μ be two distinct spherical functions. Then the following holds.
(i) $\phi\left(g^{-1}\right)=\overline{\phi(g)}$ for all $g \in G$, that is $\phi^{*}=\phi$;
(ii) $\phi * \mu=0$;
(iii) $\left\langle\lambda_{G}\left(g_{1}\right) \phi, \lambda_{G}\left(g_{2}\right) \mu\right\rangle_{L(G)}=0$ for all $g_{1}, g_{2} \in G$, in particular ϕ and μ are orthogonal: $\langle\phi, \mu\rangle_{L(G)}=0$.

Proof (i) By definition of a spherical function, one has

$$
\phi^{*} * \phi=\left[\phi^{*} * \phi\right]\left(1_{G}\right) \phi=\|\phi\|^{2} \phi
$$

As a consequence, since $\left(\phi^{*} * \phi\right)^{*}=\phi^{*} * \phi$, we have

$$
\left[\phi^{*} * \phi\right](g)=\overline{\left[\phi^{*} * \phi\right]\left(g^{-1}\right)}=\overline{\left[\phi^{*} * \phi\right]\left(1_{G}\right)} \cdot \overline{\phi\left(g^{-1}\right)}=\|\phi\|^{2} \overline{\phi\left(g^{-1}\right)}
$$

and therefore we must have $\phi=\phi^{*}$.
(ii) By commutativity,

$$
[\phi * \mu]\left(1_{G}\right) \phi(g)=[\phi * \mu](g)=[\mu * \phi](g)=[\mu * \phi]\left(1_{G}\right) \mu(g)
$$

Therefore, if $\phi \neq \mu$, necessarily $[\phi * \mu]\left(1_{G}\right)=[\mu * \phi]\left(1_{G}\right)=0$ and this also yields $\phi * \mu=0$.
(iii) Let $g_{1}, g_{2} \in G$. Then

$$
\begin{aligned}
& \left\langle\lambda_{G}\left(g_{1}\right) \phi, \lambda_{G}\left(g_{2}\right) \mu\right\rangle=\left\langle\phi, \lambda_{G}\left(g_{1}^{-1} g_{2}\right) \mu\right\rangle=\sum_{h \in G} \phi(h) \overline{\mu\left[\left(g_{1}^{-1} g_{2}\right)^{-1} h\right]} \\
& =\sum_{h \in G} \phi(h) \mu^{*}\left(h^{-1} g_{1}^{-1} g_{2}\right)=\left[\phi * \mu^{*}\right]\left(g_{1}^{-1} g_{2}\right)=[\phi * \mu]\left(g_{1}^{-1} g_{2}\right)=0
\end{aligned}
$$

where the last equality follows from (ii).
Theorem 13.4.7 For each spherical function ϕ define $U_{\phi}=\left\langle\lambda_{G}(g) \phi: g \in\right.$ $G\rangle$, the subspace of $L(G)$ spanned by all translates of ϕ. Then

$$
\operatorname{Ind}_{K}^{G} \mathbb{C}=\bigoplus_{\phi} U_{\phi}
$$

where the sum runs over all spherical functions, is the decomposition of $\operatorname{Ind}_{K}^{G} \mathbb{C}$ into irreducible G-representations.

Proof Each subspace U_{ϕ} is clearly G-invariant and contained in $\operatorname{Ind}_{K}^{G} \mathbb{C}$ (recall Theorem 13.2.3). Moreover, by virtue of Lemma 13.4.6.(iii), if ϕ and μ are distinct then the spaces U_{ϕ} and U_{μ} are orthogonal. Finally, we can invoke Corollary 13.4 .5 to conclude that each U_{ϕ} is irreducible and that the sum $\bigoplus_{\phi} U_{\phi}$ exhausts the whole $\operatorname{Ind}_{K}^{G} \mathbb{C}$.

The space U_{ϕ} is called the spherical representation associated with the spherical function ϕ.

13.5 Harmonic analysis on the Hecke algebra $\mathcal{H}(G, K, \chi)$

The first purpose of this section is to present a different realization of spherical functions as matrix coefficients associated with spherical representations.

Suppose again that (G, K, χ) is a multiplicity-free triple. Let J be as in (13.5) (but now $m_{\theta}=1$ for all $\theta \in J$). For each $\theta \in J$ choose a vector $w^{\theta} \in W^{K, \chi}$ of norm one (recall (11.27)). Such w^{θ} is unique up to a scalar multiple of modulus one (usually called a phase factor); see Theorem 13.3.2. Moreover, we are in the multiplicity free case of Theorem 10.6.3: for each $\theta \in J$ we may choose $T_{\theta} \in \operatorname{Hom}_{G}\left(W_{\theta}, \operatorname{Ind}_{K}^{G} \mathbb{C}\right)$ which is also an isometry, so that $\operatorname{Hom}_{G}\left(W_{\theta}, \operatorname{Ind}_{K}^{G} \mathbb{C}\right)=\left\langle T_{\theta}\right\rangle$ and

$$
\begin{equation*}
\operatorname{Ind}_{K}^{G} \mathbb{C}=\bigoplus_{\theta \in J} T_{\theta} W_{\theta} \tag{13.30}
\end{equation*}
$$

is an explicit orthogonal decomposition. Clearly, our choice of w^{θ} and (11.28) in Proposition 11.2.8 may be used to get an explicit form for $T_{\theta}=T_{w^{\theta}}$:

$$
\begin{equation*}
\left[T_{\theta} w\right](g)=\sqrt{\frac{d_{\theta}}{|G / K|}}\left\langle w, \theta(g) w^{\theta}\right\rangle_{W_{\theta}} \tag{13.31}
\end{equation*}
$$

for all $w \in W_{\theta}$ and $g \in G$. Again, T_{θ} is defined up to a phase factor. Note that now the map (13.7) is a $*$-isomorphism because the algebras involved are commutative.

Proposition 13.5.1 Let (13.30) be an explicit decomposition of $\operatorname{Ind}_{K}^{G} \mathbb{C}$ into irreducible, inequivalent G-representation. Then for $f \in \mathcal{H}(G, K, \chi)$ the following hold:
(i) the decomposition of $\operatorname{Ind}_{K}^{G} \mathbb{C}$ into eigenspaces of the convolution operator T_{f} is given by (13.30);
(ii) if $\lambda_{f}(\theta)$ denotes the eigenvalue of T_{f} associated with the subspace $T_{\theta} W_{\theta}$ then the map

$$
\begin{aligned}
\mathcal{H}(G, K, \chi) & \longrightarrow \mathbb{C}^{J} \\
f & \longmapsto \lambda_{f}
\end{aligned}
$$

is an algebra isomorphism.

Proof (i) By Theorem 13.2.3.(ii) and multiplicity freeness of $\operatorname{Ind}_{K}^{G} \chi$, the convolution operator T_{f} intertwines each irreducible representation $T_{\theta} W_{\theta}$ with itself so that, by Schur's lemma, it is a multiple of the identity on each irreducible space.
(ii) If $f_{1} \in \mathcal{H}(G, K, \chi), f \in \operatorname{Ind}_{K}^{G} \mathbb{C}$, and $f=\sum_{\theta \in J} f_{\theta}$ with $f_{\theta} \in T_{\theta} W_{\theta}$, then $T_{f_{1}}(f)=\sum_{\theta \in J} \lambda_{f_{1}}(\theta) f_{\theta}$. Therefore $T_{f_{1} * f_{2}}=T_{f_{1}} T_{f_{2}}$ yields

$$
\lambda_{f_{1} * f_{2}}=\lambda_{f_{1}} \lambda_{f_{2}}
$$

for all $f_{1}, f_{2} \in \mathcal{H}(G, K, \chi)$.
An explicit expression of λ_{f} will be given in Proposition 13.5.4.
For each θ define $\phi^{\theta} \in L(G)$ by setting

$$
\begin{equation*}
\phi^{\theta}(g)=\left\langle w^{\theta}, \theta(g) w^{\theta}\right\rangle_{W_{\theta}} \tag{13.32}
\end{equation*}
$$

for all $g \in G$.
Theorem 13.5.2 The function ϕ^{θ} is spherical and it is associated with W_{θ},
that is, in the notation of Theorem 13.4.7, we have $U_{\phi^{\theta}}=T_{\theta} W_{\theta}$. Moreover, the spherical functions satisfy the following orthogonality relations:

$$
\begin{equation*}
\left\langle\phi^{\theta}, \phi^{\rho}\right\rangle_{L(G)}=\frac{|G|}{d_{\theta}} \delta_{\theta, \rho} \tag{13.33}
\end{equation*}
$$

for $\theta, \rho \in J$.
Proof By (13.31) we have $\phi^{\theta}=\sqrt{\frac{|G / K|}{d_{\theta}}} T_{\theta} w^{\theta}$ and therefore, by Proposition 11.2.8, ϕ^{θ} belongs to the subspace of $\operatorname{Ind}_{K}^{G} \mathbb{C}$ isomorphic to W_{θ}, namely to $T_{\theta} W_{\theta}$ in (13.30). Now we use the functional identity (13.23) to show that ϕ^{θ} is a spherical function. We need to prove a preliminary identity. First of all, we choose an orthonormal basis $\left\{u_{i}: i=1,2, \ldots, d_{\theta}\right\}$ for W_{θ} in the following way. Let $\operatorname{Res}_{K}^{G} \theta=\chi \oplus\left(\oplus m_{\eta} \eta\right)$ be the decomposition of $\operatorname{Res}_{K}^{G} \theta$ into irreducible K-representations (the η 's are pairwise distinct and each of them is distinct from $\chi ; m_{\eta}$ is the multiplicity of η). We suppose that $u_{1}=w^{\theta}$ and that each $u_{i}, 2 \leq i \leq d_{\theta}$, belongs to some irreducible W_{η}. Then by (10.24) we have

$$
\begin{equation*}
\sum_{k \in K}\left\langle u_{1}, \theta(k) u_{1}\right\rangle_{W_{\theta}}\left\langle\theta(k) u_{i}, u_{j}\right\rangle_{W_{\theta}}=|K| \delta_{1 i} \delta_{1 j} \tag{13.34}
\end{equation*}
$$

Since $\theta(k) u_{1}=\chi(k) u_{1}$ we have $\psi(k)=\frac{1}{|K|}\left\langle u_{1}, \theta(k) u_{1}\right\rangle$ and therefore (13.34) may be written in the form

$$
\left\langle\sum_{k \in K} \psi(k) \theta(k) u_{i}, u_{j}\right\rangle_{W_{\theta}}=\delta_{1 i} \delta_{1 j}
$$

and this yields

$$
\begin{equation*}
\sum_{k \in K} \psi(k) \theta(k) u_{i}=\delta_{i 1} u_{1} \tag{13.35}
\end{equation*}
$$

for all $i=1,2, \ldots, d_{\theta}$. We are now in position to check (13.23):

$$
\begin{aligned}
\sum_{k \in K} \phi^{\theta}(g k h) \overline{\psi(k)} & =\sum_{k \in K}\left\langle w^{\theta}, \theta(g k h) w^{\theta}\right\rangle_{W_{\theta}} \overline{\psi(k)} \\
& =* \sum_{i=1}^{d_{\theta}}\left\langle\theta\left(g^{-1}\right) w^{\theta}, u_{i}\right\rangle_{W_{\theta}} \sum_{k \in K} \overline{\left\langle\theta(k h) u_{1}, u_{i}\right\rangle_{W_{\theta}} \psi(k)} \\
& =\sum_{i=1}^{d_{\theta}}\left\langle\theta\left(g^{-1}\right) w^{\theta}, u_{i}\right\rangle_{W_{\theta}} \overline{\left\langle\theta(h) u_{1}, \sum_{k \in K} \psi\left(k^{-1}\right) \theta\left(k^{-1}\right) u_{i}\right\rangle_{W_{\theta}}} \\
& =\phi^{\theta}(g) \phi^{\theta}(h),
\end{aligned}
$$

where equality $=_{*}$ follows from $\theta(k h) u_{1}=\sum_{i=1}^{d_{\theta}}\left\langle\theta(k h) u_{1}, u_{i}\right\rangle_{W_{\theta}} u_{i}$: recall that $\left\{u_{i}: i=1,2, \ldots, d_{\theta}\right\}$ is an orthonormal basis. Finally, (13.33) is a particular case of (10.24).

Remark 13.5.3 Suppose that (G, K, χ) is a multiplicity-free triple. Then $(G, K, \bar{\chi})$ is also multiplicity-free. Indeed, $\mathcal{H}(G, K, \bar{\chi})=\overline{\mathcal{H}(G, K, \chi)}$, that is, the functions in $\mathcal{H}(G, K, \bar{\chi})$ are the conjugates of the functions in $\mathcal{H}(G, K, \chi)$. Moreover, if $\left\{\phi^{\theta}: \theta \in J\right\}$ are the spherical functions with respect to χ then their conjugates $\left\{\overline{\phi^{\theta}}: \theta \in J\right\}$ are the spherical functions with respect to $\bar{\chi}$ (this may be deduced, for instance, directly from Definition 13.4.1). Finally, from (11.18) it follows that $\chi^{\operatorname{Ind}_{K}^{G} \bar{\chi}}=\overline{\chi^{\operatorname{Ind}_{K}^{G} \chi}}$ and therefore $\theta \in \widehat{G}$ is contained in $\operatorname{Ind}_{K}^{G} \chi$ if and only if its conjugate θ^{\prime} (cf. Section 10.5) is contained in $\operatorname{Ind}_{K}^{G} \bar{\chi}$. Indeed, $\overline{\phi^{\theta}}$ equals the spherical function with respect to $\bar{\chi}$ associated with θ^{\prime}.

Moreover, from (13.32) it follows that ϕ^{θ} is not a matrix coefficient of θ but of θ^{\prime}. This happens because ϕ^{θ} belongs to the sub-representation of $\operatorname{Ind}_{K}^{G} \mathbb{C} \leq L(G)$ isomorphic to θ but, by Theorem 10.5.9, the restriction of the left regular representation λ to $M_{*, 1}^{\theta}$ is isomorphic to θ^{\prime}, that is, $W_{\theta} \sim M_{*, 1}^{\theta^{\prime}}$.

The spherical Fourier transform is the linear map

$$
\mathcal{F}: \mathcal{H}(G, K, \chi) \longrightarrow L(J)
$$

defined by setting, for $f \in \mathcal{H}(G, K, \chi)$ and $\theta \in J$,

$$
[\mathcal{F} f](\theta)=\sum_{g \in G} f(g) \overline{\phi^{\theta}(g)}
$$

From the orthogonality relations (13.33) we immediately deduce the inversion formula:

$$
f=\frac{1}{|G|} \sum_{\theta \in J} d_{\theta} \mathcal{F} f(\theta) \phi^{\theta}
$$

and the Plancherel formula:

$$
\left\langle f_{1}, f_{2}\right\rangle_{L(G)}=\frac{1}{|G|} \sum_{\theta \in J} d_{\theta} \mathcal{F} f_{1}(\theta) \overline{\mathcal{F} f_{2}(\theta)}
$$

for all $f, f_{1}, f_{2} \in \mathcal{H}(G, K, \chi)$. In particular, $\|f\|_{L(G)}^{2}=\frac{1}{|G|} \sum_{\theta \in J} d_{\theta}|\mathcal{F} f(\theta)|^{2}$. Finally, the convolution formula

$$
\mathcal{F}\left(f_{1} * f_{2}\right)=\left(\mathcal{F} f_{1}\right)\left(\mathcal{F} f_{2}\right)
$$

follows from the inversion formula and (10.35).

Now we are in position to give an explicit formula for the eigenvalues $\lambda_{f}(\theta), \theta \in J$, in Proposition 13.5.1.(ii).

Proposition 13.5.4 For all $f \in \mathcal{H}(G, K, \chi)$ we have

$$
\lambda_{f}=\mathcal{F} f
$$

Proof Let $f \in \mathcal{H}(G, K, \chi)$ and $\theta \in J$. It suffices to compute $\lambda_{f}(\theta)$ for the eigenvector ϕ^{θ} :

$$
\begin{aligned}
\qquad\left[T_{f} \phi^{\theta}\right](g) & =\left[f * \phi^{\theta}\right](g) \\
(\text { by }(13.22)) & =\left[f * \phi^{\theta}\right]\left(1_{G}\right) \phi^{\theta}(g) \\
& =\sum_{h \in G} f(h) \phi^{\theta}\left(h^{-1}\right) \phi^{\theta}(g) \\
\text { (by Proposition 13.4.6.(i)) } & =[\mathcal{F} f](\theta) \phi^{\theta}(g)
\end{aligned}
$$

Proposition 13.5.5 The operator $E_{\theta}: \operatorname{Ind}_{K}^{G} \mathbb{C} \longrightarrow L(G)$ defined by setting

$$
E_{\theta} f=\frac{d_{\theta}}{|G|} f * \phi^{\theta}
$$

for all $f \in \operatorname{Ind}_{K}^{G} \mathbb{C}$, is the orthogonal projection from $\operatorname{Ind}_{K}^{G} \mathbb{C}$ onto $T_{\theta} W_{\theta}$.

Proof First of all, note that, for $g \in G$ and $f \in \operatorname{Ind}_{K}^{G} \mathbb{C}$, we have:

$$
\begin{aligned}
& {\left[E_{\theta} f\right](g)=\frac{d_{\theta}}{|G|} \sum_{h \in G} f(h) \phi^{\theta}\left(h^{-1} g\right) } \\
&=\frac{d_{\theta}}{|G|} \sum_{h \in G} f(h) \overline{\phi^{\theta}\left(g^{-1} h\right)}=\frac{d_{\theta}}{|G|}\left\langle f, \lambda_{G}(g) \phi^{\theta}\right\rangle_{L(G)}
\end{aligned}
$$

where λ_{G} is as in (10.9). Therefore, for $\eta \in J \backslash\{\theta\}$ and $h \in G$,

$$
\left[E_{\theta} \lambda_{G}(h) \phi^{\eta}\right](g)=\frac{d_{\theta}}{|G|}\left\langle\lambda_{G}(h) \phi^{\eta}, \lambda_{G}(g) \phi^{\theta}\right\rangle_{L(G)}=0
$$

by Proposition 13.4.6.(iii), that is, $\bigoplus_{\eta \in J, \eta \neq \theta} T_{\eta} W_{\eta} \subseteq \operatorname{Ker} E_{\theta}$. Similarly,

$$
\begin{aligned}
{\left[E_{\theta} \lambda_{G}(h) \phi^{\theta}\right](g) } & =\frac{d_{\theta}}{|G|}\left\langle\lambda_{G}(h) \phi^{\theta}, \lambda_{G}(g) \phi^{\theta}\right\rangle_{L(G)} \\
& =\frac{d_{\theta}}{|G|}\left\langle\phi^{\theta}, \lambda_{G}\left(h^{-1} g\right) \phi^{\theta}\right\rangle_{L(G)} \\
& =\frac{d_{\theta}}{|G|}\left[\phi^{\theta} * \phi^{\theta}\right]\left(h^{-1} g\right) \\
(\text { by }(13.22)) & =\frac{d_{\theta}}{|G|}\left[\phi^{\theta} * \phi^{\theta}\right]\left(1_{G}\right) \phi^{\theta}\left(h^{-1} g\right) \\
\left(\phi^{\theta} * \phi^{\theta}\left(1_{g}\right)=\left\|\phi^{\theta}\right\|_{L(G)}^{2}=|G| / d_{\theta}\right) & =\lambda_{G}(h) \phi^{\theta}(g) .
\end{aligned}
$$

We then conclude by using Theorem 13.4.7.
We now show that the spherical function ϕ^{θ} and the character χ^{θ} may be expressed one in terms of the other.

Proposition 13.5.6 For all $g \in G$ we have:

$$
\begin{equation*}
\chi^{\theta}(g)=\frac{d_{\theta}}{|G|} \sum_{h \in G} \overline{\phi^{\theta}\left(h^{-1} g h\right)} \tag{13.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi^{\theta}(g)=\left[\overline{\chi^{\theta}} * \psi\right](g) \tag{13.37}
\end{equation*}
$$

Proof Clearly, (13.36) is just a particular case of (10.25), keeping into account (13.32). On the other hand, using the bases in (13.35) we have

$$
\begin{aligned}
{\left[\overline{\chi^{\theta}} * \psi\right](g) } & =\sum_{k \in K} \sum_{i=1}^{d_{\theta}} \overline{\left\langle\theta\left(g k^{-1}\right) u_{i}, u_{i}\right\rangle} \psi(k) \\
& =\sum_{k \in K} \sum_{i=1}^{d_{\theta}} \overline{\left\langle\theta(g) \sum_{k \in K} \psi\left(k^{-1}\right) \theta\left(k^{-1}\right) u_{i}, u_{i}\right\rangle} \\
& =\phi^{\theta}(g) .
\end{aligned}
$$

In what follows, for $f \in L(G)$ and $\theta \in J$ we set

$$
\chi^{\theta}(f)=\sum_{g \in G} \chi^{\theta}(g) f(g) \equiv\left\langle\chi^{\theta}, \bar{f}\right\rangle
$$

and, similarly,

$$
\phi^{\theta}(f)=\sum_{g \in G} \phi^{\theta}(g) f(g) \equiv\left\langle\phi^{\theta}, \bar{f}\right\rangle
$$

We use the Curtis-Fossum basis in Definition 13.2.5.
Proposition 13.5.7 (Curtis-Fossum) Let $\theta \in J$. Then the following hold:
(i) The spherical function ϕ^{θ} can be expressed as

$$
\phi^{\theta}=\sum_{s \in \mathcal{S}_{0}}\left|G_{s}\right| \phi^{\theta}\left(\overline{a_{s}}\right) a_{s}
$$

(ii) The orthogonality relations for the spherical functions may be written in the form:

$$
\sum_{s \in \mathcal{S}_{0}}\left|G_{s}\right| \phi^{\theta}\left(\overline{a_{s}}\right) \overline{\phi^{\rho}\left(\overline{a_{s}}\right)}=\delta_{\theta, \rho} \frac{|G|}{d_{\theta}}, \quad \rho \in J
$$

(iii) The dimension d_{θ} is given by

$$
d_{\theta}=\frac{|G|}{\sum_{s \in \mathcal{S}_{0}}\left|G_{s}\right| \cdot\left|\phi^{\theta}\left(\overline{a_{s}}\right)\right|^{2}}
$$

Proof (i) This is an immediate consequence of (13.11) and (13.13).
(ii) From (i) and (13.12) we have:

$$
\left\langle\phi^{\theta}, \phi^{\rho}\right\rangle_{L(G)}=\sum_{s \in \mathcal{S}_{0}}\left|G_{s}\right|^{2} \phi^{\theta}\left(\overline{a_{s}}\right) \overline{\phi^{\rho}\left(\overline{a_{s}}\right)}\left\|a_{s}\right\|_{L(G)}^{2}=\sum_{s \in \mathcal{S}_{0}}\left|G_{s}\right| \phi^{\theta}\left(\overline{a_{s}}\right) \overline{\phi^{\rho}\left(\overline{a_{s}}\right)} .
$$

Then we may invoke (13.33).
(iii) It follows immediately from (ii).

Remark 13.5.8 When $\chi=\iota_{K}$ and (G, K) is a Gelfand pair, it is customary to use the isomorphism (11.13) to define the spherical functions as K-invariant functions on X (see Remark 13.2.2). That is, for $\theta \in J$ we define $\varphi^{\theta} \in L(X)$ by setting $\varphi^{\theta}(x)=\phi^{\theta}(g)$ if $g x_{0}=x$. Then the orthogonality relations become: $\sum_{x \in X} \varphi^{\theta}(x) \overline{\varphi^{\rho}(x)}=\delta_{\theta, \rho} \frac{|X|}{d_{\theta}}$. We refer to [29] for an extensive treatment of this case.

Exercise 13.5.9 Prove that, in the setting of Exercise 13.3.8, the spherical function in M^{θ} is equal to $\frac{1}{d_{\theta}} \chi^{\theta}$.

Exercise 13.5.10 Let G be a finite group and suppose it acts doubly transitively on a set X. Denote by K the stabilizer of a fixed element $x_{0} \in X$.

Show that (G, K) is a symmetric Gelfand pair, that $L(X)=W_{0} \oplus W_{1}$ (cf. Proposition 2.1.1) is the decomposition into spherical representations, and that the corresponding spherical functions are given by $\phi_{0} \equiv 1$ and

$$
\phi_{1}(x)= \begin{cases}1 & \text { if } x=x_{0} \\ -\frac{1}{1-|X|} & \text { otherwise }\end{cases}
$$

for all $x \in X$.
Exercise 13.5.11 From Exercise 12.1 .8 we deduce that $\left(\operatorname{Aff}\left(\mathbb{F}_{q}\right), A, \psi\right)$ is a multiplicity-free triple for any character $\psi \in \widehat{A}$. By means of (13.31) and/or (13.37) applied to (12.8), show that the spherical functions are given by:

$$
\phi^{\pi}\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)= \begin{cases}\overline{\psi(a)} & \text { if } b=0 \\
-\frac{1}{q-1} \overline{\psi(a)} & \text { otherwise }\end{cases}
$$

and $\phi^{\Psi}\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)=\overline{\psi(a)}$, for all $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in \operatorname{Aff}\left(\mathbb{F}_{q}\right)$.

14

Representation theory of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$

This chapter is devoted to the representation theory of the general linear group GL $\left(2, \mathbb{F}_{q}\right)$. It contains an exposition of all the results in PiatetskiShapiro's monograph [123]. We have added some more details and reinterpreted the whole theory in terms of our "multiplicity-free triples" developed in the preceding chapter. Section 7.3, on generalized Kloosterman sums, also plays here a fundamental role. In the final sections, we present a complete set of formulas for the decomposition of induced representations $\operatorname{Ind}_{\mathbb{F}_{q}}^{\mathbb{F}_{q} m}$ and of inner tensor products.

14.1 Matrices associated with linear operators

First of all, we need to study the conjugacy classes in GL $(2, \mathbb{F})$. For this purpose, we recall some basic facts of linear algebra over an arbitrary field \mathbb{F} and, subsequently, we concentrate on the finite case. If the field \mathbb{F} is algebraically closed, we shall make use of the Jordan canonical form, while, in the general case, our standard tool will be the rational canonical form.

Le \mathbb{F} be a field and denote by $\mathfrak{M}_{n}(\mathbb{F})$ the algebra of all $n \times n$ matrices with entries in \mathbb{F}. Then the multiplicative group $\operatorname{GL}(n, \mathbb{F})=\mathcal{U}\left(\mathfrak{M}_{n}(\mathbb{F})\right)$, consisting of all invertible matrices, acts on $\mathfrak{M}_{n}(\mathbb{F})$ by conjugation. The action of an element $A \in \mathrm{GL}(n, \mathbb{F})$ on $\mathfrak{M}_{n}(\mathbb{F})$ is then given by:

$$
B \mapsto A B A^{-1}
$$

for all $B \in \mathfrak{M}_{n}(\mathbb{F})$. The orbits under this action are the conjugacy classes of $\mathfrak{M}_{n}(\mathbb{F})$ and the choice of a suitable canonical element in the conjugacy class of a matrix $B \in \mathfrak{M}_{n}(\mathbb{F})$ is called a canonical form for B.
We identify the n-dimensional vector space \mathbb{F}^{n} with the vector space $\mathfrak{M}_{n, 1}$ of n-dimensional column vectors. Also we fix an (ordered) basis $\mathbf{Y}=$ $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ of \mathbb{F}^{n}.

Let $L: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be a linear operator. Then the matrix $C=C(L ; \mathbf{Y})=$ $\left(c_{i, j}\right)_{i, j=1}^{n}$ representing the operator L with respect to the basis \mathbf{Y} is defined by

$$
L\left(Y_{j}\right)=\sum_{i=1}^{n} c_{i, j} Y_{i}
$$

for all $j=1,2, \ldots, n$.
Vice versa, with each $B \in \mathfrak{M}_{n}(\mathbb{F})$ we associate the linear operator $L_{B}: \mathbb{F}^{n} \rightarrow$ \mathbb{F}^{n} defined by setting $L_{B}(X)=B X$ for all $X \in \mathbb{F}^{n}$.

Let now $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ denote the canonical (ordered) basis of \mathbb{F}^{n}, that is,

$$
X_{1}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), X_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, X_{n}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

Then, for $j=1,2, \ldots, n$, the vector $L_{B}\left(X_{j}\right)$ equals the j-th column of the matrix B. In other words, the matrix $C\left(L_{B} ; \mathbf{X}\right)$ representing L_{B} with respect to the canonical basis is the matrix B itself.

Let $A=A(\mathbf{Y}) \in \mathrm{GL}(n, \mathbb{F})$ denote the change of basis matrix, that is, the unique invertible matrix A such that $Y_{j}=A^{-1} X_{j}$, equivalently, $X_{j}=A Y_{j}$, for all $j=1,2, \ldots, n$. Then the matrix $C=C\left(L_{B} ; \mathbf{Y}\right)$ representing the linear operator L_{B} in the basis \mathbf{Y} is given by $C=A B A^{-1}$. Indeed, if

$$
B Y_{j}=L_{B}\left(Y_{j}\right)=\sum_{i=1}^{n} c_{i, j} Y_{i}
$$

then

$$
A B A^{-1} X_{j}=A B Y_{j}=A \sum_{i=1}^{n} c_{i, j} Y_{i}=\sum_{i=1}^{n} c_{i, j} A Y_{i}=\sum_{i=1}^{n} c_{i, j} X_{i}=C X_{j}
$$

for all $j=1,2, \ldots, n$.
This shows that finding a canonical form C for B corresponds to choosing a suitable basis \mathbf{Y} in \mathbb{F}^{n} such that $C=C\left(L_{B} ; \mathbf{Y}\right)$.

14.2 Canonical forms for $\mathfrak{M}_{2}(\mathbb{F})$

We now describe a canonical form for matrices in $\mathfrak{M}_{2}(\mathbb{F})$.
We denote by $\mathbb{F}[\lambda]$ the \mathbb{F}-vector space of all polynomials with coefficients in \mathbb{F} and indeterminate λ.

Let $B=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathfrak{M}_{2}(\mathbb{F})$.
Given $t(\lambda)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0} \in \mathbb{F}[\lambda]$ we set $t(B)=$ $a_{n} B^{n}+a_{n-1} B^{n-1}+\cdots+a_{1} B+a_{0} I \in \mathfrak{M}_{2}(\mathbb{F})$, where $I \in \mathfrak{M}_{2}(\mathbb{F})$ denotes the identity matrix.

The characteristic polynomial $q=q_{B} \in \mathbb{F}[\lambda]$ of the matrix B is defined as

$$
q(\lambda)=\operatorname{det}(\lambda I-B)=\operatorname{det}\left(\begin{array}{cc}
\lambda-\alpha & \beta \\
\gamma & \lambda-\delta
\end{array}\right)=\lambda^{2}-\lambda(\alpha+\delta)+(\alpha \delta-\beta \gamma)
$$

Exercise 14.2.1 Show, by a direct calculation, that $q(B)=0 \in \mathfrak{M}_{2}(\mathbb{F})$ (Cayley-Hamilton theorem). Moreover, given $\lambda_{1} \in \mathbb{F}$ show that $q\left(\lambda_{1}\right)=0$ if and only if λ_{1} is an eigenvalue of B (i.e., there exists an eigenvector $Y \in \mathbb{F}^{2} \backslash\{0\}$ such that $\left.B Y=\lambda_{1} Y\right)$.

The minimal polynomial $p=p_{B} \in \mathbb{F}[\lambda]$ of B is the monic polynomial of least degree such that $p(B)=0$. We clearly have two cases:
(a) $\operatorname{deg}(p)=1$. Then $p(\lambda)=\lambda-\lambda_{1}$ for some $\lambda_{1} \in \mathbb{F}$ and $p(B)=0$ implies that $B=\lambda_{1} I$ is a scalar matrix.
(b) $\operatorname{deg}(p)=2$. Then $p(\lambda)=q(\lambda)$ and B is not a scalar matrix. We further distinguish three subcases:
$\left(\mathrm{b}_{1}\right) p(\lambda)$ has two distinct roots in \mathbb{F} : there exist $\lambda_{1}, \lambda_{2} \in \mathbb{F}, \lambda_{1} \neq \lambda_{2}$, such that $p(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)$, equivalently, B has two distinct eigenvalues. Let $Y_{1}, Y_{2} \in \mathbb{F}^{2}$ be two corresponding eigenvectors: $B Y_{1}=$ $\lambda_{1} Y_{1}$ and $B Y_{2}=\lambda_{2} Y_{2}$. Then Y_{1} and Y_{2} are linearly independent: if $\alpha_{1} Y_{1}+\alpha_{2} Y_{2}=0$, with $\alpha_{1}, \alpha_{2} \in \mathbb{F}$, by applying B to both sides we deduce that $\alpha_{1} \lambda_{1} Y_{1}+\alpha_{2} \lambda_{2} Y_{2}=0$ so that

$$
\alpha_{2}\left(\lambda_{1}-\lambda_{2}\right) Y_{2}=\lambda_{1}\left(\alpha_{1} Y_{1}+\alpha_{2} Y_{2}\right)-\left(\alpha_{1} \lambda_{1} Y_{1}+\alpha_{2} \lambda_{2} Y_{2}\right)=0
$$

Since $\lambda_{1} \neq \lambda_{2}$, we deduce that $\alpha_{2}=0$ and, in turn, $\alpha_{1}=0$.
The matrix $C=C\left(L_{B} ; \mathbf{Y}\right)$ representing L_{B} in the basis $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)$ is then given by

$$
C=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

that is, C is a diagonal matrix with distinct diagonal terms.
Note also that the matrices $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$ and $C\left(L_{B} ;\left(Y_{2}, Y_{1}\right)\right)=\left(\begin{array}{cc}\lambda_{2} & 0 \\ 0 & \lambda_{1}\end{array}\right)$ are conjugate. Indeed:

$$
\left(\begin{array}{ll}
0 & 1 \tag{14.1}\\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
\lambda_{2} & 0 \\
0 & \lambda_{1}
\end{array}\right)
$$

$\left(\mathrm{b}_{2}\right) p(\lambda)=\left(\lambda-\lambda_{1}\right)^{2}$, where $\lambda_{1} \in \mathbb{F}$. Then there exists an eigenvector Y_{1} associated with λ_{1}, so that $B Y_{1}=\lambda_{1} Y_{1}$. Moreover, there exists a vector $\widetilde{Y} \in \mathbb{F}^{2}$ (any vector which is not a scalar multiple of Y_{1}) such that $\left(B-\lambda_{1} I\right) \widetilde{Y} \neq 0$, because $B-\lambda_{1} I \neq 0$. Then $\left(B-\lambda_{1} I\right)^{2} \widetilde{Y}=p(B) \widetilde{Y}=0$ implies (exercise) that there exists $\alpha^{\prime} \in \mathbb{F} \backslash\{0\}$ such that

$$
\begin{equation*}
\left(B-\lambda_{1} I\right) \tilde{Y}=\alpha^{\prime} Y_{1} \tag{14.2}
\end{equation*}
$$

Setting $Y_{2}=\frac{1}{\alpha^{\prime}} \widetilde{Y}$ equation (14.2) becomes

$$
B Y_{2}=\lambda_{1} Y_{2}+Y_{1}
$$

and, in the basis $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)$, the operator L_{B} is represented by the $\operatorname{matrix} C=C\left(L_{B} ; \mathbf{Y}\right)$ given by

$$
C=\left(\begin{array}{cc}
\lambda_{1} & 1 \\
0 & \lambda_{1}
\end{array}\right)
$$

which constitutes the simplest (non-trivial) example of a Jordan canonical form.
$\left(\mathrm{b}_{3}\right) p(\lambda)=\lambda^{2}+\alpha^{\prime} \lambda+\beta^{\prime}$, where $\alpha^{\prime}, \beta^{\prime} \in \mathbb{F}$, is irreducible over \mathbb{F}. Consider a vector $Y_{1} \neq 0$. Then $Y_{2}=B Y_{1}$ is not a multiple of Y_{1} (otherwise Y_{1} would be an eigenvector) and therefore $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)$ is a basis for \mathbb{F}^{2}. Since $B^{2}+\alpha^{\prime} B+\beta^{\prime} I=0$ (cf. Exercise 14.2.1), we have that $B Y_{2}=B^{2} Y_{1}=-\alpha^{\prime} B Y_{1}-\beta^{\prime} Y_{1}=-\beta^{\prime} Y_{1}-\alpha^{\prime} Y_{2}$, so that, in the basis \mathbf{Y}, the operator L_{B} is represented by the matrix $C=C\left(L_{B} ; \mathbf{Y}\right)$ given by

$$
C=\left(\begin{array}{ll}
0 & -\beta^{\prime} \tag{14.3}\\
1 & -\alpha^{\prime}
\end{array}\right)
$$

This is the simplest (non-trivial) example of a rational canonical form.
From the previous case-by-case analysis we immediately deduce the following:

Theorem 14.2.2 Two matrices in $\mathfrak{M}_{2}(\mathbb{F})$ are conjugate if and only if they have the same minimal and characteristic polynomials. For non-scalar matrices it suffices that they have the same characteristic polynomial.

Remark 14.2.3 In $\mathfrak{M}_{n}(\mathbb{F})$ with $n>2$, Theorem 14.2 .2 is no longer true and the full machinery for the rational canonical form and the theory of invariant factors (or invariant polynomials, or elementary divisors) must be used to get a parameterization of the conjugacy classes, i.e., in the terminology of linear algebra, to establish if two matrices are similar.

If the field \mathbb{F} is algebraically closed, the Jordan canonical form may be used in place of the rational canonical form. See, for instance, Herstein's book [71].

We now introduce four important subgroups of $G L(2, \mathbb{F})$, namely,

$$
\begin{aligned}
B & =\left\{\left(\begin{array}{ll}
\alpha & \beta \\
0 & \delta
\end{array}\right): \alpha, \delta \in \mathbb{F}^{*}, \beta \in \mathbb{F}\right\} \quad \text { (the Borel subgroup) } \\
D & =\left\{\left(\begin{array}{ll}
\alpha & 0 \\
0 & \delta
\end{array}\right): \alpha, \delta \in \mathbb{F}^{*}\right\} \quad \text { (the subgroup of diagonal matrices) } \\
U & =\left\{\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right): \beta \in \mathbb{F}\right\} \quad \text { (the subgroup of unipotent matrices) } \\
Z & =\left\{\left(\begin{array}{ll}
\alpha & 0 \\
0 & \alpha
\end{array}\right): \alpha \in \mathbb{F}^{*}\right\} \quad \text { (the center) }
\end{aligned}
$$

where, as usual, \mathbb{F}^{*} denotes the multiplicative subgroup of \mathbb{F} consisting of all non-zero elements.

Clearly, U is Abelian and isomorphic to the additive group of \mathbb{F} :

$$
\left(\begin{array}{cc}
1 & \beta_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \beta_{2} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \beta_{1}+\beta_{2} \\
0 & 1
\end{array}\right)
$$

for all $\beta_{1}, \beta_{2} \in \mathbb{F}$; see Section 12.1.
Moreover, U is a normal subgroup of B :

$$
\begin{aligned}
\left(\begin{array}{ll}
\alpha & \beta \\
0 & \delta
\end{array}\right)\left(\begin{array}{ll}
1 & \beta^{\prime} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
0 & \delta
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
\alpha & \alpha \beta^{\prime}+\beta \\
0 & \delta
\end{array}\right)\left(\begin{array}{cc}
\alpha^{-1} & -\beta \delta^{-1} \alpha^{-1} \\
0 & \delta^{-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & \alpha \delta^{-1} \beta^{\prime} \\
0 & 1
\end{array}\right)
\end{aligned}
$$

for all $\beta, \beta^{\prime} \in \mathbb{F}$ and $\alpha, \delta \in \mathbb{F}^{*}$.
Recall that given a group G, the derived subgroup (or commutator subgroup) of G is the subgroup $G^{\prime}=[G, G]$ generated by the commutators $[g, h]=g^{-1} h^{-1} g h$, with $g, h \in G$. Moreover, setting $G^{(0)}=G$ and $G^{(k)}=$ $\left[G^{(k-1)}, G^{(k-1)}\right]$ for $k=1,2, \ldots$, one says that G is solvable provided there exists $k_{0} \in \mathbb{N}$ such that $G^{\left(k_{0}\right)}=\left\{1_{G}\right\}$. Finally, given $g \in G$ and a subgroup $H \leq G$, the centralizer of g in H is the subgroup $\{h \in H: h g=g h\} \leq H$. See also Section 12.1.

Lemma 14.2.4

(i) The centralizer in $\operatorname{GL}(2, \mathbb{F})$ of the matrix $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$, with $\lambda_{1} \neq \lambda_{2} \in$ \mathbb{F}, is the subgroup D.
(ii) The centralizer in $\mathrm{GL}(2, \mathbb{F})$ of the matrix $\left(\begin{array}{cc}\lambda_{1} & 1 \\ 0 & \lambda_{1}\end{array}\right)$, with $\lambda_{1} \in \mathbb{F}$, is the subgroup $Z U$ which equals $\left\{\left(\begin{array}{cc}\alpha & \beta \\ 0 & \alpha\end{array}\right): \alpha \in \mathbb{F}^{*}, \beta \in \mathbb{F}\right\}$.
(iii) $B=U \rtimes D$, i.e. B is the semidirect product of U by D. Moreover, U is the derived subgroup of B, and B is solvable.
(iv) Setting $w=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, we have the Bruhat decomposition:

$$
\operatorname{GL}(2, \mathbb{F})=B \coprod B w U \equiv B \coprod U w B
$$

where 】 denotes a disjoint union. Moreover, every element $g \in$ $\mathrm{GL}(2, \mathbb{F}) \backslash B$ may be uniquely written in the form $g=u w b$ with $u \in U$ and $b \in B$.

Proof The proof is nothing but easy calculations which we leave to the reader as an exercise.

For instance, (iv) follows from the fact that if $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{GL}(2, \mathbb{F}) \backslash B$ (so that $\left.\gamma \in \mathbb{F}^{*}\right)$ then, as one easily checks,

$$
\begin{aligned}
\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) & =\left(\begin{array}{cc}
\beta-\alpha \gamma^{-1} \delta & \alpha \\
0 & \gamma
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & \gamma^{-1} \delta \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & \alpha \gamma^{-1} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\gamma & \delta \\
0 & \beta-\alpha \gamma^{-1} \delta
\end{array}\right)
\end{aligned}
$$

and these factorizations are unique.
Another important subgroup is

$$
\operatorname{Aff}(\mathbb{F})=\left\{\left(\begin{array}{cc}
\alpha & \beta \\
0 & 1
\end{array}\right): \alpha \in \mathbb{F}^{*}, \beta \in \mathbb{F}\right\}
$$

the affine group over \mathbb{F} (cf. Example 10.4.5 and Section 12.1).
Exercise 14.2.5 Show the following:
(1) $Z \cap \operatorname{Aff}(\mathbb{F})=\{I\}$ and $Z \cdot \operatorname{Aff}(\mathbb{F})=\operatorname{Aff}(\mathbb{F}) \cdot Z=B$;
(2) $\operatorname{Aff}(\mathbb{F})$ is a normal subgroup of B and deduce that $B \cong \operatorname{Aff}(\mathbb{F}) \times Z$ (direct product);
(3) $\operatorname{Aff}(\mathbb{F})=U \rtimes A$ (semi-direct product), where A is the subgroup $\left\{\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right): \alpha \in \mathbb{F}^{*}\right\} \cong \mathbb{F}^{*} ;$ see Section 12.1.

14.3 The finite case

From now on, we concentrate on the finite case, that is, we consider the group $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$, where \mathbb{F}_{q} is a finite field of order $q=p^{h}$, where p is a prime number and $h \geq 1$.

Proposition 14.3.1 $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ is a finite group of order

$$
\left|\mathrm{GL}\left(2, \mathbb{F}_{q}\right)\right|=\left(q^{2}-1\right)\left(q^{2}-q\right)=q(q+1)(q-1)^{2}
$$

Proof The first row of a matrix $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ may be chosen in $q^{2}-1$ ways: it is an arbitrary ordered pair $(\alpha, \beta) \in\left(\mathbb{F}_{q} \times \mathbb{F}_{q}\right) \backslash\{(0,0)\}$. Then the second row (γ, δ) is an arbitrary ordered pair in $\left(\mathbb{F}_{q} \times \mathbb{F}_{q}\right) \backslash\left\{(\lambda a, \lambda b): \lambda \in \mathbb{F}_{q}\right\}$, and there are $q^{2}-q$ such pairs.

Another proof is the following. Consider the projective line $\mathbb{P}\left(\mathbb{F}_{q}\right)=$ $\left(\left(\mathbb{F}_{q} \times \mathbb{F}_{q}\right) \backslash\{(0,0)\}\right) / \sim$, where \sim is the equivalence relation on $\left(\mathbb{F}_{q} \times \mathbb{F}_{q}\right) \backslash$ $\{(0,0)\}$ defined by $(x, y) \sim(u, v)$ if there exists $\lambda \in \mathbb{F}_{q}^{*}$ such that $(x, y)=$ $(\lambda u, \lambda v)$. The action of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$ on $\mathbb{F}_{q} \times \mathbb{F}_{q}$ fixes $(0,0)$ and preserves \sim, and therefore induces an action of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ on $\mathbb{P}\left(\mathbb{F}_{q}\right)$. Moreover, it is easy to check that this induced action is transitive. The stabilizer of the \sim_{-} class of $(1,0)$ is the Borel subgroup B. Since $\left|\mathbb{P}\left(\mathbb{F}_{q}\right)\right|=\frac{q^{2}-1}{q-1}=q+1$ and $|B|=q(q-1)^{2}$, we obtain again $\left|\mathrm{GL}\left(2, \mathbb{F}_{q}\right)\right|=\left|\mathbb{P}\left(\mathbb{F}_{q}\right)\right| \cdot|B|=(q+1) q(q-1)^{2} ;$ recall (10.44).

Using the notation (and results) of Section 6.8, we introduce another fundamental subgroup of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$. The Cartan (or non-split Cartan) subgroup of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$ is the subgroup C defined by

$$
C=\left\{\left(\begin{array}{cc}
\alpha & \omega \beta \\
\beta & \alpha+\beta
\end{array}\right): \alpha, \beta \in \mathbb{F}_{q},(\alpha, \beta) \neq(0,0)\right\}
$$

if $p=2$, where $\omega \in \mathbb{F}_{q}$ is as in Theorem 6.8.3, and

$$
C=\left\{\left(\begin{array}{cc}
\alpha & \eta \beta \\
\beta & \alpha
\end{array}\right): \alpha, \beta \in \mathbb{F}_{q},(\alpha, \beta) \neq(0,0)\right\}
$$

if $p>2$, where $\eta \in \mathbb{F}_{q}$ is as in Theorem 6.8.1.
In both cases, we have (cf. the just mentioned theorems) a group isomorphism

$$
C \cong \mathbb{F}_{q^{2}}^{*}
$$

In the following theorem, we use the elements of $C \backslash Z$ to parameterize the
conjugacy classes of type $\left(b_{3}\right)$ in Section 14.2. Note that

$$
C \backslash Z=\left\{\left(\begin{array}{cc}
\alpha & \omega \beta \\
\beta & \alpha+\beta
\end{array}\right): \alpha \in \mathbb{F}_{q}, \beta \in \mathbb{F}_{q}^{*}\right\}
$$

if $p=2$, and

$$
C \backslash Z=\left\{\left(\begin{array}{cc}
\alpha & \eta \beta \\
\beta & \alpha
\end{array}\right): \alpha \in \mathbb{F}_{q}, \beta \in \mathbb{F}_{q}^{*}\right\}
$$

if $p>2$.
Theorem 14.3.2 The following describes the conjugacy classes of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$

TYPE	RE	NC	NE	NAME	$\mathrm{C}(\mathrm{RE})$
(a)	$\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right), \lambda \neq 0$	$q-1$	1	central	$\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$
$\left(\mathrm{b}_{1}\right)$	$\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right), \lambda_{1} \neq \lambda_{2}$	$(q-1)(q-2) / 2$	$q^{2}+q$	hyperbolic	D
$\left(\mathrm{~b}_{2}\right)$	$\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right), \lambda \neq 0$	$q-1$	$q^{2}-1$	parabolic	$Z U$
$\left(\mathrm{~b}_{3}\right)$	$C \backslash Z$	$q(q-1) / 2$	$q^{2}-q$	elliptic	C

Table 14.1. The conjugacy classes of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$.
where

- TYPE stands for type of the conjugacy class according to the classification in Section 14.2;
- RE stands for representative element: for each (conjugacy) class we indicate a representative element;
- NC stands for number of conjugacy classes: this equals the number of representative elements;
- NE stands for the number of elements in each class;
- NAME stands for the denomination of this type of class;
- $C(R E)$ stands for the centralizer in $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ of the representative element.
Moreover, the two matrices of type $\left(\mathrm{b}_{1}\right)$

$$
\left(\begin{array}{cc}
\lambda_{1} & 0 \tag{14.4}\\
0 & \lambda_{2}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
\lambda_{2} & 0 \\
0 & \lambda_{1}
\end{array}\right)
$$

represent the same class. Similarly, the two matrices of type $\left(\mathrm{b}_{3}\right)$

$$
\left(\begin{array}{cc}
\alpha & \omega \beta \tag{14.5}\\
\beta & \alpha+\beta
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
\alpha+\beta & \omega \beta \\
\beta & \alpha
\end{array}\right) \in C \backslash Z
$$

when $p=2$, and

$$
\left(\begin{array}{cc}
\alpha & \eta \beta \tag{14.6}\\
\beta & \alpha
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
\alpha & -\eta \beta \\
-\beta & \alpha
\end{array}\right) \in C \backslash Z
$$

when $p>2$, represent the same class.

Proof The first row in the above table follows from Section 14.2.(a) and the trivial fact that any central element is fixed under conjugation.

The second row follows from Section 14.2. (b_{1}), Lemma 14.2.4.(i) and the fact that the number of elements in each conjugacy class is given by

$$
\frac{\left|\mathrm{GL}\left(2, \mathbb{F}_{q}\right)\right|}{|D|}=\frac{q(q+1)(q-1)^{2}}{(q-1)^{2}}=q^{2}+q
$$

Moreover, we have already observed (cf. (14.1)) that the matrices in (14.4) are conjugate. Similarly, the third row follows from Section 14.2.(b_{2}) and Lemma 14.2.4.(ii), noticing also that the number of elements in each conjugacy class now equals

$$
\frac{\left|\mathrm{GL}\left(2, \mathbb{F}_{q}\right)\right|}{|Z U|}=\frac{q(q+1)(q-1)^{2}}{(q-1) q}=q^{2}-1
$$

where the first equality follows from Proposition 14.3.1.
Finally, to get the fourth row, we distinguish two cases according to the parity of p.

For $p=2$ the characteristic polynomial of the representative $\left(\begin{array}{cc}\alpha & \omega \beta \\ \beta & \alpha+\beta\end{array}\right)$ is given by

$$
\operatorname{det}\left(\begin{array}{cc}
\lambda+\alpha & \omega \beta \tag{14.7}\\
\beta & \lambda+(\alpha+\beta)
\end{array}\right)=\lambda^{2}+\beta \lambda+\left(\alpha^{2}+\alpha \beta+\beta^{2} \omega\right)
$$

so that, by Corollary 6.8.4, it is irreducible.
Moreover, since the matrices $\left(\begin{array}{cc}0 & \alpha^{2}+\alpha \beta+\beta^{2} \omega \\ 1 & \beta\end{array}\right)$ and $\left(\begin{array}{cc}\alpha+\beta & \omega \beta \\ \beta & \alpha\end{array}\right)$ have the same characteristic polynomial as in (14.7), we deduce that the matrix $\left(\begin{array}{cc}\alpha & \omega \beta \\ \beta & \alpha+\beta\end{array}\right)$ belongs to the same conjugacy class of $\left(\begin{array}{cc}0 & \alpha^{2}+\alpha \beta+\beta^{2} \omega \\ 1 & \beta\end{array}\right)$
and $\left(\begin{array}{cc}\alpha+\beta & \omega \beta \\ \beta & \alpha\end{array}\right)$. Since, by Corollary 6.8.4, all irreducible quadratic polynomials over \mathbb{F}_{q} are as in (14.7), we deduce that the elements in $C \backslash Z$ parameterize all conjugacy classes of type $\left(\mathrm{b}_{3}\right)$. Finally, (recall that $\beta \neq 0$) we have

$$
\left(\begin{array}{ll}
x & y \\
z & u
\end{array}\right)\left(\begin{array}{cc}
\alpha & \omega \beta \\
\beta & \alpha+\beta
\end{array}\right)=\left(\begin{array}{cc}
x \alpha+y \beta & x \omega \beta+y(\alpha+\beta) \\
z \alpha+u \beta & z \omega \beta+u(\alpha+\beta)
\end{array}\right)
$$

equals

$$
\left(\begin{array}{cc}
\alpha & \omega \beta \\
\beta & \alpha+\beta
\end{array}\right)\left(\begin{array}{cc}
x & y \\
z & u
\end{array}\right)=\left(\begin{array}{cc}
\alpha x+\omega \beta z & \alpha y+\omega \beta u \\
\beta x+z(\alpha+\beta) & \beta y+u(\alpha+\beta)
\end{array}\right)
$$

if and only if $\omega z=y$ and $x+z=u$. As a consequence, the centralizer of any element in $C \backslash Z$ is the subgroup C. We deduce that the number of elements in each conjugacy class is given by

$$
\begin{equation*}
\frac{\left|\mathrm{GL}\left(2, \mathbb{F}_{q}\right)\right|}{|C|}=\frac{q(q+1)(q-1)^{2}}{q^{2}-1}=q^{2}-q \tag{14.8}
\end{equation*}
$$

Suppose now that $p>2$. The characteristic polynomial of the representative $\left(\begin{array}{cc}\alpha & \eta \beta \\ \beta & \alpha\end{array}\right)$ is given by

$$
\operatorname{det}\left(\begin{array}{cc}
\lambda-\alpha & -\eta \beta \tag{14.9}\\
-\beta & \lambda-\alpha
\end{array}\right)=\lambda^{2}-2 \alpha \lambda+\alpha^{2}-\eta \beta^{2}
$$

which is again irreducible by virtue of Corollary 6.8.2.
As in the case $p=2$, we deduce that the element $\left(\begin{array}{cc}\alpha & \eta \beta \\ \beta & \alpha\end{array}\right)$ belongs to the same conjugacy class of $\left(\begin{array}{cc}0 & \eta \beta^{2}-\alpha^{2} \\ 1 & 2 \alpha\end{array}\right)$ (see Section 14.2.(b_{3}) or (14.3)). Again, since all irreducible quadratic polynomials are as in (14.9), the elements in $C \backslash Z$ parameterize the conjugacy classes of type $\left(\mathrm{b}_{3}\right)$. Moreover, $\left(\begin{array}{cc}\alpha & \eta \beta \\ \beta & \alpha\end{array}\right)$ and $\left(\begin{array}{cc}\alpha & -\eta \beta \\ -\beta & \alpha\end{array}\right)$ have the same characteristic polynomial, so that they are conjugate (by $\left(\begin{array}{cc}0 & -\eta \\ 1 & 0\end{array}\right)$, for instance).

Finally, (recall, once more, that $\beta \neq 0$) another simple computation shows that

$$
\left(\begin{array}{cc}
x & y \\
z & u
\end{array}\right)\left(\begin{array}{cc}
\alpha & \eta \beta \\
\beta & \alpha
\end{array}\right)=\left(\begin{array}{cc}
\alpha & \eta \beta \\
\beta & \alpha
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & u
\end{array}\right)
$$

if and only if $\eta z=y$ and $x=u$. As a consequence, the centralizer of an
element in $C \backslash Z$ is again C and the number of elements in each conjugacy class is again expressed by (14.8).

Remark 14.3.3 From the discussion in Section 14.2 and from the proof of Theorem 14.3.2, it follows that the representatives of type $\left(b_{3}\right)$ may be also taken of the form $\left(\begin{array}{cc}0 & -z \bar{z} \\ 1 & z+\bar{z}\end{array}\right)$, with $z \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$.

14.4 Representation theory of the Borel subgroup

As in (12.6), we associate with each $\psi \in \widehat{\mathbb{F}_{q}^{*}}$ the function $\Psi: Z \rightarrow \mathbb{C}$ defined by

$$
\Psi\left(\begin{array}{ll}
\alpha & 0 \tag{14.10}\\
0 & \alpha
\end{array}\right)=\psi(\alpha)
$$

for all $\alpha \in \mathbb{F}_{q}^{*}$. It is immediate to check that Ψ is a character of Z.
The representation theory of B may be then easily deduced from Theorem 12.1.3 and the isomorphism

$$
B \cong \operatorname{Aff}\left(\mathbb{F}_{q}\right) \times Z \cong \operatorname{Aff}\left(\mathbb{F}_{q}\right) \times \mathbb{F}_{q}^{*}
$$

which gives (see Corollary 10.5.17)

$$
\widehat{B} \cong \widehat{\operatorname{Aff}\left(\mathbb{F}_{q}\right)} \times \widehat{Z} \cong \widehat{\operatorname{Aff}\left(\mathbb{F}_{q}\right)} \times \widehat{\mathbb{F}_{q}^{*}}
$$

Theorem 14.4.1 The Borel subgroup B has exactly $(q-1)^{2}$ one-dimensional representations, namely $\Psi_{1} \boxtimes \Psi_{2}$, where $\Psi_{1} \in \widehat{\operatorname{Aff}\left(\mathbb{F}_{q}\right)}$ is one-dimensional and $\Psi_{2} \in \widehat{Z}$, and $q-1$ irreducible ($q-1$)-dimensional representations, namely $\pi \boxtimes \Psi$, where $\pi \in \widehat{\operatorname{Aff}\left(\mathbb{F}_{q}\right)}$ is as in (12.7) and $\Psi \in \widehat{Z}$.

Explicitly, these are given by

$$
\left(\Psi_{1} \boxtimes \Psi_{2}\right)\left(\begin{array}{cc}
\alpha & \beta \tag{14.11}\\
0 & \delta
\end{array}\right)=\psi_{1}\left(\alpha \delta^{-1}\right) \psi_{2}(\delta) \quad \text { for all } \quad\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right) \in B
$$

where $\Psi_{1} \in \widehat{\operatorname{Aff}\left(\mathbb{F}_{q}\right)}$ (resp. $\left.\Psi_{2} \in \widehat{Z}\right)$ is the character associated with $\psi_{1} \in \widehat{\mathbb{F}_{q}^{*}}$ (resp. $\psi_{2} \in \widehat{\mathbb{F}_{q}^{*}}$), and

$$
(\pi \boxtimes \Psi)\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)=\pi\left(\begin{array}{cc}
\alpha \delta^{-1} & \beta \delta^{-1} \\
0 & 1
\end{array}\right) \psi(\delta) \quad \text { for all } \quad\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right) \in B
$$

where $\Psi \in \widehat{Z}$ is the character associated with $\psi \in \widehat{\mathbb{F}_{q}^{*}}$.

Proof Each irreducible representation of B is the tensor product of an irreducible representation of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ and an irreducible representation of Z (see Corollary 10.5.17). Moreover, for any $\left(\begin{array}{cc}\alpha & \beta \\ 0 & \delta\end{array}\right) \in B$ we have the unique decomposition

$$
\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)=\left(\begin{array}{cc}
\alpha \delta^{-1} & \beta \delta^{-1} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\delta & 0 \\
0 & \delta
\end{array}\right) \in \operatorname{Aff}\left(\mathbb{F}_{q}\right) Z .
$$

Remark 14.4.2 Given $\psi_{1}, \psi_{2} \in \widehat{\mathbb{F}_{q}^{*}}$ let us set $\psi_{2}^{\prime}:=\psi_{1}^{-1} \psi_{2} \in \widehat{\mathbb{F}_{q}^{*}}$. Then the irreducible one dimensional representation (14.11) can be expressed by

$$
\left(\Psi_{1} \boxtimes \Psi_{2}\right)\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)=\psi_{1}(\alpha) \psi_{2}^{\prime}(\delta) \quad \text { for all } \quad\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right) \in B .
$$

As a consequence, we shall rearrange the parameterization of the pairs $\left(\psi_{1}, \psi_{2}\right)$ (equivalently, $\left(\psi_{1}, \psi_{2}^{\prime}\right)$) in $\widehat{\mathbb{F}_{q}^{*}} \times \widehat{\mathbb{F}_{q}^{*}}$ and denote by $\chi_{\psi_{1}, \psi_{2}} \in \widehat{B}$ the one-dimensional representation given by

$$
\chi_{\psi_{1}, \psi_{2}}\left(\begin{array}{cc}
\alpha & \beta \tag{14.12}\\
0 & \delta
\end{array}\right)=\psi_{1}(\alpha) \psi_{2}(\delta)
$$

for all $\left(\begin{array}{cc}\alpha & \beta \\ 0 & \delta\end{array}\right) \in B$. We deduce from (14.12) that restricting to D all one-dimensional representations of B provides us with all irreducible representations of its (Abelian) subgroup D. Also, for simplicity of notation, we shall identify $\operatorname{Res}_{D}^{B} \chi_{\psi_{1}, \psi_{2}}$ and $\chi_{\psi_{1}, \psi_{2}}$.

In the following, for every character χ of D we denote by ${ }^{w} \chi$ (cf. (11.41)) the character of D defined by ${ }^{w} \chi(d)=\chi(w d w)$ for all $d \in D$, where the element w is as in Lemma 14.2.4.(iv). We shall then say that χ is w-invariant, provided ${ }^{w} \chi=\chi$.

We thus have

$$
\begin{align*}
{ }^{w} \chi_{\psi_{1}, \psi_{2}}\left(\begin{array}{cc}
\alpha & 0 \\
0 & \delta
\end{array}\right) & =\chi_{\psi_{1}, \psi_{2}}\left(w\left(\begin{array}{cc}
\alpha & 0 \\
0 & \delta
\end{array}\right) w\right) \\
& =\chi_{\psi_{1}, \psi_{2}}\left(\begin{array}{ll}
\delta & 0 \\
0 & \alpha
\end{array}\right) \tag{14.13}\\
& =\psi_{1}(\delta) \psi_{2}(\alpha) \\
& =\chi_{\psi_{2}, \psi_{1}}\left(\begin{array}{cc}
\alpha & 0 \\
0 & \delta
\end{array}\right)
\end{align*}
$$

for all $\left(\begin{array}{ll}\alpha & 0 \\ 0 & \delta\end{array}\right) \in D$.
It follows that $\chi_{\psi_{1}, \psi_{2}}$ is w-invariant if and only if $\psi_{1}=\psi_{2}$.
Proposition 14.4.3 Let $\psi \in \widehat{\mathbb{F}_{q}^{*}}$. Then

$$
\chi_{\psi, \psi}(b)=\psi(\operatorname{det}(b))
$$

for all $b \in B$.
Proof This is a simple calculation: indeed we have

$$
\chi_{\psi, \psi}\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)=\psi(\alpha) \psi(\delta)=\psi(\alpha \delta)=\psi\left(\operatorname{det}\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)\right)
$$

for all $\alpha, \delta \in \mathbb{F}_{q}^{*}$ and $\beta \in \mathbb{F}_{q}$.

14.5 Parabolic induction

In this section we determine the irreducible representation of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ that may be obtained by inducing up the characters of the Borel subgroup B. First we give a general principle.

Proposition 14.5.1 Let G be a finite group and $N \unlhd G$ a normal subgroup. Then the map $(\rho, U) \mapsto(\widetilde{\rho}, U)$ defined by

$$
\begin{equation*}
\widetilde{\rho}(g N) u=\rho(g) u \tag{14.14}
\end{equation*}
$$

for all $g \in G$ and $u \in U$, yields a bijection between the set of all G representations (ρ, U) such that $\operatorname{Res}_{N}^{G} \rho$ is trivial and the set of all G / N representations. Moreover, this bijection preserves irreducibility and directsums.

Proof Let (ρ, U) be a G-representation and suppose that $\operatorname{Res}_{N}^{G} \rho$ is trivial. We note that (14.14) is well defined. Indeed, if $g_{1}, g_{2} \in G$ satisfy $g_{1} N=g_{2} N$, then $g_{1}^{-1} g_{2} \in N$ so that $\rho\left(g_{1}^{-1} g_{2}\right) u=u$, equivalently, $\rho\left(g_{1}\right) u=\rho\left(g_{2}\right) u$, for all $u \in U$, showing that $\widetilde{\rho}\left(g_{1} N\right)=\widetilde{\rho}\left(g_{2} N\right)$. Vice versa, given a G / N representation (σ, U), let $(\check{\sigma}, U)$ be the G-representation defined by

$$
\begin{equation*}
\check{\sigma}(g) u=\sigma(g N) u \tag{14.15}
\end{equation*}
$$

for all $u \in U$. In other words, $\check{\sigma}$ is the composition of σ with the quotient $\operatorname{map} G \rightarrow G / N$. Clearly, $\operatorname{Res}_{N}^{G} \check{\sigma}$ is trivial. Moreover the map $\sigma \mapsto \check{\sigma}$ is the inverse of the map $\rho \mapsto \widetilde{\rho}$ given by (14.14). It is straightforward to check that
if ρ is irreducible (resp. $\rho=\rho_{1} \oplus \rho_{2}$) then $\widetilde{\rho}$ is irreducible (resp. $\widetilde{\rho}=\widetilde{\rho_{1}} \oplus \widetilde{\rho_{2}}$).

The G-representation $(\check{\sigma}, U)$ defined in (14.15) is called the inflation of the G / N-representation (σ, U). See also Section 11.6.

Corollary 14.5.2 Let H be a finite group and denote by H^{\prime} its derived subgroup. Then there exists a bijective correspondence between the set of all (irreducible) one-dimensional H-representations and the characters of H / H^{\prime}.

Proof We first observe that if $(\rho, U) \in \widehat{H}$ is one-dimensional, then $\operatorname{Ker}(\rho)=$ $\left\{h \in H: \rho(h)=\mathrm{id}_{U}\right\}$ necessarily contains H^{\prime} : indeed $H / \operatorname{Ker}(\rho) \cong \rho(H) \leq$ $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ is Abelian. Then the corollary follows from Proposition 14.5.1 after noticing that H^{\prime} is normal in H and that H / H^{\prime} is Abelian so that its irreducible representations are all one-dimensional, i.e. characters.

Proposition 14.5.3 Let G be a finite group and $H \leq G$ a subgroup. Denote by H^{\prime} the derived group of H. Let (ρ, V) be an irreducible G-representation. Then the following conditions are equivalent:
(a) the subspace $V^{H^{\prime}}$ of H^{\prime}-invariant vectors is nontrivial;
(b) there exists a one-dimensional representation χ of H such that ρ is contained in $\operatorname{Ind}_{H}^{G} \chi$.

Proof First of all, note that the subspace $V^{H^{\prime}}$ is H-invariant. Indeed, H^{\prime} is normal in H and therefore for $h \in H$ and $v \in V^{H^{\prime}}$ we have

$$
\rho\left(h^{\prime}\right) \rho(h) v=\rho\left(h \cdot h^{-1} h^{\prime} h\right) v=\rho(h) \rho\left(h^{-1} h^{\prime} h\right) v=\rho(h) v
$$

for all $h^{\prime} \in H^{\prime}$, thus showing that $\rho(h) v \in V^{H^{\prime}}$ (observe that, in fact, the H-invariance of $V^{H^{\prime}}$ only depends on the normality of H^{\prime} in H).

Consider the H-representation $\left(\operatorname{Res}_{H}^{G} \rho, V^{H^{\prime}}\right)$ and observe that its restriction to H^{\prime} is trivial. By virtue of Proposition 14.5 .1 we can identify it with a representation of the Abelian group H / H^{\prime} and therefore, again by Proposition 14.5.1, it decomposes as a direct sum of one-dimensional H representations.

Thus, if $V^{H^{\prime}}$ is not trivial, we can find a character $\chi \in \widehat{H}$ such that $\chi \preceq\left(\operatorname{Res}_{H}^{G} \rho, V^{H^{\prime}}\right) \preceq\left(\operatorname{Res}_{H}^{G} \rho, V\right)$. By Frobenius reciprocity we have that $\rho \preceq \operatorname{Ind}_{H}^{G} \chi$.

Conversely, if ρ is contained in $\operatorname{Ind}_{H}^{G} \chi$, for some character $\chi \in \widehat{H}$, then, again by Frobenius reciprocity, $\operatorname{Res}_{H}^{G} \rho$ contains χ which, by Corollary 14.5.2, is trivial on H^{\prime}. It follows that V contains H^{\prime}-invariant vectors.

The space $J(V)=V^{H^{\prime}}$ is called the Jacquet module of the G-representation (ρ, V) relative to the subgroup $H \leq G$.

We now apply the above results in the case where $G=\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ (and, unless otherwise specified, we shall keep this position in order to simplify notation for the remaining of this section) and $H=B$, so that $H^{\prime}=B^{\prime}=U$ (see Lemma 14.2.4).

Notation 14.5.4 In what follows, if χ is a one-dimensional representation of B, we use the notation $(\widehat{\chi}, V)$ to denote $\left(\operatorname{Ind}_{B}^{G} \chi, \operatorname{Ind}_{B}^{G} \mathbb{C}\right)$. Also, given the correspondence between the one-dimensional representations of B and the characters of its subgroup D, by abuse of notation (observe that B is not invariant by conjugation by w) we also denote by ${ }^{w} \chi$ the one-dimensional representation of B corresponding to the character ${ }^{w} \chi \in \widehat{D}$ (cf. (11.41)).

Proposition 14.5.5 Let χ be a one-dimensional representation of B. Then

$$
\left(\operatorname{Res}_{B}^{G} \widehat{\chi}, V^{U}\right) \sim\left(\chi \oplus^{w} \chi, \mathbb{C}^{2}\right)
$$

Proof First of all note that the space $V^{U} \leq \operatorname{Ind}_{B}^{G} \mathbb{C}$ is made up of all functions $f: G \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
f(g b)=\overline{\chi(b)} f(g) \quad \text { for all } b \in B \text { and } g \in G \tag{14.16}
\end{equation*}
$$

(by the definition of an induced representation) and

$$
f\left(u^{-1} g\right)=f(g) \quad \text { for all } u \in U \text { and } g \in G
$$

(by U-invariance). Then, by the Bruhat decomposition (see Lemma 14.2.4), any function f satisfying these conditions is uniquely determined by its values at 1_{G} and w :

$$
\begin{array}{ll}
f(b)=\overline{\chi(b)} f\left(1_{G}\right) & \text { for all } b \in B \\
f(u w b)=\overline{\chi(b)} f(w) & \text { for all } b \in B \text { and } u \in U \tag{14.17}
\end{array}
$$

As a consequence, $\operatorname{dim} V^{U}=2$ and the functions f_{0} and f_{1} in V^{U} satisfying

$$
f_{0}\left(1_{G}\right)=1, f_{0}(w)=0 \text { and } f_{1}\left(1_{G}\right)=0, f_{1}(w)=1
$$

constitute a basis for V^{U}.
Let us determine the corresponding matrix coefficients for the representation $\left(\operatorname{Res}_{B}^{G} \widehat{\chi}, V^{U}\right)$. We have

$$
\left[\widehat{\chi}(b) f_{0}\right]\left(1_{G}\right)=f_{0}\left(b^{-1}\right)=\chi(b) f_{0}\left(1_{G}\right) \text { for all } b \in B
$$

Moreover, for every $b \in B$ there exist $b^{\prime} \in B$ and $u \in U$ such that $b^{-1} w=$ $u w b^{\prime}$ so that

$$
\left[\widehat{\chi}(b) f_{0}\right](w)=f_{0}\left(b^{-1} w\right)=f_{0}\left(u w b^{\prime}\right)=\overline{\chi\left(b^{\prime}\right)} f_{0}(w)=0
$$

This shows that

$$
\widehat{\chi}(b) f_{0}=\chi(b) f_{0}
$$

We now consider the action of B on f_{1}. Let $b \in B$. Then we can find $\alpha_{0}, \alpha_{1} \in \mathbb{C}$ such that

$$
\widehat{\chi}(b) f_{1}=\alpha_{0} f_{0}+\alpha_{1} f_{1}
$$

Evaluating this expression at 1_{G} we get

$$
\alpha_{0}=\left[\widehat{\chi}(b) f_{1}\right]\left(1_{G}\right)=f_{1}\left(b^{-1}\right)=\overline{\chi(b)} f_{1}\left(1_{G}\right)=0
$$

so that

$$
\widehat{\chi}(b) f_{1}=\alpha_{1} f_{1} .
$$

Since f_{1} is U-invariant, arguing as in the proof of Proposition 14.5.3, the action of B on f_{1} is given by the action of $D \cong B / U \equiv B / B^{\prime}$. As a consequence, setting $d=b U \in B / U$ we have

$$
\left[\widehat{\chi}(d) f_{1}\right]\left(1_{G}\right)=f_{1}\left(d^{-1}\right)=0 \quad \text { for all } d \in D
$$

and

$$
\begin{aligned}
{\left[\widehat{\chi}(d) f_{1}\right](w) } & =f_{1}\left(d^{-1} w\right) \\
& =f\left(w \cdot w d^{-1} w\right) \\
& =\chi(w d w) f_{1}(w) \\
& ={ }^{w} \chi(d) f_{1}(w)
\end{aligned}
$$

that is, $\widehat{\chi}(d) f_{1}={ }^{w} \chi(d) f_{1}$, for all $d \in D$. This, in turn, implies $\widehat{\chi}(b) f_{1}=$ ${ }^{w} \chi(b) f_{1}$, for all $b \in B$.

For the convenience of the reader, we now recall from Section 11.4 two basic facts on the theory of induced representations in the particular case when the representations that we are inducing are one-dimensional. See also Remark 11.4.10. Let G be a finite group, $K \leq G$ a subgroup, and $\mathcal{S} \ni 1_{G}$ a system of representatives for the double K-cosets, so that we have the decomposition $G=\coprod_{s \in \mathcal{S}} K s K$. Let χ, ξ be one dimensional representations of K. For $s \in \mathcal{S}$ let $K_{s}=s K s^{-1} \cap K$ and define a one-dimensional representation of K_{s} by setting

$$
\xi_{s}(x)=\xi\left(s^{-1} x s\right) \quad \text { for all } x \in K_{s}
$$

Then we have Mackey's formula for invariants (cf. Corollary 11.4.4)

$$
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{K}^{G} \chi, \operatorname{Ind}_{K}^{G} \xi\right) \cong \bigoplus_{s \in \mathcal{S}} \operatorname{Hom}_{K_{s}}\left(\operatorname{Res}_{K_{s}}^{K} \chi, \xi_{s}\right)
$$

and

$$
\operatorname{Hom}_{K_{s}}\left(\operatorname{Res}_{K_{s}}^{K} \chi, \xi_{s}\right) \cong \begin{cases}\mathbb{C} & \text { if } \operatorname{Res}_{K_{s}}^{K} \chi=\xi_{s} \\ \{0\} & \text { otherwise }\end{cases}
$$

In particular, for $\xi=\chi$ we get Mackey's criterion for irreducibility (cf. Corollary 11.4.6): $\operatorname{Ind}_{K}^{G} \chi$ is irreducible if and only if

$$
\operatorname{Res}_{K_{s}}^{K} \chi \neq \chi_{s} \quad \text { for all } s \in \mathcal{S} \backslash\left\{1_{G}\right\}
$$

Let again $G=\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$ and, for each $\psi \in \widehat{\mathbb{F}_{q}^{*}}$, define a one-dimensional representation $\widehat{\chi}_{\psi}^{0}$ of G by setting

$$
\begin{equation*}
\widehat{\chi}_{\psi}^{0}(g)=\psi(\operatorname{det} g) \quad \text { for all } g \in G . \tag{14.18}
\end{equation*}
$$

Theorem 14.5.6 Keeping in mind (14.12) and Notation 14.5.4, we have:
(i) Let $\psi_{1}, \psi_{2}, \xi_{1}, \xi_{2} \in \widehat{\mathbb{F}_{q}^{*}}$. If $\psi_{1} \neq \psi_{2}$ then $\widehat{\chi}_{\psi_{1}, \psi_{2}}$ is an irreducible representation of G of dimension $q+1$. Moreover, $\widehat{\chi}_{\psi_{1}, \psi_{2}} \sim \widehat{\chi}_{\xi_{1}, \xi_{2}}$ if and only if $\left\{\psi_{1}, \psi_{2}\right\}=\left\{\xi_{1}, \xi_{2}\right\}$. In particular,

$$
\left\{\widehat{\chi}_{\psi_{1}, \psi_{2}}\left(=\widehat{\chi}_{\psi_{2}, \psi_{1}}\right): \psi_{1} \neq \psi_{2} \in \widehat{\mathbb{F}_{q}^{*}}\right\}
$$

consists of $\frac{(q-1)(q-2)}{2}$ pairwise nonequivalent irreducible representations of G.
(ii) For each $\psi \in \widehat{\mathbb{F}_{q}^{*}}$ there exists an irreducible G-representation $\widehat{\chi}_{\psi}^{1}$ of dimension q such that

$$
\widehat{\chi}_{\psi, \psi}=\widehat{\chi}_{\psi}^{0} \oplus \widehat{\chi}_{\psi}^{1} .
$$

Moreover,

$$
\left\{\widehat{\chi}_{\psi}^{1}: \psi \in \widehat{\mathbb{F}_{q}^{*}}\right\}
$$

is a set of $(q-1)$ pairwise nonequivalent q-dimensional G-representations, while

$$
\left\{\widehat{\chi}_{\psi}^{0}: \psi \in \widehat{\mathbb{F}_{q}^{*}}\right\}
$$

is the set of all one-dimensional G-representations.

Proof First of all, note that the Bruhat decomposition in Lemma 14.2.4 may be also written in the form

$$
G=B \coprod B w B
$$

yielding a decomposition of G into double B-cosets. Moreover, $w B w \cap B=$ D, so that, if χ, ξ are one-dimensional representations of B, Mackey's formula for invariants becomes

$$
\begin{align*}
& \operatorname{Hom}_{G}(\widehat{\chi}, \widehat{\xi}) \cong \operatorname{Hom}_{B}(\chi, \xi) \oplus \operatorname{Hom}_{D}\left(\operatorname{Res}_{D}^{B} \chi,{ }^{w} \xi\right) \\
&=\operatorname{Hom}_{B}(\chi, \xi) \oplus \operatorname{Hom}_{D}\left(\chi,{ }^{w} \xi\right) \tag{14.19}
\end{align*}
$$

In particular, for $\xi=\chi$ and $\xi \neq{ }^{w} \chi$ (more precisely, $\chi \neq{ }^{w} \chi$) we get the irreducibility of $\widehat{\chi}$; for $\chi \neq{ }^{w} \chi, \xi \neq{ }^{w} \xi$ and $\left\{\chi,{ }^{w} \chi\right\} \neq\left\{\xi,{ }^{w} \xi\right\}$ we get the nonequivalance of the irreducible representations $\widehat{\chi}$ and $\widehat{\xi}$. Their dimension is just $[G: B]=q+1$. Note that their nonequivalence also follows from Proposition 14.5.5. Finally, we can invoke Theorem 14.4.1 and (14.13).

Now suppose that $\chi={ }^{w} \chi$. From (14.19) we deduce that $\operatorname{dimHom}_{G}(\widehat{\chi}, \widehat{\chi})=$ 2 , so that $\widehat{\chi}$ decomposes into the sum of two irreducible B-representations. Moreover, $\widehat{\chi}_{\psi}^{0}$ is contained in $\widehat{\chi}_{\psi, \psi}$. Indeed, setting $f(g)=\overline{\psi(\operatorname{det} g)}$, we have

$$
\begin{equation*}
f(g b)=\overline{\psi(\operatorname{det}(g b))}=\overline{\psi(\operatorname{det} g)} \cdot \overline{\psi(\operatorname{det} b)}=\overline{\chi_{\psi, \psi}(b)} f(g) \tag{14.20}
\end{equation*}
$$

for all $g \in G$ and $b \in B$, so that (14.16) is satisfied, and

$$
\begin{equation*}
\left[\widehat{\chi}_{\psi, \psi}(g) f\right]\left(g_{0}\right)=f\left(g^{-1} g_{0}\right)=\widehat{\chi}_{\psi}^{0}(g) f\left(g_{0}\right) \tag{14.21}
\end{equation*}
$$

for all $g, g_{0} \in G$. Therefore, there exists a second irreducible representation $\widehat{\chi}_{\psi}^{1}$ in $\widehat{\chi}$ with $\operatorname{dim} \widehat{\chi}_{\psi}^{1}=(q+1)-1=q$. Again by (14.19), for different ψ s we get nonequivalent representations (this also follows from Proposition 14.5.5). Finally, if ξ is a one-dimensional G-representation, then it is contained in $\operatorname{Ind}_{B}^{G} \chi$, where $\chi=\operatorname{Res}_{B}^{G} \bar{\xi}$. This follows from computations as in (14.20) and (14.21). Alternatively, $\operatorname{Res}_{U}^{G} \xi \equiv 1$, because U is the commutator subgroup of B so that, by Proposition $14.5 .3, \xi$ is contained in some $\operatorname{Ind}_{B}^{G} \chi$. In any case, we have proved that $\left\{\widehat{\chi}_{\psi}^{0}, \psi \in \widehat{\mathbb{F}_{q}}\right\}$ is the list of all one-dimensional G-representations.

As a byproduct, we deduce the following result of a purely algebraic flavor:

Corollary 14.5.7 The commutator subgroup of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ is $\mathrm{SL}\left(2, \mathbb{F}_{q}\right)$.
Proof $\operatorname{SL}\left(2, \mathbb{F}_{q}\right)$ is normal and $\operatorname{GL}\left(2, \mathbb{F}_{q}\right) / \mathrm{SL}\left(2, \mathbb{F}_{q}\right)$ is Abelian, because we
have the homomorphism

$$
\begin{array}{ccc}
\mathrm{GL}\left(2, \mathbb{F}_{q}\right) & \rightarrow & \mathbb{F}_{q}^{*} \\
g & \mapsto & \operatorname{det} g
\end{array}
$$

whose kernel is $\operatorname{SL}\left(2, \mathbb{F}_{q}\right)$. In particular, $\operatorname{GL}\left(2, \mathbb{F}_{q}\right) / \operatorname{SL}\left(2, \mathbb{F}_{q}\right) \cong \mathbb{F}_{q}^{*}$, so that $\operatorname{SL}\left(2, \mathbb{F}_{q}\right) \supseteq \operatorname{GL}\left(2, \mathbb{F}_{q}\right)^{\prime}$, and $\left|\operatorname{GL}\left(2, \mathbb{F}_{q}\right) / \mathrm{SL}\left(2, \mathbb{F}_{q}\right)\right|=q-1$. But, for any finite group G, the quantity $\left|G / G^{\prime}\right|$ equals the number of one-dimensional irreducible G-representations (see Corollary 14.5.2) and, by Theorem 14.5.6, this number is exactly $\left|\mathbb{F}_{q}^{*}\right|=q-1$. This forces $\operatorname{SL}\left(2, \mathbb{F}_{q}\right)=\operatorname{GL}\left(2, \mathbb{F}_{q}\right)^{\prime}$.

Remark 14.5.8 From Proposition 14.5.3 and Proposition 14.5.5 it follows that for any one-dimensional representation χ of B, the induced representation $\widehat{\chi}$ decomposes as the sum of at most two irreducible G-representations. Indeed, if $\hat{\chi}=\sigma_{1} \oplus \sigma_{2} \oplus \cdots \oplus \sigma_{m}$, by Proposition 14.5.3 each σ_{i} contains a nontrivial U-invariant vector, while, by Proposition 14.5.5, $\widehat{\chi}$ contains exactly a two-dimensional space of U-invariant vectors. This fact might be used to get an alternative proof of the fact that $\widehat{\chi}_{\psi, \psi}$ contains exactly two irreducible representations.

Proposition 14.5.9 Let $\psi, \psi_{1}, \psi_{2} \in \widehat{\mathbb{F}_{q}^{*}}$ and denote by Ψ, Ψ_{1}, Ψ_{2} the corresponding representations of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ (cf. Theorem 12.1.3). Then

$$
\operatorname{Res}_{\mathrm{Af}\left(\mathbb{F}_{q}\right)}^{G} \widehat{\chi}_{\psi}^{1}=\Psi \oplus \pi
$$

and, if $\psi_{1} \neq \psi_{2}$,

$$
\operatorname{Res}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{G} \widehat{\chi}_{\psi_{1}, \psi_{2}}=\Psi_{1} \oplus \Psi_{2} \oplus \pi
$$

where π is the unique ($q-1$)-dimensional irreducible representation of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ (cf. Theorem 12.1.3).

Proof We first note that the space V^{U} (with V as in Proposition 14.5.5) being B-invariant, it is also $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$-invariant, and, moreover, $\operatorname{dim} V^{U}=2$. It is also clear that $\operatorname{Res}_{A f f\left(\mathbb{F}_{q}\right)}^{G} \widehat{\chi}_{\psi_{1}, \psi_{2}} \succeq \Psi_{1} \oplus \Psi_{2}$. Indeed, by (14.13) and Proposition 14.5.5, the B-representation on V^{U} is isomorphic to $\chi_{\psi_{1}, \psi_{2}} \oplus \chi_{\psi_{2}, \psi_{1}}$ and $\operatorname{Res}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{B} \widehat{\chi}_{\psi_{1}, \psi_{2}}=\Psi_{1}$. Then, there exists an $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$-invariant subspace W such that $V=V^{U} \oplus W$. The space W cannot contain a one-dimensional representation of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$, otherwise it would contain U-invariant vectors (note that U is the commutator subgroup also of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$). Therefore, W necessarily coincides with the representation space of π.

The case $\psi_{1}=\psi_{2}=\psi$ is analogous.

Exercise 14.5.10 (1) From Proposition 14.5 .9 and Frobenius reciprocity, deduce that, for all $\psi \in \widehat{\mathbb{F}_{q}^{*}}$,

$$
\operatorname{Ind}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{G} \Psi=\widehat{\chi}_{\psi}^{0} \oplus \widehat{\chi}_{\psi}^{1} \oplus\left(\bigoplus_{\substack{\psi_{1} \in \widehat{\mathbb{F}_{q}^{*}}: \\ \psi_{1} \neq \psi}} \widehat{\chi}_{\psi_{1}, \psi}\right)
$$

(2) From Exercise 12.1.8.(2) and transitivity of induction, deduce that

$$
\operatorname{Ind}_{U}^{G} \chi_{0}=\left(\underset{\psi \in \widehat{\widehat{F}_{q}^{*}}}{\bigoplus} \widehat{\chi}_{\psi}^{0}\right) \oplus\left(\underset{\psi \in \widehat{\mathbb{F}_{q}^{*}}}{\bigoplus} \widehat{\chi}_{\psi}^{1}\right) \oplus 2\left(\underset{\left\{\psi_{1}, \psi_{2}\right\}}{\bigoplus} \widehat{\chi}_{\psi_{1}, \psi_{2}}\right)
$$

where $\left\{\psi_{1}, \psi_{2}\right\}$ runs over all two-subsets of $\widehat{\mathbb{F}_{q}^{*}}$ (in other words, in the last summand, the representation $\widehat{\chi}_{\psi_{1}, \psi_{2}}=\widehat{\chi}_{\psi_{2}, \psi_{1}}$ is counted once, but it appears with multiplicity 2 in the decomposition).

14.6 Cuspidal representations

This section is devoted to a close analysis of the cuspidal representations of G The last part heavily relies on the material from Section 7.3. Let G be a finite group and $K \leq G$ a subgroup. Consider a one-dimensional K representation (χ, \mathbb{C}) that we identify with its character. As usual, we fix a complete set $\mathcal{S} \subseteq G$ of representatives for the double K-cosets in G, so that $G=\coprod_{s \in \mathcal{S}} K s K$, and set $K_{s}=K \cap s K s^{-1}$. Also, cf. (11.32), we denote by \mathcal{S}_{0} the set of $s \in \mathcal{S}$ such that $\operatorname{Hom}_{K_{s}}\left(\operatorname{Res}_{K_{s}}^{K} \chi, \chi_{s}\right)$ is not trivial.

For the convenience of the reader, in the following theorem we collect some results about the Hecke algebra $\mathcal{H}(G, K, \chi)$ from Chapter 13.

Theorem 14.6.1 Let
$\mathcal{H}(G, K, \chi)=\left\{f \in L(G): f\left(k_{1} g k_{2}\right)=\overline{\chi\left(k_{1}\right)} f(g) \overline{\chi\left(k_{2}\right)}, \forall k_{1}, k_{2} \in K, g \in G\right\}$.
Then the following hold:
(i) $\operatorname{End}_{G}\left(\operatorname{Ind}_{K}^{G} \chi\right) \cong \mathcal{H}(G, K, \chi)$;
(ii) $\mathcal{S}_{0}=\left\{s \in \mathcal{S}: \chi\left(s^{-1} x s\right)=\chi(x)\right.$, for all $\left.x \in K_{s}\right\}$;
(iii) every function $f \in \mathcal{H}(G, K, \chi)$ only depends on its values on \mathcal{S}_{0}, namely,

$$
f(g)= \begin{cases}\overline{\chi\left(k_{1}\right)} f(s) \overline{\chi\left(k_{2}\right)} & \text { if } g=k_{1} s k_{2} \text { with } s \in \mathcal{S}_{0} \\ 0 & \text { otherwise }\end{cases}
$$

Definition 14.6.2 A $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$-representation (ρ, V) whose subspace V^{U} of U-invariant vectors is trivial is called a cuspidal representation. We denote by $\left.\operatorname{Cusp}=\operatorname{Cusp}\left(\operatorname{GL}\left(2, \mathbb{F}_{q}\right)\right) \subset \widehat{\mathrm{GL}\left(2, \mathbb{F}_{q}\right.}\right)$ a complete set of pairwise nonequivalent irreducible cuspidal representations.

Theorem 14.6.3 Let χ be a non-trivial character of the (Abelian) group U. Then $\operatorname{Ind}_{U}^{G} \chi$ is multiplicity-free and does not depend on the particular choice of χ. Moreover

$$
\begin{equation*}
\operatorname{Ind}_{U}^{G} \chi=\left[\bigoplus_{\psi \in \widehat{\mathbb{F}_{q}^{*}}} \widehat{\chi}_{\psi}^{1}\right] \bigoplus\left[\bigoplus_{\psi_{1} \neq \psi_{2} \in \widehat{\mathbb{F}_{q}^{*}}} \widehat{\chi}_{\psi_{1}, \psi_{2}}\right] \bigoplus\left[\bigoplus_{\rho \in \mathrm{Cusp}} \rho\right] \tag{14.22}
\end{equation*}
$$

In other words, (G, U, χ) is a multiplicity-free triple for every non-trivial character $\chi \in \widehat{U}$ (cf. Chapter 13) and $\operatorname{Ind}_{U}^{G} \chi$ contains all the irreducible G-representations of dimension greater than one.

Proof We present two proofs of (14.22): the first one is of a more theoretical flavour, the second one relies on the computation of the number of conjugacy classes of G.

First proof. We first observe that U is a normal subgroup of B and that one has $B=\coprod_{d \in D} d U=\coprod_{d \in D} U d U$. From the Bruhat decomposition (cf. Lemma 14.2.4) we then get

$$
G=B \coprod U w B=\left(\coprod_{d \in D} U d U\right) \coprod\left(\coprod_{d \in D} U w d U\right)
$$

As a consequence we can take $\mathcal{S}:=D \coprod w D$ as a complete set of representatives for the double U-cosets in G. Moreover, it is easy to check that $d U d^{-1} \cap U=U$ and $w d U d^{-1} w \cap U=\left\{1_{G}\right\}$ for all $d \in D$. Thus (cf. Theorem 14.6.1.(ii)), we have that

$$
\begin{equation*}
\mathcal{S}_{0}=Z \coprod w D=\mathcal{S} \backslash(D \backslash Z) \tag{14.23}
\end{equation*}
$$

From Theorem 14.6.1.(iii) we deduce that every function $f \in \mathcal{H}(G, K, \psi)$ vanishes on $\coprod_{d \in D \backslash Z} d U$.

Consider now the map $\tau: G \rightarrow G$ defined by setting

$$
\tau\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{ll}
\delta & \beta \\
\gamma & \alpha
\end{array}\right)
$$

for all $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G$. It is easy to check that τ is an involutive antiautomorphism of G, that is, $\tau\left(g_{1} g_{2}\right)=\tau\left(g_{2}\right) \tau\left(g_{1}\right)$ and $\tau^{2}(g)=g$ for all $g_{1}, g_{2}, g \in G$. We claim that

$$
\begin{equation*}
f^{\tau}=f \quad \text { for all } f \in \mathcal{H}(G, U, \chi), \tag{14.24}
\end{equation*}
$$

where $f^{\tau} \in L(G)$ is defined by setting $f^{\tau}(g)=f(\tau(g))$ for all $g \in G$ (cf. (13.18)). In order to show (14.24), we recall that every $f \in \mathcal{H}(G, U, \chi)$ is supported in $\coprod_{s \in Z \amalg w D} U s U$ and observe that τ fixes pointwise the subgroup U. As a consequence, it suffices to show that τ also fixes all elements in $Z \amalg w D$. First of all, it is obvious that $\tau(z)=z$ for all $z \in Z$. The remaining part is a simple calculation:

$$
\tau(w d)=\tau\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right)\right)=\tau\left(\left(\begin{array}{cc}
0 & \beta \\
\alpha & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
0 & \beta \\
\alpha & 0
\end{array}\right)=w d
$$

for all $d=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right) \in D$. The claim follows.
By Proposition 13.3.4, the algebra $\mathcal{H}(G, U, \chi)$ is commutative and therefore $\operatorname{Ind}_{U}^{G} \chi$ is multiplicity-free. By transitivity of induction and (12.7) we have

$$
\begin{equation*}
\operatorname{Ind}_{U}^{G} \chi=\operatorname{Ind}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{G} \operatorname{Ind}_{U}^{\mathrm{Af}\left(\mathbb{F}_{q}\right)} \chi=\operatorname{Ind}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{G} \pi \tag{14.25}
\end{equation*}
$$

so that also $\operatorname{Ind}_{A f f\left(\mathbb{F}_{q}\right)}^{G} \pi$ is multiplicity-free.
The multiplicity of $\widehat{\chi}_{\psi}^{1}$ and $\widehat{\chi}_{\psi_{1}, \psi_{2}}$ in $\operatorname{Ind}_{U}^{G} \chi$ is equal to one by (14.25), Proposition 14.5.9, and Frobenius reciprocity. If ρ is cuspidal, then $\operatorname{Res}_{\mathrm{Aff}^{G}\left(\mathbb{F}_{q}\right)} \rho$ cannot contain a one-dimensional representation Ψ of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$, because otherwise it would contain also nontrivial U-invariant vectors (recall the proof of Proposition 14.5.9 and the fact that U is the commutator subgroup of $\left.\operatorname{Aff}\left(\mathbb{F}_{q}\right)\right)$. Then $\operatorname{Res}_{\text {Aff }\left(\mathbb{F}_{q}\right)}^{G} \rho$ must be a multiple of π. Therefore

$$
\begin{aligned}
1 & \left.\geq \text { multiplicity of a cuspidal representation } \rho \text { in } \operatorname{Ind}_{\mathrm{Aff}}^{G} \mathbb{F}_{q}\right) \\
& =\text { multiplicity of } \pi \text { in } \operatorname{Res}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{G} \rho \quad \text { (by Frobenius reciprocity) } \\
& \geq 1
\end{aligned}
$$

implies that all these multiplicities are equal to 1. Finally, from Corollary 11.2.3 and (14.25) it follows that $\operatorname{Ind}_{U}^{G} \chi$ cannot contain one-dimensional G representations.

Second proof. In Theorem 14.5.6 we have determined:

- $q-1$ one-dimensional representations of G (the $\widehat{\chi}_{\psi}^{0}$ s);
- $q-1$ irreducible q-dimensional representations of G (the $\widehat{\chi}_{\psi}^{1} \mathrm{~s}$);
- $\frac{(q-1)(q-2)}{2}$ irreducible $(q+1)$-dimensional representations of G (the $\left.\widehat{\chi}_{\psi_{1}, \psi_{2}} \mathrm{~s}\right)$.
Since G has $2(q-1)+\frac{(q-1)(q-2)}{2}+\frac{q(q-1)}{2}$ conjugacy classes (see Theorem 14.3.2), from Theorem 10.3.13.(ii) it follows that there exist exactly $\frac{q(q-1)}{2}$ irreducible representations missing in the above list: these are the cuspidal representations. Moreoever (cf. (11.10) and Proposition 14.3.1)

$$
\begin{equation*}
\operatorname{dimInd}_{U}^{G} \chi=[G: U]=(q+1)(q-1)^{2} . \tag{14.26}
\end{equation*}
$$

Invoking again Theorem 14.5.6 and using the last part of the first proof, we deduce that the $\widehat{\chi}_{\psi}^{1} \mathrm{~s}$ and $\widehat{\chi}_{\psi_{1}, \psi_{2} \mathrm{~s}}$ sum up in $\operatorname{Ind}_{U}^{G} \chi$ forming a subspace of dimension

$$
\begin{align*}
\sum_{\psi \in \widehat{\mathbb{F}_{q}^{*}}} \operatorname{dim} \hat{\chi}_{\psi}^{1}+\sum_{\psi_{1} \neq \psi_{2} \in \widehat{\mathbb{F}_{q}^{*}}} \operatorname{dim} \widehat{\chi}_{\psi_{1}, \psi_{2}} & =q(q-1)+\frac{\left(q^{2}-1\right)(q-2)}{2} \tag{14.27}\\
& =(q-1) \frac{q^{2}+q-2}{2} .
\end{align*}
$$

Denoting by $r_{\rho} \geq 1$ the multiplicity of π in $\operatorname{Res}_{A f f\left(\mathbb{F}_{q}\right)}^{G} \rho \in$ Cusp, so that $\operatorname{dim} \rho=r_{\rho} \operatorname{dim} \pi=r_{\rho}(q-1)$ (cf. the first proof), by subtracting (14.27) from (14.26), we deduce

$$
\sum_{\rho \in \mathrm{Cusp}} r_{\rho}(q-1)=(q-1) \frac{q(q-1)}{2},
$$

that is, $\sum_{\rho \in \mathrm{Cusp}} r_{\rho}=\frac{q(q-1)}{2}$. Since this is a sum of $\frac{q(q-1)}{2}$ integers $r_{\rho} \geq 1$, we deduce that $r_{\rho}=1$ for every cuspidal representation ρ.

Remark 14.6.4 Alternatively, from (14.23) and the multiplicity freeness of $\operatorname{Ind}_{U}^{G} \chi$ one deduces that

$$
\operatorname{dimEnd}_{G}\left(\operatorname{Ind}_{U}^{G} \chi\right)=|Z|+|w D|=(q-1)+(q-1)^{2}=q(q-1)
$$

Since parabolic induction yields

$$
q-1+\frac{(q-1)(q-2)}{2}=\frac{q(q-1)}{2}
$$

irreducible representations in $\operatorname{Ind}_{U}^{G} \chi$, there are other $\frac{q(q-1)}{2}$ irreducible representations in $\operatorname{Ind}_{U}^{G} \chi$, and these must be exactly the $\frac{q(q-1)}{2}$ cuspidal representations.

Corollary 14.6.5 A G-representation (ρ, V) (not necessarily irreducible) is a cuspidal representation if and only if $\operatorname{Res}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{G} \rho=\pi$. In particular, $\operatorname{dim} \rho=q-1$ for every cuspidal representation.

Proof The "only if" part can be immediately deduced from the proof of the previous theorem where we have shown that, if ρ is cuspidal, then $\operatorname{Res}_{\operatorname{Aff}\left(\mathbb{F}_{q}\right)}^{G} \rho=\pi$ and, in particular, $\operatorname{dim} \rho=q-1$. The "if" part is trivial: if (ρ, V) is a G-representation and $\operatorname{Res}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{G} \rho=\pi$ then ρ is G-irreducible, since π is $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$-irreducible. Moreover, V cannot contain nontrivial U-invariant vectors because,

$$
\operatorname{Res}_{U}^{G} \rho=\operatorname{Res}_{U}^{\operatorname{Aff}\left(\mathbb{F}_{q}\right)} \operatorname{Res}_{\operatorname{Aff}\left(\mathbb{F}_{q}\right)}^{G} \rho=\operatorname{Res}_{U}^{\operatorname{Aff}\left(\mathbb{F}_{q}\right)} \pi=\bigoplus_{\substack{\chi \in \widehat{U} \\ \chi \text { nontrivial }}} \chi
$$

where the last equality follows from Corollary 12.1.7.
We now introduce a special element in B :

$$
b_{0}=\left(\begin{array}{cc}
-1 & -1 \tag{14.28}\\
0 & 1
\end{array}\right)
$$

The following property is elementary, but useful: for all $b \in B \backslash D$ there exist $d_{1}, d_{2} \in D$ such that

$$
\begin{equation*}
b=d_{1} b_{0} d_{2} \tag{14.29}
\end{equation*}
$$

Indeed, if $\left(\begin{array}{cc}\alpha & \beta \\ 0 & \delta\end{array}\right) \in B \backslash D$, that is $\beta \neq 0$, then

$$
\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -\delta \beta^{-1}
\end{array}\right)\left(\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-\alpha & 0 \\
0 & -\beta
\end{array}\right)
$$

Also note that if $d=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \delta\end{array}\right) \in D$ then

$$
\tilde{d}=w d w=\left(\begin{array}{ll}
\delta & 0 \tag{14.30}\\
0 & \alpha
\end{array}\right) \in D
$$

Exercise 14.6.6 From Exercise 14.5.10 and Exercise 12.1.8, deduce that, for $\psi \in \widehat{A}$,

$$
\operatorname{Ind}_{A}^{G} \psi=\left(\operatorname{Ind}_{U}^{G} \chi\right) \oplus\left[\widehat{\chi}_{\psi}^{0} \oplus \widehat{\chi}_{\psi}^{1} \oplus\left(\underset{\substack{\psi_{1} \in \widehat{\mathbb{R}}_{q}^{*}: \\ \psi_{1} \neq \psi}}{ } \widehat{\chi}_{\psi_{1}, \psi}\right)\right]
$$

where χ is any nontrivial character of U.

Proposition 14.6.7 Let V be a finite dimensional vector space and $\rho: G \rightarrow$ $\operatorname{End}(V)$ a map such that:
(a) $\operatorname{Res}_{B}^{G} \rho$ is an irreducible B-representation;
(b) $\rho\left(b_{1} w b_{2}\right)=\rho\left(b_{1}\right) \rho(w) \rho\left(b_{2}\right)$ for all $b_{1}, b_{2} \in B$;
(c) $\rho(w d w)=\rho(w) \rho(d) \rho(w)$ for all $d \in D$;
(d) $\rho\left(w b_{0} w\right)=\rho(w) \rho\left(b_{0}\right) \rho(w)$.

Then (ρ, V) is an irreducible G-representation.

Proof We show that $\rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \rho\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$. Note that, this gives, in particular, that $\rho(g) \in \mathrm{GL}(V)$ for all $g \in G$. When $g_{1}, g_{2} \in B$, this follows from the hypothesis (a) (which also implies that $\rho\left(1_{G}\right)=I_{V}$). By virtue of the Bruhat decomposition (cf. Lemma 14.2.4) we have the following remaining cases:
First case: $g_{1}=b \in B$ and $g_{2}=b_{1} w b_{2} \in B w B$. Then

$$
\begin{aligned}
\qquad \rho\left(g_{1} g_{2}\right) & =\rho\left(b b_{1} w b_{2}\right) \\
(\text { by hypothesis }(\mathrm{b})) & =\rho\left(b b_{1}\right) \rho(w) \rho\left(b_{2}\right) \\
(\text { by hypothesis }(\mathrm{a})) & =\rho(b) \rho\left(b_{1}\right) \rho(w) \rho\left(b_{2}\right) \\
\text { (by hypothesis (b)) } & =\rho(b) \rho\left(b_{1} w b_{2}\right) \\
& =\rho\left(g_{1}\right) \rho\left(g_{2}\right)
\end{aligned}
$$

The case $g_{1} \in B w B$ and $g_{2} \in B$ can be treated in the same way.
Second case: $g_{1}=b_{1} w b_{2} \in B w B$ and $g_{2}=b_{3} w b_{4} \in B w B$. We must further distinguish two subcases:

First subcase: $b_{2} b_{3}=d \in D$. Then

$$
\begin{aligned}
\qquad \rho\left(g_{1} g_{2}\right) & =\rho\left(b_{1} w d w b_{4}\right) \\
(\text { by }(14.30)) & =\rho\left(b_{1} \tilde{d} b_{4}\right) \\
(\text { by hypothesis }(\mathrm{a})) & =\rho\left(b_{1}\right) \rho(\tilde{d}) \rho\left(b_{4}\right) \\
(\text { by hypothesis }(\mathrm{c})) & =\rho\left(b_{1}\right) \rho(w) \rho(d) \rho(w) \rho\left(b_{4}\right) \\
(\text { by hypothesis (a)) } & =\rho\left(b_{1}\right) \rho(w) \rho\left(b_{2}\right) \rho\left(b_{3}\right) \rho(w) \rho\left(b_{4}\right) \\
(\text { by hypothesis (b)) } & =\rho\left(g_{1}\right) \rho\left(g_{2}\right)
\end{aligned}
$$

Second subcase: $b_{2} b_{3} \in B \backslash D$. By (14.29) there exist $d_{1}, d_{2} \in D$ such that

$$
\begin{equation*}
b_{2} b_{3}=d_{1} b_{0} d_{2} \tag{14.31}
\end{equation*}
$$

Then

$$
\begin{aligned}
\rho\left(g_{1} g_{2}\right) & =\rho\left(b_{1} w d_{1} b_{0} d_{2} d w b_{4}\right) \\
(\text { by }(14.30)) & =\rho\left(b_{1} \tilde{1}_{1} w b_{0} w \tilde{d}_{2} b_{4}\right) \\
\text { (by the first case for } \left.w b_{0} w \in B w B\right) & =\rho\left(b_{1} \tilde{d}_{1}\right) \rho\left(w b_{0} w\right) \rho\left(\tilde{d}_{2} b_{4}\right) \\
\text { (by hypothesis (d)) } & =\rho\left(b_{1} \tilde{d}_{1}\right) \rho(w) \rho\left(b_{0}\right) \rho(w) \rho\left(\tilde{d}_{2} b_{4}\right) \\
\text { (by the first case) } & =\rho\left(b_{1} \tilde{d}_{1} w\right) \rho\left(b_{0}\right) \rho\left(w \tilde{d}_{2} b_{4}\right) \\
\text { (by }(14.30)) & =\rho\left(b_{1} w d_{1}\right) \rho\left(b_{0}\right) \rho\left(d_{2} w b_{4}\right) \\
\text { (by the first case and hypothesis (a)) } & =\rho\left(b_{1} w\right) \rho\left(d_{1} b_{0} d_{2}\right) \rho\left(w b_{4}\right) \\
\text { (by (14.31)) } & =\rho\left(b_{1} w\right) \rho\left(b_{2} b_{3}\right) \rho\left(w b_{4}\right) \\
\text { (by the first case and hypothesis (a)) } & =\rho\left(b_{1} w b_{2}\right) \rho\left(b_{3} w b_{4}\right) .
\end{aligned}
$$

This shows that ρ is a representation. Its G-irreducibility follows from B irreducibility (hypothesis (a)).
We now fix $\chi \in \widehat{\mathbb{F}_{q}}$ and consider an indecomposable character $\nu \in \widehat{\mathbb{F}_{q^{2}}^{*}}$ (cf. Definition 7.2.1). Let $j=j_{\chi, \nu}$ be the associated generalized Kloostermann sum (cf. (7.16)). Set $V=L\left(\mathbb{F}_{q}^{*}\right)$. We define a map $\rho: G \rightarrow \operatorname{End}(V)$ by setting, for all $f \in V$ and $y \in \mathbb{F}_{q}^{*}$,

$$
\begin{equation*}
[\rho(g) f](y)=\nu(\delta) \chi\left(\delta^{-1} \beta y^{-1}\right) f\left(\delta \alpha^{-1} y\right) \tag{14.32}
\end{equation*}
$$

if $g=\left(\begin{array}{cc}\alpha & \beta \\ 0 & \delta\end{array}\right) \in B$ and

$$
\begin{equation*}
[\rho(g) f](y)=-\sum_{x \in \mathbb{F}_{q}^{*}} \nu(-\gamma x) \chi\left(\alpha \gamma^{-1} y^{-1}+\gamma^{-1} \delta x^{-1}\right) j\left(\gamma^{-2} y^{-1} x^{-1} \operatorname{det}(g)\right) f(x) \tag{14.33}
\end{equation*}
$$

if $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G \backslash B \equiv B w B$ (that is, if $\gamma \neq 0$).
Remark 14.6.8 As noted by Terras [159, p. 372], the minus sign in the right hand side of (14.33) is essential for the definition of $\rho(g)$ for $g \in G \backslash B$. Note that Piatetski-Shapiro [123] defines an induced representation by a right-translation action, namely, given a K-representation (σ, V), he defines ($\rho, \operatorname{Ind}_{K}^{G} V$) by setting

$$
\begin{equation*}
\operatorname{Ind}_{K}^{G} V=\{f: G \rightarrow V: f(k g)=\sigma(k) f(g) \text { for all } k \in K \text { and } g \in G\} \tag{14.34}
\end{equation*}
$$

and

$$
\left[\rho\left(g_{1}\right) f\right]\left(g_{2}\right)=f\left(g_{2} g_{1}\right)
$$

for all $f \in \operatorname{Ind}_{K}^{G} V$, and $g_{1}, g_{2} \in G$ (compare with (11.1) and (11.2)). Moreover, if $k(y, x ; g)$ is as in [123, p. 40], our ρ is defined by

$$
[\rho(g) f](y)=\sum_{x \in \mathbb{F}_{q}^{*}} k\left(y^{-1}, x^{-1} ; g\right) f(x)
$$

for all $f \in \operatorname{Ind}_{K}^{G} V, g \in G$, and $y \in \mathbb{F}_{q}^{*}$.
Theorem 14.6.9 The above defined map ρ is an irreducible unitary G representation and $\operatorname{Res}_{\operatorname{Aff}\left(\mathbb{F}_{q}\right)}^{G} \rho=\pi$ (cf. Proposition 14.5.9).

Proof The proof is an application of Proposition 14.6.7.
First of all, we prove that

$$
\operatorname{Res}_{B}^{G} \rho \sim\left(\operatorname{Res}_{\mathbb{F}_{q}^{*}}^{\mathbb{F}_{q^{2}}^{*}} \nu\right) \boxtimes \pi
$$

Indeed, using Theorem 14.4.1, we get

$$
\begin{aligned}
\left\{\left[\left(\operatorname{Res}_{\mathbb{F}_{q}^{*}}^{\mathbb{F}^{*}} \nu \boxtimes \pi\right)\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)\right] f\right\}(y) & =\nu(\delta)\left[\pi\left(\begin{array}{cc}
\alpha \delta^{-1} & \beta \delta^{-1} \\
0 & 1
\end{array}\right) f\right](y) \\
(\text { by Proposition 12.1.4)} & =\nu(\delta) \chi\left(\beta \delta^{-1} y^{-1}\right) f\left(\alpha^{-1} \delta y\right) \\
(\text { by }(14.32)) & =[\rho(g) f](y),
\end{aligned}
$$

for all $\left(\begin{array}{cc}\alpha & \beta \\ 0 & \delta\end{array}\right) \in B, f \in V$, and $y \in \mathbb{F}_{q}^{*}$. This shows that $\operatorname{Res}_{B}^{G} \rho$ is B irreducible, and condition (a) in Proposition 14.6.7 is satisfied.

We also note that, for all $y \in \mathbb{F}_{q}^{*}$,

$$
\begin{equation*}
[\rho(w) f](y)=-\sum_{x \in \mathbb{F}_{q}^{*}} \nu(-x) j\left(-x^{-1} y^{-1}\right) f(x) \tag{14.35}
\end{equation*}
$$

Let now $b_{1}=\left(\begin{array}{cc}\alpha_{1} & \beta_{1} \\ 0 & \delta_{1}\end{array}\right), b_{2}=\left(\begin{array}{cc}\alpha_{2} & \beta_{2} \\ 0 & \delta_{2}\end{array}\right) \in B$. Then

$$
b_{1} w b_{2}=\left(\begin{array}{cc}
\beta_{1} \alpha_{2} & \beta_{1} \beta_{2}+\alpha_{1} \delta_{2} \\
\delta_{1} \alpha_{2} & \delta_{1} \beta_{2}
\end{array}\right)
$$

and $\operatorname{det}\left(b_{1} w b_{2}\right)=-\alpha_{1} \alpha_{2} \delta_{1} \delta_{2}$ so that

$$
\begin{aligned}
{\left[\rho\left(b_{1} w b_{2}\right) f\right](y)=-\sum_{x \in \mathbb{F}_{q}^{*}} \nu\left(-\delta_{1} \alpha_{2} x\right) \chi(} & \left.\beta_{1} \delta_{1}^{-1} y^{-1}+\alpha_{2}^{-1} \beta_{2} x^{-1}\right) \\
& \cdot j\left(-\alpha_{1} \delta_{2} \alpha_{2}^{-1} \delta_{1}^{-1} x^{-1} y^{-1}\right) f(y)
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\rho\left(b_{1}\right) \rho(w) \rho\left(b_{2}\right) f\right](y)=\nu\left(\delta_{1}\right) \chi\left(\delta_{1}^{-1} \beta_{1} y^{-1}\right)\left[\rho(w) \rho\left(b_{2}\right) f\right]\left(\delta_{1} \alpha_{1}^{-1} y\right)} \\
& \begin{aligned}
&(\text { by }(14.35))=-\nu\left(\delta_{1}\right) \chi\left(\delta_{1}^{-1} \beta_{1} y^{-1}\right) \sum_{x \in \mathbb{F}_{q}^{*}} \nu(-x) \\
& \cdot j\left(-x^{-1} y^{-1} \delta_{1}^{-1} \alpha_{1}\right)\left[\rho\left(b_{2}\right) f\right](x) \\
&=-\sum_{x \in \mathbb{F}_{q}^{*}} \nu\left(-x \delta_{1} \delta_{2}\right) \chi\left(\delta_{1}^{-1} \beta_{1} y^{-1}+\delta_{2}^{-1} \beta_{2} x^{-1}\right)
\end{aligned} \\
& \qquad \begin{aligned}
\left(\operatorname{setting} z=\delta_{2} \alpha_{2}^{-1} x\right)=-\sum_{z \in \mathbb{F}_{q}^{*}} \nu\left(-z \delta_{1} \alpha_{2}\right) \chi\left(\beta_{1} \delta_{1}^{-1} y^{-1}+\alpha_{1}^{-1} \beta_{2} z^{-1}\right)
\end{aligned} \\
& \quad \cdot j\left(-z^{-1} y^{-1} \alpha_{1} \delta_{2} \alpha_{2}^{-1} \delta_{1}^{-1}\right) f\left(\delta_{2} \alpha_{2}^{-1} x\right)
\end{aligned}
$$

This shows that $\rho\left(b_{1} w b_{2}\right)=\rho\left(b_{1}\right) \rho(w) \rho\left(b_{2}\right)$, and we have proved condition (b) in Proposition 14.6.7.

We now consider $d=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \delta\end{array}\right) \in D$ so that $w d w=\left(\begin{array}{cc}\delta & 0 \\ 0 & \alpha\end{array}\right)(\operatorname{cf.}(14.30))$. Then, by (14.35),

$$
\begin{aligned}
{[\rho(w) \rho(d) \rho(w) f](y) } & =-\sum_{x \in \mathbb{F}_{q}^{*}} \nu(-x) j\left(-x^{-1} y^{-1}\right)[\rho(d) \rho(w) f](x) \\
& =-\sum_{x \in \mathbb{F}_{q}^{*}} \nu(-x \delta) j\left(-x^{-1} y^{-1}\right)[\rho(w) f]\left(\alpha^{-1} \delta x\right) \\
& =\sum_{x, z \in \mathbb{F}_{q}^{*}} \nu(x z \delta) j\left(-x^{-1} y^{-1}\right) j\left(-\alpha \delta^{-1} x^{-1} z^{-1}\right) f(z) \\
\left(\text { set } t=-x^{-1} z^{-1} \alpha \delta^{-1}\right) & =\nu(-\alpha) \sum_{z \in \mathbb{F}_{q}^{*}}\left[\sum_{t \in \mathbb{F}_{q}^{*}} \nu\left(t^{-1}\right) j(t) j\left(y^{-1} z \alpha^{-1} \delta t\right)\right] f(z) \\
(\text { by Corollary } 7.3 .6) & =\sum_{z \in \mathbb{F}_{q}^{*}} \nu(\alpha) \delta_{1, y^{-1} z \alpha^{-1} \delta} f(z) \\
& =\nu(\alpha) f\left(\alpha \delta^{-1} y\right) \\
(\text { by }(14.32)) & =[\rho(w d w) f](y)
\end{aligned}
$$

and condition (c) also is proved.
Finally, if $b_{0}=\left(\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right)$ is as in (14.28), then $w b_{0} w=\left(\begin{array}{cc}1 & 0 \\ -1 & -1\end{array}\right)$ so
that

$$
\left[\rho\left(w b_{0} w\right) f\right](y)=-\sum_{z \in \mathbb{F}_{q}^{*}} \nu(z) \chi\left(z^{-1}-y^{-1}\right) j\left(-z^{-1} y^{-1}\right) f(z)
$$

while, using again (14.35) and (14.32),

$$
\begin{aligned}
{\left[\rho(w) \rho\left(b_{0}\right) \rho(w) f\right](y) } & =-\sum_{x \in \mathbb{F}_{q}^{*}} \nu(-x) j\left(-x^{-1} y^{-1}\right)\left[\rho\left(b_{0}\right) \rho(w) f\right](x) \\
& =-\sum_{x \in \mathbb{F}_{q}^{*}} \nu(-x) j\left(-x^{-1} y^{-1}\right) \chi\left(-x^{-1}\right)[\rho(w) f](-x) \\
& =\sum_{x, z \in \mathbb{F}_{q}^{*}} \nu(x z) j\left(-x^{-1} y^{-1}\right) j\left(x^{-1} z^{-1}\right) \chi\left(-x^{-1}\right) f(z) \\
\left(\operatorname{setting} w=-x^{-1}\right) & =\sum_{z \in \mathbb{F}_{q}^{*}} \nu(-z)\left[\sum_{w \in \mathbb{F}_{q}^{*}} j\left(w y^{-1}\right) j\left(w\left(-z^{-1}\right)\right) \nu\left(w^{-1}\right) \chi(w)\right] f(z) \\
& =-\sum_{z \in \mathbb{F}_{q}^{*}} \nu(z) j\left(-y^{-1} z^{-1}\right) \chi\left(z^{-1}-y^{-1}\right) f(z)
\end{aligned}
$$

where the last equality follows from Proposition 7.3.4. Thus condition (d) is proved as well.

We are only left to show that ρ is unitary. Let $f_{1}, f_{2} \in L\left(\mathbb{F}_{q}^{*}\right)$. If $g=$ $\left(\begin{array}{ll}\alpha & \beta \\ 0 & \delta\end{array}\right)$ then we have

$$
\begin{aligned}
\left\langle\rho(g) f_{1}, \rho(g) f_{2}\right\rangle & =\sum_{x \in \mathbb{F}_{q}^{*}} \nu(\delta) \chi\left(\delta^{-1} \beta x^{-1}\right) f_{1}\left(\delta \alpha^{-1} x\right) \overline{\nu(\delta) \chi\left(\delta^{-1} \beta x^{-1}\right) f_{2}\left(\delta \alpha^{-1} x\right)} \\
& ={ }_{(*)} \sum_{y \in \mathbb{F}_{q}^{*}} f_{1}(y) \overline{f_{2}(y)} \\
& =\left\langle f_{1}, f_{2}\right\rangle
\end{aligned}
$$

where $(*)$ follows from the substitution $y=\delta \alpha^{-1} x$ and the fact that $|\nu(\cdot)|=$ $|\chi(\cdot)|=1$.

Similarly, if $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ with $\gamma \neq 0$, then

$$
\begin{aligned}
\left\langle\rho(g) f_{1}, \rho(g) f_{2}\right\rangle= & \sum_{y \in \mathbb{F}_{q}^{*}} \sum_{x, z \in \mathbb{F}_{q}^{*}} \nu(-\gamma x) \chi\left(\alpha \gamma^{-1} y^{-1}+\gamma^{-1} \delta x^{-1}\right) . \\
& \cdot \frac{j\left(\gamma^{-2} y^{-1} x^{-1} \operatorname{det}(g)\right) f_{1}(x) \overline{\nu(-\gamma z)}}{=} \sum_{x, z \in \mathbb{F}_{q}^{*}} f_{1}(x) \overline{f_{2}(z)} \nu\left(x z^{-1} y^{-1}\right) \chi\left[\gamma^{-1} \delta\left(x^{-1}-z^{-1}\right)\right] \cdot \\
& \cdot \sum_{y \in \mathbb{F}_{q}^{*}} j\left(\gamma^{-2} y^{-1} x^{-1} \operatorname{det}(g)\right) \overline{j\left(\gamma^{-2} y^{-1} z^{-1} \operatorname{det}(g)\right) f_{2}(z)}
\end{aligned}
$$

$($ by Proposition 7.3.5 $)=\sum_{x, z \in \mathbb{F}_{q}^{*}} f_{1}(x) \overline{f_{2}(z)} \nu\left(x z^{-1}\right) \chi\left[\gamma^{-1} \delta\left(x^{-1}-z^{-1}\right)\right] \delta_{x, z}$

$$
=\left\langle f_{1}, f_{2}\right\rangle
$$

In the following, we write ρ_{ν} (resp. j_{ν}) to emphasize the dependence of the representation ρ (resp. the generalized Kloosterman sum) from the indecomposable character ν.

Theorem 14.6.10 Let μ and ν be indecomposable characters of $\mathbb{F}_{q^{2}}^{*}$. Then the following conditions are equivalent.
(a) the representations ρ_{μ} and ρ_{ν} are equivalent;
(b) $\mu=\nu$ or $\bar{\mu}=\nu$;
(c) $j_{\mu}=j_{\nu}$ and $\left.\mu\right|_{\mathbb{F}_{q}^{*}}=\left.\nu\right|_{\mathbb{F}_{q}^{*}}$.

Proof The implication (b) \Rightarrow (c) follows immediately from the definitions, and the converse, namely $(c) \Rightarrow(b)$, is Theorem 7.3.7. The fact that (c) implies (a) is trivial. We are only left to prove (a) \Rightarrow (c). We thus suppose that $\rho_{\mu} \sim \rho_{\nu}$. Then there exists an invertible operator $T: L\left(\mathbb{F}_{q}^{*}\right) \rightarrow L\left(\mathbb{F}_{q}^{*}\right)$ such that

$$
T \rho_{\mu}(g)=\rho_{\nu}(g) T
$$

for all $g \in G$. Since, taking into account Theorem 14.6.9,

$$
\operatorname{Res}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{G} \rho_{\mu}=\operatorname{Res}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{G} \rho_{\nu}=\pi
$$

and π is $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$-irreducible, we deduce that $T=\lambda I_{L\left(\mathbb{F}_{q}^{*}\right)}$ for some $\lambda \in \mathbb{C} \backslash\{0\}$, so that

$$
\rho_{\mu}(g)=\rho_{\nu}(g)
$$

for all $g \in G$.
In particular, for all $x, \delta \in \mathbb{F}_{q}^{*}$ and $f \in L\left(\mathbb{F}_{q}^{*}\right)$ we have:

$$
\rho_{\mu}\left(\begin{array}{ll}
1 & 0 \\
0 & \delta
\end{array}\right)=\rho_{\nu}\left(\begin{array}{ll}
1 & 0 \\
0 & \delta
\end{array}\right)
$$

so that

$$
\mu(\delta) f(\delta x)=\nu(\delta) f(\delta x)
$$

and therefore

$$
\begin{equation*}
\mu(\delta)=\nu(\delta) \tag{14.36}
\end{equation*}
$$

This shows that $\left.\mu\right|_{\mathbb{F}_{q}^{*}}=\left.\nu\right|_{\mathbb{F}_{q}^{*}}$. Similarly, from (14.35) and the equality $\rho_{\mu}(w)=\rho_{\nu}(w)$ we deduce

$$
\sum_{x \in \mathbb{F}_{q}^{*}} \mu(-x) j_{\mu}\left(-x^{-1} y^{-1}\right) f(x)=\sum_{x \in \mathbb{F}_{q}^{*}} \nu(-x) j_{\nu}\left(-x^{-1} y^{-1}\right) f(x)
$$

for all $y \in \mathbb{F}_{q}^{*}$, which implies (taking into account (14.36)) that

$$
\begin{equation*}
j_{\mu}(x)=j_{\nu}(x) \tag{14.37}
\end{equation*}
$$

for all $x \in \mathbb{F}_{q}^{*}$.
Corollary 14.6.11 The set $\left\{\rho_{\nu}: \nu\right.$ indecomposable character of $\left.\mathbb{F}_{q^{2}}^{*}\right\}$ coincides with the set Cusp of all irreducible cuspidal representations of G.

Proof Let ν be an indecomposable character of $\mathbb{F}_{q^{2}}^{*}$. By Theorem 14.6.9, $\operatorname{Res}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{G} \rho_{\nu}=\pi$ (and ρ_{ν} is irreducible) so that, by virtue of Corollary 14.6.5, $\rho_{\nu} \in$ Cusp (alternatively, keeping in mind $\operatorname{dim} \rho_{\nu}=q-1$, to show that ρ_{ν} is cuspidal one may refer to the discussion in the second proof of Theorem 14.6.3). By Remark 14.6.4 (cf. also the second proof of Theorem 14.6.3), there are exactly $\frac{q(q-1)}{2}$ pairwise non-equivalent irreducible cuspidal representations. On the other hand, the number of indecomposable characters is $q(q-1)$: thus, the ρ_{ν} s exhaust Cusp (and, in fact, since $\rho_{\nu}=\rho_{\bar{\nu}}$, each cuspidal representation is listed twice).

14.7 Whittaker models and Bessel functions

In this section, we expose the the Piatetsky-Schapiro's theory of Whittaker models and Bessel functions. Our approach, however, is based on our theory of multiplicity-free triples (see Chapter 13): this way, we clarify many intricate points and simplify calculations.

Fix a nontrivial character $(\chi, \mathbb{C}) \in \widehat{U} \equiv \widehat{\mathbb{F}_{q}}$. By Theorem 14.6.3, the induced representation $\left(\operatorname{Ind}_{U}^{G} \chi, \operatorname{Ind}_{U}^{G} \mathbb{C}\right)$ is multiplicity free and contains all the irreducible representations of G of dimension greater than 1 . Let (ρ, V) be an arbitrary irreducible G-representation with $\operatorname{dim} V>1$, so that, by the above, $\operatorname{dimHom}_{G}\left(\rho, \operatorname{Ind}_{U}^{G} \chi\right)=1$. We fix an operator $T^{\rho} \in \operatorname{Hom}_{G}\left(\rho, \operatorname{Ind}_{U}^{G} \chi\right)$, which is also an isometry (so that, T^{ρ} is defined up to a complex constant of modulus 1). The subspace $T^{\rho} V \leq \operatorname{Ind}_{U}^{G} \mathbb{C}$ is called the Whittaker model of ρ. Note that it does not depend on T^{ρ} and, for all $v \in V$, the function $T^{\rho} v: G \rightarrow \mathbb{C}$ satisfies

$$
\begin{equation*}
\left[T^{\rho} v\right](g u)=\overline{\chi(u)}\left[T^{\rho} v\right](g) \tag{14.38}
\end{equation*}
$$

for all $g \in G, v \in V$ and $u \in U$ (by definition of $\operatorname{Ind}_{U}^{G} \chi$), and

$$
\begin{equation*}
\left[T^{\rho} v\right]\left(h^{-1} g\right)=\left[T^{\rho} \rho(h) v\right](g) \tag{14.39}
\end{equation*}
$$

for all $g, h \in G, v \in V$ (because T^{ρ} is an intertwiner and, again, by definition of $\left.\operatorname{Ind}_{U}^{G} \chi\right)$. Finally, since T^{ρ} is an isometry we have

$$
\left\|T^{\rho} v\right\|_{\operatorname{Ind}_{U}^{G} \mathbb{C}}=\|v\|_{V} .
$$

In particular, $T^{\rho} v=0 \Leftrightarrow v=0$.
Proposition 14.7.1 Let (ρ, V) be an irreducible G-representation satisfying $\operatorname{dim} V>1$. Then
(i)

$$
\operatorname{Res}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{G} V \sim J(V) \oplus V_{\pi}
$$

where $J(V)$ is the Jacquet module (see Section 14.5) and $\left(\pi, V_{\pi}\right)$ is the unique $q-1$ dimensional irreducible representation of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$.
(ii) Let $v \in J(V)$ then

$$
\rho\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right) v=v
$$

for all $\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right) \in U$.
(iii) $\operatorname{dim} V>\operatorname{dim} J(V)$.

Proof (i) It is an immediate consequence of the following facts: (ρ, V) is contained in $\left.\operatorname{Ind}_{U}^{G} \chi \sim \operatorname{Ind}_{\mathrm{Aff}}^{G} \mathbb{F}_{q}\right) \pi$ so that $\left.\operatorname{Res}_{\mathrm{Aff}}^{G} \mathbb{F}_{q}\right) V$ contains V_{π} with multiplicity one. If (ρ, V) is cuspidal, then $\operatorname{Res}_{\mathrm{Aff}\left(\mathbb{F}_{q}\right)}^{G} \rho \sim \pi$ (cf. Corollary 14.6.5) and $J(V)=0$ (by definition). If (ρ, V) is parabolic, we may invoke Proposition 14.5.9.
(ii) If $J(V)$ is nontrivial, then by Theorem 12.1.3 and Proposition 14.5.9 we have

$$
\operatorname{Res}_{A f f\left(\mathbb{F}_{q}\right)}^{G}\left[\left.\rho\right|_{J(V)}\right]= \begin{cases}\text { either } & \Psi_{1} \oplus \Psi_{2} \\ \text { or } & \Psi\end{cases}
$$

and Ψ is trivial on U.
(iii) This follows immediately from (i).

The following is an elementary but useful identity.
Lemma 14.7.2 Let (ρ, V) be an irreducible G-representation with $\operatorname{dim} V>1$. Let also $v \in V, \alpha \in \mathbb{F}_{q}^{*}$ and $\beta \in \mathbb{F}_{q}$. Then we have:

$$
\left[T^{\rho} v\right]\left(\begin{array}{cc}
\alpha & \beta \\
0 & 1
\end{array}\right)=\overline{\chi\left(\alpha^{-1} \beta\right)}\left[T^{\rho} v\right]\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)
$$

Proof

$$
\begin{aligned}
{\left[T^{\rho} v\right]\left(\begin{array}{cc}
\alpha & \beta \\
0 & 1
\end{array}\right) } & =\left[T^{\rho} v\right]\left[\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \alpha^{-1} \beta \\
0 & 1
\end{array}\right)\right] \\
(\text { by }(14.38)) & =\overline{\chi\left(\alpha^{-1} \beta\right)}\left[T^{\rho} v\right]\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Proposition 14.7.3 Let (ρ, V) be an irreducible G-representation with $\operatorname{dim} V>$ 1 and define a linear map $R: V \rightarrow L\left(\mathbb{F}_{q}^{*}\right)$ by setting

$$
[R v](x)=\left[T^{\rho} v\right]\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right)
$$

for all $v \in V, x \in \mathbb{F}_{q}^{*}$. Then R is a surjective A-homomorphism (cf. (12.2)) and its kernel is exactly $J(V)$.

Proof Suppose that $v \in J(V)$. Then, for $\alpha \in \mathbb{F}_{q}^{*}, \beta \in \mathbb{F}_{q}$ we have

$$
\begin{aligned}
{\left[T^{\rho} v\right]\left(\begin{array}{cc}
\alpha & \beta \\
0 & 1
\end{array}\right) } & =\left[T^{\rho} v\right]\left[\left(\begin{array}{cc}
\alpha & -\beta \\
0 & 1
\end{array}\right)^{-1}\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)\right] \\
(\text { by }(14.39)) & =\left[T^{\rho} \rho\left(\begin{array}{cc}
1 & -\beta \\
0 & 1
\end{array}\right) v\right]\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right) \\
\text { (by Proposition 14.7.1.(ii)) } & =\left[T^{\rho} v\right]\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Then, using Lemma 14.7.2, we deduce that

$$
\left[T^{\rho} v\right]\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)=\left[T^{\rho} v\right]\left(\begin{array}{cc}
\alpha & \beta \\
0 & 1
\end{array}\right)=\overline{\chi\left(\alpha^{-1} \beta\right)}\left[T^{\rho} v\right]\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)
$$

for all $\beta \in \mathbb{F}_{q}$, and this implies that $\left[T^{\rho} v\right]\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right) \equiv[R v](\alpha)=0$ for all $\alpha \in$ \mathbb{F}_{q}^{*} (since χ is nontrivial). That is, $v \in \operatorname{Ker} R$, showing that $J(V) \subset \operatorname{Ker}(R)$.

Let us prove that $\operatorname{Ker} R$ is $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$-invariant. If $\alpha, \gamma \in \mathbb{F}_{q}^{*}, \beta \in \mathbb{F}_{q}$ and $v \in \operatorname{Ker} R$ then, taking into account (14.39), we have

$$
\begin{aligned}
{\left[T^{\rho} \rho\left(\begin{array}{ll}
\gamma & \beta \\
0 & 1
\end{array}\right) v\right]\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right) } & =\left[T^{\rho} v\right]\left(\begin{array}{cc}
\gamma^{-1} \alpha & -\gamma^{-1} \beta \\
0 & 1
\end{array}\right) \\
(\text { by Lemma 14.7.2 }) & =\overline{\chi\left(-\alpha^{-1} \beta\right)}\left[T^{\rho} v\right]\left(\begin{array}{cc}
\gamma^{-1} \alpha & 0 \\
0 & 1
\end{array}\right) \\
(v \in \operatorname{Ker} R) & =0
\end{aligned}
$$

Then, by Proposition 14.7.1.(i), the kernel of R must equal either $J(V)$ or $J(V) \oplus V_{\pi}=V$. Let us show that the second possibility cannot occur. Indeed, $\operatorname{Ker}(R)=V$ implies $\left[T^{\rho} v\right]\left(1_{G}\right)=0$ for all $v \in V$. From (14.39) we then deduce that $\left[T^{\rho} v\right](g)=\left[T^{\rho} \rho\left(g^{-1}\right) v\right]\left(1_{G}\right)=0$ for all $v \in V$ and $g \in G$, contradicting the fact that T^{ρ} is an isometry. The fact that R commutes with the A-representations on V and $L\left(\mathbb{F}_{q}^{*}\right)$ is obvious.

Now consider again an irreducible G-representation (ρ, V) with $\operatorname{dim} V>1$. Since it is contained in $\operatorname{Ind}_{U}^{G} \chi$ with multiplicity one, by Frobenius reciprocity $\operatorname{Res}_{U}^{G} \rho$ contains χ with multiplicity one. That is, there exists $v_{0} \in V,\left\|v_{0}\right\|=$ 1 such that

$$
\begin{equation*}
\rho(u) v_{0}=\chi(u) v_{0} \tag{14.40}
\end{equation*}
$$

for all $u \in U$. Moreover, if $v \in V$ satisfies $\rho(u) v=\chi(u) v$ for all $u \in U$, then v must be a multiple of v_{0}. Clearly, v_{0} is defined up to a complex multiple of modulus one; Piatetski-Shapiro called it the Bessel vector associated with the representation (ρ, V) (and the character $\chi \in \widehat{U}$).

We can now apply our theory of multiplicity-free triples developed in Chapter 13. By (13.31), T^{ρ} may be expressed by means of

$$
\begin{equation*}
\left[T^{\rho} v\right](g)=\sqrt{\frac{d_{\rho}}{|G / U|}}\left\langle v, \rho(g) v_{0}\right\rangle \tag{14.41}
\end{equation*}
$$

The Bessel (or spherical) function associated with ρ (and χ) is defined by
setting

$$
\begin{equation*}
\varphi^{\rho}(g)=\left\langle v_{0}, \rho(g) v_{0}\right\rangle \equiv \sqrt{\frac{|G / U|}{d_{\rho}}}\left[T^{\rho} v\right](g) \tag{14.42}
\end{equation*}
$$

for all $g \in G$, see (13.32). Clearly $\varphi^{\rho}\left(1_{G}\right)=1$.
Proposition 14.7.4 The Bessel function φ^{ρ} satisfies

$$
\varphi^{\rho}\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right)=0
$$

for all $\alpha \in \mathbb{F}_{q}^{*} \backslash\{1\}$.
Proof On the one hand, for all $\alpha \in \mathbb{F}_{q}^{*}, \beta \in \mathbb{F}_{q}$, we have

$$
\begin{aligned}
\varphi^{\rho}\left(\begin{array}{cc}
\alpha & \beta \\
0 & 1
\end{array}\right) & =\left\langle v_{0}, \rho\left[\left(\begin{array}{cc}
1 & -\beta \\
0 & 1
\end{array}\right)^{-1}\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)\right] v_{0}\right\rangle \\
& =\left\langle\rho\left(\begin{array}{cc}
1 & -\beta \\
0 & 1
\end{array}\right) v_{0}, \rho\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right) v_{0}\right\rangle \\
(\text { by }(14.40)) & =\overline{\chi(\beta)} \varphi^{\rho}\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\varphi^{\rho}\left(\begin{array}{cc}
\alpha & \beta \\
0 & 1
\end{array}\right) & =\sqrt{\frac{|G / U|}{d_{\rho}}}\left[T^{\rho} v_{0}\right]\left(\begin{array}{cc}
\alpha & \beta \\
0 & 1
\end{array}\right) \\
\text { (by Lemma 14.7.2) } & =\overline{\chi\left(\alpha^{-1} \beta\right)} \sqrt{\frac{|G / U|}{d_{\rho}}}\left[T^{\rho} v_{0}\right]\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right) \\
& =\overline{\chi\left(\alpha^{-1} \beta\right)} \varphi^{\rho}\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

If $\alpha \neq 1$, letting β vary in \mathbb{F}_{q}, we deduce that $\varphi^{\rho}\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)=0$.
First of all, we determine the Bessel vectors and Bessel functions associated with parabolic representations. These representations (see Section 14.5) are obtained as induced representations: if $\mu=\chi_{\psi_{1}, \psi_{2}}$ (with $\psi_{1} \neq \psi_{2}$ or $\psi_{1}=\psi_{2}$) then the representation space of $\operatorname{Ind}_{B}^{G} \mu$ is

$$
\begin{equation*}
V=\{f: G \rightarrow \mathbb{C}: f(g b)=\overline{\mu(b)} f(g), \text { for all } g \in G, b \in B\} \tag{14.43}
\end{equation*}
$$

Now, if $\psi_{1} \neq \psi_{2}$, then it is irreducible, while if $\psi_{1}=\psi_{2}=\psi$, we have
(see Theorem 14.5.6.(ii)) $\operatorname{Ind}_{B}^{G} \mu=\widehat{\chi}_{\psi, \psi}=\widehat{\chi}_{\psi}^{0} \oplus \widehat{\chi}_{\psi}^{1}$, where $\widehat{\chi}_{\psi}^{0}$ is onedimensional and $\widehat{\chi}_{\psi}^{1}$ is (irreducible and) q-dimensional. Since $\operatorname{Ind}_{U}^{G} \chi$ does not contain one-dimensional G-representations (by Theorem 14.6.3), for every $T \in \operatorname{Hom}_{G}\left(\widehat{\chi}_{\psi, \psi}, \operatorname{Ind}_{U}^{G} \chi\right)$ we have $V_{\widehat{\chi}_{\psi}^{0}} \subseteq \operatorname{Ker} T$.

Proposition 14.7.5 With the notation above and keeping in mind the Bruhat decomposition (cf. Lemma 14.2.4), the Bessel vector $f_{0} \in V$ is given by

$$
\begin{cases}f_{0}(b)=0 & \text { for all } b \in B \tag{14.44}\\ f_{0}(u w b)=\frac{1}{\sqrt{q}} \overline{\mu(b) \chi(u)} & \text { for all } b \in B, u \in U .\end{cases}
$$

Proof Let f_{0} be a function satisfying (14.44). It is a straightforward computation to check that f_{0} belongs to V (cf. (14.43)). Moreover, for all $u, u^{\prime} \in U$ and $b \in B$, we have

$$
f_{0}\left(u^{-1} b\right)=0=\chi(u) f_{0}(b)
$$

and

$$
f_{0}\left(u^{-1} u^{\prime} w b\right)=\frac{1}{\sqrt{q}} \chi(u) \overline{\mu(b) \chi\left(u^{\prime}\right)}=\chi(u) f_{0}\left(u^{\prime} w b\right)
$$

that is, f_{0} belongs to the χ-component of $\operatorname{Res}_{U}^{G} \operatorname{Ind}_{B}^{G} \mu$.
In the case $\psi_{1}=\psi_{2}=\psi$, the one-dimensional representation $\widehat{\chi}_{\psi}^{0}$ cannot contain a χ-component, since $\chi \in \widehat{U}$ is non-trivial, while $\operatorname{Res}_{U}^{G} \widehat{\chi}_{\psi}^{0}$ is trivial by (14.18) since $\operatorname{det}(u)=1$ for all $u \in U$. This can be alternatively deduced by using Frobenius reciprocity and recalling that $\widehat{\chi}_{\psi}^{0}$ is not contained in $\operatorname{Ind}_{U}^{G} \chi$ (cf. Theorem 14.6.3).
Finally, by (11.4) and using the Bruhat decomposition, we have

$$
\begin{aligned}
\left\langle f_{0}, f_{0}\right\rangle & =\frac{1}{|B|} \sum_{g \in G}\left|f_{0}(g)\right|^{2} \\
(\text { by }(14.44)) & =\frac{1}{|B|} \sum_{g \in U w B}\left|f_{0}(g)\right|^{2} \\
& =\frac{1}{|B|} \sum_{u \in U} \sum_{b \in B}\left|f_{0}(u w b)\right|^{2} \\
\text { (by (14.44) and }|U|=q) & =\frac{1}{|B| \cdot|U|} \sum_{u \in U} \sum_{b \in B}|\mu(b)| \cdot|\chi(u)| \\
& =\frac{1}{|B|} \sum_{b \in B}|\mu(b)| \cdot \frac{1}{|U|} \sum_{u \in U}|\chi(u)| \\
& =1 .
\end{aligned}
$$

Corollary 14.7.6 Let $\rho=\widehat{\chi}_{\psi_{1}, \psi_{2}}$ be a parabolic representation. Then, with the same notation as in Proposition 14.7.5, we have

$$
\left[T^{\rho} f\right](g)=\sqrt{\frac{d_{\rho}}{|G|}} \sum_{u \in U} f(g u w) \chi(u)
$$

for all $f \in V(c f .(14.43))$ and $g \in G$.

Proof Let $f \in V$ and $g \in G$. By (14.41) we have

$$
\begin{aligned}
{\left[T^{\rho} f\right](g) } & =\sqrt{\frac{d_{\rho}}{|G / U|}}\left\langle f, \rho(g) f_{0}\right\rangle_{\operatorname{Ind}_{B}^{G} \mu} \\
& =\sqrt{\frac{d_{\rho}}{|G / U|}} \frac{1}{|B|} \sum_{h \in G} f(h) \overline{f_{0}\left(g^{-1} h\right)} \\
\text { (setting } h=g t) & =\sqrt{\frac{d_{\rho}}{|G / U|}} \frac{1}{|B|} \sum_{t \in G} f(g t) \overline{f_{0}(t)} \\
\text { (by Proposition 14.7.5)} & =\sqrt{\frac{d_{\rho}}{|G|}} \frac{1}{|B|} \sum_{u \in U} \sum_{b \in B} f(g u w b) \mu(b) \chi(u) \\
\text { (by }(14.43)) & =\sqrt{\frac{d_{\rho}}{|G|}} \sum_{u \in U} f(g u w) \chi(u) .
\end{aligned}
$$

Corollary 14.7.7 With the same notation as in Corollary 14.7.6, the spherical function associated with ρ is given by

$$
\varphi^{\rho}(g)=\frac{1}{\sqrt{q}} \sum_{u \in U} f_{0}(g u w) \chi(u)
$$

for all $g \in G$.

Proof Set $f=f_{0}$ in Corollary 14.7.6 and use (14.42).
It is interesting to analyze a special value of φ^{ρ}.

Proposition 14.7.8 With the same notation as in Corollary 14.7.7, we have

$$
\varphi^{\rho}\left(\begin{array}{cc}
0 & \alpha \\
1 & 0
\end{array}\right)=\frac{1}{q} \sum_{\substack{x, y \in \mathbb{F}_{q}^{*}: \\
x y=-\alpha}} \overline{\psi_{1}(x) \psi_{2}(y)} \chi(x+y)
$$

for all $\alpha \in \mathbb{F}_{q}^{*}$.
Proof First of all, note that, for $x \neq 0$, the Bruhat decomposition yields

$$
\left(\begin{array}{cc}
\alpha & 0 \\
x & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \alpha x^{-1} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
x & 1 \\
0 & -\alpha x^{-1}
\end{array}\right)
$$

so that by Proposition 14.7.5

$$
\begin{align*}
f_{0}\left(\begin{array}{ll}
\alpha & 0 \\
x & 1
\end{array}\right) & =\frac{1}{\sqrt{q}} \mu \overline{\left(\begin{array}{cc}
x & 1 \\
0 & -\alpha x^{-1}
\end{array}\right) \chi\left(\begin{array}{cc}
1 & \alpha x^{-1} \\
0 & 1
\end{array}\right)} \tag{14.45}\\
& =\frac{1}{\sqrt{q}} \overline{\psi_{1}(x) \psi_{2}\left(-\alpha x^{-1}\right) \chi\left(\alpha x^{-1}\right)}
\end{align*}
$$

From Corollary 14.7.7, the identity $\left(\begin{array}{ll}0 & \alpha \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}\alpha & 0 \\ x & 1\end{array}\right)$, and $f_{0}\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right)=0$, we then deduce that

$$
\begin{aligned}
\varphi^{\rho}\left(\begin{array}{cc}
0 & \alpha \\
1 & 0
\end{array}\right) & =\frac{1}{\sqrt{q}} \sum_{x \in \mathbb{F}_{q}^{*}} f_{0}\left(\begin{array}{ll}
\alpha & 0 \\
x & 1
\end{array}\right) \chi(x) \\
(\text { by }(14.45)) & =\frac{1}{q} \sum_{x \in \mathbb{F}_{q}^{*}} \overline{\psi_{1}(x) \psi_{2}\left(-\alpha x^{-1}\right)} \chi\left(x-\alpha x^{-1}\right) \\
\left(y=-\alpha x^{-1}\right) & =\frac{1}{q} \sum_{\substack{x, y \in \mathbb{F}_{q}^{*}: \\
x y=-\alpha}} \overline{\psi_{1}(x) \psi_{2}(y)} \chi(x+y)
\end{aligned}
$$

We now examine the Bessel vector and the Bessel function for a cuspidal representation (ρ, V) (cf. Definition 14.6.2). Let $\left\{f_{x}: x \in \mathbb{F}_{q}^{*}\right\}$ be the orthonormal basis of $V=L\left(\mathbb{F}_{q}^{*}\right)$, where

$$
f_{x}(y)=\delta_{x, y}= \begin{cases}1 & \text { if } y=x \tag{14.46}\\ 0 & \text { if } y \neq x\end{cases}
$$

for all $x, y \in \mathbb{F}_{q}^{*}$.

Proposition 14.7.9

(i) f_{1} is the Bessel vector for ρ.
(ii) The associated intertwining operator is given by:

$$
\begin{gathered}
{\left[T^{\rho} f\right](g)=\frac{1}{\sqrt{q^{2}-1}} \overline{\nu(\delta) \chi\left(\beta \alpha^{-1}\right)} f\left(\alpha \delta^{-1}\right)} \\
\text { if } g=\left(\begin{array}{ll}
\alpha & \beta \\
0 & \delta
\end{array}\right) \in B \text { and by } \\
{\left[T^{\rho} f\right](g)=-\frac{1}{\sqrt{q^{2}-1}} \sum_{x \in \mathbb{F}_{q}^{*}} \nu\left[\gamma x \operatorname{det}(g)^{-1}\right] \overline{\chi\left(\delta \gamma^{-1}+\gamma^{-1} \alpha x^{-1}\right)}} \\
\text { if } g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in G \backslash B, \text { for all } f \in V .
\end{gathered}
$$

(iii) The spherical function of ρ is given by:

$$
\varphi^{\rho}(g)=\overline{\nu(\delta) \chi\left(\beta \alpha^{-1}\right)} \delta_{\alpha, \delta}
$$

$$
\text { if } g=\left(\begin{array}{ll}
\alpha & \beta \\
0 & \delta
\end{array}\right) \in B \text { and }
$$

$$
\varphi^{\rho}(g)=-\nu\left[\gamma \operatorname{det}(g)^{-1}\right] \overline{\chi\left(\delta \gamma^{-1}+\gamma^{-1} \alpha\right)} j\left(\gamma^{-2} \operatorname{det}(g)\right)
$$

$$
\text { if } g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in G \backslash B
$$

Proof Let $f \in V$. (i) From (14.32) we have

$$
\left[\rho\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right) f\right](x)=\chi\left(\beta x^{-1}\right) f(x)
$$

for all $x \in \mathbb{F}_{q}^{*}$, so that f is a Bessel vector if and only if

$$
\chi\left(\beta x^{-1}\right) f(x)=\chi(\beta) f(x)
$$

for all $x \in \mathbb{F}_{q}^{*}$ and $\beta \in \mathbb{F}_{q}$. Since χ is nontrivial, this forces $f=\lambda f_{1}$ for some $\lambda \in \mathbb{C}$. In particular, f_{1} is a Bessel vector. Note that we have actually reproved that $\operatorname{Res}_{U}^{G} \rho$ contains χ with multiplicity one and therefore that ρ is contained in $\operatorname{Ind}_{U}^{G} \chi$ with multiplicity one.
(ii) Note that, by (14.41),

$$
\begin{aligned}
{\left[T^{\rho} f\right](g) } & =\sqrt{\frac{q-1}{|G / U|}}\left\langle f, \rho(g) f_{1}\right\rangle_{V} \\
\text { (by Proposition 14.3.1) } & =\frac{1}{\sqrt{q^{2}-1}}\left\langle\rho\left(g^{-1}\right) f, f_{1}\right\rangle_{V} \\
& =\frac{1}{\sqrt{q^{2}-1}}\left[\rho\left(g^{-1}\right) f\right](1)
\end{aligned}
$$

and that

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\delta \operatorname{det}(g)^{-1} & -\beta \operatorname{det}(g)^{-1} \\
-\gamma \operatorname{det}(g)^{-1} & \alpha \operatorname{det}(g)^{-1}
\end{array}\right)
$$

in particular,

$$
\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\alpha^{-1} & -\beta \alpha^{-1} \delta^{-1} \\
0 & \delta^{-1}
\end{array}\right)
$$

Then it suffices to apply (14.32) and (14.33), respectively (and $\operatorname{det}\left(g^{-1}\right)=$ $\left.(\operatorname{det} g)^{-1}\right)$.
(iii) It is an immediate consequence of (14.41), (ii), and the definition of f_{1} : indeed, $\varphi^{\rho}(g)=\left[\rho\left(g^{-1}\right) f_{1}\right](1)$ for all $g \in G$.

Corollary 14.7.10 Let (ρ, V) be a cuspidal representation, $f \in V$ and $x \in$ \mathbb{F}_{q}^{*}. Then

$$
\left[T^{\rho} f\right]\left(\begin{array}{ll}
x & 0 \tag{14.47}\\
0 & 1
\end{array}\right)=\frac{1}{\sqrt{q^{2}-1}} f(x)
$$

and

$$
\varphi^{\rho}\left(\begin{array}{ll}
x & 0 \tag{14.48}\\
0 & 1
\end{array}\right)=f_{1}(x)
$$

Moreover, for all $\beta, \gamma \in \mathbb{F}_{q}^{*}$,

$$
\varphi^{\rho}\left(\begin{array}{ll}
0 & \beta \tag{14.49}\\
\gamma & 0
\end{array}\right)=-\overline{\nu(-\beta)} j\left(-\beta \gamma^{-1}\right)
$$

Proof (14.47) is immediate after Proposition 14.7.9.(ii). (14.48) follows from Proposition 14.7.9.(iii) (or Proposition 14.7.4) and the definition of f_{1}. Finally, (14.49) is just a particular case of Proposition 14.7.9.(iii).

Remark 14.7.11 With $\beta=-1$ and γ^{-1} in place of $\gamma,(14.49)$ yields

$$
j(\gamma)=-\varphi^{\rho}\left(\begin{array}{cc}
0 & -1 \\
\gamma^{-1} & 0
\end{array}\right)=-\overline{\varphi^{\rho}\left(\begin{array}{cc}
0 & \gamma \\
-1 & 0
\end{array}\right)},
$$

where the last equality follows from $\left(\begin{array}{cc}0 & -1 \\ \gamma^{-1} & 0\end{array}\right)^{-1}=\left(\begin{array}{cc}0 & \gamma \\ -1 & 0\end{array}\right)$ and $\varphi^{\rho}\left(g^{-1}\right)=$ $\overline{\varphi^{\rho}(g)}$. Analogously, setting $\gamma=-1$ we get

$$
j(\beta)=-\nu(-\beta) \varphi^{\rho}\left(\begin{array}{cc}
0 & \beta \\
-1 & 0
\end{array}\right)
$$

Remark 14.7.12 With Piatetski-Shapiro's definition of an induced representation (cf. (14.34)), the intertwining operator T^{ρ} in (14.41) (respectively, the associated spherical function in (14.42)) becomes

$$
\left[T^{\rho} v\right](g)=\sqrt{\frac{d_{\rho}}{|G / U|}}\left\langle\rho(g) v, v_{0}\right\rangle
$$

and

$$
\varphi^{\rho}(g)=\left\langle\rho(g) v_{0}, v_{0}\right\rangle
$$

for all $v \in V$ and $g \in G$. Therefore, our spherical functions are the conjugate of the Bessel functions J_{ρ} in [123]: indeed, one has

$$
J_{\rho}\left(\begin{array}{cc}
0 & x \\
-1 & 0
\end{array}\right)=-j(x)
$$

for all $x \in \mathbb{F}_{q}^{*}$.
For the last result of this section, we identify the subgroup

$$
A=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right): a \in \mathbb{F}_{q}^{*}\right\} \subset \operatorname{Aff}\left(\mathbb{F}_{q}\right)
$$

with \mathbb{F}_{q}^{*} via the isomorphism $\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \mapsto a$.
Proposition 14.7.13 Let (ρ, V) be a cuspidal representation of G. Then

$$
\begin{equation*}
\left[T^{\rho} f\right](g)=\sum_{a \in A}\left[T^{\rho} f\right](a) \varphi^{\rho}\left(a^{-1} g\right) \tag{14.50}
\end{equation*}
$$

and

$$
\begin{equation*}
[\rho(g) f](a)=\sum_{a_{1} \in A} f\left(a_{1}\right) \varphi^{\rho}\left(a_{1}^{-1} g^{-1} a\right) \tag{14.51}
\end{equation*}
$$

for all $f \in V, g \in G$, and $a \in A$.
Proof (14.50) is an immediate consequence of (14.47) and the explicit expressions in Proposition 14.7.9.(ii) and (iii).
We now prove (14.51). Let $g \in G$ and $a \in A$. Then, by (14.47),

$$
\begin{aligned}
{[\rho(g) f](a) } & =\sqrt{q^{2}-1}\left[T^{\rho} \rho(g) f\right](a) \\
(\text { by }(14.39)) & =\sqrt{q^{2}-1}\left[T^{\rho} f\right]\left(g^{-1} a\right) \\
(\text { by }(14.50)) & =\sqrt{q^{2}-1} \sum_{a_{1} \in A}\left[T^{\rho} f\right]\left(a_{1}\right) \varphi^{\rho}\left(a_{1}^{-1} g^{-1} a\right) \\
(\text { by }(14.47)) & =\sum_{a_{1} \in A} f\left(a_{1}\right) \varphi^{\rho}\left(a_{1}^{-1} g^{-1} a\right) .
\end{aligned}
$$

For another approach, we refer to [86].

14.8 Gamma coefficients

Following Piatetski-Schapiro [123], we introduce another set of functions, connected with the representation theory of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ that may be expressed in terms of Gauss sums (cf. Section 7.4). We recall (see Section 10.5) that if (ρ, V) is a representation of a finite group G, then, denoting by V^{\prime} the dual space of V, the associated adjoint representation is the G-representation ($\rho^{\prime}, V^{\prime}$) defined by setting

$$
\left[\rho^{\prime}(g) \varphi\right](v)=\varphi\left[\rho\left(g^{-1}\right) v\right]
$$

for all $g \in G, v \in V$ and $\varphi \in V^{\prime}$. Moreover, the associated character is given by $\chi^{\rho^{\prime}}(g)=\chi^{\rho}\left(g^{-1}\right)=\overline{\chi^{\rho}(g)}$, for all $g \in G$.

Suppose now that (ρ, V) is an irreducible representation of $G=\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$ with $\operatorname{dim} V>1$. We say that $\omega \in \widehat{\mathbb{F}_{q}^{*}}$ is an exceptional character for ρ if ρ is parabolic and

$$
\rho=\widehat{\chi}_{\psi_{1}, \psi_{2}} \text { with } \psi_{1}=\bar{\omega}=\omega^{-1} \text { or } \psi_{2}=\bar{\omega}=\omega^{-1}
$$

or

$$
\rho=\widehat{\chi}_{\psi}^{1} \text { with } \psi=\bar{\omega}=\omega^{-1} .
$$

By Proposition 14.5.9, ω is exceptional for (ρ, V) if and only if $\bar{\omega}$ is contained in $\operatorname{Res}_{A}^{G} \rho_{J(V)}$, that is, ω is contained in $\left.\left(\operatorname{Res}_{A}^{G} \rho\right)^{\prime}\right|_{J\left(V^{\prime}\right)}$.

Proposition 14.8.1 Let $\omega \in \widehat{\mathbb{F}_{q}^{*}}$ and suppose that it is not exceptional for ρ. Then ω is contained in $\left(\operatorname{Res}_{A}^{G} \rho\right)^{\prime}$ with multiplicity one.

Proof If $\omega \in \widehat{\mathbb{F}_{q}^{*}}$ is not exceptional, then $\bar{\omega}$ it is not contained in $\left.\operatorname{Res}_{A}^{G} \rho\right|_{J(V)}$ and, by Corollary 12.1.5, it is contained in $\left.\operatorname{Res}{ }_{A}^{G} \rho\right|_{V_{\pi}}$ with multiplicity one. By Proposition 14.7.1.(i) it is contained in $\operatorname{Res}_{A}^{G} \rho$ with multiplicity one. From the discussion above we deduce that ω is contained in $\left(\operatorname{Res}_{A}^{G} \rho\right)^{\prime}$ with multiplicity one.

Lemma 14.8.2 (Definition and existence of $\left.\Gamma_{\rho}(\omega)\right)$ Let $\omega \in \widehat{\mathbb{F}_{q}^{*}}$ and suppose that it is nonexceptional for (ρ, V). Then there exists $\Gamma_{\rho}(\omega)=\Gamma_{\rho, \chi}(\omega) \in$ \mathbb{C} such that

$$
\Gamma_{\rho}(\omega) \sum_{x \in \mathbb{F}_{q}^{*}}\left[T^{\rho} v\right]\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right) \overline{\omega(x)}=\sum_{x \in \mathbb{F}_{q}^{*}}\left[T^{\rho} v\right]\left(\begin{array}{ll}
0 & x \\
1 & 0
\end{array}\right) \overline{\omega(x)}
$$

for all $v \in V$.
Proof Define φ and ψ in V^{\prime} by setting

$$
\varphi(v)=\sum_{x \in \mathbb{F}_{q}^{*}}\left[T^{\rho} v\right]\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right) \overline{\omega(x)}
$$

and

$$
\psi(v)=\sum_{x \in \mathbb{F}_{q}^{*}}\left[T^{\rho} v\right]\left(\begin{array}{ll}
0 & x \\
1 & 0
\end{array}\right) \overline{\omega(x)}
$$

for all $v \in V$. Then

$$
\begin{aligned}
\varphi\left[\rho\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right) v\right] & =\sum_{x \in \mathbb{F}_{q}^{*}}\left[T^{\rho} \rho\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right) v\right]\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right) \overline{\omega(x)} \\
(\mathrm{by}(14.39)) & =\sum_{x \in \mathbb{F}_{q}^{*}}\left[T^{\rho} v\right]\left(\begin{array}{cc}
x \alpha^{-1} & 0 \\
0 & 1
\end{array}\right) \overline{\omega(x)} \\
(\operatorname{setting} x=y \alpha) & =\overline{\omega(\alpha)} \sum_{y \in \mathbb{F}_{q}^{*}}\left[T^{\rho} v\right]\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right) \overline{\omega(y)} \\
& =\overline{\omega(\alpha) \varphi} \varphi)
\end{aligned}
$$

so that, for $\alpha \in A$,

$$
\left[\rho^{\prime}(\alpha) \varphi\right](v)=\varphi\left[\rho\left(\alpha^{-1}\right) v\right]=\omega(\alpha) \varphi(v)
$$

for all $v \in V$, that is, $\rho^{\prime}(\alpha) \varphi=\omega(\alpha) \varphi$.
Similarly,

$$
\psi\left[\rho\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right) v\right]=\overline{\omega(\alpha)} \psi(v)
$$

so that we also have $\rho^{\prime}(\alpha) \psi=\omega(\alpha) \psi$, for $\alpha \in A$, and, by Proposition 14.8.1, there exists $\Gamma_{\rho}(\omega) \in \mathbb{C}$ such that $\psi=\Gamma_{\rho}(\omega) \varphi$.

Corollary 14.8.3 $\Gamma_{\rho}(\omega)$ may be expressed in terms of the Bessel function φ^{ρ} (see (14.42)):

$$
\Gamma_{\rho}(\omega)=\sum_{x \in \mathbb{F}_{q}^{*}} \varphi^{\rho}\left(\begin{array}{ll}
0 & x \tag{14.52}\\
1 & 0
\end{array}\right) \overline{\omega(x)}
$$

Proof If v_{0} is a Bessel vector, then Lemma 14.8.2 with $v=v_{0}$ implies (recall that $\varphi^{\rho}\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right)=\sqrt{\frac{|G / U|}{d_{\rho}}}\left[T^{\rho} v_{0}\right]\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right)=0$ for $x \neq 1$, see Proposition 14.7.4, and $\left.\varphi^{\rho}\left(1_{G}\right)=1\right)$

$$
\Gamma_{\rho}(\omega)\left[T^{\rho} v_{0}\right]\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\sum_{x \in \mathbb{F}_{q}^{*}}\left[T^{\rho} v_{0}\right]\left(\begin{array}{ll}
0 & x \\
1 & 0
\end{array}\right) \overline{\omega(x)}
$$

which in turn yields the desired identity.
We can use (14.52) to define $\Gamma_{\rho}(\omega)$ also for exceptional characters and cuspidal representations.

Definition 14.8.4 Let ρ be an irreducible G-representation with $\operatorname{dim} \rho>1$. Then the complex-valued function $\Gamma_{\rho}(\cdot)$, defined by means of (14.52), is called the Gamma coefficient associated with ρ (and the fixed character $\chi \in \widehat{U})$.

We recall (see Definition 7.4.1) that for $\chi \in \widehat{\mathbb{F}_{q}}$ and $\psi \in \widehat{\mathbb{F}_{q}^{*}}$, the associated Gauss sum is defined as

$$
g(\psi, \chi)=\sum_{x \in \mathbb{F}_{q}} \chi(x) \psi(x)
$$

where we have set $\psi(0)= \begin{cases}0 & \text { if } \psi \neq \mathbf{1} \\ 1 & \text { if } \psi=\mathbf{1}\end{cases}$

Proposition 14.8.5 Suppose that ρ is parabolic. Then, with the same notation as in Theorem 14.5.6, and the beginning of this section, we have

$$
\Gamma_{\rho}(\omega)=\frac{\omega(-1)}{q} g\left(\overline{\psi_{1}} \bar{\omega}, \chi\right) g\left(\overline{\psi_{2}} \bar{\omega}, \chi\right)
$$

In particular, $\left|\Gamma_{\rho}(\omega)\right|=1$.
Proof By Proposition 14.7.8 and Corollary 14.8.3 we have:

$$
\begin{aligned}
\Gamma_{\rho}(\omega) & =\frac{1}{q} \sum_{\substack{x \in \mathbb{F}_{q}^{*}}} \sum_{\substack{r, s \in \mathbb{F}_{q}^{*}: \\
r s=-x}} \overline{\psi_{1}(r) \psi_{2}(s)} \chi(r+s) \overline{\omega(-r s)} \\
& =\frac{\omega(-1)}{q} \sum_{x \in \mathbb{F}_{q}^{*}} \sum_{\substack{r, s \in \mathbb{F}_{q}^{*}: \\
r s=-x}}\left(\overline{\psi_{1}(r) \omega(r)} \chi(r)\right)\left(\overline{\psi_{2}(s) \omega(s)} \chi(s)\right) \\
& =\frac{\omega(-1)}{q} \sum_{r \in \mathbb{F}_{q}^{*}} \overline{\psi_{1}(r) \omega(r)} \chi(r) \sum_{s \in \mathbb{F}_{q}^{*}} \overline{\psi_{2}(s) \omega(s)} \chi(s) \\
& =\frac{\omega(-1)}{q} g\left(\overline{\psi_{1}} \bar{\omega}, \chi\right) g\left(\overline{\psi_{2}} \bar{\omega}, \chi\right) .
\end{aligned}
$$

Just note that $\overline{\psi_{1}} \bar{\omega}, \overline{\psi_{2}} \bar{\omega} \neq \mathbf{1}$, because ω is not exceptional for ρ so that the $\operatorname{sum} \sum_{r \in \mathbb{F}_{q}^{*}}$ is in fact the sum $\sum_{r \in \mathbb{F}_{q}}$ (and, similarly, for the sums in s).

Since $|g(\psi, \chi)|=\sqrt{q}$ (cf. Theorem 7.4.3.(vii)), we get $\left|\Gamma_{\rho}(\omega)\right|=1$.
Remark 14.8.6 If we use a different character in place of χ, say $\tilde{\chi}$, we get a different value of $\Gamma_{\rho}(\omega)$. Since there exists $\alpha \in \mathbb{F}_{q}^{*}$ such that $\tilde{\chi}(x)=\chi(\alpha x)$ for all $x \in \mathbb{F}_{q}$ (cf. Proposition 7.1.1), we deduce that, for ρ parabolic, the Gamma coefficient with respect to $\tilde{\chi}$ is

$$
\Gamma_{\rho, \tilde{\chi}}(\omega)=\omega(\alpha)^{2} \psi_{1}(\alpha) \psi_{2}(\alpha) \Gamma_{\rho, \chi}(\omega)
$$

Proposition 14.8.7 Suppose that ρ is the cuspidal representation associated with the indecomposable character $\nu \in \widehat{\mathbb{F}_{q^{2}}^{*}}$. Then, denoting simply by Tr and N the trace and the norm of the extension $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$ (see Section 6.7), we have

$$
\begin{aligned}
\Gamma_{\rho}(\omega) & =-\frac{\omega(-1)}{q} \sum_{t \in \mathbb{F}_{q^{2}}^{*}} \overline{\nu(t)} \omega(t \bar{t}) \\
& t+\bar{t}) \\
& =-\frac{\omega(-1)}{q} g\left(\nu^{-1}(\omega \circ \operatorname{Tr})^{-1}, \chi \circ \mathrm{~N}\right)
\end{aligned}
$$

for every $\omega \in \widehat{\mathbb{F}_{q}^{*}}$. In particular, $\left|\Gamma_{\rho}(\omega)\right|=1$.

Proof By Definition 14.8.4 we have

$$
\begin{aligned}
\Gamma_{\rho}(\omega) & =\sum_{x \in \mathbb{F}_{q}^{*}} \varphi^{\rho}\left(\begin{array}{ll}
0 & x \\
1 & 0
\end{array}\right) \overline{\omega(x)} \\
(\text { by }(14.49)) & =-\sum_{x \in \mathbb{F}_{q}^{*}} \overline{\nu(-x)} j(-x) \overline{\omega(x)} \\
(\text { by }(7.16)) & =-\frac{1}{q} \sum_{x \in \mathbb{F}_{q}^{*}} \overline{\nu(-x) \omega(x)} \sum_{\substack{t \in \mathbb{F}_{q}^{*}: \\
t \bar{t}=-x}} \chi(t+\bar{t}) \nu(t) \\
& =-\frac{1}{q} \sum_{x \in \mathbb{F}_{q}^{*}} \frac{\nu(x) \omega(-x)}{\sum_{t \in \mathbb{F}_{q}^{*}:}^{t \bar{t}=x}} \boldsymbol{l} \chi(t+\bar{t}) \nu(t)
\end{aligned}
$$

$$
\left(\text { Hilbert Satz 90) }=-\frac{1}{q} \sum_{t \in \mathbb{F}_{q}^{*}} \overline{\nu(t \bar{t}) \omega(-t \bar{t})} \chi(t+\bar{t}) \nu(t)\right.
$$

$$
=-\frac{\omega(-1)}{q} \sum_{t \in \mathbb{F}_{q^{*}}^{*}} \overline{\nu(\bar{t}) \omega(t \bar{t})} \chi(t+\bar{t})
$$

$$
=-\frac{\omega(-1)}{q} \sum_{t \in \mathbb{F}_{q^{*}}^{*}} \overline{\nu(t)} \omega(t \bar{t}) \chi(t+\bar{t})
$$

$$
=-\frac{\omega(-1)}{q} g\left(\nu^{-1}(\omega \circ \operatorname{Tr})^{-1}, \chi \circ \mathrm{~N}\right)
$$

Since $|g(\cdot, \cdot)|=\sqrt{\left|\mathbb{F}_{q^{2}}\right|}=q$ (cf. Theorem 7.4.3.(vii)), we also have $\left|\Gamma_{\rho}(\omega)\right|=$ 1.

Remark 14.8.8 As in Remark 14.8.6, if $\tilde{\chi}$ is another character of \mathbb{F}_{q} and $\tilde{\chi}(x)=\chi(\alpha x)$, then, for a cuspidal representation ρ we have

$$
\Gamma_{\rho, \tilde{\chi}}(\omega)=\nu(\alpha) \omega(\alpha)^{2} \Gamma_{\rho, \chi}(\omega)
$$

14.9 Character theory of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$

In this section we compute the characters of all irreducible representations of G as well as the Gelfand-Graev character ξ of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$, that is, the character of $\operatorname{Ind}_{U}^{G} \chi$, where χ is, as usual, a fixed nontrivial character of U.

Proposition 14.9.1 Let ξ denote the character of $\operatorname{Ind}_{U}^{G} \chi$. Then

$$
\xi(g)= \begin{cases}(q-1)^{2}(q+1) & \text { if } g=1_{G} \\
1-q & \text { if } g \text { is conjugate to }\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
0 & \text { otherwise }\end{cases}
$$

for all $g \in G$.
Proof First of all, note that $D \coprod D U w$ is a set of representatives for the left cosets of U in G :

$$
\begin{equation*}
G=\left(\coprod_{d \in D} d U\right) \coprod\left(\coprod_{\substack{d \in D, u \in U}} d u w U\right) \tag{14.53}
\end{equation*}
$$

Indeed, one just needs to recall the Bruhat decomposition and to note that, for $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G \backslash B$ (i.e. with $\gamma \neq 0$) we have

$$
\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right)\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
x z & x+x z v \\
y & y v
\end{array}\right)=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

if and only if $y=\gamma, v=\delta \gamma^{-1}, x=\beta-\alpha \delta \gamma^{-1} \equiv-\gamma^{-1} \operatorname{det}(g)$ and $z=$ $-\alpha \gamma \operatorname{det}(g)^{-1}$. In other words, any $g \in G \backslash B$ may be written in a unique way in the form $g=d u w u_{1}$, with $d \in D$ and $u, u_{1} \in U$.

First of all we clearly have

$$
\xi\left(1_{G}\right)=\operatorname{dimInd}_{U}^{G} \chi=\frac{|G|}{|U|}=\left(q^{2}-1\right)(q-1)
$$

From Frobenius character formula (cf. (11.18)) it follows that

$$
\begin{equation*}
\xi(g)=\sum_{\substack{d \in D: \\ d^{-1} g d \in U}} \chi\left(d^{-1} g d\right)+\sum_{\substack{d \in D, u \in U: \\(d u w)^{-1} g d u w \in U}} \chi\left(w u^{-1} d^{-1} g d u w\right) \tag{14.54}
\end{equation*}
$$

In particular, if g is not conjugated to an element of U, we have $\xi(g)=0$. Recalling Theorem 14.3.2, we have that $U \backslash\left\{1_{G}\right\}$ is contained in the conjugacy class of $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. We deduce that $\xi(g)=0$ if g is not conjugated to $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

We are only left to the case when g is conjugated to $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. If $h=$
$\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G$, and setting $\Delta=\operatorname{det}(h)$, we have

$$
\begin{align*}
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)^{-1}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right]\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
\delta \Delta^{-1} & -\beta \Delta^{-1} \\
-\gamma \Delta^{-1} & \alpha \Delta^{-1}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+\gamma \delta \Delta^{-1} & \delta^{2} \Delta^{-1} \\
-\gamma^{2} \Delta^{-1} & 1-\gamma \delta \Delta^{-1}
\end{array}\right) \tag{14.55}
\end{align*}
$$

so that $h^{-1}\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) h$ is not in U if $\gamma \neq 0$. Therefore, for the expression of $\xi\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ in (14.54), only the first sum may be different from 0 (the second one vanishes since $(d u w)^{-1}\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) d u w$ does not even belong to B).

Thus,

$$
\begin{aligned}
\xi\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) & =\sum_{x, y \in \mathbb{F}_{q}^{*}} \chi\left[\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right)\right] \\
& =\sum_{x, y \in \mathbb{F}_{q}^{*}} \chi\left(\begin{array}{cc}
1 & x^{-1} y \\
0 & 1
\end{array}\right) \\
& =\sum_{x, y \in \mathbb{F}_{q}^{*}} \chi\left(x^{-1} y\right) \\
& =(q-1) \sum_{x \in \mathbb{F}_{q}^{*}} \chi(x) \\
& =1-q
\end{aligned}
$$

where the last equality follows from the orthogonality relation

$$
\begin{equation*}
0=\langle\chi, \mathbf{1}\rangle=\sum_{x \in \mathbb{F}_{q}} \chi(x)=1+\sum_{x \in \mathbb{F}_{q}^{*}} \chi(x) \tag{14.56}
\end{equation*}
$$

In the following table (where in the first column there are the irreducible representations and in the first line the representatives of the conjugacy classes), we give the values of the characters of the higher dimensional representations of G on each conjugacy class, as well as the cardinality of the corresponding irreducible representations (here, $x, y \in \mathbb{F}_{q}^{*}$ and $z \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$).

	$\left(\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right)$	$\left(\begin{array}{cc}x & 0 \\ 0 & y\end{array}\right)_{y \neq x}$	$\left(\begin{array}{cc}x & 1 \\ 0 & x\end{array}\right)$	$\left(\begin{array}{cc}0 & -z \bar{z} \\ 1 & z+\bar{z}\end{array}\right)$	$\|\operatorname{irr}\|$
$\widehat{\chi}_{\psi}^{0}$	$\psi\left(x^{2}\right)$	$\psi(x y)$	$\psi\left(x^{2}\right)$	$\psi(z \bar{z})$	$q-1$
$\widehat{\chi}_{\psi}^{1}$	$q \psi\left(x^{2}\right)$	$\psi(x y)$	0	$-\psi(z \bar{z})$	$q-1$
$\widehat{\chi}_{\psi_{1}, \psi_{2}}$	$(q+1)$ $\psi_{1}(x) \psi_{2}(x)$	$\psi_{1}(x) \psi_{2}(y)$ $+\psi_{1}(y) \psi_{2}(x)$	$\psi_{1}(x) \psi_{2}(x)$	0	$\frac{(q-1)(q-2)}{2}$
ρ_{ν}	$(q-1) \nu(x)$	0	$-\nu(x)$	$-\nu(z)-\nu(\bar{z})$	$\frac{q(q-1)}{2}$

Table 14.2. The character table of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$.

In order to compute the characters of $\widehat{\chi}_{\psi}^{1}$ and $\widehat{\chi}_{\psi_{1}, \psi_{2}}$ we need the following remarks:
(a) $h^{-1}\left(\begin{array}{ll}x & 1 \\ 0 & x\end{array}\right) h \in B$ if and only if $h \in B$. The proof follows the same lines as in (14.55).
(b) An element $(u w)^{-1} d u w$, with $u \in U$ and $d \in D \backslash Z$, belongs to B if and only if $u=1_{G}$. Indeed, an element in $U w$ is of the form

$$
u w=\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
\beta & 1 \\
1 & 0
\end{array}\right)
$$

and its inverse is

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -\beta \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
1 & -\beta
\end{array}\right)
$$

so that if $d=\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) \in D \backslash Z\left(x, y \in \mathbb{F}_{q}^{*}, x \neq y\right)$ then

$$
\begin{aligned}
(u w)^{-1} d u w & =\left(\begin{array}{cc}
0 & 1 \\
1 & -\beta
\end{array}\right)\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right)\left(\begin{array}{ll}
\beta & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
y & 0 \\
\beta(x-y) & x
\end{array}\right)
\end{aligned}
$$

(c) An element in $C \backslash Z$ is not conjugate to any B (see table in Theorem 14.3.2) because its eigenvalues (as a 2×2 matrix) are not in \mathbb{F}_{q}.
(d) $G=B \coprod\left(\coprod_{u \in U} u w B\right)$ is the decomposition into left B-cosets (cf. (14.53) and the Bruhat decomposition).
Proof of the character table. The first row follows from (14.18).

From (d) and Frobenius character formula, it follows that the character of $\widehat{\chi}_{\psi_{1}, \psi_{2}}$ evaluated at $g \in G$ equals

$$
\begin{equation*}
\sum_{\substack{u \in U: \\ w u^{-1} g u w \in B}} \chi_{\psi_{1}, \psi_{2}}\left(w u^{-1} g u w\right)+\chi_{\psi_{1}, \psi_{2}}(g) \mathbf{1}_{B}(g) \tag{14.57}
\end{equation*}
$$

By (c), this is equal to 0 if $g \in C \backslash Z$. If $g=\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right) \in Z$, then it is equal to

$$
(q+1) \chi_{\psi_{1}, \psi_{2}}\left(\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right)=(q+1) \psi_{1}(x) \psi_{2}(x)
$$

From (b), it follows that if $g=\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) \in D \backslash Z$, then all terms but the one corresponding to $u=1_{G}$ in the summation in (14.57) are equal to zero, so that (14.57) is equal to

$$
\chi_{\psi_{1}, \psi_{2}}\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right)+\chi_{\psi_{1}, \psi_{2}}\left(\begin{array}{cc}
y & 0 \\
0 & x
\end{array}\right)=\psi_{1}(x) \psi_{2}(y)+\psi_{1}(y) \psi_{2}(x)
$$

From (a), it follows that if $g=\left(\begin{array}{ll}x & 1 \\ 0 & x\end{array}\right)$, then all terms in the summation (14.57) are equal to zero, so that $\chi_{\psi_{1}, \psi_{2}}\left(\begin{array}{ll}x & 1 \\ 0 & x\end{array}\right)=\psi_{1}(x) \psi_{2}(x)$.

The values of the character of $\widehat{\chi}_{\psi}^{1}$ may be found in the same way, setting $\psi_{1}=\psi_{2}$ in the previous formulas and using the identities

$$
\widehat{\chi}_{\psi, \psi}=\widehat{\chi}_{\psi}^{0}+\widehat{\chi}_{\psi}^{1} \text { and } \widehat{\chi}_{\psi}^{0}=\psi(\operatorname{det}(g))
$$

In order to compute the character of a cuspidal representation, we use (14.51) which yields the matrix coefficients of ρ_{ν} in terms of the spherical functions. Indeed, if $\left\{f_{x}: x \in \mathbb{F}_{q}^{*}\right\}$ is as (14.46), then the character of ρ_{ν} has the following expression:

$$
\begin{align*}
\sum_{x \in \mathbb{F}_{q}^{*}}\left\langle\rho_{\nu}(g) f_{x}, f_{x}\right\rangle & =\sum_{x \in \mathbb{F}_{q}^{*}}\left[\rho_{\nu}(g) f_{x}\right](x) \tag{14.58}\\
\left(\text { by }(14.51) \text { and } A \cong \mathbb{F}_{q}^{*}\right) & =\sum_{a \in A} \varphi^{\rho_{\nu}}\left(a^{-1} g^{-1} a\right)
\end{align*}
$$

For $g=\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right),(14.58)$ is equal to

$$
(q-1) \varphi^{\rho_{\nu}}\left(g^{-1}\right)=(q-1) \overline{\nu\left(x^{-1}\right)}=(q-1) \nu(x)
$$

where the first equality follows from Proposition 14.7.9.(iii). For $g=\left(\begin{array}{ll}x & 1 \\ 0 & x\end{array}\right)$ we have $g^{-1}=\left(\begin{array}{cc}x^{-1} & -x^{-2} \\ 0 & x^{-1}\end{array}\right)$ and

$$
\left(\begin{array}{cc}
\alpha^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & -x^{-2} \\
0 & x^{-1}
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
x^{-1} & -\alpha^{-1} x^{-2} \\
0 & x^{-1}
\end{array}\right)
$$

so that, in this case, (14.58) is equal to

$$
\begin{aligned}
\sum_{\alpha \in \mathbb{F}_{q}^{*}} \varphi^{\rho_{\nu}}\left(\begin{array}{cc}
x^{-1} & -\alpha^{-1} x^{-2} \\
0 & x^{-1}
\end{array}\right) & =\sum_{\alpha \in \mathbb{F}_{q}^{*}} \frac{}{\nu\left(x^{-1}\right) \chi\left(-x \cdot \alpha^{-1} x^{-2}\right)} \\
& =\nu(x) \sum_{\alpha \in \mathbb{F}_{q}^{*}} \chi\left(\alpha^{-1} x^{-1}\right) \\
& =-\nu(x),
\end{aligned}
$$

where the first equality follows from Proposition 14.7.9.(iii) and the last one from (14.56).
For $g=\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)$, with $x \neq y$, we have

$$
\left(\begin{array}{cc}
\alpha^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & 0 \\
0 & y^{-1}
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
x^{-1} & 0 \\
0 & y^{-1}
\end{array}\right)
$$

so that, in this case, (14.58) is equal to $(q-1) \varphi^{\rho_{\nu}}\left(\begin{array}{cc}x^{-1} & 0 \\ 0 & y^{-1}\end{array}\right)$ and this vanishes, by Proposition 14.7.9.(iii).
Finally, if $g=\left(\begin{array}{cc}0 & -z \bar{z} \\ 1 & z+\bar{z}\end{array}\right), z \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$, setting $\beta=-z \bar{z}, \delta=z+\bar{z}$ we have $g^{-1}=\left(\begin{array}{cc}-\beta^{-1} \delta & 1 \\ \beta^{-1} & 0\end{array}\right)$ and

$$
\left(\begin{array}{cc}
\alpha^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-\beta^{-1} \delta & 1 \\
\beta^{-1} & 0
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
-\beta^{-1} \delta & \alpha^{-1} \\
\alpha \beta^{-1} & 0
\end{array}\right)
$$

so that (14.58) is equal to (by Proposition 14.7.9.(iii))

$$
\begin{aligned}
& -\sum_{\alpha \in \mathbb{F}_{q}^{*}} \nu\left(-\beta \cdot \alpha \beta^{-1}\right) \overline{\chi\left(-\beta^{-1} \delta \cdot \alpha^{-1} \beta\right)} j\left[\alpha^{-2} \beta^{2}\left(-\beta^{-1}\right)\right] \\
& =-\sum_{\alpha \in \mathbb{F}_{q}^{*}} \nu(-\alpha) \chi\left(\alpha^{-1} \delta\right) j\left(-\alpha^{-2} \beta\right) \\
& (\text { by }(7.16))=-\frac{1}{q} \sum_{\alpha \in \mathbb{F}_{q}^{*}} \chi\left(\alpha^{-1} \delta\right) \sum_{\substack{x \bar{x} \in \mathbb{F}_{2}^{*}: \\
x \bar{x}=-\alpha^{-2} \beta}} \chi(x+\bar{x}) \nu(-\alpha x) \\
& (y=-\alpha x)=-\frac{1}{q} \sum_{\alpha \in \mathbb{F}_{q}^{*}} \chi\left(\alpha^{-1} \delta\right) \sum_{\substack{y \in \mathbb{F}_{2}^{*}: \\
y \bar{y}=-\beta}} \chi\left[-\alpha^{-1}(y+\bar{y})\right] \nu(y) \\
& \left(\alpha^{-1} \mapsto \alpha\right)=-\frac{1}{q} \sum_{\substack{y \in \mathbb{F}_{q^{2}}^{*} \\
y \bar{y}=-\beta}} \nu(y) \sum_{\alpha \in \mathbb{F}_{q}^{*}} \chi(\alpha[\delta-(y+\bar{y})]) \\
& =-\frac{1}{q} \sum_{\substack{y \in \mathbb{F}_{q^{2}}^{*}: \\
y \neq z, \bar{z} \\
y \bar{y}=-\beta}} \nu(y) \sum_{\alpha \in \mathbb{F}_{q}^{*}} \chi(\alpha[\delta-(y+\bar{y})]) \\
& -\frac{1}{q} \nu(z) \sum_{\alpha \in \mathbb{F}_{q}^{*}} \chi(\alpha[\delta-(z+\bar{z})]) \\
& -\frac{1}{q} \nu(\bar{z}) \sum_{\alpha \in \mathbb{F}_{q}^{*}} \chi(\alpha[\delta-(\bar{z}+z)]) \\
& (\delta=z+\bar{z})=_{*}-\frac{1}{q} \sum_{\substack{y \in \mathbb{F}_{2}^{*}: \\
y \neq z, \bar{z} \\
y \bar{y}=-\beta}} \nu(y) \sum_{\gamma \in \mathbb{F}_{q}^{*}} \chi(\gamma)-\frac{q-1}{q}[\nu(z)+\nu(\bar{z})] \\
& (\text { by }(14.56))=-\frac{1}{q}\left[(q-1)[\nu(z)+\nu(\bar{z})]-\sum_{\substack{y \in \mathbb{F}_{q}^{*}: \\
y \neq z, \bar{z} \\
y \bar{y}=-\beta}} \nu(y)\right] \\
& =-\frac{1}{q}\left[q[\nu(z)+\nu(\bar{z})]-\sum_{\substack{y \in \mathbb{F}_{\dot{q}}^{*}: \\
y \bar{y}=-\beta}} \nu(y)\right]
\end{aligned}
$$

(by Proposition 7.2.3) $=-\nu(z)-\nu(\bar{z})$,
where $=_{*}$ follows from the fact that, assuming $y \bar{y}=-\beta$, we have $\delta=y+\bar{y}$
if and only if $y=z$ or $y=\bar{z}$ (see Section 6.8) and, if $\delta \neq y+\bar{y}$, then we may set $\gamma=\alpha[\delta-(y+\bar{y})] \in \mathbb{F}_{q}^{*}$.

Proposition 14.9.2 Let ρ_{μ} and ρ_{ν} be cuspidal representations associated with the indecomposable characters μ and ν, respectively. Suppose that

- ρ_{μ} and ρ_{ν} have the same central character;
- $\Gamma_{\rho_{\mu}}=\Gamma_{\rho_{\nu}}$.

Then $\rho_{\mu} \sim \rho_{\nu}$.
Proof From the character table of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$ (cf. Table 14.2) we deduce that

$$
\begin{equation*}
\left.\mu\right|_{\mathbb{F}_{q}^{*}}=\left.\nu\right|_{\mathbb{F}_{q}^{*}} . \tag{14.59}
\end{equation*}
$$

Moreover, Corollary 14.8.3 implies that

$$
\sum_{x \in \mathbb{F}_{q}^{*}} \varphi^{\rho_{\mu}}\left(\begin{array}{ll}
0 & x \\
1 & 0
\end{array}\right) \overline{\omega(x)}=\sum_{x \in \mathbb{P}_{q}^{*}} \varphi^{\rho_{\nu}}\left(\begin{array}{ll}
0 & x \\
1 & 0
\end{array}\right) \overline{\omega(x)}
$$

for all $\omega \in \widehat{\mathbb{F}_{q^{\prime}}^{*}}$, so that

$$
\varphi^{\rho_{\mu}}\left(\begin{array}{ll}
0 & x \\
1 & 0
\end{array}\right)=\varphi^{\rho_{\nu}}\left(\begin{array}{ll}
0 & x \\
1 & 0
\end{array}\right)
$$

By using (14.49) and taking into account (14.59), we deduce that $j_{\rho_{\mu}}=j_{\rho_{\nu}}$. From Theorem 14.6.10, we finally deduce that $\rho_{\mu} \sim \rho_{\nu}$.

14.10 Induced representations from $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ to $\mathrm{GL}\left(2, \mathbb{F}_{q^{m}}\right)$.

In this section we give a series of formulas for the decomposition of the induced representation $\operatorname{Ind}{ }_{\mathrm{GL}\left(2, \mathbb{F}_{q}\right)}^{\mathrm{GL}\left(2, \mathbb{F}_{q}\right)} \rho$ for every irreducible representation ρ of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$. These formulas may be easily obtained from the character table of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ (see. Table 14.2). The proofs are tedious calculations, but the results are very interesting. We limit ourselves to:

- give all the preliminary results and introduce a suitable notation in order to simplify the exposition;
- give all the formulas;
- prove one formula to indicate the method and leaving the remaining formulas as exercises;
- indicate an alternative proof for one formula that avoids the use of the character table, suggesting the reader how to develop similar techniques.

We fix a prime power $q=p^{n}$ and an integer $m \geq 2$. We set $G=\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$ and $G_{m}=\mathrm{GL}\left(2, \mathbb{F}_{q^{m}}\right)$.

- We indicate by ψ, ψ_{1}, and ψ_{2} characters of \mathbb{F}_{q}^{*} and by $\widehat{\chi}_{\psi}^{0}, \widehat{\chi}_{\psi}^{1}$, and $\widehat{\chi}_{\psi_{1}, \psi_{2}}$ the associated parabolic representations of G.
- Similarly, ξ denotes a character of $\mathbb{F}_{q^{m}}^{*}$.
- Also, ν (respectively μ) denotes an indecomposable character of $\mathbb{F}_{q^{2}}^{*}$ (respectively $\mathbb{F}_{q^{2 m}}^{*}$) and ρ_{ν} (respectively ρ_{μ}) the associated cuspidal representation of G (respectively G_{m}).
- By $\xi^{\sharp}, \nu^{\sharp}$, and μ^{\sharp} we denote the restriction of these characters to \mathbb{F}_{q}^{*}, that is, $\xi^{\sharp}=\operatorname{Res}_{\mathbb{F}_{q}^{*}}^{\mathbb{F}_{q}^{*} m} \xi$, and so on.
- By μ^{b} we denote the restriction of μ to $\mathbb{F}_{q^{2}}^{*}$, that is, $\mu^{b}=\operatorname{Res}_{\mathbb{F}_{q^{2}}^{*}}^{\mathbb{F}^{*}} \mu$. If m is even, so that $\mathbb{F}_{q^{2}} \subseteq \mathbb{F}_{q^{m}}$, then ξ^{b} is the restriction of ξ to $\mathbb{F}_{q^{2}}^{*}$, that is, $\xi^{b}=\operatorname{Res}_{\mathbb{F}_{q^{2}}^{*}}^{\mathbb{F}^{*} m} \xi$.
- By $\bar{\nu}, \bar{\mu}$ (and $\bar{\xi}$, if m is even) we denote the conjugate character, as in Section 7.2 , that is $\bar{\nu}(z)=\nu(\bar{z})$, for all $z \in \mathbb{F}_{q^{2}}^{*}$. Warning: recall that $\overline{\nu(z)}$ is the complex conjugate of $\nu(z)$.
- As in Section 7.5 , we set $\Psi=\psi \circ N$, where $N: \mathbb{F}_{q^{2}}^{*} \rightarrow \mathbb{F}_{q}$ is the norm, that is $\Psi(z)=\psi(z \bar{z})$, for all $z \in \mathbb{F}_{q}^{*}$. Similarly, we set $\Xi=\xi^{\sharp} \circ N$, that is, $\Xi(z)=\xi(z \bar{z})$, for all $z \in \mathbb{F}_{q^{2}}$.
Clearly,

$$
\begin{align*}
\widehat{\mathbb{F}_{q^{m}}} & \rightarrow \widehat{\mathbb{F}_{q}^{*}} \tag{14.60}\\
\xi & \mapsto \xi^{\sharp}
\end{align*}
$$

is a surjective homomorphism of Abelian (indeed cyclic) groups and each ψ is the image of $\frac{q^{m}-1}{q-1}$ characters of $\mathbb{F}_{q^{m}}^{*}$.

Exercise 14.10.1 Consider the map (14.60) for $m=2$, so that $\frac{q^{m}-1}{q-1}=q+1$. Prove that
(1) if ψ is not a square, then it is the image of $q+1$ indecomposable characters;
(2) if ψ is a square and q is odd, then ψ is the image of $q-1$ indecomposable characters and 2 decomposable characters;
(3) if q is even, then each ψ is a square and the image of q indecomposable characters and 1 decomposable character.

Hint. Recall Proposition 6.4.4.

When restricting an irreducible representation from G_{m} to G we need the following remarks:

- if m is even, then the conjugacy class of G of type $\left(b_{3}\right)$ represented by $\left(\begin{array}{cc}0 & -z \bar{z} \\ 1 & z+\bar{z}\end{array}\right)$ is contained in a conjugacy class of type $\left(b_{2}\right)$ in G_{m} (because G_{m} contains G_{2}), and it is represented by $\left(\begin{array}{cc}z & 0 \\ 0 & \bar{z}\end{array}\right)$;
- if m is odd, then $\left(\begin{array}{cc}0 & -z \bar{z} \\ 1 & z+\bar{z}\end{array}\right)$ is of type $\left(b_{3}\right)$ also in G_{m}.

	$\left(\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right)$	$\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)_{y \neq x}$	$\left(\begin{array}{cc}x & 1 \\ 0 & x\end{array}\right)$	$\left(\begin{array}{cc}0 & -z \bar{z} \\ 1 & z+\bar{z}\end{array}\right)$	
$\operatorname{Res}_{G}^{G_{m}} \widehat{\chi}_{\xi}^{0}$	$\xi\left(x^{2}\right)$	$\xi(x y)$	$\xi\left(x^{2}\right)$	$\xi(z \bar{z})$	
$\operatorname{Res}_{G}^{G_{m}} \widehat{\chi}_{\xi}^{1}$	$q^{m} \xi\left(x^{2}\right)$	$\xi(x y)$	0	$\xi(z \bar{z})$ $-\xi(z \bar{z})$	m even m odd
$\operatorname{Res}_{G}^{G_{m}} \widehat{\chi}_{\xi_{1}, \xi_{2}}$	$\left(q^{m}+1\right)$ $\xi_{1}(x) \xi_{2}(x)$	$\xi_{1}(x) \xi_{2}(y)$ $+\xi_{1}(y) \xi_{2}(x)$	$\xi_{1}(x) \xi_{2}(x)$	$\xi_{1}(z) \xi_{2}(\bar{z})$ $+\xi_{1}(\bar{z}) \xi_{2}(z)$ 0	m even m odd
$\operatorname{Res}_{G}^{G_{m}} \rho_{\mu}$	$\left(q^{m}-1\right) \mu(x)$	0	$-\mu(x)$	0 $-\mu(z)-\mu(\bar{z})$	m even m odd

Table 14.3. The "character table" of the restrictions from G_{m} to G.
We shall use a series of abbreviated notation:

- $\bigoplus_{\xi^{\sharp}=\psi}$ indicates the direct sum over all $\xi \in \widehat{\mathbb{F}_{q^{m}}^{*}}$ such that $\xi^{\sharp}=\psi$;
- $\bigoplus_{\left(\xi^{\sharp}\right)^{2}=\nu^{\sharp}}$ indicates the direct sum over all $\xi \in \widehat{\mathbb{F}_{q^{m}}^{*}}$ such that $\left(\xi^{\sharp}\right)^{2}=\nu^{\sharp}$, that is, $\xi\left(x^{2}\right)=\nu(x)$ for all $x \in \mathbb{F}_{q}^{*}$;
- $\bigoplus_{\left(\xi_{1} \xi_{2}\right)^{\sharp}=\nu^{\sharp}}$ indicates the direct sum over all pairs $\left\{\xi_{1}, \xi_{2}\right\}$ where $\xi_{1}, \xi_{2} \in$ $\widehat{\mathbb{F}_{q^{m}}^{*}}, \xi_{1} \neq \xi_{2}$ such that $\left(\xi_{1} \xi_{2}\right)^{\sharp}=\nu^{\sharp}$: each unordered pair is counted once;
- $\ominus_{\left(\overline{\xi_{1}} \xi_{2}\right)^{b}=\nu}$ indicates that we subtract (from the previous sum) the sum over all pairs $\left\{\xi_{1}, \xi_{2}\right\}$ such that $\left(\overline{\xi_{1}} \xi_{2}\right)^{b}=\nu$, that is, $\xi_{1}(\bar{z}) \xi_{2}(z)=\nu(z)$ for all $z \in \mathbb{F}_{q^{2}}^{*}$; note that $\left(\overline{\xi_{1}} \xi_{2}\right)^{b}=\nu$ implies $\left(\xi_{1} \xi_{2}\right)^{\sharp}=\nu^{\sharp}$, so that we subtract terms that are effectively present (in the previous sum).

Other notation will be clear from the context. Finally, we observe that $\operatorname{Res}_{G}^{G_{m}} \widehat{\chi}_{\xi}^{0}$ cannot contain $\widehat{\chi}_{\psi}^{1}, \widehat{\chi}_{\psi_{1}, \psi_{2}}$, nor ρ_{ν}, because it is one-dimensional.

Therefore, by Frobenius reciprocity, $\operatorname{Ind}_{G}^{G_{m}} \widehat{\chi}_{\psi}^{1}, \operatorname{Ind}_{G}^{G_{m}} \widehat{\chi}_{\psi_{1}, \psi_{2}}$, and $\operatorname{Ind}_{G}^{G_{m}} \rho_{\nu}$ do not contain one-dimensional representation of G_{m} (cf. Corollary 11.2.3).

We are now in position to give the desired decomposition formulas for the induced representations. For three cases we have to distinguish between the case where m is odd or even.

Suppose that m is odd. Then,

$$
\begin{align*}
& \operatorname{Ind}_{G}^{G_{m}} \widehat{\chi}_{\psi}^{0}=\frac{q^{m-1}-1}{q^{2}-1}\left[\left(\bigoplus_{\left(\xi^{\sharp}\right)^{2}=\psi^{2}} \widehat{\chi}_{\xi}^{1}\right) \bigoplus\left(\bigoplus_{\left(\xi_{1} \xi_{2}\right)^{\sharp}=\psi^{2}} \widehat{\chi}_{\xi_{1}, \xi_{2}}\right)\right. \\
& \left.\bigoplus\left(\bigoplus_{\mu^{\sharp}=\psi^{2}} \rho_{\mu}\right)\right] \bigoplus\left(\bigoplus_{\xi^{\sharp}=\psi} \widehat{\chi}_{\xi}^{0}\right) \tag{14.61}\\
& \bigoplus\left(\bigoplus_{\xi_{1}^{\sharp}=\xi_{2}^{\sharp}=\psi} \widehat{\chi}_{\xi_{1}, \xi_{2}}\right) \ominus\left(\bigoplus_{\mu^{b}=\Psi} \rho_{\mu}\right), \\
& \operatorname{Ind}_{G}^{G_{m}} \widehat{\chi}_{\psi}^{1}=\frac{q\left(q^{m-1}-1\right)}{q^{2}-1}\left[\left(\bigoplus_{\left(\xi^{\sharp}\right)^{2}=\psi^{2}} \widehat{\chi}_{\xi}^{1}\right) \bigoplus\left(\bigoplus_{\left(\xi_{1} \xi_{2}\right)^{\sharp}=\psi^{2}} \widehat{\chi}_{\xi_{1}, \xi_{2}}\right)\right. \\
& \left.\bigoplus\left(\bigoplus_{\mu^{\sharp}=\psi^{2}} \rho_{\mu}\right)\right] \bigoplus\left(\bigoplus_{\xi^{\sharp}=\psi} \widehat{\chi}_{\xi}^{1}\right) \tag{14.62}\\
& \bigoplus\left(\bigoplus_{\xi_{1}^{\sharp}=\xi_{2}^{\sharp}=\psi} \widehat{\chi}_{\xi_{1}, \xi_{2}}\right) \bigoplus\left(\bigoplus_{\mu^{b}=\Psi} \rho_{\mu}\right),
\end{align*}
$$

and

$$
\begin{align*}
& \operatorname{Ind}_{G}^{G_{m}} \rho_{\nu}=\frac{q^{m-1}-1}{q+1}\left[\left(\bigoplus_{\left(\xi^{\sharp}\right)^{2}=\nu^{\sharp}} \widehat{\chi}_{\xi}^{1}\right) \bigoplus\left(\bigoplus_{\left(\xi_{1} \xi_{2}\right)^{\sharp}=\nu^{\sharp}} \widehat{\chi}_{\xi_{1}, \xi_{2}}\right)\right. \\
&\left.\bigoplus\left(\bigoplus_{\mu^{\sharp}=\nu^{\sharp}} \rho_{\mu}\right)\right] \bigoplus\left(\bigoplus_{\mu^{b}=\nu} \rho_{\mu}\right) . \tag{14.63}
\end{align*}
$$

Suppose now that m is even. Then,

$$
\begin{aligned}
& \operatorname{Ind}_{G}^{G_{m}} \widehat{\chi}_{\psi}^{0}=\frac{q\left(q^{m-2}-1\right)}{q^{2}-1}\left[\left(\bigoplus_{\left(\xi^{\sharp}\right)^{2}=\psi^{2}} \widehat{\chi}_{\xi}^{1}\right) \bigoplus\left(\bigoplus_{\left(\xi_{1} \xi_{2}\right)^{\sharp}=\psi^{2}} \widehat{\chi}_{\xi_{1}, \xi_{2}}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Ind}_{G}^{G_{m}} \widehat{\chi}_{\psi}^{1}=\frac{q^{m}-1}{q^{2}-1}[& \left(\bigoplus_{\left(\xi^{\sharp}\right)^{2}=\psi^{2}} \widehat{\chi}_{\xi}^{1}\right) \bigoplus\left(\bigoplus_{\left(\xi_{1} \xi_{2}\right)^{\sharp}=\psi^{2}} \widehat{\chi}_{\xi_{1}, \xi_{2}}\right) \\
& \left.\bigoplus\left(\bigoplus_{\mu^{\sharp}=\psi^{2}} \rho_{\mu}\right)\right] \bigoplus\left(\bigoplus_{\xi_{1}^{\sharp}=\xi_{2}^{\sharp}=\psi} \widehat{\chi}_{\xi_{1}, \xi_{2}}\right) \\
& \ominus\left(\bigoplus_{\left(\xi_{1} \overline{\left.\xi_{2}\right)^{b}=\Psi}\right.} \widehat{\chi}_{\xi_{1}, \xi_{2}}\right),
\end{aligned}
$$

and

$$
\left.\begin{array}{rl}
\operatorname{Ind}_{G}^{G_{m}} \rho_{\nu}=\frac{q^{m-1}+1}{q+1} & {\left[\left(\bigoplus_{\left(\xi^{\sharp}\right)^{2}=\nu^{\sharp}}\right.\right.} \\
\chi_{\xi}^{1}
\end{array}\right) \bigoplus\left(\bigoplus_{\left(\xi_{1} \xi_{2}\right)^{\sharp}=\nu^{\sharp}}^{\bigoplus} \widehat{\chi}_{\xi_{1}, \xi_{2}}\right) .
$$

Finally, the next formula does not depend on the parity of m :

$$
\left.\begin{array}{rl}
\operatorname{Ind}_{G}^{G_{m}} \widehat{\chi}_{\psi_{1}, \psi_{2}}=\frac{q^{m-1}-1}{q-1}\left[\left(\bigoplus_{\left(\xi^{\sharp}\right)^{2}=\psi_{1} \psi_{2}}\right.\right. & \widehat{\chi}_{\xi}^{1}
\end{array}\right) \bigoplus\left(\bigoplus_{\left(\xi_{1} \xi_{2}\right)^{\sharp}=\psi_{1} \psi_{2}} \widehat{\chi}_{\xi_{1}, \xi_{2}}\right),
$$

Exercise 14.10.2 Prove the seven last decomposition formulas; see Example 14.10.4.

Exercise 14.10.3 Prove that $\operatorname{Ind}_{G}^{G_{2}} \rho_{\nu}$ decomposes without multiplicity, write down the decomposition (it is just (14.63) for $m=2$), and check that the dimension of the left hand side equals the sum of the dimensions of the irreducible representations in the right hand side.

Example 14.10.4 We show how to derive the seven decomposition formulas above. We just compute the multiplicity of $\widehat{\chi}_{\psi}^{0}$ in $\operatorname{Res}{ }_{G}^{G_{m}} \rho_{\mu}$ for m odd. Let χ^{μ} denote the character of $\operatorname{Res}{ }_{G}^{G_{m}} \rho_{\mu}$. From Table 14.1, Table 14.2, and Table 14.3 we get

$$
\begin{aligned}
&\left\langle\widehat{\chi}_{\psi}^{0}, \xi^{\mu}\right\rangle=\left(q^{m}-1\right) \sum_{x \in \mathbb{F}_{q}^{*}} \psi\left(x^{2}\right) \overline{\mu(x)}-\left(q^{2}-1\right) \sum_{x \in \mathbb{F}_{q}^{*}} \psi\left(x^{2}\right) \overline{\mu(x)} \\
&-\frac{q^{2}-q}{2} \sum_{z \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}} \psi(z \bar{z})[\overline{\mu(z)}+\overline{\mu(\bar{z})}] \\
&={ }_{(*)}\left(q^{m}-q^{2}\right) \sum_{x \in \mathbb{F}_{q}^{*}} \psi\left(x^{2}\right) \overline{\mu(x)}-\left(q^{2}-q\right) \sum_{z \in \mathbb{F}_{q^{2}}^{*}} \psi(z \bar{z}) \overline{\mu(z)} \\
&+\left(q^{2}-q\right) \sum_{x \in \mathbb{F}_{q}^{*}} \psi\left(x^{2}\right) \overline{\mu(x)} \\
&=\left(q^{m}-q\right) \sum_{x \in \mathbb{F}_{q}^{*}} \psi^{2}(x) \overline{\mu(x)}+\left(q^{2}-q\right) \sum_{z \in \mathbb{F}_{q^{*}}^{*}} \Psi(z) \overline{\mu(z)} \\
&={ }_{(* *)} q\left(q^{2}-1\right)(q-1)\left[\frac{q^{m-1}-1}{q^{2}-1} \delta_{\psi^{2}, \mu^{\sharp}}-\delta_{\Psi, \mu^{b}}\right]
\end{aligned}
$$

where $(*)$ follows from $\mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}=\mathbb{F}_{q^{2}}^{*} \backslash \mathbb{F}_{q}^{*}$ and $(* *)$ follows from Proposition
2.3.5 and Theorem 6.7.2. That is, since $|G|=q\left(q^{2}-1\right)(q-1)$, by Proposition 10.2.18, the multiplicity of $\widehat{\chi}_{\psi}^{0}$ in $\operatorname{Res}_{G}^{G_{m}} \rho_{\mu}$ is equal to $\frac{q^{m-1}-1}{q^{2}-1}$ if $\psi^{2}=\mu^{\sharp}$ and $\Psi \neq \mu^{b}$, while it is equal to $\frac{q^{m-1}-1}{q^{2}-1}-1$ if $\psi^{2}=\mu^{\sharp}$ and $\Psi=\mu^{b}$ (note that $\left.\Psi=\mu^{b} \Rightarrow \psi^{2}=\mu^{\sharp}\right)$. By Frobenius reciprocity, these are also the multiplicities of ρ_{μ} in $\operatorname{Ind}_{G}^{G_{m}} \widehat{\chi}_{\psi}^{0}$. This leads to the terms

$$
\left(\frac{q^{m-1}-1}{q^{2}-1} \bigoplus_{\mu^{\sharp}=\psi^{2}} \rho_{\mu}\right) \ominus\left(\bigoplus_{\mu^{b}=\Psi} \rho_{\mu}\right)
$$

in (14.61).

Exercise 14.10.5

(1) Recalling the notation in Section 14.4 (so that, in particular, Ψ is not $\psi \circ \mathrm{N})$, prove that

- $\operatorname{Res}_{B}^{G} \widehat{\chi}_{\psi}^{1}=\left[\pi \boxtimes \Psi^{2}\right] \oplus \chi_{\psi, \psi} ;$
- $\operatorname{Res}_{B}^{G} \widehat{\chi}_{\psi_{1}, \psi_{2}}^{1}=\left[\pi \boxtimes \Psi_{1} \Psi_{2}\right] \oplus 2 \chi_{\psi_{1}, \psi_{2}} ;$
- $\operatorname{Res}_{B}^{G} \rho_{\nu}=\pi \boxtimes \nu^{\sharp}$.

Hint. Use the decomposition $B=\operatorname{Aff}\left(\mathbb{F}_{q}\right) \times Z$ and compute $\operatorname{Res}_{Z}^{G}$ by means of the character table of G.
(2) Deduce that

$$
\operatorname{Ind}_{B}^{G}[\pi \boxtimes \Psi]=\left(\bigoplus_{\psi_{1}^{2}=\psi} \widehat{\chi}_{\psi_{1}}^{1}\right) \oplus\left(\underset{\psi_{1} \psi_{2}=\psi}{\bigoplus} \widehat{\chi}_{\psi_{1}, \psi_{2}}\right) \oplus\left(\underset{\nu \neq \psi}{\bigoplus \rho_{\nu}}\right)
$$

(clearly, the first term is absent if ψ is not a square).
Exercise 14.10.6 Denote by B_{m} the Borel subgroup of G_{m} and, for $\xi_{1}, \xi_{2} \in$ $\widehat{\mathbb{F}_{q^{m}}^{*}}$, denote by $\Xi_{1} \boxtimes \Xi_{2}$ the corresponding representation of B_{m}. From Exercise 12.1.9, Exercise 11.1.10, and the decomposition $B=\operatorname{Aff}\left(\mathbb{F}_{q}\right) \times Z$, deduce that

$$
\operatorname{Ind}_{B}^{B_{m}}\left[\Xi_{1} \boxtimes \Xi_{2}\right]=\frac{q^{m-1}-1}{q-1}\left[\bigoplus_{\xi_{2}^{\sharp}=\psi_{2}}\left(\pi_{q^{m}} \boxtimes \Xi_{2}\right)\right] \oplus\left[\bigoplus_{\substack{\xi_{1}^{\sharp}=\psi_{1} \\ \xi_{2}^{\sharp}=\psi_{2}}}\left(\Psi_{1} \boxtimes \Psi_{2}\right)\right]
$$

Exercise 14.10.7

(1) Use Exercise 14.10 .6 , the definition of $\widehat{\chi}_{\psi_{1}, \psi_{2}}$, and transitivity of induction, to give another proof of (14.64).
Hint. Recall that $\chi_{\psi_{1}, \psi_{2}}=\Psi_{1} \boxtimes\left(\Psi_{1} \Psi_{2}\right)$.
(2) For the remaining six decomposition formulas for $\operatorname{Ind}_{G}^{G_{m}}$, try to find alternative proofs that avoid the character tables but make use of the theory of induced representations.

14.11 Decomposition of tensor products

In this section we give a complete series of formulas for the decomposition of the tensor products of irreducible representations of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$. In general, this is a very difficult problem: for instance, for the symmetric group (cf. Section 2.9 of the monograph by James and Kerber [82]) no complete solution is known; nowadays it constitutes an active area of research (see [162] for a recent contribution and a reference to the current literature). See also our recent papers $[35,36]$ for a suitable harmonic analysis of tensor products of irreducible representations. The style is the same as in the previous section and we keep the same notation therein. In addition, we also write

- $\bigoplus_{\nu^{\sharp}=\left(\psi_{1} \psi_{2}\right)^{2}}$ to denote the direct sum over all indecomposable characters $\nu \in \mathbb{F}_{q^{2}}^{*}$ such that $\nu^{\sharp}=\left(\psi_{1} \psi_{2}\right)^{2}$;
- $\bigoplus_{\psi_{3} \psi_{4}=\psi_{1}^{2} \nu_{1}^{\sharp}}$ for the direct sum over all unordered pairs $\left\{\psi_{3}, \psi_{4}\right\} \subset \widehat{\mathbb{F}_{q}^{*}}$, with $\psi_{3} \neq \psi_{4}$ and such that $\psi_{3} \psi_{4}=\psi_{1}^{2} \nu_{1}^{\sharp}$, and so on.

The formulas below are given without proof; they may be proved by means of the character table of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$ (see Table 14.2) and the table of conjugacy classes (see Table 14.1). At the end, we give an example of such computations.

We have the following trivial identities:

$$
\begin{array}{ll}
\widehat{\chi}_{\psi}^{0} \otimes \widehat{\chi}_{\psi_{0}}^{0}=\widehat{\chi}_{\psi \psi_{0}}^{0} & \widehat{\chi}_{\psi_{0}}^{0} \otimes \widehat{\chi}_{\psi}^{1}=\widehat{\chi}_{\psi \psi_{0}}^{1} \\
\widehat{\chi}_{\psi_{0}}^{0} \otimes \widehat{\chi}_{\psi_{1}, \psi_{2}}=\widehat{\chi} \psi_{0} \psi_{1}, \psi_{0} \psi_{2} & \widehat{\chi}_{\psi}^{0} \otimes \rho_{\nu}=\rho_{\Psi \nu}
\end{array}
$$

Moreover,

$$
\begin{aligned}
\widehat{\chi}_{\psi_{1}}^{1} \otimes \widehat{\chi}_{\psi_{2}}^{1}= & \widehat{\chi}_{\psi_{1} \psi_{2}}^{0} \oplus \widehat{\chi}_{\psi_{1} \psi_{2}}^{1} \oplus \widehat{\chi}_{-\psi_{1} \psi_{2}}^{1} \\
& \oplus\left(\bigoplus_{\psi_{3} \psi_{4}=\left(\psi_{1} \psi_{2}\right)^{2}} \widehat{\chi}_{\psi_{3}, \psi_{4}}\right) \oplus\left(\bigoplus_{\nu^{\sharp}=\left(\psi_{1} \psi_{2}\right)^{2}} \rho_{\nu}\right),
\end{aligned}
$$

where the third term appears only if q is odd.

$$
\begin{aligned}
& \widehat{\chi}_{\psi_{1}}^{1} \otimes \widehat{\chi}_{\psi_{2}, \psi_{3}}=\left(\bigoplus_{\psi^{2}=\psi_{1}^{2} \psi_{2} \psi_{3}} \hat{\chi}_{\psi}^{1}\right) \oplus\left(\bigoplus_{\psi_{4} \psi_{5}=\psi_{1}^{2} \psi_{2} \psi_{3}}{\widehat{\chi} \psi_{4}, \psi_{5}}\right) \\
& \oplus \hat{\chi}_{\psi_{1} \psi_{2}, \psi_{1} \psi_{3}} \oplus\left(\bigoplus_{\nu^{\sharp}=\psi_{1}^{2} \psi_{2} \psi_{3}} \rho_{\nu}\right) . \\
& \widehat{\chi}_{\psi_{1}}^{1} \otimes \rho_{\nu}=\left(\bigoplus_{\psi^{2}=\psi_{1}^{2} \nu^{\sharp}} \hat{\chi}_{\psi}^{1}\right) \oplus\left(\bigoplus_{\psi_{2} \psi_{3}=\psi_{1}^{2} \nu^{\sharp}} \widehat{\chi}_{\psi_{2}, \psi_{3}}\right) \\
& \oplus\left(\bigoplus_{\substack{\nu_{1}^{\sharp}=\psi_{1}^{2} \nu^{\sharp} \\
\nu_{1} \neq \Psi_{1} \\
\nu, \Psi_{1} \bar{\nu}}} \rho_{\nu_{1}}\right) . \\
& \widehat{\chi}_{\psi_{1}, \psi_{2}} \otimes \widehat{\chi}_{\psi_{3}, \psi_{4}}=\left(\delta_{\psi_{1} \psi_{3}, \psi_{2} \psi_{4}} \widehat{\chi}_{\psi_{1} \psi_{3}}^{0}\right) \oplus\left(\delta_{\psi_{1} \psi_{4}, \psi_{2} \psi_{3}} \widehat{\chi}_{\psi_{1} \psi_{4}}^{0}\right) \\
& \oplus\left(\bigoplus_{\psi^{2}=\psi_{1} \psi_{2} \psi_{3} \psi_{4}} \widehat{\chi}_{\psi}^{1}\right) \oplus\left(\delta_{\psi_{1} \psi_{3}, \psi_{2} \psi_{4}} \hat{\chi}_{\psi_{1} \psi_{3}}^{1}\right) \\
& \oplus\left(\delta_{\psi_{1} \psi_{4}, \psi_{2} \psi_{3}} \hat{\chi}_{\psi_{1} \psi_{4}}^{1}\right) \oplus\left(\bigoplus_{\psi_{5} \psi_{6}=\psi_{1} \psi_{2} \psi_{3} \psi_{4}} \widehat{\chi}_{\psi_{5}, \psi_{6}}\right) \\
& \oplus\left(\bigoplus_{\nu \sharp=\psi_{1} \psi_{2} \psi_{3} \psi_{4}} \rho_{\nu}\right) \oplus \widehat{\chi}_{\psi_{1} \psi_{3}, \psi_{2} \psi_{4}} \oplus \widehat{\chi}_{\psi_{1} \psi_{4}, \psi_{2} \psi_{3}},
\end{aligned}
$$

where the last but one (respectively, last) term appears only if $\psi_{1} \psi_{3} \neq \psi_{2} \psi_{4}$ (respectively, $\psi_{1} \psi_{4} \neq \psi_{2} \psi_{3}$).

$$
\begin{aligned}
\widehat{\chi}_{\psi_{1}, \psi_{2}} \otimes \rho_{\nu_{1}}= & \left(\bigoplus_{\psi_{3} \psi_{4}=\psi_{1} \psi_{2} \nu_{1}^{\sharp}}^{\bigoplus} \quad \widehat{\chi}_{\psi_{3}, \psi_{4}}\right) \\
& \oplus\left(\underset{\nu^{\sharp}=\psi_{1} \psi_{2} \nu_{1}^{\sharp}}{\bigoplus_{\nu}} \rho_{\nu}\right) \oplus\left(\underset{\psi^{2}=\psi_{1} \psi_{2} \nu_{1}^{\sharp}}{\bigoplus_{\psi}} \widehat{\chi}_{\psi}^{1}\right),
\end{aligned}
$$

where the last term appears only if $\psi_{1} \psi_{2} \nu_{1}^{\sharp}$ is a square.

Finally,

$$
\begin{align*}
& \rho_{\nu_{1}} \otimes \rho_{\nu_{2}}=\left(\delta_{\nu_{1}, \nu_{2}}+\delta_{\left.\nu_{1}, \overline{\nu_{2}}\right)}\right) \widehat{\chi}_{\nu_{1}^{\sharp}}^{0} \oplus\left(\bigoplus_{\substack{\psi^{2}=\left(\nu_{1} \nu_{2}\right)^{\sharp} \\
\Psi \neq \nu_{1} \nu_{2}, \nu_{1} \nu_{2}}} \widehat{\chi}_{\psi}^{1}\right. \\
& \oplus\left(\underset{\substack{\psi_{1} \psi_{2}=\left(\nu_{1} \nu_{2}\right)^{\sharp}}}{ } \hat{\chi}_{\psi_{1}, \psi_{2}}\right) \oplus\left(\begin{array}{c}
\substack{\nu^{\sharp}=\left(\nu_{1} \nu_{2}\right)^{\sharp} \\
\nu \neq \nu_{1} \nu_{2}, \bar{\nu}_{1} \nu_{2}, \nu_{1} \nu_{2}, \overline{\nu_{1} \nu_{2}}}
\end{array}\right) \tag{14.65}\\
&\left.\rho_{\nu}\right),
\end{align*}
$$

where the second term appears only if $\left(\nu_{1} \nu_{2}\right)^{\sharp}$ is a square and $\nu_{1} \neq \nu_{2}, \overline{\nu_{2}}$.
Exercise 14.11.1 Prove the above decomposition formulas (cf. Example below).

Example 14.11.2 We show how to compute the multiplicity of ρ_{ν} in $\rho_{\nu_{1}} \otimes$ $\rho_{\nu_{2}}$. Denoting by $\chi^{\nu}, \chi^{\nu_{1}}$, and $\chi^{\nu_{2}}$ the characters of $\rho_{\nu}, \rho_{\nu_{1}}$, and $\rho_{\nu_{2}}$, respectively, and recalling that, by (10.63), the character of $\rho_{\nu_{1}} \otimes \rho_{\nu_{2}}$ is $\chi^{\nu_{1}} \chi^{\nu_{2}}$, we have

$$
\begin{aligned}
&\left\langle\chi^{\nu_{1}} \chi^{\nu_{2}}, \chi^{\nu}\right\rangle=(q-1)^{3} \sum_{x \in \mathbb{F}_{q}^{*}} \nu_{1}(x) \nu_{2}(x) \overline{\nu(x)}-\left(q^{2}-1\right) \sum_{x \in \mathbb{F}_{q}^{*}} \nu_{1}(x) \nu_{2}(x) \overline{\nu(x)} \\
& \quad-\frac{q^{2}-q}{2} \sum_{z \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}}\left[\nu_{1}(z)+\nu_{1}(\bar{z})\right] \cdot\left[\nu_{2}(z)+\nu_{2}(\bar{z})\right] \cdot[\overline{\nu(z)}+\overline{\nu(\bar{z})}] \\
&=\left[(q-1)^{3}(q-1)-\left(q^{2}-1\right)(q-1)\right] \delta_{\left(\nu_{1} \nu_{2}\right)^{\sharp}, \nu^{\sharp}} \\
&+4\left(q^{2}-q\right)(q-1) \sum_{x \in \mathbb{F}_{q}^{*}} \nu_{1}(x) \nu_{2}(x) \overline{\nu(x)} \\
& \quad-\left(q^{2}-q\right) \sum_{z \in \mathbb{F}_{q^{2}}^{*}}\left[\nu_{1}(z) \nu_{2}(z) \overline{\nu(z)}+\nu_{1}(\bar{z}) \nu_{2}(z) \overline{\nu(z)}\right. \\
&\left.\quad+\nu_{1}(\bar{z}) \nu_{2}(\bar{z}) \overline{\nu(z)}+\nu_{1}(z) \nu_{2}(\bar{z}) \overline{\nu(z)}\right]
\end{aligned}
$$

and this explains the last term in (14.65).

Appendix 1

Chebyshëv polynomials

Definition A1.0.1 Let $I \subseteq \mathbb{R}$ be an interval. We say that the real valued functions $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ defined on I form a Chebyshëv set on I if, for all choices of $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$, the function $\sum_{j=1}^{n} a_{j} \phi_{j}$ has at most $n-1$ distinct zeroes in I.

Proposition A1.0.2 Let $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$ be a Chebyshëv set on the interval I. Then
(i) if $t_{1}, t_{2}, \ldots, t_{n} \in I$ are distinct, then the vectors

$$
\mathbf{z}_{k}=\left(\phi_{k}\left(t_{1}\right), \phi_{k}\left(t_{2}\right), \ldots, \phi_{k}\left(t_{n}\right)\right)
$$

$k=1,2, \ldots, n$ are \mathbb{R}-linearly independent in \mathbb{R}^{n};
(ii) if $t_{1}, t_{2}, \ldots, t_{n+1} \in I$ are distinct and $s_{1}, s_{2}, \ldots, s_{n+1}$ are real numbers that alternate in sign (i.e. $s_{j} s_{j+1}<0$ for $j=1,2, \ldots, n$), then the vectors $\mathbf{w}_{k}=\left(\phi_{k}\left(t_{1}\right), \phi_{k}\left(t_{2}\right), \ldots, \phi_{k}\left(t_{n+1}\right)\right) k=1,2, \ldots, n$ and $\mathbf{w}_{n+1}=\left(s_{1}, s_{2}, \ldots, s_{n+1}\right)$ are $\mathbb{R}-l i n e a r l y$ independent in \mathbb{R}^{n+1}.

Proof (i) The linear relation $\sum_{j=1}^{n} a_{j} \mathbf{z}_{j}=0$ yields $\sum_{j=1}^{n} a_{j} \phi_{j}\left(t_{k}\right)=0$, for $k=1,2, \ldots, n$ which forces, by definition of a Chebyshëv set, $a_{j}=0$ for all $j=1,2, \ldots, n$.
(ii) Suppose that there exist $a_{1}, a_{2}, \ldots, a_{n+1} \in \mathbb{R}$ such that $\sum_{j=1}^{n+1} a_{j} \mathbf{w}_{j}=$ 0 . This is equivalent to saying

$$
a_{1} \phi_{1}\left(t_{k}\right)+a_{2} \phi_{2}\left(t_{k}\right)+\cdots+a_{n} \phi_{n}\left(t_{k}\right)=-a_{n+1} s_{k}
$$

for all $k=1,2, \ldots, n+1$. If $a_{n+1}=0$ we can argue as in (i). Otherwise we deduce that $\sum_{j=1}^{n} a_{j} \phi_{j}$ alternates the sign at the points $t_{1}, t_{2}, \ldots, t_{n+1}$. We may suppose that $t_{1}<t_{2}<\cdots<t_{n+1}$ and conclude, by virtue of the mean value Theorem, that there exist $\tilde{t}_{k} \in\left(t_{k}, t_{k+1}\right)$ such that $\sum_{j=1}^{n} a_{j} \phi_{j}\left(\tilde{t}_{k}\right)=0$
for $k=1,2, \ldots, n$. By definition of a Chebyshëv set, we get the $a_{j}=0$ for all $j=1,2, \ldots, n$ and thus also $a_{n+1}=0$.

Proposition A1.0.3

(i) The functions $1, \cos \theta, \cos 2 \theta, \ldots, \cos n \theta$ constitute a Chebyshëv set in $[0, \pi]$.
(ii) The functions $\sin \theta, \sin 2 \theta, \ldots, \sin n \theta$ constitute a Chebyshëv set in $(0, \pi)$.

Proof (i) First of all, note that $\cos k \theta$ may be written as a polynomial of degree k in $\cos \theta$. Indeed, De Moivre's formula yields

$$
\begin{equation*}
\cos k \theta+i \sin k \theta=(\cos \theta+i \sin \theta)^{k}=\sum_{h=0}^{k}\binom{k}{h}(\cos \theta)^{k-h} i^{h}(\sin \theta)^{h} \tag{A.1}
\end{equation*}
$$

so that (since i^{h} is real if and only if h is even)

$$
\cos k \theta=\sum_{h=0}^{[k / 2]}\binom{k}{2 h}(-1)^{h}(\cos \theta)^{k-2 h}(\sin \theta)^{2 h}
$$

and, using the identity $\sin ^{2} \theta=1-\cos ^{2} \theta$, we get the desired expression. Therefore, a function of the form $\phi(\theta)=a_{0}+a_{1} \cos \theta+\cdots+a_{n} \cos n \theta$ can be written in the form $\phi(\theta)=P(\cos \theta)$ where P is a real polynomial of degree $\leq n$. Since P has at most n roots in $[-1,1]$ and the map $\theta \mapsto \cos \theta$ is a bijection between $[0, \pi]$ and $[-1,1]$, we deduce that $\phi(\theta)$ has at most n roots in $[0, \pi]$.
(ii) From (A.1) we also deduce that

$$
\sin k \theta=\sum_{h=0}^{[(k-1) / 2]}\binom{k}{2 h+1}(-1)^{h}(\cos \theta)^{k-2 h-1}(\sin \theta)^{2 h+1}
$$

that yields an expression of $\frac{\sin k \theta}{\sin \theta}$ as a polynomial of degree $k-1$ in $\cos \theta$. Then, for $0<\theta<\pi$, we have that $\psi(\theta)=b_{1} \sin \theta+b_{2} \sin 2 \theta+\cdots+b_{n} \sin n \theta$ can be written in the form

$$
\psi(\theta)=\sin \theta\left(b_{1}+b_{2} \frac{\sin 2 \theta}{\sin \theta}+\cdots+b_{n} \frac{\sin n \theta}{\sin \theta}\right)=\sin \theta P(\cos \theta)
$$

where P is a polynomial of degree $\leq n-1$. Then we may conclude as in (i).

In the proof of Proposition A1.0.3 we have shown the existence of polynomials $T_{n} \in \mathbb{R}[x]$ and $U_{n} \in \mathbb{R}[x]$ of degree n such that

$$
\cos n \theta=T_{n}(\cos \theta) \text { and } \frac{\sin (n+1) \theta}{\sin \theta}=U_{n}(\cos \theta)
$$

The T_{n} 's are called the Chebyshëv polynomials of the first kind. As we shall see (cf. Lemma A.3) the U_{n} 's are the so-called Chebyshëv polynomials of the second kind.

Exercise A1.0.4 Show that the Chebyshëv polynomials of the first kind are expressed as

$$
T_{n}(x)=\sum_{k=0}^{[n / 2]}\binom{n}{2 k}\left(x^{2}-1\right)^{k} x^{n-2 k}
$$

and satisfy:
(1) the recurrence relation

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \text { for } n \geq 1 \text { with } T_{0}(x)=1, T_{1}(x)=x
$$

(2) the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

(3) the orthogonality relations

$$
\int_{-1}^{1} T_{n}(x) T_{m}(x) \frac{d x}{\sqrt{1-x^{2}}}= \begin{cases}0 & \text { if } n \neq m \\ \pi & \text { if } n=m=0 \\ \pi / 2 & \text { if } n=m \neq 0\end{cases}
$$

(4) the multiplicative property: $T_{m} T_{n}=\frac{1}{2}\left(T_{n+m}+T_{|m-n|}\right)$;
(5) the semigroup property: $T_{m}\left(T_{n}(x)\right)=T_{m n}(x)$;
(6) the discrete orthogonality relations

$$
\begin{aligned}
& \frac{1}{2} T_{0}\left(\cos \frac{j \pi}{n}\right) T_{0}\left(\cos \frac{k \pi}{n}\right)+\sum_{r=1}^{n-1} T_{r}\left(\cos \frac{j \pi}{n}\right) T_{r}\left(\cos \frac{k \pi}{n}\right) \\
& \quad+\frac{1}{2} T_{n}\left(\cos \frac{j \pi}{n}\right) T_{n}\left(\cos \frac{k \pi}{n}\right)= \begin{cases}0 & \text { if } j \neq k \\
n / 2 & \text { if } j=k \neq 0, n \\
n & \text { if } j=k=0, n\end{cases}
\end{aligned}
$$

(7) the dual discrete orthogonality relations:

$$
\begin{aligned}
& \frac{1}{2} T_{j}(1) T_{k}(1)+\sum_{r=1}^{n-1} T_{j}\left(\cos \frac{\pi r}{n}\right) T_{k}\left(\cos \frac{\pi r}{n}\right) \\
& +\frac{1}{2} T_{j}(-1) T_{k}(-1)= \begin{cases}0 & \text { if } j \neq k \\
n / 2 & \text { if } j=k \neq 0, n \\
n & \text { if } j=k=0, n\end{cases}
\end{aligned}
$$

(8) the associated generating function is:

$$
\sum_{n=0}^{\infty} T_{n}(x) t^{n}=\frac{1-t x}{1-2 t x+t^{2}}
$$

Exercise A1.0.5 Let $X_{n}=\{0,1, \ldots, n\}$ and $\widetilde{X_{n}}=\left\{\cos \frac{j \pi}{n}: j=0,1, \ldots, n\right\}$. The map $\mathfrak{F}: L\left(\widetilde{X_{n}}\right) \rightarrow L\left(X_{n}\right)$, defined by setting

$$
[\mathfrak{F} f](k)=\frac{1}{n} f(1) T_{k}(1)+\frac{2}{n} \sum_{j=1}^{n-1} f\left(\cos \frac{j \pi}{n}\right) T_{k}\left(\cos \frac{j \pi}{n}\right)+\frac{1}{n} f(-1) T_{k}(-1)
$$

for all $f \in L\left(\widetilde{X_{n}}\right)$ and $k \in X_{n}$, is called the Discrete Chebyshëv Transform (see the monograph [22] by Briggs and Henson for more on this). Show that the following inversion formula holds:
$f\left(\cos \frac{j \pi}{n}\right)=\frac{1}{2}[\mathfrak{F} f](0) T_{0}\left(\cos \frac{j \pi}{n}\right)+\sum_{k=1}^{n-1}[\mathfrak{F} f](k) T_{k}\left(\cos \frac{j \pi}{n}\right)+\frac{1}{2}[\mathfrak{F} f](n) T_{n}\left(\cos \frac{j \pi}{n}\right)$,
for all $f \in L\left(\widetilde{X_{n}}\right)$ and $j=0,1, \ldots, n$. Moreover, for n even, analyze the relations between the Discrete Chebyshëv Transform and the Discrete Fourier Transform of an even function (4.6).

Definition A1.0.6 The Chebyshëv polynomials of the second kind are the polynomials $U_{m}(x), m \in \mathbb{N}$, defined by means of the initial positions $U_{0}(x)=$ 1 and $U_{1}(x)=2 x$ and the recurrence relation

$$
\begin{equation*}
U_{m+1}(x)=2 x U_{m}(x)-U_{m-1}(x) \tag{A.2}
\end{equation*}
$$

for all $m \geq 1$.
Note that $\operatorname{deg} U_{m}(x)=m$ and the leading coefficient of $U_{m}(x)$ is 2^{m}, for all $m \in \mathbb{N}$.

Exercise A1.0.7 Show that the Chebyshëv polynomials of the second kind are expressed as

$$
U_{n}(x)=\sum_{k=0}^{[n / 2]}\binom{n+1}{2 k+1}\left(x^{2}-1\right)^{k} x^{n-2 k}
$$

and satisfy:
(1) the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-3 x y^{\prime}+n(n+2) y=0
$$

(2) the orthogonality relations

$$
\int_{-1}^{1} U_{n}(x) U_{m}(x) \sqrt{1-x^{2}} d x=\frac{\pi}{2} \delta_{n, m}
$$

(3) the associated generating function is:

$$
\sum_{n=0}^{\infty} U_{n}(x) t^{n}=\frac{1}{1-2 t x+t^{2}}
$$

(4) finally prove that $T_{n+1}^{\prime}(x)=(n+1) U_{n}(x)$.

Lemma A1.0.8

$$
\begin{equation*}
U_{m}(\cos \theta)=\frac{\sin (m+1) \theta}{\sin \theta} \tag{A.3}
\end{equation*}
$$

for all $m \in \mathbb{N}$ and $\theta \in \mathbb{R} \backslash \pi \mathbb{Z}$.
Note that we may interpret $\frac{\sin (m+1) k \pi}{\sin k \pi}, k \in \mathbb{Z}$, as the limit of $\frac{\sin (m+1) \theta}{\sin \theta}$ for $\theta \rightarrow k \pi$ that may be evaluated by means of L'Hôpital's rule, so that (A.3) becomes

$$
U_{m}(\cos k \pi) \equiv U_{m}\left((-1)^{k}\right)=(-1)^{k m}(m+1)
$$

Proof We prove it by induction on m. Clearly,

$$
U_{0}(\cos \theta)=1=\frac{\sin (0+1) \theta}{\sin \theta}
$$

and

$$
U_{1}(\cos \theta)=2 \cos \theta=\frac{\sin 2 \theta}{\sin \theta}=\frac{\sin (1+1) \theta}{\sin \theta}
$$

showing the base of induction. Moreover,

$$
\begin{aligned}
\sin (m+2) \theta & =\sin m \theta \cos 2 \theta+\sin 2 \theta \cos m \theta \\
\left(\cos 2 \theta=2 \cos ^{2} \theta-1\right) & =2 \cos ^{2} \theta \sin m \theta-\sin m \theta+2 \sin \theta \cos \theta \cos m \theta \\
& =2 \cos \theta(\cos \theta \sin m \theta+\sin \theta \cos m \theta)-\sin m \theta \\
& =2 \cos \theta \sin (m+1) \theta-\sin m \theta
\end{aligned}
$$

and therefore, assuming that (A.3) holds both for m and $m-1$, we have:

$$
\begin{aligned}
\frac{\sin (m+2) \theta}{\sin \theta} & =2 \cos \theta \frac{\sin (m+1) \theta}{\sin \theta}-\frac{\sin m \theta}{\sin \theta} \\
\text { (by inductive hypothesis) } & =2 \cos \theta U_{m}(\cos \theta)-U_{m-1}(\cos \theta) \\
(\text { by }(\mathrm{A} .2)) & =U_{m+1}(\cos \theta)
\end{aligned}
$$

We now define a first set of modified Chebyshëv polynomials of the second kind. Let us fix, once and for all, a positive integer k, and define $P_{m} \in \mathbb{R}[x]$, $m \in \mathbb{N}$, by setting

$$
\begin{equation*}
P_{m}(x)=(k-1)^{\frac{m}{2}} U_{m}\left(\frac{x}{2 \sqrt{k-1}}\right) \tag{A.4}
\end{equation*}
$$

Lemma A1.0.9 We have $P_{0}(x)=1, P_{1}(x)=x$ and, for all $m \geq 1$,

$$
P_{m+1}(x)=x P_{m}(x)-(k-1) P_{m-1}(x)
$$

Proof

$$
\begin{aligned}
x P_{m}(x)-(k-1) P_{m-1}(x)= & x(k-1)^{\frac{m}{2}} U_{m}\left(\frac{x}{2 \sqrt{k-1}}\right) \\
& -(k-1)^{\frac{m+1}{2}} U_{m-1}\left(\frac{x}{2 \sqrt{k-1}}\right) \\
= & (k-1)^{\frac{m+1}{2}}\left[2 \frac{x}{2 \sqrt{k-1}} U_{m}\left(\frac{x}{2 \sqrt{k-1}}\right)\right. \\
& \left.-U_{m-1}\left(\frac{x}{2 \sqrt{k-1}}\right)\right] \\
(\text { by }(\mathrm{A} .2))= & (k-1)^{\frac{m+1}{2}} U_{m+1}\left(\frac{x}{2 \sqrt{k-1}}\right) \\
= & P_{m+1}(x) .
\end{aligned}
$$

Another modified version of the U_{m} 's is provided by the polynomials $X_{m} \in$ $\mathbb{R}[x], m \in \mathbb{N}$, defined by setting

$$
\begin{equation*}
X_{m}(x)=U_{m}\left(\frac{x}{2}\right) . \tag{A.5}
\end{equation*}
$$

Lemma A1.0.10 The following properties hold for the polynomials X_{m}, $m \in \mathbb{N}$:
(i) $X_{m}(2 \cos \theta)=\frac{\sin (m+1) \theta}{\sin \theta}$.
(ii) $X_{m+1}(x)=x X_{m}(x)-X_{m-1}(x)$.
(iii) The roots of X_{m} are $A_{h}=2 \cos \frac{h \pi}{m+1}$ for $h=1,2, \ldots, m$.

Proof (i) follows immediately from Lemma (A1.0.8), and (ii) is obvious. Since $\operatorname{deg} X_{m}=m$, the polynomial X_{m} has at most m roots. But by (i) we have

$$
\begin{aligned}
X_{m}(2 \cos \theta)=0 & \Leftrightarrow \sin (m+1) \theta=0 \text { and } \sin \theta \neq 0 \\
& \Leftrightarrow(m+1) \theta=h \pi \text { with } h \in \mathbb{Z} \text { and }(m+1) \nmid h,
\end{aligned}
$$

so that the A_{h} 's as in the statement are precisely the m distinct roots of X_{m}.

Comparing (A.4) and (A.5), we deduce that

$$
\begin{equation*}
P_{m}(x)=(k-1)^{m / 2} X_{m}\left(\frac{x}{\sqrt{k-1}}\right) \tag{A.6}
\end{equation*}
$$

for all $m \in \mathbb{N}$.
Now we give deeper and more difficult properties of the polynomials X_{m} 's.

Lemma A1.0.11

(i) For $0 \leq \ell \leq h$ we have:

$$
X_{\ell} X_{h}=\sum_{m=0}^{\ell} X_{\ell+h-2 m}
$$

(ii) For $m \in \mathbb{N}$

$$
\frac{X_{m}(x)}{x-\alpha_{m}}=\sum_{j=0}^{m-1} X_{m-1-j}\left(\alpha_{m}\right) X_{j}(x)
$$

where $\alpha_{m}=2 \cos \frac{\pi}{m+1}$.

Proof (i) The proof is by induction of ℓ. For $\ell=0$ it is trivial $\left(X_{0}=1\right)$, while for $\ell=1$ we have $X_{1}(x)=x$ and, by virtue of Lemma A1.0.10.(ii),

$$
X_{1} X_{h}=x X_{h}=X_{h+1}+X_{h-1}
$$

The inductive step is the following: for $2 \leq \ell \leq h$ we have, taking into account Lemma A1.0.10.(ii),

$$
\begin{aligned}
X_{\ell} X_{h} & =x X_{\ell-1} X_{h}-X_{\ell-2} X_{h} \\
\text { (by inductive hypothesis) } & =x \sum_{m=0}^{\ell-1} X_{\ell-1+h-2 m}-\sum_{m=0}^{\ell-2} X_{\ell-2+h-2 m} \\
& =\sum_{m=0}^{\ell-2}\left(x X_{\ell+h-2 m-1}-X_{\ell+h-2 m-2}\right)+x X_{h-\ell+1} \\
\text { (by Lemma A1.0.10.(ii)) } & =\sum_{m=0}^{\ell-2} X_{\ell+h-2 m}+X_{h-\ell}+X_{h-\ell+2} \\
& =\sum_{m=0}^{\ell} X_{\ell+h-2 m} .
\end{aligned}
$$

(ii) First of all, note that Lemma A1.0.10.(ii) may be rewritten as

$$
\begin{equation*}
x X_{j}=X_{j-1}+X_{j+1} \tag{A.7}
\end{equation*}
$$

Moreover,

$$
\begin{gather*}
X_{0}\left(\alpha_{m}\right)=1 \tag{A.8}\\
X_{1}\left(\alpha_{m}\right)-\alpha_{m} X_{0}\left(\alpha_{m}\right)=\alpha_{m}-\alpha_{m}=0 \tag{A.9}
\end{gather*}
$$

and, for $m \geq 2$:

$$
\begin{equation*}
X_{m-2}\left(\alpha_{m}\right)-\alpha_{m} X_{m-1}\left(\alpha_{m}\right)=-X_{m}\left(\alpha_{m}\right)=0 \tag{A.10}
\end{equation*}
$$

where the first (resp. second) equality follows from Lemma A1.0.10.(ii) (resp.
(iii)). Therefore,

$$
\begin{array}{r}
\left(x-\alpha_{m}\right) \sum_{j=0}^{m-1} X_{m-1-j}\left(\alpha_{m}\right) X_{j}(x)=x X_{m-1}\left(\alpha_{m}\right) \\
+\sum_{j=1}^{m-1} X_{m-1-j}\left(\alpha_{m}\right) x X_{j}(x) \\
\quad-\sum_{j=0}^{m-1} X_{m-j-1}\left(\alpha_{m}\right) \alpha_{m} X_{j}(x)
\end{array}
$$

(by (A.7) and $\left.X_{1}(x)=x\right) \quad=X_{1}(x) X_{m-1}\left(\alpha_{m}\right)$

$$
\begin{aligned}
& \qquad+\sum_{j=1}^{m-1} X_{m-j-1}\left(\alpha_{m}\right)\left[X_{j+1}(x)+X_{j-1}(x)\right] \\
& \quad-\sum_{j=0}^{m-1} X_{m-j-1}\left(\alpha_{m}\right) \alpha_{m} X_{j}(x) \\
& \text { (by rearranging) }= \\
& X_{0}(x)\left[X_{m-2}\left(\alpha_{m}\right)-X_{m-1}\left(\alpha_{m}\right) \alpha_{m}\right] \\
& \\
& +\sum_{j=1}^{m-2} X_{j}(x)\left[X_{m-j}\left(\alpha_{m}\right)\right. \\
& \\
& \left.\quad+X_{m-j-2}\left(\alpha_{m}\right)-\alpha_{m} X_{m-j-1}\left(\alpha_{m}\right)\right] \\
& \\
& \quad+\left[\alpha_{m}-\alpha_{m} X_{0}\left(\alpha_{m}\right)\right] X_{m-1}(x) \\
& \\
& \quad+X_{0}\left(\alpha_{m}\right) X_{m}(x) \\
& =
\end{aligned} X_{m}(x) .
$$

where the last equality follows from (A.8), (A.9), (A.10) and Lemma A1.0.10.(ii) applied to the main sum.

We now define a further family of polynomials:

$$
\begin{equation*}
Y_{m}(x)=\frac{X_{m}^{2}(x)}{x-\alpha_{m}} \tag{A.11}
\end{equation*}
$$

Since $X_{m}(x)$ is divisible by $x-\alpha_{m}$, we deduce that Y_{m} is indeed a polynomial of degree $2 m-1$.

Lemma A1.0.12

$$
Y_{m}(x)=\sum_{i=1}^{2 m-1} y_{i} X_{i}(x)
$$

where the coefficients $y_{i} \in \mathbb{R}$ are given by the rule

$$
\begin{equation*}
y_{i}=\sum_{\ell} X_{\ell}\left(\alpha_{m}\right) \tag{A.12}
\end{equation*}
$$

the sum running over all ℓ satisfying the following conditions:
(1) $0 \leq \ell \leq \min \{i-1,2 m-1-i\}$;
(2) $2 m-1-i-\ell$ is even.

Proof We have

$$
\begin{align*}
& \qquad \begin{aligned}
Y_{m}(x) & =\frac{X_{m}^{2}(x)}{x-\alpha_{m}} \\
\text { (by Lemma A1.0.11.(ii)) } & =X_{m}(x) \sum_{j=0}^{m-1} X_{m-j-1}\left(\alpha_{m}\right) X_{j}(x) \\
\text { (by Lemma A1.0.11.(i)) } & =\sum_{j=0}^{m-1} X_{m-j-1}\left(\alpha_{m}\right) \sum_{h=0}^{j} X_{m+j-2 h}(x)
\end{aligned} .
\end{align*}
$$

In the above sums the summation indices j and h satisfy $0 \leq j \leq m-1$ and $-2 j \leq-2 h \leq 0$. Thus, if we set $i=m+j-2 h$ we have

$$
1 \leq m-j \leq i=m+j-2 h \leq m+j \leq 2 m-1
$$

so that

$$
\begin{equation*}
Y_{m}(x)=\sum_{i=1}^{2 m-1} y_{i} X_{i}(x) \tag{A.14}
\end{equation*}
$$

where $y_{i}=\sum_{\ell} X_{\ell}\left(\alpha_{m}\right)$ with $\ell=m-j-1$. It remains to determine the range of ℓ in terms of the new summation index i. Since $1 \leq i \leq 2 m-1$ and $0 \leq \ell \leq m-1$, then the product $X_{\ell}\left(\alpha_{m}\right) X_{i}(x)$ appears in (A.13) (and therefore in (A.14)) if and only if, recalling that $j=m-1-\ell$, there exists $0 \leq h \leq j$ such that $i=m+j-2 h$. Since $i+\ell=2 m-1-2 h$ then $2 m-1-i-\ell$ must be even $(=2 h)$, thus showing (2), and the condition $0 \leq h \leq j$ is equivalent to

$$
0 \leq \frac{2 m-1-i-\ell}{2}\left(\equiv \frac{m+j-i}{2} \equiv h\right) \leq m-1-\ell(\equiv j)
$$

that is,

$$
0 \leq 2 m-1-i-\ell \leq 2 m-2-2 \ell
$$

This is equivalent to (1).

Proposition A1.0.13 The coefficients y_{i} 's in Lemma A1.0.12 are all positive, that is, Y_{m} is a positive linear combination of the X_{i} 's, $1 \leq i \leq 2 m-1$.

Proof By taking the arithmetical mean of the terms appearing in the upper bound for the index ℓ in (A.12), we have

$$
\min \{i-1,2 m-i-1\} \leq \frac{(i-1)+(2 m-i-1)}{2}=m-1
$$

so that $\ell \leq m-1$. Since $2 \cos \frac{\pi}{\ell+1}<\alpha_{m}=2 \cos \frac{\pi}{m+1}, \lim _{x \rightarrow+\infty} X_{\ell}(x)=+\infty$, and $2 \cos \frac{\pi}{\ell+1}$ is the largest root of X_{ℓ} (by Lemma A1.0.10.(iii)), we conclude that $X_{\ell}\left(\alpha_{m}\right)>0$ for $\ell=0,1, \ldots, m-1$. As a consequence, (A.12) ensures that $y_{i}>0$ for $i=1,2, \ldots, 2 m-1$.

Corollary A1.0.14 For every $\varepsilon \in(0,1)$ there exists a polynomial $Z_{\varepsilon} \in \mathbb{R}[x]$ such that
(i) $Z_{\varepsilon}(x)=\sum_{j \geq 0} z_{\varepsilon, j} X_{j}(x)$ with $z_{\varepsilon, j} \geq 0$;
(ii) $Z_{\varepsilon}(x) \leq-1$ for $x \leq 2-\varepsilon$;
(iii) $Z_{\varepsilon}>0$ for $x>2$.

Proof We look for Z_{ε} of the form

$$
\begin{equation*}
Z_{\varepsilon}=z Y_{m}+z^{\prime} Y_{m^{\prime}} \tag{A.15}
\end{equation*}
$$

for suitable $m, m^{\prime} \in \mathbb{N}$ and $z, z^{\prime}>0$. With this choice of the form of Z_{ε}, condition (i) follows from Proposition A1.0.13. Similarly, (iii) follows from the definition of Y_{m} (see (A.11)) and the fact that $Y_{m}(x)>0$ for $x>\alpha_{m}$ and, by definition, one always has $\alpha_{m}<2$.
Now, if we choose m, m^{\prime} in such a way that $\alpha_{m}, \alpha_{m^{\prime}}>2-\varepsilon$, then, arguing as above, from (A.11) we deduce that the corresponding Z_{ε} in (A.15) satisfies $Z_{\varepsilon}(x) \leq 0$ for $x \leq 2-\varepsilon$. If, in addition, m and m^{\prime} are chosen in such a way that the numbers (cf. Lemma A1.0.10.(iii)) $2 \cos \frac{j \pi}{m+1}, j=1,2, \ldots, m$ (the roots of Y_{m}) and $2 \cos \frac{h \pi}{m^{\prime}+1}, h=1,2, \ldots, m^{\prime}$ (the roots of Y_{m}^{\prime}) are all distinct (for instance, it suffices to take $m^{\prime}=m+1$: see Exercise A1.0.15) then we have

$$
\begin{equation*}
Z_{\varepsilon}(x)<0 \text { for } x \leq 2-\varepsilon . \tag{A.16}
\end{equation*}
$$

Since $\lim _{x \rightarrow-\infty} Z_{\varepsilon}(x)=-\infty$ we deduce that $M=\max _{(-\infty, 2-\varepsilon]} Z_{\varepsilon}(x)$ is negative. Thus from (A.16) we get (ii) by replacing z and z^{\prime} by $\frac{z}{-M}$ and $\frac{z^{\prime}}{-M}$, respectively.

Exercise A1.0.15 Show that, for $1 \leq j \leq m$ and $1 \leq h \leq m+1$, we have
$\frac{j}{m+1} \neq \frac{h}{m+2}$.
Hint: write the equation $\frac{j}{m+1}=\frac{h}{m+2}$ in the form $\frac{j}{h}=1-\frac{1}{m+2}$.

Bibliography

[1] A. Abdollahi and A. Loghman, On one-factorizations of replacement products, Filomat 27 (2013), no. 1, 57-63.
[2] R.C. Agarwal and J.W. Cooley, New algorithms for digital convolution, IEEE Trans. Acoust. Speech, Signal Processing, ASS-25, 392-410.
[3] L.V. Ahlfors, Complex analysis. An introduction to the theory of analytic functions of one complex variable. Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978.
[4] S. Ahmad, Cycle structure of automorphisms of finite cyclic groups, J. Combinatorial Theory 6 (1969), 370-374.
[5] M. Aigner and G.M. Ziegler, Proofs from The Book. Fifth edition. Springer-Verlag, Berlin, 2014.
[6] M. Ajtai, J. Komlós, and E. Szemerédi, An $O(n \log n)$ sorting network. Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pp. 1-9, (1983).
[7] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986), 83-96.
[8] N. Alon, A. Lubotzky, and A. Wigderson, Semi-direct product in groups and zig-zag product in graphs: connections and applications (extended abstract). 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), 630-637, IEEE Computer Soc., Los Alamitos, CA, 2001.
[9] N. Alon and V.D. Milman, λ_{1}, isoperimetric inequalities for graphs, and superconcentrators, J. Combin. Theory Ser. B 38 (1985), no. 1, 73-88.
[10] N. Alon, O. Schwartz, and A. Shapira, An elementary construction of constant-degree expanders, Combin. Probab. Comput. 17 (2008), no. 3, 319-327.
[11] N. Alon and J.H. Spencer, The probabilistic method. Third edition. With an appendix on the life and work of Paul Erdös. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley \& Sons, Inc., Hoboken, NJ, 2008.
[12] J.L. Alperin and R.B. Bell, Groups and representations. Graduate Texts in Mathematics, 162. Springer-Verlag, New York, 1995.
[13] T.M. Apostol, Introduction to analytic number theory. Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.
[14] L. Auslander, E. Feig, and S. Winograd, New algorithms for the multidimensional discrete Fourier transform, IEEE Trans. Acoust. Speech, Signal, Proc. ASSP-31 (2) (1984), no. 1, 388-403.
[15] L. Auslander and R. Tolimieri, Is computing with the finite Fourier transform pure or applied mathematics? Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 847-897.
[16] J. Ax, Zeroes of polynomials over finite fields, Amer. J. Math. 86 (1964), 255-261.
[17] L. Bartholdi and W. Woess, Spectral computations on lamplighter groups and Diestel-Leader graphs, J. Fourier Anal. Appl. 11 (2005), no. 2, 175-202.
[18] R. Beals, On orders of subgroups in abelian groups: an elementary solution of an exercise of Herstein, Amer. Math. Monthly 116 (2009), no. 10, 923-926.
[19] M.B. Bekka, P. de la Harpe, and A. Valette, Kazhdan's property (T). New Mathematical Monographs, 11. Cambridge University Press, Cambridge, 2008.
[20] B.C. Berndt, R.J. Evans and K.S. Williams, Gauss and Jacobi sums. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1998.
[21] K.P. Bogart, An obvious proof of Burnside's lemma, Amer. Math. Monthly 98 (1991), no. 10, 927-928.
[22] W.L. Briggs and V.E. Henson, The DFT. An owner's manual for the discrete Fourier transform. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995.
[23] D. Bump, Lie groups. Graduate Texts in Mathematics, 225. Springer-Verlag, New York, 2004.
[24] D. Bump, P. Diaconis, A. Hicks, L. Miclo, and H. Widom, An Exercise(?) in Fourier Analysis on the Heisenberg Group, Ann. Fac. Sci. Toulouse Math. (6) 26 (2017), no. 2, 263-288.
[25] D. Bump and D. Ginzburg, Generalized Frobenius-Schur numbers, J. Algebra 278 (2004), no. 1, 294-313.
[26] P. Buser, Über eine Ungleichung von Cheeger, Math. Z. 158 (1978), no. 3, 245-252.
[27] P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213-230.
[28] T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Trees, wreath products and finite Gelfand pairs, Adv. Math. 206 (2006), no. 2, 503-537.
[29] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Harmonic analysis on finite groups: representation theory, Gelfand pairs and Markov chains. Cambridge Studies in Advanced Mathematics 108, Cambridge University Press 2008.
[30] T. Ceccherini-Silberstein, A. Machì, F. Scarabotti, and F. Tolli, Induced representation and Mackey theory, J. Math. Sci. (New York) 156 (2009), no. 1, 11-28.
[31] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Clifford theory and applications, J. Math. Sci. (New York) 156 (2009), no. 1, 29-43.
[32] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Representation theory of wreath products of finite groups, J. Math. Sci. (New York) 156 (2009), no. $1,44-55$.
[33] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Representation theory of the symmetric groups: the Okounkov-Vershik approach, character formulas, and partition algebras. Cambridge Studies in Advanced Mathematics 121, Cambridge University Press 2010.
[34] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Representation Theory
and Harmonic Analysis of Wreath Products of Finite Groups. London Mathematical Society Lecture Note Series 410, Cambridge University Press 2014.
[35] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Mackey's theory of τ-conjugate representations for finite groups, Jpn. J. Math. 10 (2015), no. 1, 43-96.
[36] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Mackey's criterion for subgroup restriction of Kronecker products and harmonic analysis on Clifford groups, Tohoku Math. J. (2) 67 (2015), no. 4, 553-571.
[37] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Multiplicity-free triples. In preparation.
[38] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian. In Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195-199. Princeton Univ. Press, Princeton, N. J., 1970.
[39] C. Chevalley, Démonstration d'une hypothèse de M. Artin, Abh. Math. Sem. Univ. Hamburg 11 (1935), no. 1, 73-75.
[40] P. Chiu, Cubic Ramanujan graphs, Combinatorica 12 (1992), no. 3, 275-285.
[41] J.W. Cooley and J.W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965), 297-301.
[42] Ch.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras. Reprint of the 1962 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1988.
[43] Ch.W. Curtis and I. Reiner, Methods of representation theory. With applications to finite groups and orders. Voll. I and II. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1981 and 1987.
[44] D. D'Angeli and A. Donno, Crested products of Markov chains, Ann. Appl. Probab. 19 (2009), no. 1, 414-453.
[45] D. D'Angeli and A. Donno, Wreath product of matrices, Linear Algebra Appl. 513 (2017), 276-303.
[46] D. D'Angeli and A. Donno, Shuffling matrices, Kronecker product and discrete Fourier Transform. (2016) arXiv:1605.09635.
[47] H. Davenport, The higher arithmetic. An introduction to the theory of numbers. Eighth edition. With editing and additional material by James H. Davenport. Cambridge University Press, Cambridge, 2008.
[48] G. Davidoff, P. Sarnak, and A. Valette, Elementary number theory, group theory, and Ramanujan graphs. London Mathematical Society Student Texts, 55. Cambridge University Press, Cambridge, 2003.
[49] M. Davio, Kronecker products and shuffle algebra, IEEE Trans. Comput. 30 (1981), no. 2, 116-125.
[50] Ph.J. Davis, Circulant matrices, Pure and Applied Mathematics. John Wiley \& Sons, New York-Chichester-Brisbane, 1979.
[51] P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273-307.
[52] P. Diaconis, Group representations in probability and statistics. Institute of Mathematical Statistics Lecture Notes-Monograph Series, 11. Institute of Mathematical Statistics, Hayward, CA, 1988.
[53] P. Diaconis and D. Rockmore, Efficient computation of the Fourier transform on finite groups, J. Amer. Math. Soc. 3 (1990), no. 2, 297-332.
[54] B.W. Dickinson and K. Steiglitz, Eigenvectors and functions of the discrete

Fourier transform, IEEE Trans. Acoust. Speech Signal Process. 30 (1982), no. 1, 25-31.
[55] I. Dinur, The PCP theorem by gap amplification, Journal of the ACM, $\mathbf{5 4}$ (2007) No. 3, Art. 12, 44 pp.
[56] J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984), no. 2, 787-794.
[57] A. Donno, Replacement and zig-zag products, Cayley graphs and Lamplighter random walk, Int. J. Group Theory 2 (2013), no. 1, 11-35.
[58] A. Donno, Generalized wreath products of graphs and groups, Graphs Combin. 31 (2015), no. 4, 915-926.
[59] P. Erdôs, Über die Reihe $\sum \frac{1}{p}$, Mathematica, Zutphen $B 7$ (1938), 1-2.
[60] W. Feller, An introduction to probability theory and its applications. Vol. II. Second edition John Wiley \& Sons, Inc., New York-London-Sydney 1971.
[61] G.B. Folland, Harmonic analysis in phase space. Annals of Mathematics Studies, 122. Princeton University Press, Princeton, NJ, 1989.
[62] W. Fulton and J. Harris, Representation Theory. A first course. Springer-Verlag, New York, 1991.
[63] O. Gabber and Z. Galil, Explicit constructions of linear-sized superconcentrators. Special issued dedicated to Michael Machtey. J. Comput. System Sci. 22 (1981), no. 3, 407-420.
[64] C. Godsil and G. Royle, Algebraic graph theory. Graduate Texts in Mathematics, 207. Springer-Verlag, New York, 2001.
[65] I.J. Good, The interaction algorithm and practical Fourier analysis, J. Roy. Statist. Soc. Ser. B 20 (1958), 361-372.
[66] B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), no. 2, 481-547.
[67] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955), 1-7.
[68] R.I. Grigorchuk, P.-H. Leemann, and T. Nagnibeda, Lamplighter groups, de Brujin graphs, spider-web graphs and their spectra, J. Phys. A 49 (2016), no. $20,205004,35 \mathrm{pp}$.
[69] R.I. Grigorchuk and A. Żuk, The lamplighter group as a group generated by a 2-state automaton, and its spectrum, Geom. Dedicata 87 (2001), no. 1-3, 209-244.
[70] H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1935), 151-182.
[71] I.N. Herstein, Topics in algebra. Second edition. Xerox College Publishing, Lexington, Mass.-Toronto, Ont., 1975.
[72] Ch.J. Hillar and D.L. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), no. 10, 917-923.
[73] D.A. Holton and J. Sheehan, The Petersen graph. Australian Mathematical Society Lecture Series, 7. Cambridge University Press, Cambridge, 1993.
[74] Sh. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 4, 439-561.
[75] R.A. Horn and R.Ch. Johnson, Matrix analysis. Second edition. Cambridge University Press, Cambridge, 2013.
[76] R. Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 2, 821-843.
[77] L.K. Hua and H.S. Vandiver, Characters over certain types of rings with
applications to the theory of equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 94-99.
[78] B. Huppert, Character Theory of Finite Groups. De Gruyter Expositions in Mathematics, 25, Walter de Gruyter, 1998.
[79] K. Ireland and M. Rosen, A classical introduction to modern number theory. Second edition. Graduate Texts in Mathematics, 84. Springer-Verlag, New York, 1990.
[80] I.M. Isaacs, Character theory of finite groups. Corrected reprint of the 1976 original [Academic Press, New York]. Dover Publications, Inc., New York, 1994.
[81] H. Iwaniec and E. Kowalski, Analytic number theory. American Mathematical Society Colloquium Publications, 53. American Mathematical Society, Providence, RI, 2004.
[82] G.D. James and A. Kerber, The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley, Reading, MA, 1981.
[83] S. Jimbo and A. Maruoka, Expanders obtained from affine transformations, Combinatorica 7 (1987), no. 4, 343-355.
[84] S. Karlin and H.M. Taylor, An introduction to stochastic modeling. Third edition. Academic Press, Inc., San Diego, CA, 1998.
[85] Y. Katznelson, An introduction to harmonic analysis. Third edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004.
[86] S.P. Khekalo, The Bessel function over finite fields, Integral Transforms Spec. Funct. 16 (2005), no. 3, 241-253.
[87] A.W. Knapp, Basic algebra. Cornerstones. Birkhäuser Boston, Inc., Boston, MA, 2006.
[88] A.W. Knapp, Advanced algebra. Cornerstones. Birkhäuser Boston, Inc., Boston, MA, 2007.
[89] A. Kurosh, Higher algebra. Translated from the Russian by George Yankovsky. Reprint of the 1972 translation. "Mir", Moscow, 1988.
[90] H. Kurzweil and B. Stellmacher, The theory of finite groups. An introduction. Translated from the 1998 German original. Universitext. Springer-Verlag, New York, 2004.
[91] P. Lancaster and M. Tismenetsky, The theory of matrices. Second edition. Computer Science and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1985.
[92] S. Lang, $\mathrm{SL}_{2}(R)$. Reprint of the 1975 edition. Graduate Texts in Mathematics, 105. Springer-Verlag, New York, 1985.
[93] S. Lang, Algebra. Revised third edition. Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002.
[94] F. Lehner, M. Neuhauser, and W. Woess, On the spectrum of lamplighter groups and percolation clusters, Math. Ann. 342 (2008), no. 1, 69-89.
[95] W.C.W. Li, Number theory with applications. Series on University Mathematics, 7. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
[96] R. Lidl and H. Niederreiter, Finite fields. With a foreword by P. M. Cohn. Second edition. Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
[97] J.H. van Lint and R.M. Wilson, A course in combinatorics. Second edition. Cambridge University Press, Cambridge, 2001.
[98] L.H. Loomis, An introduction to abstract harmonic analysis. D. Van Nostrand Company, Inc., Toronto-New York-London, 1953.
[99] A. Lubotzky, Discrete groups, expanding graphs and invariant measures. With an appendix by Jonathan D. Rogawski. Progress in Mathematics, 125. BirkhÃd’user Verlag, Basel, 1994.
[100] A. Lubotzky, Expander graphs in pure and applied mathematics, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 1, 113-162.
[101] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), no. 3, 261-277.
[102] A. Machì, Teoria dei gruppi. Milano, Feltrinelli, 1974.
[103] A. Machì, Groups. An introduction to ideas and methods of the theory of groups. Unitext, 58. Springer, Milan, 2012.
[104] J.H. MacClellan and T.W. Parks, Eigenvalue and eigenvector decomposition of the discrete Fourier transform, IEEE Trans. Audio Electroacoust. AU-20 (1972), no. 1, 66-74.
[105] I.G. Macdonald, Symmetric functions and Hall polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.
[106] J.H. MacKay, Another proof of Cauchy's group theorem, Amer. Math. Monthly 66 (1959), 119.
[107] G.W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265-311.
[108] G.W. Mackey, Unitary group representations in physics, probability, and number theory, Second edition. Advanced Book Classics. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989.
[109] A.W. Marcus, D.A. Spielman, and N. Srivastava, Interlacing families I: Bipartite Ramanujan graphs of all degrees, Ann. of Math. (2) 182 (2015), no. 1, 307-325.
[110] A.W. Marcus, D.A. Spielman, and N. Srivastava, Interlacing families IV: Bipartite Ramanujan graphs of all sizes. 2015 IEEE 56th Annual Symposium on Foundations of Computer Science-FOCS 2015, 1358-1377, IEEE Computer Soc., Los Alamitos, CA, 2015.
[111] G.A. Margulis, Explicit constructions of expanders, Problemy Peredachi Informatsii 9 (1973), no. 4, 71-80.
[112] G.A. Margulis, Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators, Problemy Peredachi Informatsii 24 (1988), no. 1, 51-60.
[113] S. Mac Lane and G. Birkhoff, Algebra. Third edition. Chelsea Publishing Co., New York, 1988.
[114] A.I. Mal'cev, Foundations of linear algebra. Translated from the Russian by Thomas Craig Brown. San Francisco, Calif.-London 1963.
[115] A.I. Markushevich, The theory of analytic functions: a brief course. Translated from the Russian by Eugene Yankovsky. "Mir", Moscow, 1983.
[116] M. Morgenstern, Ramanujan diagrams, SIAM J. Discrete Math. 7 (1994), no. 4, 560-570.
[117] T. Nagell, Introduction to number theory. Second edition Chelsea Publishing Co., New York 1964.
[118] M. Nathanson, Elementary Methods in Number Theory. Graduate Texts in Mathematics, Vol. 195, Springer-Verlag, New York, 2000.
[119] M.A. Naimark and A.I. Stern, Theory of Group Representations. Springer-Verlag, New York, 1982.
[120] G. Navarro, On the fundamental theorem of finite abelian groups, Amer. Math. Monthly 110 (2003), no. 2, 153-154.
[121] P.M. Neumann, A lemma that is not Burnside's, Math. Sci. 4 (1979), no. 2, 133-141.
[122] A. Nilli, Tight estimates for eigenvalues of regular graphs, Electron. J. Combin. 11 (2004), no. 1, Note 9, 4 pp.
[123] I. Piatetski-Shapiro, Complex representations of $\mathrm{GL}(2, K)$ for finite fields K. Contemporary Mathematics, 16. American Mathematical Society, Providence, R.I., 1983.
[124] C. Procesi, Lie groups. An approach through invariants and representations. Universitext. Springer, New York, 2007.
[125] Ch.M. Rader, Discrete Fourier transforms when the number of data samples is prime, Proc. IEEE 56 (1968), 1107-1108.
[126] O. Reingold, Undirected connectivity in log-space, Journal of the ACM, 55 (2008), no. 4, Art. 17, 24 pp.
[127] O. Reingold, L. Trevisan, and S. Vadhan, Pseudorandom walks on regular digraphs and the RL vs. L problem. STOC'06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 457-466, ACM, New York, 2006.
[128] O. Reingold, S. Vadhan, and A. Wigderson, Entropy waves, the zig-zag graph product, and new constant-degree expanders, Ann. of Math. (2) $\mathbf{1 5 5}$ (2002), no. 1, 157-187.
[129] D.J.S. Robinson, A course in the theory of groups. Second edition. Graduate Texts in Mathematics, 80. Springer-Verlag, New York, 1996.
[130] D.J. Rose, Matrix identities of the fast Fourier transform, Linear Algebra Appl. 29 (1980), 423-443.
[131] K.F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109.
[132] J.J. Rotman, An introduction to the theory of groups. Fourth edition. Graduate Texts in Mathematics, 148. Springer-Verlag, New York, 1995.
[133] W. Rudin, Real and complex analysis. Third edition. McGraw-Hill Book Co., New York, 1987.
[134] W. Rudin, Fourier analysis on groups. Reprint of the 1962 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1990.
[135] P. Sarnak, Some applications of modular forms. Cambridge Tracts in Mathematics, 99, Cambridge University Press, Cambridge, 1990.
[136] F. Scarabotti and F. Tolli, Harmonic analysis of finite lamplighter random walks, J. Dyn. Control Syst. 14 (2008), no. 2, 251-282.
[137] F. Scarabotti and F. Tolli, Harmonic analysis on a finite homogeneous space, Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 348-376.
[138] F. Scarabotti and F. Tolli, Harmonic analysis on a finite homogeneous space II: the Gelfand-Tsetlin decomposition, Forum Math. 22 (2010), no. 5, 879-911.
[139] F. Scarabotti and F. Tolli, Hecke algebras and harmonic analysis on finite groups, Rend. Mat. Appl. (7) 33 (2013), no. 1-2, 27-51.
[140] F. Scarabotti and F. Tolli, Induced representations and harmonic analysis on finite groups, Monatsh. Math. 181 (2016), no. 4, 937-965.
[141] M. Scafati and G. Tallini, Geometria di Galois e teoria dei codici. Ed. CISU 1995.
[142] J. Schulte, Harmonic analysis on finite Heisenberg groups, European J. Combin. 25 (2004), no. 3, 327-338.
[143] A. Selberg, An elementary proof of Dirichlet's theorem about primes in an arithmetic progression, Ann. of Math. (2) 50 (1949), 297-304.
[144] J.P. Serre, A course in arithmetic. Translated from the French. Graduate Texts in Mathematics, No. 7. Springer-Verlag, New York-Heidelberg, 1973.
[145] J.P. Serre, Linear representations of finite groups. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York-Heidelberg, 1977.
[146] J.P. Serre, Répartition asymptotique des valeurs propres de l'opérateur de Hecke T_{p}, J. Amer. Math. Soc. 10 (1997), no. 1, 75-102.
[147] R. Shaw, Linear algebra and group representations. Vol. II. Multilinear algebra and group representations. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1983.
[148] B. Simon, Representations of finite and compact groups. American Math. Soc., 1996.
[149] R.P. Stanley, Enumerative Combinatorics, Vol.1. Cambridge University Press, 1997.
[150] E.M. Stein and R. Shakarchi, Fourier analysis. An introduction. Princeton Lectures in Analysis, 1. Princeton University Press, Princeton, NJ, 2003.
[151] E.M. Stein and R. Shakarchi, Complex analysis. Princeton Lectures in Analysis, 2. Princeton University Press, Princeton, NJ, 2003.
[152] J.R. Stembridge, On Schur's Q-functions and the primitive idempotents of a commutative Hecke algebra, J. Algebraic Combin. 1 (1992), no. 1, 71-95.
[153] C. Stephanos, Sur une extension du calcul des substitutions linéaires, Journal de Mathḿatiques Pures et Appliquées V, 6 (1900), 73-128.
[154] S. Sternberg, Group theory and physics. Cambridge University Press, Cambridge, 1994.
[155] E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar. 20 (1969), 89-104.
[156] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245.
[157] T. Tao, An uncertainty principle for cyclic groups of prime order, Math. Res. Lett. 12 (2005), no. 1, 121-127.
[158] T. Tao, The ergodic and combinatorial approaches to Szemerédi's theorem. Additive combinatorics, 145-193, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007.
[159] A. Terras, Fourier analysis on finite groups and applications. London Mathematical Society Student Texts, 43. Cambridge University Press, Cambridge, 1999.
[160] R. Tolimieri, M. An, and C. Lu, Mathematics of multidimensional Fourier transform algorithms. Second edition. Signal Processing and Digital Filtering. Springer-Verlag, New York, 1997.
[161] A. Valette, Graphes de Ramanujan et applications. Séminaire Bourbaki, Vol. 1996/97. Astérisque No. 245 (1997), Exp. No. 829, 4, 247-276.
[162] E. Vallejo, A diagrammatic approach to Kronecker squares, J. Combin. Theory Ser. A 127 (2014), 243-285.
[163] Ch.F. Van Loan, Computational frameworks for the fast Fourier transform. Frontiers in Applied Mathematics, 10. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA, 1992.
[164] E. Warning, Bemerkung zur vorstehenden Arbeit, Abh. Math. Sem. Univ. Hamburg 11 (1935), no. 1, 76-83.
[165] A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508.
[166] H. Weyl, Algebraic Theory of Numbers. Annals of Mathematics Studies, no. 1. Princeton University Press, Princeton, N. J., 1940.
[167] H. Wielandt, Finite permutation groups. Academic Press, New York-London, 1964.
[168] S. Winograd, On computing the discrete Fourier transform, Math. Comp. 32 (1978), no. 141, 175-199.
[169] E.M. Wright, Burnside's lemma: a historical note, J. Combin. Theory Ser. B 30 (1981), no. 1, 89-90.
[170] G. Zappa, Fondamenti di teoria dei gruppi, Vol. I. Consiglio Nazionale delle Ricerche Monografie Matematiche, 13 Edizioni Cremonese, Rome 1965.

Index

2－regular segment， 260
$\mathrm{GL}(2, \mathbb{F}), 493$
center of－， 497
conjugacy classes of－， 493
spherical function for－， 527
$\mathrm{GL}\left(2, \mathbb{F}_{q}\right), 499$
Borel subgroup of 一， 499
character table for－, 540
conjugacy classes of－， 500
cuspidal representation of－， 513
decomposition of tensor products of representations of－, 552
Gelfand－Graev character for－， 538
induced representations from－to $\mathrm{GL}\left(2, \mathbb{F}_{q^{m}}\right), 545$
one－dimensional representations of－， 509
order of－， 499
parabolic induction for－， 505
representation theory of the Borel subgroup of 一， 503
Whittaker model for－， 524
p－group， 22
p－primary group， 23
Abel formula of summation by parts， 79 Abelian
－algebra，56， 371
automorphism of a finite－group， 28
Cauchy theorem for－groups， 20
character of an－group， 51
convolution on the group algebra of an－ group， 56
dual of an－group， 51
endomorphism of a finite－group， 27
Fourier transform on an－group， 55
invariant factors decomposition of a finite－ group， 18
primary component of an－group， 23
primary decomposition of a finite－group， 22， 23
action
— of a finite group on a finite set， 381
diagonal－， 386
doubly transitive－， 389
transitive－， 381
adapted basis， 408
additive character of $\mathbb{F}_{q}, 204$
principal－， 205
adjacency
－matrix， 246
－operator， 246
adjacent vertex， 244
adjoint
－in $L(G), 372$
－operator， 353
－representation， 390
adjugate matrix， 37
affine group
－over $\mathbb{F}_{q}, 384,436$
— over $\mathbb{Z} / n \mathbb{Z}, 443$
－over a field， 498
algebra，56， 370
＊－一， 371
－＊－anti－homomorphism， 372
—＊－anti－isomorphism， 372
—＊－homomorphism， 372
－＊－isomorphism， 372
Abelian－，56， 371
anti－automorphism of an —， 477
center of an－， 371
commutative－，56， 371
convolution on the group－of an Abelian
group， 56
group－， 372
Hecke－， 472
involutive－， 371
involutive anti－automorphism of an —， 477
sub－－， 370
unital－，56， 371
algebraic
－element， 178
－extension， 179
－number， 67
algorithm
Cooley－Tuckey —，133，166， 167
decimation in frequency of the Cooley-Tuckey —, 167
decimation in time form of the Cooley-Tuckey -, 167
Diaconis and Rockmore -, 407
parallel form of the Cooley-Tuckey -, 167
Rader -, 164
Rader-Winograd —, 163
vector form of the Cooley-Tuckey -, 167
Alon-Boppana theorem, 309
Alon-Boppana-Serre theorem, 307
Nilli's proof, 315
Alon-Milman theorem, 296
Alon-Schwartz-Shapira theorem, 330
ambivalent group, 479
anti-automorphism of a group, 477
involutive -, 477
anti-automorphism of an algebra, 477
involutive - , 477
Auslander-Feigh-Winograd theorem, 238 automorphism

- of a finite Abelian group, 28

Bézout identity, 4
generalized -, 5
Bessel

- function for $\mathrm{GL}\left(2, \mathbb{F}_{q}\right), 526$
- vector, 526
bicolorable graph, 254
bidual of a group, 54
bipartite complete graph, 255
bipartite graph, 253
partite sets of a -, 253
block diagonal power of a matrix, 152
Borel subgroup

$$
\text { - of } \operatorname{GL}(2, \mathbb{F}), 497
$$

- of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right), 499$
representation theory of the - of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$, 503
boundary of a set of vertices in a graph, 293
Bruhat decomposition, 498
Bump-Ginzburg criterion, 478
Burnside lemma, 385
canonical form of a matrix, 493
Jordan -, 496
rational -, 496
Cartan subgroup, 499
Cartesian product of graphs, 266
Cauchy
- theorem for (not necessarily Abelian) groups, 21
- theorem for Abelian groups, 20

Cayley graph, 288
Cayley-Hamilton Theorem, 495
center

- of GL(2, $\mathbb{F}), 497$
— of a group, 442
- of an algebra, 371
central function, 373
centralizer subgroup, 497
character
— of $\mathbb{Z}_{n}, 50$
- of a representation, 363
- of an Abelian group, 51
- table for $\operatorname{GL}\left(2, \mathbb{F}_{q}\right), 540$
additive - of $\mathbb{F}_{q}, 204$
conjugate - , 208
decomposable -, 208
Dirichlet - 87
dual orthogonality relations for -s of $\mathbb{Z}_{n}, 51$
dual orthogonality relations for - s of a group, 379
dual orthogonality relations for - s of an Abelian group, 53
exceptional -, 534
fixed point - formula, 384
Fourier transform of a -, 392
Frobenius - formula, 415
Gelfand-Graev -, 538
indecomposable - , 208
multiplicative - of $\mathbb{F}_{q}, 206$
multiplicative - of $\mathbb{Z} / m \mathbb{Z}, 87$
permutation -, 384
principal Dirichlet -, 87
real Dirichlet -, 89
characteristic
- function, 48
- of a field, 177
- polynomial of $\mathcal{F}, 119$
- polynomial of $\mathcal{F}^{2}, 106$
- polynomial of a matrix, 495
- subgroup, 441

Chebotarëv theorem, 70
Chebyshëv polynomials of the second kind, 558
modified -, 560, 561
Cheeger constant, 293
Chevalley theorem, 235
Chinese remainder

- map, 142
- theorem, 9, 10, 13
circulant matrix, 60
elementary permutation -, 152
class function, 373
Clebsch graph, 251
closed path, 245
coefficient
(matrix) - of a representation, 360
Gamma -, 536
coloring
- of a graph, 251
- of an edge, 251
combinatorial Laplacian, 295
commutant
- of one representation, 358, 400
- of two representations, 358
commutative algebra, 56,371
companion matrix of a monic polynomial, 198
complement of a graph, 250
complete graph, 255, 279, 302
lamplighter on the -, 278
composite bijection permutation, 140
composition of paths, 245
congruence permutation
elementary -, 139
product -, 140
conjugate
- character, 208
- of an element in $\mathbb{F}_{q^{2}}, 203$
- representation, 390
conjugation homomorphism, 289 connected
- components of a graph, 245
- graph, 245
convolution, 372
- formula for the spherical Fourier transform, 488
- operator, 374
- on $L(A), 57$
- on the group algebra of an Abelian group, 56
Cooley-Tuckey algorithm, 133, 166, 167
decimation in frequency of the -, 167
decimation in time form of the -, 167
parallel form of the -, 167
vector form of the -, 167
core matrix, 164, 236
Courant-Fischer min-max formula, 313
Curtis and Fossum basis, 474
cuspidal representation, 513
cycle
- in a graph, 245
discrete - graph, 258
cyclic group, 49
endomorphism of a finite -, 30
decomposable character, 208
decomposition
- of a representation, 352
invariant factors - of a finite Abelian group, 18
primary - of a finite Abelian group, 22, 23 degree
- of a field extension, 178
- of a polynomial, 174
- of a representation, 352
- of a regular graph, 244
- of a vertex, 244
derived subgroup, 442, 497
Diaconis and Rockmore, 407, 408
diagonal
- action, 386
- matrix of twiddle factors, 158
- operator, 371
block - power of a matrix, 152
diameter of a finite graph, 245
differential operator, 70
dihedral group, 368
dimension of a representation, 352
Dirac function, 47
direct sum of representations, 352
directed graph, 244

Index

Dirichlet

- L-function, 91
- character, 87
- double summation method, 90
- form, 295
- formula, 92
- series, 79
- theorem $L(1, \chi) \neq 0,98$
- theorem on primes in arithmetic progressions, 102
principal - character, 87
real - character, 89
discrete
- Fourier transform (DFT), 55, 61
- Fourier transform (DFT) revisited, 454, 455
- circle, 258
- cycle graph, 258

Gauss-Schur theorem on the trace of the Fourier transform (DFT), 119
distance
geodesic - in a graph, 245
Hamming -, 256, 272
Dodziuk theorem, 297
domain
integral —, 173
principal ideal -, 174
unique factorization - (UFD), 175
doubly transitive action, 389
dual

- group of $\mathbb{F}_{q}, 204$
- group of $\mathbb{F}_{q}^{*}, 206$
- group of an Abelian group, 51
- of a finite dimensional vector space, 390
- of a finite group, 355
- orthogonality relations for characters of $\mathbb{Z}_{n}, 51$
- orthogonality relations for characters of a group, 379
- orthogonality relations for characters of an Abelian group, 53
edge
- coloring, 251
- of a graph, 243
multiple -, 243
oriented - of a graph, 244
eigenidentities, 157
tensor form of the -, 158
Eisenstein criterion, 65
element
algebraic -, 178
primitive - of a Galois field, 183
elementary congruence permutation, 139
endomorphism
- of a finite Abelian group, 27
- of a finite cyclic group, 30
equivalent representations, 353
Erdôs' proof of Euler theorem
$\sum_{p \text { prime }} \frac{1}{p}=+\infty, 100$
Euclid's proof of the infinitude of primes, 6

Euclidean algorithm, 5
Euler

- identity, 32
- product formula, 84
- theorem $\sum_{p \text { prime }} \frac{1}{p}=+\infty, 100$
- theorem $\sum_{p \text { prime }} \frac{1}{p}=+\infty$ (Erdôs' proof), 100
- totient function, 7

Euler-Mascheroni constant, 85
exceptional character, 534
expander, 318, 319

- via zig-zag products, 347

Margulis -, 328
exponential set, 265
extension, 177
algebraic - , 179
degree of a field —, 178
finite - , 178
Galois group of an —, 180
infinite - , 178
norm of a field -, 194
quadratic -, 180
trace of a field -, 194
faithful representation, 352
fast Fourier transform (FFT), 133

- over a noncommutative group, 407
- revisited, 457, 466
algorithmic aspects of the -, 166
matrix form of the -, 156
Fermat
— identity, 32
- little theorem, 9
field, 174
- extension, 177

Galois - , 185, 188
primitive element of a Galois -, 183
splitting - of a polynomial, 180
sub-, 177
finite

- extension, 178
- graph, 244
fixed point character formula, 384
formula
Abel - of summation by parts, 79
Courant-Fischer min-max -, 313
Dirichlet - , 92
Euler product -, 84
Frobenius character - , 415
Gauss -, 119
Mackey - for invariants, 424, 427
Parseval - for $\mathbb{Z}_{n}^{2}, 321$
Parseval - for an Abelian group, 55
Plancherel - for $\mathbb{Z}_{n}^{2}, 321$
Plancherel - for a finite group, 380
Plancherel - for an Abelian group, 55
Plancherel - for the spherical Fourier transform, 488
Poisson summation -s, 61
Fourier
- transform, 376
- coefficient, 55
- inversion formula, 377
- inversion formula for an Abelian group, 55
- transform of a character, 392
- transform on an Abelian group, 55
- matrix of $\mathbb{F}_{q}, 235$
convolution formula for the spherical transform, 488
discrete - transform (DFT), 55, 61
discrete - transform (DFT) revisited, 454, 455
fast - transform (DFT) revisited, 457, 466
fast - transform (FFT), 133
Gauss-Schur theorem on the trace of the discrete - transform (DFT), 119
inverse - transform, 379
inversion formula for the spherical transform, 488
normalized - transform, 55
Plancherel formula for the spherical transform, 488
spherical - transform, 488
Frobenius
- automorphism, 183
- character formula, 415
- reciprocity law, 419
- reciprocity law (other side), 421
- reciprocity law for one-dimensional representations, 422
function
Bessel - for GL($2, \mathbb{F}_{q}$), 526
central -, 373
characteristic —, 48
class -, 373
Dirac -, 47
Dirichlet L—, 91
Euler totient -, 7
inflation of a - , 61
Riemann zeta - , 84
spherical -, 479
spherical - for GL $\left(2, \mathbb{F}_{q}\right), 527$
fundamental theorem of arithmetic, 5
Galois
- field, 185, 188
- group of an extension, 180

Gamma coefficient, 536
Gauss

- formula, 119
- law of quadratic reciprocity, 131
- law of quadratic reciprocity (second proof), 190
- sum, 130, 217
- theorem on cyclicity of $\mathcal{U}(\mathbb{Z} / n \mathbb{Z}), 35$
- totient function theorem, 8
- lemma, 66

Gauss-Schur theorem on the trace of the DFT, 119
Gelfand pair, 476
symmetric -, 478

Index

weakly symmetric - , 479
Gelfand-Graev character, 538
general radix identity, 159
generalized quaternion group, 370
generalized Winograd's method, 162
geodesic distance in a graph, 245
Good's method, 163
graph
d-edge-colorable -, 284
— edge, 243, 244

- isomorphism, 245
- multiple edge, 243
- vertex, 243, 244
primitive -, 251
bicolorable -, 254
bipartite -, 253
boundary of a set of vertices in a - , 293
Cartesian product of -s, 266
Cayley —, 288
Cheeger constant of a -, 293
Clebsch — 251
complement of a - , 250
complete -, 255, 302
complete bipartite -, 255
connected -, 245
connected component of a - , 245
degree of a regular -, 244
diameter of a finite - , 245
directed -, 244
directed - isomorphism, 245
discrete cycle -, 258
expander -, 318, 319
finite -, 244
geodesic distance in a -, 245
Hamming -, 271
isoperimetric constant of a - , 293
lamplighter -, 276
lexicographic product of -s, 267
Margulis -, 328
non-oriented square of a - , 347
Paley -, 317
partite sets of a bipartite -, 253
Petersen -, 251
Ramanujan —, 316
regular -, 244
replacement product of -s, 283
simple -, 243
spectral gap of a - , 301
spectrum of a -, 246
strongly regular - , 249
subgraph of a -, 244
tensor product of -s, 267
triangular -, 250
undirected -, 243
wreath product of -s, 275
zig-zag product of -s, 286
greatest common divisor, 5
Green-Tao theorem, 102
group
p- -, 22
p-primary -, 23
$-\operatorname{GL}\left(2, \mathbb{F}_{q}\right), 499$
- algebra, 372
- of units of a unital ring, 28
- Heisenberg over $\mathbb{F}_{q}, 467$
- Heisenberg over $\mathbb{Z} / n \mathbb{Z}, 447$
affine - over \mathbb{F}_{q}, 384, 436
affine - over $\mathbb{Z} / n \mathbb{Z}, 443$
affine - over a field, 498
ambivalent —, 479
anti-automorphism of a - , 477
bidual of a - , 54
center of a -, 442
characteristic subgroup of a - , 441
cyclic - , 49
derived subgroup of a —, 442
dihedral -, 368
dual - of an Abelian group, 51
Galois - of an extension, 180
generalized quaternion - , 370
inertia -, 432
involutive anti-automorphism of a - , 477
solvable - , 497
symmetric - , 357
the $-\mathrm{GL}\left(h, \mathbb{F}_{p}\right), 41$
Hamming
- distance, 256, 272
- graph, 271

Hankel matrix, 164
Hasse-Davenport identity, 223
Hecke

- algebra, 472
- operator, 304
- relations, 305
commutative - algebra, 476
Curtis and Fossum basis of a - algebra, 474
multiplicative linear functional on a algebra, 482
structure constants of a - algebra, 476
Heisenberg
- group over $\mathbb{F}_{q}, 467$
- group over $\mathbb{Z} / n \mathbb{Z}, 447$

Hilbert Satz 90, 194, 195
Hilbert-Schmidt inner product, 405
homogenous space, 381
homomorphism
conjugation -, 289
Hua-Vandiver-Weil theorem

- (homogeneous case), 232
- (non-homogeneous case), 233
hypercube, 256
weight of a vertex of the - , 257
ideal
- of a commutative ring, 173
maximal -, 176
principal —, 174
principal - domain, 174
idempotent, 401
identity
Bézout —, 4
eigen-, 157
Euler -, 32
Fermat -, 32
general radix -, 159
generalized Bézout -, 5
Hasse-Davenport -, 223
permutational reverse radix - , 142
reverse radix -, 154
similarity - , 163
tweedle free -, 162
twiddle - , 160
indecomposable character, 208
induced representation, 409
- and direct sums, 418
- and tensor products, 417
- from $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$ to $\mathrm{GL}\left(2, \mathbb{F}_{q^{m}}\right), 545$
- of a one-dimensional representation, 413
character of an -, 414, 415
matrix coefficients of an -, 414
transitivity of -, 411
inertia group, 432
infinite
- extension, 178
- product, 78
converging - product, 78
diverging - product, 78
inflation
- of a function, 61
- of a representation, 432, 506
initial vertex of an oriented edge, 244
inner product, 353
integral domain, 173
intertwiner, 358
invariant
- factors decomposition of a finite Abelian group, 18
- operator, 58
- subspace, 352
- vector, 352
subspace of - vectors, 352
inverse path, 245
inversion formula
- for the spherical Fourier transform, 488

Fourier - for an Abelian group, 55
invertible element in a commutative ring, 174 involutive
— algebra, 371

- anti-automorphism of a group, 477
- anti-automorphism of an algebra, 477
irreducible
- element in an integral domain, 175
- polynomial, 175
- representation, 352
isomorphism
- of directed graphs, 245
- of graphs, 245
isoperimetric
- constant, 293

Alon-Milman - inequality, 296
Alon-Schwartz-Shapira - inequality, 330
Dodziuk - inequality, 297

Reingold-Vadhan-Wigderson - inequality, 342
isotypic component, 366

- of $L(G), 393$

Jacobi sum, 225, 227
Jacquet module of a representation, 507
Jordan canonical form, 496
kernel

- of a convolution operator, 374
- of a convolution operator on an Abelian group, 57
- of a representation, 352

Kloosterman sum, 217
generalized -, 210
orthogonality relations for generalized -s, 214
Kronecker

- product, 146
- sum of linear operators, 261
factorizations of - products, 155
similarity of - products by stride permutations, 148
lamplighter
- graph, 276
- on the complete graph, 278, 279

Laplacian
combinatorial —, 295
left regular representation, 356
Legendre symbol, 124

- on $\mathbb{F}_{q}, 316$
lemma
Burnside - , 385
converse to Schur -, 360
Gauss -, 66
Mackey -, 430
Schur -, 358
Wielandt —, 387
length of a path, 245
lexicographic product of graphs, 267
little group method, 433
loop in a graph, 243
Mackey
- formula for invariants, 424, 427
- intertwining number theorem, 427
- irreducibility criterion, 427
- lemma, 430
- tensor product theorem, 431
- theory, 423

Mackey-Wigner little group method, 431, 433
Margulis graph, 328
matrix

- form of the FFT, 156
- factorization of composite bijection permutations, 154
adjacency -, 246
adjugate - , 37
block diagonal power of a -, 152

Index

canonical form of a - , 493
circulant - , 60
companion - of a monic polynomial, 198
core -, 164, 236
diagonal - of twiddle factors, 158
elementary circulant permutation - , 152
Fourier - of $\mathbb{F}_{q}, 235$
Hankel -, 164
permutation -, 144
skew circulant - , 236
unipotent - , 497
unitary -, 353
maximal ideal, 176
minimal

- central projection, 405
- polynomial, 67, 178, 495
modified replacement product, 291
monic polynomial, 174
multiple edge, 243
multiplicative character
- of $\mathbb{F}_{q}, 206$
— of $\mathbb{Z} / m \mathbb{Z}, 87$
order of a - of $\mathbb{F}_{q}, 207$
principal - of $\mathbb{F}_{q}, 208$
multiplicative linear functional, 482
multiplicity
- of a representation, 366
multiplicity-free
- representation, 405
- triple, 476

Bump-Ginzburg criterion for a - triple, 478
spherical function associated with a triple, 479
multiplier operator, 455
neighborhood of a vertex, 244
non-backtraking path, 304
non-oriented square, 347
norm of a field extension, 194
operator
(monomial) differential —, 70
adjacency —, 246
adjoint -, 353
convolution - , 374
convolution - on $L(A), 57$
convolution kernel - on an Abelian group, 57
diagonal -, 371
invariant -, 58
multiplier -, 455
polar decomposition of an -, 354
translation - , 57, 455
unitary -, 353
orbit of a point, 381
order
— of a multiplicative character of $\mathbb{F}_{q}, 207$

- of a differential operator, 70
- of a finite cyclic group, 7, 49
- of a finite field, 182
orientation of a graph, 244
orthogonality relations
- for characters, 364
- for characters of $\mathbb{Z}_{n}, 50$
- for characters of an Abelian group, 53
- for generalized Kloosterman sums, 214
- for matrix coefficients, 362
- for spherical functions, 487, 491
- on $\widehat{\mathbb{F}_{q}^{*}}, 207$
- on $\widehat{\mathbb{F}_{q}}, 205$

Paley graph, 317
parabolic induction, 505
Parseval formula

- for $\mathbb{Z}_{n}^{2}, 321$
- for an Abelian group, 55
partial stride permutation, 138
partite set, 253
path
- composition, 245
- in a graph, 245
closed -, 245
initial vertex of a -, 245
inverse - , 245
length of a -, 245
non-backtraking -, 304
terminal vertex of a - , 245
trivial -, 245
permutation
- character, 384
- matrix, 144
- representation, 382
- representation of $S_{n}, 383$
composite bijection -, 140
elementary circulant - matrix, 152
elementary congruence -, 139
matrix factorization of composite bijection

$$
-, 154
$$

partial stride -, 138
product congruence - , 140
shuffle -, 136
stride -, 136
permutational reverse radix identity, 142
Peter-Weyl theorem, 366
Petersen graph, 251
Plancherel formula, 380
— for $\mathbb{Z}_{n}^{2}, 321$

- for a finite group, 380
- for an Abelian group, 55
- for the spherical Fourier transform, 488

Poisson summation formulas, 61
polar decomposition of a linear operator, 354
polynomial
characteristic - of $\mathcal{F}, 119$
characteristic - of $\mathcal{F}^{2}, 106$
characteristic - of a matrix, 495
companion matrix of a monic -, 198
degree of a -, 174
irreducible - , 175
minimal - , 67, 178, 495
monic -, 174
primitive -, 66
root of a -, 67
splitting field of a —, 180
Pontrjagin duality, 54
primary

- component of an Abelian group, 23
- decomposition of a finite Abelian group, 22, 23
primitive
- element of a Galois field, 183
- graph, 251
- polynomial, 66
- root, 36
principal
— Dirichlet character, 87
- additive character of $\mathbb{F}_{q}, 205$
- ideal, 174
- ideal domain, 174
- multiplicative character of $\mathbb{F}_{q}, 208$
product
- congruence permutation, 140

Cartesian — of graphs, 266
converging infinite -, 78
diverging infinite -, 78
infinite -, 78
inner -, 353
internal tensor - of representations, 397
Kronecker -, 146
lexicographic - of graphs, 267
outer tensor - of representations, 396
replacement - of graphs, 283
tensor - of functions, 260
tensor - of linear operators, 261
tensor - of subspaces, 261
tensor - of two spaces, 394
wreath - of graphs, 275
zig-zag - of graphs, 286
projection, 401
minimal central -, 405
orthogonal -, 401
quadratic

- extension, 180
- nonresidue, 120
- residue, 120

Gauss law of - reciprocity, 131
Gauss law of - reciprocity (second proof), 190

Rader
— Winograd algorithm, 163

- algorithm, 164
radix identity
general -, 159
permutational reverse - , 142
reverse -, 154
Ramanujan graph, 316
rational canonical form, 496
regular
2- - segment, 260
- graph, 244
strongly - graph, 249

Reingold-Vadhan-Wigderson theorem, 342
replacement product of graphs, 283
modified -, 291
representation, 351
(matrix) coefficient of a -, 360
adjoint -, 390
character of a -, 363
commutant of a - , 358
conjugate -, 390
cuspidal -, 513
decomposition of a - , 352
decomposition of tensor products of -s of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right), 552$
degree of a,- 352
dimension of a - , 352
direct sum of -s, 352
equivalence of -s, 353
faithful -, 352
induced -, 409
induced - from $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$ to $\operatorname{GL}\left(2, \mathbb{F}_{q^{m}}\right)$, 545
inflation of a - , 432, 506
irreducible - , 352
isotypic component of a - , 366
Jacquet module of a -, 507
kernel of a -, 352
left regular -, 356
multiplicity of a - , 366
multiplicity-free -, 405
permutation - , 382
permutation - of $S_{n}, 383$
restriction of a - to a subgroup, 352
restriction of a - to an invariant subspace, 352
right regular -, 357
sign —, 357
spherical - , 485
sub- -, 352
unitary -, 353
restriction

- of a representation to a subgroup, 352
- of a representation to an invariant subspace, 352
reverse radix identity, 154
Riemann zeta function, 84
elementary asymptotics for the - , 85
Euler product formula for the -, 84
right regular representation, 357
root
- of a polynomial, 67
primitive -, 36
rotation map, 281
Ruritanian map, 142

Schur

- lemma, 358
- theorem on the DFT, 118
converse to - lemma, 360
self-adjoint
- element in a *-algebra, 371
- projection, 401

Index

semidirect product

- with an Abelian group, 435
external -, 290
internal -, 289
sequence
strictly multiplicative -, 82
shuffle permutation, 136
sign representation, 357
similarity identity, 163
simple
- tensor, 394
-graph, 243
solvable group, 497
spectral gap of a graph, 301
spectrum of a graph, 246
spherical
- Fourier transform, 488
- function associated with a - triple, 479
- function for GL $\left(2, \mathbb{F}_{q}\right), 527$
- representation, 485
convolution formula for the - Fourier transform, 488
inversion formula for the - Fourier transform, 488
orthogonality relations for - functions, 487, 491
Plancherel formula for the - Fourier transform, 488
splitting field, 180
existence and uniqueness, 180
stabilizer of a point, 381
strictly multiplicative sequence, 82
stride permutation, 136
partial -, 138
strongly regular graph, 249
structure constants of an Hecke algebra, 476
sub-representation, 352
subalgebra, 370
subfield, 177
subgraph, 244
symmetric Gelfand pair, 478
symmetric group, 357

Tao's uncertainty principle for cyclic groups, 64
tensor

- form of the eigenidentities, 158
- product of functions, 260
- product of graphs, 267
- product of linear operators, 261
- product of subspaces, 261
- product of two spaces, 394
- product and indiuced representations, 417
decomposition of - products of representations of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right), 552$
internal - product of representations, 397
outer - poduct of representations, 396
simple -, 394
terminal vertex of an oriented edge, 244
theorem

Alon-Boppana -, 309
Alon-Boppana-Serre -, 307
Alon-Boppana-Serre - (Nilli's proof), 315
Alon-Milman —, 296
Alon-Schwartz-Shapira -, 330
Auslander-Feigh-Winograd -, 238
Cauchy - for (not necessarily Abelian) groups, 21
Cauchy - for Abelian groups, 20
Cayley-Hamilton - , 495
Chebotarëv —, 70
Chevalley -, 235
Chinese remainder - $9,10,13$
Dirichlet - $L(1, \chi) \neq 0,98$
Dirichlet - on primes in arithmetic progressions, 102
Dodziuk —, 297
Euler $-\sum_{p \text { prime }} \frac{1}{p}=+\infty, 100$
Euler $-\sum_{p \text { prime }} \frac{1}{p}=+\infty$ (Erdős' proof), 100
Fermat little -, 9
fundamental - of arithmetic, 5
Gauss - on cyclicity of $\mathcal{U}(\mathbb{Z} / n \mathbb{Z}), 35$
Gauss totient function -, 8
Gauss-Schur - on the trace of the DFT, 119
Green-Tao -, 102
Hasse-Davenport - , 223
Hilbert Satz 90, 194, 195
Hua-Vandiver-Weil - (homogeneous case), 232
Hua-Vandiver-Weil - (non-homogeneous case), 233
Mackey intertwining number - , 427
Mackey tensor product -, 431
Mackey-Wigner little group method -, 433
Peter-Weyl —, 366
Reingold-Vadhan-Wigderson - , 342
Schur - on the DFT, 118
Warning -, 235
trace

- of a field extension, 194
- of a linear operator, 361

Gauss-Schur theorem on the - of the DFT, 119
Hasse-Davenport identity, 223
transitive

- action, 381
doubly - action, 389
translation operator, 57, 455
triangular graph, 250
trivial path, 245
twiddle
- free identity, 162
- identity, 160
diagonal matrix of - factors, 158
uncertainty principle
- for Abelian groups, 63

Tao's — for cyclic groups, 64
undirected graph, 243
unipotent matrices subgroup, 497
unipotent matrix, 497
unique factorization domain (UFD), 175
unit, 56

- in a commutative ring, 174
- in an algebra, 371
unital algebra, 56
unitary
- matrix, 353
- operator, 353
- representation, 353
vector
Bessel -, 526
invariant -, 352
vertex
- of a graph, 243, 244
—neighbor, 244
adjacent -, 244
degree of a - , 244
initial - of a path, 245
initial - of an oriented edge, 244
terminal - of a path, 245
terminal - of an oriented edge, 244
Warning theorem, 235
weight of a vertex of the hypercube, 257
Weil-Berezin map, 458
Whittaker model, 524
Wielandt lemma, 387, 388
Winograd
- method, 163
- similarity, 163
generalized - method, 162
Rader - algorithm, 163
wreath product of graphs, 275
zig-zag product of graphs, 286

