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Preface

The aim of the present monograph is to introduce the reader to some

central topics in discrete harmonic analysis, namely, character theory of �-

nite Abelian groups, (additive and multiplicative) character theory of �nite

�elds, graphs and expanders, and representation theory of �nite (possibly

not Abelian) groups, including spherical functions, associated Fourier trans-

forms, and spectral analysis of invariant operators. An important transversal

topic, which is present in several sections of the book, is constituted by tensor

products which are developed for matrices, graphs, and representations.

We have written the book as self-contained as possible: it only requires

some elementary notions in linear algebra (including the spectral theorem



viii Contents

and its applications), abstract algebra (�rst rudiments in the theory of (�-

nite) groups and rings), and elementary number theory.

First of all, we study in detail the structure of �nite Abelian groups and

their automorphisms. We then introduce the corresponding character theory

leading to a complete analysis of the Fourier transform, focusing on the con-

nections with number theory. For instance, we deduce Gauss law of quadratic

reciprocity from the spectral analysis of the Discrete Fourier Transform. Ac-

tually, characters of �nite Abelian groups will appear also, as a fundamental

tool in the proof of several deep results, in subsequent chapters, constituting,

this way, the central topic and common thread of the whole book.

We also present Dirichlet's theorem on primes in arithmetic progressions

which is based on the character theory of �nite Abelian groups as well as

Tao's uncertainty principle for (�nite) cyclic groups [157].

Our treatment also includes an exposition of the Fast Fourier Transform,

focusing on the theoretical aspects related to its expressions in terms of

factorizations and tensor products. This part of the monograph is inspired,

at least partially, to the important work of Auslander and Tolimieri [15] and

the papers by Davio [49] and Rose [130]. The book by Stein and Shakarchi

[150] has been a fundamental source for our treatment of Dirichlet's theorem

as well as for the �rst section of the chapter on the Fast Fourier Transform.

The second part of the book constitutes a self-contained introduction to

the basic algebraic theory of �nite �elds and their characters. This includes,

on the one hand, a complete study of the automorphisms, norms, traces, and

quadratic extensions of �nite �elds, and, on the other hand, additive charac-

ters and multiplicative characters and several associated sums (trigonometric

and Gaussian) and the Fast Fourier Transform over �nite �elds. One of the

main goals is to present the generalized Kloosterman sums from Piatetski-

Shapiro's monograph [123] which will play a fundamental role in Chapter 14

on the representation theory of GL(2,Fq). We also introduce the reader to

the study, initiated by André Weil [165], of the number of solutions of equa-

tions over �nite �elds and present the Hasse-Davenport identity [70] which

relates the Gauss sums over a �nite �eld and those over a �nite extension.

The third part is devoted to harmonic analysis on �nite graphs and sev-

eral constructions such as the replacement product and the zig-zag product.

The central themes are expanders and Ramanujan graphs. We present the

basic theorems of Alon-Milman and Dodziuk, and of Alon-Boppana-Serre,

on the isoperimetric constant and the spectral gap of a (�nite, undirected,

connected) regular graph, and their connections. We discuss a few examples

with explicit computations showing optimality of the bounds given by the

above theorems. We then give the basic de�nitions of expanders and de-



Contents ix

scribe three fundamental constructions due to Margulis, to Alon, Schwartz,

and Shapira (based on the replacement product), and to Reingold, Vadhan,

and Wigderson (based on the zig-zag product). In these constructions, the

harmonic analysis on �nite abelian groups and �nite �elds we developed in

the previous parts, plays a crucial role. The presentation is inspired to the

monographs by Terras [159], Lubotzky [99], and by Davido�-Sarnak-Valette

[48], as well as to the papers by Hoory-Linial-Wigderson [74], Alon-Schwartz-

Shapira [10], and Alon-Lubotzky-Wigderson [8].

The �nal part of the present monograph is devoted to the representa-

tion theory of �nite groups with emphasis on induced representations and

Mackey theory. This includes a complete description of the irreducible rep-

resentations of the a�ne groups and Heisenberg groups with coe�cients in

both the �nite �eld Fq and the ring Z/nZ. Moreover, both the Discrete

Fourier Transform and the Fast Fourier Transform are revisited, following

Auslander-Tolimieri [15] and Schulte [142], in terms of two di�erent real-

izations of a particular representation of the Heisenberg group. In Chapter

13 we develop, with a complete and original treatment, the basic theory of

multiplicity-free triples, their associated spherical functions, and (commu-

tative) Hecke algebras. This is a subject which has not yet received the

attention it deserves. As far as we know, this notion is just mentioned in

some exercises in Macdonald's book [105]. The classical theory of �nite

Gelfand pairs, which constitutes a particular yet fundamental case, was es-

sentially covered in our �rst monograph [29]. The exposition culminates with

a complete treatment of the representation theory of GL(2,Fq), along the

lines developed by Piatetski-Shapiro [123]: our approach, via multiplicity-

free triples, constitutes our original contribution to the theory.

All this said, one can use this monograph as a textbook for at least four

di�erent courses on:

(i) Finite Abelian groups, the DFT, and the FFT (the structure

of �nite Abelian groups, their character theory, and the Fourier trans-

forms): Sections 1.1, 1.2, and 1.3, and Chapters 2, 4, and 5. The

remaining sections in Chapter 1 as well as Chapter 3 are optional.

(ii) Finite commutative harmonic analysis (the structure of �nite

Abelian groups, their character theory, and the Fourier transforms;

Dirichlet's theorem; �nite �elds and their characters): Sections 1.1,

1.2, and 1.3, and Chapters 2, 3, 4, 6, and 7.

(iii) Graph theory (a brief introduction to �nite graphs, various notions

of graph products, spectral theory, and expanders): Sections 1.1, 1.2,
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1.3, 2.1, 2.2, 2.3, and 2.4, and Chapters 8 and 9 (omitting, if necessary,

the parts involving character theory of �nite �elds).

(iv) Finite harmonic analysis (representation theory of �nite groups:

from the basics to GL(2,Fq)): Sections 1.1, 1.2, and 1.3, Chapters 2, 4,

and 6, Sections 7.1, 7.2, 7.3, and 7.4, and the whole of Part IV (Section

12.5, Chapter 13, and Sections 14.7 and 14.8 may be omitted).

We thank Alfredo Donno for interesting discussions as well as for helping

us with some �gures. We also express our deep gratitude to Sam Harrison,

Kaitlin Leach, Clare Dennison, and Mark Fox from Cambridge University

Press for their constant encouragement and most precious help at all stages

of the editing process.

Roma, 31 July 2017 TCS, FS, and FT



Part I

Finite Abelian groups and the DFT





1

Finite Abelian groups

This chapter contains an elementary, self-contained, but quite complete ex-

position of the structure theory of �nite Abelian groups, including a detailed

account on their endomorphisms and automorphisms. We also provide all

the necessary background in number theory (only basic prerequisites are

assumed).

1.1 Preliminaries in Number Theory

In this section we review some basic facts on elementary Number Theory.

Most of the proofs are elementary and often left as exercises. More details

can be found in the monographs by Apostol [13], Davenport [47], Herstein

[71], Ireland and Rosen [79], Mac Lane and Birkho� [113], Nagell [117], and

Nathanson [118].

We denote by N = {0, 1, 2, . . .} the set of natural numbers, and we recall

that, by Peano's axioms (see [113]), every non-empty subset A ⊆ N admits

a (unique) minimal element.

Also, a basic tool in elementary number theory is the division (Euclidean)

algorithm (long division): let a, b ∈ Z such that b ≥ 1, then there exist

unique q, r ∈ Z with 0 ≤ r < b such that

a = bq + r. (1.1)

If r = 0 one says that b divides a and we write b|a.

Theorem 1.1.1 (De�nition of the greatest common divisor) Let a, b ∈
Z with (a, b) 6= (0, 0). Then there exists a unique positive integer d satisfying

the following conditions:

(i) d|a and d|b;
(ii) if d′|a and d′|b, then d′|d.

3
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Moreover, there exist (not necessarily unique) m0, n0 ∈ Z such that (Bézout

identity)

d = m0a+ n0b. (1.2)

De�nition 1.1.2 The positive integer d as in the above statement is called

the greatest common divisor of a and b and it is denoted by gcd(a, b).

Proof of Theorem 1.1.1 Suppose that d1 and d2 are two positive integers

satisfying conditions (i) and (ii). Then, by (ii) we have d1|d2 and d2|d1. This

forces d1 = ±d2 and therefore d1 = d2 by positivity. This proves uniqueness.

In order to show existence, consider the set

I = {ma+ nb : m,n ∈ Z} ⊆ Z.

Note that if z, z′ ∈ I then z + z′ ∈ I and −z ∈ I. As a consequence,

I+ = I ∩ (N \ {0}) is a non-empty subset of N. Let d = m0a + n0b denote

the minimal element of I+: we claim that I = {hd : h ∈ Z}. Indeed, the

inclusion ⊇ is obvious, while, if k ∈ I, by the division algorithm we can �nd

q, r ∈ Z such that k = qd+r with 0 ≤ r < d. Now, since r = k−qd ∈ I+∪{0},
by minimality of d we necessarily have r = 0, that is, k ∈ {hd : h ∈ Z}. This
shows the other inclusion and proves our claim. Since a = a · 1 + b · 0, b =

a · 0 + b · 1 ∈ I, there exist h1, h2 ∈ Z such that a = h1d and b = h2d, so that

d|a and d|b. On the other hand, if d′|a and d′|b, say a = h′1d
′ and b = h′2d

′,

with h′1, h
′
2 ∈ Z, then d = m0a+ n0b = m0h

′
1d
′ + n0h

′
2d
′ = (m0h

′
1 + n0h

′
2)d′

so that d′|d. This shows that d = gcd(a, b). �

Remark 1.1.3 The set I is an ideal in the ring Z, and Z is a principal ideal

domain (see Section 6.1).

From the proof of Theorem 1.1.1 we immediately deduce the following:

Corollary 1.1.4 Given a, b, c ∈ Z with (a, b) 6= (0, 0), the linear equation

na+mb = c

has a solution (n,m) ∈ Z2 if and only if gcd(a, b) divides c.

(See also Proposition 1.2.13 below.)

Exercise 1.1.5 Let a1, a2, . . . , an ∈ Z with (a1, a2, . . . , an) 6= (0, 0, . . . , 0).

(1) Show that there exists a unique positive integer d satisfying the fol-

lowing conditions:

(i) d|ai for all i = 1, 2, . . . , n;
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(ii) if d′|ai for all i = 1, 2, . . . , n, then d′|d.
In particular, setting d2 = gcd(a1, a2) and di = gcd(di−1, ai) for i ≥ 3, show

that d = dn;

(2) show that there exist mi ∈ Z, i = 1, 2, . . . , n, such that (generalized

Bézout identity) d = m1a1 +m2a2 + . . .+mnan.

De�nition 1.1.6 Let a1, a2, . . . , an ∈ Z with (a1, a2, . . . , an) 6= (0, 0, . . . , 0).

The number d in Exercise 1.1.5.(1) is called the greatest common divisor of

the ais and it is denoted by gcd(a1, a2, . . . , an). One says that a1, a2, . . . , an ∈
Z are relatively prime provided gcd(a1, a2, . . . , an) = 1.

An integer p > 1 is said to be prime if its positive divisors are exactly 1

and p.

Exercise 1.1.7 (Euclidean algorithm) Let a, b ∈ N and suppose that

b ≥ 1 and b - a. Set r0 = a, r1 = b, and recursively de�ne, by the division

algorithm,

rk = rk+1qk+1 + rk+2

where 0 ≤ rk+2 < rk+1, for all k ≥ 0. Show that gcd(a, b) = rn where n ∈ N
is the largest index for which rn > 0 (so that rn+1 = 0).

Exercise 1.1.8 Let a, b, c ∈ Z and p a prime number.

(1) Prove that if gcd(a, b) = 1 and a|bc then a|c;
(2) deduce that if p|bc then p|b or p|c.

Exercise 1.1.9 (Fundamental theorem of arithmetic) Let n ≥ 2 be an

integer. Show that there exists a unique prime factorization

n = p1
m1p2

m2 · · · phmh

where p1 < p2 < · · · < ph are prime numbers, m1,m2, . . . ,mh ≥ 1 are the

multiplicities, and h ≥ 1.

Hint. For uniqueness, use induction combined with Exercise 1.1.8.

Exercise 1.1.10 Let a1, a2, . . . , an ≥ 2 be integers. Suppose that

aj = p1
m1jp2

m2j · · · phmhj

with distinct primes pi and multiplicities mij ≥ 0, for all i = 1, 2, . . . , h and

j = 1, 2, . . . , n. Show that

gcd(a1, a2, . . . , an) = p1
m1p2

m2 · · · phmh

where mi = min{mij : j = 1, 2, . . . , n} for all i = 1, 2, . . . , h.
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Exercise 1.1.11 (Euclid's proof of the in�nitude of primes)

(1) Let p1, p2, . . . , pn, n ≥ 1, be distinct primes. Show that the number

p1p2 · · · pn + 1 is not divisible by pi for all i = 1, 2, . . . , n;

(2) deduce that the set of prime numbers is in�nite.

There are many other proofs of the in�nitude of primes. Six of them

(including Euclid's proof) are in the book by Aigner and Ziegler [5]. A deep

generalization of this fact will be presented in Chapter 3.

De�nition 1.1.12 Let n ≥ 1 and a, b ∈ Z. One says that a is congruent to

b modulo n, and one writes a ≡ b mod n, provided n|(a− b).

Exercise 1.1.13 Let n ≥ 1.

(1) Show that the congruence relation ≡ mod n is an equivalence relation;

(2) suppose that a = nq + r, with 0 ≤ r < n. Show that a ≡ r mod n;

(3) deduce that there are exactly n equivalence classes and that a complete

list of representatives is provided by 0, 1, . . . , n− 1.

For n ≥ 1 and a ∈ Z we denote by

a = {a+ hn : h ∈ Z} (1.3)

the equivalence class containing a.

We denote by Z/nZ = {a : a ∈ Z} = {0, 1, . . . , n−1} the corresponding

quotient set.

Exercise 1.1.14 Let n ≥ 1 and a, b ∈ Z. Set

a+ b = a+ b and a · b = ab. (1.4)

(1) Show that the operations + and · in (1.4) are well de�ned;

(2) show that (Z/nZ,+) is a cyclic group;

(3) show that (Z/nZ,+, ·) is a unital commutative ring;

(4) show that a is invertible in (Z/nZ,+, ·) if and only if gcd(a, n) = 1;

(5) deduce that if p is a prime, then (Z/pZ,+, ·) is a �eld.

For (5), see also Corollary 6.1.13.

Notation 1.1.15 Let n ≥ 1. For k,m ∈ Z we write

km = m+m+ · · ·+m (k summands)

if k ≥ 0, and km = −(|k|m) if k < 0, where m is as in (1.3).
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The notation above is consistent with the fact that (Z/nZ,+), as any

Abelian group, is a Z-module; see the monographs by Herstein [71], Lang

[93], and Knapp [87].

Lemma 1.1.16 Let r and s be positive integers with gcd(r, s) = 1. Then for

every 0 ≤ k ≤ rs − 1 there exist unique 0 ≤ u ≤ r − 1 and 0 ≤ v ≤ s − 1

such that

k ≡ us+ vr mod rs. (1.5)

Proof As u and v vary, with 0 ≤ u ≤ r−1 and 0 ≤ v ≤ s−1, the expression

us + vr yields (at most) rs integers; therefore it su�ces to show that these

are all distinct mod rs. Indeed, for 0 ≤ u, u′ ≤ r − 1 and 0 ≤ v, v′ ≤ s − 1

we have (keeping in mind that gcd(r, s) = 1):

us+ vr ≡ u′s+ v′r mod rs =⇒ (u− u′)s+ (v − v′)r ≡ 0 mod rs

(by Exercise 1.1.8.(1)) =⇒

{
u ≡ u′ mod r

v ≡ v′ mod s

=⇒ u = u′ and v = v′.

Notation 1.1.17 For n ≥ 1 we denote by

• Zn the additive group (Z/nZ,+) of integers mod n;

• Cn the multiplicative cyclic group of order n;

• Z/nZ the ring (Z/nZ,+, ·) of integers mod n.

When n = p is a prime, we shall denote by Fp the �nite �eld Z/pZ (cf.

Exercise 1.1.14.(5)).

Note that if Cn is generated by the element a ∈ Cn, then the map k 7→ ak,

for all k ∈ Z, is well de�ned and establishes a natural group isomorphism of

Zn onto Cn.

We shall examine the structure of all �nite �elds in Section 6.3.

De�nition 1.1.18 The Euler totient function is the map ϕ de�ned by

ϕ(n) = |{m ∈ N : 1 ≤ m ≤ n, gcd(m,n) = 1}|

for all n ≥ 1, where | · | denotes cardinality. In words, the value ϕ(n) equals

the number of positive integers less than or equal to n that are relatively

prime to n.
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Proposition 1.1.19 Let n be a positive integer. Then in the cyclic group

Zn there are exactly ϕ(n) distinct generators.

Proof Let 1 ≤ m ≤ n − 1 and suppose that gcd(m,n) = 1. By Bézout

identity, we can �nd a, b ∈ Z such that am+ bn = 1. Let 1 ≤ h ≤ n− 1 be

such that h = a. Then, in Zn we have m+m+ · · ·+m = hm = am = 1. As

1 clearly generates Zn, this shows that m generates Zn as well. On the other

hand, if gcd(m,n) = q > 1, then we can �nd h, k ∈ N such that m = hq and

n = kq. Note that 1 ≤ k < n. Then we have km = km = khq = hn = 0 so

that the (cyclic) subgroup generated by m in Zn has order ≤ k and therefore

cannot equal the whole Zn. This shows that m is not a generator of Zn.
The statement then follows from the de�nition of ϕ(n).

Proposition 1.1.20 (Gauss) Let n be a positive integer. Then we have∑
1≤r≤n
r|n

ϕ(r) = n.

Proof For every positive divisor r of n let us set

A(r) := {k ∈ N : 1 ≤ k ≤ n, gcd(k, n) = n/r}. (1.6)

For 1 ≤ k ≤ n we clearly have k ∈ A(r) with r = n/ gcd(k, n), and such an

r is unique, so that

{1, 2, . . . , n} =
∐

1≤r≤n
r|n

A(r). (1.7)

Now, for every k ∈ A(r) there exists a unique positive integer j such that

k = j nr . It follows that 1 ≤ j ≤ r and
n

r
= gcd(k, n) = gcd

(
j
n

r
, r
n

r

)
=
n

r
gcd(j, r)

so that gcd(j, r) = 1. Conversely, if r|n and gcd(j, r) = 1, then gcd(j nr , n) =

gcd(j nr , r
n
r ) = n

r . As a consequence, A(r) = {j nr : gcd(j, r) = 1} so that

|A(r)| = ϕ(r) (1.8)

and therefore, from (1.7) we deduce

n =
∑

1≤r≤n
r|n

|A(r)| =
∑

1≤r≤n
r|n

ϕ(r).
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Theorem 1.1.21 Let p be a prime number. The (multiplicative) group F∗p
of invertible elements in the �eld Fp is cyclic (of order p− 1).

Proof We �rst observe that |F∗p| = |{1, 2, . . . , p−1}| = p− 1.

For every positive divisor r of p− 1 let us set

B(r) := {α ∈ F∗p : α is of order r}.

Thus, if α ∈ B(r), we have αr = 1 and α generates a cyclic group 〈α〉 of
order r consisting exactly of all the solutions in Fp of the equation xr = 1.

That is, B(r) ⊆ 〈α〉 (recall also that over any �eld, an equation of degree

m has at most m solutions). By virtue of Proposition 1.1.19, 〈α〉 has ϕ(r)

generators, namely the powers αh with 1 ≤ h ≤ r and gcd(h, r) = 1. As a

consequence, if B(r) 6= ∅ we have |B(r)| = ϕ(r). Therefore

p− 1 = |F ∗p | =
∑

r|(p−1)

|B(r)| ≤
∑

r|(p−1)

ϕ(r) = p− 1,

where the last equality follows from Proposition 1.1.20. Since the above is

inded an equality, we deduce that B(r) 6= ∅ for every r which divides p− 1.

In particular, every element α ∈ B(p − 1) is of order p − 1 and therefore

〈α〉 = F∗p.

Exercise 1.1.22 (Fermat's little theorem) Show that if p is a prime,

then for all n ∈ Z we have np ≡ n mod p and np−1 ≡ 1 mod p if p - n.

We end this section with the following well-known results (see also Remark

5.2.15) which we deduce from Theorem 1.1.1.

Corollary 1.1.23 (Chinese remainder theorem I) Let r, s be two pos-

itive integers such that gcd(r, s) = 1. Then for all (a, b) ∈ Z there exists

x = x(a, b) ∈ Z solution to the system{
x ≡ a mod r

x ≡ b mod s.
(1.9)

Proof By Bézout identity, we can �nd u, v ∈ Z such that 1 = ur + vs. We

leave it to the reader to check that the quantities a+(b−a)ur and b+(a−b)vs
are equal and constitute a solution to (1.9).

Exercise 1.1.24 With the notation from Corollary 1.1.23, set δ1 = x(1, 0)

and δ2 = x(0, 1). Show that x(a, b) = aδ1 + bδ2.
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Exercise 1.1.25 (Chinese remainder theorem II) Let r1, r2, . . . , rn be

positive integers such that gcd(ri, rj) = 1 for all 1 ≤ i < j ≤ n.
(a) Show that for all (a1, a2, . . . , an) ∈ Zn there exists a solution x =

x(a1, a2, . . . , an) ∈ Z of the system
x ≡ a1 mod r1

x ≡ a2 mod r2

· · · · · ·
x ≡ an mod rn;

(1.10)

(b) set R = r1r2 · · · rn. Show that y ∈ Z is another solution to (1.10) if

and only if x ≡ y mod R.

Hint. For every i = 1, 2, . . . , n denote by δi ∈ Z a solution to (1.9) with

a = 1, b = 0, r = ri, and s = R/ri. Show that δi is a solution to (1.9)

with a = 1, b = 0, r = ri, and s = rj , for all j 6= i. Then show that

x(a1, a2, . . . , an) = a1δ1 + a2δ2 + · · ·+ anδn.

Proposition 1.1.26 Let n ≥ 1, m ∈ Z, and set d = gcd(m,n). Then, in

the cyclic group Zn we have o(m) = n
d .

Proof We have

km ≡ 0 mod n ⇔ n | km

⇔ n

d
| km

d

⇔ n

d
| k,

since n
d and m

d are relatively prime.

Exercise 1.1.27 Deduce Proposition 1.1.19 from Proposition 1.1.26.

1.2 Structure theory of �nite Abelian groups: preliminary results

In this section we review some basic facts on �nite Abelian groups and their

structure. Our exposition is based on the following monographs: by Machì

[102], Zappa [170], Kurzweil and Stellmacher [90], Kurosh [89], Rotman [132],

Herstein [71] and Nathanson [118], and on the papers [18, 72, 120].

We use additive notation. In particular, for a ∈ Zn and r ∈ N we set

ra = a+a+ . . .+a (r summands). Moreover, for an element a (respectively

a subset B) of an Abelian group A, we denote by 〈a〉 = {ra : r ∈ N}
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(respectively 〈B〉) the subgroup of A generated by a (respectively B) and by

o(a) = |〈a〉| ∈ N ∪ {∞} the order of a.

Let A be a �nite Abelian group and let A1, A2, . . . , Ak ≤ A, k ≥ 1 be

subgroups of A.

De�nition 1.2.1 The sum of the subgroups A1, A2, . . . , Ak is the subgroup

B = A1 +A2 + · · ·+Ak (1.11)

formed by all elements a ∈ A which can be expressed as

a = a1 + a2 + · · ·+ ak (1.12)

with aj ∈ Aj , j = 1, 2, . . . , k.

One says that the subgroup B in (1.11) is an (internal) direct sum, and

we write

B = A1 ⊕A2 ⊕ · · · ⊕Ak, (1.13)

provided that the expression (1.12) is unique for every a ∈ B.

Proposition 1.2.2 The following conditions are equivalent for B = A1 +

A2 + · · ·+Ak:

(i) B is a direct sum;

(ii) if a1 + a2 + · · ·+ ak = 0 with aj ∈ Aj, j = 1, 2, . . . , k, then a1 = a2 =

· · · = ak = 0;

(iii) (A1+A2+· · ·+Aj−1+Aj+1+· · ·+Ak)∩Aj = {0} for all j = 1, 2, . . . , k;

(iv) |B| = |A1| · |A2| · . . . · |Ak|.
Moreover, if one of the above conditions holds and

Aj = Bj,1 ⊕Bj,2 ⊕ · · · ⊕Bj,hj ,

where the Bj,is are subgroups and hj ≥ 1, for all j = 1, 2, . . . , k, then

B =
k⊕
j=1

hj⊕
i=1

Bj,i.

Proof We leave it as an easy exercise.

Let now B1, B2, . . . , Bk be Abelian groups.

De�nition 1.2.3 The (external) direct sum of the groups B1, B2, . . . , Bk,

denoted

B1 ⊕B2 ⊕ · · · ⊕Bk, (1.14)
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is the Cartesian product B1×B2×· · ·×Bk endowed with the group operation

(b1, b2, . . . , bk) + (b′1, b
′
2, . . . , b

′
k) = (b1 + b′1, b2 + b′2, . . . , bk + b′k)

for all bi, b
′
i ∈ Bi, i = 1, 2, . . . , k.

Note that

|B1 ⊕B2 ⊕ · · · ⊕Bk| = |B1| · |B2| · . . . · |Bk|. (1.15)

The notions of internal and external direct sum are strictly correlated:

Proposition 1.2.4

(i) Let B = B1⊕B2⊕ · · · ⊕Bk be an external direct sum. For every j =

1, 2, . . . , k, denote by Aj the subgroup, isomorphic to Bj, consisting

of all elements of B of the form (0, 0, . . . , 0, aj , 0, . . . , 0) with aj ∈ Bj
in the jth coordinate. Then

B = A1 ⊕A2 ⊕ · · · ⊕Ak

as an internal direct sum;

(ii) the internal direct sum (1.11) is isomorphic to the external direct sum

of the groups A1, A2, . . . , Ak.

Proof We leave it as an easy exercise.

As a consequence, in the sequel, if B ∼= B1 ⊕ B2 ⊕ · · · ⊕ Bk, by abuse of

language we shall regard the groups Bj , j = 1, 2, . . . , k, as subgroups of the

Abelian group B.

We now focus on some basic results on cyclic groups and their structure.

Proposition 1.2.5 Let r, s be two positive integers satisfying gcd(r, s) = 1.

Then if n = rs we have

Zn ∼= Zr ⊕ Zs.

Proof Let a be a generator of Zn and set b = ra and c = sa. Since

sb = sra = na = 0 and kb = kra 6= 0 for 0 ≤ k < s, we have that o(b) = s

and, similarly, o(c) = r. Moreover,

〈b〉 ∩ 〈c〉 = 0.

Indeed, if kb = hc with 0 ≤ k < s and 0 ≤ h < r then

kra = hsa
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with 0 ≤ kr, hs < n, which implies that kr = hs. Since gcd(r, s) = 1 we

necessarily have s|k and r|h (see Exercise 1.1.8.(1)) and this forces h = k = 0.

Finally, by Bézout identity (cf. Theorem 1.1.1), there exist u, v ∈ Z such that

ru+ sv = 1 so that

a = 1a = ura+ vsa = ub+ vc.

This implies that Zn = 〈b〉 ⊕ 〈c〉 ∼= Zr ⊕ Zs.

De�nition 1.2.6 An Abelian group is termed indecomposable if it cannot

be written as a direct sum of two or more nontrivial subgroups.

A p-primary cyclic group is a cyclic group of order a nontrivial power of

a prime p.

From Proposition 1.2.5 we deduce:

Corollary 1.2.7 (Chinese remainder theorem III) Let n = pk11 p
k2
2 · · · p

kt
t

be the prime factorization of an integer n ≥ 2. Then

Zn ∼= Z
p
k1
1

⊕ Z
p
k2
2

⊕ · · · ⊕ Z
p
kt
t
. (1.16)

That is, every cyclic group may be written as a direct sum of p-primary cyclic

groups corresponding to distinct primes p.

Exercise 1.2.8 Show that the Chinese remainder theorem III (Corollary

1.2.7) is equivalent to the Chinese remainder theorem II (Exercise 1.1.25).

Corollary 1.2.9 Let m and n be two positive integers and suppose that m

divides n. Then Zn contains an element of order m.

Proof Let n = pk11 p
k2
2 · · · p

kt
t be the prime factorization of n. Then we can

write m = ph11 ph22 · · · p
ht
t with 0 ≤ hi ≤ ki, i = 1, 2, . . . , t. In the notation

of Corollary 1.2.7, let a1, a2, . . . , at be the generators of the primary cyclic

subgroups in (1.16). We claim that the element

z = pk1−h11 a1 + pk2−h22 a2 + · · ·+ pkt−htt at

has order m. Indeed,

mz =
m

ph11

pk11 a1 +
m

ph22

pk22 a2 + · · ·+ m

phtt
pktt at = 0

and if m′|m and m′ < m, say m′ = p
h′1
1 p

h′2
2 · · · p

h′t
t (with 0 ≤ h′i ≤ hi, for all
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i = 1, 2, . . . , t, and there exists 1 ≤ j ≤ t such that h′j < hj) then

m′z =
m′

p
h′1
1

p
k1−h1+h′1
1 a1 +

m′

p
h′2
2

p
k2−h2+h′2
2 a2 + · · ·+ m′

p
h′t
t

p
kt−ht+h′t
t at 6= 0

since

m′

p
h′j
j

p
kj−hj+h′j
j aj 6= 0.

This proves the claim and the corollary.

Proposition 1.2.10 Let p be a prime number and let a be a generator of the

p-primary cyclic group Zpk . Then every nontrivial subgroup of Zpk contains

the element pk−1a. In particular, Zpk is indecomposable.

Proof Let x ∈ Zpk be any nontrivial element. Then we can �nd 0 < s < pk

such that x = sa. We may decompose s in the form s = phr, with 0 ≤ h < k

and r ∈ N such that gcd(p, r) = 1. Then we can �nd u, v ∈ Z such that

ru+ pv = 1 so that

(pk−h−1u)x = pk−h−1usa

= pk−1ura

= pk−1(1− pv)a

= pk−1a

that is, pk−1a ∈ 〈x〉. This shows that every nontrivial subgroup of Zpk
contains pk−1a.

The last statement then follows from Proposition 1.2.2.(iii).

Corollary 1.2.11 For every n ≥ 2, the cyclic group Zn has a unique de-

composition as a direct sum of p-primary cyclic groups and it is given by

(1.16).

Proposition 1.2.12 Let n ≥ 1, and let a be a generator of the cyclic group

Zn. Then every subgroup A of Zn is cyclic and A = 〈 nma〉 where m = o(A).

Conversely, for every divisor m of n there exists a unique subgroup Am ≤ Zn
of order m.

Proof Let A be a non trivial subgroup of Zn. Set

h = min{k ∈ N : ka ∈ A}
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and let us show that A = 〈ha〉. Indeed, if sa ∈ A, then, by the division

algorithm, there exist q ∈ N and 0 ≤ r < h such that s = qh+ r so that

ra = sa− qha ∈ A

forcing r = 0 and sa = qha ∈ 〈ha〉.
On the other hand, if m divides n, then o( nma) = m. Indeed, m n

ma =

na = 0, while if 0 < r < m then r nm < n so that (r nm)a = r( nma) 6= 0. This

shows that Am = 〈 nma〉 (uniqueness follows from the �rst part).

Proposition 1.2.13 Let n ≥ 1, a, b ∈ Z, and set d = gcd(a, n). Then the

linear congruence

ma ≡ b mod n (1.17)

has a solution m ≥ 1 if and only if

b ≡ 0 mod d.

If this is the case, (1.17) has d distinct pairwise non-congruent solutions.

Proof We have ma ≡ b mod n if and only if there exists k ∈ Z such that

ma = b + kn, that is, b = ma − kn. By Corollary 1.1.4, this last equation

admits a solution (m, k) ∈ Z2 if and only if d divides b. By Proposition

1.1.26 the linear congruence

ha ≡ 0 mod n

has exactly d non-congruent solutions, namely h = n
d , 2

n
d , . . . , (d− 1)nd , n. If

b ≡ 0 mod d and m0 is a �xed solution of (1.17), then a complete list of

pairwise non-congruent solutions of (1.17) is given by

m = m0,m0 +
n

d
,m0 + 2

n

d
, . . . ,m0 + (d− 1)

n

d
.

Remark 1.2.14 We write Proposition 1.2.13 in a more abstract form by

using multiplicative notation. Let n ≥ 1, recall that Cn denotes the mul-

tiplicative cyclic group, and let x ∈ Cn be a generator. Let a ∈ Z and set

d = gcd(a, n). Given z ∈ Cn consider the equation (in the variable y in Cn)

ya = z. (1.18)

• If z = ud for some u ∈ Cn, then (1.18) has d solutions;

• otherwise, (1.18) has no solutions.

(Just set z = xb and y = xm, and consider the exponents.)
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We now examine arbitrary Abelian groups (not necessarily cyclic). We

begin with a kind of converse to Proposition 1.2.5.

Proposition 1.2.15 Let A be a �nite Abelian group. Let a, b ∈ A and

suppose that gcd(o(a), o(b)) = 1. Then o(a+ b) = o(a)o(b).

Proof Set o(a) = r, o(b) = s and observe that rs(a + b) = rsa + rsb =

s(ra) + r(sb) = 0. Suppose now that m ∈ N satis�es m(a + b) = 0. As a

consequence, ma = −mb so that sma = −msb = 0 and therefore r divides

sm. Since r and s are coprime, we deduce that r divides m. Analogously,

s divides m. Since gcd(r, s) = 1 this implies that m is a multiple of rs.

Therefore rs is the order of a+ b.

Remark 1.2.16 In general, we do not have o(a + b) = o(a)o(b)
gcd(o(a),o(b)) =

lcm(o(a), o(b)), where lcm denotes the least common multiple. For instance,

just consider the case a = −b.

Proposition 1.2.17 Let p be a prime number and µ1 ≥ µ2 ≥ · · · ≥ µh
positive integers. Then the Abelian group

A = Zpµ1 ⊕ Zpµ2 ⊕ · · · ⊕ Zpµh

is not cyclic.

Proof The elements in A of maximal order are of the form a1 +a2 + · · ·+ah,

where a1 is a generator of Zpµ1 and ai ∈ Zpµi for i = 2, 3, . . . , h; their order

is pµ1 .

Exercise 1.2.18 Let A be a �nite Abelian group and a, b ∈ A. Show that

A contains an element of order lcm(o(a), o(b)).

The following is, probably, the most di�cult exercise in Herstein's book

[71] (it is Exercise 26 in Section 2.5). Its di�culty relies on the fact that the

author asked for a proof based only on tools developed up to Section 2.5 of

his book. A proof in this style was published by Robert Beals [18].

Exercise 1.2.19 Let A be a �nite Abelian group and B,C ≤ A subgroups

of A with |B| = m and |C| = n. Show that A contains a subgroup of order

lcm(m,n).

Exercises 1.2.18 and 1.2.19 are quite easy once the whole structure theory

of �nite Abelian groups will be fully developed (in the remaining part of this

chapter).
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Proposition 1.2.20 Let A be a �nite Abelian group and a ∈ A an element

of maximal order. Then for all b ∈ A one has that o(b) divides o(a).

Proof Fix b ∈ A and let pk be a prime power in the factorization of o(b).

Suppose that o(a) = phm, where h ≥ 0 and gcd(p,m) = 1. By Corollary

1.2.9, there exist c ∈ 〈a〉 with o(c) = m and d ∈ 〈b〉 with o(d) = pk.

Then, by Proposition 1.2.15, o(c + d) = pkm so that, by maximality of

o(a), we necessarily have k ≤ h. This shows that every prime power in the

factorization of o(b) divides o(a). It follows that o(b) divides o(a).

Lemma 1.2.21 Let A be a �nite Abelian group, a ∈ A an element of maximal

order, b ∈ A an arbitrary element, and denote by m the order of b + 〈a〉 in
the quotient group A/〈a〉. Then there exists c in the the coset b + 〈a〉 such
that o(c) = m.

Proof First of all we observe that mb + 〈a〉 = m(b + 〈a〉) = 〈a〉 so that

mb ∈ 〈a〉 and we can �nd n ∈ N such that

mb = na. (1.19)

Setting

h = o(a) and t = gcd(n, h),

by Proposition 1.1.26 we have o(na) = h
t .

We claim that

o(b) =
mh

t
. (1.20)

Indeed, setting r =o(b), by (1.19) we have mh
t b = h

tmb = h
t na = 0 and this

implies

r|mh
t
. (1.21)

Conversely, since r(b+〈a〉) = (rb+〈a〉) = 〈a〉 and, by hypothesis, o(b+〈a〉) =

m, we have that m divides r. Thus we can �nd q ∈ N such that r = qm. As

a consequence, by (1.19) we have

0 = rb = qmb = qna.

Since o(na) = h
t , we deduce that

h
t divides q, that is, there exists s ∈ N such

that q = sht . It follows that

r = qm = sm
h

t
= s

mh

t
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so that mh
t divides r and, by (1.21),

o(b) = r =
mh

t
.

Thus, the claim (1.20) follows.

From Proposition 1.2.20 it follows that r = mh
t divides h (the order of a,

which is maximal) and therefore, m|t. Thus we can �nd k ∈ N such that

t = km. Setting v = n
t (this is an integer since t = gcd(n, h)) and recalling

(1.19), we have

mb = na = vta = mvka. (1.22)

Setting

c = b− vka

we have b+ 〈a〉 = c+ 〈a〉 and by (1.22)

mc = mb−mvka = 0.

This shows that o(c)|m. Since m = o(b + 〈a〉) = o(c + 〈a〉) ≤ o(c) ≤ m, we

deduce that o(c) = m.

1.3 Structure theory of �nite Abelian groups: the theorems

In this section we present the three structure theorems for �nite Abelian

groups.

Theorem 1.3.1 (Invariant factors decomposition) Let A be a �nite

Abelian group. Then there exists a unique �nite sequence r1, r2, . . . , rk, k ≥
1, of positive integers such that

(i) rj divides rj−1 for all j = 2, 3, . . . , k;

(ii) |A| = r1r2 · · · rk;
(iii) A ∼= Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrk .

Proof First of all we show, by induction on n = |A|, that such a sequence

exists. The case n = 1 is trivial (take k = 1 = r1). Let now n ≥ 2 and

suppose the statement holds for all �nite Abelian groups of order 1 ≤ h ≤
n − 1. Let then a1 ∈ A such that r1 = o(a1) is maximal and consider the

quotient group A′ = A/〈a1〉. We have |A′| = |A|/o(a1) < n so that, by the

inductive hypothesis, we can �nd a �nite sequence r2, r3, . . . , rk of positive

integers such that rj divides rj−1 for all j = 3, 4, . . . , k,

|A′| = r2r3 · · · rk (1.23)
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and

A′ ∼= Zr2 ⊕ Zr3 ⊕ · · · ⊕ Zrk . (1.24)

By virtue of Lemma 1.2.21, we can �nd elements a2, a3, . . . , ak ∈ A such

that the summand Zrj is generated by aj + 〈a1〉 and

o(aj) = rj (1.25)

for all j = 3, 4, . . . , k. Clearly,

A = 〈a1〉+ 〈a2〉+ · · ·+ 〈ak〉. (1.26)

Indeed, if b ∈ A then by virtue of (1.24) we can �nd integers m2,m3, . . . ,mk

such that

b+ 〈a1〉 = m2(a2 + 〈a1〉) +m3(a3 + 〈a1〉) + · · ·+mk(ak + 〈a1〉)
= (m2a2 + 〈a1〉) + (m3a3 + 〈a1〉) + · · ·+ (mkak + 〈a1〉)
= (m2a2 +m3a3 + · · ·+mkak) + 〈a1〉

so that b − (m2a2 + m3a3 + · · · + mkak) ∈ 〈a1〉, and therefore we can �nd

m1 ∈ N such that b = m1a1 +m2a2 +m3a3 + · · ·+mkak. This shows (1.26).

From (1.23) and o(a1) = r1 we deduce that |A| = r1|A′| = r1r2 · · · rk
(namely, condition (ii)) so that, by virtue of Proposition 1.2.2, the sum (1.26)

is indeed a direct sum, and (iii) follows as well. Moreover, by Proposition

1.2.20 we deduce that r2 divides r1 so that, by induction, also (i) is satis�ed.

We now turn to uniqueness of the sequence r1, r2 . . . , rk. Suppose that

s1, s2, . . . , sh, h ∈ N, is also a sequence of integers satisfying (i), (ii) and

(iii). For every j = 1, 2, . . . , h, we denote by bj ∈ A a generator of the

summand Zsj so that, for every c ∈ A, we can �nd n1, n2 . . . , nh ∈ N such

that c = n1b1 + n2b2 + . . .+ nhbh. From (i) we deduce that s1c = 0 so that

s1 = o(b1) is the maximal order of the elements of A so that (cf. the �rst

part of the proof)

s1 = r1.

Suppose then that we have, for some 2 ≤ j ≤ min{h, k},

s1 = r1, s2 = r2, . . . , sj−1 = rj−1 and sj 6= rj . (1.27)

To �x ideas, suppose that sj < rj and denote by

B = {sjc : c ∈ A}

the set of sj-multiples of the elements of A. Clearly, B is a subgroup of A.
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Moreover (cf. (1.26)), if c ∈ A we can �nd m1,m2 . . . ,mk ∈ N such that

c = m1a1 +m2a2 + . . .+mkak. Thus

sjc = m1(sja1) +m2(sja2) + . . .+mk(sjak)

which implies that

B = B1 ⊕ 〈sjaj〉 ⊕B2 (1.28)

whereB1 = 〈sja1〉⊕〈sja2〉⊕· · ·⊕〈sjaj−1〉 andB2 = 〈sjaj+1〉⊕〈sjaj+2〉⊕· · ·⊕
〈sjak〉, and each summand in B1 ⊕ 〈sjaj〉 is nontrivial since sj < ri = o(ai)

for all i = 1, 2, . . . , j; in particular,

o(sjaj) =
o(aj)

gcd(sj , rj)
=

rj
gcd(sj , rj)

> 1. (1.29)

Similarly, we have

B = 〈sjb1〉 ⊕ 〈sjb2〉 ⊕ · · · ⊕ 〈sjbj−1〉, (1.30)

since sjb` = 0 for ` = j, j + 1, . . . , h. Note that

o(sjai) =
o(ai)

sj
=
ri
sj

=
si
sj

= o(sjbi), (1.31)

for i = 1, 2, . . . , j − 1. From (1.30) and (1.31) we deduce that B = B1 so

that, in particular, 〈sjaj〉 is trivial, a contradiction with (1.29). This shows

that h = k and s1 = r1, s2 = r2, . . . , sh = rh, and uniqueness follows.

De�nition 1.3.2 The positive integers satisfying (i), (ii), and (iii) in Theo-

rem 1.3.1 are called the invariant factors of A.

Corollary 1.3.3 (Cauchy's theorem for Abelian groups) Let A be a

�nite Abelian group. Suppose that p is a prime divisor of the order of A.

Then A contains an element of order p.

Proof Let r1, r2, . . . , rk denote the invariant factors of A. Since p divides

|A| = r1r2 · · · rk, by virtue of Exercise 1.1.8.(2), we can �nd 1 ≤ j ≤ k

such that p|rj (in fact, by Theorem 1.3.1.(i), we always have p|r1). From

Corollary 1.2.9 we deduce that the subgroup Zrj , and therefore A, contains

an element of order p.

Remark 1.3.4 The above is a quite unusual proof of Cauchy's theorem

for Abelian groups. Indeed, any book on group theory or on undergraduate

algebra contains a direct proof of the more general result, namely the Cauchy

theorem for not necessarily Abelian groups. Often, (e.g. Robinson [129]), one
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deduces Cauchy's theorem from the even more general Sylow theorem. In

other books (e.g. Herstein [71], Lang [93], Mac Lane and Birkho� [113], and

Rotman [132]) the Abelian case is proved as a �rst step towards the general

case. Finally, in Machì's monograph [102] there is an elementary direct proof

of the general result based on the paper by McKay [106] (cf. Exercise 1.3.6

below). In the next exercise we outline a direct proof of Corollary 1.3.3

following [120].

Exercise 1.3.5 Let A be a �nite Abelian group. Suppose that p is a prime

divisor of the order of A and let B be a proper maximal subgroup of A.

(1) Show that the quotient group A/B is cyclic of prime order;

(2) show that if p does not divide |B| then there exists c ∈ A such that

〈c〉+B = A and |〈c〉/(〈c〉 ∩B)| = p;

(3) use (1) and (2) to give (another) inductive proof of Corollary 1.3.3.

As mentioned above, in the next exercise we outline a direct proof of the

general Cauchy theorem. We use some elementary notions on group actions

that will be further developed in Section 10.4.

Exercise 1.3.6 Let G be a �nite (not necessarily Abelian) group: we use

multiplicative notation. Suppose that p is a prime divisor of the order of G

and set

X = {(g1, g2, . . . , gp) ∈ Gp : g1g2 · · · gp = 1G}.

(1) Show that |X| = |G|p−1;

(2) show that Zp acts on X by cyclic permutations, namely that if x =

(g1, g2, . . . , gp) ∈ X and t is a �xed generator of Zp then tx =

(g2, g3, . . . , gp, g1) ∈ X;

(3) for x ∈ X denote by Stabx = {s ∈ Zp : sx = x} the stabilizer of x:

show that Stabx is a subgroup of Zp and, from Lagrange's theorem,

deduce that it is either trivial or the whole Zp;
(4) denote by Zpx = {sx : s ∈ Zp} the orbit of x ∈ X and show that

|Zpx| = p/|Stabx| (orbit-stabilizer theorem);

(5) deduce that the only possible orbit sizes are 1 and p;

(6) show that Zpx = {x} if and only if there exists g ∈ G such that

x = (g, g, . . . , g), so that, necessarily, gp = 1G;

(7) let m (respectively n) denote the number of orbits of size 1 (respec-

tively p): from (5) and (6) deduce that m+ np = |G|p−1 and m ≥ 1;

(8) from (7) deduce thatm ≥ 2 (in factm is divisible by p) and therefore,

by (6), there exists g ∈ G of period p.
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Theorem 1.3.7 (Primary decomposition) Let A be a �nite Abelian

group. Let

|A| = pk11 p
k2
2 · · · p

kt
t (1.32)

be the prime factorization of the order of A. Then

Ai = {a ∈ A : o(a) is a power of pi}

is a subgroup of A of order pkii , for i = 1, 2, . . . , t, and

A = A1 ⊕A2 ⊕ · · · ⊕At. (1.33)

Proof We �rst remark that, by virtue of Corollary 1.3.3, Ai 6= {0}, and we

leave it as an exercise to check that Ai is a subgroup for i = 1, 2, . . . , t.

Let a ∈ A. Then, since o(a) divides |A|, there exists a nonempty subset

{i1, i2, . . . , im} of {1, 2, . . . , t} and integers 1 ≤ hj ≤ kij , j = 1, 2, . . . ,m,

such that

o(a) = ph1i1 p
h2
i2
· · · phmim .

By the Chinese remainder theorem III (Corollary 1.2.7), we have

〈a〉 = Z
p
h1
i1

⊕ Z
p
h2
i2

⊕ · · · ⊕ Z
phmim
⊆ Ai1 +Ai2 + · · ·+Aim .

This shows that

A = A1 +A2 + · · ·+At. (1.34)

We claim that the above sum is direct. Suppose that a1 +a2 + · · ·+at = 0,

where ai ∈ Ai, i = 1, 2, . . . , t. Let 1 ≤ i ≤ t. Then, after multiplying by

qi = |A|
p
ki
i

, we get qiai = 0 and, since the order of ai does not divide qi, we

necessarily have ai = 0. Thus a1 = a2 = · · · = at = 0 and from Proposition

1.2.2 the claim follows. This establishes (1.33).

Let 1 ≤ i ≤ t. Since Ai only contains elements of order a power of pi, from

Corollary 1.3.3 we deduce that |Ai| = prii for some integer ri ≥ 1. Moreover,

since the sum (1.34) is direct, we have |A| = |A1|·|A2|·. . .·|At| = pr11 p
r2
2 · · · p

rt
t

so that, by uniqueness of the prime factorization (1.32) of |A|, we necessarily
have ri = ki for all i = 1, 2, . . . , t, completing the proof.

De�nition 1.3.8 Let p be a prime number. A group G is termed a p-group

provided that every element has order a power of p.

Sylow's �rst theorem (see for instance Herstein [71]) states that if G is a

�nite group and p a prime number such that |G| = pnm, where n,m ≥ 1

with gcd(p,m) = 1 (thus n is the maximal power of p dividing the order
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of G), then G contains a p-subgroup of order pn: this is called a p-Sylow

subgroup of G.

Thus, from Theorem 1.3.7, an Abelian version of Sylow's �rst theorem

follows.

De�nition 1.3.9 Let p be a prime number. An Abelian p-group is called

a p-primary group (cf. De�nition 1.2.6). Moreover, for i = 1, 2, . . . , t, the

subgroup Ai in (1.33) is termed the pi-primary component of A.

The following relates and re�nes the statements of Theorem 1.3.1 and

Theorem 1.3.7: we use the notation therein.

Corollary 1.3.10 (Structure theorem for �nite Abelian groups) Let

A be a �nite Abelian group. Then there exist unique positive integers hi and

mij, i = 1, 2, . . . , t and j = 1, 2, . . . , hi, satisfying hi ≤ ki and

mi1 ≥ mi2 ≥ · · · ≥ mihi (1.35)

for all i = 1, 2, . . . , t, such that the following holds:

A ∼=
t⊕
i=1

hi⊕
j=1

Z
p
mij
i

(1.36)

Ai ∼=
hi⊕
j=1

Z
p
mij
i

(1.37)

for i = 1, 2, . . . , t, and

Zrj ∼=
⊕

1≤i≤t:
hi≥j

Z
p
mij
i

(1.38)

for j = 1, 2, . . . , k. In particular,
∑hi

j=1mij = ki for i = 1, 2, . . . , t and∏
1≤i≤t:
hi≥j

p
mij
i = rj (1.39)

for all j = 1, 2, . . . , k.

Proof We shall present two proofs of this fundamental result: we can ex-

change the order of the applications of Theorem 1.3.1 and Theorem 1.3.7.

First proof. We apply Theorem 1.3.1 to each p-primary component Ai in

(1.33): thus we can �nd 1 ≤ hi ≤ ki and mi1 ≥ mi2 ≥ · · · ≥ mihi such

that (1.37) and therefore (1.36) hold. Uniqueness follows from uniqueness
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in Theorem 1.3.1 and uniqueness of the prime factorization of |A|. Let now
1 ≤ j ≤ k. Then (1.35) implies that

∏
1≤i≤t:
hi≥j

p
mij
i divides

∏
1≤i≤t:
hi≥j−1

p
mi,j−1

i

so that, by Proposition 1.2.5 and uniqueness in Theorem 1.3.1, we deduce

(1.39) and (1.38).

Second proof. Consider the invariant factors rj , j = 1, 2, . . . , t, in Theorem

1.3.1.(iii). Let r1 = pm11
1 pm21

2 · · · pmt1t denote the prime factorization of r1

(so that mi1 > 0 for i = 1, 2, . . . , t). Let 1 ≤ j ≤ k. Since rj |rj−1, . . . , r2|r1,

we can write rj = p
m1j

1 p
m2j

2 · · · pmtjt with mi,j−1 ≥ mij ≥ 0 for i = 1, 2, . . . , t.

Let us denote by hi the largest j such that mij > 0 (equivalently, mihi > 0

and mi,hi+1 = 0). This way, rj =
∏

1≤i≤t:
hi≥j

p
mij
i is the prime factorization of

rj and (1.39) follows. Applying Theorem 1.3.7 to each Zrj , j = 1, 2, . . . , t,

we deduce (1.38). Finally, from the direct sum decomposition in Theorem

1.3.1.(iii), we deduce (1.36) and, by de�nition of Ai, (1.37).

Corollary 1.3.11 A �nite Abelian group is indecomposable if and only if it

is a p-primary cyclic group for some prime p.

Proof The �if� part is Proposition 1.2.10. Conversely, if A is indecomposable,

then in (1.36) we must have t = 1 and h1 = 1.

De�nition 1.3.12 The positive integers mij , i = 1, 2, . . . , t, j = 1, 2, . . . , hi,

in Corollary 1.3.10 are called the elementary divisors of A.

In Corollary 1.3.10 we have shown that the invariant factors determine

uniquely the elementary divisors, and vice versa. More precisely, given the

prime factorization (1.32), from (1.39) we have a correspondence

(rj)
k
j=1 ↔

(
(hi)

t
i=1, (mij) 1≤i≤t

1≤j≤hi

)
.

Our next task is to compute the number of nonisomorphic Abelian groups

of a given order n ∈ N. For this purpose we introduce the following de�ni-

tions.

De�nition 1.3.13 Let n ∈ N. A partition of n is a sequence

λ = (λ1, λ2, · · · , λh)

of positive integers such that

λ1 ≥ λ2 ≥ · · · ≥ λh and λ1 + λ2 + · · ·+ λh = n.

We then write λ ` n.
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We denote by p(n) = |{λ : λ ` n}| the number of partitions of n.
The map p : N→ N is called the partition function.

Let now A and B be two �nite Abelian groups. Then A ∼= B if and only if,

denoting by (rAj )kAj=1 and (rBj )kBj=1 the corresponding invariant factors, then

kA = kB and rAj = rBj for all j = 1, 2, . . . , kA: we express this last con-

dition by saying, with a slight abuse of language, that A and B have the

same invariant factors. Equivalently, A and B are isomorphic if and only if

|A| = |B| and, denoting by (mA
ij) 1≤i≤t

1≤j≤hAi
and (mB

ij) 1≤i≤t
1≤j≤hBi

the corresponding

elementary divisors, we have hAi = hBi and mA
ij = mB

ij for all i = 1, 2, . . . , t

and j = 1, 2, . . . , hAi . Again, with a slight abuse of language, this last con-

dition may be expressed by saying that A and B have the same elementary

divisors.

Proposition 1.3.14 Let n ≥ 2 and denote by n = pk11 p
k2
2 · · · p

kt
t its prime

factorization. Then the number of nonisomorphic Abelian groups of order n

is

p(k1)p(k2) · · · p(kt).

Proof Let A be an Abelian group of order n and denote by (mA
ij) 1≤i≤t

1≤j≤hAi
the

corresponding elementary divisors. Then for each i = 1, 2, . . . , t we have the

partition µi = (mi1,mi2, . . . ,mihi) ` ki. Since, by the above observations,

the elementary divisors uniquely determine A (of the given order n) up to

isomorphism, this ends the proof.

Remark 1.3.15 Theorem 1.3.1, Theorem 1.3.7, and Corollary 1.3.10 provide

three di�erent decompositions of a �nite Abelian group. In Theorem 1.3.1

and Corollary 1.3.10, the structure of the decompositions is unique (that is,

the invariant factors and the elementary divisors, respectively, are uniquely

determined). On the one hand, the associated subgroups (namely the Zrj ,
j = 1, 2, . . . , k, and the Z

p
mij
i

, i = 1, 2, . . . , t, j = 1, 2, . . . , hi, respectively)

are not uniquely determined. This aspect will be discussed in Section 1.8

(see Corollary 1.8.4). On the other hand, the subgroups in the decomposition

in Theorem 1.3.7 are uniquely determined.

We now give a characterization of the decomposition (1.36) in Corollary

1.3.10. First recall that, by Proposition 1.2.10, every p-primary cyclic group

Zpmij is indecomposable.
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Proposition 1.3.16 With the notation from Corollary 1.3.10, let A =⊕q
µ=1Bµ be a decomposition of A as a direct sum of indecomposable sub-

groups. Then q =
∑t

i=1 hi and there exists a bijection

µ : {(i, j) : 1 ≤ i ≤ t, 1 ≤ j ≤ hi} −→ {1, 2, . . . , q}

such that

Z
p
mij
i

∼= Bµ(i,j) (1.40)

for i = 1, 2, . . . , t and j = 1, 2, . . . , hi.

Proof By Corollary 1.3.11, each Bµ is a p-primary cyclic group. Let 1 ≤
i ≤ t. Then, in the notation of Theorem 1.3.7, we can �nd distinct indices

1 ≤ µ(i, 1), µ(i, 2), . . . , µ(i, ki) ≤ q such that

Ai = Bµ(i,1) ⊕Bµ(i,2) ⊕ · · · ⊕Bµ(i,ki)

and Bµ(i,1), Bµ(i,2), . . . , Bµ(i,ki) are all the pi-groups among the Bµs. Up to

permuting the indices, if necessary, we may assume that

|Bµ(i,1)| ≥ |Bµ(i,2)| ≥ · · · ≥ |Bµ(i,ki)|

so that, necessarily, |Bµ(i,j−1)| divides |Bµ(i,j)| for j = 2, 3, . . . , ki. By apply-

ing the uniqueness assertion in Theorem 1.3.1, we deduce (1.40) (in partic-

ular, ki = hi for all i = 1, 2, . . . , t). The remaining part of the statement is

now clear.

Proposition 1.3.17 Let A be a �nite Abelian group. Then, in the notation

of Theorem 1.3.7, the following conditions are equivalent:

(a) A is cyclic;

(b) A contains exactly one subgroup of order pi for every i = 1, 2, . . . , t;

(c) Ai is cyclic for every i = 1, 2, . . . , t.

Proof The implication (a) ⇒ (b) follows immediately from Proposition

1.2.12.

Suppose that there exists 1 ≤ i ≤ t such that Ai is not cyclic. Then, in

(1.37) (and with the notation therein) we necessarily have hi ≥ 2 so that Ai
contains a subgroup B isomorphic to Zpmi1i

⊕ Zpmi2i
. By virtue of Cauchy's

theorem (Corollary 1.3.3) applied to each direct component, B and therefore

A contain two distinct subgroups of order pi. This shows the implication (b)

⇒ (c).

Suppose (c). Let ai ∈ Ai be a generator of Ai for every i = 1, 2, . . . , t.

Then by Proposition 1.2.15, the element a = a1a2 · · · at has order o(a) =
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o(a1)o(a2) · · · o(at) = |A1| · |A2| · . . . · |At| = |A| (the last equality follows from
(1.33) and (1.15)). This shows that A = 〈a〉 is cyclic, and the implication

(c) ⇒ (a) follows as well.

Remark 1.3.18 The decomposition of a �nite Abelian as a direct sum

of cyclic groups presented in (1.36) is the �ner, while the one in Theorem

1.3.1.(iii) is the coarser.

1.4 Generalities on endomorphisms and automorphisms of �nite

Abelian groups

In the next sections we present a complete description of the automorphisms

of �nite Abelian groups in order to:

• clarify the structure theorem (cf. Remark 1.3.15);

• show examples for potential applications of Theorem 11.7.1.

We start with some basic general results.

Let A be a �nite Abelian group. A map α : A→ A such that

α(a+ b) = α(a) + α(b)

for all a, b ∈ A is called an endomorphism of A. We denote by End(A) the

set of all endomorphisms of A.

Note that if α ∈ End(A) then α(0) = 0 and α(−a) = −α(a) for all a ∈ A.
Moreover, End(A) is a unital ring : for α, β ∈ End(A) we de�ne their sum

α+ β and their product αβ by setting

(α+ β)(a) = α(a) + β(a)

and, respectively,

(αβ)(a) = α(β(a))

for all a ∈ A; the zero endomorphism 0 = 0End(A) ∈ End(A) and the identity

map 1 = IdA ∈ End(A) de�ned by

0(a) = 0A

and

1(a) = a

for all a ∈ A, are the zero and unital element of End(A), respectively.

Let α ∈ End(A). We denote by Ker(α) = {a ∈ A : α(a) = 0} the kernel
of α. It is immediate that Ker(α) is a subgroup of A and that Ker(α) = {0}
if and only if α is a bijective map.
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Suppose now that α is bijective. Then the inverse map α−1 is also an

endomorphism: indeed, if a, b ∈ A

α[α−1(a+ b)] = a+ b = α[α−1(a)] + α[α−1(b)] = α[α−1(a) + α−1(b)]

so that, by bijectivity, we have α−1(a+ b) = α−1(a) + α−1(b).

A bijective endomorphism of A is called an automorphism of A. It follows

from the previous observation that the set

Aut(A) = {α ∈ End(A) : Ker(α) = {0}}

of all automorphisms of A is the group of units of End(A).

Lemma 1.4.1 Let A be a �nite Abelian group and m ∈ N. Then the map

αm : A → A de�ned by αm(a) = ma for all a ∈ A, is an endomorphism of

A. Moreover, αm is an automorphism if and only if gcd(m, |A|) = 1.

Proof The fact that αm ∈ End(A) follows immediately from the fact that

A is Abelian. Let now d = gcd(m, |A|). If d > 1 and p is a prime divid-

ing d, by Cauchy's theorem (Corollary 1.3.3) we can �nd a ∈ A such that

o(a) = p. As a consequence, αm(a) = ma = m
p (pa) = m

p 0 = 0 so that αm
cannot be injective, that is, αm /∈ Aut(A). Conversely, if d = 1, then by

Lagrange's theorem, A does not contain elements of order q for every integer

q ≥ 2 dividing m. As a consequence αm(a) = ma 6= 0 for all a ∈ A \ {0},
equivalently, Ker(α) = {0}, so that αm ∈ Aut(A).

Let R1 and R2 be two unital rings. We equip their Cartesian product

R1 ×R2 with a structure of a unital ring by setting

(r1, r2) + (r′1 + r′2) = (r1 + r′1, r2 + r′2) and (r1, r2)(r′1, r
′
2) = (r1r

′
1, r2r

′
2)

for all r1, r
′
1 ∈ R1 and r2, r

′
2 ∈ R2. It is clear that the elements (0, 0) and

(1, 1) are the zero and unit elements of R1×R2. Moreover if (r1, r2) ∈ R1×R2

we have −(r1, r2) = (−r1,−r2) and (r1, r2) is a unit if and only if both r1

and r2 are and, if this is the case, (r1, r2)−1 = (r−1
1 , r−1

2 ). In other words,

denoting by U(R) the group of units of any unital ring R, we have

U(R1 ×R2) = U(R1)× U(R2). (1.41)

Theorem 1.4.2 ([72]) Let A and B be two �nite Abelian groups. Suppose

that gcd(|A|, |B|) = 1. Then the map Φ: End(A)× End(B)→ End(A⊕ B)

de�ned by

[Φ(α, β)](a+ b) = α(a) + β(b)
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for all α ∈ End(A), β ∈ End(B), a ∈ A and b ∈ B, is a unital ring

isomorphism. In particular,

Aut(A⊕B) ∼= Aut(A)×Aut(B). (1.42)

Proof It is easy to check that Φ(α, β) ∈ End(A ⊕ B). Let us show that Φ

is a ring homomorphism. For α1, α2 ∈ End(A), β1, β2 ∈ End(B), a ∈ A and

b ∈ B we have

[Φ(α1, β1) + Φ(α2, β2)](a+ b) = [Φ(α1, β1)](a+ b) + [Φ(α2, β2)](a+ b)

= (α1(a) + β1(b)) + (α2(a) + β2(b))

= (α1(a) + α2(a)) + (β1(b) + β2(b))

= [α1 + α2](a) + [β1 + β2](b)

= [Φ(α1 + α2, β1 + β2)](a+ b)

= [Φ((α1, β1) + (α2, β2))](a+ b)

and

[Φ(α1, β1)Φ(α2, β2)](a+ b) = Φ(α1, β1)[(Φ(α2, β2))(a+ b)]

= Φ(α1, β1)(α2(a) + β2(b))

= α1(α2(a)) + β1(β2(b))

= [Φ(α1α2, β1β2)](a+ b)

= [Φ((α1, β1)(α2β2))](a+ b)

so that Φ((α1, β1)+(α2, β2)) = Φ(α1, β1)+Φ(α2, β2) and Φ((α1, β1)(α2β2)) =

Φ(α1, β1)Φ(α2β2).

Moreover, it is straightforward that

Φ(1, 1) = Φ(IdA, IdB) = IdA⊕B = 1. (1.43)

This shows that Φ is a unital ring homomorphism.

Let us now show that Ker(Φ) = {(0, 0)}. Indeed, if α ∈ End(A) and

β ∈ End(B) satisfy Φ(α, β) = 0, then α(a) = α(a)+β(0) = Φ(α, β)(a, 0) = 0

for all a ∈ A (respectively β(b) = α(0) + β(b) = Φ(α, β)(0, b) = 0 for

all b ∈ B) so that, necessarily, α = 0 (respectively β = 0). This shows

injectivity of Φ.

Let us show that Φ is surjective. Let ω ∈ End(A ⊕ B). Denoting by

πA : A × B → A and πB : A × B → B the canonical projections (these are

clearly group homomorphisms), we de�ne a homomorphism γ : B → A by

setting

γ(b) = πA(ω(0, b))
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for all b ∈ B. Now, if n = |A| we have, for all b ∈ B,

0 = nγ(b) = γ(nb).

Since by hypothesis gcd(n, |B|) = 1, the map βn : B → B, de�ned by βn(b) =

nb for all b ∈ N , is an isomorphism by Lemma 1.4.1. We deduce that γ = 0,

that is,

πA(ω(0, b)) = 0 (1.44)

for all b ∈ B. Exchanging the roles of A and B, we have

πB(ω(a, 0)) = 0 (1.45)

for all a ∈ A. Consider the endomorphisms α = αω ∈ End(A) and β = βω ∈
End(B) de�ned by

α(a) = πA(ω(a, 0))

β(b) = πB(ω(0, b))
(1.46)

for all a ∈ A and b ∈ B. Then, since πA + πB = IdA⊕B, we have, for all

a ∈ A and b ∈ B

ω(a, b) = ω(a, 0) + ω(0, b)

= [πA + πB](ω(a, 0)) + [πA + πB](ω(0, b))

= πA(ω(a, 0)) + πB(ω(a, 0))

+ πA(ω(0, b)) + πB(ω(0, b))

(by (1.45) and (1.44)) = πA(ω(a, 0)) + πB(ω(0, b))

(by (1.46)) = α(a) + β(b)

= [Φ(α, β)](a, b).

In other words,

ω = Φ(α, β)

and therefore Φ is surjective.

Since Φ is unital, it establishes a group isomorphism between the corre-

sponding groups of units, so that, keeping in mind (1.41), equation (1.42)

follows.

1.5 Endomorphisms and automorphisms of �nite cyclic groups

We turn to the study of the endomorphisms of a �nite cyclic group. We keep

in mind Notation 1.1.17 and (1.3), and recall that U(Z/nZ) ⊆ Z/nZ denotes

the (multiplicative) group of units of Z/nZ.
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Lemma 1.5.1 For n ≥ 1 we have U(Z/nZ) = {m ∈ Z/nZ : gcd(n,m) = 1}.

Proof Indeed let m ∈ Z/nZ and set d = gcd(n,m). If d > 1 then, setting

s = m/d ∈ N and t = n/d ∈ N, we have t 6= 0 and

m · t = mt = mn/d = ns = 0

thus showing that m is a zero-divisor and therefore is not invertible. On the

other hand, if d = 1 by virtue of the Bézout identity (cf. (1.2)), we can �nd

a, b ∈ Z such that an+ bm = 1 so that

b ·m = bm = 1− an = 1− 0 = 1.

This shows that m is invertible (with inverse m−1 = b).

Proposition 1.5.2 For n ≥ 1 we have End(Zn) ∼= Z/nZ.

Proof For m ∈ Z/nZ de�ne ψm ∈ End(Zn) by setting ψm(k) = km = mk

for all k ∈ Zn. We claim that the map Ψ: Z/nZ → End(Zn) de�ned by

Ψ(m) = ψm is a unital ring isomorphism. Let 0 ≤ k,m,m′ ≤ n− 1.

We have [ψmψm′ ](k) = ψm(m′k) = mm′k = ψmm′(k) = ψmm′(k) thus

showing that Ψ(mm′) = Ψ(m)Ψ(m′). Moreover, it is clear that Ψ(1) =

ψ1 = IdZn = 1, so that Ψ is a unital ring homomorphism.

Suppose that Ψ(m) = Ψ(m′). Then m = ψm(1) = Ψ(m)(1) = Ψ(m′)(1) =

ψm′(1) = m′, showing that Ψ is injective.

Finally, let ψ ∈ End(Zn) and suppose that m = ψ(1). Then we have

ψ(k) = ψ(k1) = ψ(1 + 1 + · · ·+ 1︸ ︷︷ ︸
k times

) = kψ(1) = km = km = ψm(k).

In other words, ψ = ψm = Ψ(m). This shows that Ψ is also surjective,

completing the proof.

Corollary 1.5.3 For n ≥ 1 we have Aut(Zn) ∼= U(Z/nZ). In particular,

Aut(Zn) is Abelian and

|Aut(Zn)| = ϕ(n), (1.47)

where ϕ is Euler's totient function (cf. De�nition 1.1.18).

Proof The �rst statement follows from the fact that the map Ψ in the proof

of Proposition 1.5.2 is a unital ring isomorphism and therefore establishes

a group isomorphism between the corresponding groups of units. Moreover,

since the ring Z/nZ is commutative, we have that U(Z/nZ) is Abelian. Fi-

nally, (1.47) is an immediate consequence of Lemma 1.5.1.
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Exercise 1.5.4 Let m ≥ 1 and n ≥ 2 such that gcd(m,n) = 1 and let p be

a prime number such that p - m.

(1) Prove the following (Euler's identity)

mϕ(n) ≡ 1 mod n;

(2) deduce the following (Fermat's identity)

mp−1 ≡ 1 mod p.

Recall that Theorem 1.1.21 may be expressed in the form: if p is a prime

then U(Z/pZ) is cyclic of order p− 1.

Exercise 1.5.5 Deduce Fermat's identity in Exercise 1.5.4 directly from

Theorem 1.1.21.

In the remaining part of this section, we analyze more closely the structure

of the Abelian group U(Z/nZ) ∼= Aut(Zn) focusing on its decomposition

as a direct sum of cyclic groups (cf. Section 1.3). Actually, as these are

multiplicative groups, we use multiplicative notation (cf. Notation 1.1.17)

and decompose into direct products.

Proposition 1.5.6 Let n = pk11 p
k2
2 · · · p

kt
t be the prime factorization of an

integer n ≥ 2. Then

U(Z/nZ) ∼= Aut(Zn)

∼= Aut(Z
p
k1
1

)×Aut(Z
p
k2
2

)× · · · ×Aut(Z
p
kt
t

)

∼= U(Z/pk11 Z)× U(Z/pk22 Z)× · · · × U(Z/pktt Z).

Proof The �rst isomorphism follows from Corollary 1.5.3. The second from

(1.42) and the Chinese remainder theorem III (Theorem 1.2.7). The last one

follows again from Corollary 1.5.3.

We now determine the structure of U(Z/pkZ) ∼= Aut(Zpk) for p prime and

k ≥ 1. This requires some nontrivial calculations in number theory; our

treatment is inspired by the monographs by Nathanson [118], Ireland and

Rosen [79], and Rotman [132]. We �rst observe that

|U(Z/pkZ)| = ϕ(pk) = pk − pk−1 = (p− 1)pk−1. (1.48)

Indeed, the �rst equality follows from Corollary 1.5.3, while the second is a

consequence of the fact that an integer 1 ≤ n ≤ pk is divisible by p if and

only if there exists 1 ≤ h ≤ pk−1 such that n = ph.
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Theorem 1.5.7 We have: U(Z/2Z) = {1}, U(Z/4Z) = 〈−1〉 ∼= C2 and, for

k ≥ 3,

U(Z/2kZ) = 〈−1〉 × 〈5〉 ∼= C2 × C2k−2 . (1.49)

Proof The �rst two assertions are trivial. Suppose that k ≥ 3. We observe

that (1.48) now becomes

|U(Z/2kZ)| = 2k − 2k−1 = 2k−1. (1.50)

In particular the order of 5, as an element of (the Abelian multiplicative

group) U(Z/2kZ), is o(5) = 2r for some 1 ≤ r ≤ k − 1.

Claim 1: For k ≥ 3 we have 52k−3 ≡ 1 + 2k−1 mod 2k.

We proceed by induction on k. For k = 3 this is easy: indeed we have

51 = 5 ≡ 1 + 4 mod 8.

Assume the congruence holds for some k ≥ 3 and let us prove it for k+ 1.

Observe that there exists h ∈ Z such that

52k−3
= 1 + 2k−1 + h2k. (1.51)

We have

52(k+1)−3
= 52k−2

=
(

52k−3
)2

(by (1.51)) =
(

1 + 2k−1 + h2k
)2

= 1 + 2k + h2k+1 + 22k−2 + (h+ h2)22k

≡ 1 + 2k mod 2k+1,

where the last congruence follows from the fact that, recalling that k ≥ 3,

h2k+1 + 2k−32k+1 + (h+ h2)2k−12k+1 ≡ 0 mod 2k+1. The proof of the claim

is completed.

It follows from Claim 1 that r ≥ k − 2 since 1 + 2k−1 6≡ 1 mod 2k.

Moreover, the order of −1, as an element of (the multiplicative group)

U(Z/2kZ), is clearly o(−1) = 2.

Claim 2: 〈5〉 ∩ 〈−1〉 = {1}.
Indeed, suppose by contradiction that −1 ∈ 〈5〉. Then we can �nd a posi-

tive integer s such that −1 = 5
s
, equivalently, 5s ≡ −1 mod 2k and therefore,

a fortiori, 5s ≡ −1 mod 4. But this is impossible, since from 5 ≡ 1 mod 4
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we deduce 5s ≡ 1 mod 4. The claim follows.

Recalling (1.50), we have

2k−1 = |U(Z/2kZ)| ≥ |〈−1〉 × 〈5〉| = |〈−1〉| · |〈5〉| = 2 · 2r ≥ 2 · 2k−2 = 2k−1

so that r = k − 2, that is, 〈5〉 ∼= C2k−2 , and (1.49) follows.

Theorem 1.5.8 Let p 6= 2 be a prime and k ≥ 1. Then we have

U(Z/pkZ) ∼= Cpk−pk−1 . (1.52)

Proof First of all, we note that for k = 1 the statement reduces to that of

Theorem 1.1.21. Thus, we may assume k ≥ 2.

Let p − 1 = pk11 p
k2
2 · · · p

kt
t denote the prime factorization of p − 1 and

observe that pi 6= p for all i = 1, 2, . . . , t. Since U(Z/pkZ) is Abelian and

|U(Z/pkZ)| = (p−1)pk−1 (by (1.48)), we can apply Theorem 1.3.7 and write

U(Z/pkZ) = G1 ×G2 where |G1| = p− 1 and |G2| = pk−1.

Claim 1: G1
∼= Cp−1.

Consider the map Φ: Z/pkZ→ Z/pZ de�ned by setting Φ(m) = m̃ where

m = m + pkZ and m̃ = m + pZ, m ∈ Z. We remark that Φ is well de�ned

because if m ≡ n mod pk then m ≡ n mod p, equivalently, m̃ ⊇ m, for all

m,n ∈ Z, so that the partition of Z induced by the congruence mod pk is

�ner than the one induced by the congruence mod p. In particular, Φ is

surjective. Let m,n ∈ Z. Then we have

Φ(m · n) = Φ(mn) = m̃n = m̃ · ñ = Φ(m)Φ(n)

so that the restriction φ of Φ to U(Z/pkZ) yields a group homomorphism of

U(Z/pkZ) onto U(Z/pZ).

Now, by Theorem 1.1.21, U(Z/pZ) ∼= Cp−1, and |G2| = pk−1. Thus every

element g2 ∈ G2 has order o(g2) = ph for some 0 ≤ h ≤ k−1. Its image under

Φ has order o(Φ(g2)) = ph
′
for some 0 ≤ h′ ≤ h but since gcd(p, p− 1) = 1,

necessarily h′ = 0, that is, g2 ∈ Ker(Φ). This shows that G2 ⊆ Ker(Φ).

Since

pk−1(p− 1) = |U(Z/pkZ)| = |Ker(Φ)| · |U(Z/pZ)| = |Ker(Φ)|(p− 1),

we have that |Ker(Φ)| = pk−1 and therefore G2 = Ker(Φ). Then

G1
∼=
G1 ×G2

G2

∼=
U(Z/pkZ)

Ker(Φ)
∼= Cp−1,

and the claim follows. Notice that we have also proved that G2 = {m ∈
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Z/pkZ : m ≡ 1 mod p}.

Claim 2: G2
∼= Cpk−1 .

We �rst prove, by induction on h ∈ N, the following identities

(1 + p)p
h ≡ 1 mod ph+1 (1.53)

and

(1 + p)p
h 6≡ 1 mod ph+2. (1.54)

For h = 0 this is clear: (1.53) becomes 1+p ≡ 1 mod p and (1.54) becomes

1 + p 6≡ 1 mod p2. Assume the result for some h ≥ 0 and let us prove it for

h+ 1. Now, (1.53) implies that (1 + p)p
h

= 1 + rph+1 for some r ∈ Z, while
(1.54) implies that p - r. Therefore

(1 + p)p
h+1

=
[
(1 + p)p

h
]p

=
[
1 + rph+1

]p
=

p∑
j=0

(
p

j

)
rjpjh+j

= 1 +

(
p

1

)
rph+1 +

(p
2

)
r2p2h+2 +

p∑
j=3

(
p

j

)
rjpjh+j


= 1 + rph+2 + sph+3

where s =
∑p

j=2

(
p
j

)
rjp(j−1)h+j−3 ∈ N since, for all h ≥ 0, p|

(
p
2

)
, so that

ph+3|
(
p
2

)
p2h+2, and ph+3|pjh+j for all j ≥ 3.

We deduce that (1 + p)p
h+1 ≡ 1 mod ph+2 and, since p - r by (1.54),

(1 + p)p
h+1 6≡ 1 mod ph+3. This proves the induction.

Taking h = k − 1 in (1.53) and h = k − 2 in (1.54), we deduce that

the element 1+p ∈ U(Z/pkZ) has multiplicative order o(1+p) = pk−1 and

therefore it generates a cyclic group of order pk−1. Thus, the second claim

follows as well.

Finally, from the two claims it follows that U(Z/pkZ) = G1 × G2
∼=

Cp−1 × Cpk−1 and it is cyclic (of order pk − pk−1) by Proposition 1.2.15

(or Proposition 1.2.5).

Corollary 1.5.9 (Gauss) Let n ≥ 2. Then U(Z/nZ) is cyclic if and only

if one of the following cases holds: (i) n = 2, (ii) n = 4, (iii) n = pk, (iv)

n = 2pk, where, in (iii) and (iv), p is an odd prime and k ≥ 1.
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Proof Consider the factorization (1.16). Suppose �rst that t = 1. If p1 = 2,

then, by Theorem 1.5.7, U(Z/nZ) is cyclic if and only if k1 = 1 or k1 = 2

(note that for the �only if� part we should also invoke Proposition 1.2.17).

This covers cases (i) and (ii). On the other hand, if p1 > 2, then (iii) follows

immediately from Theorem 1.5.8.

Suppose now that n is not a power of a prime, so that t ≥ 2. If there exist

1 ≤ i < j ≤ t such that pi and pj are both odd, then, from Theorem 1.5.8,

we deduce that U(Z/nZ) contains a subgroup isomorphic to C
p
ki
i −p

ki−1
i

×

C
p
kj
j −p

kj−1

j

, where both pkii −p
ki−1
i and p

kj
j −p

kj−1
j are even. As a consequence,

U(Z/nZ) contains a subgroup isomorphic to C2⊕C2 which is not cyclic (cf.

Proposition 1.2.17). Since a subgroup of a cyclic group is also cyclic, this

prevents U(Z/nZ) from being cyclic.

It only remains the case when n is even (so that p1 = 2) and t = 2.

If k1 > 1, then, also keeping in mind Theorem 1.5.7, U(Z/nZ) contains a

subgroup isomorphic to C2 ⊕ Cpk22 −pk2−1
2

. Since pk22 − p
k2−1
2 is even, by the

argument above we deduce that U(Z/nZ) cannot be cyclic. Finally, if k1 = 1,

so that n = 2pk22 , we have U(Z/nZ) ∼= C
p
k2
2 −p

k2−1
2

. This covers the case (iv)

and completes our analysis.

In the case where U(Z/nZ) is cyclic (cf. Corollary 1.5.9), a generator of

U(Z/nZ) is called a primitive root mod n.

1.6 The endomorphism ring of a �nite Abelian p-group.

We now examine the structure of the endomorphism ring of a �nite (not

necessarily cyclic) Abelian group A. Observe that, by virtue of Theorem

1.3.7 and Theorem 1.4.2, it su�ces to reduce to the case when A is a p-

group. We thus suppose that

A =

h⊕
j=1

Zpmj (1.55)

with p is prime and

1 ≤ m1 ≤ m2 ≤ · · · ≤ mh (1.56)

(note that, in contrast with (1.35), in (1.56) we have reversed the order of

the mjs). We closely follow the arguments is [72].

We �rst introduce some speci�c notation. If R is a unital commutative

ring, we denote by Mh(R) the set of all h × h matrices with coe�cients

in R. We now recall some basic facts of matrix theory; we refer to the
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monographs by Horn and Johnson [75] and by Lancaster and Tismenetsky

[91] as a general reference for further details (although these books treat

complex matrices, the results that we use can be easily adapted for Mh(R);

see also the book by Malcev [114]). Let B = (bi,j)
h
i,j=1 ∈Mh(R). We denote

by adj(B) the adjugate of B (in [91], following an older terminology, the term

�adjoint� is used instead), that is, the matrix whose (i, j)-entry is equal to

(−1)i+jBj,i, where Bj,i is the (j, i)-th minor (of order h−1) of B, that is, the

determinant of the matrix obtained by deleting row j and column i from B.

Since these determinants are expressed as polynomials in the coe�cients, we

have that adj(B) ∈ Mh(R) for all B ∈ Mh(R). Moreover, adj(B) satis�es

the fundamental identity

B · adj(B) = adj(B) ·B = I · det(B). (1.57)

As a consequence, B is invertible in Mh(R) if and only if det(B) is an

invertible element in R and, if this is the case, one has

B−1 = det(B)−1adj(B).

In particular, if B is invertible, adj(B) is the unique matrix satisfying (1.57).

Moreover, if R is a �eld, then B is invertible if and only if det(B) 6= 0.

Continuing with our purpose of setting notation, an element of Zh (respec-
tively A) will be represented by a column vector n = (nj)

h
j=1 (respectively

n = (nj)
h
j=1), where nj ∈ Z (respectively nj ∈ Z/pmjZ) for j = 1, 2, . . . , h.

Note that we use the same notation for the di�erent congruence classes mod

pmj , j = 1, 2, . . . , h. Also, for j = 1, 2, . . . , h, we set δj = (δi,j)
h
i=1 ∈ Zh

(respectively aj = (δi,j)
h
i=1 ∈ A, where δi,j ∈ Zpmi ). This way, we have

n =
∑h

j=1 njδj and n =
∑h

j=1 njaj for all n ∈ Zh. Moreover,

A = 〈a1〉 ⊕ 〈a2〉 ⊕ · · · ⊕ 〈ah〉. (1.58)

Given a matrix B = (bi,j)
h
i,j=1 ∈Mh(Z) and n ∈ Zh the usual product Bn

is given by Bn =
∑h

i,j=1 bi,jnjδi. In other words, setting bj = (bi,j)
h
i=1 =∑h

i=1 bi,jδi ∈ Zh, we have

Bδj = bj =
h∑
i=1

bi,jδi, (1.59)

for all j = 1, 2, . . . , h.

Moreover, for all j = 1, 2, . . . , h, we denote by πj : Z → Z/pmjZ the

standard quotient map, that is πj(nj) = nj for all nj ∈ Z, and by π : Zh → A
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the map de�ned by

π(n) = π(
h∑
j=1

njδj) =
h∑
j=1

njaj = n,

for all n ∈ Zh. Note that π is a group homomorphism.

We now introduce a subring of Mh(Z) that plays a fundamental role in

the description of End(A). We set

R = R(p;m1,m2, . . . ,mh)

= {B = (bi,j)
h
i,j=1 ∈Mh(Z) : pmi−mj |bi,j , for all 1 ≤ j < i ≤ h}. (1.60)

The fact that R is a subring of Mh(Z) will be proved below.

For instance, if h = 4, m1 = 1, m2 = 3, m3 = 4 and m4 = 7 then

R(p; 1, 3, 4, 7)=




c1,1 c1,2 c1,3 c1,4

p2c2,1 c2,2 c2,3 c2,4

p3c3,1 pc3,2 c3,3 c3,4

p6c4,1 p4c4,2 p3c4,3 c4,4

: ci,j ∈ Z, i, j = 1, 2, 3, 4

.
Consider the diagonal matrix

P =


pm1 0 · · · 0 0

0 pm2 · · · 0 0
...

...
. . .

...
...

0 0 · · · pmh−1 0

0 0 · · · 0 pmh

 .

Proposition 1.6.1

(i) A matrix B ∈Mh(Z) belongs to R if and only if it can be represented

in the form

B = PCP−1 (1.61)

for some C ∈Mh(Z);

(ii) R is a unital ring;

(iii) adj(B) ∈ R for all invertible B ∈ R.

Proof (i). Let C = (ci,j)
h
i,j=1 ∈Mh(Z) then

PCP−1 = (pmi−mjci,j)
h
i,j=1 (1.62)

clearly belongs to R. Conversely, suppose that B = (bi,j)
h
i,j=1 ∈ R and
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consider the matrix C = (ci,j)
h
i,j=1 ∈Mh(Z) de�ned by

ci,j = pmj−mibi,j =

{
bi,j/p

mi−mj if i > j

pmj−mibi,j if i ≤ j.

From the right hand side above, (1.56), and (1.60), it follows that, indeed,

ci,j ∈ Z for all 1 ≤ i, j ≤ h. Moreover, we deduce from (1.62) that C satis�es

(1.61).

(ii). Let B1, B2 ∈ R. Then, by (i), there exist C1, C2 ∈ Mh(Z) such

that B1 = PC1P
−1 and B2 = PC2P

−1. It follows that B1 + B2 = P (C1 +

C2)P−1 ∈ R and B1B2 = PC1C2P
−1 ∈ R. Moreover, it is clear from the

de�nitions that the identity matrix I ∈ R.
(iii). Let B ∈ R be invertible. Then, by (i), there exists C ∈ Mh(Z)

such that (1.61) holds: we deduce that det(B) = det(C) 6= 0. Setting

B̃ = Padj(C)P−1 we have

B̃B = Padj(C)CP−1 = det(B)I = PCadj(C)P−1 = BB̃

and, by uniqueness of the adjugate satisfying (1.57) for invertible elements,

we deduce that B̃ = adj(B). It follows from (i) that adj(B) ∈ R.

We are now in position to describe End(A) as a quotient of the ring R.

Theorem 1.6.2 The map Ψ: R → End(A) de�ned by setting

Ψ(B)n = π(Bn) (1.63)

for all n ∈ Zh and B ∈ R, is well de�ned and is a surjective unital ring

homomorphism. Moreover,

Ker(Ψ) = {(bi,j)hi,j=1 ∈ R : pmi |bi,j for all i, j = 1, 2, . . . , h} (1.64)

so that End(A) ∼= R/Ker(Ψ).

Proof Let B ∈ R. First of all, we verify that Ψ(B) is well de�ned. Suppose

that n,n′ ∈ Zh satisfy n = n′, that is, nj ≡ n′j mod pmj , equivalently

pmj |(nj − n′j), for all j = 1, 2, . . . , h. Let also B = (bi,j)
h
i,j=1 ∈ R. Then we

have

π(Bn)− π(Bn′) = π(B(n− n′)) = π(
h∑
i=1

h∑
j=1

bi,j(nj − n′j)δi) = 0

since, if i > j,

bi,j(nj − n′j) =
bi,j

pmi−mj
·
nj − n′j
pmj

· pmi
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where
bi,j

pmi−mj
∈ Z by (1.60), and

nj−n′j
pmj

∈ Z by our assumptions, while,

if i ≤ j, then bi,j(nj − n′j) is divisible by pmj and therefore by pmi , since

mi ≤ mj . Thus Ψ(B) is well de�ned.

The fact that Ψ(B) ∈ End(A) follows easily from the linearity of the maps

π and n 7→ Bn.

In order to show that Ψ is surjective, let M ∈ End(A). Then we can

�nd B = (bi,j)
h
i,j=1 ∈Mh(Z) such that M(aj) =

∑h
i=1 bi,jai, j = 1, 2, . . . , h.

Since M(0) = 0 and pmjaj = 0, we get (since M is a homomorphism)

0 = M(pmjaj) = pmjM(aj) = pmj
h∑
i=1

bi,jai =
h∑
i=1

pmjbi,jai

which forces pmjbi,j ≡ 0 mod pmi for all i, j = 1, 2, . . . , h (cf. Proposition

1.2.2). In particular, pmi−mj |bi,j for all 1 ≤ j < i ≤ h, so that B ∈ R.
As a consequence, given n ∈ Z we have

M(n) = M(

h∑
j=1

njaj) =

h∑
j=1

njM(aj) =

h∑
i,j=1

njbi,jai

= π(

h∑
i,j=1

njbi,jδi) = π (Bn) = Ψ(B)(n).

In other words, Ψ(B) = M and surjectivity follows.

We now show that Ψ is a unital ring homomorphism and determine its

kernel.

It is clear that Ψ(I) = IdA, the identity endomorhism of A and Ψ(0) = 0A,

the zero endomorphism of A.

Let now B = (bi,j)
h
i,j=1, B1, B2 ∈ R, and n1, n2, . . . , nh ∈ Z. Then, we

have

Ψ(B1 +B2)n = π((B1 +B2)n) = π(B1n +B2n) = π(B1n) + π(B2n)

= Ψ(B1)n + Ψ(B2)n,

showing that Ψ(B1 +B2) = Ψ(B1) + Ψ(B2). Similarly,

Ψ(B1)Ψ(B2)n = Ψ(B1)π (B2n) = π (B1B2n) = Ψ(B1B2)n,

showing that Ψ(B1B2) = Ψ(B1)Ψ(B2).
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Finally,

B ∈ Ker(Ψ)⇔ Ψ(B)aj = 0 for all j = 1, 2, . . . , h

⇔ π(Bδj) = 0 for all j = 1, 2, . . . , h

⇔ πi(bi,j) = 0 for all i, j = 1, 2, . . . , h

⇔ pmii |bi,j for all i, j = 1, 2, . . . , h,

and (1.64) follows.

Corollary 1.6.3 In (1.58) we have

Ψ(B)aj ∈ 〈aj〉

for j = 1, 2, . . . , h, if and only if pmi |bi,j for i 6= j. Moreover, if this is the

case, then there exists a diagonal matrix B′ ∈ R such that Ψ(B′) = Ψ(B).

Proof We have

Ψ(B)aj = π(Bδj)

(by (1.59)) =
h∑
i=1

π(bi,j)ai

and therefore

Ψ(B)aj ∈ 〈aj〉 ⇔ bi,j ≡ 0 mod pmi for i 6= j

⇔ pmi |bi,j for i 6= j.

The last statement follows from (1.64).

1.7 The automorphisms of a �nite Abelian p-group

Let p be a prime number and h ≥ 1 be an integer. Recall that we denote by

Fp the �nite �eld Z/pZ and by n ∈ Fp the congruence class of n ∈ Z mod p.

We denote by GL(h,Fp) the group of all invertible matrices in Mh(Fp). We

need to introduce this group in order to characterize the invertible elements

in End(A), where A is a p-group as in (1.55).

Let now B = (bi,j)
h
i,j=1 ∈Mh(Z). We set

B = (bi,j)
h
i,j=1 ∈Mh(Fp). (1.65)

As we remarked above, B is invertible in Mh(Fp) if and only if detB 6= 0.

Since det(B) = det(B), we have that B ∈ GL(h,Fp) if and only if p - det(B).

Moreover, if this is the case, B is also invertible in R (and in Mh(Z)).

With the same notation from the previous section we have:
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Theorem 1.7.1 Let B ∈ R and set M = Ψ(B) ∈ End(A). Then M is

invertible (i.e. M ∈ Aut(A)) if an only if B ∈ GL(h,Fp).

Proof Suppose �rst that B is invertible, so that p does not divide det(B).

Then we can �nd q ∈ Z such that

q · det(B) ≡ 1 mod pmj for all j = 1, 2, . . . , h.

Indeed, gcd(det(B), pmh) = 1 so that det(B) has an inverse q mod pmh which

is also an inverse mod pmj for all other js (recall that mh ≥ mj). Let us set

C = q · adj(B).

By Proposition 1.6.1.(iii), we have C ∈ R. Moreover, Ψ(C)Ψ(B) = Ψ(CB) =

Ψ((q · det(B))I) = IdA ∈ End(A) and similarly, Ψ(B)Ψ(C) = IdA, so that

M = ψ(B) is invertible, with inverse Ψ(C).

Conversely, suppose that M = ψ(B) is invertible. Recalling that Ψ is

surjective, we can �nd C ∈ R such that Ψ(C) is the inverse of M . It follows

that Ψ(I) = IdA = Ψ(B)Ψ(C) = Ψ(BC), equivalently, Ψ(BC − I) = 0 (the

trivial endomorphism of A), so that, by (1.64), p divides all coe�cients of

BC − I, and therefore

B · C = BC = I ∈Mh(Fp).

It follows that B ∈ GL(h,Fp).

We now need some basic notions on group actions that will be recalled

with more details in Section 10.4.

Denote by V the set of all h-tuples (A1, A2, . . . , Ah) such that

• A1, A2, . . . , Ah are subgroups of A

• Aj ∼= Zpmj , j = 1, 2, . . . , h

• A = A1 ⊕A2 ⊕ · · · ⊕Ah.

In other words, V is the set of all invariant factors decompositions of A

(see Theorem 1.3.1 and (1.55)). Then the group Aut(A) acts on V and this

action is clearly transitive. We want to identify the stabilizer of a �xed

decomposition.

Corollary 1.7.2 The stabilizer of the decomposition (1.58) is given by the
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set of all Ψ(B), where

B =


b1 0 0 0

0 b2 0 0
...

. . . 0

0 0 · · · bh


is diagonal with bi ∈ U(Z/pmiZ), i = 1, 2, . . . , h. In particular, its cardinality

is equal to

(p− 1)h
h∏
i=1

pmi−1.

Proof It is an immediate consequence of Corollary 1.6.3, Corollary 1.5.3,

and (1.48).

1.8 The cardinality of Aut(A)

In this section we determine the cardinality of Aut(A), where A is a p-group

as in (1.55). To this end, keeping in mind (1.56), we introduce the following

numbers:

tj = max{j ≤ t ≤ h : mt = mj}

and

si = min{1 ≤ s ≤ i : ms = mi}

for all i, j = 1, 2, . . . , h. Note that tj ≥ j and si ≤ i for all i, j = 1, 2, . . . , h;

in particular, th = h and s1 = 1.

Lemma 1.8.1 For all i, j = 1, 2, . . . , h we have

mi > mj ⇔ i > tj ⇔ j < si

and

mi ≤ mj ⇔ i ≤ tj ⇔ j ≥ si.

Proof The proof is an immediate consequence of the fact that m1 ≤ m2 ≤
· · · ≤ mh and it is left as an exercise.

Corollary 1.8.2 Let B = (bi,j)
h
i,j=1 ∈ R and 1 ≤ i, j ≤ h. Suppose that

i > tj (equivalently, j < si). Then, with the notation as in (1.65), bi,j = 0.
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Proof If i > tj (equivalently, j < si), then mi > mj and, as B ∈ R, we have
pmi−mj |bi,j .

Theorem 1.8.3

|Aut(A)| =
h∏
k=1

(ptk − pk−1)

sh∏
j=1

pmj(h−tj)
h∏
i=1

p(mi−1)(h−si+1)

Proof Let B ∈ R and suppose that Ψ(B) ∈ End(A) is invertible (i.e. Ψ(B) ∈
Aut(A)). Then, by virtue of Theorem 1.7.1, B ∈ GL(h,Fp) and by Corollary

1.8.2, B = (bi,j)
h
i,j=1 = (ci,j)

h
i,j=1 is given by

c1,1 c1,2 · · · c1,h

c2,1 c2,2 · · · c2,h
...

...
...

...

ct1,1 ct1,2 · · · ct1,h
0 ct1+1,2 · · · ct1+1,h
...

...
...

...

0 ct2,2 · · · ct2,h
0 0 · · · ct2+1,h
...

...
. . .

...

0 0 · · · cth,h



=


c1,s1 c1,2 · · · · · · · · · · · · c1,h

0 · · · 0 c2,s2 · · · · · · c2,h
...

...
...

...
...

. . .
...

0 0 · · · 0 ch,sh · · · ch,h

.

(1.66)

Note that the two matrices above have the same 0 entries: by Corollary

1.8.2 and Lemma 1.8.1, ci,j = 0 if i > tj , equivalently, if j < si.

Using the left hand side in the above equality, we have the following count-

ing: the �rst column may be chosen in pt1 − 1 distinct ways (the −1 because

we have to discard the 0-column), the second one in pt2 − p ways (the −p
because we have to discard the p multiples of the �rst column, since the two

have to be independent).

Continuing this way, setting

G = {C ∈ GL(h,Fp) : C = B,B ∈ R,Ψ(B) ∈ Aut(A)},

we have that

|G| =
h∏
k=1

(ptk − pk−1). (1.67)

Let now �x C = B ∈ G as in (1.66), and set

MC = {Ψ(B) : B ∈ R, B = C} ⊂ Aut(A).
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We claim that

|MC | =
sh∏
j=1

pmj(h−tj)
h∏
i=1

p(mi−1)(h−si+1) (1.68)

(in particular, n = |MC | is independent of C ∈ G).
For each 1 ≤ j ≤ h there are exactly h − tj zeroes below the entry ctj ,j

(cf. the left hand side of (1.66)) and the ith one (corresponding to the (i, j)-

entry: note that i > tj ≥ j, equivalently, mi > mj) gives pmj distinct

possibilities for the (i, j)-th entry of B ∈ R (each yielding a di�erent Ψ(B)):

by (1.60) and (1.64) it must be an element of pmi−mjZ/pmiZ ∼= Z/pmjZ.
The last isomorphism follows from the elementary congruence: for x, y ∈ Z,
xpmi−mj ≡ ypmi−mj mod pmi if and only if x ≡ y mod pmj .

This yields the �rst factor in the right hand side of (1.68). Note also that

tj = h⇔ mj = mh ⇔ j ≥ sh.
On the other hand, for each 1 ≤ i ≤ h there are exactly h− si + 1 terms

on the right and including ci,si (cf. the right hand side of (1.66)) and the

jth one (corresponding to the (i, j)-entry: note that j ≥ si, equivalently,

mi ≤ mj) gives rise to pmi−1 distinct possibilities for the (i, j)-th entry of

B ∈ R: it must be equal to ci,j+ an element of pZ/pmiZ ∼= Z/pmi−1Z (again

by virtue of (1.64)). This yields the second factor in the right hand side of

(1.68) proving the claim. Since

|Aut(A)| =
∑
C∈G
|MC | = |G| · n,

the statement follows from (1.67) and (1.68).

We now count the number ν of invariant factors decompositions of A (recall

the notation preceding Corollary 1.7.2).

Corollary 1.8.4

|V| = ph(h−1)/2
h∏
k=1

(
tk−k∑
`=0

p`

)
·
sh∏
j=1

pmj(h−tj) ·
h∏
i=1

p(mi−1)(h−si).

Proof Divide the cardinality of Aut(A) in Theorem 1.8.3 by the cardinality

of the stabilizer in Corollary 1.7.2.

Example 1.8.5 Suppose that m1 = m2 = · · · = mh = m. Then Aut(A)

is group-isomorphic to GL(h,Z/Zpm) (here, according with our notation,

Z/Zpm is no more a �eld if m ≥ 2, but just a ring). Indeed, in this case,
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R ≡Mh(Z) and, by (1.64), we have End(A) ∼= Mh(Z/Zpm). Now tj = h for

j = 1, 2, . . . , h and si = 1 for i = 1, 2, . . . , h so that, by Theorem 1.8.3, we

have

|Aut(Zpm ⊕ Zpm ⊕ · · · ⊕ Zpm︸ ︷︷ ︸
h times

)| = p(m−1)h2 ·
h∏
k=1

(ph − pk−1).

Two particular cases are relevant. For h = 1, we �nd

|Aut(Zpm)| = pm−1(p− 1) = pm − pm−1

and this agrees with the results in Theorem 1.5.7 and Theorem 1.5.8 (but

this follows also from the fact that ϕ(pm) = pm− pm−1, cf. Corollary 1.5.3).

If in addition, one has m1 = m2 = · · · = mh = 1 we get

Aut(Zp ⊕ Zp ⊕ · · · ⊕ Zp︸ ︷︷ ︸
h times

) ∼= GL(h,Fp)

and

|Aut(Zp ⊕ Zp ⊕ · · · ⊕ Zp︸ ︷︷ ︸
h times

)| = |GL(h,Fp)| =
h∏
k=1

(ph − pk−1)

which coincides with (1.67), since tk = h for all k = 1, 2, . . . , h.
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The Fourier Transform on �nite Abelian groups

This chapter is a fairly complete exposition of the basic character theory

and the Fourier transform on �nite Abelian groups. Our presentation is in-

spired by our monograph [29], and the books by Terras [159] and Nathanson

[118]; Section 2.6 contains a recent result of Terence Tao [157]. The results

established here will be used and generalized in almost every subsequent

chapter.

2.1 Some notation

In this section, we �x some basic notation and results of �harmonic analysis�

on �nite sets. Further notation and results will be developed in Section 8.7.

These two sections constitute the core of the preliminaries in �nite harmonic

analysis.

Let X be a �nite set and denote by L(X) = {f : X → C} the vector space
of all complex-valued functions de�ned on X. Clearly, dimL(X) = |X|,
where | · | denotes cardinality.
For x ∈ X we denote by δx the Dirac function centered at x, that is, the

element δx ∈ L(X) de�ned by

δx(y) =

{
1 if y = x

0 if y 6= x.

for all y ∈ X.

The set {δx : x ∈ X} is a natural basis for L(X) and if f ∈ L(X) then

f =
∑

x∈X f(x)δx.

The space L(X) is endowed with the scalar product de�ned by setting

〈f1, f2〉 =
∑
x∈X

f1(x)f2(x)

47
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for f1, f2 ∈ L(X), and we denote by ‖f‖ =
√
〈f, f〉| the norm of f ∈ L(X).

Note that the basis {δx : x ∈ X} is orthonormal with respect to 〈·, ·〉.
Sometimes we shall write 〈·, ·〉L(X) (respectively ‖ · ‖L(X)) to emphasize the

space where the scalar product (the norm) is de�ned, if other spaces are also

considered.

For a subset Y ⊆ X, we regard L(Y ) as a subspace of L(X) and we denote

by 1Y =
∑

y∈Y δy ∈ L(X) the characteristic function of Y . In particular,

if Y = X we simply write 1 (the constant function with value 1) instead of

1X .

For Y1, Y2, . . . , Ym ⊆ X we write X = Y1
∐
Y2
∐
· · ·
∐
Ym to indicate that

the Yj 's constitute a partition ofX, that isX = Y1∪Y2∪· · ·∪Ym and Yi∩Yj =

∅ whenever i 6= j. In other words, the symbol
∐

denotes a disjoint union.

In particular, if we write Y
∐
Y ′ we implicitly assume that Y ∩Y ′ = ∅. Note

that if X = Y1
∐
Y2
∐
· · ·
∐
Ym then L(X) ∼= L(Y1)⊕ L(Y2)⊕ · · · ⊕ L(Ym).

If A : L(X)→ L(X) is a linear operator, setting

a(x, y) = [Aδy](x) (2.1)

for all x, y ∈ X, we have that

[Af ](x) =
∑
y∈X

a(x, y)f(y) (2.2)

for all x ∈ X and f ∈ L(X), and we say that the matrix a = (a(x, y))x,y∈X ,

indexed by X, represents the operator A. We denote by End(L(X)) the

complex vector space of all linear operators A : L(X)→ L(X).

With our notation, the identity operator I ∈ End(L(X)) is represented by

the identity matrix which may be expressed as I = (δx(y))x,y∈X .

If A1, A2 ∈ End(L(X)) are represented by the matrices a1 and a2, respec-

tively, then the composition A = A1 ◦A2 ∈ End(L(X)) is represented by the

corresponding product of matrices a = a1 · a2 that is

a(x, y) =
∑
z∈X

a1(x, z)a2(z, y).

For k ∈ N we denote by ak =
(
a(k)(x, y)

)
x,y∈X the product of k copies of

a, namely, a(0) = I, the identity matrix, and, for k ≥ 1,

a(k)(x, y) =
∑
z∈X

a(k−1)(x, z)a(z, y).

We remark that (2.2) can be also interpreted as the product of the matrix

a with the column vector f = (f(x))x∈X .

Given a matrix a and a column (respectively a row) vector f , we denote by
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aT and by fT the transposed matrix (i.e. aT (x, y) = a(y, x) for all x, y ∈ X)

and the row (respectively column) transposed vector. This way, we also

denote by fTA the function given by

[fTA](y) =
∑
x∈X

f(x)a(x, y). (2.3)

If X is a set of cardinality |X| = n and k ≤ n, then a k-subset of X is a

subset A ⊆ X such that |A| = k.

If v1, v2, . . . , vm are vectors in a vector space V , then 〈v1, v2, . . . , vm〉 will
denote their linear span.

We end with the most elementary tool of �nite harmonic analysis. It will

be used and rediscovered many times (see Proposition 8.1.4, Theorem 9.1.7

and Example 10.4.3).

Proposition 2.1.1 Let X be a �nite set and set W0 = {f ∈ L(X) :

f is constant} and W1 = {f ∈ L(X) :
∑

x∈X f(x) = 0}. Then we have

the following orthogonal decomposition:

L(X) = W0 ⊕W1. (2.4)

Proof Let f ∈ L(X). Setting f0(x) = 1
|X|
∑

y∈X f(y) for all x ∈ X we have

f0 ∈ W0 and f1 = f − f0 ∈ W1, so that L(X) = W0 + W1. Moreover, it

is immediate to check that W0 ⊥ W1, so that (2.4) is an orthogonal direct

sum.

2.2 Characters of �nite cyclic groups

Let n ≥ 2 and denote, as usual, by Zn = {0, 1, . . . , n−1} the cyclic group of

order n, written additively.

Recall (cf. Section 2.1) that L(Zn) denotes the complex vector space of all

functions f : Zn → C. Note that if f ∈ L(Zn), then the function F : Z→ C
de�ned by F (x) = f(x) for all x ∈ Z is n-periodic (namely F (x+n) = F (x)

for all x ∈ Z) and the map f 7→ F establishes a bijective correspondance

between the elements in L(Zn) and the n-periodic complex functions on Z.
In the following, by abuse of language, we shall identify f and F and

use the same notation for the corresponding arguments: in particular, for

x ∈ Z the (a priori improperly de�ned) expressions f(x) and F (x) stand for

f(x) = F (x). More generally, we shall use the same notation for an element

x ∈ Z and its image in Zn (in other words, we shall omit the bar-symbol

� � in the notation for x ∈ Zn) and we shall use the bar-symbol to denote

conjugation of complex numbers. In particular, we shall use the symbols
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y=0 to denote the sum

∑
y∈Zn over all elements of Zn, and we regard the

Dirac functions δx, x ∈ Zn, as elements in L(Zn).

Let us set

ω = exp
2πi

n
= cos

2π

n
+ i sin

2π

n
∈ C.

We recall that ω is an n-th primitive root of 1 and that the n-th complex

roots of the unit are ωk, k = 0, 1, . . . , n − 1. Note that ωz = ωz+n for all

z ∈ Z so that (cf. the comments above) the map z 7→ ωz de�nes an element

of L(Zn). More generally, for x ∈ Zn, we denote by χx ∈ L(Zn) the function

z 7→ ωzx.

De�nition 2.2.1 The functions χx ∈ L(Zn) are called the characters of Zn.

Note that χx(y) = χy(x) ∈ T = {z ∈ C : |z| = 1}, χy(−x) = χy(x) for all

x, y ∈ Zn, and χ0 = 1, the constant function.

The basic identity for the characters is

χz(x+ y) = χz(x)χz(y)

for all x, y, z ∈ Zn and, in the following lemma, we prove that, in fact, it is

a �characteristic� property of characters.

Lemma 2.2.2 If φ : Zn → T satis�es φ(x+ y) = φ(x)φ(y) for all x, y ∈ Zn,
then φ = χz for some z ∈ Zn.

Proof First note that since φ(0) = φ(0 + 0) = φ(0)φ(0), we necessarily have

φ(0) = 1. As a consequence, 1 = φ(0) = φ(1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

) = φ(1)n and we

deduce that φ(1) is an n-th root of 1. Therefore there exists z ∈ Zn such

that φ(1) = ωz. This gives φ(x) = φ(1)x = ωzx = χz(x) for all x ∈ Zn.

Lemma 2.2.3 (Orthogonality relations for characters of Zn) Let χ

and ψ be two characters of Zn. Then

〈χ, ψ〉 = nδχ,ψ. (2.5)

Proof Let x1, x2 ∈ Zn be such that χ = χx1 and ψ = χx2 . Let us set

z = ωx1−x2 and observe that χx1(y)χx2(y) = ωy(x1−x2) = zy for all y ∈ Zn
so that

〈χ, ψ〉 = 〈χx1 , χx2〉 =

n−1∑
y=0

χx1(y)χx2(y) =
n−1∑
y=0

zy. (2.6)
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Suppose �rst that χ 6= ψ, i.e. x1 6= x2. Then z is a nontrivial root of the

unity (i.e. zn − 1 = 0 and z − 1 6= 0) and from the identity

zn − 1 = (z − 1)(1 + z + · · ·+ zn−1) = (z − 1)

n−1∑
y=0

zy

we deduce that
∑n−1

y=0 z
y = 0 and the quantity (2.6) vanishes. On the other

hand, if χ = ψ, that is x1 = x2, then z = ωx1−x2 = 1 and the quantity (2.6)

equals n.

Note that if χ = χx1 and ψ = χx2 , then (2.5) may be expressed as

〈χx1 , χx2〉 = nδx1,x2 ≡ nδ0(x1 − x2). (2.7)

From the lemma and the fact that χx(y) = χy(x) for all x, y ∈ Zn we

immediately deduce the following dual orthogonality relations for characters

of Zn: ∑
x∈Zn

χx(y1)χx(y2) = nδ0(y1 − y2) (2.8)

for all y1, y2 ∈ Zn.

2.3 Characters of �nite Abelian groups

Let A be a �nite Abelian group, written additively.

De�nition 2.3.1 A character of A is a map χ : A→ T such that

χ(x+ y) = χ(x)χ(y)

for all x, y ∈ A.
The set Â of all characters of A is an Abelian group with respect to the

product Â × Â 3 (χ, ψ) 7→ χ · ψ ∈ Â de�ned by (χ · ψ)(x) = χ(x)ψ(x), for

all x ∈ A. It is called the dual of A.

Remark 2.3.2 Note that if A = Zn, then De�nition 2.3.1 coincides with

De�nition 2.2.1 and Ẑn = {χx : x ∈ Zn} is isomorphic to Zn. Indeed, since
for all x ∈ Zn we have (χ1)x = χx, then Ẑn is the cyclic group (necessar-

ily of order n) generated by χ1 (alternatively, as χx+y(z) = χz(x + y) =

χz(x)χz(y) = χx(z)χy(z) for all x, y, z ∈ Zn, the map x 7→ χx yields a

surjective (and therefore bijective) group homomorphism Zn → Ẑn).
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Proposition 2.3.3 Let A be a �nite Abelian group and let

A = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmk (2.9)

be a decomposition of A as direct sum of cyclic groups (see, for instance

Theorem 1.3.1 or Corollary 1.3.10). Set ωj = exp 2πi
mj

, j = 1, 2, . . . , k, and,

for y = (y1, y2, . . . , yk) ∈ A, de�ne χy : A→ T by setting

χy(x) = ωx1y11 ωx2y22 · · ·ωxkykk (2.10)

for all x = (x1, x2, . . . , xk) ∈ A. Then χy is a character of A, every character
of A is of this form and distinct ys yield distinct characters. In particular,

|Â| = |A|.

Proof The �rst assertion, namely that (2.10) de�nes a character of A, is

straightforward:

χy(x+ x′) = ω
(x1+x′1)y1
1 ω

(x2+x′2)y2
2 · · ·ω(xk+x′k)yk

k

= ωx1y11 ωx2y22 · · ·ωxkykk · ωx
′
1y1

1 ω
x′2y2
2 · · ·ωx

′
kyk
k

= χy(x)χy(x
′)

for all y = (y1, y2, . . . , yk), x = (x1, x2, . . . , xk) and x
′ = (x′1, x

′
2, . . . , x

′
k) ∈ A.

Let us show that every character of A is of the form (2.10). Let χ : A →
T be a character of A. We �rst observe that, for all j = 1, 2, . . . , k, the

restriction χ|Zmj of χ to the subgroup Zmj ≤ A is a character of Zmj so

that, by Lemma 2.2.2, there exists yj ∈ Zmj such that χ|Zmj = χyj . As a

consequence, setting y = (y1, y2, . . . , yk) ∈ A, we have

χ(x) = χ(x1, x2, . . . , xk)

= χ|Zm1
(x1)χ|Zm2

(x2) · · ·χ|Zmk (xk)

= χy1(x1)χy2(x2) · · ·χyk(xk)

= ωx1y11 ωx2y22 · · ·ωxkykk

= χy(x)

for all x = (x1, x2, . . . , xk) ∈ A. This shows that Â = {χy : y ∈ A}.

Note that with the notation above we may write

χy(x) =
k∏
j=1

χyj (xj) (2.11)

for all x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) ∈ A.
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Corollary 2.3.4 Let A be a �nite Abelian group. Then the dual group Â is

isomorphic to A.

Proof With the notation in Proposition 2.3.3, it is straightforward to check

that χy+y′ = χy · χy′ for all y, y′ ∈ A (cf. the particular case where A = Zn
in Remark 2.3.2) so that the map y 7→ χy yields a surjective (and therefore

bijective, since |A| = |Â|) group homomorphism from A onto Â.

Proposition 2.3.5 (Orthogonality relations for characters of A) Let

χ, ψ ∈ Â and x, y ∈ A. Then we have the orthogonality relations

〈χ, ψ〉 = |A|δχ,ψ (2.12)

and the dual orthogonality relations∑
χ∈Â

χ(x)χ(y) = |A|δx,y ≡ |A|δ0(x− y). (2.13)

Proof By virtue of Proposition 2.3.3 and the notation therein, we can �nd

x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) ∈ A such that χ = χx and

ψ = χy. Using the notation in (2.11) we then have

〈χ, ψ〉 = 〈χx, χy〉 =
∑
z∈A

χx(z)χy(z)

=
∑
z∈A

k∏
j=1

χxj (zj)χyj (zj)

=
k∏
j=1

∑
zj∈Zmj

χxj (zj)χyj (zj)

=
k∏
j=1

〈χxj , χyj 〉

(by Lemma 2.2.3) =
k∏
j=1

mjδxj ,yj

= |A|δx,y = |A|δχ,ψ.

We remark that the isomorphism in Corollary 2.3.4 (given by (2.11)) de-

pends on the choice of the decomposition of A and therefore on the generators

for the corresponding cyclic subgroups, that is, it depends on the coordinates.
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There is, however, an intrinsic isomorphism between A and the dual of Â,

called the bidual of A and denoted by
̂̂
A, given by

A 3 a 7→ ψa ∈
̂̂
A, (2.14)

where ψa(χ) = χ(a) for all χ ∈ Â.

Exercise 2.3.6 Prove that the map (2.14) is a group isomorphism.

This duality is similar to the (possibly more familiar) one coming from

linear algebra. Recall that if V is a �nite dimensional vector space over a

�eld F, the dual of V is the vector space V ∗ consisting of all F-linear maps

f : V → F. Then if {v1, v2, . . . , vd} ⊂ V (d = dimFV ) is a basis for V

and {v∗1, v∗2, . . . , v∗d} ⊂ V ∗ is the dual basis (de�ned by v∗i (vj) = δi,j for all

i, j = 1, 2, . . . , d), then the map vi 7→ v∗i linearly extends to a (unique) vector

space isomorphism ϕ : V → V ∗. Note that ϕ depends on the choice of basis

{v1, v2, . . . , vd}. However, denoting by V ∗∗ = (V ∗)∗ the bidual of V , the

map V 3 v 7→ ψv ∈ V ∗∗ de�ned by ψv(v
∗) = v∗(v) for all v∗ ∈ V ∗ yields a

canonical vector space isomorphism between V and V ∗∗.

Returning back to group theory, the isomorphismA→ ̂̂
A extends to locally

compact Abelian groups: this is called Pontrjagin duality. As an example,

if T = {z ∈ C : |z| = 1} denotes the unit circle, then T̂ ∼= Z and
̂̂T ∼= T (this

is the setting of classical Fourier series, see, for instance, the monographs

on abstract harmonic analysis by Rudin [134], Katznelson [85], and Loomis

[98]).

2.4 The Fourier transform

Let A be a �nite Abelian group. We recall (cf. Section 2.1) that L(A), the

complex vector space of all functions f : A → C, is equipped with an inner

product 〈·, ·〉L(A) (for short 〈·, ·〉) de�ned by

〈f1, f2〉 =
∑
x∈A

f1(x)f2(x)

for all f1, f2 ∈ L(A). We also denote by ‖·‖L(A) (for short ‖·‖) the associated
norm.

Note the dim(L(A)) = |A| and therefore, by virtue of the orthogonal-

ity relations for characters (Proposition 2.3.5), the set {χx : x ∈ A} is an
orthogonal basis for L(A).
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De�nition 2.4.1 The Fourier Transform of a function f ∈ L(A) is the

function f̂ ∈ L(Â) de�ned by

f̂(χ) = 〈f, χ〉 =
∑
y∈A

f(y)χ(y) (2.15)

for all χ ∈ Â. Then f̂(χ) is called the Fourier coe�cient of f with respect

to χ. Moreover, we shall denote by Ff = 1√
|A|
f̂ the normalized Fourier

Transform of f ∈ L(A).

When A = Zn (the cyclic group of order n), and f ∈ L(Zn) we shall call
1
n f̂ the Discrete Fourier Transform (brie�y, DFT) of f .

The following two theorems express, in a functional form, the fact that

the χs constitute an orthogonal basis of the space L(A).

Theorem 2.4.2 (Fourier inversion formula) For every f ∈ L(A) we

have

f =
1

|A|
∑
χ∈Â

f̂(χ)χ. (2.16)

Proof Let f ∈ L(A) and x ∈ A. Then

1

|A|
∑
χ∈Â

f̂(χ)χ(x) =
1

|A|
∑
χ∈Â

∑
y∈A

f(y)χ(y)χ(x) =

=
1

|A|
∑
y∈A

f(y)
∑
χ∈Â

χ(y)χ(x) =

(by (2.13)) =
1

|A|
∑
y∈A

f(y)|A|δ0(y − x) = f(x).

Theorem 2.4.3 (Plancherel and Parseval formulas) For f, g ∈ L(A)

we have (Plancherel formula)

‖f̂‖
L(Â)

=
√
|A|‖f‖L(A)

and (Parseval formula)

〈f̂ , ĝ〉
L(Â)

= |A|〈f, g〉L(A).
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Proof We �rst prove the Parseval formula:

〈f̂ , ĝ〉
L(Â)

=
∑
χ∈Â

f̂(χ)ĝ(χ)

=
∑
χ∈Â

∑
y1∈A

f(y1)χ(y1)

∑
y2∈A

g(y2)χ(y2)


=
∑
y1∈A

∑
y2∈A

f(y1)g(y2)
∑
χ∈Â

χ(y1)χ(y2) =

(by (2.13)) = |A|
∑
y∈A

f(y)g(y) = |A|〈f, g〉L(A).

The Plancherel formula is immediately deduced from the Parseval formula

by taking g = f .

Exercise 2.4.4 Show that δ̂x(χ) = χ(x) for all x ∈ A and χ ∈ Â.

For f1, f2 ∈ L(A) we de�ne their convolution as the function f1∗f2 ∈ L(A)

given by

(f1 ∗ f2)(x) =
∑
y∈A

f1(x− y)f2(y)

for all x ∈ A.

De�nition 2.4.5 An algebra over a �eld F is a vector spaceA over F endowed

with a product such that A is a ring with respect to the sum and the product

and the following associative laws, for the product and multiplication by a

scalar, hold:

α(AB) = (αA)B = A(αB)

for all α ∈ F and A,B ∈ A.
An algebra A is commutative (or Abelian) if it is commutative as a ring,

namely if AB = BA for all A,B ∈ A; it is unital if it has a unit, that is,

there exists an element I ∈ A such that AI = IA = A for all A ∈ A.
Given two algebras A1 and A2 over the �eld F, a bijective linear map

Φ: A1 → A2 such that Φ(ab) = Φ(a)Φ(b) for all a, b ∈ A1 is called an

isomorphism. If such an isomorphism Φ exists, one says that the algebras

A1 and A2 are isomorphic, and we write A1
∼= A2.

In the following proposition we present the main properties of the convo-

lution product in L(A).
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Proposition 2.4.6 For all f, f1, f2, f3 ∈ L(A) one has

(i) f1 ∗ f2 = f2 ∗ f1 (commutativity)

(ii) (f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3) (associativity)

(iii) (f1 + f2) ∗ f3 = f1 ∗ f3 + f2 ∗ f3 (distributivity)

(iv) f̂1 ∗ f2 = f̂1 · f̂2

(v) δ0 ∗ f = f ∗ δ0 = f .

In particular, L(A) is a commutative algebra over C with unit I = δ0.

Proof We prove only (iv), namely that the Fourier transform of the convolu-

tion of two functions equals the pointwise product of their Fourier transforms.

Let f1, f2 ∈ L(A) and χ ∈ Â. Then we have

f̂1 ∗ f2(χ) =
∑
x∈A

(f1 ∗ f2)(x)χ(x)

=
∑
x∈A

∑
t∈A

f1(x− t)f2(t)χ(x− t)χ(t)

= f̂1(χ)f̂2(χ).

The other identities are left as an exercise.

The translation operator Tx ∈ End(L(A)), x ∈ A, is de�ned by:

(Txf)(y) = f(y − x)

for all x, y ∈ A and f ∈ L(A).

Exercise 2.4.7 Show that Txf = f ∗ δx and T̂xf(χ) = χ(x)f̂(χ) for all

f ∈ L(A), x ∈ A, and χ ∈ Â.

Let R ∈ End(L(A)). We say that R is A-invariant if commutes with all

translations, namely

RTx = TxR

for all x ∈ A. Also we say that R is a convolution operator provided there

exists h ∈ L(A) such that Rf = f ∗ h for all f ∈ L(A): the function h is

then called the (convolution) kernel of R and we write R = Rh.

Exercise 2.4.8

(1) Show that every convolution operator is A-invariant.

(2) Show that

• Rh1 +Rh2 = Rh1+h2 ;

• Rαh = αRh;
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• Rh1Rh2 = Rh1∗h2

for all h1, h2, h ∈ L(A) and α ∈ C.
(3) Deduce that R = {Rh : h ∈ L(A)} is a commutative algebra isomor-

phic to L(A).

R is called the algebra of convolution operators on A.

Lemma 2.4.9 The linear operator R associated with the matrix (r(x, y))x,y∈A
is A-invariant if and only if

r(x− z, y − z) = r(x, y) (2.17)

for all x, y, z ∈ A.

Proof The linear operator R is A-invariant if and only if, for all x, z ∈ A
and f ∈ L(A) one has [Tz(Rf)](x) = [R(Tzf)](x), that is,∑

u∈A
r(x− z, u)f(u) =

∑
u∈A

r(x, u)f(u− z),

equivalently,∑
u∈A

r(x− z, u− z)f(u− z) =
∑
u∈A

r(x, u)f(u− z).

Since the δt, t ∈ A, constitute a basis for L(A), taking f = δy−z for all y ∈ A,
the last equality is in turn equivalent to (2.17).

Theorem 2.4.10 The following conditions are equivalent for R ∈ End(L(A)):

(a) R is A-invariant;

(b) R is a convolution operator;

(c) every χ ∈ Â is an eigenvector of R.

Proof (a) ⇒ (b): by Lemma 2.4.9, A-invariance yields r(x, y) = r(x− y, 0)

for all x, y ∈ A, so that if we de�ne h ∈ L(A) by setting

h(x) = r(x, 0) (2.18)

for all x ∈ A, we then have r(x, y) = h(x− y) and therefore

(Rf)(x) =
∑
y∈A

h(x− y)f(y) = (h ∗ f)(x)

and R = Rh is a convolution operator.
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(b) ⇒ (c): let h ∈ L(A) and χ ∈ Â. Suppose that R = Rh. Then

[Rχ](y) =
∑
t∈A

χ(y − t)h(t) = χ(y)
∑
t∈A

χ(t)h(t) = ĥ(χ)χ(y). (2.19)

This shows that every χ ∈ Â is an eigenvector of R with eigenvalue ĥ(χ).

Suppose now that every χ ∈ Â is an eigenvector of R with eigenvalue

λ(χ) ∈ C. Observe that

[Txχ](y) = χ(y − x) = χ(x)χ(y) (2.20)

for all x, y ∈ A and χ ∈ Â. For χ ∈ Â and x ∈ A we have

RTx(χ) = R(χ(x)χ) (by (2.20))

= χ(x)λ(χ)χ

(by (2.20)) = λ(χ)Tx(χ)

= Tx(λ(χ)χ)

= TxR(χ).

By linearity of R and Tx, and by the Fourier inversion theorem, this shows

that RTx(f) = TxR(f) for all f ∈ L(A), and (c) ⇒ (a) follows as well.

From the proof of the previous theorem (cf. equation (2.19)) we extract

the following.

Corollary 2.4.11 Let h ∈ L(A). Then Rh(χ) = ĥ(χ)χ for every χ ∈ Â.
In particular, Rh is diagonalizable, its eigenvectors are the characters of A,

and its spectrum is given by σ(Rh) = {ĥ(χ) : χ ∈ Â}. 2

Corollary 2.4.12 (Trace formula) Let h ∈ L(A). Then

Tr(Rh) =
∑
χ∈Â

ĥ(χ) = |A|h(0).

Proof The �rst equality follows from the previous corollary since Tr(Rh) =∑
λ∈σ(Rh) λ. The second equality follows from the Fourier inversion formula,

keeping in mind that χ(0) = 1 for all χ ∈ Â.

Exercise 2.4.13 Consider the normalized Fourier transform (cf. De�nition

2.4.1), that is, the map F : L(A)→ L(A) de�ned by

[Ff ](x) =
1√
|A|

f̂(χx) =
1√
|A|

∑
y∈A

f(y)χx(y) (2.21)
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for all f ∈ L(A) and x ∈ A (χx as in Proposition 2.3.3).

(1) Show that F ∈ End(L(A)) and that it is an isometric bijection.

(2) Show that F−1 is given by [F−1f ](x) = 1√
|A|
f̂(χ−x) for all f ∈ L(A)

and x ∈ A.

De�nition 2.4.14 Let f ∈ L(A). We de�ne f− ∈ L(A) by setting f−(a) =

f(−a) for all a ∈ A. Then f is called even (respectively odd) if f = f−

(respectively f = −f−). Similarly, for ϕ ∈ L(Â) we set ϕ−(χ) = ϕ(χ) and

we say that ϕ is even if ϕ = ϕ−.

Exercise 2.4.15 Let h ∈ L(A).

(1) Show that ĥ− = (ĥ)−. Deduce that h is even if and only if ĥ is even;

(2) show that ĥ = (ĥ)−;

(3) deduce that the following conditions are equivalent:

(a) h is real valued and even;

(b) ĥ is real valued and even;

(4) show that σ(Rh) ⊂ R⇔ h = h
−
.

Exercise 2.4.16 Let n ≥ 1. A matrix of the form
a0 a1 a2 · · · · · · an−1

an−1 a0 a1 · · · · · · an−2

an−2 an−1 a0 · · · · · · an−3
...

...
... · · · · · ·

...

a1 a2 a3 · · · · · · a0


with a0, a1, . . . , an−1 ∈ C is said to be circulant . Denote by Cn the set of all

n× n circulant matrices.

(1) Let R,S ∈ Cn and α, β ∈ C. Show that RS = SR and that RS, (αR+

βS) ∈ Cn. Deduce that Cn is a commutative algebra with unit.

(2) Show that R ∈ Cn if and only if its adjoint R∗ ∈ Cn, so that Cn is

closed under adjunction.

(3) Let B = {δ0, δ1, . . . , δn−1} ⊂ L(Zn) so that f =
∑n−1

x=0 f(x)δx for every

f ∈ L(Zn). Show that R ∈ End(L(Zn)) is a convolution operator if and only

if the matrix representing it is circulant.

Hint. If h ∈ L(Zn) is the kernel of R, then R = Rh is represented, with

respect to B by the (circulant) matrix (h(y − x))x,y∈Zn .

Deduce that Cn is isomorphic to L(Zn) as algebras.
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(4) Let ω = exp(2iπ
n ) ∈ T and set

Fn =
1√
n


1 1 · · · · · · 1

1 ω−1 ω−2 · · · ω−(n−1)

1 ω−2 ω−4 · · · ω−2(n−1)

...
...

... · · ·
...

1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)2

 . (2.22)

Observe that Fn ∈ Mn(C) is symmetric so that its adjoint F ∗n is equal to

its conjugate Fn. Show also that the orthogonality relations in Lemma 2.2.3

are equivalent to saying that Fn is a unitary matrix.

(5) Prove that a matrix R ∈ Mn(C) is in Cn if and only if FnRF
∗
n is

diagonal. The map Cn 3 R 7→ FnRF
∗
n ∈ ∆n, where ∆n ⊆Mn(C) denotes the

subalgebra of all diagonal matrices, is called the discrete Fourier transform,

brie�y DFT, on Cn.

2.5 Poisson's formulas and the uncertainty principle

In this section, following the monographs by Nathanson [118] and Terras

[159], we treat the �nite analogue of two basic properties of the classical

Fourier Transform.

Let A be a �nite Abelian group, B a subgroup of A, and consider the

quotient group A/B.

For f ∈ L(A/B) we de�ne f̃ ∈ L(A) by setting f̃(a) = f(a + B), for all

a ∈ A. In other words, f̃ = f ◦ π, where π : A → A/B is the canonical

quotient map. f̃ is called the in�ation of f to A.

Note that the correspondence f 7→ f̃ yields an algebra isomorphism be-

tween L(A/B) and the subalgebra of L(A) consisting of all functions that

are constant on the B-cosets. Moreover, if ψ ∈ Â/B, then ψ̃ ∈ Â: indeed

ψ̃ = ψ ◦ π is a composition of group homomorphisms.

Exercise 2.5.1 Let χ ∈ Â. Show that there exists ψ ∈ Â/B such that

χ = ψ̃ if and only if χ|B ≡ 1B.

Theorem 2.5.2 (Poisson summation formulas) Let f ∈ L(A) and let

S ⊆ A be a system of representatives of the B-cosets in A. Then

1

|B|
∑
b∈B

f(b) =
1

|A|
∑

ψ∈Â/B

f̂(ψ̃) (2.23)
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and ∑
c∈S

∣∣∣∣∣∑
b∈B

f(c+ b)

∣∣∣∣∣
2

=
|B|
|A|

∑
ψ∈Â/B

|f̂(ψ̃)|2. (2.24)

Proof De�ne f ] ∈ L(A) by setting

f ](a) =
∑
b∈B

f(a+ b)

for all a ∈ A. Clearly, f ] is constant on the B-cosets in A. Moreover, for

each χ ∈ Â,

f̂ ](χ) =
∑
a∈A

f ](a)χ(a)

=
∑
a∈A

∑
b∈B

f(a+ b)χ(a)

(setting c = a+ b) =
∑
c∈A

∑
b∈B

f(c)χ(c− b)

=

[∑
b∈B

χ(b)

]
· f̂(χ)

(by (2.12) applied to χ|B ∈ B̂) =

{
|B|f̂(χ) if χ|B = 1B

0 otherwise.

As a consequence, taking into account Exercise 2.5.1, f̂ ](χ) equals |B|f̂(ψ̃)

if χ = ψ̃ for some ψ ∈ Â/B, and vanishes otherwise.

Then, the Fourier inversion formula (cf. Theorem 2.4.2) applied to f ] gives

f ] =
|B|
|A|

∑
ψ∈Â/B

f̂(ψ̃)ψ̃

that is,

1

|B|
∑
b∈B

f(b+ a) =
1

|A|
∑

ψ∈Â/B

f̂(ψ̃)ψ̃(a)

for all a ∈ A. In particular, when a = 0 we get (2.23). Moreover, applying

the Plancherel formula (cf. Theorem 2.4.3) to the function f ], we get

‖f ]‖2L(A) =
1

|A|
‖f̂ ]‖2

L(Â)
=
|B|2

|A|
∑

ψ∈Â/B

|f̂(ψ̃)|2.



2.5 Poisson's formulas and the uncertainty principle 63

Since

‖f ]‖2L(A) =
∑
a∈A
|f ](a)|2

=
∑
c∈S

∑
b∈B
|f ](c+ b)|2

(since f ] is constant on B-cosets) =
∑
c∈S
|B| · |f ](c)|2

= |B|
∑
c∈S

∣∣∣∣∣∑
b∈B

f(c+ b)

∣∣∣∣∣
2

,

(2.24) follows.

For f ∈ L(A) we set

supp(f) = {a ∈ A : f(a) 6= 0} ⊆ A,

‖f‖∞ = max{|f(a)| : a ∈ A}

and

supp(f̂) = {χ ∈ Â : f̂(χ) 6= 0} ⊆ Â.

Lemma 2.5.3 Let f ∈ L(A). Then

‖f‖2L(A) ≤ ‖f‖
2
∞ · |supp(f)|.

Proof This is a straightforward calculation:

‖f‖2L(A) =
∑
a∈A
|f(a)|2 =

∑
a∈supp(f)

|f(a)|2

≤
∑

a∈supp(f)

‖f‖2∞ = ‖f‖2∞ · |supp(f)|.

Theorem 2.5.4 (Uncertainty principle) Let f ∈ L(A) and suppose that

f 6= 0. Then

|supp(f)| · |supp(f̂)| ≥ |A|. (2.25)

Proof From the Fourier inversion formula (Theorem 2.4.2) and the fact
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‖χ‖∞ ≤ 1 for all χ ∈ Â, we deduce that, for every a ∈ A,

|f(a)| = 1

|A|

∣∣∣∣∣∣
∑
χ∈Â

f̂(χ)χ(a)

∣∣∣∣∣∣
≤ 1

|A|
∑
χ∈Â

|f̂(χ)|

=
1

|A|
∑

χ∈supp(f̂)

|f̂(χ)|.

Taking the max over a ∈ A and squaring, we get

‖f‖2∞ ≤
1

|A|2

 ∑
χ∈supp(f̂)

|f̂(χ)|

2

=
1

|A|2

∑
χ∈Â

1
supp(f̂)

(χ) · |f̂(χ)|

2

(by the Cauchy-Schwarz inequality) ≤ 1

|A|2
|supp(f̂)| ·

∑
χ∈Â

|f̂(χ)|2

=
1

|A|2
|supp(f̂)| · ‖f̂‖2

L(Â)

(by Plancherel formula) =
1

|A|
|supp(f̂)| · ‖f‖2L(A)

(by Lemma 2.5.3) ≤ 1

|A|
‖f‖2∞ · |supp(f)| · |supp(f̂)|.

Since f 6= 0 we have ‖f‖∞ > 0 and therefore, comparing the �rst and the

last term in the above formula, we get the desired inequality.

Remark 2.5.5 If we take f = δ0 (the Dirac function at the identity element

of A), then |supp(δ0)| = 1, while δ̂0(χ) = χ(0) = 1 for all χ ∈ Â so that

|supp(δ̂0)| = |A|. In this case, |supp(δ̂0)| · |supp(δ0)| = |A| showing that the

lower bound in (2.25) is optimal.

2.6 Tao's uncertainty principle for cyclic groups

In this section we prove an uncertainty principle, due to Tao [157], which

improves on the inequality (2.25) when the �nite Abelian group A is cyclic of

prime order. We �rst present some general preliminary material on number
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theory together with some speci�c tools developed in [157]. Recall that Z[x]

denotes the ring of polynomials with integer coe�cients.

Proposition 2.6.1 (Eisenstein's criterion) Let q(x) = a0 + a1x + · · · +
anx

n ∈ Z[x]. Suppose that there exists a prime p such that

(i) p divides a0, a1, . . . , an−1;

(ii) p does not divide an;

(iii) p2 does not divide a0.

Then the polynomial q is irreducible over Z.

Proof By contradiction, suppose that

q(x) = (b0 + b1x+ · · ·+ bn−kx
n−k)(c0 + c1x+ · · ·+ ckx

k)

with 1 ≤ k < n and b0, b1, · · · , bn−k, c0, c1, . . . , ck ∈ Z. Then we have

a0 = b0c0

a1 = b0c1 + b1c0

a2 = b0c2 + b1c1 + b2c0

· · · · · ·
an = bn−kak.

Since a0 is divisible by p but not by p2, only one of the integers b0, c0 is

divisible by p. Suppose that b0 is divisible by p and c0 is not. Since a1 is

divisible by p, this forces b1 to be divisible by p. Continuing this way, we

deduce that b2, b3, . . . are divisible by p until we arrive to

an−k = b0cn−k + b1cn−k−1 + · · ·+ bn−k−1c1 + bn−kc0

which forces bn−k to be divisible by p. But this contradicts the second

assumption, because an = bn−kck.

Example 2.6.2 Let p be a prime number. Then, the polynomial q(x) =

1 + x+ x2 + · · ·+ xp−2 + xp−1 is irreducible over Z. Indeed, we have

q(x+ 1) =
(x+ 1)p − 1

(x+ 1)− 1
=

(
p

p− 1

)
+

(
p

p− 2

)
x+ · · ·+

(
p

1

)
xp−2 + xp−1.

Since
(
p
k

)
=

p!

k!(p− k)!
, k = 1, 2, . . . , p − 1, is an integer divisible by p and(

p
p−1

)
= p is not divisible by p2, by virtue of Eisenstein's criterion we deduce

that q(x+ 1) (and therefore q(x)) is irreducible over Z.
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De�nition 2.6.3 A polynomial q(x) ∈ Z[x] is called primitive if its coe�-

cients are relatively prime and its leading coe�cients is positive.

Clearly, any q(x) ∈ Z[x] may be represented in the form q(x) = ±cq1(x),

where c ∈ N is the greatest common divisor of its coe�cients and q1(x) is

primitive. Also, any f(x) ∈ Q[x] may be represented in the form f(x) =
c
dq(x), where q(x) ∈ Z[x] is primitive and c, d ∈ Z.

Proposition 2.6.4 (Gauss lemma) The product of two primitive polyno-

mials is primitive.

Proof By contradiction, suppose that q1(x) = a0+a1x+· · ·+an−1x
n−1+anx

n

and q2(x) = b0 + b1x + · · · + bm−1x
m−1 + bmx

m are primitive polynomials,

but their product q1(x)q2(x) = c0 + c1x+ · · ·+ cn+m−1x
n+m−1 + cn+mx

n+m

is not. This means that there exists a prime p that divides all the coe�cients

c0, c1, c2, . . . , cn+m−1, cn+m. By the primitivity of q1(x) and q2(x), we can

�nd i (respectively j) the minimal index such that ai (respectively bj) is not

divisible by p. Then, in the expression

ci+j = aibj + (ai−1bj+1 + · · ·+ a0bj+i + ai+1bj−1 + · · ·+ ai+jb0)

all the summands are divisible by p except aibj . Thus p does not divide ci+j ,

and this is a contradiction.

Corollary 2.6.5 A polynomial q(x) ∈ Z[x] which is irreducible over Z is

also irreducible over Q.

Proof Let q(x) ∈ Z[x] and suppose that it is reducible over Q, say q(x) =

f1(x)f2(x), where both f1(x) and f2(x) belong to Q[x] and are not-trivial

(deg f1, deg f2 < deg q). For i = 1, 2, we can write

fi(x) =
ai
bi
qi(x),

where qi(x) is a primitive polynomial and ai, bi ∈ Z are relatively prime.

Then

q(x) =
a1a2

b1b2
[q1(x)q2(x)]. (2.26)

Since both q(x) and q1(x)q2(x) are integer valued, a1a2[q1(x)q2(x)] must

be divisible by b1b2. Let b1 = pm1
1 pm2

2 · · · p
mt
t be the prime factorization

of b1. Consider the prime power pm1
1 . It cannot divide all coe�cients of

q1(x)q2(x) because, by Gauss lemma, this polynomial is primitive. Also, it

cannot divide a1 because this is relatively prime with b1. Therefore it must
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divide a2. Repeating the same argument with the other prime factors of b1
we deduce that b1 divides a2. Similarly, b2 divides a1. Thus, we can �nd

c1, c2 ∈ Z such that

a1 = c1b2 and a2 = c2b1.

Then (2.26) becomes

q(x) = c1c2q1(x)q2(x).

This shows that q(x) is (also) reducible over Z.

Corollary 2.6.6 Let p(x), q(x) ∈ Z[x] and suppose that p(x) is primitive

and divides q(x) over Q. Then p(x) divides q(x) over Z.

Proof Let f(x) ∈ Q[x] such that q(x) = p(x)f(x). Also write f(x) = a
b r(x)

with r(x) a primitive polynomial and a, b ∈ Z relatively prime. Thus

q(x) =
a

b
p(x)r(x),

where the polynomials q(x) and p(x)r(x) both have integer coe�cients. By

Gauss lemma, p(x)r(x) is primitive and this forces b = ±1, concluding the

proof.

De�nition 2.6.7 A complex number α is called algebraic provided it is a root

of some polynomial q(x) ∈ Z[x], that is, q(α) = 0. A minimal polynomial of

an algebraic number α is a primitive polynomial of least degree q(x) ∈ Z[x]

such that q(α) = 0.

Clearly, a minimal polynomial is irreducible over Z (and therefore over Q
by Corollary 2.6.5). In Proposition 2.6.8 we shall establish its uniqueness.

For the next proposition, we need the notion of a principal ideal. Roughly

speaking, a principal ideal in a commutative unital ring R is a subset of the

form I = fR for some f ∈ R, called a generator of I: we refer to Section

6.1 for a more comprehensive treatment of this and of other related notions.

Proposition 2.6.8 Let α ∈ C be an algebraic number and let p(x) ∈ Z[x] be

a minimal polynomial of α. Consider the ideal I = {q(x) ∈ Z[x] : q(α) = 0}.
Then I is principal and generated by p(x). In particular, p(x) is the unique

primitive irreducible polynomial in I.

Proof Consider the ideal Ĩ = {f(x) ∈ Q[x] : f(α) = 0} in Q[x]. Since every

ideal in Q[x] is principal (see Exercise 6.1.6), Ĩ is generated by some element

f0(x) of least degree. By eliminating the denominators and changing signs
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of all coe�cients, if necessary, we may suppose that f0(x) belongs to Z[x]

and is primitive. Let q(x) ∈ I ⊆ Ĩ. Then we can �nd f(x) ∈ Q[x] such that

q(x) = f(x)f0(x). Since f0(x) is primitive, from Corollary 2.6.6 we deduce

that f0(x) divides q(x) in Z[x]. Moreover, if q(x) = p(x), we deduce that

f0(x) = p(x), by minimality of the degree of p(x). This shows that I is

principal, generated by p(x).

Example 2.6.9 Let p be a prime. Consider the algebraic number ω =

exp(2πi
p ) and the polynomial q(x) = xp−1

x−1 = 1 + x + x2 + · · · + xp−1. Then

q(x) is irreducible (cf. Example 2.6.2) and q(ω) = 0. Then, by Proposition

2.6.8, q(x) is the minimal polynomial of ω and every f(x) ∈ Z[x] such that

f(ω) = 0 is a multiple of q(x) in Z[x].

Proposition 2.6.10 Let P (x1, x2, . . . , xn) be a polynomial in the variables

x1, x2, . . . , xn with integer coe�cients. Suppose that, for some i 6= j,

P (x1, x2, . . . , xn)|xi=xj ≡ 0.

Then there exists a polynomial Q(x1, x2, . . . , xn) with integer coe�cients such

that P (x1, x2, . . . , xn) = (xi − xj)Q(x1, x2, . . . , xn).

Proof For the sake of simplicity, suppose that i = 1 and j = 2 so that

P (x1, x1, . . . , xn) ≡ 0. Let us denote by P1(x1, x2, . . . , xn) (respectively

P2(x1, x2, . . . , xn)) the sum of the monomials of P (x1, x2, . . . , xn) with pos-

itive (respectively negative) coe�cients so that

P (x1, x2, . . . , xn) = P1(x1, x2, . . . , xn) + P2(x1, x2, . . . , xn).

Note that

P1(x1, x1, . . . , xn) = −P2(x1, x1, . . . , xn),

since P (x1, x1, . . . , xn) ≡ 0. This implies that there exists a bijection be-

tween the monomials in P1(x1, x1, . . . , xn) and those in P2(x1, x1, . . . , xn).

More precisely, let us �x m > 0 and k, k3, . . . , kn ≥ 0; then the monomial

mxk1x
k3
3 · · ·xknn appears in P1(x1, x1, . . . , xn) if and only if −mxk1x

k3
3 · · ·xknn

appears in P2(x1, x1, . . . , xn). Suppose this is the case. Then we can �nd

m0,m1, . . . ,mk and n0, n1, . . . , nk nonnegative integers such that the sum

of the monomials of P (x1, x2, . . . , xn) whose variables xi have degree ki for

i = 1, 2 . . . , n and k1 + k2 = k is

k∑
`=0

m`x
k−`
1 x`2x

k3
3 · · ·x

kn
n −

k∑
`=0

n`x
k−`
1 x`2x

k3
3 · · ·x

kn
n (2.27)
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and

m0 +m1 + · · ·+mk = n0 + n1 + · · ·+ nk = m (2.28)

but also such that

m` 6= 0⇒ n` = 0 n` 6= 0⇒ m` = 0

(because, otherwise, there would be a cancellation). By virtue of (2.28) with

every monomial xk−`1 x`2x
k3
3 · · ·xknn such that m` 6= 0 we can (arbitrarily but

bijectively) associate a monomial xk−h1 xh2x
k3
3 · · ·xknn with mh 6= 0 and h 6= `.

Now, for h > ` we have the identity

xk−`1 x`2 − xk−h1 xh2 = x`2x
k−h
1 (xh−`1 − xh−`2 )

= x`2x
k−h
1 (x1 − x2)(xh−`−1

1 + xh−`−2
1 x2 + · · ·+ xh−`−1

2 ).

Exchanging h with ` we get the analogous identity for h < `. This shows

that (2.27) is divisible by x1 − x2.

Repeating the argument for each monomial mxk1x
k3
3 · · ·xknn (with m > 0

and k, k3, . . . , kn ≥ 0) appearing in P1(x1, x1, . . . , xn), we deduce that, in

fact, P (x1, x2, . . . , xn) is divisible by x1 − x2.

Example 2.6.11 Consider the polynomial P (x1, x2) = x2
1 + x1x2 − 2x2

2.

We have P1(x1, x1) = 2x2
1 and P2(x1, x1) = −2x2

1, and m = 2. Moreover,

m0 = m1 = 1 and m2 = 0, while n0 = n1 = 0 and n2 = 2. We have

P (x1, x2) = (x2
1 − x2

2) + (x1x2 − x2
2) = (x1 − x2)(x1 + x2) + (x1 − x2)x2 =

(x1 − x2)(x1 + 2x2), so that Q(x1, x2) = x1 + 2x2.

Lemma 2.6.12 Let p be a prime, n a positive integer, and P (x1, x2, . . . , xn)

a polynomial with integer coe�cients. Suppose that ω1, ω2, . . . , ωn are (not

necessarily distinct) pth roots of unity such that P (ω1, ω2, . . . , ωn) = 0. Then

P (1, 1, . . . , 1) is divisible by p.

Proof Setting ω = exp(2πi
p ) we can �nd integers 0 ≤ kj ≤ p − 1 such that

ωj = ωkj , for j = 1, 2, . . . , n.

De�ne the polynomials q(x), r(x) ∈ Z[x] by setting

P (xk1 , xk2 , . . . , xkn) = (xp − 1)q(x) + r(x)

where deg r < p. Then r(ω) = 0 and since deg r < p we deduce that

r(x) is a multiple of the minimal polynomial of ω, that is (cf. Example

2.6.9), r(x) = m(1 + x + x2 + · · · + xp−1) for some m ∈ Z. It follows that

P (1, 1, . . . , 1) = r(1) = mp.
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Theorem 2.6.13 (Chebotarëv) Let p be a prime and 1 ≤ n ≤ p. Let

η1, η2, . . . , ηn (respectively ξ1, ξ2, . . . , ξn) be distinct elements in {0, 1, . . . , p−
1}. Then the matrix

A =

(
exp

2πiηhξk
p

)n
h,k=1

is non-singular.

Proof Set ωh = exp(2πiηh
p ) for h = 1, 2, . . . , n. Note that the ωhs are

distinct pth roots of unity and A =
(
ωξkh

)n
1=h,k

. De�ne the polynomial

D(x1, x2, . . . , xn) (with integer coe�cients) by setting

D(x1, x2, . . . , xn) = det
(
xξkh

)n
h,k=1

.

As the determinant is an alternating form, we haveD(x1, x2, . . . , xn)|xh=xk ≡
0 whenever 1 ≤ h 6= k ≤ n, so that, by recursively applying Proposition

2.6.10, we can �nd a polynomial Q(x1, x2, . . . , xn) with integer coe�cients

such that

D(x1, x2, . . . , xn) = Q(x1, x2, . . . , xn)
∏

1≤h<k≤n
(xk − xh). (2.29)

To prove the theorem, it is equivalent to show that Q(ω1, ω2, . . . , ωn) 6= 0

(because the ωhs are all distinct) so that, by virtue of Lemma 2.6.12, it

su�ces to show that p does not divide Q(1, 1, . . . , 1). For this, we need the

next three lemmas. Let us �rst introduce some useful notation.

Given an n-tuple k = (k1, k2, . . . , kn) of non-negative integers, we say that

the (monomial) di�erential operator

L = Lk =

(
x1

∂

∂x1

)k1 (
x2

∂

∂x2

)k2
· · ·
(
xn

∂

∂xn

)kn
(2.30)

is of type k and order o(k) = k1 + k2 + · · ·+ kn.

Lemma 2.6.14 Let L be a di�erential operator of type k and F (x1, x2, . . . , xn)

and G(x1, x2, . . . , xn) two polynomials. Then

L(FG) =
∑
(i,j)

Li(F ) · Lj(G) (2.31)

where the sum runs over all pairs (i, j) such that (componentwise) i+ j = k.

(and therefore o(i) + o(j) = k).
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Proof We proceed by induction on the order k of L. If k = 0 then L

is the identity and the statement is trivial. Suppose we have shown the

statement for all di�erential operators of order ≤ k and let L be a di�erential

operator of order k+ 1. Up to renaming the variables, we may suppose that

L =
(
x1

∂
∂x1

)
L′, where L′ has order k. By the Leibniz rule and the inductive

hypothesis we then have

L(FG) =

(
x1

∂

∂x1

)
L′(FG)

=

(
x1

∂

∂x1

)∑
(i,j)

Li(F ) · Lj(G)

=
∑
(i′,j)

Li′(F ) · Lj(G) +
∑
(i,j′)

Li(F ) · Lj′(G)

where i′ = (i1 + 1, i2, . . . , in) and j′ = (j1 + 1, j2, . . . , jn), and, clearly, o(i′) +

o(j) = o(i) + o(j′) = k + 1.

Lemma 2.6.15 For 1 ≤ j ≤ n and 1 ≤ h ≤ j − 1 we have

(
xj

∂

∂xj

)h
(xj − x1)(xj − x2) · · · (xj − xj−1)

=
h∑
t=1

ah,tx
t
j

∑
it

∏
1≤i≤j−1
i 6=i1,i2,...,it

(xj − xi) (2.32)

where
∑

it
runs over all it = (i1, i2, . . . , it) with 1 ≤ i1 < i2 < . . . < it ≤ j−1

and the ah,t = ah,t(j)s are non-negative integers such that ah,h = h! In

particular,

(
xj

∂

∂xj

)j−1

(xj − x1)(xj − x2) · · · (xj − xj−1)

= (j − 1)!xj−1
j

+ terms containing at least one factor (xj − xi)

with 1 ≤ i < j.
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Proof We proceed by induction on h = 1, 2, . . . , j − 1. For h = 1 we have

(
xj

∂

∂xj

)
(xj − x1)(xj − x2) · · · (xj − xj−1)

= xj(xj − x2)(xj − x3) · · · (xj − xj−1)

+ (xj − x1)xj(xj − x3) · · · (xj − xj−1)

+ · · ·
+ (xj − x1)(xj − x2) · · · (xj − xj−3)xj(xj − xj−1)

+ (xj − x1)(xj − x2) · · · (xj − xj−2)xj

= xj

j−1∑
k=1

(xj − x1)(xj − x2) · · · ̂(xj − xk) · · · (xj − xj−1),

where the factor ·̂ is omitted. Since
(
xj

∂
∂xj

)
xj = xj , keeping in mind the

previous calculation, we have

(
xj

∂

∂xj

)2

(xj − x1)(xj − x2) · · · (xj − xj−1)

=

(
xj

∂

∂xj

)
xj

j−1∑
k=1

(xj − x1) · · · ̂(xj − xk) · · · (xj − xj−1)

= xj

j−1∑
k=1

(xj − x1) · · · ̂(xj − xk) · · · (xj − xj−1)

+ 2x2
j

∑
1≤k<k′≤j−1

(xj − x1) · · · ̂(xj − xk) · · · ̂(xj − xk′) · · · (xj − xj−1).
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Suppose we have proved the formula (2.32) for h < j − 1. Then(
xj

∂

∂xj

)h+1

(xj − x1)(xj − x2) · · · (xj − xj−1)

=

(
xj

∂

∂xj

) h∑
t=1

ah,tx
t
j

∑
it

∏
1≤i≤j−1
i 6=i1,i2,...,it

(xj − xi)

=

h∑
t=1

ah,ttx
t
j

∑
it

∏
1≤i≤j−1
i 6=i1,i2,...,it

(xj − xi)

+
h∑
t=1

ah,tx
t+1
j

∑
it+1

(t+ 1)
∏

1≤i≤j−1
i 6=i1,i2,...,it+1

(xj − xi)

=
h+1∑
t=1

ah+1,tx
t
j

∑
it

∏
1≤i≤j−1
i 6=i1,i2,...,it

(xj − xi),

where

ah+1,t =

{
ah,tt+ ah,t−1t for t = 1, 2, . . . , h

ah,h(h+ 1) = (h+ 1)! for t = h+ 1.

Lemma 2.6.16 Let L = L(0,1,...,n−1), that is,

L =

(
x1

∂

∂x1

)0(
x2

∂

∂x2

)1

· · ·
(
xn

∂

∂xn

)n−1

.

Then if D(x1, x2, . . . , xn) and Q(x1, x2, . . . , xn) are as in (2.29), we have

[LD](1, 1, . . . , 1) =

n∏
j=1

(j − 1)!Q(1, 1, . . . , 1). (2.33)

Proof By virtue of Lemma 2.6.14 and Lemma 2.6.15 we have

[LD](x1, x2, . . . , xn) =
n∏
j=1

(j − 1)!xj−1
j Q(x1, x2, . . . , xn)

+ terms containing at least one factor (xj − xi)

with 1 ≤ i < j. In particular, taking xi = 1 for i = 1, 2, . . . , n we deduce

(2.33).
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End of the proof of Theorem 2.6.13 For L as in Lemma 2.6.16 we have

(where Sn denotes the symmetric group of degree n)

[LD](x1, x2, . . . , xn) = L
∑
σ∈Sn

ε(σ)x
ξσ(1)
1 x

ξσ(2)
2 · · ·xξσ(n)n

=
∑
σ∈Sn

ε(σ)ξ0
σ(1)x

ξσ(1)
1 ξ1

σ(2)x
ξσ(2)
2 · · · ξn−1

σ(n)x
ξσ(n)
n

since (
xj

∂

∂xj

)j−1

x
ξσ(j)
j = ξj−1

σ(j)x
ξσ(j)
j

for all j = 1, 2, . . . , n. Thus

[LD](1, 1, . . . , 1) =
∑
σ∈Sn

ε(σ)ξ0
σ(1)ξ

1
σ(2) · · · ξ

n−1
σ(n)

=

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

ξ1 ξ2 · · · ξn
ξ2

1 ξ2
2 · · · ξ2

n
...

...
. . .

...

ξn−1
1 ξn−1

2 · · · ξn−1
n

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(ξj − ξi)

is the Vandermonde determinant (see, e.g., [91]). Since ξj 6= ξi for 1 ≤ i <

j ≤ n, we deduce that [LD](1, 1, . . . , 1) is not divisible by p. Since also∏n
j=1(j − 1)! is not divisible by p (because n ≤ p), from (2.33) we deduce

that Q(1, 1, . . . , 1) is not divisible by p either. By virtue of Lemma 2.6.12,

this completes the proof of Theorem 2.6.13.

Given a non-empty subset A ⊆ Zp and a function f ∈ L(A), in the

following we shall denote by f its extension f : Zp → C de�ned by setting

f(z) = 0 for all z ∈ Zp \ A. For simplicity, we regard the DFT as a map

L(Zp)→ L(Zp). In other words, for f ∈ L(Zp) and x ∈ Zp,

f̂(x) =
1

p

∑
y∈Zp

f(y)ω−xy;

see also Exercise 2.4.13.

Corollary 2.6.17 Let p be a prime. Let A,B ⊆ Zp such that |A| = |B|.
Then the linear map T = TA,B : L(A) → L(B) de�ned by Tf = f̂ |B is

invertible.

Proof Set A = {ξ1, ξ2, . . . , ξn} and B = {η1, η2, . . . , ηn} and consider the
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basis of L(A) (respectively, of L(B)) consisting of the Dirac functions δξj ,

with j = 1, 2, . . . , n (respectively, δηk , with k = 1, 2, . . . , n), and let ω =

exp(2πi/p). Then we have

[Tδξk ](ηh) = δ̂ξk(ηh) =
∑
x∈Zp

δξk(x)ω−xηh = ω−ηhξk .

By virtue of Theorem 2.6.13 we have det ([Tδξk ](ηh))nh,k=1 6= 0, showing that

T is indeed invertible.

We are now in position to state and prove the main result of this section.

Theorem 2.6.18 (Tao) Let p be a prime number and f ∈ L(Zp) non-zero.
Then

|supp(f)|+ |supp(f̂)| ≥ p+ 1.

Conversely, if ∅ 6= A,A′ ⊆ Zp are two subsets such that |A|+ |A′| = p + 1,

then there exists f ∈ L(Zp) such that supp(f) = A and supp(f̂) = A′.

Proof Suppose, by contradiction, that, setting supp(f) = A and supp(f̂) =

C, one has |A| + |C| ≤ p. Then we can �nd a subset B ⊆ Zp such that

|B| = |A| and C ∩ B = ∅. We deduce that Tf = f̂ |B is identically zero.

Since f 6≡ 0, this contradicts injectivity of T (Corollary 2.6.17).

Conversely, let ∅ 6= A,A′ ⊆ Zp be two subsets such that |A|+ |A′| = p+1.

Let B ⊆ Zp such that |B| = |A| and B ∩ A′ reduces to a single element,

say ξ. Note that (Zp \ B) ∪ {ξ} ⊇ A′ so that, by taking cardinalities,

|A′| = p+ 1− |A| = p− |B|+ 1 = |(Zp \B) ∪ {ξ}| ≥ |A′| which yields

(Zp \B) ∪ {ξ} = A′. (2.34)

Consider the map T = TA,B : L(A) → L(B). By Corollary 2.6.17, we can

�nd g ∈ L(A) such that Tg = δξ|B so that ĝ vanishes on B\{ξ} but ĝ(ξ) 6= 0.

Setting f = g ∈ L(Zp) we clearly have supp(f) ⊆ A and supp(f̂) ⊆ (Zp\B)∪
{ξ}. Let us show that indeed supp(f) = A and, moreover, supp(f̂) = A′.

By the �rst part of the theorem we have

p+1 ≤ |supp(f)|+ |supp(f̂) ≤ |A|+ |Zp \B|+1 = |A|+(p−|B|)+1 = p+1

so that all inequalities above are indeed equalities. In particular, supp(f) =

A and supp(f̂) = (Zp \ B) ∪ {ξ} = A′, where the last equality follows from

(2.34).



3

Dirichlet's theorem on primes in arithmetic
progressions

In this chapter, we give an exposition on the celebrated Dirichlet theorem

on primes in arithmetic progressions. It states that, if r and m are rela-

tively prime positive integers, then the arithmetic progression r, r + m, r +

2m, . . . , r + km, . . . contains in�nitely many primes. For instance, there are

in�nitely many primes numbers of the form 1 + 4k, k ∈ N. There are several
proofs of this theorem: some of them are based on algebraic number theory

(see the monograph by Weyl [166]), other on analytic number theory (see the

monograph by Serre [144]), but also elementary proofs are available (see the

paper by Selberg [143]). By an elementary proof we mean a proof that does

not use sophisticated methods of complex variables, algebraic geometry, or

cohomology theory, but it may be technically very di�cult.

Here, the character theory of �nite Abelian groups is an essential ingredi-

ent, in particular, in order to de�ne Dirichlet L-functions, which constitute

one of the central objects in number theory. We have chosen to follow the

exposition in the beautiful book by Stein and Shakarchi [150]. The authors

have managed to reduce the proof to the use of very elementary analysis. We

have also taken some material from the book by Knapp [88]. Other proofs

may be found in the monographs by Apostol [13], Ireland and Rosen [79],

and Nathanson [118].

3.1 Analytic preliminaries

In this section, we establish some elementary results on real and complex

series. As in our main source [150], we avoid the use of complex analysis:

just elementary properties of real and complex series will be used (up to and

including existence of the radius of convergence for real and complex power

series, elementary properties of uniform convergence, and di�erentiability of

real power series). In several points we closely follow the exposition in [88].

76
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From the well known expansion log(1+t) =
∑∞

k=1
(−1)k+1

k tk, for t ∈ (−1, 1]

we deduce that

log
1

1− t
= − log(1− t) =

∞∑
k=1

tk

k
.

for t ∈ [−1, 1). We then de�ne

log
1

1− z
=
∞∑
k=1

zk

k
(3.1)

for all z ∈ C, |z| < 1. With exp we denote the usual complex exponential:

exp(x + iy) = exeiy = ex(cos y + i sin y) for all x, y ∈ R. Also, <z denotes

the real part of z ∈ C.

Proposition 3.1.1

(i) |z| < 1 if and only if < 1
1−z >

1
2 .

(ii) exp(log 1
1−z ) = 1

1−z for all |z| < 1.

(iii) log 1
1−z = z + R(z) where the error term R(z) satis�es |R(z)| < |z|2

if |z| < 1
2 .

(iv) | log 1
1−z | ≤

3
2 |z|, if |z| <

1
2 .

Proof (i) Setting w = 1
1−z we have z = w−1

w and

|z| < 1⇔ |w − 1| < |w| ⇔ <w >
1

2
.

(ii) Consider the polar expression of z given by z = ρeiθ with ρ ≥ 0 and

θ ∈ R. We then have to show that

(1− ρeiθ) exp

( ∞∑
k=1

ρkeikθ

k

)
= 1. (3.2)

For ρ = 0 it is trivially satis�ed. By di�erentiating with respect to the real

variable ρ, we get

d

dρ

[
(1− ρeiθ) exp(

∞∑
k=1

ρkeikθ

k
)

]

=

[
−eiθ + (1− ρeiθ)eiθ

∞∑
k=1

(ρeiθ)k−1

]
exp

(
log

1

1− z

)
which vanishes since

∑∞
k=0(ρeiθ)k = 1

1−ρeiθ . Therefore, the left hand side
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of (3.2) is constant along each line θ = cost and it is equal to its value for

ρ = 0. Thus (3.2) follows.

(iii)

|R(z)| =
∣∣∣∣log

1

1− z
− z
∣∣∣∣ =

∣∣∣∣∣
∞∑
k=2

zk

k

∣∣∣∣∣
≤
∞∑
k=2

|z|k

k
≤ |z|

2

2

∞∑
k=0

|z|k

(for |z| < 1
2) <

|z|2

2

∞∑
k=0

1

2k
= |z|2.

(iv) ∣∣∣∣log
1

1− z

∣∣∣∣ ≤ ∞∑
k=1

|z|k

k

≤ |z|

[
1 +

∞∑
k=2

|z|k−1

2

]

(for |z| < 1
2) < |z|

[
1 +

∞∑
k=2

1

2k

]

=
3

2
|z|.

De�nition 3.1.2 Let (zn)n∈N be a sequence of complex numbers. The asso-

ciated in�nite product, denoted
∏∞
n=1 zn, is the limit of the partial products

z1z2 · · · zn as n tends to in�nity, in formulæ,

∞∏
n=1

zn = lim
n→+∞

n∏
k=1

zk.

The product is said to converge when the limit exists and is not zero. Oth-

erwise, the product is said to diverge.

The following is one of the basic results in the theory of in�nite products.

Proposition 3.1.3 Let (zn)n∈N be a sequence of complex numbers and sup-

pose that |zn| < 1 for all n ∈ N. Then the in�nite product
∏∞
n=1

1
1−|zn|

converges if and only if the series
∑∞

n=1 |zn| converges. Moreover, if this is
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the case, the in�nite product
∏∞
n=1

1
1−zn also converges and one has

∞∏
n=1

1

1− zn
= exp

( ∞∑
n=1

log
1

1− zn

)
. (3.3)

Proof The only if part follows from the elementary inequalities

1 +
n∑
k=1

|zk| ≤
n∏
k=1

(1 + |zk|) ≤
n∏
k=1

1

1− |zk|
.

Suppose now that
∑∞

n=1 |zn| < +∞. Then limn→+∞ |zn| = 0 and, without

loss of generality, we may assume that |zn| < 1
2 . From Proposition 3.1.1.(ii)

we get

n∏
k=1

1

1− |zk|
=

n∏
k=1

exp

(
log

1

1− |zk|

)

= exp

(
n∑
k=1

log
1

1− |zk|

)
and Proposition 3.1.1.(iv) yields∣∣∣∣log

1

1− |zk|

∣∣∣∣ ≤ 3

2
|zk|

for all k ∈ N. From our assumptions we then deduce that
∑∞

k=1 log 1
1−|zk|

converges absolutely. We conclude by invoking the continuity of exp. The

proof of the convergence of
∏∞
n=1

1
1−zn is analogous. Moreover, this limit is

nonzero and equals limn→+∞ exp(
∑n

k=1 log 1
1−zk ).

In what follows, we will often use Abel's formula of summation by parts:

if (zn)n∈N and (wn)n∈N are complex sequences, then setting Z0 = 0 and

Zk =
∑k

i=1 zi, for k ≥ 1, one has

n∑
k=m

zkwk =

n−1∑
k=m

Zk(wk − wk+1) + Znwn − Zm−1wm (3.4)

for all 1 ≤ m ≤ n. The proof is just an easy exercise.

De�nition 3.1.4 Let (an)n∈N be a sequence of complex numbers. The

associated Dirichlet series is the series given by

∞∑
n=1

an
ns
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where s is a complex variable.

Let A ⊂ C and (fn)n∈N a sequence of complex functions. One says that

the series
∑∞

n=1 fn(z) is M -test convergent on A if there exists a sequence

(Mn)n∈N of positive real numbers such that

• |fn(z)| ≤Mn for all z ∈ A and n ≥ 1;

•
∑∞

n=1Mn < +∞.

Clearly, M -test convergence on A implies both uniform and absolute con-

vergence on A. In the following we regard a Dirichlet series as a series of

complex functions.

Proposition 3.1.5 Let (an)n∈N be a sequence of complex numbers. If the

Dirichlet series
∑∞

n=1
an
ns is convergent for s = s0 then it is uniformly con-

vergent on each compact subset contained in {s ∈ C : <s > <s0} and it is

absolutely convergent at each s ∈ C such that <s > <s0 + 1.

Proof According with the notation in (3.4), set

zn =
an
ns0

, Zn =

n∑
k=1

zk, and wn(s) =
1

ns−s0

for all n ≥ 1. Then
∑∞

n=1 znwn(s) coincides with the Dirichlet series. More-

over the following holds.

(i) The sequence (Zn)n∈N converges (by hypothesis); in particular, it is

bounded: ∃H > 0 such that |Zn| ≤ H for all n ≥ 1.

(ii) limn→+∞wn(s) = 0 uniformly on each set {s ∈ C : <s ≥ µ} with
µ > <s0. Indeed, for <s ≥ µ > <s0 we have

|ns−s0 | = n<(s−s0) ≥ nµ−<s0

so that
∣∣ 1
ns−s0

∣∣ ≤ 1
nµ−<s0

which tends to 0 as n→ +∞.

(iii) The series
∑∞

n=1 |wn(s)−wn+1(s)| isM -test convergent on every com-

pact set A ⊆ {s ∈ C : <s > <s0}. Indeed, if |s − s0| ≤ δ and
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<s−<s0 ≥ η > 0, we have∣∣∣∣ 1

ns−s0
− 1

(n+ 1)s−s0

∣∣∣∣ =

∣∣∣∣∫ n+1

n

s− s0

ts−s0+1
dt

∣∣∣∣
≤ sup

n≤t≤n+1

∣∣∣∣ s− s0

ts−s0+1

∣∣∣∣
= sup

n≤t≤n+1

|s− s0|
t<(s−s0)+1

=
|s− s0|

n<(s−s0)+1

≤ δ

nη+1
.

Then we can apply Cauchy's criterion for uniform convergence:∣∣∣∣∣
n∑

k=m

ak
ks

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=m

zkwk(s)

∣∣∣∣∣
(by (3.4)) ≤

n∑
k=m

|Zk| · |wk(s)− wk+1(s)|

+ |Zn| · |wn(s)|+ |Zm−1| · |wm(s)|

(by (i), (ii), and (iii)) ≤
n∑

k=m

Hδ

kη+1
+

H

nµ−<s0
+

H

mµ−<s0 .

Thus, for each ε > 0 there exists N ∈ N such that
∣∣∑n

k=m
ak
ks

∣∣ < ε for all

n ≥ m ≥ N and s ∈ A, and uniform convergence is proved.

Finally, if <s > <s0 + 1 then, setting η′ = <s−<s0 − 1 > 0, we have∣∣∣an
ns

∣∣∣ =
∣∣∣ an
ns0

∣∣∣ · ∣∣∣∣ 1

ns−s0

∣∣∣∣ =
∣∣∣ an
ns0

∣∣∣ · 1

n<s−<s0
=
∣∣∣ an
ns0

∣∣∣ 1

n1+η′

for all n ≥ 1, so that boundedness of the sequence
(∣∣ an
ns0

∣∣)
n≥1

yields absolute

convergence of the Dirichlet series.

Remark 3.1.6 By a celebrated theorem of Weierstass (see [3, 133, 115]) if

a series of analytic functions converges uniformly on each compact subset of

a set A ⊂ C, then the sum is analytic on A. Then Proposition 3.1.5 ensures

that if a Dirichlet series converges at s0 ∈ C then it is analytic on the region

{s ∈ C : <s > <s0}. We will not use this important fact.

Proposition 3.1.7 Let (an)n∈N be a sequence of complex numbers. If the
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Dirichlet series
∑∞

n=1
an
ns is absolutely convergent at s = s0, then it is M -test

convergent on {s ∈ C : <s ≥ <s0}.

Proof Just note that∣∣∣an
ns

∣∣∣ =
∣∣∣ an
ns0

∣∣∣ · ∣∣∣∣ 1

ns−s0

∣∣∣∣ ≤ ∣∣∣ anns0 ∣∣∣ · 1

n<s−<s0
≤
∣∣∣ an
ns0

∣∣∣
for all n ≥ 1.

A sequence (an)n∈N of complex numbers is called strictly multiplicative if

a1 = 1 and anm = anam for all n,m ≥ 1. (3.5)

We are now in position to state and prove one of the central results of this

chapter. We use analytic methods to prove a number theoretical result from

the algebraic property (3.5). Its consequence, Euler product formula (3.11),

is a landmark in number theory.

Theorem 3.1.8 Let (an)n∈N be a strictly multiplicative sequence of complex

numbers. Suppose that the associated Dirichlet series converges at s ∈ C and

that |ap| < ps for each prime p. Then for such an s, the Dirichlet series has

the product expansion

∞∑
n=1

an
ns

=
∏

p prime

1

1− app−s
.

Proof First of all, the in�nite product in the right hand side converges by

Proposition 3.1.3 applied to the sequence (
ap
ps )p prime. For n,m ≥ 1 we set

Pn = {p prime : p ≤ n}, Sn =
n∑
k=1

ak
ks
, S =

∞∑
k=1

ak
ks
,

Ξn,m =
∏
p∈Pn

(
m∑
h=0

aph

phs

)
=
∏
p∈Pn

(
1 +

ap
ps

+
ap2

p2s
+ · · ·+ apm

pms

)
,

Ξn =
∏
p∈Pn

1

1− app−s
, and Ξ =

∏
p prime

1

1− app−s
.

Note that we have to prove that S = Ξ. Then, since (ap)
k = apk (by strict

multiplicativity), the formula for the sum of a geometric series and an easy
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combinatorial argument yield

Ξn − Ξn,m =
∏
p∈Pn

( ∞∑
h=0

aph

phs

)
−
∏
p∈Pn

(
m∑
h=0

aph

phs

)

=
∏
p∈Pn

(
m∑
h=0

aph

phs
+

∞∑
h=m+1

aph

phs

)
−
∏
p∈Pn

(
m∑
h=0

aph

phs

)

=
∑
A⊆Pn:
A 6=∅

 ∏
p∈Pn\A

(
m∑
h=0

aph

phs

)
·
∏
p∈A

( ∞∑
h=m+1

aph

phs

) .
(3.6)

For n,m ≥ 1 we also set

Qn,m = {k = ph11 ph22 · · · p
ht
t : pi prime, p1, p2, . . . , pt ≤ n, h1, h2, . . . , ht ≤ m}.

Clearly, 1 ∈ Qn,m. Since the sequence (an)n∈N is strictly multiplicative, if

k = ph11 ph22 · · · p
ht
t then

ak = (ap1)h1(ap2)h2 · · · (apt)ht and
ak
ks

=
ah1p1

ph1s1

ah2p2

ph2s2

· · ·
ahtpt

phtst
.

Then

Ξn,m =
∏
p∈Pn

(
m∑
h=0

aph

phs

)
=

∑
k∈Qn,m

ak
ks

(3.7)

because in evaluating the product we get all possible factorizations of integers

in Qn,m.

Let ε > 0. By the convergence assumption, we can �nd an integer nε such

that, for all n > nε,

|Sn − S| < ε and |Ξn − Ξ| < ε. (3.8)

Fix n > nε. Then, by virtue of (3.6), for m su�ciently large we have

|Ξn − Ξn,m| ≤
∑
A⊆Pn:
A 6=∅

 ∏
p∈Pn\A

(
m∑
h=0

|aph |
|phs|

)
·
∏
p∈A

( ∞∑
h=m+1

|aph |
|phs|

)

≤ 2|Pn|

( ∞∑
k=1

|ak|
|ks|

)|Pn| ∞∑
k=m+1

|ak|
|ks|

< ε

(3.9)
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because n is �xed,
∑∞

k=1
|ak|
|ks| converges, A 6= ∅, and, for any p ∈ A,

∞∑
h=m+1

|aph |
|phs|

≤
∞∑

k=m+1

|ak|
|ks|

which tends to 0 as m→ +∞ (for the last inequality, just note that certainly

pm+1 ≥ m+ 1).

Moreover, if in addition m ≥ log2 n, we clearly have Qn,m ⊇ {1, 2, . . . , n}.
As a consequence, (3.7) and (3.8) imply that

|Ξn,m − Sn| ≤

∣∣∣∣∣∣∣∣
∑

k∈Qn,m:
k>n

ak
ks

∣∣∣∣∣∣∣∣ ≤
∞∑

k=n+1

|ak|
|ks|
≤ ε. (3.10)

Finally, from (3.8), (3.9), and (3.10), we deduce that

|S − Ξ| ≤ |S − Sn|+ |Sn − Ξn,m|+ |Ξn,m − Ξn|+ |Ξn − Ξ| ≤ 4ε.

As ε was arbitrary, this ends the proof.

If an = 1 for all n ∈ N, then the sequence is strictly multiplicative and the

associated Dirichlet series is the celebrated Riemann zeta function

ζ(s) =
∑
n=1

1

ns
.

From the equality | 1
ns | =

1
n<s

we deduce that this series converges absolutely

at each s ∈ C with <s > 1. From Theorem 3.1.8 we deduce, as a particular

case, the Euler product formula

ζ(s) =
∏

p prime

1

1− p−s
(3.11)

for all s ∈ C with <s > 1.

Remark 3.1.9

(i) Examining the proof of Theorem 3.1.8 in the case of the Riemann

zeta function, that is, considering the expressions

1

ns
=

1

psh11 psh22 · · · pshtt

and
1

1− p−s
=

∞∑
h=0

1

psh
,
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the identity
∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s

may be seen as an analytic formulation of the fundamental theorem

of arithmetic (see Exercise 1.1.9).

(ii) Actually, the Riemann zeta function has a meromorphic continuation

on the whole C with exactly one simple pole at s = 1 with residue 1.

For this and other properties and applications of the Riemann zeta

functions we refer to [151].

We end this section by analyzing two remarkable asymptotic estimates for

partial sums of particular values of the Riemann zeta function.

Proposition 3.1.10

(i) There exists γ > 0 (the so-called Euler-Mascheroni constant) such

that, for all n ≥ 1,

n∑
k=1

1

k
= log n+ γ +O(

1

n
).

(ii) There exists σ ∈ R such that, for all n ≥ 1,

n∑
k=1

1√
k

= 2
√
n+ σ +O(

1√
n

).

Proof (i) Set

γk =
1

k
−
∫ k+1

k

1

x
dx.

Since 1
k+1 <

1
x <

1
k for k < x < k + 1, we get

1

k + 1
<

∫ k+1

k

1

x
dx <

1

k

so that

0 < γk <
1

k
− 1

k + 1
. (3.12)

It follows that the series
∑∞

k=1 γk is convergent and has positive terms.

Let us de�ne γ as the sum of such a series.
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Let n ≥ 1. From (3.12) we get

∞∑
k=n+1

γk = lim
m→∞

m∑
k=n+1

γk ≤ lim
m→∞

m∑
k=n+1

(
1

k
− 1

k + 1

)
= lim

m→∞

(
1

n+ 1
− 1

m+ 1

)
=

1

n+ 1
<

1

n
.

Finally, from

γ −
∞∑

k=n+1

γk =

n∑
k=1

1

k
−

n∑
k=1

∫ k+1

k

1

x
dx

=
n∑
k=1

1

k
−
∫ n+1

1

1

x
dx

=

n∑
k=1

1

k
− log(n+ 1)

we deduce (using 1
n ≥ log(1 + 1

n) = log(n+ 1)− log n > 0) that

|
n∑
k=1

1

k
− γ − log n| = | log(1 +

1

n
)−

∞∑
k=n+1

γk| ≤
2

n
.

(ii) We set

ηk =
1√
k
−
∫ k+1

k

1√
x
dx.

Arguing as in the proof of (i), but replacing x and k by
√
x and

√
k, respec-

tively, we get

0 < ηk <
1√
k
− 1√

k + 1

which replaces (3.12). We deduce that the series
∑∞

k=1 ηk converges so that,

denoting by η the sum of such a series,
∑∞

k=n+1 ηk ≤
1√
n
and

η −
∞∑

k=n+1

ηk =

n∑
k=1

1√
k
− 2
√
n+ 1 + 2.

Finally, setting σ = η − 2, we get

|
n∑
k=1

1√
k
− σ − 2

√
n| = |2

(√
n+ 1−

√
n
)
−

∞∑
k=n+1

ηk| ≤
3√
n
,

where the last inequality follows from
√
n+ 1−

√
n ≤ 1√

n
.
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We will also use the following elementary inequality: for s > 1

ζ(s) ≤ 1 +
∞∑
n=2

∫ n

n−1

1

ts
dt = 1 +

∫ +∞

1

1

ts
ds = 1 +

1

s− 1
, (3.13)

where the inequality follows from 1
ns ≤

1
ts , for n− 1 ≤ t ≤ n.

3.2 Preliminaries on multiplicative characters

In this section we consider the multiplicative characters of the ring Z/mZ,
that is, the characters of the multiplicative Abelian group U(Z/mZ) (see

Section 1.4), where m is a positive integer. If ψ ∈ ̂U(Z/mZ) we extend it

to the whole Z/mZ by setting ψ(x) = 0 if x ∈ Z/mZ is not invertible and

then we think of it as an m-periodic function de�ned on Z. More precisely,

if ψ ∈ ̂U(Z/mZ), the associated Dirichlet character χ = χψ is the function

χ : Z→ T ∪ {0} de�ned by setting

χ(n) =

{
ψ(n) if gcd(n,m) = 1

0 otherwise,

for all n ∈ Z, where, as usual, n ∈ Z/mZ denotes the class n+mZ. Clearly,
χ(1) = ψ(1) = 1 and χ(nk) = χ(n)χ(k) for all k, n ∈ Z; thus a Dirichlet

character is strictly multiplicative (see (3.5)). The principal Dirichlet char-

acter mod m, denoted by χ0, is the extension of the trivial character, that

is,

χ0(n) =

{
1 if gcd(n,m) = 1

0 otherwise,

for all n ∈ Z. We denote byDC(m) the set of all Dirichlet characters modm.

From Corollary 1.5.3 and Corollary 2.3.4 we deduce that |DC(m)| = ϕ(m).

If gcd(n,m) = 1, we de�ne a variant ∆n of the Dirac function, by setting,

∆n(k) =

{
1 if k ≡ n mod m

0 otherwise,
(3.14)

for all k ∈ Z. In other words, ∆n is the characteristic function of the class

n mod m. Clearly, for the Abelian multiplicative group U(Z/mZ) a Fourier

analysis (as described in Section 2.4) is still valid: we may translate it in

terms of the Dirichlet characters, as follows.
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Proposition 3.2.1 If gcd(n,m) = 1, then, for all k ∈ Z,

∆n(k) =
1

ϕ(m)

∑
χ∈DC(m)

χ(n)χ(k).

Proof The Fourier transform of ∆n (assuming 0 < n ≤ m− 1) yields

∆̂n(χ) =

m−1∑
h=0

∆n(h)χ(h) = χ(n),

for all χ ∈ DC(m). Then we may apply the Fourier inversion formula (2.16).

We now describe some speci�c technical results on the Dirichlet characters.

We begin with a cancellation property.

Lemma 3.2.2 Let χ ∈ DC(m). If χ 6= χ0, then∣∣∣∣∣
n∑
k=1

χ(k)

∣∣∣∣∣ < m

for all n ∈ N.

Proof Indeed, the orthogonality relations for characters (Proposition 2.3.5)

yield

(h+1)m∑
k=hm+1

χ(k) =

(h+1)m∑
k=hm+1

χ(k)χ0(k) = 0,

for all h ∈ N. Therefore, if n = qm+ r, with 0 ≤ r < m, we have

n∑
k=1

χ(k) =

q−1∑
h=0

(h+1)m∑
k=hm+1

χ(k) +

qm+r∑
k=qm+1

χ(k) =

r∑
k=1

χ(k)

so that ∣∣∣∣∣
n∑
k=1

χ(k)

∣∣∣∣∣ ≤
r∑

k=1

|χ(k)| ≤ r < m.

Lemma 3.2.3 For all χ ∈ DC(m), χ 6= χ0, and for all positive integers

h < n, we have the following asymptotic estimates:

n∑
k=h

χ(k)√
k

= O(
1√
h

); (3.15)
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n∑
k=h

χ(k)

k
= O(

1

h
). (3.16)

Proof First of all, by applying the mean value theorem to the function

f(x) = 1√
x
we get

1√
k + 1

− 1√
k

= [(k + 1)− k]f ′(ξ) = − 1

2ξ3/2

for some ξ ∈ [k, k + 1] so that

0 ≤ 1√
k
− 1√

k + 1
≤ 1

2k
√
k
. (3.17)

Using (3.4) with zn = χ(n), wn = 1√
n
, and Zn =

∑n
k=1 χ(k), we have

n∑
k=h

χ(k)√
k

=

n−1∑
k=h

Zk

(
1√
k
− 1√

k + 1

)
+
Zn√
n
− Zh−1√

h
.

But, by Lemma 3.2.2, |Zk| ≤ m, so that (3.17) yields∣∣∣∣∣
n−1∑
k=h

Zk

(
1√
k
− 1√

k + 1

)∣∣∣∣∣ ≤ m

2

∞∑
k=h

1

k3/2
≤ m

2

∫ +∞

h−1

1

x3/2
dx =

m√
h− 1

≤ 2m√
h

for h ≥ 2 which, together with the trivial estimate
∣∣∣ Zn√n − Zh−1√

h

∣∣∣ ≤ 2m√
h
, proves

(3.15). The proof of (3.16) is similar, but now one uses the inequality (for

h ≥ 2)

n−1∑
k=h

(
1

k
− 1

k + 1

)
≤
∞∑
k=h

1

k2
≤
∫ +∞

h−1

1

x2
dx =

1

h− 1
≤ 2

h
.

De�nition 3.2.4 A Dirichlet character χ ∈ DC(m) is called real if χ(n) ∈ R
(so that χ(n) ∈ {−1, 0, 1}) for all n ∈ Z.

Lemma 3.2.5 If χ ∈ DC(m) is real, then, for all n ∈ N, we have

∑
k∈N:
k|n

χ(k) ≥

{
0 for all n ∈ N
1 if n is a square.
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Proof If n = ph, p prime, then the divisors of n are 1, p, . . . , ph−1, ph so that∑
k∈N:
k|n

χ(k) = χ(1) + χ(p) + · · ·+ χ(ph−1) + χ(ph)

= χ(1) + χ(p) + · · ·+ χ(p)h−1 + χ(p)h

=


h+ 1 if χ(p) = 1

1 if χ(p) = −1 and h is even

0 if χ(p) = −1 and h is odd

1 if χ(p) = 0.

Note also that χ(p) = 0 if and only if p|m. If n = ph11 ph22 · · · p
ht
t is the prime

factorization of n as the product of distinct primes, then∑
k∈N:
k|n

χ(k) =
t∏

j=1

[
χ(1) + χ(pj) + χ(pj)

2 + · · ·+ χ(pj)
hj
]

so that the sum in the left hand side vanishes if and only if χ(pj) = −1 and

hj is odd for at least one j ∈ {1, 2, . . . , t}, otherwise the sum is ≥ 1.

For the last result of this section, we make use of a simple technique

developed by Dirichlet (but for another problem in number theory, the so-

called divisor problem; see [150]). For f : N× N→ C and h ∈ N we set

Sh =
∑
n,k∈N:
nk≤h

f(n, k).

We can write this sum in the following useful ways:

Sh =
h∑
`=1

∑
n,k∈N:
nk=`

f(n, k) (summation along hyperbolas)

=

h∑
n=1

h/n∑
k=1

f(n, k) (vertical summation)

=

h∑
k=1

h/k∑
n=1

f(n, k) (horizontal summation).

Proposition 3.2.6 Let χ ∈ DC(m), χ 6= χ0, and suppose that χ is real. Set

f(n, k) =
χ(k)√
nk
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for all n, k ≥ 1 and

Sh =
∑
n,k∈N:
nk≤h

f(n, k)

for all h ≥ 1. Then there exists a constant c > 0 such that, for all h ≥ 1,

Sh ≥ c log h.

Proof Using summation along hyperbolas, we get

Sh =

h∑
`=1

∑
n,k∈N:
nk=`

χ(k)√
nk

=
h∑
`=1

1√
`

∑
k∈N:
k|`

χ(k)

(by Lemma 3.2.5 and ` = t2) ≥

√
h∑

t=1

1

t

(by Proposition 3.1.10.(i)) ≥ c log h,

for some c > 0 su�ciently small.

3.3 Dirichlet L-functions

De�nition 3.3.1 Let m ∈ N and χ ∈ DC(m). The associated Dirichlet

L-function is the complex function function L(·, χ) de�ned by setting

L(s, χ) =
∞∑
n=1

χ(n)

ns

for all s ∈ C where the series converges.

Since |χ(n)| ≤ 1 for all n ∈ N, the function L(s, χ) is de�ned for all s ∈ C
with <s > 1, because for these values the series is absolutely convergent:∣∣∣∣χ(n)

ns

∣∣∣∣ ≤ 1

n<s
.

We limit ourselves to give the most elementary properties of L-functions,

following again our main reference [150]. More extensive treatments may

be found in [13, 81]. For instance, L(s, χ) may be extended to an analytic
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(respectively, meromorphic with just a simple pole at s = 1) to the whole C,
if χ 6= χ0 (respectively, χ = χ0).

From Theorem 3.1.8, since any χ ∈ DC(m) is strictly multiplicative, we

deduce that

L(s, χ) =
∏

p prime

1

1− χ(p)p−s
(Dirichlet formula)

for all s ∈ C with <s > 1. In the case χ = 1, Dirichlet formula reduces to

Euler product formula (see (3.11)).

Proposition 3.3.2 Let m = ph11 ph22 · · · p
ht
t be the factorization of m into

powers of distinct primes, then

L(s, χ0) =

t∏
j=1

(1− p−sj ) · ζ(s),

for all s ∈ C with <s > 1.

Proof Indeed, by Dirichlet formula,

L(s, χ0) =
∏

p prime:
p-m

1

1− p−s

since

χ0(p) =

{
1 if p - m
0 if p|m.

Following [150], we now focus our study to the case s ∈ R, that is, we

analyze L(·, χ) mainly as a function of a real variable. This leads to a more

elementary and simpler proof and more speci�c statements. However, note

that, in general, L(s, χ) ∈ C, even if s ∈ R.

Proposition 3.3.3 Let χ ∈ DC(m), χ 6= χ0. Then

(i) L(s, χ) converges for s > 0 and the convergence is uniform on each

compact subset of (0,+∞);

(ii) the map s 7→ L(s, χ) is C1(0,+∞);

(iii) for s→ +∞

L(s, χ) = 1 +O(2−s) and L′(s, χ) = O(2−s).
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Proof (i) Set zk = χ(k) and wk = 1
ks in the summation by parts formula

(3.4). Then, Lemma 3.2.2 yields |Zn| ≤ m for all n ∈ N and therefore, by

(3.4), for 0 < h ≤ n and s > 0,∣∣∣∣∣
n∑
k=h

χ(k)

ks

∣∣∣∣∣ ≤
n−1∑
k=h

m

[
1

ks
− 1

(k + 1)s

]
+
m

hs
+
m

ns
=

2m

hs

which tends to 0 as h → +∞. Then, by the Cauchy criterion, the series

de�ning L(s, χ) converges at all s > 0 and, moreover, it converges uniformly

on each compact set in (0,+∞), by Proposition 3.1.5.

(ii) First of all, note that if we set g(x) = x−s log x for x > 0, then

g′(x) = x−s−1(1− s log x) and, for x > 1,

|g′(x)| ≤ x−s−1(1 + s log x)

= x−s−1 + x−s−1 log xs

≤ 3x−1−s/2

since x−s ≤ x−s/2 and log xs = 2 log xs/2 ≤ 2xs/2, for x > 1 and s > 0. By

the mean value theorem, it follows that, for k ∈ N,∣∣∣∣ log k

ks
− log(k + 1)

(k + 1)s

∣∣∣∣ ≤ max
[k,k+1]

g′(x) ≤ 3

k1+s/2
. (3.18)

Then, by di�erentiating the series de�ning L(s, χ) we get

L′(s, χ) =

∞∑
n=2

− log n

ns
χ(n).

Setting zk = χ(k) and wk = log k
ks in (3.4) and using |Zk| ≤ m as in (i), we

get ∣∣∣∣∣
n∑
k=h

− log k

ks
χ(k)

∣∣∣∣∣ ≤
n−1∑
k=h

m

∣∣∣∣ log(k + 1)

(k + 1)s
− log k

ks

∣∣∣∣+m
log h

hs
+m

log n

ns

(by (3.18)) ≤ 3m
n−1∑
k=h

1

k1+s/2
+m

log h

hs
+m

log n

ns

which tends to 0 uniformly in s ∈ [δ,+∞), δ > 0, as h < n tend to +∞.

In other words, the uniform convergence of
∑∞

k=1
1

k1+s/2
in [δ,+∞), δ > 0,

together with the Cauchy criterion, ensures the uniform convergence of the

series of L′(s, χ).
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(iii) Fix s0 > 1 and set C =
∑∞

n=2
1
ns0 . Then for s ≥ s0 we have

|L(s, χ)− 1| ≤
∞∑
n=2

1

ns

= 2−s
∞∑
n=2

1

(n/2)s

≤ 2−s
∞∑
n=2

1

(n/2)s0

= 2s0C2−s = O(2−s).

Similarly, ∣∣L′(s, χ)
∣∣ ≤ ∞∑

n=2

log n

ns
= 2−s

∞∑
n=2

log n

(n/2)s
= O(2−s).

Remark 3.3.4 Actually, from Proposition 3.3.3.(i) and elementary complex

analysis, a stronger result than Proposition 3.3.3.(ii) follows, namely, that

L(s, χ) is analytic on {s ∈ C : <s > 0}; see [88]. But, as mentioned at

the beginning of this section, this is not the strongest result: L(s, χ) has an

analytic continuation on the whole C, if χ 6= χ0.

Corollary 3.3.5 For χ ∈ DC(m), χ 6= χ0, the integral∫ +∞

s

L′(t, χ)

L(t, χ)
dt

is convergent for all s > 1.

Proof From Proposition 3.3.3.(iii) it follows that

L′(t, χ)

L(t, χ)
= O(2−t)

as t → +∞. Note also that L(t, χ) 6= 0 for t > 1, by Proposition 3.1.3 and

Dirichlet product formula.

Proposition 3.3.6 For s > 1 and χ 6= χ0, de�ne the logarithm of L(s, χ)

by setting

logL(s, χ) = −
∫ +∞

s

L′(t, χ)

L(t, χ)
dt.
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Then, for s > 1, we have

exp[logL(s, χ)] = L(s, χ), (3.19)

logL(s, χ) =
∑

p prime

log
1

1− χ(p)p−s
(3.20)

where the logarithm in the right hand side is de�ned by means of (3.1), and

∏
χ∈DC(m)

L(s, χ) = exp

ϕ(m)
∑

p prime

∞∑
k=1

∆1(pk)

kpks

 , (3.21)

where ∆1 is as in (3.14).

Proof We have

d

ds
{L(s, χ) exp[− logL(s, χ)]} = L′(s, χ) exp[− logL(s, χ)]

− L(s, χ) · L
′(s, χ)

L(s, χ)
exp[− logL(s, χ)]

= 0

and by Proposition 3.3.3.(iii),

lim
s→+∞

L(s, χ) exp[− logL(s, χ)] = 1.

Since the argument of the above limit is constant, (3.19) follows.

We now prove (3.20). First of all, we note that by Proposition 3.1.1.(iv)

and Proposition 3.1.3, the series at right hand side is uniformly convergent on

each interval [δ,+∞), δ > 1, so that it is continuous in (1,+∞). Moreover,

for s > 1, the exponential of both sides of (3.20) is equal to L(s, χ). Indeed,

for the left hand side this follows from (3.19), while, for the right hand side,

exp

 ∑
p prime

log
1

1− χ(p)p−s

 =
∏

p prime

1

1− χ(p)p−s
= L(s, χ),

where the �rst equality follows from (3.3) and the second from Dirichlet

product formula. Since exp has imaginary period equal to 2π, it follows that

there exists an integer valued function h such that

logL(s, χ) =
∑

p prime

log
1

1− χ(p)p−s
+ 2πih(s).
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But h is continuous, because both sides of (3.20) are continuous, and there-

fore it is constant. Since both sides of (3.20) tend to zero for s→ +∞, this

constant is equal to zero, and (3.20) is proved.

We now turn to the proof of (3.21). By (3.20) we have:

∏
χ∈DC(m)

L(s, χ) = exp

 ∑
χ∈DC(m)

∑
p prime

log
1

1− χ(p)p−s


= exp

 ∑
p prime

∑
χ∈DC(m)

log
1

1− χ(p)p−s


(by (3.1)) = exp

 ∑
p prime

∑
χ∈DC(m)

∞∑
k=1

χ(pk)

kpks


= exp

 ∑
p prime

∞∑
k=1

1

kpks

∑
χ∈DC(m)

χ(pk)


(by Proposition 3.2.1) = exp

ϕ(m)
∑

p prime

∞∑
k=1

∆1(pk)

kpks

 .

Corollary 3.3.7 For s > 1 the product in the left hand side of (3.21) is real

and satis�es ∏
χ∈DC(m)

L(s, χ) ≥ 1. (3.22)

Proof The argument of the exponential in the right hand side of (3.21) is

real and nonnegative.

Lemma 3.3.8 With the assumptions and notation as in Proposition 3.2.6

we have:

Sh = 2
√
hL(1, χ) +O(1).

Proof We partition Ah = {(n, k) ∈ N× N : nk ≤ h}, the summation region

in the de�nition of Sh, into the regions

A
(1)
h =

{
(n, k) ∈ N× N : 1 ≤ n ≤

√
h,
√
h < k ≤ h

n

}
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A
(2)
h =

{
(n, k) ∈ N× N : 1 ≤ k ≤

√
h, 1 ≤ n ≤ h

k

}
.

Correspondingly, Sh = S
(1)
h + S

(2)
h , where

S
(1)
h =

∑
(n,k)∈A(1)

h

χ(k)√
nk

=
∑
n≤
√
h

1√
n

 ∑
√
h<k≤ h

n

χ(k)√
k


(the last equality follows from vertical summation) and

S
(2)
h =

∑
(n,k)∈A(2)

h

χ(k)√
nk

=
∑

1≤k≤
√
h

χ(k)√
k

∑
n≤h

k

1√
n


(the last equality follows from horizontal summation). Then

∣∣∣S(1)
h

∣∣∣ ≤ ∑
n≤
√
h

1√
n

∣∣∣∣∣∣∣
∑

√
h<k≤ h

n

χ(k)√
k

∣∣∣∣∣∣∣
(by (3.15)) =

∑
n≤
√
h

1√
n
O
(

1
4
√
h

)
(by Proposition 3.1.10.(ii)) = O(1),

(3.23)

and, by Proposition 3.1.10.(ii),

S
(2)
h =

∑
1≤k≤

√
h

χ(k)√
k

[
2

√
h

k
+ σ +O

(√
k

h

)]

= 2
√
hL(1, χ) +O(1)

(3.24)

where in the last equality we have used the following estimates:

2
√
h
∑

1≤k≤
√
h

χ(k)

k
= 2
√
hL(1, χ)− 2

√
h
∑
k>
√
h

χ(k)

k

(by (3.16)) = 2
√
hL(1, χ) + 2

√
h O
(

1√
h

)
= 2
√
hL(1, χ) +O(1),

by (3.15)

σ
∑

1≤k≤
√
h

χ(k)√
k

= O(1),



98 Dirichlet's theorem on primes in arithmetic progressions

and, �nally, for some constant C > 0,∣∣∣∣∣∣
∑

1≤k≤
√
h

χ(k)√
k
O

(√
k

h

)∣∣∣∣∣∣ ≤ C√
h

∣∣∣∣∣∣
∑

1≤k≤
√
h

χ(k)

∣∣∣∣∣∣ = O(1).

From (3.23) and (3.24) the proof immediately follows.

We are now in position to state and prove the main technical result in the

proof of the Dirichlet Theorem. Most of the preliminary results will be used,

directly or indirectly, in its proof.

Theorem 3.3.9 (Dirichlet) Let χ ∈ DC(m) and suppose that χ 6= χ0.

Then

L(1, χ) 6= 0.

Proof First of all, we establish two simple inequalities. If L(1, χ) = 0 then

there exist C1 > 0 such that

|L(s, χ)| ≤ C1|s− 1| (3.25)

for 1 ≤ s ≤ 2 (this follows from the mean value theorem; recall also Propo-

sition 3.3.3.(ii)), and there exists C2 > 0 such that

|L(s, χ0)| ≤ C2

|s− 1|
(3.26)

for 1 < s ≤ 2. Indeed, by Proposition 3.3.2 we have

|L(s, χ0)| ≤
t∏

j=1

|1− p−sj | · |ζ(s)|

(by (3.13)) ≤ C
(

1 +
1

s− 1

)
≤ C2

s− 1
,

where C = max1≤s≤2
∏t
j=1 |1 − p

−s
j | and C1 = 2C. The rest of the proof is

divided into two cases.

First case: χ is complex, that is χ(n) ∈ C\R for some n ∈ Z. Therefore, χ 6=
χ. By contradiction, assume L(1, χ) = 0. Then also L(1, χ) = L(1, χ) = 0.

But then, taking into account (3.22), (3.25), (3.26), and the notation therein,
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we have, for 1 < s ≤ 2,

1 ≤
∏

χ′∈DC(m)

L(s, χ′) = L(s, χ)L(s, χ)L(s, χ0) ·
∏

χ′∈DC(m):
χ′ 6=χ,χ,χ0

L(s, χ′)

≤ C2
1 |s− 1|2 · C2

|s− 1|
· C3 = C1C2C3|s− 1|,

where C3 > 0 is a constant (cf. Proposition 3.3.3), a contradiction.

Second case χ 6= χ0 is real valued, that is, χ(n) ∈ {−1, 0, 1} for all n ∈ Z.
On the one hand, by Proposition 3.2.6 and the notation therein, we have

Sh ≥ c log h

while, on the other hand, by Lemma 3.3.8, we have

Sh =
√
hL(1, χ) +O(1).

This clearly leads to a contradiction if L(1, χ) = 0.

3.4 Euler's theorem

In this section we present a celebrated theorem of Euler. We begin with a

further technical result which is a consequence of Theorem 3.3.9.

Theorem 3.4.1 Let χ ∈ DC(m). If χ 6= χ0 then∑
p prime

χ(p)

ps
= O(1)

for s→ 1+.

Proof By virtue of (3.20), for s→ 1+ we have

logL(s, χ) =
∑

p prime

log
1

1− χ(p)p−s

(by Proposition 3.1.1.(iii)) =
∑

p prime

χ(p)

ps
+O

 ∑
p prime

1

p2s


=

∑
p prime

χ(p)

ps
+O(1).

On the other hand, since L′(t, χ) and L(t, χ) are continuous in (0,+∞)
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(Proposition 3.3.3) and L(1, χ) 6= 0 (Theorem 3.3.9), by Corollary 3.3.5 and

Proposition 3.3.6 we have

logL(s, χ) = −
∫ +∞

s

L′(t, χ)

L(t, χ)
dt = O(1)

for s→ 1+.

We are now in position to state and prove Euler's theorem. We give two

proofs: the �rst one is Euler's original proof and follows from some of the

results in the preceding sections; the second proof is due to Erd®s and it is

more elementary but based on a clever trick ([59]; see also [5]).

Theorem 3.4.2 (Euler) ∑
p prime

1

p
= +∞.

Euler's proof For s > 1 the zeta function ζ(s) is real valued and, by virtue

of Euler product formula (3.11), we have (here log is the usual real function)

log ζ(s) =
∑

p prime

log
1

1− p−s

(by Proposition 3.1.1.(iii)) =
∑

p prime

[
1

ps
+R

(
1

ps

)]
.

Moreover, again from Proposition 3.1.1.(iii) we deduce that∣∣∣∣∣∣
∑

p prime

R

(
1

ps

)∣∣∣∣∣∣ ≤
∑

p prime

1

p2s
≤
∞∑
n=1

1

n2
=
π2

6
.

Therefore, ∑
p prime

1

ps
≥ log ζ(s)− π2

6

which tends to +∞ for s → 1+, since ζ(s) =
∑∞

n=1
1
ns tends to +∞ for

s→ 1+. �
Erd®s' proof By contradiction, assume that∑

p prime

1

p
< +∞.

Then there exists a partition P
∐
Q of the set of all primes such that P is
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�nite and ∑
p∈Q

1

p
<

1

2
. (3.27)

For n ∈ N, set

An = {k ∈ N : k ≤ n, k is divisible by at least one prime in Q}

Bn = {k ∈ N : k ≤ n, k is divisible only by primes in P}.

Clearly,

{1, 2, . . . , n} = An
∐

Bn. (3.28)

From (3.27) we get

|An| ≤
∑
p∈Q

n

p
<
n

2
(3.29)

because if p ∈ Q, then the multiples of p less than or equal to n are at most

n/p. We now estimate the cardinality of Bn.

We uniquely write each k ∈ Bn as the product of a square and a square-free
integer

k = s2
krk,

in other words sk is the largest divisor of k such that s2
k divides k. We �rst

note that there are at most 2|P | possible choices for rk (this is a product

of all primes in P each with exponent 0 or 1). Moreover, it is clear that

sk ≤
√
k ≤
√
n so that, altogether

|Bn| ≤ 2|P |
√
n. (3.30)

Then for

n = 22|P |+4

we have 2|P | =
√
n

4 and therefore, by virtue of (3.28),

n = |An|+ |Bn|

(by (3.29) and (3.30)) ≤ n

2
+ 2|P |

√
n

=
n

2
+
n

4
=

3

4
n,

a contradiction. �
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3.5 Dirichlet's theorem

Theorem 3.5.1 (Dirichlet's theorem on primes in arithmetic pro-

gressions) Let m, r ∈ N and suppose that gcd(m, r) = 1. Then the arith-

metic progression

r, r +m, r + 2m, r + 3m, . . . , r + km, . . .

contains in�nitely many primes.

Proof We show that

lim
s→1+

∑
p prime:

p≡r mod m

1

ps
= +∞, (3.31)

from which it immediately follows that the set {p prime: p ≡ r mod m} is
in�nite. (3.31) is clearly a generalization of Theorem 3.4.2, but it requires

a lot more work. The �rst step is the use of the discrete Fourier inversion

formula in Proposition 3.2.1 (with n = r and k = p): for s > 1 we have∑
p prime:

p≡r mod m

1

ps
=

∑
p prime

∆r(p)

ps

=
1

ϕ(m)

∑
χ∈DC(m)

χ(r)
∑

p prime

χ(p)

ps

(since χ0(r) = 1) =
1

ϕ(m)

∑
p prime

χ0(p)

ps
+

1

ϕ(m)

∑
χ∈DC(m)
χ 6=χ0

χ(r)
∑

p prime

χ(p)

ps
.

Now, on the one hand, by Euler's theorem (Therorem 3.4.2) and the fact

that there are only �nitely many primes p dividing m,∑
p prime

χ0(p)

ps
=
∑
p-m

1

ps
→ +∞

for s→ 1+. On the other hand, for χ 6= χ0 Theorem 3.4.1 ensures that the

quantity
∑

p prime
χ(p)
ps is bounded for s→ 1+.

Remark 3.5.2 One of the most important and di�cult results in num-

ber theory proved in recent years is the celebrated Green-Tao theorem [66]

which states that the set of prime numbers contains arbitrarily long arith-

metic progressions. This may be considered as a kind of �reciprocal� of
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Dirichlet's theorem which ensures that certain arithmetic progressions con-

tain in�nitely many primes. The Green-Tao theorem, also, is a particular

case of a celebrated conjecture, due to Erd®s, on arithmetic progressions

which states that if A is an in�nite subset of N such that
∑

n∈A 1/n = +∞,

then A contains arbitrarily long arithmetic progressions. Other particular

cases of Erd®s' conjecture are the celebrated theorems of Roth [131] and

Szemerédi [155, 156] which we do not state here but for which we refer to

the expository paper by Tao [158]. We only mention that Erd®s' conjecture

is still open and that a prize of 3000 USD is o�ered for its proof or disproof.



4

Spectral Analysis of the DFT and Number Theory

In this chapter, following [104] and the exposition in [15], we present the

spectral analysis of the normalized Fourier transform on Zn (cf. Exercise

2.4.13). In the last two sections, as an application, we recover some classical

results in number theory due to Gauss and Schur including the celebrated

law of quadratic reciprocity.

4.1 Preliminary Results

We will use the notation and convention as in the beginning of Section 2.2.

This way, the normalized Fourier transform F : L(Zn) → L(Zn) is given

by

[Ff ](m) =
1√
n

n−1∑
k=0

f(k)ω−km

for all f ∈ L(Zn) and m ∈ Zn; see De�nition 2.4.1.

Similarly, the corresponding inverse Fourier transform F−1 : L(Zn) →
L(Zn) is given by

[F−1f ](m) =
1√
n

n−1∑
k=0

f(k)ωkm

for all f ∈ L(Zn) and m ∈ Zn. Note also that now Proposition 2.4.6.(iv)

becomes

F(f1 ∗ f2) =
√
n F(f1)F(f2).

Recall (cf. De�nition 2.4.14) that for f ∈ L(Zn) we denote by f− ∈ L(Zn)

the function de�ned by f−(x) = f(−x) for all x ∈ Zn.

104
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Lemma 4.1.1

(i) F−1F = FF−1 = idL(Zn).

(ii) F and F−1 are unitary operators.

(iii) F2f = f− for all f ∈ L(Zn).

(iv) Fχm =
√
nδm for all m ∈ Zn.

(v) Fδm = 1√
n
χ−m = 1√

n
χn−m.

Proof (i) and (ii) are just a reformulation of the Fourier inversion formula

(Theorem 2.4.2) and the Plancherel formula (Theorem 2.4.3), respectively;

they can also be immediate deduced from the orthogonality relations (Propo-

sition 2.3.5).

(iii) Let f ∈ L(Zn) and m ∈ Zn. Then

[F2f ](m) =
1

n

n−1∑
h=0

(
n−1∑
k=0

f(k)ω−kh

)
ω−hm

=

n−1∑
k=0

f(k)
1

n

n−1∑
h=0

χ−k(h)χm(h)

(by (2.7)) =
n−1∑
k=0

f(k)δ0(−k −m)

= f(−m).

(iv) Let m,h ∈ Zn. Then

[Fχm](h) =
1√
n

n−1∑
k=0

χm(k)χh(k)

(by (2.7)) =
1√
n
nδ0(m− h)

=
√
nδm(h).

(v) Let m,h ∈ Zn. Then

[Fδm](h) =
1√
n

n−1∑
k=0

δm(k)ω−hk

=
1√
n
ω−mh

=
1√
n
χ−m(h).
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Proposition 4.1.2 Let m ∈ Zn.

(i) F4 = idL(Zn);

(ii) F2δm = δ−m ≡ δn−m;

(iii) F2χm = χ−m ≡ χn−m.

Proof (i), (ii), and (iii) follow immediately from Lemma 4.1.1 after observing

that (f−)− = f for all f ∈ L(Zn), (χm)− = χ−m, and (δm)− = δ−m.

Theorem 4.1.3 The characteristic polynomial p(λ) ∈ C[λ] of F2 is given

by

p(λ) =

{
(λ− 1)

n+1
2 (λ+ 1)

n−1
2 if n is odd

(λ− 1)
n+2
2 (λ+ 1)

n−2
2 if n is even.

Proof By virtue of Proposition 4.1.2.(ii), the matrix An ∈ Mn,n(C) repre-

senting F2 in the basis {δ0, δ1, . . . , δn−1} is given by

An =


1 0 · · · 0 0

0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0

 .

For 1 ≤ k ≤ n− 1 de�ne Bk ∈Mk,k(C) by setting

Bk =


0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

0 1 0 · · · 0

1 0 0 · · · 0

 .

Then

det(λIn −An) = (λ− 1) det(λIn−1 −Bn−1) (4.1)
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and

det(λIn−1 −Bn−1) =

∣∣∣∣∣∣∣∣∣∣∣

λ 0 · · · 0 −1

0 λ · · · −1 0
...

...
. . .

...
...

0 −1 · · · λ 0

−1 0 · · · 0 λ

∣∣∣∣∣∣∣∣∣∣∣
= λ

∣∣∣∣∣∣∣∣∣
λ · · · −1 0
...

. . .
...

...

−1 · · · λ 0

0 · · · 0 λ

∣∣∣∣∣∣∣∣∣+ (−1)n−2

∣∣∣∣∣∣∣∣∣
0 λ · · · −1
...

...
...

...

0 −1 · · · λ

−1 0 · · · 0

∣∣∣∣∣∣∣∣∣
= λ2 det(λIn−3 −Bn−3) + (−1)2n−5 det(λIn−3 −Bn−3)

= (λ2 − 1) det(λIn−3 −Bn−3)

so that, keeping in mind (4.1),

det(λIn −An) = (λ2 − 1)(λ− 1) det(λIn−3 −Bn−3)

= (λ2 − 1) det(λIn−2 −An−2).

Since

det(λI3 −A3) =

∣∣∣∣∣∣
λ− 1 0 0

0 λ −1

0 −1 λ

∣∣∣∣∣∣ = (λ− 1)(λ2 − 1) = (λ− 1)2(λ+ 1)

and

det(λI2 −A2) =

∣∣∣∣λ− 1 0

0 λ− 1

∣∣∣∣ = (λ− 1)2,

the statement follows by induction.

By virtue of Proposition 4.1.2.(i), the minimal polynomial of F divides λ4−
1, and therefore its eigenvalues are among ±1,±i; see [91] for the relations

among eigenvalues and the minimal polynomial. Let us show that from the

trace TrF of F we can recover the geometric/algebraic multiplicity of these

eigenvalues.

Proposition 4.1.4 Suppose that Tr(F) = α + iβ. Denote by m1 (respec-

tively m2, m3, m4) the multiplicity of 1 (respectively −1, i,−i). If n is odd

(respectively even), then the ms constitute the unique solution of the linear
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system 
m1 −m2 = α

m3 −m4 = β

m1 +m2 = n+1
2 (respectively n+2

2 )

m3 +m4 = n−1
2 (respectively n−2

2 ).

Proof By de�nition of the trace, we immediately have Tr(F) = m1 −m2 +

i(m3 −m4): this explains the �rst two equations. Moreover, m1 + m2 (re-

spectivelym3+m4) is the multiplicity of 1 (respectively −1) as an eigenvalue

of F2. Thus the last two equations follow from Theorem 4.1.3.

In what follows, for x ∈ R, we denote by [x] ∈ Z the greatest integer less

than or equal to x. Setting ν = [n/2] + 1 we consider the functions

δ0 and δj + δn−j for j = 1, 2, . . . , ν − 1 (4.2)

and

δk − δn−k for k = 1, 2, . . . , n− ν. (4.3)

For example, if n = 4 then ν = 3 and the functions in (4.2) are δ0, δ1+δ3 ≡
δ1 +δ−1, and 2δ2 ≡ δ2 +δ−2 (note that these are even functions), while there

is only one in (4.3), namely δ1 − δ3 ≡ δ1 − δ−1 (note that this is, in turn, an

odd function).

If n = 5, then ν = 3 and the functions in (4.2) are δ0, δ1 + δ4 ≡ δ1 − δ−1,

and δ2 + δ3 ≡ δ2 + δ−2 (note that these are even functions), while those in

(4.3) are δ1 − δ4 ≡ δ1 − δ−1, and δ2 − δ3 ≡ δ2 − δ−2 (note that these are, in

turn, odd functions).

Note that, more generally, if n = 2h is even, then ν = h + 1 and δν−1 +

δn−ν+1 = δh + δ−h = 2δh.

Moreover, we observe that ν − 1 = [n/2] ≤ n/2, and j ≤ n− j ⇔ j ≤ n/2
(resp. n − ν = n − 1 − [n/2] < n/2, and k < n − k ⇔ k < n/2). It follows

that the n functions in (4.2) and (4.3) are all distinct and nontrivial.

Let L+(Zn) ⊆ L(Zn) (respectively L−(Zn) ⊆ L(Zn)) denote the subspace

of complex valued even (respectively odd) functions on Zn.

Proposition 4.1.5 The functions in (4.2) are even, i.e. belong to L+(Zn),

while those in (4.3) are odd, i.e. belong to L−(Zn). Moreover, the functions

in (4.2) and (4.3) altogether form an orthogonal basis of the whole L(Zn).

In particular, we have the orthogonal decomposition

L(Zn) = L+(Zn)⊕ L−(Zn) (4.4)
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and dimL+(Zn) = ν + 1 and dimL−(Zn) = n − ν. Moreover, (4.4) is the

spectral decomposition of F2: L+(Zn) is the eigenspace corresponding to 1

and L−(Zn) is the eigenspace corresponding to −1.

Proof Since δs(−t) = δ−s(t) = δn−s(t) for all s, t ∈ Zn, it is clear that the
functions in (4.2) (respectively (4.3)) are even (respectively odd). The mu-

tual orthogonality of functions in (4.2) (respectively (4.3)) is obvious since

their supports are disjoint. On the other hand any function in (4.2) is or-

thogonal to any function in (4.3) since either their supports are disjoint,

or they have the same support, say {s, t}, and then 〈δs + δt, δs − δt〉 =

〈δs, δs〉 − 〈δt, δt〉 = 0. Finally, it is clear that n orthogonal functions consti-

tute a basis of L(Zn). The remaining statements are now clear; in partic-

ular, the last statement follows from Lemma 4.1.1.(iii) or from Proposition

4.1.2.(ii).

Lemma 4.1.6 Let f ∈ L(Zn) be an eigenvector of F . Then either f is

even and its associated eigenvalue is 1 or −1, or f is odd and its associated

eigenvalue is i or −i.

Proof Let λ denote the eigenvalue associated with f , that is, Ff = λf .

Then F2f = λ2f . We now express f in the basis in Proposition 4.1.5, that

is,

f = a0δ0 +

ν−1∑
j=1

aj(δj + δn−j) +

n−ν∑
k=1

bk(δk − δn−k)

with a0, a1, . . . , aν−1, b1, b2, . . . , bn−ν ∈ C. Then, by Proposition 4.1.2.(ii) we

have

F2f = a0δ0 +
ν−1∑
j=1

aj(δj + δn−j)−
n−ν∑
k=1

bk(δk − δn−k)

so that the condition F2f = λ2f yields

a0δ0 +
ν−1∑
j=1

aj(δn−j + δj)−
n−ν∑
k=1

bk(δk − δn−k)

= λ2a0δ0 +

ν−1∑
j=1

λ2aj(δj + δn−j) +

n−ν∑
k=1

λ2bk(δk − δn−k) (4.5)
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that is,

(λ2 − 1)aj = 0 for j = 0, 1, . . . , ν − 1

(λ2 + 1)bk = 0 for k = 1, 2 . . . , n− ν.

It follows that if λ = ±i then aj = 0 for j = 1, 2, . . . , ν − 1, and therefore f

is odd, while if λ = ±1 then bk = 0 for k = 1, 2, . . . , n − ν, and therefore f

is even.

Exercise 4.1.7 Let ν = [n/2] + 1 as above. Let f ∈ L(Zn).

Show that if f is even, then

Ff(m) =
1√
n
f(0) +

2√
n

ν−2∑
k=1

f(k) cos
2kmπ

n

+

{
2√
n
f(ν − 1) cos 2(ν−1)mπ

n if n is odd

1√
n
f(ν − 1)(−1)m if n is even

(4.6)

for all m ∈ Zn, and Ff = F−1f .

Show that if f is odd, then

Ff(m) =
−2i√
n

n−ν∑
k=1

f(k) sin
2kmπ

n

for all m ∈ Zn, and F−1f = −Ff .

Exercise 4.1.8 (cf. [54])

(1) Suppose that F ∈ L(Zn) is even and de�ne T ∈ End(L(Zn)) by

setting

[Tf ](x) = [f ∗ F ](x) +
√
n[FF ](x)f(x)

for all f ∈ L(Zn) and x ∈ Zn. Show that

TF = FT.

(2) Deduce from (1) that the matrix

2 1 0 0 · · · 0 0 1

1 2 cos 2π
n 1 0 · · · 0 0 0

0 1 2 cos 4π
n 1 · · · 0 0 0

...
...

...
...

...
...

0 0 0 0 · · · 1 2 cos 2(n−2)π
n 1

1 0 0 0 · · · 0 1 2 cos 2(n−1)π
n
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commutes with the matrix (2.22) of the Fourier transform.

4.2 The decomposition into eigenspaces

This section and the next one are among the most important sections of the

book. We achieve a complete spectral theory of the DFT on Zn by showing a
decomposition into eigenspaces together with a careful computation of their

dimensions.

Let us now set

W1 = {Fg + g : g ∈ L+(Zn)}
W2 = {Fg − g : g ∈ L+(Zn)}
W3 = {iFg − g : g ∈ L−(Zn)}
W4 = {iFg + g : g ∈ L−(Zn)}.

Theorem 4.2.1 For the Fourier transform F the following holds:

• W1 is the eigenspace corresponding to 1

• W2 is the eigenspace corresponding to −1

• W3 is the eigenspace corresponding to i

• W4 is the eigenspace corresponding to −i

so that

L+(Zn) = W1 ⊕W2 and L−(Zn) = W3 ⊕W4

and therefore

L(Zn) = W1 ⊕W2 ⊕W3 ⊕W4

is the decomposition of L(Zn) into the eigenspaces of F .

Proof First of all, we show that each Wj , j = 1, 2, 3, 4, is an eigenspace.

Indeed, if g ∈ L+(Zn) then, by virtue of Lemma 4.1.1.(iii), F2g = g, and

therefore the functions f+ = Fg + g ∈W1 and f− = Fg − g ∈W2 satisfy:

Ff± = F(Fg ± g)

= g ±Fg
= ±(Fg ± g)

= ±f±.

Similarly, if g ∈ L−(Zn) then, again by virtue of Lemma 4.1.1.(iii), F2g =
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−g, so that the functions fi = iFg−g ∈W3 and f−i = iFg+g ∈W4 satisfy:

Ff±i = F(iFg ∓ g)

= −ig ∓Fg
= ±i(iFg ∓ g)

= ±if±i.

For the converse we use repeatedly Lemma 4.1.6. Thus, if Ff = f , then

f is even and f = Fg + g, with g = 1
2f ∈ L+(Zn); if Ff = −f , then f is

still even and f = Fg − g with g = −1
2f ∈ L+(Zn); if Ff = if , then f is

odd and f = iFg − g with g = −1
2f ∈ L−(Zn); �nally, if Ff = −if , then f

is odd and f = iFg + g with g = 1
2f ∈ L−(Zn).

Since F is unitary, L(Zn) can be expressed as the direct orthogonal sum

of its eigenspaces and the remaining statements are trivial.

Exercise 4.2.2 LetW be a �nite dimensional Hermitian space and T : W →
W a unitary operator. Suppose that T 4 = IW . Show that the eigenspaces

of T 2 may be used to construct the eigenspaces of T as in Theorem 4.2.1.

Exercise 4.2.3 LetW be a �nite dimensional Hermitian space and T : W →
W a unitary operator. Suppose that Tn = IW for some positive integer n

and let ω be an n-th root of unity.

(1) Show that a vector w ∈ W satis�es Tw = ωw if and only if there

exists v ∈W such that

w = Tn−1v + ωTn−2v + · · ·+ ωn−1v.

(2) Suppose that n = hk with 1 < h, k < n and set S = T h (so that

Sk = I). Show that w ∈ W satis�es Tw = ωw if and only if w =

T h−1v + ωT h−2v + · · ·+ ωh−1v for some v ∈W such that Sv = ωhv.

We are now in position to exhibit suitable bases for the spacesW1,W2,W3

andW4 in Theorem 4.2.1. One of the main tools is the notion of a Chebyshëv

set: we refer to Appendix 1 for the corresponding de�nition and related

properties. Moreover, we work separately on each of the spaces W1,W2,W3

and W4, and we summarize the results in Theorem 4.3.1. In particular, for

each space we consider 4 di�erent cases, corresponding to the congruence

modulo 4 of n.

Theorem 4.2.4 Let n = 4m + r, with r ∈ {0, 1, 2, 3}. Then the functions

u0, u1, . . . , um ∈W1 de�ned by setting

u0 =
√
n(Fδ0 + δ0),
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uj =

√
n

2
[F(δj + δ−j) + δj + δ−j ]

for j = 1, 2, . . . ,m− 1, and

um =


√
n(Fδ2m + δ2m) if n = 4m
√
n

2 [F(δ2m + δ−2m) + δ2m + δ−2m] if n = 4m+ 1
√
n

2 [F(δm + δ−m) + δm + δ−m] if n = 4m+ 2, 4m+ 3

are linearly independent.

Proof We divide the proof into the four cases corresponding to the possible

values of r.

n = 4m. It su�ces to show that the restrictions of u0, u1, . . . , um to the set

{m,m + 1, . . . , 2m} ⊆ Zn are linearly independent. Therefore, we consider

the (m+ 1)-dimensional vectors:

zj = (uj(m), uj(m+ 1), . . . , uj(2m)) (4.7)

for j = 0, 1, . . . ,m. By virtue of Lemma 4.1.1.(v) we have:

• u0 = χ0 +
√
nδ0 and therefore z0 = (1, 1, . . . , 1);

• uj = 1
2(χj +χ−j)+

√
n

2 (δj +δ−j) and therefore, since 1
2(χj +χ−j)(m+

k) = cos πj(m+k)
2m ,

zj =

(
cos

π

2
j, cos

π(m+ 1)

2m
j, . . . , cos

π(m+ k)

2m
j, . . . , cos(πj)

)
for j = 1, 2, . . . ,m− 1;

• um = χ2m+
√
nδ2m and, since χ2m(m+k) = cosπ(m+k)+i sinπ(m+

k) = (−1)m+k,

zm = ((−1)m, (−1)m+1, . . . , (−1)2m−1, 1 +
√
n).

We conclude by using Proposition A1.0.2.(ii) applied to the Chebyshëv set

{1, cos θ, . . . , cos(m − 1)θ} (cf. Proposition A1.0.3) with tk = π(m+k)
2m , for

k = 0, 1, . . . ,m.

n = 4m+ 1. Following the previous case, we consider again the vectors (4.7):

• z0 = (1, 1, . . . , 1);

• since 1
2(χj + χ−j)(m+ k) = cos 2π(m+k)

4m+1 j,

zj =

(
cos

2mπ

4m+ 1
j, cos

2π(m+ 1)

4m+ 1
j, . . . , cos

2π(m+ k)

4m+ 1
j, . . . , cos

4mπ

4m+ 1
j

)
for j = 1, 2, . . . ,m− 1 ;
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• since 1
2(χ2m + χ−2m)(k +m) = cos 4m(m+k)π

4m+1 ,

zm=

(
cos

4m2π

4m+ 1
, cos

4m(m+ 1)π

4m+ 1
, . . . , cos

4m(2m− 1)π

4m+ 1
, cos

8m2π

4m+ 1
+

√
n

2

)
.

Thus we can conclude as in the previous case by taking tk = 2π(m+k)
4m+1 and

sk = cos 4m(m+k)π
4m+1 for k = 0, 1, . . . ,m − 1, and sm = cos 8m2π

4m+1 +
√
n

2 . Just

note that

cos
4m(m+ k)π

4m+ 1
= cos

[
(m+ k)π − m+ k

4m+ 1
π

]
= (−1)m+k cos

(m+ k)π

4m+ 1

and (m+k)π
4m+1 < π

2 for k = 0, 1, . . . ,m so that the sks alternate in sign,

and, for k = m − 1 one has (−1)2m−1 = −1 so that sm−1 < 0, while

sm = cos 2mπ
4m+1 +

√
n

2 > 0.

n = 4m+ 2. We proceed as in the previous cases, now appealing to Propo-

sition A1.0.2.(i) and replacing (4.7) by

zj = (uj(m+ 1), uj(m+ 2), . . . , uj(2m+ 1)).

From the equality

1

2
(χj + χ−j)(m+ k) = cos

2π(m+ k)j

4m+ 2
= cos

π(m+ k)j

2m+ 1

we get the (m+ 1)-dimensional vectors

zj =

(
cos

(m+ 1)π

2m+ 1
j, cos

(m+ 2)π

2m+ 1
j, . . . , cos

(m+ k)π

2m+ 1
j, . . . , cosπj

)
for j = 0, 1, . . . ,m. The Chebyshëv set is again {1, cos θ, . . . , cosmθ} and
tk = π(m+k)

2m+1 , for k = 1, 2, . . . ,m+ 1.

n = 4m+ 3. Now 1
2(χj + χ−j)(m + k) = cos 2π(m+k)j

4m+3 so that, as in the

preceding case,

zj =

(
cos

2π(m+ 1)

4m+ 3
j, cos

2π(m+ 2)

4m+ 3
j, . . . , cos

2π(2m+ 1)

4m+ 3
j

)
for j = 0, 1, . . . ,m, and we may apply Proposition A1.0.2.(i) with the same

Chebyshëv set as in the previous case and tk = 2π(m+k)
4m+3 , for k = 1, 2, . . . ,m+

1.
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Theorem 4.2.5 Let n = 4m+r, with r ∈ {0, 1, 2, 3}. Consider the functions
v0, v1, . . . , vm ∈W2 de�ned by

v0 =
√
n(Fδ0 − δ0)

and

vj =

√
n

2
[F(δj + δ−j)− (δj + δ−j)]

for j = 1, 2, . . . ,m. Then the following holds:

• if n = 4m, 4m + 1, then the functions v0, v1, . . . , vm−1 are linearly

independent;

• if n = 4m + 2, 4m + 3, then the functions v0, v1, . . . , vm are linearly

independent.

Proof As for the proof of Theorem 4.2.4, we divide the proof into the four

cases corresponding to the possible values of r.

n = 4m. Arguing as in the cases n = 4m + 2 and n = 4m + 3 in the proof

of Theorem 4.2.4, and evaluating the functions at the points {m + k : k =

1, 2, . . . ,m} we get the vectors

zj =

(
cos

π(m+ 1)

2m
j, cos

π(m+ 2)

2m
j, . . . , cos

π(m+ k)

2m
j, . . . , cosπj

)
for j = 0, 1, . . . ,m − 1, and we may apply Proposition A1.0.2.(i) to the

Chebyshëv set {1, cos θ, . . . , cos(m−1)θ} with tk = π(m+k)
2m , for k = 1, 2, . . . ,m.

n = 4m+ 1. This is very similar to the previous case: now

zj=

(
cos

2π(m+ 1)

4m+ 1
j, cos

2π(m+ 2)

4m+ 1
j, . . . , cos

2π(m+ k)

4m+ 1
j, . . . , cos

4πm

4m+ 1
j

)
for j = 0, 1, . . . ,m − 1, and we may apply Proposition A1.0.2 to the same

Chebyshëv set as above and tk = 2π(m+k)
4m+1 , for k = 1, 2, . . . ,m.

n = 4m+ 2. This leads exactly to the same vectors as in case n = 4m + 2

of Theorem 4.2.4, evaluating the functions at the points {m + k : k =

1, 2, . . . ,m+ 1}.

n = 4m+ 3. This leads exactly to the same vectors as in case n = 4m +

3 of Theorem 4.2.4, evaluating the functions at the points {m + k : k =

1, 2, . . . ,m+ 1}.
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Theorem 4.2.6 Let again n = 4m + r, with r ∈ {0, 1, 2, 3}. Consider the

functions

wj =

√
n

2
[iF(δj − δ−j)− (δj − δ−j)] ∈W3

for j = 1, 2, . . . ,m. Then the following holds

• if n = 4m then the functions w1, w2, . . . , wm−1 are linearly indepen-

dent;

• if n = 4m+ 1, 4m+ 2, 4m+ 3 then the functions w1, w2, . . . , wm are

linearly independent.

Proof Here, we divide the proof into two cases.

n = 4m. For k ≥ 1 and j ≥ 1, by virtue of Lemma 4.1.1.(v)

wj(m+ k) =
i

2
(χ−j − χj)(m+ k) = sin

πj(m+ k)

2m
.

Therefore, if we restrict to the set {m + k : k = 1, 2, . . . ,m − 1} we get the
(m− 1)-dimensional vectors

zj =

(
sin

π(m+ 1)

2m
j, sin

π(m+ 2)

2m
j, . . . , sin

π(m+ k)

2m
j, . . . , sin

π(2m− 1)

2m
j

)
for j = 1, 2, . . . ,m−1, and we can apply Proposition A1.0.2 to the Chebyshëv

set {sin θ, sin 2θ, . . . , sin(m− 1)θ} (cf. Proposition A1.0.3) with tk = π(m+k)
2m

for k = 1, 2, . . . ,m− 1.

n = 4m+ r, r = 1, 2, 3. Now we restrict to the set {m+ k : k = 1, 2, . . . ,m}
obtaining the m-dimensional vectors

zj =

(
sin

2π(m+ 1)

4m+ r
j, sin

2π(m+ 2)

4m+ r
j, . . . , sin

2π(m+ k)

4m+ r
j, . . . , sin

4πm

4m+ r
j

)
for j = 1, 2, . . . ,m. Using the Chebyshëv set {sin θ, sin 2θ, . . . , sinmθ} (cf.
Proposition A1.0.3) with tk = 2π(m+k)

4m+r , for k = 1, 2, . . . ,m, we conclude the

proof.

Theorem 4.2.7 Let again n = 4m + r, with r ∈ {0, 1, 2, 3}. Consider the

functions

zj =

√
n

2
[iF(δj − δ−j) + δj − δ−j ]
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for j = 1, 2, . . . ,m− 1,

zm =

√
n

2

{
iF(δ2m−1 − δ−2m+1) + δ2m−1 − δ−2m+1 if r = 0

iF(δm − δ−m) + δm − δ−m if r = 1, 2, 3

and, only for r = 3,

zm+1 =

√
n

2
[iF(δ2m+1 − δ−2m−1) + δ2m+1 − δ−2m−1] .

Then, all these functions belong to W4 (cf. Theorem 4.2.1) and the following

holds:

• if r = 0, 1, 2 then the functions z1, z2, . . . , zm are linearly independent;

• if r = 3 then the functions z1, z2, . . . , zm, zm+1 are linearly indepen-

dent.

Proof We divide the proof into three cases.

n = 4m. We restrict the functions to the set {m + k : k = 0, 1, . . . ,m − 1}
obtaining the m-dimensional vectors

zj =

(
sin

π

2
j, sin

π(m+ 1)

2m
j, . . . , sin

π(m+ k)

2m
j, . . . , sin

π(2m− 1)

2m
j

)
for j = 1, 2, . . . ,m− 1 and, since

sin
π(m+ k)(2m− 1)

2m
= sin

[
π(m+ k)− π(m+ k)

2m

]
= (−1)m+k+1 sin

π(m+ k)

2m
,

with sin π(m+k)
2m > 0 (because 0 < π(m+k)

2m < π
2 ), for k = 0, 1, . . . ,m− 1, and

zm(2m− 1) = sin (2m−1)π
2m +

√
n

2 > 0, we have

zm =

(
(−1)m+1 sin

π

2
, (−1)m+2 sin

π(m+ 1)

2m
, . . .

. . . (−1)m+k+1 sin
π(m+ k)

2m
, . . . , sin

π(2m− 1)

2m
+

√
n

2

)
.

By Proposition A1.0.2.(ii) with the Chebyshëv set {sin θ, sin 2θ, . . . , sin(m−
1)θ} with tk = π(m+k)

2m , for k = 0, 1, . . . ,m−1 and sk = (−1)m+k+1 sin π(m+k)
2m ,

for k = 0, 1, . . . ,m−2, and sm−1 = sin π(2m−1)
2m +

√
n

2 , this completes the �rst

case.
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n = 4m+ 1, 4m+ 2. These cases lead to the same vectors in the correspond-

ing cases in Theorem 4.2.6.

n = 4m+ 3. We restrict the functions to the set {m+k : k = 1, 2, . . . ,m+1}
obtaining the m-dimensional vectors

zj =

(
sin

2π(m+ 1)

4m+ 3
j, sin

2π(m+ 2)

4m+ 3
j, . . . , sin

2π(2m+ 1)

4m+ 3
j

)
for j = 1, 2, . . . ,m.

Since,

sin
π(m+ k)(4m+ 2)

4m+ 3
= sin

[
π(m+ k)− π(m+ k)

4m+ 3

]
= (−1)m+k+1 sin

π(m+ k)

4m+ 3

with sin π(m+k)
4m+3 > 0, for k = 1, 2, . . . ,m, and

zm+1(2m+ 1) = sin
π(2m+ 1)

4m+ 3
+

√
n

2
> 0,

we conclude by using the Chebyshëv set {sin θ, sin 2θ, . . . , sinmθ} with tk =
2π(m+k)

4m+3 , for k = 1, 2, . . . ,m + 1, and sk = (−1)m+k+1 sin π(m+k)
4m+3 , for k =

1, 2, . . . ,m, and sm+1 = sin π(2m+1)
4m+3 +

√
n

2 .

4.3 Applications: some classical results by Gauss and Schur

Theorem 4.3.1 (Schur) With the notation in Theorem 4.2.1, the multi-

plicities of the eigenvalues of the DFT are given by the following table (recall,

cf. Proposition 4.1.4, that mj = dimWj, for j = 1, 2, 3, 4):

n m1 m2 m3 m4

4m m+ 1 m m− 1 m

4m+ 1 m+ 1 m m m

4m+ 2 m+ 1 m+ 1 m m

4m+ 3 m+ 1 m+ 1 m m+ 1

Table 4.1. The multiplicities of the eigenvalues of the DFT.
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Proof Consider �rst the case n = 4m. Then the following holds:

• Theorem 4.2.4 implies m1 = dimW1 ≥ m+ 1;

• Theorem 4.2.5 implies m2 = dimW2 ≥ m;

• Theorem 4.2.6 implies m3 = dimW3 ≥ m− 1;

• Theorem 4.2.7 implies m4 = dimW4 ≥ m.

Since m1 +m2 +m3 +m4 = 4m, all the inequalities above are indeed equal-

ities.

The other cases can be handled similarly.

Remark 4.3.2 In the previous theorems we have given the spectral analysis

of the matrix (2.22) of the DFT, namely of Fn = 1√
n

(ω−jk)n−1
j,k=0. Other

authors (for instance Auslander and Tolimieri [15] and Terras [159]) consider,

instead, the matrix 1√
n

(ωjk)n−1
j,k=0 (the kth column is switched with the (n−

k)th column).

Corollary 4.3.3 (Gauss, Schur) The trace of F is given by

Tr(F) =


1− i if n ≡ 0 mod 4

1 if n ≡ 1 mod 4

0 if n ≡ 2 mod 4

−i if n ≡ 3 mod 4

and its characteristic polynomial p(λ) ∈ C[λ] is

p(λ) =


(λ− 1)2(λ+ 1)(λ+ i)(λ4 − 1)(n−4)/4 if n ≡ 0 mod 4

(λ− 1)(λ4 − 1)(n−1)/4 if n ≡ 1 mod 4

(λ2 − 1)(λ4 − 1)(n−2)/4 if n ≡ 2 mod 4

(λ2 − 1)(λ+ i)(λ4 − 1)(n−3)/4 if n ≡ 3 mod 4.

Corollary 4.3.4 (Gauss)

n−1∑
k=0

exp

(
2πik2

n

)
=


(1 + i)

√
n if n ≡ 0 mod 4

√
n if n ≡ 1 mod 4

0 if n ≡ 2 mod 4

i
√
n if n ≡ 3 mod 4.

Proof

Tr(F) =

n−1∑
k=0

〈Fδk, δk〉 =

n−1∑
k=0

1√
n
χ−k(k) =

1√
n

n−1∑
k=0

exp

(
−2πik2

n

)
, (4.8)
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where the second equality follows from Lemma 4.1.1.(v). The statement then

follows from Corollary 4.3.3 by conjugating both sides of (4.8).

The case n ≡ 2 mod 4 is trivial, as it is shown in the following exercise.

Exercise 4.3.5 Suppose n ≡ 2 mod 4. Prove the identity

exp

[
2πi

n

(
k +

n

2

)2
]

= − exp
2πik2

n

and deduce the case n ≡ 2 mod 4 in Corollary 4.3.4.

4.4 Quadratic reciprocity and Gauss sums

This section is based on the monographs by Nathanson [118], Ireland and

Rosen [79], Apostol [13], Terras [159], Nagell [117], and the paper [15] by

Auslander and Tolimieri.

De�nition 4.4.1 Let n,m ∈ Z with gcd(n,m) = 1. We say that m is a

quadratic residue mod n if the the congruence

x2 ≡ m mod n (4.9)

has a solution x in Z; otherwise, we say that m is a quadratic nonresidue

mod n.

This section is devoted to the study of the solvability of (4.9). It culminates

with the celebrated Gauss law of quadratic reciprocity (Theorem 4.4.18).

Remark 4.4.2 (1) It is clear that m = 1 + kn is a quadratic residue mod

n for all n ∈ Z \ {0} and k ∈ Z. Indeed, the congruence (4.9) has solution

x = 1.

(2) Let n,m ∈ Z with gcd(n,m) = 1, so that m ∈ U(Z/nZ) (cf. Lemma

1.5.1). Then m is a quadratic residue mod n if and only if m is a square in

U(Z/nZ) (that is, there exists x ∈ U(Z/nZ) such that x2 = m).

(3) Let n1, n2,m ∈ Z with gcd(n2,m) = 1 and n1|n2, and suppose that m

is a quadratic residue mod n2. Set q = n2/n1 ∈ Z and suppose that x is a

solution of the congruence x2 ≡ m mod n2. Then there exists k ∈ Z such

that x2 = n2k + m = n1(qk) + m. This shows, in particular, that m is a

quadratic residue mod n1.

Proposition 4.4.3 Let n,m ∈ Z with gcd(n,m) = 1. Suppose that n = n1n2

with gcd(n1, n2) = 1. Then m is a quadratic residue mod n if and only if it

is a quadratic residue mod ni for i = 1, 2.
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Proof The �only if� part is obvious. Conversely, suppose that there exist

xi ∈ Z such that m ≡ x2
i mod ni, i = 1, 2. By the Chinese reminder theorem

I (Corollary 1.1.23), there exists x ∈ Z such that x ≡ xi mod ni, i = 1, 2.

Then, x2 ≡ x2
i ≡ m mod ni, i = 1, 2, and gcd(n1, n2) = 1 implies x2 ≡ m

mod n1n2.

Lemma 4.4.4 Let 1 ≤ µ ≤ 3 and suppose that m ∈ Z is odd. Then the

following conditions are equivalent:

(a) m is a quadratic residue mod 2µ;

(b) m ≡ 1 mod 2µ.

Proof Suppose that m is a quadratic residue mod 2µ. Then we can �nd

x ∈ Z such that x2 ≡ m mod 2µ. Note that x cannot be even (otherwise m

itself would be even, contradicting the assumptions). Thus there exists h ∈ Z
such that x = 2h+ 1 and therefore m ≡ x2 = (2h+ 1)2 = 4h(h+ 1) + 1 ≡ 1

mod 2µ, since h(h+ 1) ∈ 2Z. This shows the implication (a) ⇒ (b).

Conversely, suppose that m ≡ 1 mod 2µ. Thus we can �nd k ∈ Z such

that m = 1 + 2µk and it follows from Remark 4.4.2.(1) that m = 1 + 2µk is

a quadratic residue mod 2µ.

The following two theorems reduce the problem to the case n is an odd

prime. To simplify notation, we denote by

|n| = 2µpµ11 pµ22 · · · p
µk
k (4.10)

the prime factorization of |n| with the convention that if n is odd, then µ = 0

and the factor 2µ is, in fact, missing.

Theorem 4.4.5 Let p be an odd prime. Then m ∈ Z is a quadratic residue

mod p if and only if m
p−1
2 ≡ 1 mod p.

Proof The multiplicative group F∗p is cyclic of order p − 1 (cf. Theorem

1.1.21). Thus, we can �nd 1 ≤ y ≤ p − 1 such that y generates F∗p. For

x ∈ Z (respectively m ∈ Z) such that p - x (respectively p - m) we choose by

1 ≤ s = s(x) ≤ p− 1 (respectively 1 ≤ t = t(m) ≤ p− 1) such that

ys = x (resp. yt = m), equivalently, ys ≡ x (resp. yt ≡ m) mod p.

Then, m ∈ Z (with gcd(m, p) = 1) is a quadratic residue mod p if and

only if the equation x2 ≡ m mod p has a solution x ∈ Z and, with the

above notation, this holds if and only if the equation y2s = yt, which in

turn is equivalent to the congruence 2s ≡ t mod p−1, has a solution s (with
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1 ≤ s ≤ p−1). But this is the case if and only if t is even (just take s = t/2).

Now

t is even ⇔ t
p− 1

2
≡ 0 mod p− 1 ⇔ (m)

p−1
2 = (y)t

p−1
2 = 1,

where the last equality follows from y having order p− 1.

Theorem 4.4.6 Let n,m ∈ Z with gcd(n,m) = 1. Let (4.10) be the prime

factorization of |n|. Then, m is a quadratic residue mod n if and only if the

following conditions are satis�ed:

(i) m
pj−1

2 ≡ 1 mod pj for j = 1, 2, . . . , k;

(ii) and, (only) if n is even,

• m ≡ 1 mod 2µ if µ = 1, 2;

• m ≡ 1 mod 8 if µ ≥ 3.

Proof It follows from Proposition 4.4.3 that (4.9) has a solution (that is,

m is a quadratic residue mod n) if and only if all the equations x2 ≡ m

mod p
µj
j for all j = 1, 2, . . . , k and, (only) if n is even, x2 ≡ m mod 2µ,

have a solution.

Claim 1. m ∈ Z is a quadratic residue mod 2µ if and only if

• m ≡ 1 mod 2µ if µ = 1, 2;

• m ≡ 1 mod 8 if µ ≥ 3.

If 1 ≤ µ ≤ 3, the claim is equivalent to Lemma 4.4.4.

Suppose that µ > 3 and that m is a quadratic residue mod 2µ. Then, it

follows from Remark 4.4.2.(3) with n1 = 8 and n2 = 2µ thatm is a quadratic

residue mod 8. From Lemma 4.4.4 we deduce that m ≡ 1 mod 8.

For the converse, suppose that m ≡ 1 mod 8. We show, by induction on

t ≥ 3, that the congruence x2 ≡ m mod 2t has a solution in Z. For t = 3,

the statement follows from Lemma 4.4.4. Suppose now that for t ≥ 3 there

exists x ∈ Z such that x2 ≡ m mod 2t and let us show that there exists

y ∈ Z such that y2 ≡ m mod 2t+1. Let q ∈ Z be such that

x2 −m = q2t (4.11)

and observe that if q is even then we are done: just take y = x. Therefore
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we suppose that q is odd. Set y = x+ 2t−1. Then we have

y2 −m = (x+ 2t−1)2 −m
= x2 −m+ 2tx+ 22t−2

(by (4.11)) = 2t(q + x) + 2t+12t−3

≡ 0 mod 2t+1,

where the last equality follows from the fact that q + x is even because x is

odd (since m is odd). This completes the proof of the claim.

Claim 2. Let p be an odd prime and µ ≥ 1. Then m ∈ Z is a quadratic

residue mod pµ if and only if m is a quadratic residue mod p.

As in the previous claim, the �only if � part is obvious.

Conversely, we again proceed by induction. The basis is trivial. Suppose

that x2 ≡ m mod pt with t ≥ 1 and let us show that we can �nd y ∈ Z such

that y2 ≡ m mod pt+1. By the inductive hypothesis, we can �nd q ∈ Z such

that

x2 −m = qpt (4.12)

and observe that if q is a multiple of p, then we are done: just take y = x.

Therefore we suppose that p - q. By our assumption we also have p - x and

therefore, since p is odd, gcd(2x, p) = 1. By virtue of Bézout identity, we

can �nd a, b ∈ Z such that ap+ 2bx = −q, equivalently,

q + 2bx = −ap. (4.13)

Set y = x+ ptb. Then we have

y2 −m = (x+ ptb)2 −m
= x2 −m+ 2bxpt + p2tb2

(by (4.12)) = pt(q + 2bx) + pt+1pt−1b2

(by (4.13)) = pt+1(pt−1b2 − a)

≡ 0 mod pt+1.

This completes the proof of the claim.

The statement then follows from Theorem 4.4.5.

From now on, p is a �xed odd prime and we study quadratic residues mod

p.
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De�nition 4.4.7 The Legendre symbol

(
n

p

)
is de�ned by setting

(
n

p

)
=


1 if gcd(n, p) = 1 and n is a quadratic residue mod p

−1 if gcd(n, p) = 1 and n is a quadratic nonresidue mod p

0 if p|n

for every n ∈ Z.

We now collect some basic properties of the Legendre symbol.

Proposition 4.4.8

(i) The map n 7→
(
n

p

)
is constant on the congruence classes mod p, and

therefore it may be seen as a function de�ned on Fp;

(ii) n
p−1
2 ≡

(
n

p

)
mod p for all n ∈ Z;

(iii)

(
mn

p

)
=

(
m

p

)(
n

p

)
for all m,n ∈ Z;

(iv)

(
−1

p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 mod 4

−1 if p ≡ −1 mod 4.

Proof (i) This follows immediately from the de�nition of the Legendre sym-

bol.

(ii) If p|n this is trivial; otherwise, from the fact that the multiplicative

group F∗p has order p − 1, we have np−1 ≡ 1 mod p (cf. Fermat's little

theorem (Exercise 1.1.22)) which implies

(n
p−1
2 − 1) · (n

p−1
2 + 1) = np−1 − 1 ≡ 0 mod p,

that is, n
p−1
2 ≡ ±1 mod p. By Theorem 4.4.5, n

p−1
2 ≡ 1 mod p if and only

if n is a quadratic residue mod p and therefore n
p−1
2 ≡ −1 mod p if and

only if n is a quadratic nonresidue. In both cases, the statement follows from

the de�nition of the Legendre symbol.

(iii) Again, this is obvious if p|n or if p|m, so that we may assume p - n
and p - m (and therefore p - nm). By (ii) we have(

nm

p

)
≡ (nm)

p−1
2 mod p

≡ n
p−1
2 m

p−1
2 mod p

≡
(
n

p

)(
m

p

)
mod p.
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Since p is odd, 1 6≡ −1 mod p and we deduce that

(
nm

p

)
=

(
n

p

)(
m

p

)
.

(iv) This follows from (ii), after taking n = −1 therein.

Corollary 4.4.9 Let Q ⊆ Z (respectively P ⊆ Z) denote the set of quadratic
residues (respectively nonresidues) mod p and denote by Q (respectively P )

its image in Fp. Then P · P ⊆ Q = Q · Q and P · Q = P (respectively

P · P = Q = Q ·Q and P ·Q = P ). Moreover,

|Q| = |P | = p− 1

2
. (4.14)

Proof The inclusions Q ·Q,P ·P ⊆ Q and P ·Q ⊆ P follow immediately from

Proposition 4.4.8.(iii). Since 1 ∈ Q, the equalities Q ·Q = Q and P ·Q = P

follow. Projecting in Fp we have P ·P ⊆ Q = Q ·Q and P ·Q = P . In order

to show the equality P · P = Q and determine the cardinalities of Q and P ,

let us �x an element n ∈ P . We �rst observe that, since Q,P ⊆ Z \ pZ,

Q
∐

P = F∗p. (4.15)

Since multiplication by n yields a bijection of F∗p, from (4.15) we deduce that

nQ
∐

nP = F∗p

so that, since nQ ⊆ P and nP ⊆ Q, we necessarily have that the above

inclusions are indeed equalities. In particular, P · P = Q and (4.14) holds.

Exercise 4.4.10

(1) Deduce Corollary 4.4.9 from the proof of Theorem 4.4.5.

(2) Deduce Proposition 4.4.8.(iii) from Corollary 4.4.9 (which has been

proved independently in (1)).

De�nition 4.4.11 A subset S ⊆ Z of cardinality |S| = p−1
2 is called a

Gaussian set modulo p if, for all n ∈ Z with gcd(n, p) = 1, there exist tn ∈ S
and εn ∈ {1,−1} such that

n ≡ εntn mod p. (4.16)

Exercise 4.4.12 (1) Show that if S is a Gaussian set, then r 6≡ ±s mod p

for all distinct r, s ∈ S.
(2) Show that the sets S1 = {1, 2, . . . , p−1

2 } and S2 = {2, 4, . . . , p− 1} are
Gaussian sets modulo p.
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Lemma 4.4.13 (Gauss' Lemma) Let S be a Gaussian set modulo p.

Then, for every n ∈ Z with gcd(n, p) = 1 we have(
n

p

)
=
∏
s∈S

εns = (−1)k,

where k = |{s ∈ S : εns = −1}|.

Proof First of all, we show that for all s, r ∈ S

tns = tnr ⇔ s = r.

Indeed, if tns = tnr then

nr ≡ εnrtnr mod p

≡ εnrtns mod p

≡ ±εnstns mod p

≡ ±ns mod p

that multiplied by n−1 yields r ≡ ±s mod p. By virtue of Exercise 4.4.12.(1),

we deduce that r = s. In other words, the map s 7→ tns is a permutation of

S so that ∏
s∈S

s ·
∏
s∈S

εns =
∏
s∈S

tns ·
∏
s∈S

εns

=
∏
s∈S

tnsεns

(by (4.16)) ≡
∏
s∈S

sn mod p

(since |S| = p−1
2 ) ≡ n

p−1
2

∏
s∈S

s mod p

(by Proposition 4.4.8.(ii)) ≡
(
n

p

)∏
s∈S

s mod p.

Simplifying by
∏
s∈S s, and taking into account that both

∏
s∈S εns and

(
n

p

)
are equal to either 1 or −1 (and these are di�erent mod p), the lemma follows.

Corollary 4.4.14(
2

p

)
= (−1)

p2−1
8 =

{
1 if p ≡ ±1 mod 8

−1 if p 6≡ ±1 mod 8.
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Proof Take S = {1, 2, . . . , p−1
2 } and n = 2. Then, by Gauss' lemma, we

have

(
2

p

)
= (−1)k, where k is the number of s ∈ S such that ε2s = −1. For

every s ∈ S, we clearly have 2 ≤ 2s ≤ p− 1. Since

2 ≤ 2s ≤ p− 1

2
⇒ 2s ∈ S ⇒ ε2s = 1

while, setting t = p− 2s,

p+ 1

2
≤ 2s ≤ p− 1⇒ 1 ≤ p− 2s ≤ p− 1

2
⇒ t ∈ S

⇒ 2s = p− t ≡ −t mod p⇒ ε2s = −1,

we deduce that k is equal to the number of s ∈ S such that

p+ 1

4
≤ s ≤ p− 1

2
. (4.17)

Now if, on the one hand, p ≡ ±1 mod 8, then we can �nd h ∈ Z such that

p = 8h± 1 and (4.17) becomes

2h+
1

4
± 1

4
≤ s ≤ 4h− 1

2
± 1

2

so that, in both cases, k = 2h and

(
2

p

)
= (−1)2h = 1.

If, on the other hand, p ≡ ±3 mod 8, then we can �nd h ∈ Z such that

p = 8h± 3 and (4.17) becomes

2h+
1

4
± 3

4
≤ s ≤ 4h− 1

2
± 3

2

so that k = 2h± 1 and, in both cases,

(
2

p

)
= (−1)2h±1 = −1.

Now, following the monograph by Nathanson [118], we study the Legendre

symbol as a character of the multiplicative group F∗p. We recall (cf. Section

2.2) that for n, k ∈ Z \ pZ we have de�ned χn(k) = exp
(

2πink
p

)
.

For all n ∈ Z we set

τ(p, n) =

p−1∑
k=1

(
k

p

)
χn(k). (4.18)

Note that setting `p(n) =

(
n

p

)
for all n ∈ Z then, in the notation in Section
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2.4, we have τ(p, n) = ̂̀
p(−n). Clearly,

(
k

p

)
is a multiplicative character (cf.

Proposition 4.4.8.(iii)), while χn is an additive character. Note also that

p−1∑
k=1

(
k

p

)
= 0. (4.19)

Indeed, the left hand side in (4.19) may be seen as the scalar product of the

nontrivial multiplicative character `p with the trivial multiplicative charac-

ter, so that we may use Proposition 2.3.5 (for multiplicative characters of

F∗p).

Theorem 4.4.15 (Gauss) Let n ∈ Z. Then the following holds:

(i) τ(p, n) =

(
n

p

)
τ(p, 1).

(ii) If gcd(n, p) = 1 then

τ(p, n) =

p−1∑
h=0

exp

(
2πih2n

p

)
;

in particular,

τ(p, 1) =

p−1∑
h=0

exp

(
2πih2

p

)
.

(iii)

τ(p, 1) =

{√
p if p ≡ 1 mod 4

i
√
p if p ≡ 3 mod 4

= i
(p−1)2

4
√
p.

Proof We �rst recall that χn(k) = χ1(nk). Assume gcd(n, p) = 1 so that(
n

p

)
= ±1 and, for 1 ≤ k ≤ p− 1,

(
k

p

)
=

(
k

p

)(
n

p

)2

=

(
nk

p

)(
n

p

)
, (4.20)
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where the last equality follows from Proposition 4.4.8.(iii). Then

τ(p, n) =

p−1∑
k=1

(
k

p

)
χn(k)

(by (4.20)) =

(
n

p

) p−1∑
k=1

(
kn

p

)
χn(k)

=

(
n

p

) p−1∑
k=1

(
kn

p

)
χ1(kn)

=

(
n

p

)̂̀
p(−1)

=

(
n

p

)
τ(p, 1).

It is easy to check, by means of (4.19) that if p|n then τ(p, n) = 0, and this

ends the proof of (i).

(ii) Let P (respectively Q) be as in Corollary 4.4.9 and set P ′ = P ∩
{1, 2, . . . , p− 1} (respectively Q′ = Q ∩ {1, 2, . . . , p− 1}).
Let k ∈ Q′ and h ∈ {1, 2, . . . , p − 1} such that h2 ≡ k mod p. Then also

(p− h)2 ≡ h2 ≡ k mod p and p− h 6≡ h mod p. Therefore

p−1∑
h=1

χ1(nh2) = 2
∑
k∈Q′

χ1(nk) (4.21)

and

τ(p, n) =

p−1∑
k=1

(
k

p

)
χ1(nk)

=
∑
k∈Q′

χ1(nk)−
∑
k∈P ′

χ1(nk)

= 1 + 2
∑
k∈Q′

χ1(nk)−
p−1∑
k=0

χ1(nk)

(by (4.21) and (2.5)) = 1 +

p−1∑
h=1

χ1(nh2)

=

p−1∑
h=0

exp

(
2πinh2

p

)
.

(iii) This follows from (ii) and Corollary 4.3.4. Moreover, it is immediate to
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check that

i
(p−1)2

4 =

{
1 if p ≡ 1 mod 4

i if p ≡ 3 mod 4.

De�nition 4.4.16 m,n ∈ Z, n 6= 0, we de�ne the Gauss sum G(m,n) by

setting

G(m,n) =
n−1∑
k=0

exp

(
2πimk2

n

)
(see also De�nition 7.4.1 for Gauss sums over �nite �elds).

Observe that by virtue of Theorem 4.4.15.(ii), if gcd(p, n) = 1 then

τ(p, n) = G(n, p) (4.22)

and that Corollary 4.3.4 may be reformulated in the form

G(1, n) =


(1 + i)

√
n if n ≡ 0 mod 4

√
n if n ≡ 1 mod 4

0 if n ≡ 2 mod 4

i
√
n if n ≡ 3 mod 4.

(4.23)

Proposition 4.4.17 Let m, r, s ∈ Z, r, s 6= 0 and suppose that gcd(r, s) = 1.

Then

G(mr, s)G(ms, r) = G(m, sr).

Proof

G(mr, s)G(ms, r) =

s−1∑
v=0

exp

(
2πimrv2

s

)
·
r−1∑
u=0

exp

(
2πimsu2

r

)

=

s−1∑
v=0

r−1∑
u=0

exp

(
2πim

r2v2 + s2u2

sr

)

(since exp
(
2πim2uvsr

sr

)
= 1) =

s−1∑
v=0

r−1∑
u=0

exp

(
2πim

(rv + su)2

sr

)

(by Lemma 1.1.16) =

sr−1∑
k=0

exp

(
2πi

mk2

sr

)
= G(m, sr).
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We are now in position to prove the main result of this section.

Theorem 4.4.18 (Gauss law of quadratic reciprocity) Let p, q be dis-

tinct odd primes. Then (
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .

Proof By virtue of Theorem 4.4.15 we have

τ(p, q) =

(
q

p

)
τ(p, 1) =

(
q

p

)
i
(p−1)2

4
√
p

and, exchaning p and q,

τ(q, p) =

(
p

q

)
τ(q, 1) =

(
p

q

)
i
(q−1)2

4
√
q.

Moreover, from Proposition 4.4.17 (with r = q, s = p and m = 1) and (4.22)

we deduce that

τ(p, q)τ(q, p) = G(q, p)G(p, q)

= G(1, pq)

(by (4.23)) = i
(pq−1)2

4
√
pq.

Then the equality(
p

q

)(
q

p

)
i
(p−1)2

4
+

(q−1)2

4
√
pq = i

(pq−1)2

4
√
pq

yields the quadratic reciprocity law because

1

4

[
(pq − 1)2 − (p− 1)2 − (q − 1)2

]
=

1

4

[
−2(p− 1)(q − 1) + (p2 − 1)(q2 − 1)

]
and

(4m+ 3)2 ≡ (4m+ 1)2 ≡ 1 mod 4 ⇒ p2 − 1 ≡ q2 − 1 ≡ 0 mod 4,

so that

i
(p2−1)(q2−1)

4 = 1,

while

i
−2(p−1)(q−1)

4 = (−1)
p−1
2
· q−1

2 .
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Exercise 4.4.19 From Theorem 4.4.18 deduce that

(1) if p ≡ 1 mod 4 or q ≡ 1 mod 4 then p is a quadratic residue mod q

if and only if q is a quadratic residue mod p;

(2) if p ≡ q ≡ 3 mod 4 then p is a quadratic residue mod q if and only

if q is a quadratic nonresidue mod p.

For instance, using the congruences

179 ≡ 59 ≡ 3 mod 4, 179 ≡ 2 mod 59, and 59 ≡ 3 mod 8,

we get (
59

179

)
= −

(
179

59

)
= −

(
2

59

)
= 1,

where the last equality follows from Corollary 4.4.14.

Exercise 4.4.20 Deduce the following identities from Proposition 4.4.8 and

Theorem 4.4.15: if gcd(n, p) = 1 and p is an odd prime, then

τ(p, n)2 =

(
−1

p

)
p = (−1)

p−1
2 p;

if q is another distinct odd prime

τ(p, n)q−1 ≡ (−1)
p−1
2
· q−1

2

(
p

q

)
mod q.

Another, more elementary proof of the Gauss law of quadratic reciprocity

will be sketched in Exercise 6.5.7: it avoids Corollary 4.3.4 and, therefore,

all the machinery on the spectral analysis of the DFT.
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The Fast Fourier Transform

The Fast Fourier Transform (for brevity, FFT) is a numerical algorithm for

the computation of the Discrete Fourier Transform. It is one of the most

important algorithms, because it applies to an extremely wide class of nu-

merical problems. It was discovered by Gauss who applied it to astronomical

computations. It was rediscovered several times, and the most celebrated pa-

per devoted to it is the seminal one by Cooley and Tukey [41] (one then often

refers to this algorithm as to the Cooley-Tuckey algorithm).

However, as indicated in [15], this algorithm has also interesting theoretical

interpretations. We will discuss this approach in Section 12.5.

In the present chapter, following the books by Tolimieri, An, and Lu [160]

and by Van Loan [163], as well as the papers [49, 130, 168], we present a ma-

trix theoretic approach to the FFT. Actually, [130] will constitute our main

source, [49] is a fundamental inspiration for our treatment of stride permu-

tations, and [160] has given us the general framework and the treatment of

Rader's algorithm. Recent developments can be found in [46].

Before embarking on the formalism of Kronecker products and shu�e per-

mutations, following the exposition in [150], we present the simplest example

of the FFT.

5.1 A preliminary example

As in Section 2.2, set ωn = exp 2πi
n (note that we have added the subscript

n to ω). Then, the (unnormalized) Discrete Fourier Transform of f ∈ L(Zn)

(cf. De�nition 2.4.1) is given by

f̂
n
(m) =

1

n

n−1∑
k=0

f(k)ω−kmn . (5.1)

We have used the symbol ̂n to emphasize the fact that we are computing

133
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the DFT of a function f ∈ L(Zn). Then the computation of the Fourier

coe�cients of f requires:

• n− 2 multiplications to compute the numbers ω2
n, ω

3
n, . . . , ω

n−1
n (note that

in (5.1) these numbers may occur with repetitions and do all appear in

the expression of some of these coe�cients);

• each coe�cient f̂
n
(m) requires n multiplications (to compute f(k)ω−kmn ),

n− 1 sums, plus a �nal multiplication by 1
n .

Therefore, to compute all Fourier coe�cients, one needs (at most)

(n− 2) + n(n+ (n− 1) + 1) = 2n2 + n− 2 ≤ 2n2 + n = O(n2) (5.2)

elementary operations. We denote by ]n the minimum number of operations

that are needed to compute all the Fourier coe�cients of any function in

L(Zn).

Remark 5.1.1 Note that in the de�nition of ]n, the minimum is over all

possible algorithms: we are not necessarily using the expression of the Fourier

coe�cients provided by their de�nition (i.e. by (5.1)).

We begin with a preliminary lemma.

Lemma 5.1.2

](2n) ≤ 2]n+ 8n.

Proof As above, we may compute the numbers ωk2n, k = 0, 1, . . . , 2n − 1,

with 2n− 2 multiplications. Note also that

ω2r
2n = ωrn and ω2s+1

2n = ω2nω
s
n. (5.3)

Then, for f ∈ L(Z2n) , we de�ne f0, f1 ∈ L(Zn) by setting

f0(k) = f(2k)

f1(k) = f(2k + 1)

for all k = 0, 1, . . . , n− 1. Then

f̂
2n

(m) =
1

2n

2n−1∑
k=0

f(k)ω−km2n

(by (5.3)) =
1

2

[
1

n

n−1∑
r=0

f0(r)ω−rmn +
1

n

n−1∑
s=0

f1(s)ω−m2n ω−smn

]

=
1

2

[
f̂0

n
(m) + ω−m2n f̂1

n
(m)

]
.

(5.4)
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As an application of this formula, in order to compute the coe�cients of f

we need (at most):

• 2]n operations to compute the coe�cients of both f0 and f1,

• 2n− 2 operations to compute the numbers ωk2n, k = 0, 1, . . . , 2n− 1,

• 6n operations (4n multiplications and 2n additions)

so that

](2n) ≤ 2]n+ 8n− 2 ≤ 2]n+ 8n.

Theorem 5.1.3 Let n = 2h. Then the Fourier coe�cients of a function

f ∈ L(Zn) may be computed with at most 2h+2h = 4n log2 n = O(n log n)

operations.

Proof We proceed by induction on h. If h = 1 then n = 2 and the Fourier

coe�cients are

f̂
2
(0) =

1

2
[f(0) + f(1)]

f̂
2
(1) =

1

2
[f(0) + (−1)f(1)] .

These computations require 5 < 8 = 21+2 · 1 operations. Assume the state-

ment for n = 2h, so that ]n ≤ 2h+2h. By Lemma 5.1.2, for 2n = 2h+1 we

have

](2n) ≤ 2]n+ 8n

≤ 2(2h+2h) + 8 · 2h

= 2h+3(h+ 1).

As the above result shows, a factorization of n yields an improvement on

the computation of the DFT. We will explore this after the introduction of

a couple of basic theoretical tools.

5.2 Stride Permutations

Let n,m be two positive integers. By means of the Euclidean algorithm, any

integer 0 ≤ i ≤ nm−1 may be (uniquely) represented in the following forms:

i = sm+ r 0 ≤ s ≤ n− 1, 0 ≤ r ≤ m− 1 (5.5)

i = r̃n+ s̃ 0 ≤ s̃ ≤ n− 1, 0 ≤ r̃ ≤ m− 1. (5.6)
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The expression (5.5) (respectively (5.6)) is called the (m,n)- (respectively

(n,m)-)representation of i.

De�nition 5.2.1 The stride (or shu�e) permutation is the bijection

σ(m,n) : {0, 1, . . . , nm− 1} → {0, 1, . . . , nm− 1}

de�ned by setting

σ(m,n)i ≡ σ(m,n)(sm+ r) = rn+ s

for every 0 ≤ i ≤ nm− 1 represented in the form (5.5).

We now present an alternative description of σ(m,n). Divide the ordered

sequence (0, 1, 2, . . . , nm− 1) into n consecutive blocks, that is,

(0, 1, . . . , nm− 1) = (B0,B1, . . . ,Bn−1)

where B0 = (0, 1, . . . ,m−1), B1 = (m,m+1, . . . , 2m−1),. . . ,Bs = (sm, sm+

1, . . . , sm + r, . . . , (s + 1)m − 1), . . . , and Bn−1 = ((n − 1)m, (n − 1)m +

1, . . . , nm− 1). Then

(σ(m,n)0, σ(m,n)1, . . . , σ(m,n)(nm− 1)) = (C0, C1, . . . , Cn−1)

where the blocks C0, C1, . . . , Cn−1 are the ordered sequences de�ned by setting

Cs = (s, s+ n, . . . , s+ rn, . . . , s+ (m− 1)n) for all s = 0, 1, . . . , n− 1.

������������������������������������

0 1 · · · m−1
m m+1 · · · 2m−1
...

...
. . .

...
(n−1)m (n−1)m+1 · · · nm−1

σ(m,n)−→

0 n · · · (m−1)n
1 n+1 · · · (m−1)n+1
...

...
. . .

...
n−1 2n−1 · · · mn−1

������������������������������������

Table 5.1. The action of the stride permutation σ(m,n): in the �rst array,

the rows are the blocks Bs, while, in the second array, the rows the blocks Cs.

For instance,

σ(3, 2)0 = 0 σ(3, 2)1 = 2 σ(3, 2)2 = 4

σ(3, 2)3 = 1 σ(3, 2)4 = 3 σ(3, 2)5 = 5.

Clearly, σ(m, 1) and σ(1, n) are the identity permutation and

σ(m,n)−1 = σ(n,m). (5.7)

Let now m,n, k be positive integers. Then for any integer 0 ≤ i ≤ mnk−1
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two applications of the Euclidean algorithm yield �rstly i = tmn+ s1, with

0 ≤ t ≤ k−1 and 0 ≤ s1 ≤ mn−1, and then s1 = sm+r, with 0 ≤ s ≤ n−1

and 0 ≤ r ≤ m− 1, so that we may write

i = tmn+ sm+ r. (5.8)

We refer to (5.8) as to the (m,n, k)-representation of i. Moreover the positive

integers t, s, r (or, to emphasize their ordering, the triple (t, s, r)) are called

the coe�cients of this representation.

Lemma 5.2.2 Let 0 ≤ i < mnk−1 with (m,n, k)-representation as in (5.8).

Then

(i)

σ(mn, k)i = smk + rk + t,

that is, the σ(mn, k)-image of i is the number whose coe�cients in

the (k,m, n)-representation are (s, r, t); we then write (symbolically):

[(m,n, k); (t, s, r)]
σ(mn,k)→ [(k,m, n); (s, r, t)];

(ii)

σ(m,nk)i = rnk + tn+ s,

that is, the σ(m,nk)-image of i is the number whose coe�cients in the

(n, k,m)-representation are (r, t, s) and we again write (symbolically):

[(m,n, k); (t, s, r)]
σ(m,nk)→ [(n, k,m); (r, t, s)].

Proof We have

σ(mn, k)(tmn+ sm+ r) = σ(mn, k)[tmn+ (sm+ r)]

(by De�nition 5.2.1) = (sm+ r)k + t

= smk + rk + t

and this gives (i); moreover

σ(m,nk)(tmn+ sm+ r) = σ(m,nk)[(tn+ s)m+ r)]

(by De�nition 5.2.1) = rnk + tn+ s

and (ii) follows as well.

Theorem 5.2.3 (Basic product identities) Let m,n, k be positive inte-

gers. Then

σ(mk, n)σ(mn, k) = σ(m,nk) (5.9)
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σ(n,mk)σ(m,nk) = σ(mn, k). (5.10)

Proof By two applications of Lemma 5.2.2.(i) we get

[(m,n, k); (t, s, r)]
σ(mn,k)→ [(k,m, n); (s, r, t)]

σ(km,n)→ [(n, k,m); (r, t, s)]

which coincides with σ(m, kn) by Lemma 5.2.2.(ii). This proves (5.9).

By two applications of Lemma 5.2.2.(ii) we get

[(m,n, k); (t, s, r)]
σ(m,nk)→ [(n, k,m); (r, t, s)]

σ(n,mk)→ [(k,m, n); (s, r, t)]

which coincides with σ(mn, k) by Lemma 5.2.2.(i). This proves (5.10).

De�nition 5.2.4 Let m,n, k be positive integers. We de�ne the partial

stride permutations ι(m,n, k) and τ(m,n, k) by setting

ι(m,n, k)i = skm+ tm+ r

and

τ(m,n, k)i = tmn+ rn+ s

for all i = tmn+ sm+ r as in (5.8).

Note that in the de�nition of ι(m,n, k) we have skm + tm + r = (sk +

t)m+ r, that is, in i = tmn+ sm+ r = (tn+ s)m+ r we replace tn+ s by

sk + t. Moreover, we have the following (symbolic) representation

[(m,n, k); (t, s, r)]
ι(m,n,k)→ [(m, k, n); (s, t, r)].

Analogously, in the de�nition of τ(m,n, k) we have sm + r replaced by

rn+ s and the corresponding (symbolic) representation is:

[(m,n, k); (t, s, r)]
τ(m,n,k)→ [(n,m, k); (t, r, s)].

Theorem 5.2.5 (Product identities for partial strides) We have

ι(n,m, k)τ(m,n, k) = σ(m,nk) (5.11)

and

τ(m, k, n)ι(m,n, k) = σ(mn, k). (5.12)

Proof We have

[(m,n, k); (t, s, r)]
τ(m,n,k)→ [(n,m, k); (t, r, s)]

ι(n,m,k)→ [(n, k,m); (r, t, s)]
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which coincides with σ(m,nk), proving (5.11). Similarly,

[(m,n, k); (t, s, r)]
ι(m,n,k)→ [(m, k, n); (s, t, r)]

τ(m,k,n)→ [(k,m, n); (s, r, t)]

which coincides with σ(mn, k), proving (5.12).

Theorem 5.2.6 (Mixed products identities)

τ(k,m, n)σ(mn, k) = ι(m,n, k) (5.13)

ι(n, k,m)σ(m,nk) = τ(m,n, k) (5.14)

σ(mk, n)ι(m,n, k) = τ(m,n, k) (5.15)

σ(n,mk)τ(m,n, k) = ι(m,n, k).

Proof The proofs are easy and left as exercises.

Corollary 5.2.7 (Similarity identity)

σ(mn, k)τ(m,n, k)σ(k,mn) = ι(k,m, n).

Proof Starting by using (5.14) we have

σ(mn, k)τ(m,n, k)σ(k,mn) = σ(mn, k)ι(n, k,m)σ(m,nk)σ(k,mn)

(by (5.15) and (5.10)) = τ(n, k,m)σ(mk, n)

(by (5.13)) = ι(k,m, n).

Exercise 5.2.8 Give a direct proof of the similarity identity.

Notation 5.2.9 From now on, given integers 0 ≤ k < n and a map

f : {0, 1, . . . , n − 1} → {0, 1, . . . , n − 1}, we write �f(k) = j mod n� to

indicate that, if j /∈ {0, 1, . . . , n− 1}, then the value f(k) equals the unique

element j′ ∈ {0, 1, . . . , n − 1} such that j′ ≡ j mod n. In other words, we

regard {0, 1, . . . , n−1}, the domain and codomain of f , as the additive group

Zn.

De�nition 5.2.10 Let 0 ≤ k ≤ m − 1 and suppose that gcd(k,m) = 1.

Then the elementary congruence permutation γ(m, k) of {0, 1, . . . ,m− 1} is
de�ned by setting

γ(m, k)j = kj mod m
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for all j = 0, 1, . . . ,m− 1 (recall Lemma 1.5.1).

Let also 0 ≤ h ≤ m − 1 and suppose that gcd(h,m) = 1. Then the

product congruence permutation γ(m, k;n, h) of {0, 1, . . . , nm− 1} is de�ned
by setting

γ(m, k;n, h)i = s′m+ r′

for every i = sm+ r as in (5.5) and s′ = hs mod n and r′ = kr mod m.

The proof of the following proposition is trivial.

Proposition 5.2.11 Let 0 ≤ h, k ≤ m− 1.

(i) If gcd(h,m) = gcd(k,m) = 1 then γ(m, k)γ(m,h) = γ(m,hkmod m)

= γ(m,h)γ(m, k);

(ii) if gcd(k,m) = 1 then γ(m, k)−1 = γ(m, k∗), where k∗ denotes the

inverse of k mod m. 2

De�nition 5.2.12 Suppose that gcd(n,m) = 1. We de�ne one more per-

mutation of {0, 1, . . .mn− 1}, denoted β(m,n), by setting

β(m,n)i = s1m+ r (5.16)

for all i = sm + r as in (5.5), where s1 = s−m∗r mod n (here m∗ denotes

the inverse of m mod n).

Note that β(m,n) de�ned above is indeed a permutation: for, with the

notation as in De�nition 5.2.12, if 0 ≤ s0 ≤ n − 1 and 0 ≤ r0 ≤ m − 1, we

have that β(m,n)i = s0m+ r0 if an only if s1 = s0 and r = r0, so that also

s = m∗r + s0 mod n.

De�nition 5.2.13 Suppose that gcd(m,n) = 1, gcd(k,m) = 1, and gcd(h, n)

= 1. Let n∗ be the inverse of n mod m. Then the composite bijection per-

mutation π(m, k;n, h) of {0, 1, . . . , nm− 1} is de�ned by setting

π(m, k;n, h)i = hsm+ kn∗nr mod nm

for all i = sm+ r as in (5.5).

Theorem 5.2.14 In the notation of De�nition 5.2.13, π(m, k;n, h) is indeed

a permutation and

β(m,n)γ(m, k;n, h) = π(m, k;n, h). (5.17)

Moreover, its inverse is given by the map

j 7→ sm+ r 0 ≤ j ≤ nm− 1,
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where, denoting by k∗ (respectively h∗) the inverse of k (respectively h) mod

m (respectively mod n), {
s = h∗m∗j mod n

r = k∗j mod m.
(5.18)

Proof It su�ces to prove (5.17), since its left hand side is a permutation. We

claim that if 0 ≤ n∗ ≤ m− 1 is the inverse of n mod m and 0 ≤ m∗ ≤ n− 1

is the inverse of m mod n, then

mm∗ + nn∗ = 1 mod nm. (5.19)

Indeed, recalling that gcd(m,n) = 1, by virtue of Bézout indentity (1.2),

there exist a, b ∈ Z such that an + bm = 1. Clearly, this last identity

implies that a (respectively b) is the inverse of n (respectively m) mod m

(respectively mod n). If a = αm+a1, with 0 ≤ a1 ≤ m−1, and b = βn+b1,

with 0 ≤ b1 ≤ n− 1, then

a1n+ b1m+ (α+ β)nm = 1

and we can take n∗ = a1 and m∗ = b1, proving the claim.

Now suppose 0 ≤ s ≤ n− 1 and 0 ≤ r ≤ m− 1. Then

β(m,n)γ(m, k;n, h)(sm+ r) = β(m,n)(s′m+ r′) = s1m+ r′,

where (cf. De�nition 5.2.10 and De�nition 5.2.12)

kr = am+ r′ and 0 ≤ r′ ≤ m− 1

hs = bn+ s′ and 0 ≤ s′ ≤ n− 1,

for suitable a, b ∈ Z, and

s′ −m∗r′ = cn+ s1 and 0 ≤ s1 ≤ n− 1,

for a suitable c ∈ Z, and m∗ as in (5.19). It follows that

s1 = s′ −m∗r′ − cn = hs− bn−m∗kr + am∗m− cn.

Therefore

s1m+ r′ = hsm− bnm−m∗mkr + am∗m2 − cnm+ kr − am
= hsm+ (1−m∗m)kr − am(1−m∗m) mod nm

(by (5.19)) = hsm+ nn∗kr mod nm,

proving (5.17).
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Finally, we prove the last assertion. Suppose that 0 ≤ j ≤ nm − 1 and

π(m, k;n, h)(sm+ r) = j. Then

j = hsm+ kn∗nr mod nm.

Multiplying by k∗, we get

k∗j = k∗hsm+ k∗kn∗nr = r mod m,

while, multiplying by h∗m∗, we get

h∗m∗j = sh∗hm∗m+ h∗m∗knn∗r = s mod n,

showing that conditions (5.18) are satis�ed.

Remark 5.2.15 Two special cases of π(m, k;n, h) are worth mentioning.

For k = 1 and h = m∗, we de�ne the Chinese remainder mapping c(m,n) =

π(m, 1;n,m∗). We have

c(m,n)(ms+ r) = mm∗s+ nn∗r mod nm.

Note that (cf. (5.18)), j = mm∗s+ nn∗r is a solution of the system{
j ≡ s mod n

j ≡ r mod m

(this explains the name of the map c(m,n), cf. Corollary 1.1.23).

For k = n and h = 1 we de�ne the Ruritanian map r(m,n) = π(m,n;n, 1).

We have

r(m,n)(ms+ r) = sm+ n2n∗r mod nm

= sm+ nr mod nm

since nn∗ = 1 mod m implies that

n2n∗ = n mod nm. (5.20)

Theorem 5.2.16 (Permutational Reverse Radix Identity) If gcd(m,n) =

gcd(k,m) = gcd(h, n) = 1, then

π(m, k;n, h)γ(m,n;n,m∗) = π(n, h;m, k)σ(m,n),

where, as usual, m∗ denotes the inverse of m mod n.

Proof For 0 ≤ s ≤ n− 1 and 0 ≤ r ≤ m− 1, by applying the de�nitions of

γ and π, and setting

s′ = sm∗ mod n and r′ = rn mod m, (5.21)
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we have

π(m, k;n, h)γ(m,n;n,m∗)(ms+ r) = π(m, k;n, h)(s′m+ r′)

= hs′m+ knn∗r′ mod nm

(by (5.21)) = hsm∗m+ kn2n∗r mod nm

(by (5.20)) = hsm∗m+ knr mod nm.

On the other hand, applying the de�nition of σ(m,n), we get

π(n, h;m, k)σ(m,n)(ms+r) = π(n, h;m, k)(rn+s) = krn+hsmm∗ mod nm.

The Permutational Reverse Radix Identity in the cases discussed in Re-

mark 5.2.15 may be expressed as follows.

Proposition 5.2.17

c(m,n) = c(n,m)σ(m,n) and r(m,n) = r(n,m)σ(m,n).

Proof For 0 ≤ s ≤ n− 1 and 0 ≤ r ≤ m− 1 we have

c(n,m)σ(m,n)(ms+ r) = c(n,m)(rn+ s)

= rnn∗ +mm∗s mod nm

= c(m,n)(ms+ r)

(note that c(n,m) = π(n, 1;m,n∗)) and

r(n,m)σ(m,n)(ms+ r) = r(n,m)(rn+ s)

= rn+ sm mod nm

= r(m,n)(ms+ r)

(and now r(n,m) = π(n,m;m, 1)).

5.3 Permutation Matrices and Kronecker Products

We begin with some elementary but useful remarks on the product of ma-

trices. Let A = (ai,j) 1≤i≤n
1≤j≤m

be an n×m matrix with complex coe�cients.

Note that often we will actually use {0, 1, . . . , n−1} (respectively {0, 1, . . . ,m−
1}) in place of {1, 2, . . . , n} (respectively {1, 2, . . . ,m}) as index sets.
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We denote by A∗j its j-th column and by Ai∗ its i-th row, that is,

A∗j =


a1,j

a2,j
...

an,j

 and Ai∗ = [ai,1, ai,2, · · · , ai,m]

for j = 1, 2, . . . ,m and i = 1, 2, . . . , n. This way, we may decompose A as

A = [A∗1A∗2 · · ·A∗m] =


A1∗
A2∗
...

An∗

 .
Let B = (bj,k)1≤j≤m

1≤k≤h
be an m × h matrix. Then the product AB may be

written in the following two forms. The �rst is:

AB = [(AB)∗1(AB)∗2 · · · (AB)∗h]

where, for k = 1, 2, . . . , h,

(AB)∗k =

m∑
j=1

A∗jbj,k = A(B∗k). (5.22)

In other words, the k-th column of AB is the linear combination of the

columns of A with coe�cients b1,k, b2,k, . . . , bm,k (the k-th column of B).

The second one is:

AB =


(AB)1∗
(AB)2∗

...

(AB)n∗


where, for i = 1, 2, . . . , n,

(AB)i∗ =

m∑
j=1

ai,jBj∗ = Ai∗B. (5.23)

That is, the i-th row of AB is the linear combinations of the rows of B with

coe�cients ai,1, ai,2, . . . , ai,m (the i-th row of A).

With a permutation π of {1, 2, . . . , n} we associate the n× n permutation

matrix

Pπ = (δπ(i),j)
n
i,j=1. (5.24)
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That is, the (i, j)-coe�cient of Pπ is equal to 1 if j = π(i), and 0 otherwise.

In other words, the i-th row of Pπ is

(Pπ)i∗ = [0 · · · 0 1 0 · · · 0]

where the unique 1 is in the π(i)th-position (column). Noting that

δπ(i),j = δi,π−1(j), (5.25)

we can also conclude that the j-th column of Pπ is

(Pπ)∗j =



0
...

0

1

0
...

0


,

where the unique 1 is in the π−1(j)th-position (row).

Lemma 5.3.1 (Product rules)

(i) Let π, σ be permutations of {1, 2, . . . , n}. Then

PπPσ = Pσπ.

Moreover,

(Pπ)−1 = Pπ−1 = (Pπ)T . (5.26)

(ii) Let A (respectively B) be an m×n (respectively n×m) matrix. Then

APπ = [A∗1A∗2 · · ·A∗n]Pπ =
[
A∗π−1(1)A∗π−1(2) · · ·A∗π−1(n)

]
,

while

PπB = Pπ


B1∗
B2∗
...

Bn∗

 =


Bπ(1)∗
Bπ(2)∗

...

Bπ(n)∗
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Proof (i) The (i, j)-coe�cient of the product PπPσ is:

n∑
k=1

δπ(i),kδσ(k),j =

n∑
k=1

δπ(i),kδk,σ−1(j)

=

{
1 if π(i) = σ−1(j)

0 otherwise

=

{
1 if j = σ(π(i))

0 otherwise

= δσ(π(i)),j .

Moreover, (5.26) follows from (5.25).

(ii) Taking into account (5.22) we have, for j = 1, 2, . . . , n,

(APπ)∗j =

n∑
k=1

A∗kδπ(k),j

=

n∑
k=1

A∗kδk,π−1(j)

= A∗π−1(j).

Similarly, by (5.23), for i = 1, 2, . . . , n we have

(PπB)i∗ =
n∑
k=1

δπ(i),kBk∗ = Bπ(i)∗.

Corollary 5.3.2 Let A = (ai,j)
n
i,j=1 be an n× n-matrix. Then

PπAP
T
π = (aπ(i),π(j))

n
i,j=1.

In other words, multiplication on the left by Pπ is equivalent to a permutation

of the rows (in the i-th position we �nd the π−1(i)-th row). Multiplication

on the right by Pπ is equivalent to a permutation of the columns (in the j-th

position we �nd the π(j)-th column). Note also that if we set Qπ = P Tπ then

QπQσ = Qπσ.

De�nition 5.3.3 Let A = (ai,j)
n
i,j=1 and B = (bi,j)

m
i,j=1 be an n× n matrix

and an m×m matrix, respectively. Then the Kronecker product of A and B
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is the nm× nm matrix A⊗B given in block form by

A⊗B =


a1,1B a1,2B · · · a1,nB

a2,1B a2,2B · · · a2,nB
...

...
...

...

an,1B an,2B · · · an,nB

 .

This notion will be used in Section 8.7 and Section 10.5.

Example 5.3.4 Denote by In the n× n identity matrix. Then

In ⊗B =


B

B
. . .

B

 (5.27)

and

A⊗ Im =


a1,1Im a1,2Im · · · a1,nIm
a2,1Im a2,2Im · · · a2,nIm

...
...

...
...

an,1Im an,2Im · · · an,nIm

 .

In particular,

In ⊗ Im = Inm. (5.28)

Note that, in general, A⊗B is di�erent from B ⊗A (but we will show that

they are similar).

Proposition 5.3.5 The Kronecker product satis�es the following properties.

(i) Bilinearity:

(α1A1 + α2A2)⊗B = α1(A1 ⊗B) + α2(A2 ⊗B)

and

A⊗ (β1B1 + β2B2) = β1(A⊗B) + β2(A⊗B2);

(ii) associativity:

(A⊗B)⊗ E = A⊗ (B ⊗ E);

(iii) product rule:

(A⊗B)(C ⊗D) = (AC)⊗ (BD);
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(iv)

A⊗B = (A⊗ Im)(In ⊗B) = (Im ⊗A)(B ⊗ In);

(v) if both A, B are invertible then A⊗B is invertible and

(A⊗B)−1 = A−1 ⊗B−1;

(vi)

(A⊗B)T = AT ⊗BT ,

for all n × n matrices A,A1, A2, C, m × m matrices B,B1, B2, D,

h× h matrices E, and α1, α2, β1, β2 ∈ C.

Proof (i) and (ii) are easy exercises left to the reader.

(iii) If C = (ci,j)
n
i,j=1 then (A⊗B)(C ⊗D) equals

a1,1B a1,2B · · · a1,nB

a2,1B a2,2B · · · a2,nB
...

...
...

...

an,1B an,2B · · · an,nB



c1,1D c1,2D · · · c1,nD

c2,1D c2,2B · · · c2,nD
...

...
...

...

cn,1D cn,2D · · · cn,nD



=



(∑n
j=1 a1,jcj,1

)
BD

(∑n
j=1 a1,jcj,2

)
BD · · ·

(∑n
j=1 a1,jcj,n

)
BD(∑n

j=1 a2,jcj,1

)
BD

(∑n
j=1 a2,jcj,2

)
BD · · ·

(∑n
j=1 a2,jcj,n

)
BD

...
...

...
...(∑n

j=1 an,jcj,1

)
BD

(∑n
j=1 an,jcj,2

)
BD · · ·

(∑n
j=1 an,jcj,n

)
BD

 ,

and this is exactly (AC)⊗ (BD).

(iv) and (v) are easy consequences of (iii). Finally, (vi) is an easy exercise.

We now adopt the notation in [130]. We set

Pmn = Pσ(m,n) (5.29)

that is, Pmn is the permutation matrix associated with the stride permutation

σ(m,n) (see De�nition 5.2.1). Note that, by (5.26) and (5.7), we have

(Pmn )−1 = (Pmn )T = Pnm. (5.30)

The following important result connects stride permutations and Kro-

necker products.
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Proposition 5.3.6 (Similarity of tensor products by stride permu-

tations) Let A = (ai,j)
n−1
i,j=0 and B = (bi,j)

m−1
i,j=0. Then

Pnm(A⊗B)Pmn = B ⊗A.

Proof Denote by (A ⊗ B)i,i′ (0 ≤, i, i′ ≤ nm − 1) the (i, i′)-coe�cient of

A⊗ B. Then, in the notation of (5.5) and (5.6), the matrix A⊗ B may be

expressed as follows: if i = sm+ r and i′ = s′m+ r′, with 0 ≤ r, r′ ≤ m− 1

and 0 ≤ s, s′ ≤ n− 1, then

(A⊗B)i,i′ = as,s′br,r′ . (5.31)

Moreover, if j = rn + s and j′ = r′n + s, with, as above, 0 ≤ r, r′ ≤ m − 1

and 0 ≤ s, s′ ≤ n− 1, then

(B ⊗A)j,j′ = br,r′as,s′ (5.32)

and

j = σ(m,n)i j′ = σ(m,n)i′

i = σ(n,m)j i′ = σ(n,m)j′.
(5.33)

Therefore, taking into account Corollary 5.3.2 and (5.7), we have

[Pnm(A⊗B)Pmn ]j,j′ = (A⊗B)σ(n,m)j,σ(n,m)j′

(by (5.33)) = (A⊗B)i,i′

(by (5.31)) = as,s′br,r′

(by (5.32)) = (B ⊗A)j,j′ .

We now examine the partial stride permutations introduced in De�nition

5.2.4: we keep the same notation.

Proposition 5.3.7 We have

Pτ(m,n,k) = Ik ⊗ Pmn
and

Pι(m,n,k) = Pnk ⊗ Im.

Proof Note that

(Pmn )i,i′ = δσ(m,n)i,i′ = δr,r′δs,s′ (5.34)

if i = sm+ r and i′ = r′n+ s′, with 0 ≤ s, s′ ≤ n− 1 and 0 ≤ r, r′ ≤ m− 1.

Therefore, if i = tmn + sm + r, with 0 ≤ t ≤ k − 1, 0 ≤ s ≤ n − 1, and
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0 ≤ r ≤ m− 1, and i′ = t′mn+ r′n+ s′, with 0 ≤ t′ ≤ k− 1, 0 ≤ r′ ≤ m− 1,

and 0 ≤ s′ ≤ n− 1, then (cf. De�nition 5.2.4)

τ(m,n, k)i = i′ ↔ t = t′, s = s′, r = r′

so that

(Pτ(m,n,k))i,i′ = δτ(m,n,k)i,i′ = δt,t′δr,r′δs,s′ . (5.35)

Similarly, by virtue of (5.31) (with n replaced by k and m replaced by nm),

we have

(Ik ⊗ Pmn )i,i′ = δt,t′(P
m
n )sm+r,r′n+s′

(by (5.34)) = δt,t′δr,r′δs,s′ .
(5.36)

Comparing (5.35) and (5.36), we deduce the �rst identity.

Now suppose that i′ = s′km+ t′m+r′ with 0 ≤ t′ ≤ k−1, 0 ≤ r′ ≤ m−1,

and 0 ≤ s′ ≤ n− 1, while i is as above. Then (cf. De�nition 5.2.4)

ι(m,n, k)i = i′ ↔ t = t′, s = s′, r = r′

so that

(Pι(m,n,k))i,i′ = δι(m,n,k)i,i′ = δt,t′δs,s′δr,r′ , (5.37)

while, writing i, i′ in the forms i′ = (s′k + t′)m + r′ and i = (tn + s)m + r,

we have

(Pnk ⊗ Im)i,i′ = (Pnk )tn+s,s′k+t′δr,r′

= δσ(n,k)(tn+s),s′k+t′δr,r′

= δs,s′δr,r′δt,t′ ,

(5.38)

where the �rst equality follows from (5.31). Comparing (5.37) and (5.38) we

deduce the second identity.

By means of Lemma 5.3.1.(i) and of Proposition 5.3.7, all the identities

in Theorem 5.2.3, Theorem 5.2.5, Theorem 5.2.6, and Corollary 5.2.7 may

be translated into identities for permutation matrices. We list then in the

following proposition.

Proposition 5.3.8 Basic product identities:

Pmnk Pmkn = Pmnk
PmnkP

n
mk = Pmnk .

(5.39)
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Product identities for partial strides:

(Ik ⊗ Pmn )(Pmk ⊗ In) = Pmnk
(Pnk ⊗ Im)(In ⊗ Pmk ) = Pmnk .

Mixed product identities:

Pmnk (In ⊗ P km) = Pnk ⊗ Im
Pmnk(P

k
m ⊗ In) = Ik ⊗ Pmn

(Pnk ⊗ Im)Pmkn = Ik ⊗ Pmn
(Ik ⊗ Pmn )Pnmk = Pnk ⊗ Im.

Similarity identity:

P kmn(Ik ⊗ Pmn )Pmnk = Pmn ⊗ Ik.

Proof The proof is immediate and is left to the reader. We just note that,

using the matrix formalism, the second identity follows from the �rst one

by means of an application of (5.30). The same observation holds true for

the other group of identities. Note also that the similarity identity is just a

particular case of Proposition 5.3.6.

With the notation in De�nition 5.2.10 we set

Bk
m = Pγ(m,k). (5.40)

Proposition 5.3.9

Pγ(m,k;n,h) = Bh
n ⊗Bk

m.

Proof First note that, for 0 ≤ r, r′ ≤ m− 1,

(Bk
m)r,r′ = δγ(m,k)r,r′ =

{
1 if r′ ≡ kr mod m

0 otherwise.
(5.41)

Therefore, for i = ms + r and i′ = ms′ + r′, with 0 ≤ s, s′ ≤ n − 1 and

0 ≤ r, r′ ≤ m− 1, by virtue of (5.31) we have

(Bh
n ⊗Bk

m)i,i′ = (Bh
n)s,s′(B

k
m)r,r′

(by (5.41)) =

{
1 if s′ = hs mod n and r′ = kr mod m

0 otherwise

= δγ(m,k;n,h)i,i′

= (Pγ(m,k;n,h))i,i′ .
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Note also that, if gcd(k,m) = gcd(h,m) = 1, from Proposition 5.2.11 we

get:

Bk
mB

h
m = Bkh

m = Bh
mB

k
m

and

(Bk
m)−1 ≡ (Bk

m)T = Bk∗
m , (5.42)

where, as usual, k∗k = 1 mod m.

In order to describe the matrix formulations corresponding to β(m,n) in

(5.16), we introduce a few more de�nitions and notation. The elementary

circulant permutation matrix of order n is the matrix

Cn =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
. . .

0 0 · · · 1 0 0

0 0 · · · 0 1 0


;

cf. Exercise 2.4.16. In other words, denoting by ε = εn the permutation of

{0, 1, . . . , n− 1} de�ned by setting ε(i) = i− 1 mod n, then

(Cn)i,j = δε(i),j 0 ≤ i, j ≤ n− 1,

equivalently (cf. (5.24)),

Cn = Pε. (5.43)

Clearly, Ckn = Pεk and therefore

(Ckn)i,j =

{
1 if i− k ≡ j mod n

0 otherwise.
(5.44)

We also de�ne the m-th block diagonal power of an n × n matrix W , as

the mn×mn matrix Dm(W ) de�ned by setting

Dm(W ) =


W 0

W 1

W 2

. . .

Wm−1

 (5.45)

where W 0 = In and W i = WW i−1 for i = 1, 2, . . . ,m − 1. Note that, for
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j = rn + s and j′ = r′n + s′, with 0 ≤ r, r′ ≤ m − 1 and 0 ≤ s, s′ ≤ n − 1,

we have

[Dm(W )]j,j′ = δr,r′ · (W r)s,s′ . (5.46)

In what follows, for 0 ≤ k ≤ n− 1, we set

Qnm(k) = Pmn Dm(Ckn)Pnm. (5.47)

Then, with the notation in De�nition 5.2.12 we have

Proposition 5.3.10

Pβ(m,n) = Qnm(m∗).

Proof Let i = sm+r and i′ = s′m+r′, with 0 ≤ s, s′ ≤ n−1 and 0 ≤ r, r′ ≤
m − 1. Then, setting j = σ(m,n)i = rn + s and j′ = σ(m,n)i′ = r′n + s′,

by virtue of Corollary 5.3.2 and (5.7), we have

[Pmn Dm(Cm
∗

n )Pnm]i,i′ = [Dm(Cm
∗

n )]σ(m,n)i,σ(m,n)i′

= [Dm(Cm
∗

n )]j,j′

(by (5.46)) = δr,r′(C
m∗r
n )s,s′

(by (5.44)) =

{
1 if r′ = r and s′ = s−m∗r mod n

0 otherwise

(by (5.16)) = δβ(m,n)i,i′ .

Finally, we de�ne the permutation matrix corresponding to the composite

bijection permutation by setting, with the same notation as in De�nition

5.2.13,

Ξnm(h, k) = Pπ(m,k;n,h). (5.48)

Therefore, for 0 ≤ i, i′ ≤ mn− 1 with i = sm+ r as in (5.5), then

[Ξnm(h, k)]i,i′ =

{
1 if i′ = hsm+ knn∗r mod nm

0 otherwise.

By means of Lemma 5.3.1.(i) we immediately get the matrix version of The-

orem 5.2.14 and Theorem 5.2.16.

Theorem 5.3.11 Suppose gcd(n,m) = gcd(k,m) = gcd(h, n) = 1, mm∗ =

1 mod n and nn∗ = 1 mod m. Then we have:
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(i) Matrix Factorization of Composite Bijection Permutations

Ξnm(h, k) =
(
Bh
n ⊗Bk

m

)
Qnm(m∗). (5.49)

(ii) Reverse Radix Identity(
Bm∗
n ⊗Bn

m

)
Ξnm(h, k) = Pmn Ξmn (k, h).

Denote by

Cnm = Pc(m,n) (= Ξnm(m∗, 1)) and Rnm = Pr(m,n) (= Ξnm(1, n)) (5.50)

the permutation matrices associated with the Chinese remainder mapping

and with the Ruritanian map (cf. Remark 5.2.15), respectively. Then from

Proposition 5.2.17 we deduce the following symmetry relations.

Proposition 5.3.12

Cnm = Pmn Cmn and Rnm = Pmn Rmn .

We need a generalization of (5.49).

Let n,m, h, k, ` be positive integers such that gcd(n, h) = gcd(m, k) = 1.

We set

Ξnm(h, k, `) =
(
Bh
n ⊗Bk

m

)
Qnm(`). (5.51)

Therefore, by (5.49), if gcd(n,m) = 1 then we have

Ξnm(h, k) = Ξnm(h, k,m∗), (5.52)

where mm∗ = 1 mod n.

Before embarking on the study of the matrix formulation of the FFT, we

show how to apply the machinery of stride and partial stride permutations

to get some useful factorizations of tensor products.

Proposition 5.3.13 For k,m, n positive integers and A an n×n matrix we

have:

Ik ⊗A⊗ Im = Pmkn(Ikm ⊗A)P knm

and

Ik ⊗A⊗ Im = (Ik ⊗ Pmn )(Ikm ⊗A)(Ik ⊗ Pnm)

(recall, cf. Proposition 5.3.7, that Ik ⊗ Pmn = Pτ(m,n,k)).
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Proof First observe that Ik ⊗A is a kn× kn matrix, so that

P knm (Ik ⊗A⊗ Im)Pmkn = P knm [(Ik ⊗A)⊗ Im]Pmkn

(by Proposition 5.3.6) = Im ⊗ (Ik ⊗A)

(by Proposition 5.3.5.(ii) and (5.28)) = Imk ⊗A.

Recalling that (P knm )−1 = Pmkn (cf. (5.30)) we get the �rst identity by conju-

gating with Pmkn. Similarly,

(Ik ⊗ Pnm)(Ik ⊗A⊗ Im)(Ik ⊗ Pmn ) = (Ik ⊗ Pnm)[Ik ⊗ (A⊗ Im)](Ik ⊗ Pmn )

(by Proposition 5.3.5.(iii)) = Ik ⊗ [Pnm(A⊗ Im)Pmn ]

= Ik ⊗ Im ⊗A
= Ikm ⊗A,

and the second identity follows as well.

We now introduce some further notation. Suppose that n1, n2, . . . , nh are

positive integers, h ≥ 3, and Aj is an nj ×nj matrix, for j = 1, 2, . . . , h. Set

k1 = 1 and kj = n1n2 · · ·nj−1 for j = 2, 3, . . . , h;

mj = nj+1nj+2 · · ·nh for j = 1, 2, . . . h− 1, and mh = 1

and, for j = 1, 2, . . . , h,

Xj = In1 ⊗ In2 ⊗ · · · Inj−1 ⊗Aj ⊗ Inj+1 ⊗ · · · ⊗ Inh = Ikj ⊗Aj ⊗ Imj ,

Yj = Ikjmj ⊗Aj .

Finally, we set

Qj = Pτ(mj+1,nj+1,kj+1)τ(nj ,mj ,kj)

= (Ikj ⊗ P
nj
mj )(Ikj+1

⊗ Pmj+1
nj+1 ),

(5.53)

where the second equality follows from Proposition 5.3.7 and Lemma 5.3.1.(i).

Theorem 5.3.14 With the above notation, the following factorization iden-

tities hold.

(i) Fundamental factorization:

A1 ⊗A2 ⊗ · · · ⊗Ah = X1X2 · · ·Xh.

(ii) Parallel tensor product factorization I:

A1 ⊗A2 ⊗ · · · ⊗Ah = Pm1
n1
Y1P

k2m2
n2

Y2P
k3m3
n3

· · ·P kh−1mh−1
nh−1 Yh−1P

kh
nh
Yh
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(iii) Parallel tensor product factorization II:

A1 ⊗A2 ⊗ · · · ⊗Ah = Pm1
n1
Y1Q1Y2Q2 · · ·Qh−2Yh−1Qh−1Yh.

Proof The �rst identity is just an iterated form of Proposition 5.3.5.(ii)-(iv).

For the second identity, �rst observe that Proposition 5.3.13 yields

Xj = P
mj
kjnj

YjP
kjnj
mj j = 1, 2, . . . , h.

Moreover, since kj+1 = kjnj and mj = nj+1mj+1,

P
kjnj
mj P

mj+1

kj+1nj+1
= P

kj+1
nj+1mj+1P

mj+1

kj+1nj+1
= P

kj+1mj+1
nj+1 ,

where the last equality follows from (5.39) in Proposition 5.3.8. Therefore,

X1X2 · · ·Xh = Pm1
n1
Y1P

n1
m1
Pm2
k2n2

Y2P
k2n2
m2
· · ·YjP

kjnj
mj P

mj+1

kj+1nj+1
Yj+1 · · ·Yh

= Pm1
n1
Y1P

k2m2
n2

Y2 · · ·YjP
kj+1mj+1
nj+1 Yj+1 · · ·P

kh−1mh−1
nh−1 Yh−1P

kh
nh
Yh.

Finally, from Proposition 5.3.13 we also deduce

Xj = (Ikj ⊗ P
mj
nj )(Ikjmj ⊗Aj)(Ikj ⊗ P

nj
mj )

which, by virtue of (5.53), immediately implies the last equality in the state-

ment.

5.4 The matrix form of the FFT

This is the central section of the present chapter. It is devoted to the matrix

form of several algorithms that reduce the matrix of the DFT to a tensor

product of smaller matrices, when the size of the DFT is factorizable.

Let ω ∈ C be an arbitrary n-th root of 1, that is, ωn = 1. Following [130],

we de�ne the n× n matrix An(ω) by setting

An(ω) = (ωij)n−1
i,j=0. (5.54)

Clearly, An(ω) is symmetric. In the notation of Exercise 2.4.16.(4), we have

1√
n
An(e−

2πi
n ) = Fn.

Note also that if ω is a primitive n-th root of 1, then An(ω)−1 exists and

An(ω)−1 =
1

n
An(ω).

The proof is similar to that one of Lemma 2.2.3. In general, if ωr = 1 and

ωh 6= 1 for 0 ≤ h ≤ r− 1, for some r ≥ 1 (note that r necessarily divides n),

then rkAn(ω) = r.
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Recall that Cn denotes the elementary circulant matrix (see (5.43)) and

Dn(·) is the n-th diagonal power matrix (see (5.45)).

Proposition 5.4.1 (Eigenidentities) Let n be a positive integer, k ≥ 0,

and ω an n-th root of 1. Then we have

An(ω)Ckn = Dn(ωk)An(ω) and CknAn(ω) = An(ω)Dn(ω−k).

Proof From (5.43) we get, for 0 ≤ i, j ≤ n− 1,

[An(ω)Ckn]i,j =

n−1∑
h=0

ωihδεk(h),j

=
n−1∑
h=0

ωihδh,ε−k(j)

= ωiε
−k(j)

= ωi(j+k)

= ωikωij

= [Dn(ωk)An(ω)]i,j ,

proving the �rst equality.

The second equality follows from the �rst one, by transposing: observe

that

(Ckn)T = (Pεk)T = Pε−k = C−kn

so that we must replace k with −k.

We also need the following transformation formula.

Proposition 5.4.2 Suppose that gcd(h, n) = 1 and h∗h = 1 mod n. Then

An(ω)Bh
n = An(ωh

∗
) and Bh

nAn(ω) = An(ωh).

Proof For 0 ≤ i, j ≤ n− 1 we have

[An(ω)Bh
n]i,j =∗ [An(ω)]i,γ(n,h)−1j

(by Proposition 5.2.11.(ii)) = [An(ω)]i,h∗j

= ωijh
∗

= [An(ωh
∗
)]i,j

where =∗ follows from Lemma 5.3.1.(ii) and (5.40). This proves the �rst

equality. The proof of the second one is similar and left to the reader.
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Using the notation in (5.45), we de�ne the diagonal matrix of twiddle

factors by setting

Tnm(ω) = Dm(Dn(ω)),

where now ω is an nm-th root of 1.

Note that, by virtue of (5.46), for 0 ≤ r, r′ ≤ m− 1 and 0 ≤ s, s′ ≤ n− 1,

we have

[Tnm(ω)]rn+s,r′n+s′ = δr,r′ [Dn(ωr)]s,s′ = δr,r′δs,s′ω
rs. (5.55)

Proposition 5.4.3 With the above notation we have

Pmn T
n
m(ω)Pnm = Tmn (ω).

Moreover, for integers k and h,

Tnm(ωk)Tnm(ωh) = Tnm(ωk+h).

Proof By virtue of Corollary 5.3.2 we have

[Pmn T
n
m(ω)Pnm]sm+r,s′m+r′ = [Tnm(ω)]σ(m,n)(sm+r),σ(m,n)(s′m+r′)

= [Tnm(ω)]rn+s,r′n+s′

(by (5.55)) = δr,r′δs,s′ω
rs

(again by (5.55)) = [Tmn (ω)]sm+r,s′m+r′ .

The second identity is trivial.

Proposition 5.4.4 (Tensor form of the eigenidentities) For n,m pos-

itive integers, ω an nm-th root of 1, and an integer k, we have

Dm(Ckn)[Im ⊗An(ωm)] = [Im ⊗An(ωm)]Tnm(ω−km)

[Im ⊗An(ωm)]Dm(Ckn) = Tnm(ωkm)[Im ⊗An(ωm)].

Proof We only prove the �rst identity: the proof of the second one is similar
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and left to the reader.

Dm(Ckn)[Im ⊗An(ωm)]

=


In

Ckn
. . .

C
k(m−1)
n



An(ωm)

An(ωm)
. . .

An(ωm)



=


An(ωm)

CknAn(ωm)
. . .

C
k(m−1)
n An(ωm)


and, by Proposition 5.4.1, this equals

=


An(ωm)

An(ωm)Dn(ω−km)
. . .

An(ωm)Dn(ω−km(m−1))



=


An(ωm)

An(ωm)
. . .

An(ωm)

 ·

·


In

Dn(ω−km)
. . .

Dn(ω−km(m−1))


= [Im ⊗An(ωm)]Tnm(ω−km).

where the last identity follows from the de�nition of Tnm and the identity

Dn(ω−kmh) = [Dn(ω−km)]h.

We are now in position to prove the basic tensor product form of the FFT

and to derive all its consequences.

Theorem 5.4.5 (General Radix Identity) Let n,m > 1 be two positive

integers and ω an nm-th root of 1. Then

Anm(ω)Pnm = [An(ωm)⊗ Im]Tmn (ω)[In ⊗Am(ωn)]. (5.56)

Proof Let i = sm + r, i′ = s′m + r′, j = αm + β, and j′ = α′m + β′, with
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0 ≤ s, s′, α, α′ ≤ n− 1 and 0 ≤ r, r′, β, β′ ≤ m− 1. Then, on the one hand,

{[An(ωm)⊗ Im]Tmn (ω)[In ⊗Am(ωn)]}i,i′ =

nm−1∑
j,j′=0

[An(ωm)⊗ Im]i,j [T
m
n (ω)]j,j′

· [In ⊗Am(ωn)]j′,i′

(by (5.31) and (5.55)) =
n−1∑
α,α′=0

m−1∑
β,β′=0

[An(ωm)]s,αδr,β

· δα,α′δβ,β′ωαβδα′,s′ [Am(ωn)]β′,r′

(α = α′ = s′ and r = β = β′) = [An(ωm)]s,s′ω
s′r[Am(ωn)]r,r′

(by (5.54)) = ωmss
′+s′r+nrr′ .

On the other hand, by Lemma 5.3.1.(ii), (5.7), and (5.29),

[Anm(ω)Pnm]i,i′ = [Anm(ω)]i,σ(m,n)i′

= [Anm(ω)]sm+r,r′n+s′

= ω(sm+r)(r′n+s′)

(ωnm = 1) = ωmss
′+s′r+nrr′ .

We now show how, multiplying on the left and on the right the left hand

side of the General Radix Identity (5.56) by suitable permutations, changes

the diagonal matrix of twiddle factors in the right hand side (of (5.56)).

Theorem 5.4.6 (Twiddle Identity) With the notation of Theorem 5.4.5,

for arbitrary k1, k2 ∈ Z we have:

Qnm(k1)Anm(ω)[Pmn Q
m
n (k2)]T

= [An(ωm)⊗ Im]Tmn (ω1−k1m−k2n)[In ⊗Am(ωn)].

Proof First of all, note that (Ck2m )T = C−k2m (compare with (5.26) and (5.43))

and therefore, from (5.45) and (5.47) it follows that

[Qmn (k2)]T = Qmn (−k2).
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Therefore, taking into account Theorem 5.4.5,

Qnm(k1)Anm(ω)[Pmn Q
m
n (k2)]T = Qnm(k1)[An(ωm)⊗ Im]Tmn (ω)

· [In ⊗Am(ωn)]Pmn Q
m
n (−k2)Pnm

(by (5.47)) = Pmn Dm(Ck1n )Pnm[An(ωm)⊗ Im]

· Tmn (ω)[In ⊗Am(ωn)]Dn(C−k2m )

(by Proposition 5.3.6) = Pmn Dm(Ck1n )[Im ⊗An(ωm)]Pnm

· Tmn (ω)[In ⊗Am(ωn)]Dn(C−k2m )

(by Proposition 5.4.4) = Pmn [Im ⊗An(ωm)]Tnm(ω−k1m)PnmT
m
n (ω)

· Tmn (ω−k2n)[In ⊗Am(ωn)]

(by Prop.5.3.6 and Prop. 5.4.3) = [An(ωm)⊗ Im]Tmn (ω1−k1m−k2n)·
· [In ⊗Am(ωn)].

Corollary 5.4.7 With the notation of (5.51) and supposing gcd(ki,m) =

gcd(hi, n) = 1, for i = 1, 2, we have

Ξnm(h1, k1, `1)Anm(ω)[Pmn Ξmn (k2, h2, `2)]T

= [An(ωh1m)⊗Bk1
m ]Tmn (ω1−`1m−`2n)[B

h∗2
n ⊗Am(ωk2n)], (5.57)

where h2h
∗
2 = 1 mod n.

Proof This follows immediately from Proposition 5.3.5.(iii), Theorem 5.4.6,

(5.51) and Proposition 5.4.2. Just note that, if k2k
∗
2 = 1 mod m,

[Pmn Ξmn (k2, h2, `2)]T = [Pmn (Bk2
m ⊗Bh2

n )Qmn (`2)]T

(by Proposition 5.3.6) = {(Bh2
n ⊗Bk2

m )[Pmn Q
m
n (`2)]}T

=∗ [Pmn Q
m
n (`2)]T (B

h∗2
n ⊗B

k∗2
m ),

where, in =∗ we used the equality [Bh2
n ⊗Bk2

m ]T = B
h∗2
n ⊗B

k∗2
m which follows

from Proposition 5.3.5.(vi) and (5.42).

Remark 5.4.8 Note that Theorem 5.4.5 and Theorem 5.4.6 are particular

cases of Corollary 5.4.7. Indeed, for hi = ki = 1, i = 1, 2, Corollary 5.4.7

reduces to Theorem 5.4.6, by virtue of (5.51). If, in addition, `1 = `2 = 0,

then it reduces to Theorem 5.4.5.

Until now, we have determined algorithms for tensor product factorizations
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of the matrix AN (ω), where N = mn is an arbitrary factorization. In what

follows, we examine the case when gcd(m,n) = 1.

Theorem 5.4.9 (Twiddle Free Identity) Suppose that gcd(m,n) = 1.

Then, with the notation and hypotheses of Corollary 5.4.7, we have

Ξnm(h1, k1)Anm(ω)[Pmn Ξmn (k2, h2)]T = An(ωh1h2m)⊗Am(ωk2k1n).

Proof In (5.57) choose `1 = m∗ and `2 = n∗ (where, as usual mm∗ = 1

mod n and nn∗ = 1 mod m) and recall (5.52). Then by (5.19), we have

1− `1m− `2n = 1−mm∗ − nn∗ = 0 mod nm

so that the twiddle factor disappears and, by Proposition 5.3.5.(iii) and

Proposition 5.4.2, the right hand side in (5.57) becomes

[An(ωh1m)⊗Bk1
m ][B

h∗2
n ⊗Am(ωk2n)] = An(ωh1h2m)⊗Am(ωk2k1n).

A special case of Theorem 5.4.9, where only elementary circulant matrices

and stride permutations are used, is of particular interest.

Corollary 5.4.10 Suppose gcd(m,n) = 1 and let ω be an nm-th root of 1.

Then

Qnm(m∗)Anm(ω)[Pmn Q
m
n (n∗)]T = An(ωm)⊗Am(ωn).

Proof Set h1 = h2 = k1 = k2 = 1 in Theorem 5.4.9, and recall Theorem

5.3.11.(i).

Theorem 5.4.11 (Generalized Winograd's Method) With the same

notation and assumption of Theorem 5.4.9, we have

Ξnm(h1, k1)Anm(ω)[Ξnm(h2, k2)]T = An(ωαm)⊗Am(ωβn),

where α = h1h2m mod n and β = k1k2n
∗ mod m.

Proof Using the Reverse Radix Identity (Theorem 5.3.11.(ii)), the identity

in Theorem 5.4.9 becomes

Ξnm(h1, k1)Anm(ω)[Ξnm(h2, k2)]T (Bm
n ⊗Bn∗

m ) = An(ωh1h2m)⊗Am(ωk1k2n).

Multiplying both sides on the right by (Bm
n ⊗ Bn∗

m )−1 = Bm∗
n ⊗ Bn

m and

taking into account Proposition 5.4.2, the statement follows.
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From the generalized Winograd's method we deduce the following four

particular cases.

Corollary 5.4.12 (Winograd's Method [168]) Suppose h1h2m = 1

mod n and `1`2n = 1 mod m. Then

Ξnm(h1, `1n)Anm(ω)[Ξnm(h2, `2n)]T = An(ωm)⊗Am(ωn).

Proof Just note that now k1 = `1n, k2 = `2n, and `1`2n = 1 mod m, which

imply that k1k2n
∗ = `1`2n

2n∗ = 1 mod m.

Corollary 5.4.13 (Good's Method [65]) With the notation in (5.50) we

have

CnmAnm(ω)[Rnm]T = An(ωm)⊗Am(ωn).

Proof Just set h1 = m∗, k1 = 1, h2 = 1, and k2 = n in Theorem 5.4.11, so

that α = mm∗ = 1 mod n and β = nn∗ = 1 mod m.

Corollary 5.4.14 (Similarity Identity) Suppose that gcd(k,m) = gcd(h, n) =

1. Then

Ξnm(h, k)Anm(ω)[Ξnm(h, k)]T = An(ωαm)⊗Am(ωβn)

where α = h2m mod n and β = k2n∗ mod m.

Proof Just set h1 = h2 = h and k1 = k2 = k in Theorem 5.4.11.

A special case of Corollary 5.4.14:

Corollary 5.4.15 (Winograd's Similarity)

CnmAnm(ω)[Cnm]T = An(ωmm
∗
)⊗Am(ωnn

∗
).

Proof Set h = m∗ and k = 1 in Corollary 5.4.14.

For instance, for n = 4, m = 3, and ω = eiπ/6, we have m∗ = 3, n∗ = 1,

and

C4
3A12(ω)[C4

3 ]T = A4(ω9)⊗A3(ω4).

We end this section with a brief description of the matrix form of the

so-called Rader-Winograd algorithm. It was developed in [125]; see also [14]

and, for the computational aspects, [15, 160, 163]. We consider �rst the case

n = p, a prime number. By Theorem 1.1.21, F∗p is cyclic of order p− 1. Let

α ∈ F∗p be a generator and de�ne the permutation ξp of {0, 1, . . . , p− 1} by
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setting ξp(0) = 0 and ξp(k) = αk−1 mod p, for k = 1, 2, . . . , p − 1. Then

Qp = Qp(α) = Pξp denotes the corresponding permutation matrix, as in

(5.24). If ω is a nontrivial p-th root of 1, then, by Corollary 5.3.2,

QpAp(ω)QTp =
(
ωξp(i)ξp(j)

)p−1

i,j=0
,

that is,

QpAp(ω)QTp =


1 1 · · · 1

1
... Cp−1

1

 , (5.58)

where

Cp−1 =
(
ωα

i+j
)p−2

i,j=0
,

is called the core matrix. Note that Cp−1 is a symmetric (p − 1) × (p − 1)

matrix, its (i, j)-entry only depends on the sum i+ j mod p− 1 (i.e., it is a

Hankel matrix: each ascending (from left to right) skew-diagonal is constant,

see Example 5.4.16) and its �rst row is (ω, ωα, ωα
2
, · · · , ωαp−2

). The Rader

algorithm consists in the use of (5.58) to compute the DFT on Zp. Explicitly,
for Y = (y0, y1, . . . , yp−1)T we set X = (x0, x1, . . . , xp−1)T = QpY so that

Ap(ω)Y = QTp
[
QpAp(ω)QTpX

]
(5.59)

and we have[
QpAp(ω)QTpX

]
0

=
∑p−1

k=0 xk[
QpAp(ω)QTpX

]
j

= x0 +
∑p−1

k=1 ω
αk+j−2

xk for j = 1, 2, . . . , p− 1.

In some papers, matrix (5.58) is replaced by

Qp(α)Ap(ω)Qp(−α)T =


1 1 · · · 1

1
... Dp

1


with Dp =

(
ωα

i−j
)p−2

i,j=0
. Then,

[
Qp(α)Ap(ω)Qp(−α)TX

]
0

=
∑p−1

k=0 xk and,

for j = 1, 2, . . . , p− 1,

[
Qp(α)Ap(ω)Qp(−α)TX

]
j

= x0 +

p−1∑
k=1

ωα
j−k

xk,

which has a convolutional form.



5.4 The matrix form of the FFT 165

Example 5.4.16 (Winograd) For p = 7 and α = 3 we get

Q7(3)A7(ω)Q7(3)T =



1 1 1 1 1 1 1

1 ω ω3 ω2 ω6 ω4 ω5

1 ω3 ω2 ω6 ω4 ω5 ω

1 ω2 ω6 ω4 ω5 ω ω3

1 ω6 ω4 ω5 ω ω3 ω2

1 ω4 ω5 ω ω3 ω2 ω6

1 ω5 ω ω3 ω2 ω6 ω4


.

Exercise 5.4.17 Fill in the details in Example 5.4.16.

For n = ph, with p prime and h ≥ 2, Winograd developed a variation of

the Rader algorithm. We describe it only for the case p ≥ 3. Recall that

U(Z/phZ) is a cyclic group of order (p − 1)ph−1 = ph − ph−1 (see Theorem

1.5.8). Then we deduce the following decomposition

Z/phZ = {0}
∐ h∐

j=1

ph−jU(Z/pjZ). (5.60)

Indeed, for j = 1, 2, . . . , h we have that x ∈ Z/pjZ is not invertible if and

only if it is divisible by p, so that we have

Z/pjZ = p(Z/pj−1Z)
∐
U(Z/pjZ).

By iterating this relation we get (5.60). Fix a generator αj of U(Z/pjZ), for

j = 1, 2, . . . , h. Using (5.60), we de�ne a permutation ξph of {0, 1, . . . , ph−1}
by setting ξph(0) = 0 and

ξph(k) = αk−p
j−1

j ph−j mod ph

for pj−1 ≤ k ≤ pj − 1 and j = 1, 2, . . . , h. In other words, ξph maps the

set {pj−1, pj−1 + 1, . . . , pj − 1} bijectively onto ph−jU(Z/pjZ) for all j =

1, 2, . . . , h. We then set

Qph = Pξ
ph
.

The matrix form of Winograd's generalization of the Rader algorithm is

obtained as in (5.59) by applying

QphAph(ω)QTph

with ω a ph-th root of 1. The above matrix is symmetric, but no longer

Hankel (though it is made up of blocks consisting of Hankel matrices; see

Example (5.4.18) below).
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Example 5.4.18 (Winograd) For p = 3, h = 2, α1 = 2, and α2 = 2 we

get

Z/9Z = {0}
∐

3U(Z/3Z)
∐
U(Z/9Z) = {0}

∐
{3, 6}

∐
{1, 2, 4, 5, 7, 8}

so that

ξ9(0) = 0 ξ9(1) = 3 ξ9(2) = 6 ξ9(3) = 1 ξ9(4) = 2

ξ9(5) = 4 ξ9(6) = 8 ξ9(7) = 7 ξ9(8) = 5

and

Q9A9(ω)QT9 =



1 1 1 1 1 1 1 1 1

1 1 1 ω3 ω6 ω3 ω6 ω3 ω6

1 1 1 ω6 ω3 ω6 ω3 ω6 ω3

1 ω3 ω6 ω ω2 ω4 ω8 ω7 ω5

1 ω6 ω3 ω2 ω4 ω8 ω7 ω5 ω

1 ω3 ω6 ω4 ω8 ω7 ω5 ω ω2

1 ω6 ω3 ω8 ω7 ω5 ω ω2 ω4

1 ω3 ω6 ω7 ω5 ω ω2 ω4 ω8

1 ω6 ω3 ω5 ω ω2 ω4 ω8 ω7


.

Exercise 5.4.19 Fill in the details of the above example and show that the

matrix is made up of the multiplication tables of the following three groups

(written multiplicatively): the trivial group, U(Z/3Z), and U(Z/9Z).

Exentensions of Rader's algorithm will be discussed in Section 7.8.

5.5 Algorithmic aspects of the FFT

In this section we examine some of the algorithmic aspects of the formulas

obtained in Section 5.4. For a more complete discussion we refer to [160, 163].

First of all, we want to derive the general form of (5.4), which is also

the basic nonmatrix form of the Cooley-Tuckey algorithm. We consider the

action of Anm(ω) to a column vector X = (x0, x1, . . . , xnm−1)T . The General

Radix Identity (Theorem 5.4.5) yields

Anm(ω) = [An(ωm)⊗ Im]Tmn (ω)[In ⊗Am(ωn)]Pmn . (5.61)

Therefore, arguing as in the proof of Theorem 5.4.5, and using the formulas

established therein, from (5.61), for j = sm + r and j′ = r′n + s′, with

0 ≤ s, s′ ≤ n − 1 and 0 ≤ r, r′ ≤ m − 1, we get (by Lemma 5.3.1.(ii) and
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(5.29))

[Anm(ω)X]j =
nm−1∑
j′=0

{[An(ωm)⊗ Im]Tmn (ω)[In ⊗Am(ωn)]}j,σ(n,m)j′xj′

=

m−1∑
r′=0

n−1∑
s′=0

{[An(ωm)⊗ Im]

· Tmn (ω)[In ⊗Am(ωn)]}sm+r,s′m+r′xr′n+s′

=∗

m−1∑
r′=0

n−1∑
s′=0

ωmss
′+s′r+nrr′xr′n+s′

(where =∗ follows from the last equality in the �rst part of the proof of

Theorem 5.4.5), that is,

[Anm(ω)X]sm+r =
n−1∑
s′=0

ωmss
′
ωs
′r
m−1∑
r′=0

ωnrr
′
xr′n+s′ . (5.62)

The above is the nonmatrix form of the General Radix Identity and consti-

tutes one of the basic formulations of the Cooley-Tuckey algorithm.

Exercise 5.5.1 (5.61) is also called the Decimation in time form of the

Cooley-Tuckey algorithm. Prove the following equivalent formulas:

• (Decimation in Frequency)

Anm(ω) = Pnm[In ⊗Am(ωn)]Tmn (ω)[An(ωm)⊗ Im];

• (Parallel Form)

Anm(ω) = Pmn [Im ⊗An(ωm)]PnmT
m
n (ω)[In ⊗Am(ωn)]Pmn ;

• (Vector Form)

Anm(ω) = [An(ωm)⊗ Im]Tmn (ω)Pmn [Am(ωn)⊗ In].

Now, following [130], we examine the number of operations needed to com-

pute the DFT by means of the General Radix Identity in Theorem 5.4.5 or,

equivalentely, in terms of (5.62). This way, we generalize the computation

in Section 5.1. For the sake of clarity, we shall denote by X(n) (respectively

X(nm)) the vector (x0, x1, . . . , xn−1)T (respectively (x0, x1, . . . , xnm−1)T ).

First of all, arguing as in the derivation of (5.2), we deduce that the n

entries of the column matrix An(ω)X(n) may be computed by means of at

most

T1(n) = [n+ (n− 1)]n+ n− 2 = 2n2 − 2 = O(n2) (5.63)
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operations.

Proposition 5.5.2 Suppose we have an algorithm that computes An(ω)X(n)

(ω an n-th root of 1) by means of at most T (n) operations. Then we can

compute Anm(ω)X(nm) (ω an nm-th root of 1) by means of at most

T (nm) ≤ nT (m) +mT (n) + (m− 1)(n− 1)

operations.

Proof Indeed, if we use (5.62), we need to compute

m−1∑
r′=0

ωnrr
′
xnr′+s′ for 0 ≤ r ≤ m− 1 and 0 ≤ s′ ≤ n− 1

and these may be seen as n DFT's with Am(ωn), namely,

Am(ωn)X
(m)
s′

with

X
(m)
s′ = (xs′ , xn+s′ , x2n+s′ , . . . , x(m−1)n+s′)

T

and s′ = 0, 1, . . . , n−1. Then we must multiply these results by the numbers

ωs
′r (note that, in general, only (n − 1)(m − 1) of them are di�erent from

1). Finally, we need to compute the external sum in (5.62) for 0 ≤ s ≤ n− 1

and 0 ≤ r ≤ m−1, which, as before, may be seen as m DFT's with An(ωm).

For instance, from Proposition 5.5.2 and using (5.63), we get

T (nm) ≤ m · 2(n2 − 1) + n · 2(m2 − 1) + (n− 1)(m− 1)

= 2nm(n+m) + nm− 3(n+m) + 1.

This is a great improvement: if n = m then T1(n2) ∼ 2n4 while T (n2) ∼ 4n3.

Theorem 5.5.3 Let M be a positive integer and let M = m1m2 · · ·mk be a

nontrivial factorization. Suppose that T (mj) operation are needed to compute

the DFT with Amj . Then one can compute the DFT with AM by means of

at most

T (M) ≤

M
k∑
j=1

1

mj
[T (mj) +mj − 1]

−M + 1

operations. Moreover, T (M) does not depend on the order of the factors used

in the factorization.
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Proof We deduce this from the General Radix Identity as in Proposition

5.5.2 by using induction on k. For k = 2 the theorem reduces to Proposition

5.5.2. Assume the result for 2 ≤ h ≤ k − 1 and let us set m = m1m2 · · ·m`

and n = m`+1 · · ·mk for some 2 ≤ ` ≤ k − 2. Then M = nm and

T (M) = T (nm)

(by Proposition 5.5.2) ≤ nT (m) +mT (n) + (mn− n−m+ 1)

(by inductive hypothesis) ≤ n

m∑̀
j=1

1

mj
[T (mj) +mj − 1]−m+ 1


+m

n k∑
j=`+1

1

mj
[T (mj) +mj − 1]− n+ 1


+mn− n−m+ 1

= M


k∑
j=1

1

mj
[T (mj) +mj − 1]

−M + 1.

Some special cases of Theorem 5.5.3 are worth examining.

Corollary 5.5.4

T (M) ≤M
k∑
j=1

(2mj + 1)−M + 1.

Proof This follows from Theorem 5.5.3 by using (5.63) and the elementary

inequality (2m+3)(m−1)
m ≤ 2m+ 1.

If m1 = m2 = · · · = mk = m, that is, M = mk, we get the following

generalization of Theorem 5.1.3.

Corollary 5.5.5

T (mk) ≤ (2m+ 1)mkk −mk + 1.

In particular, for m �xed and k → +∞, one gets

T (mk) = O(kmk),

equivalently, T (M) = O(M logM).
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Finite Fields and their characters
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Finite �elds

This chapter is a self-contained introduction to the basic algebraic theory of

�nite �elds. This includes a complete study of the automorphisms, norms,

traces, and quadratic extensions of �nite �elds. Our treatment is inspired by

a course given by Giuseppe Tallini in 1991 at the Istituto Nazionale di Alta

Matematica �Francesco Severi� (INdAM) in Rome (cf. [141]). An alternative

approach is in the monograph by Lidl and Niederreiter [96]. We also refer

to the impressive volumes by Knapp [87, 88] for a very complete treatment

at both a basic and advanced level.

6.1 Preliminaries on Ring Theory

We start by recalling some basic notions and results in Ring Theory. Most of

the proofs are elementary and left as exercises: we refer to the monographs

by Herstein [71] and Lang [93] for more details. We also assume the most

elementary facts on polynomials over a �eld: a good reference is the book

by Kurosh [89].

Let A be a commutative unital ring. We denote by 0 the zero and by 1

the (multiplicative) identity element of A.
A is said to be an integral domain if it contains no zero divisors, that is,

if a, b ∈ A satisfy ab = 0 then a = 0 or b = 0.

An ideal of A is a subring I ⊆ A such that ai ∈ I for all a ∈ A and i ∈ I.
Viewing I as a subgroup of the additive group A, we can form the quotient

group A/I = {(a + I) : a ∈ A} and then equip it with the multiplication

de�ned by (a + I)(b + I) = (ab + I) for all a, b ∈ A. It is easy to check

that this multiplication is well de�ned and that A/I is a commutative unital

ring, called the quotient ring : its zero is (0 + I) = I and its unit element is

(1 + I).

173



174 Finite �elds

An element u ∈ A is called invertible, or a unit, provided there exists an

element v ∈ A, necessarily unique, called the inverse of u, such that uv = 1.

A �eld is a commutative unital ring such that every nonzero element is

invertible. In the sequel, we shall denote a �eld by the letters F and E.

Exercise 6.1.1 Show that every �nite integral domain is a �eld.

Hint. Use the pigeon-hole principle.

We denote by A[x] the commutative unital ring consisting of all polyno-

mials

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (6.1)

with coe�cients a0, a1, . . . , an in A in the indeterminate x. In (6.1) we

implicitly assume that an 6= 0 and then denote by deg p = n the degree of

the polynomial p(x). If an = 1 one says that the polynomial p(x) is monic.

Clearly, if A is an integral domain, so is A[x].

An ideal I in A is called principal provided there exists a ∈ A such

that I = aA = {ab : b ∈ A} and one then says that I is generated by a. A

principal ideal domain is an integral domain in which every ideal is principal.

Exercise 6.1.2 Let A be an integral domain and let a, b ∈ A. Suppose that
the ideal I = {xa + yb : x, y ∈ A} is principal. Show that every generator

of I is a gcd(a, b) (the de�nition of a gcd in A is the same as in Theorem

1.1.1).

Exercise 6.1.3 Show that in a principal ideal domain any nondecreasing

chain of ideals I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · must stabilize, that is, there exists
n0 ∈ N such that In = In0 for all n ≥ n0.

Example 6.1.4 The ring Z of integers is a principal ideal domain. Let us

show that if I ⊆ Z is an ideal, then the minimal primitive element a =

min{i ∈ I : i > 0} generates I. Indeed, given m ∈ I, by Euclidean division

we can �nd (unique) q ∈ Z and r ∈ Z such that 0 ≤ r < a and m = aq + r.

Since r = m − aq ∈ I, by minimality of a we deduce that r = 0, showing

that m = aq. Thus I = aA.

Exercise 6.1.5 Show that the integral domain Z[x] is not a principal ideal

domain.

Hint. Show that the ideal generated by 2 and x cannot be generated by a

single polynomial.

We recall that in the ring F[x] of all polynomials over a �eld F an analogue
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of (1.1) holds. This is the Euclidean division of polynomials: for p, s ∈ F[x]

there exist unique q, r ∈ F[x] such that p(x) = q(x)s(x) + r(x) and 0 ≤
deg r < deg s.

Exercise 6.1.6 Let F be a �eld. Show that F[x] is a principal ideal domain.

Hint. Use Euclidean division of polynomials.

Suppose that A is an integral domain. A nonzero noninvertible element

p ∈ A is said to be irreducible if it cannot be expressed as a product p = ab

with a, b ∈ A noninvertible.

Exercise 6.1.7 Let A be a principal ideal domain and let a, b, p ∈ A. Show
that if p is irreducible and p|ab, then p|a or p|b.
Hint. Use Exercise 6.1.2.

Example 6.1.8 (1) In the ring of integers, an element p ∈ Z is irreducible

if and only if its absolute value |p| ∈ N is a prime number.

(2) If F is a �eld, then a polynomial p(x) ∈ F[x] is irreducible if and only

if it is irreducible over F (in the usual sense of elementary algebra).

One then says that an integral domain A is a unique factorization domain

(brie�y, UFD) provided that every non-zero non-unit a ∈ A can be written

as a product a = up1p2 · · · pk of a unit u ∈ A and irreducible elements

p1, p2, . . . , pk ∈ A, and this factorization is unique in the following sense:

if a = vq1q2 · · · qh is another factorization, with v a unit and q1, q2, . . . , qh
irreducible, then h = k and, up to reordering the factors, qj = wjpj , with

wj a unit, for all j = 1, 2, . . . , k (and therefore v = u(w1w2 · · ·wk)−1).

Exercise 6.1.9 Show that every principal ideal domain is UFD.

Hint. For the existence, consider the set B of all ideals ofA, whose generators
do not admit factorization and use Exercise 6.1.3. For the uniqueness use

Exercise 6.1.7.

Example 6.1.10 (1) Z is a UFD: every n ∈ Z can be written (uniquely) as

a product

n = εpα1
1 pα2

2 · · · p
αk
k

where ε ∈ {1,−1} and p1, p2, . . . , pk ∈ N are distinct prime numbers (the

positive integers αi's are the corresponding multiplicities).

(2) If F is a �eld, then F[x] is a UFD: every polynomial p(x) ∈ F[x] can
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be written (uniquely) as a product

p(x) = up1(x)α1p2(x)α2 · · · pk(x)αk

where u ∈ F and p1(x), p2(x), . . . , pk(x) ∈ F[x] are distinct, monic irreducible

polynomials (the positive integers αi's are the corresponding multiplicities).

A proper ideal I ⊂ A is maximal if the following holds: whenever I ⊆
J ⊆ A, where J is also an ideal, we necessarily have either I = J or J = A.

Proposition 6.1.11 Let A be a unital ring and I ⊂ A an ideal. Then the

quotient ring A/I is a �eld if and only if I is maximal.

Proof Suppose that I is maximal. Let a ∈ A\I and let us show that the non-

zero element (a+I) ofA/I is a unit. Denote byH ⊂ A/I the ideal generated
by (a + I). Then if we denote by π : A → A/I the canonical quotient

homomorphism, we have that J = π−1(H) is an ideal in A which contains I
and a, so that I ( J . By maximality of I we have π−1(H) = J = A. Since
H is generated by (a+I), we can �nd b ∈ A such that (1+I) = (a+I)(b+I)

in H. Thus (b+ I) is the inverse of (a+ I) in A/I. This shows that A/I is

a �eld.

Conversely, suppose that A/I is a �eld. Let J be and ideal of A such

that I ( J ⊆ A. Let us show that J = A. Let b ∈ J \ I. Then (b + I)

is a non-zero element in A/I and therefore we can �nd a ∈ A such that

(a+ I)(b+ I) = (1 + I). It follows that

1 ∈ (ab+ I) ⊆ aJ + J = J ,

so that J = A. This shows that I is maximal.

Proposition 6.1.12 Let A be a principal ideal domain. If a ∈ A is a nonzero

element, then the (principal) ideal aA generated by a is maximal if and only

if a is irreducible.

Proof Suppose that a is not irreducible. Then we can �nd noninvertible

elements b, c ∈ A such that a = bc. Let us show that aA ( bA ( A.
Indeed, if we had bA = A we could �nd an element b′ ∈ A such that bb′ = 1,

contradicting the fact that b is not invertible. On the other hand, if aA = bA
then b ∈ aA and we would �nd d ∈ A such that b = ad. As a consequence,

a = bc = adc yielding a(1 − dc) = 0. Since A is an integral domain and

a 6= 0, we necessarily have 1 − dc = 0, equivalently dc = 1, contradicting

the fact that c is not invertible. This shows that the proper ideal aA is not

maximal.
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Conversely, suppose that a is irreducible and let us show that aA is a

maximal ideal. Thus suppose that J is an ideal such that aA ⊆ J ⊆ A.
Since A is a principal ideal domain, we can �nd b ∈ A such that J = bA.
Since a ∈ bA we can then �nd c ∈ A such that a = bc. By irreducibility

of a, one of the two elements b, c ∈ A must be invertible. If b is invertible

then 1 ∈ J so that J = A. If c is invertible, then b = ac−1 ∈ aA so that

bA = aA. It follows that aA is a maximal ideal.

Corollary 6.1.13 Let n ∈ N. Then the quotient ring Z/nZ is a �eld if and

only if n is a prime number.

Recall that, for p ∈ N a prime number, we denote by Fp the �eld Z/pZ
(see Notation 1.1.17).

Corollary 6.1.14 Let F be a �eld and p(x) ∈ F[x]. Then the quotient ring

F[x]/p(x)F[x] is a �eld if and only if p(x)is irreducible (over F).

Let F be a �eld. Consider the cyclic additive subgroup C generated by

the identity element 1 ∈ F. The characteristic of F, denoted char(F), is

de�ned to be 0 if C is in�nite (and therefore isomorphic to Z) and equal to

the cardinality of C otherwise. Let us show that in this last case char(F) is

a prime number. Consider the map Φ: Z→ F de�ned by

Φ(±n) = ±(1 + 1 + · · ·+ 1︸ ︷︷ ︸
n terms

) (6.2)

for all n ∈ N. Then it is straightforward to see that Φ is a unital ring

homomorphism, so that Z/Ker(Φ) ∼= Φ(Z) = C. If Ker(Φ) = {0} then

char(F) = 0. Otherwise, Φ(Z) ⊆ F, being a �nite integral domain is a �eld

(cf. Exercise 6.1.1) and therefore, by Corollary 6.1.13, Ker(Φ) = pZ for some

prime number p, so that char(F) = p.

6.2 Finite algebraic extensions

We now give a basic introduction to �eld extensions. More complete treat-

ments can be found in the aforementioned monographs by Herstein [71],

Lang [93], and Knapp [87, 88].

Let F and E be two �elds and suppose that F ⊆ E. We say that F is a

sub�eld of E or, equivalently, that E is an extension of F.

Exercise 6.2.1 Show that E is a vector space over F.

We denote by [E : F] the corresponding dimension dimFE (the cardinality
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of one (=any) vector basis of E over F): it is called the degree of the extension.
We say that E is a �nite (resp. in�nite) extension of F provided that [E :

F] <∞ (resp. [E : F] is in�nite).

An element α ∈ E is called algebraic over F (or F-algebraic) if there exists
p(x) ∈ F[x] such that p(α) = 0.

Let α ∈ E be an F-algebraic element. Then it is straightforward to check

that the set Iα = {p ∈ F[x] : p(α) = 0} is an ideal in F[x]. It follows from

Exercise 6.1.6 that there exists a monic polynomial q ∈ F[x] such that Iα is

generated by q, i.e. Iα = q(x)F[x].

Exercise 6.2.2 Show that the monic polynomial q ∈ F[x] is unique and

irreducible.

The polynomial q is called the minimal polynomial of α (over F). It

follows from Corollary 6.1.14 that F[x]/q(x)F[x] is a �eld. On the other

hand, consider the map

Φ: F[x] → E
p 7→ p(α).

We clearly have Ker(Φ) = Iα = q(x)F[x] and therefore F[x]/q(x)F[x] =

F[x]/Ker(Φ) is isomorphic to the image Im(Φ) which is a sub�eld of E con-

taining α, denoted F[α]. We say that F[α] is the sub�eld of E obtained by

adjoining α to F.

Exercise 6.2.3 Show that F[α] is the sub�eld of E generated by F and α

(that is, F[α] is the intersection of all sub�elds of E containing F and α).

Proposition 6.2.4 Let E be an extension of F. Suppose [E : F] <∞. Then

every α ∈ E is algebraic over F.

Proof Let α ∈ E and set n = [E : F] = dimFE. Then the n + 1 elements

1, α, α2, . . . , αn are linearly dependent over F. It follows that there exists

a0, a1, . . . , an ∈ F such that (a0, a1, . . . , an) 6= (0, 0, . . . , 0) and a0 + a1α +

· · · + anα
n = 0. Then the polynomial q(x) = anx

n + · · · + a1x + a0 ∈ F[x]

satis�es q(α) = 0. This shows that α is algebraic over F.

Proposition 6.2.5 Let E be an extension of F and α ∈ E. Suppose that α

is algebraic over F and denote by q(x) ∈ F[x] its minimal polynomial. Then

setting n = deg(q) the following holds.

(i) {1, α, α2, . . . , αn−1} is a basis of F[α] over F;
(ii) dimFF[α] = n;
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(iii) F[α] ∼= F[x]/q(x)F[x].

Moreover, let β ∈ E and suppose that q(β) = 0. Then the following holds.

(iv) β is algebraic over F and q(x) is the minimal polynomial of β;

(v) dimFF[β] = n;

(vi) F[α] ∼= F[β];

(vii) if β ∈ F[α] then F[α] = F[β].

Proof Let q(x) = xn + an−1x
n−1 + · · · + a1x + a0 and observe that a0 6= 0

by irreducibility (cf. Exercise 6.2.2). Since q(α) = 0, we deduce that αn =

−(an−1α
n−1 + · · · + a1α + a0). After multiplying both sides by αm−n we

deduce that, more generally,

αm = −(an−1α
m−1 + · · ·+ a1α

m−n+1 + a0α
m−n) (6.3)

for all m ≥ n. Similarly, after multiplying the equation q(α) = 0 by α−1,

we deduce that α−1 = − 1
a0

(αn−1 + an−1α
n−2 + · · · + a2α + a1) and, more

generally,

α−m = − 1

a0
(αn−m + an−1α

n−m−1 + · · ·+ a2α
2−m + a1α

1−m) (6.4)

for all m ≥ 1. This shows that the n elements 1, α, α2, . . . , αn−1 span F[α]

(recall Exercise (6.2.3)). Since n = deg(q) and q is the minimal polynomial of

α, the above elements are also linearly independent and therefore constitute a

basis for F[α] over F. This shows (i), and (ii) follows immediately thereafter.

(iii) was observed when de�ning F[α]. (iv) follows from the obvious fact

that every irreducible polynomial is the minimal polynomial of any of its

roots. From this we deduce that the same relations (6.3) and (6.4) hold

with α replaced by β, thus proving (v), while (vi) follows from (iii). Finally,

suppose that β ∈ F[α]. Then F[β] = {p(β) : p ∈ F[x]} is a sub�eld of F[α]

and, from (ii) and (v), we immediately deduce (vii).

Remark 6.2.6 With the above notation, one can also say that F[α] is ob-

tained from F by adjoining a root of (the irreducible polynomial) q. In a

more abstract fashion, if q is any irreducible polynomial in F[x], then the

�eld F[x]/q(x)F[x] contains a sub�eld isomorphic to F (that we shall still

denote by F), namely the set of all elements of the form a0 + q(x)F[x],

where a0 ∈ F is viewed as a polynomial of degree 0. Then the element

α = x + q(x)F[x] ∈ F[x]/q(x)F[x] is algebraic over F: indeed, q(α) =

q (x+ q(x)F[x]) = q(x) + q(x)F[x] = 0 + q(x)F[x] = 0. As a consequence,

F[x]/q(x)F[x] is the algebraic extension of F by means of the (irreducible)

polynomial q(x).
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When deg(q) = 2 we call it a quadratic extension.

Example 6.2.7 The �eld C = {a + ib : a, b ∈ R} of complex numbers is

a quadratic extension of the �eld R of real numbers. The corresponding

irreducible polynomial is q(x) = x2 + 1.

De�nition 6.2.8 Let p(x) ∈ F[x], say of degree deg(p) = n. Then the

smallest (= of minimal degree) �eld extension E of F containing elements

α1, α2, . . . , αn such that p(x) = (x − α1)(x − α2) · · · (x − αn) is called a

splitting �eld for the polynomial p(x) over F.

Exercise 6.2.9 (Existence and uniqueness of splitting �elds) (1)

Prove that, in the above de�nition, the �eld E exists and is unique up to

isomorphism.

Hint: existence is obtained by a repeated application of the constructions

that have led to Proposition 6.2.5. Uniqueness is more di�cult (we refer to

the aforementioned references).

(2) Prove that, if p is irreducible (over F), then [E : F] divides n!, where

n = deg(p).

Remark 6.2.10 Let F ⊆ G ⊆ E be �elds and let p(x) ∈ F[x] (so that

p(x) ∈ G[x]). Then E is the splitting �eld of p(x) over F if and only if it is

the splitting �eld of p(x) over G.

De�nition 6.2.11 Let E be an extension of F. The Galois group E over

F, denoted Gal(E/F), is the group of all automorphisms of E that �x F
pointwise, in symbols:

Gal(E/F) = {ξ ∈ Aut(E) : ξ(α) = α for all α ∈ F}.

If we consider E as a vector space over F, then every automorphism ξ ∈
Gal(E/F) is F-linear :

ξ(α1β1 + α2β2) = α1ξ(β1) + α2ξ(β2)

for all α1, α2 ∈ F and β1, β2 ∈ E.

Proposition 6.2.12 Gal(E/F) is F-linearly independent (as a subset of

EndF(E), the algebra of all F-linear maps T : E→ E).

Proof Suppose, by contradiction, that there exist ξ1, ξ2, . . . , ξn ∈ Gal(E/F),
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all distinct, and (α1, α2, . . . , αn) 6= (0, 0, . . . , 0) in Fn such that

α1ξ1 + α2ξ2 + · · ·+ αnξn = 0. (6.5)

Up to reducing n if necessary, we may suppose that the length n ≥ 2 of the

nontrivial linear combination in the left hand side of (6.5) is minimal (in

particular, αi 6= 0 for all i = 1, 2, . . . , n).

Choose β ∈ E such that ξ1(β) 6= ξ2(β). Then from (6.5) we deduce that

n∑
k=1

αkξk(β)ξk(γ) =
n∑
k=1

αkξk(βγ) = 0

for all γ ∈ E. It follows that

α1ξ1(β)ξ1 + α2ξ2(β)ξ2 + · · ·+ αnξn(β)ξn = 0 (6.6)

is another vanishing nontrivial linear combination of length n. But then,

multiplying (6.5) by ξ1(β) and subtracting (6.6), we obtain

α2 (ξ1(β)− ξ2(β)) ξ2 +α3 (ξ1(β)− ξ3(β)) ξ3 + · · ·+αn (ξ1(β)− ξn(β)) ξn = 0,

where the left hand side is nontrivial (because α2 (ξ1(β)− ξ2(β)) 6= 0) and

of length at most n− 1, contradicting the minimality of n. This shows that

the elements in Gal(E/F) are F-linearly independent.

Theorem 6.2.13 Let E be a �nite extension of F. Then |Gal(E/F)| ≤ [E :

F].

Proof Let us set n = [E : F] and let β1, β2, . . . , βn ∈ E constitute a basis of

E as a vector space over F. Suppose that ξ1, ξ2, . . . , ξm are distinct elements

in Gal(E/F). Consider the homogeneous linear system of n equations
α1ξ1(β1) + α2ξ2(β1) + · · ·+ αmξm(β1) = 0

α1ξ1(β2) + α2ξ2(β2) + · · ·+ αmξm(β2) = 0

· · · · · · · · · · · ·
α1ξ1(βn) + α2ξ2(βn) + · · ·+ αmξm(βn) = 0

in the m variables α1, α2, . . . , αm. It is a standard fact of linear algebra

(over any arbitrary �eld) that if m > n (i.e. the number of variables is

greater than the number of equations) the above system has a nontrivial

solution (α1, α2, . . . , αm) ∈ Em. Since the ξis are F-linear and β1, β2, . . . , βn
constitute a basis for E, we deduce that

α1ξ1(β) + α2ξ2(β) + · · ·+ αmξm(β) = 0
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for every β ∈ E, that is, αξ1+αξ2+· · ·+αmξm = 0, contradicting Proposition

6.2.12. This shows that m ≤ n and therefore |Gal(E/F)| ≤ [E : F].

Let f(x) ∈ F[x], say f(x) = anx
n + an−1x

n−1 + · · · a1x + a0. Then the

derivative of f(x) is the polynomial f ′(x) ∈ F[x] de�ned by setting

f ′(x) := nanx
n−1 + (n− 1)an−1x

n−2 + · · · 2a2x+ a1.

Exercise 6.2.14 Show that the map D : F[x]→ F[x] given by D(f) = f ′ is

F-linear.

Note that if char(F) = p > 0, then Dxkp = kpxkp−1 = 0 for all k ≥ 1.

6.3 The structure of �nite �elds

Theorem 6.3.1 Let F be a �nite �eld. Then the following holds.

(i) There exists a prime number p ∈ N such that char(F) = p;

(ii) F contains a sub�eld isomorphic to Fp;
(iii) the additive group (F,+) is isomorphic to ⊕ni=1Fp for some n ≥ 1;

(iv) there exists n ≥ 1 such that |F| = pn.

Proof Consider the unital homomorphism Φ: Z → F de�ned by (6.2). As

we already observed at the end of Section 6.1, we have Ker(Φ) = pZ with p a

prime number. Moreover, Im(Φ) ∼= Z/Ker(Φ) = Z/pZ = Fp and this proves

(i) and (ii). Let n = [F : Im(Φ)]; then F is a vector space of dimension n over

Im(Φ) ∼= Fp and (iii) follows. Taking cardinalities, from (iii) we immediately

deduce (iv).

In the sequel, with the notation from the above theorem, we shall denote

by q = pn the cardinality of F and denote this �eld by Fq.

Corollary 6.3.2 Let Fq be a �nite �eld of order q = pn and let Fr ⊂ Fq be
a sub�eld. Then there exists a divisor h of n such that r = ph.

Proof Since 1 ∈ Fr, we clearly have char(Fr) = char(Fq) = p. Thus there

exists an integer h ≥ 1 such that r = ph. Setting s = [Fq : Fr], by Exercise

6.2.1 we have pn = q = rs = (ph)s = phs, so that n = hs.

In analogy with the particular case q = p (cf. Theorem 1.1.21) we have

the following:
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Theorem 6.3.3 The (multiplicative) group F∗q of invertible elements in Fq
is cyclic of order q − 1.

Proof The proof is identical to that of Theorem 1.1.21.

De�nition 6.3.4 A generator of the cyclic group F∗q is called a primitive

element of Fq.

Corollary 6.3.5 Fq is the splitting �eld of the polynomial xq − x over Fp
and consists exactly of the roots of this polynomial.

Proof First observe that xq−x ∈ Fp[x]. By Theorem 6.3.3, the multiplicative

group F∗q is cyclic of order q−1. Therefore, every β ∈ F∗q satis�es the equation
xq−1 = 1, i.e., it is a root of the polynomial xq − x. Since, clearly, 0 is also a

root of this polynomial, it follows that Fq consists exactly of all the q roots

of xq − x. This shows that Fq is the splitting �eld of xq − x over Fp.

Corollary 6.3.6 Let r be a divisor of q−1. Then F∗q contains ϕ(r) elements

of order r. In particular, there are ϕ(q − 1) primitive elements of Fq. �

6.4 The Frobenius automorphism

Let Fq be a �nite �eld, where q = pn. Then the map σ : Fq → Fq de�ned by

σ(α) = αp

for all α ∈ Fq, is an automorphism. Indeed, for α, β ∈ Fq we have

σ(α+ β) = (α+ β)p

=

p∑
k=0

(
p

k

)
αkβp−k

= αp + βp

= σ(α) + σ(β),

because the integer
(
p
k

)
= p (p−1)(p−2)···(p−k+1)

k! is a multiple of p (since p is

prime), and therefore
(
p
k

)
≡ 0 (mod p), for all 1 ≤ k ≤ p− 1, and

σ(αβ) = (αβ)p = (α)p(β)p = σ(α)σ(β).

One calls σ the Frobenius automorphism of Fq.
Recall (cf. Theorem 6.3.1) that for q = pn the �eld Fq contains the sub�eld

Fp and that [Fq : Fp] = n.
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Theorem 6.4.1 Let q = pn. Then the following hold:

(i) Gal(Fq/Fp) is a cyclic group of order n;

(ii) Gal(Fq/Fp) is generated by the Frobenius automorphism σ;

(iii) Gal(Fq/Fp) = Aut(Fq).

Proof Let us �rst show that σ has order n. Clearly, σk(α) = αp
k
for all

α ∈ Fq and k ≥ 1. Since (in any �eld) the equation xp
k − x = 0 has at most

pk solutions, there exists no 1 ≤ k < n such that σk(α) ≡ αp
k

= α for all

α ∈ Fq.
On the other hand, it follows from Corollary 6.3.5 that σn(α) ≡ αq = α,

for all α ∈ Fq. In other words, σn = idFq . This shows that the Frobenius

automorphism σ has order n. Moreover, applying Corollary 6.3.5 to F∗p, we
deduce that σ(α) ≡ αp = α for all α ∈ Fp. This shows that σ �xes pointwise

all elements in α ∈ Fp, that is, σ ∈ Gal(Fq/Fp). Since, by Theorem 6.2.13,

|Gal(Fq/Fp)| ≤ [Fq : Fp] = n, we deduce (i) and (ii).

Finally, let ξ ∈ Aut(Fq). Then we have ξ(0) = 0, ξ(1) = 1, ξ(2) = ξ(1 +

1) = ξ(1)+ξ(1) = 1+1 = 2, and recursively, ξ(k) = k for all k = 2, 3, . . . , p−1

(but ξ(p) = pξ(1) = 0). Thus ξ �xes Fp = {0, 1, 2, . . . , p−1} pointwise. This
shows (iii).

Corollary 6.4.2 Every α ∈ Fq has exactly one pk-th root in Fq for k =

1, 2, . . . , n. �

Corollary 6.4.3 The �eld Fq admits an involutory automorphism if and

only if n is even. If this is the case, then it is given by σn/2. �

A nontrivial square in a �eld F is an element α ∈ F∗ such that α 6= 1 and

α = β2 for some β ∈ F.

Proposition 6.4.4 If p = 2 then every element in F∗q is a square. If p > 2

then there are q−1
2 squares in F∗q.

Proof The result for p = 2 follows immediately from Corollary 6.4.2 (with

k = 1). Suppose p > 2 and denote by ϕ : F∗q → F∗q the square map de�ned by

ϕ(β) = β2 for all β ∈ F∗q . Note that for β1, β2 ∈ Fq one has ϕ(β1) = ϕ(β2)

if and only if β1 = ±β2. This shows that ϕ is two-to-one. As a consequence,

the number of squares in F∗q equals |ϕ(F∗q)| = |F∗q |/2 = (q − 1)/2.
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6.5 Existence and uniqueness of Galois �elds

De�nition 6.5.1 Let f(x) ∈ Fp[x] be an irreducible polynomial of degree n

and denote by f(x)Fp[x] the ideal generated by f(x). Then the �eld

Fp[x]/f(x)Fp[x]

is called a Galois �eld of order pn (cf. Proposition 6.2.5 and Remark 6.2.6).

We shall not introduce a speci�c notation for Galois �elds since for every

prime number p and integer n ≥ 1 all Galois �elds of order q := pn are

isomorphic (cf. Theorem 6.5.6), and we shall use the notation Fq. In this

section, we prove their existence and uniqueness. As usual, we denote by

σ ∈ Aut(Fq) the Frobenius automorphism.

Proposition 6.5.2 Let f(x) = a0+a1x+· · ·+anxn ∈ Fp[x] be an irreducible

polynomial of degree n and let Fq = Fp[x]/f(x)Fp[x] be the associated Galois

�eld. Let also α ∈ Fq be a root of f (cf. Remark 6.2.6). Then the elements

αp
k

= σk(α), k = 0, 1, . . . , n − 1, are all distinct and are the roots of f . In

particular, Fq is the splitting �eld of f(x) over Fp (cf. De�nition 6.2.8) and

f(x) = an(x− α)(x− αp)(x− αp2) · · · (x− αpn−1
).

Proof Since σk is an automorphism that �xes Fp pointwise, we have that

f(σk(α)) = σk(f(α)) = σ(0) = 0, that is, σk(α) is a root of f , for all

k = 0, 1, . . . , n−1. Let us show that these elements are all distinct. Suppose

that σk(α) = σj(α), that is, αp
k

= αp
j
for some 1 ≤ k < j ≤ n − 1. Set

β := σk(α) = αp
k
and r := j − k ∈ N. We have

σr(β) = βp
r

= βp
j−k

= (αp
k
)p
j−k

= αp
j

= αp
k

= β. (6.7)

Since f(β) = 0, from Proposition 6.2.5 we deduce that the elements

1, β, β2, . . . , βn−1

constitute a vector space basis of Fq over Fp. As a consequence, for every

δ ∈ Fq there exist η1, η2, . . . , ηn ∈ Fp such that

δ = η1 + η2β + · · ·+ ηnβ
n−1.
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Since (ηi)
p = ηi for i = 1, 2, . . . , n and, by (6.7), βp

r
= β, we get

δp
r

= σr
(
η1 + η2β + · · ·+ ηnβ

n−1
)

= η1 + η2β
pr + η3(βp

r
)2 + · · ·+ ηn(βp

r
)n−1

= η1 + η2β + · · ·+ ηnβ
n−1

= δ.

Since δ was arbitrary, this contradicts Theorem 6.3.3, because r < n.

Proposition 6.5.3 Let f(x) ∈ Fq[x] be an irreducible polynomial of degree

m, and let k ≥ 1. Then f(x) divides xq
k − x if and only if m divides k.

Proof By Proposition 6.2.5 and Theorem 6.3.1, Fq[x]/f(x)Fq[x] has qm ele-

ments so that

αq
m

= α for all α ∈ Fq[x]/f(x)Fq[x] (6.8)

(cf. Corollary 6.3.5). Taking α = x+ f(x)Fq[x], this yields

xq
m − x ∈ f(x)Fq[x]. (6.9)

Let us show that for s = 0, 1, 2, . . . we have

xq
sm − x ∈ f(x)Fq[x]. (6.10)

We proceed by induction. For s = 0, this is trivial and for s = 1 equation

(6.10) reduces to (6.9). Let us prove the inductive step:

xq
(s+1)m − x =

(
xq

sm)qm − x
(by (6.10)) ∈ (x+ f(x)Fq[x])q

m

− x
⊆ xqm − x+ f(x)Fq[x]

(by (6.9)) = f(x)Fq[x].

In particular, if m divides k then f(x) divides xq
k − x.

Let us prove the converse implication. Suppose that f(x) divides xq
k − x.

Applying the Euclidean algorithm, we can �nd two nonnegative integers s, r,

with 0 ≤ r ≤ m− 1, such that k = sm+ r. We need to show that r = 0. By

virtue of (6.9) we have

xq
sm ∈ x+ f(x)Fq[x]

and therefore

xq
k

= xq
sm+r

=
(
xq

sm)qr ∈ xqr + f(x)Fq[x]. (6.11)

Since f(x) divides xq
k − x, from (6.11) we deduce xq

r − x ∈ f(x)Fq[x],
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equivalently, f(x) also divides xq
r − x. As a consequence, in the �eld

Fq[x]/f(x)Fq[x] every element α satis�es the identity

αq
r

= α

which contradicts (6.8), since r < m, unless r = 0. This shows that m

divides k.

Proposition 6.5.4 Let p and m be two primes and q = ph for some integer

h ≥ 1. Then in Fq[x] there exist exactly

qm − q
m

> 0

distinct irreducible monic polynomials of degree m.

Proof From the identity αq = α in Fq, we deduce that αq
2

= αq = α and,

similarly, αq
3

= α, . . . , αq
m

= α, for all α ∈ Fq. Therefore the polynomial

xq
m−x is divisible by x−α for every α ∈ Fq and therefore may be factorized

as follows

xq
m − x = f1(x)f2(x) · · · fr(x)

∏
α∈Fq

(x− α) (6.12)

where f1, f2, . . . , fr ∈ Fq[x] are monic and irreducible. We claim that in the

factorization (6.12) there cannot be two equal factors (it is square free), that

is, one cannot have

xq
m − x = f(x)2g(x),

where f ∈ Fq[x] has degree ≥ 1. Otherwise, by taking the derivative of both

sides we would have that qmxq
m−1 − 1 = −1 should equal 2f(x)f ′(x)g(x) +

f(x)2g′(x), that is,

−1 = f(x)
(
2f ′(x)g(x) + f(x)g′(x)

)
which is impossible since deg(f) ≥ 1. This proves our claim. In particular,

in (6.12) for j = 1, 2, . . . , r we must have deg(fj) ≥ 2 and therefore, by

Proposition 6.5.3 and primality of m, deg(fj) = m.

In conclusion, f1, f2, . . . , fr are distinct irreducible polynomials of degree

m. Moreover, again by virtue of Proposition 6.5.3, they constitute the com-

plete list of all irreducible monic polynomials of degree m. It follows that

the degree of the right hand side of (6.12) is mr+q and must equal qm. This

yields

r =
qm − q
m

,
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completing the proof.

Remark 6.5.5 The fact that the number qm−q
m is a integer is a particular

case of Fermat's little theorem (cf. Exercise 1.1.22).

We are now in position to state and prove the main theorem of the theory

of �nite �elds.

Theorem 6.5.6 (Main theorem: existence and uniqueness of Galois

�elds) For every prime number p and integer h ≥ 1 there exists a unique

(up to isomorphism) �nite �eld Fq of order q = ph. It is the Galois �eld

Fp[x]/`(x)Fp[x],

where `(x) = (x−α)(x−αp)(x−αp2) · · · (x−αph−1
) and α is any generator

of the cyclic group F∗q.

Proof First of all, let us prove that a �eld with q = ph elements exists. Let

h = m1m2 · · ·mr (6.13)

be a factorization of h into primes (repetitions are allowed). By Proposition

6.5.4, there exists an irreducible polynomial f1 ∈ Fp[x] of degree m1. Con-

sider the �eld Fpm1 = Fp[x]/f1(x)Fp[x] and recall that it has pm1 elements.

Now, again by Proposition 6.5.4, in Fpm1 [x] there exists an irreducible poly-

nomial f2 of degree m2, and so on. Eventually, we obtain a �eld Fq with

(pm1m2···mr−1)mr = pm1m2···mr = ph = q elements.

By Theorem 6.3.3, the group F∗q is cyclic of order q − 1, and let α be

a generator of F∗q . Then α is algebraic over Fp, since it is a root of the

polynomial xq−1 − 1, and, clearly,

Fq = Fp[α].

Then, by Proposition 6.2.5, Fq is isomorphic to Fp[x]/`(x)Fp[x], where `(x) ∈
Fp[x] is the minimal polynomial of α. It follows that Fq is a Galois �eld.

Moreover, by Proposition 6.5.2, we have

`(x) = (x− α)(x− αp)(x− αp2) · · · (x− αph−1
)

and

xq − x = `(x)g(x) (6.14)

with g(x) ∈ Fp[x], because α is a root of xq − x, and `(x) is its minimal

polynomial, and the principal ideal Iα = {f ∈ Fp[x] : f(α) = 0} is generated
by `(x).
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Suppose now that Kq is another �eld with q elements. Let α ∈ Kq be

a generator of the cyclic group K∗q . From the arguments above, we have

that Fp[α] = Kq. Finally, it is straightforward that the map Fq = Fp[α] →
Fp[α] = Kq, given by f(α) 7→ f(α) for all f ∈ Fp[x], is an isomorphism.

We now present, as an exercise, an elementary proof of Gauss law of

quadratic reciprocity from [5]. This proof uses some facts on �nite �elds that

we have already established. Let p and q be distinct odd primes and consider

the �eld Fqp−1 and the cyclic group F∗qp−1 . By Fermat's little theorem (see

Exercise 1.1.22), p divides qp−1 − 1 = |F∗qp−1 |, so that, by Corollary 1.2.9,

F∗qp−1 contains an element ζ of order p. We consider the Gauss sum

Gζ =

p−1∑
k=1

(
k

p

)
ζk,

where

(
k

p

)
is the Legendre symbol (cf. De�nition 4.4.7). Clearly, Gζ ∈ Fqp−1 .

Exercise 6.5.7

(1) Prove that

Gqζ =

(
q

p

)
Gζ . (6.15)

Hint: use the identities (a+ b)q = aq + bq in Fqp−1 and(
k

p

)
=

(
kq2

p

)
=

(
kq

p

)(
q

p

)
,

where the last equality follows from Proposition 4.4.8.(iii).

(2) Suppose that p - h and show that

p−1∑
j=1

ζjh = −1.

(3) Show that

p−2∑
h=1

(
h

p

)
= −

(
−1

p

)
.

(Hint: use Corollary 4.4.9), and deduce that

p−2∑
h=1

(
h

p

) p−1∑
j=1

ζ(1+h)j =

(
−1

p

)
.
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(4) From (2) and (3) deduce that

G2
ζ =

(
−1

p

)
p.

(Hint: �rst prove that G2
ζ =

∑p−1
h=1

(
h

p

)∑p−1
j=1 ζ

(1+h)j), so that, by

Proposition 4.4.8.(iv),

G2
ζ = p(−1)(p−1)/2. (6.16)

(5) From (6.15) and (6.16) deduce the Gauss law of quadratic reciprocity

(Theorem 4.4.18).

Hint: start with the elementary identity Gqζ = Gζ(G
2
ζ)

(q−1)/2; use

Proposition 4.4.8.(ii).

6.6 Sub�elds and irreducible polynomials

Proposition 6.6.1 Let q = ph. Then, for every divisor m of h there exists

a unique sub�eld of Fq isomorphic to Fpm . Moreover all sub�elds are of this

kind.

Proof Let K be a sub�eld of Fq. Then Fq is a vector space over K and

therefore the cardinality of K divides the cardinality of Fq. By the uniqueness
of Galois �elds (Theorem 6.5.6), it follows that there exists an integer m ≤
h such that K = Fpm = Fp/`(x)Fp[x], where ` ∈ Fp[x] is an irreducible

polynomial of degree m. Since the equation xp
h − x = 0 is satis�ed by all

elements in Fq ⊇ K we deduce that `(x) divides xp
h − x in Fp[x] (compare

with (6.14)). Therefore, by virtue of Proposition 6.5.3, we have m = deg(`)

must divide h.

In order to show that, conversely, if m divides h, then Fq = Fph contains

a sub�eld isomorphic to Fpm , we use the recursive construction of Fq in the

proof of Theorem 6.5.6. Indeed, if we arrange the primes in the decompo-

sition (6.13) of h in such a way that m = m1m2 · · ·mi for some 1 ≤ i ≤ r,

then Fpm appears, in the construction we alluded to above, as one of the

intermediate �elds between Fp and Fph = Fq. Uniqueness of the sub�eld

Fpm follows from the fact that its elements are precisely the roots of the

polynomial xp
m − x ∈ Fp[x].

Exercise 6.6.2 Show that the lattice of all sub�elds of Fq is isomorphic to

the lattice of all divisors of m.
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In the following, σ ∈ Aut(Fq) denotes the Frobenius automorphism (cf.

Section 6.4).

Proposition 6.6.3 Let p be a prime number, h ≥ 1 an integer, and q = ph.

Let also 1 ≤ r ≤ h− 1. Then

K = {β ∈ Fq : σr(β) = β} (6.17)

coincides with the sub�eld of Fq isomorphic to Fpm , where m = gcd(h, r).

On the other hand, if m divides h then

Gal(Fq/Fpm) ≡ {ξ ∈ Aut(Fq) : ξ(β) = β for all β ∈ Fpm} = 〈σm〉.

Proof First of all we observe that K is a sub�eld of Fq. Therefore, by

Proposition 6.6.1, there exists an integer m which divides h such that K =

Fpm .
Let us set σ̃ = σ|Fpm ∈ Aut(Fpm). This is the Frobenius automorphism of

Fpm so that, by Theorem 6.4.1, Aut(Fpm) = 〈σ̃〉. Now, for an integer n ≥ 0

one has

σn(β) = β (i.e. σ̃n(β) = β) ∀β ∈ Fpm ⇔ m|n. (6.18)

We deduce that m divides r and therefore also divides gcd(h, r). On the

other hand, setting m′ = gcd(h, r) and σ̂ = σ|F
pm
′ ∈ Aut(Fpm′ ), arguing as

above, we have σn(β′) = β′ (i.e. σ̂n(β′) = β′) for all β′ ∈ Fpm′ if and only

if m′ divides n. Thus, taking n = r we have σr(β′) = β′ for all β′ ∈ Fpm′ .
Since K = Fpm ⊆ Fpm′ this shows that m = m′ = gcd(h, r).

Finally, Gal(Fq/Fpm), being a subgroup of the cyclic group Gal(Fq/Fp),
is itself cyclic (cf. Proposition 1.2.12). By the above arguments, we have

σm ∈ Gal(Fq/Fpm) and, by (6.18), we indeed have Gal(Fq/Fpm) = 〈σm〉.

The following is a generalization of Proposition 6.5.2.

Corollary 6.6.4 Let f ∈ Fq[x] be an irreducible polynomial of degree n.

Then Fqn is the splitting �eld of f over Fq. Moreover, if α ∈ Fqn is a root

of f then α, αq, . . . , αq
n−1

are the roots of f and they are also distinct.

Proof Let F denote the splitting �eld of f over Fq. Then we can �nd a posi-

tive integer h ≥ n such that F = Fqh : indeed, denoting by α1, α2, . . . , αn ∈ F
the roots of f , by Proposition 6.2.5 and Theorem 6.6.1 we have Fqn ∼=
Fq[α1] ⊆ Fq[α1, α2, . . . , αn] = F = Fqh .
Let σ be the generator of Gal(Fqn ,Fq) given by σ(β) = βq for all β ∈ Fqn .
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Observe that σ is not the Frobenius automorphism, although we use the

same symbol. Arguing as in the proof of Proposition 6.5.2, we deduce that

α, αq, . . . , αq
n−1

are distinct roots of f and therefore exhaust all the roots of

f . Then Fqn contains all the roots of f , and therefore n = h, i.e., F = Fqn .

Corollary 6.6.5 With the notation from the previous corollary, if α is a

root of f in Fqn, then f is a scalar multiple of the minimal polynomial of α

over Fq, and Fqn = Fq[α].

Notation 6.6.6 Let F be a �nite �eld. We denote by Fmon[x] (resp. Fmon,irr[x])

the set of monic (resp. monic irreducible) polynomials in F[x] and by Fmon,k[x]

(resp. Fmon,irr,k[x]) the set of monic (resp. monic irreducible) polynomials in

F[x] of degree k.

In the proof of the following proposition, we need the most elementary

facts on group actions (see the beginning of Section 10.4).

Proposition 6.6.7 Let f ∈ Fmon,irr

q [x] and h ≥ 1. Choose f̃ ∈ Fmon,irr

qh
[x] that

divides f and set d = d(f̃) = min{1 ≤ ` ≤ h : σ`(f̃) = f̃}, where σ(x) = xq

for all x ∈ Fqh. Then d divides h and

f =

d−1∏
`=0

σ`(f̃) (6.19)

is the (unique up to the reordering the factors) factorization of f into Fqh-
irreducible monic polynomials. Moreover, all factors are distinct, deg σ`(f̃) =
deg f
d , for all ` = 0, 1, . . . , d− 1, and

d = d(f̃) = gcd(h,deg f). (6.20)

As a consequence we have, for all k ≥ 1,

Fmon,irr,k
qh

[x] =
∐
d|h

∐
f∈Fmon,irr,dk

q [x]:
gcd(h/d,k)=1

{f̃ , σ(f̃), . . . , σd−1(f̃)}.

In other words, given f̃ ∈ Fmon,irr,k
qh

[x] there exists a unique f ∈ Fmon,irr

q [x]

such that f̃ divides f (clearly, deg f = d(f̃) deg f̃).

Proof Every σ`(f̃), for ` = 0, 1, . . . , h− 1, is an Fqh-irreducible monic poly-

nomial and divides f , since σ(f) = f . In other words, the Galois group
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Gal(Fqh/Fq) acts on the space of monic Fqh-irreducible divisors of f . We

have that d(f̃) divides h because Gal(Fqh/Fq) is cyclic of order h and gener-

ated by σ (cf. Proposition 6.6.3), and the stabilizer of f̃ coincides with the

set {σdk : k = 0, 1, . . . , hd}. Thus, the polynomial

f̃σ(f̃) · · ·σd−1(f̃), (6.21)

a product of distinct Fqh-irreducible monic divisors of f , divides f . But (6.21)

is also σ-invariant and monic, so that it belongs to Fq[x] and therefore must

be equal to f (since f is irreducible over Fq). This proves that the action

described above is transitive. Moreover, since Fqd = {α ∈ Fqh : σd(α) = α}
(by virtue of Proposition 6.6.3), we have f̃ ∈ Fqd [x].

Set s = deg f̃ and n = deg f . It follows from Corollary 6.6.4 that the

splitting �eld of f̃ over Fqh is Fqhs . Similarly, the splitting �eld of f over Fq
is Fqn , so that, in particular, f, and therefore its factor f̃ , split into linear

factors over Fqn . Observe that, since d|h, say h = ad, and n = sd (this

follows from the fact that the polynomial in (6.21) coincides with f), we

have hs = ads = an, so that n|hs.
Setting ` = lcm(h, n), we have the inclusion diagram as in Figure 6.1.

•
Fqn Fqh

Fq`

Fqhs

•

•

•

�
�
�
��

@
@

@
@@

Fig. 6.1. The inclusions of the �elds Fqt , t = n, h, `, hs.

Since Fqn ⊆ Fq` , it follows that f̃ splits into linear factors over Fq` . Thus,
since Fqh ⊆ Fq` ⊆ Fqhs , we deduce that Fq` = Fqhs , this being the splitting

�eld of f̃ over Fqh . In particular, hs = lcm(h, n).

Setting r = gcd(h, n), we have

hs = lcm(n, h) =
hn

gcd(h, n)
=
hsd

r
⇒ d = r,
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and (6.20) follows.

Corollary 6.6.8 Let f ∈ Fq[x] be irreducible and let h ≥ 2. Then f is

irreducible over Fqh if and only if gcd(deg f, h) = 1.

6.7 Hilbert Satz 90

We now specialize, to the case of �nite �elds, the theory of the norm and

the trace for extensions of �elds. A more general treatment may be found in

[93]. Fix a prime number p, two integers n ≥ 1 and h > 1, and set q = pn.

Let E = Fqh = Fphn be the �eld with qh elements and F = Fq the unique

sub�eld of E with q elements (cf. Proposition 6.6.1). By Proposition 6.6.3,

the Galois group Gal(E/F) is a cyclic group of order h: we denote by σ a

generator of Gal(E/F). We remark that here the notation is di�erent from

that in Proposition 6.6.3: for instance, σ is not the Frobenius automorphism

of E but it can be chosen as its n-th power so that σ(α) = αp
n

= αq for all

α ∈ E (see Corollary 6.6.4 and Proposition 6.6.7 ). We de�ne the trace and

the norm as the maps TrE/F : E→ F and NE/F : E→ F given by

TrE/F(α) =
h∑
k=1

σk(α) (6.22)

and

NE/F(α) =
h∏
k=1

σk(α) (6.23)

for all α ∈ E. Note that TrE/F(α) (resp. NE/F(α)) is indeed in F:

σ
(
TrE/F(α)

)
=

h∑
k=1

σk+1(α) =
h+1∑
k=2

σk(α) = TrE/F(α) (6.24)

(resp. σ
(
NE/F(α)

)
= NE/F(α)) because σ has order h. Moreover, it is clear

that TrE/F(α) (resp. NE/F(α)) is independent of the choice of the generator

σ in (6.22) (resp. (6.23)).

Proposition 6.7.1 (Transitivity of the trace and the norm) Let E,F,G
be �nite �elds such that F ⊆ E ⊆ G. Then

(i) TrG/F = TrE/F ◦ TrG/E
(ii) NG/F = NE/F ◦NG/E.
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Proof By virtue of Theorem 6.5.6 and Proposition 6.6.1, there exists h,m ∈
N such that F = Fq, E = Fqh and G = Fqhm . For every α ∈ G we have:

[TrE/F ◦ TrG/E](α) =
h−1∑
k=0

[
TrG/E(α)

]qk

=
h−1∑
k=0

m−1∑
j=0

αq
jh

qk

(the map β 7→ βq
k
belongs to Aut(G)) =

h−1∑
k=0

m−1∑
j=0

αq
jh+k

(setting r = hj + k) =
hm−1∑
r=0

αq
r

= TrG/F(α).

Analogously,

[NE/F ◦NG/E](α) =
h−1∏
k=0

m−1∏
j=0

αq
jh

qk

=

h−1∏
k=0

m−1∏
j=0

αq
jh+k

(setting r = hj + k) =

hm−1∏
r=0

αq
r

= NG/F(α).

Theorem 6.7.2 (Hilbert Satz 90)

(i) TrE/F is a surjective F-linear map from E onto F and

KerTrE/F = {α− σ(α) : α ∈ E}.

(ii) NE/F yields (by restriction) a surjective homomorphism from the mul-

tiplicative group E∗ of E into the multiplicative group F∗ of F and

KerNE/F = {ασ(α)−1 : α ∈ E}.
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Proof (i) The map TrE/F is F-linear since

TrE/F(α1β1 + α2β2) =

h∑
k=1

σk(α1β1 + α2β2)

(since σk ∈ Gal(E/F)) =
h∑
k=1

α1σ
k(β1) + α2σ

k(β2)

= α1TrE/F(β1) + α2TrE/F(β2)

for all αi ∈ F and βi ∈ E, i = 1, 2. As a consequence, ImTrE/F is an F-vector
subspace of F and therefore (being F a �eld) it is either equal to {0} or to
the whole F. But the �rst possibility implies that TrE/F is identically zero

which leads to a contradiction since it is the sum of F-linearly independent

F-linear transformations of E (cf. Proposition 6.2.12). This shows that TrE/F
is surjective. As a consequence,

|KerTrE/F| =
|E|
|F|

= qh−1.

Moreover, every element of the form α − σ(α), with α ∈ E, clearly belongs

to KerTrE/F. Also, for α and β in E we have α − σ(α) = β − σ(β) if and

only if α− β = σ(α− β), equivalently α− β ∈ F. We deduce that the set

{α− σ(α) : α ∈ E},

which consists of exactly qh−1 elements, coincides with KerTrE/F.

(ii) As for (i), it is easy to check that NE/F is a group homomorphism

between E∗ and F∗: we leave the details to the reader. Moreover, we have

NE/F(α) =

h∏
k=1

σk(α) = αqαq
2 · · ·αqh−1

α = α
∑h−1
k=0 q

k
= α(qh−1)/(q−1)

for all α ∈ E. In particular, if α is a generator of E∗, so that it has order

qh − 1, then NE/F(α) has order q − 1 and therefore generates F∗. It follows
that NE/F is surjective. As a consequence,

|KerNE/F| =
|E∗|
|F∗|

=
qh − 1

q − 1
. (6.25)

Moreover, every element of the form ασ(α)−1, with α ∈ E∗, clearly belongs

to KerNE/F. Also, for α and β in E∗ we have ασ(α)−1 = βσ(β)−1 if and

only if αβ−1 = σ(αβ−1), equivalently αβ−1 ∈ F∗. We deduce that the set

{ασ(α)−1 : α ∈ E∗} has (qh − 1)/(q − 1) elements and therefore (cf.(6.25))

equals KerNE/F.
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Proposition 6.7.3 Let F ⊆ E be �nite �elds. Let α ∈ E and suppose that

E = F[α]. Then, denoting by f(x) = xh + ah−1x
h−1 + · · ·+ a1x+ a0 ∈ F[x]

the minimal polynomial of α, we have

−ah−1 =
h∑
k=1

σk(α) ≡ TrE/F(α) (6.26)

and

(−1)ha0 =

h∏
k=1

σk(α) ≡ NE/F(α). (6.27)

Proof By virtue of Corollary 6.6.4 and Corollary 6.6.5 it follows that f

is factorizable over E and its roots are precisely the elements σk(α), k =

1, 2, . . . , h. That is, f(x) = (x − α)(x − σ(α)) · · · (x − σh−1(α)), so that

(6.26) and (6.27) follow.

Since, by de�nition, f(α) = 0, we have f(σk(α)) = σk(f(α)) = 0 for all

k = 1, 2, . . . , h; moreover the elements σk(α) ∈ E, k = 1, 2, . . . , h are distinct.

Theorem 6.7.4 Let F ⊆ E be �nite �elds and let α ∈ E. Consider the

F-linear transformation λ(α) : E→ E de�ned by setting

λ(α)β = αβ

for all β ∈ E. Then we have

Trλ(α) = TrE/F(α)

and

detλ(α) = NE/F(α).

Proof Set h = [E : F].

We �rst prove the statement under the hypothesis that E = F[α]. In this

case (see Proposition 6.2.4), we have that the elements

1, α, α2, . . . , αh−1 (6.28)

constitute a basis for the vector space E over F and the minimal polynomial

f ∈ F[x] of α has degree h. We denote it by

f(x) = xh + ah−1x
h−1 + · · ·+ a1x+ a0. (6.29)

Since f(λ(α)) = λ(f(α)), we have that f is the minimal polynomial of

λ(α) ∈ EndF(E). Since the characteristic polynomial

pλ(α)(x) = det(xI − λ(α))
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of λ(α) also has degree h, from the Cayley-Hamilton theorem, we deduce

that, in fact, f = pλ(α).

Keeping in mind (6.29), we have that the matrix Mλ(α) representing λ(α)

in the basis (6.28) is the so-called companion matrix of f , namely

Mλ(α) =



0 0 0 · · · 0 0 0 −a0

1 0 0 · · · 0 0 0 −a1

0 1 0 · · · 0 0 0 −a2

. . .

0 0 0 · · · 0 1 0 −ah−2

0 0 0
. . . 0 0 1 −ah−1


. (6.30)

From this we deduce that

Trλ(α) = TrMλ(α) = −ah−1 and detλ(α) = detMλ(α) = (−1)ha0. (6.31)

Comparing (6.26) and (6.27) with (6.31), the statement follows in the case

F[α] = E.
Suppose now that F[α] is a proper sub�eld of E. Then m = [F[α] : F] di-

vides h (cf. Proposition 6.6.1). Let {uj : j = 1, 2, . . . , h/m} be a vector space
basis of E over F[α]. Moreover, as before, the elements αk, k = 1, 2, . . . ,m,

constitute a basis of F[α] over F. As a consequence of these facts,

{αkuj : k = 1, 2, . . . ,m; j = 1, 2, . . . , h/m}

is a vector space basis of E over F. Thus, setting Uj = spanF{αkuj : k =

1, 2, . . .m} for j = 1, 2, . . . , h/m, we have the direct sum decomposition

F =

h/m⊕
j=1

Uj

into λ(α)-invariant subspaces. Moreover, λ(α)|Uj is represented by an m×m
matrix Mλ(α)|Uj

(in fact, independent of j) with coe�cients in F as in (6.30)

Mλ(α)|Uj
=



0 0 0 · · · 0 0 0 −a0

1 0 0 · · · 0 0 0 −a1

0 1 0 · · · 0 0 0 −a2

. . .

0 0 0 · · · 0 1 0 −am−2

0 0 0
. . . 0 0 1 −am−1


,
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namely the companion matrix of the minimal polynomial f(x) = xm +

am−1x
m−1 + · · ·+ a1x+ a0 ∈ F[x] of α. Then, on the one hand, we have

Trλ(α) =

h/m∑
j=1

Tr
(
λ(α)|Uj

)
=

h/m∑
j=1

Tr
(
Mλ(α)|Uj

)
=

h

m
(−am−1)

and

detλ(α) =

h/m∏
j=1

det
(
λ(α)|Uj

)
=

h/m∏
j=1

det
(
Mλ(α)|Uj

)
= ((−1)ma0)h/m.

On the other hand,

TrE/F(α) =
h∑
k=1

σk(α) =∗
h

m

m∑
k=1

σk(α) =
h

m
TrF[α]/F(α) =

h

m
(−am−1)

where the last equality follows from (6.26), and

NE/F(α) =
h∏
k=1

σk(α) =∗

(
m∏
k=1

σk(α)

)h/m
=
(
NF[α]/F(α)

)h/m
= ((−1)ma0)h/m

where the last equality follows from (6.27), and =∗ both follow from the

equality Gal(E,F[α]) = 〈σm〉 (cf. Proposition 6.6.3). Thus, the general case

follows as well.

6.8 Quadratic extensions

We now concentrate on the case of quadratic extensions. We split the analysis

according to the parity of the characteristic p of the �elds. Our purpose is

to produce matrix representations of quadratic extensions similar to the well

known matrix representation of the complex numbers z = a+ib 7→
(
a −b
b a

)
,

for all a, b ∈ R. We begin with some general considerations.

Let p be a prime number, h a positive integer, and set q := ph. Then

Gal(Fq2/Fq) is a cyclic group of order two. More precisely, it is generated by

the automorphism σ de�ned by σ(α) = αq for all α ∈ Fq2 , which clearly �xes

every element α ∈ Fq, and is involutory (cf. Corollary 6.4.3 and Proposition

6.6.3). By virtue of Proposition 6.5.4, the polynomial ring Fq[x] contains

(q2−q)/2 irreducible monic polynomials of degree 2 and Fq2 may be obtained,

abstractly, by adjoining one of the roots of any of these. Moreover, if x2 +

ax + b ∈ Fq[x] is irreducible over Fq and α, β are its roots, then σ(α) = β
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(and σ(β) = α). Indeed, since σ �xes Fq pointwise, we have

σ(α2 + aα+ b) = σ(α)2 + aσ(α) + b

so that σ(α) is still a root. But σ �xes exactly the elements in Fq so that,

since α /∈ Fq, we necessarily have σ(α) 6= α and therefore σ(α) = β.

We �rst examine the case when p is odd.

Theorem 6.8.1 Suppose p is odd. Let η be a generator of the cyclic group

F∗q (cf. Theorem 6.3.3) and denote by ±i the square roots of η. Then ±i /∈ Fq
and {1, i} is a vector space basis for Fq2 over Fq. Moreover, Fq2 is isomor-

phic (as an Fq-algebra) to the algebra M2(Fq, η) ⊆M2(Fq) consisting of all

matrices of the form (
α ηβ

β α

)
with α, β ∈ Fq. The isomorphism is provided by the map M2(Fq, η) → Fq2
given by (

α ηβ

β α

)
7→ α+ iβ (6.32)

for all α, β ∈ Fq. Moreover

σ(α+ iβ) = α− iβ

for all α, β ∈ Fq.

Proof First observe that, under our assumptions on the parity of p, the order

q − 1 of the cyclic group F∗q is even. If we had i ∈ Fq then we would have

η
q−1
2 =

(
i2
) q−1

2 = iq−1 = 1

which is impossible (since η has order q − 1).

Alternatively, η cannot be a square in F∗q since, otherwise, every other

element in F∗q would also be a square, contradicting Proposition 6.4.4.

As a consequence, the polynomial x2−η ∈ Fq[x] is irreducible and therefore

Fq2 = Fq[i] so that, by Proposition 6.2.5, {1, i} is a vector space basis of Fq2
over Fq. We thus have

Fq2 = {α+ iβ : α, β ∈ Fq}

with addition given by

(α1 + iβ1) + (α2 + iβ2) = (α1 + α2) + i(β1 + β2)
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and multiplication given by

(α1 + iβ1)(α2 + iβ2) = (α1α2 + ηβ1β2) + i(α1β2 + α2β1)

for all α1, α2, β1, β2 ∈ Fq. Moreover, since σ(i) = −i we also have

σ(α+ iβ) = α− iβ

for all α, β ∈ Fq. Finally, as(
α1 ηβ1

β1 α1

)(
α2 ηβ2

β2 α2

)
=

(
α1α2 + ηβ1β2 η(α1β2 + α2β1)

α1β2 + α2β1 α1α2 + ηβ1β2

)
we deduce that the map (6.32) is indeed an isomorphism.

Corollary 6.8.2 Suppose p is odd. Then the (q2 − q)/2 irreducible monic

quadratic polynomials in Fq[x] (cf. Proposition 6.5.4) are exactly the poly-

nomials

pα,β(x) = x2 − 2αx+ (α2 − β2η)

where α ∈ Fq and β ∈ F∗q.

Proof Any irreducible monic quadratic polynomial over Fq is necessarily of

the form [x− (α+ iβ)] [x− σ(α+ iβ)], with α, β ∈ Fq and β 6= 0. Since

σ(α+ iβ) = α− iβ, the statement follows. (Note that pα,−β = pα,β .)

We now examine the case p = 2. Recall (cf. Proposition 6.4.4) that, in

this case, all elements in F2h are squares.

Theorem 6.8.3 There exists j ∈ F22h \ F2h and ω ∈ F2h such that

j2 + j + ω = 0 (equivalently, j2 = j + ω)

and

F22h = F2h [j].

Moreover, the polynomial x2 + x+ ω ∈ F2h [x] is irreducible and the map(
α ωβ

β α+ β

)
7→ α+ jβ (6.33)

yields an (F2h-algebra) isomorphism of the algebra M2(F2h , ω) ⊆ M2(F2h)

consisting of all the matrices of the form(
α ωβ

β α+ β

)
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where α, β ∈ F2h, onto the �eld F22h. Finally,

σ(α+ jβ) = (α+ β) + jβ

for all α, β ∈ F2h .

Proof Since F22h is a quadratic extension of F2h , there exists an irreducible

polynomial f(x) = x2 + αx + β ∈ F2h [x] such that F22h = F2h [j], where

j ∈ F22h \ F2h is a root of f . Note that α 6= 0: otherwise, the polynomial

f(x) = x2 + β would be reducible since every element in F2h is a square.

Thus, setting y = xα−1 and ω = βα−2 ∈ F2h , the equation x
2+αx+β = 0

becomes α2y2 + α2y + β = 0, equivalently, y2 + y + ω = 0.

Let then j, j′ ∈ F22h be the roots of x2 + x+ ω, so that (x− j)(x− j′) =

x2 + x + ω, yielding j + j′ = 1 and jj′ = ω. Thus j′ = 1 + j = ωj−1 and

j2 = ω + j. As a consequence, in the basis {1, j} of F22h over F2h , addition

and multiplication are given by

(α1 + jβ1) + (α2 + jβ2) = (α1 + α1) + j(β1 + β2)

and

(α1 + jβ1)(α2 + jβ2) = (α1α2 + ωβ1β2) + j(α1β2 + α2β1 + β1β2) (6.34)

for all α1, α2, β1, β2 ∈ F2h . Clearly, σ(j) = j′ = 1 + j = ωj−1 and therefore

σ(α+ jβ) = (α+ β) + jβ

for all α, β ∈ F2h . Finally, we have(
α1 ωβ1

β1 α1 + β1

)(
α2 ωβ2

β2 α2 + β2

)
=

(
α1α2 + ωβ1β2 ω(α1β2 + α2β1 + β1β2)

α1β2 + α2β1 + β1β2 α1α2 + ωβ1β2 + α1β2 + α2β1 + β1β2

)
for all α1, α2, β1, β2 ∈ F2h . From (6.34) we deduce that the map (6.33) yields

the desired isomorphism.

Corollary 6.8.4 The 22h−1 − 2h−1 irreducible monic quadratic polynomials

in F2h [x] (cf. Proposition 6.5.4) are exactly the polynomials

qα,β(x) = x2 + βx+ (α2 + αβ + β2ω)

where β ∈ F∗
2h

and α ∈ F2h.
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Proof Any irreducible monic quadratic polynomial over F2h is necessarily

of the form (x+ (α+ jβ)) (x+ σ(α+ jβ)) with α, β ∈ Fq and β 6= 0. Since

σ(α+ jβ) = (α+ β) + jβ, the statement follows. (Note that qα,β = qα′,β′ if

and only if β′ = β and α′ ∈ {α, α+ β}.)

In view of the next chapters, we set

α = σ(α)

and call it the conjugate of α ∈ Fq2 . Explicit expressions are given in Theo-

rem 6.8.1 and Theorem 6.8.3. Note also that

NFq2/Fq(α) = αα

and

TrFq2/Fq(α) = α+ α

for all α ∈ Fq2 . Moreover, α = α if and only if α ∈ Fq (see also [86]).
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Character theory of �nite �elds

In this chapter we give an introduction to the character theory of �nite

�elds. Our exposition is mainly based on the books by Ireland and Rosen

[79], Winnie Li [95], and by Lidl and Niederreiter [96]. Actually, one of the

main goals is to present the generalized Kloosterman sums from Piatetski-

Shapiro's monograph [123] which will play a fundamental role in Chapter

14 on the representation theory of GL(2,Fq). We also introduce the reader

to the study of the number of solutions of equations over �nite �elds. This

is quite a vast and di�cult subject which culminates with very deep results

such as the Weil conjecture, proved by Deligne (see [95]). Finally, Section

7.8, devoted to the FFT over �nite �elds, is based on the book by Tolimieri,

An, and Lu [160].

7.1 Generalities on additive and multiplicative characters

Let p be a prime number, n a positive integer, and consider Fq, the �nite

�eld of order q = pn. An additive character of Fq is a character of the �nite

abelian group (Fq,+) (cf. De�nition 2.3.1), that is, a map

χ : Fq → T

such that χ(x + y) = χ(x)χ(y) for all x, y ∈ Fq (here, as usual, T = {z ∈
C : |z| = 1} is the (multiplicative) circle group). We observe (cf. De�ni-

tion 2.3.1) that the additive characters constitute a (multiplicative) Abelian

group, denoted by F̂q, called the dual group of Fq. Clearly, if χ is an additive

character, then

χ(x) = χ(x)−1 = χ(−x) = χ−1(x)

204
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for all x ∈ Fq. Moreover, for χ, ξ ∈ F̂q, the orthogonality relations (cf.

Proposition 2.3.5) are:

〈χ, ξ〉 =
∑
x∈Fq

χ(x)ξ(x) =

{
q if χ = ξ

0 if χ 6= ξ.
(7.1)

In particular, taking ξ = 1, we have∑
x∈F∗q

χ(x) = −1 for all χ 6= 1, (7.2)

since
∑

x∈Fq χ(x) = 0 and χ(0) = 1.

The principal (or canonical) additive character of Fq is de�ned by setting,

for all x ∈ Fq,
χprinc(x) = exp[2πiTr(x)/p], (7.3)

where Tr = TrFq/Fp denotes the trace (cf. (6.22)) and, as usual, we identify Fp
with {0, 1, . . . , p−1} to compute the exponential. Since Tr is a surjective Fp-
linear map from Fq onto Fp (so that, in particular,Tr(x+ y) = Tr(x) +Tr(y)

for all x, y ∈ Fq) by Hilbert Satz 90 (cf. Theorem 6.7.2), χprinc is indeed a

nontrivial additive character.

In the following we present another explicit isomorphism between (Fq,+)

and its dual group F̂q (cf. Corollary 2.3.4).

Proposition 7.1.1 Let χ be a nontrivial additive character of Fq. For each
y ∈ Fq de�ne χy : Fq → T by setting

χy(x) = χ(xy)

for all x ∈ Fq. Then χy is also an additive character of Fq, and the map

Ψ: Fq → F̂q
y 7→ χy

is a group isomorphism.

Proof The fact that χy is an additive character and that Ψ is a group

homomorphism follow immediately from the distributivity law in Fq. Indeed,

χy(x1 +x2) = χ(y(x1 +x2)) = χ(yx1 +yx2) = χ(yx1)χ(yx2) = χy(x1)χy(x2)

and

χy+z(x) = χ((y + z)x) = χ(yx+ zx) = χ(yx)χ(zx) = χy(x)χz(x)

for all x, x1, x2, y and z in Fq.
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Suppose now that y 6= 0. Since χ is nontrivial, we can �nd x ∈ Fq such

that χ(x) 6= 1. Let x = y−1x, then χy(x) = χ(yx) = χ(x) 6= 1. Thus

y /∈ Ker(Ψ). This shows that Ψ is injective. Since |F̂q| = |Fq| = q (cf.

Corollary 2.3.4), we deduce that Ψ is also surjective.

Exercise 7.1.2 Show that F̂2
q = {χs,t : s, t ∈ Fq}, where

χs,t(x, y) = χprinc(sx+ ty) (7.4)

for all s, t, x, y,∈ Fq.

Corollary 7.1.3 Let χ ∈ F̂q be a nontrivial additive character. Then for all

z ∈ Fq we have ∑
x∈F∗q

χ(xz) =

{
q − 1 if z = 0

−1 if z 6= 0.

Proof It is an immediate consequence of Proposition 7.1.1 and (7.2).

If we choose χ = χprinc, we get the canonical isomorphism between Fq and
F̂q:

χy(x) = exp[2πiTr(xy)/p]; (7.5)

in particular, χ1 = χ = χprinc, where 1 is the (multiplicative) identity ele-

ment in the �eld Fq, and χ0 = 1, the trivial character.

A multiplicative character of Fq is a character of the �nite cyclic group

(F∗q , ·) (cf. Theorem 6.3.3 and De�nition 2.3.1), that is, a map

ψ : F∗q → T

such that ψ(xy) = ψ(x)ψ(y) for all x, y ∈ F∗q . We observe (cf. De�nition

2.3.1) that the set F̂∗q of all multiplicative characters is a (multiplicative)

cyclic (cf. Remark 2.3.2) group, called the dual group of F∗q .
We can extend a multiplicative character ψ ∈ F̂∗q to a map Fq → T ∪ {0}

(still denoted ψ), by setting

ψ(0) =

{
0 if ψ is nontrivial

1 if ψ = 1.
(7.6)

Clearly, if ψ is a multiplicative character, then

ψ(x) = ψ(x)−1 = ψ(x−1) = ψ−1(x)

for all x ∈ F∗q .
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Let ψ ∈ F̂∗q . In the following, we shall often encounter the quantity ψ(−1):

since ψ(−1)2 = ψ[(−1)2] = ψ(1) = 1, we necessarily have ψ(−1) = ±1. The

order of ψ is the smallest positive integer m such that ψm = 1: clearly, m

divides q − 1, since ψ(x)q−1 = ψ(xq−1) = ψ(1) = 1 (alternatively, this is an

immediate consequence of Lagrange's theorem; see Proposition 1.2.12). We

recall (cf. De�nition 6.3.4), that x ∈ F∗q is called a primitive element of Fq if
it generates F∗q .

Lemma 7.1.4 Let ψ be a nontrivial multiplicative character of Fq and denote
by m its order. Then ψ(−1) = −1 if and only if m is even and q−1

m is odd.

Proof Since ψ(x)m = ψm(x) = ψ(xm) = 1 for all x ∈ F∗q , all the values of ψ
are m-th roots of unity. Let also x be a primitive element of Fq. Then ψ(x)

is a primitive m-th root of 1, so that ψ(x)h 6= 1 for 1 ≤ h ≤ m− 1.

If m is odd, then −1 is not an m-th root of unity and therefore ψ(−1) is

necessary equal to 1.

Suppose now that m is even. Then ψ(x)h = −1 if and only if h ≡ m
2

mod m. Moreover (note that q − 1 is even, because it is divisible by m),

x
q−1
2 = −1 (since xq−1 = 1 but x

q−1
2 6= 1). It follows that

ψ(−1) = ψ(x
q−1
2 ) = ψ(x)

q−1
2

so that

ψ(−1) = −1⇔ q − 1

2
≡ m

2
mod m

⇔ q − 1

m
≡ 1 mod 2

⇔ q − 1

m
is odd.

Exercise 7.1.5 Fill in the details of the above equivalence q−1
2 ≡

m
2 mod m⇔

q−1
m ≡ 1 mod 2.

Let ψ, φ ∈ F̂∗q . The orthogonality relations are (cf. Proposition 2.3.5):

〈ψ, φ〉 =
∑
x∈F∗q

ψ(x)φ(x) =

{
q − 1 if ψ = φ

0 if ψ 6= φ.
(7.7)

As a consequence, if ψ is nontrivial (taking φ the trivial character) we
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have ∑
x∈F∗q\{−1}

ψ(x) = −ψ(−1) (7.8)

so that, keeping in mind (7.6),∑
x∈Fq

ψ(x) = 0. (7.9)

The dual orthogonal relations (cf. (2.13)) are∑
ψ∈F̂∗q

ψ(x)ψ(y) =

{
q − 1 if x = y

0 if x 6= y.
(7.10)

Let x be a primitive element of Fq. The principal multiplicative character of
F∗q associated with x is the multiplicative character ψprinc de�ned by setting

ψprinc(x
k) = exp

(
2πik

q − 1

)
(7.11)

for all k = 1, 2, . . . , q − 1.

Exercise 7.1.6 Show that ψprinc is a generator of F̂∗q .

7.2 Decomposable characters

We �x q = pn and consider the �eld Fq together with its quadratic extension

Fq2 . We use the notation at the end of Section 6.8. In particular, if α ∈ F∗q2
then its conjugate is the element α = σ(α) ∈ F∗q2 and we have αα = NFq2/Fq(α)

and α+ α = TrFq2/Fq(α) ∈ Fq.

De�nition 7.2.1 Let ν be a character of F∗q2 .
One says that ν is decomposable if there exists a character ψ of F∗q such

that

ν(α) = ψ(αα) (7.12)

for all α ∈ F∗q2 . If this is not the case, ν is called indecomposable,

Moreover, the conjugate of ν is the character ν de�ned by

ν(α) = ν(α) (7.13)

for all α ∈ F∗q2 .

Proposition 7.2.2 A character ν ∈ F̂∗
q2
is decomposable if and only if ν = ν.



7.2 Decomposable characters 209

Proof Suppose �rst that ν is decomposable. Then, by virtue of (7.12), we

have, for all α ∈ F∗q2 ,

ν(α) = ν(α) = ψ(αα) = ψ(αα) = ν(α).

This shows that ν = ν.

Conversely, if ν = ν, we may set

ψ(αα) = ν(α) (7.14)

for all α ∈ F∗q2 . Note that this is well de�ned since, by virtue of Hilbert

satz 90 (Theorem 6.7.2), the map NFq2/Fq : F∗q2 → F∗q is surjective with kernel

KerNFq2/Fq = {αα−1 : α ∈ F∗q2}. Indeed, if α, β ∈ F∗q2 and αα = ββ, then

NFq2/Fq(α) = NFq2/Fq(β), that is, αβ−1 ∈ KerNFq2/Fq since the norm is a

group homomorphism. Then there exists γ ∈ F∗q2 such that αβ−1 = γγ−1

so that ν(αβ−1) = ν(γγ−1) = ν(γ)ν(γ)−1 = 1 (recall that ν = ν), showing

that ν(α) = ν(β).

We leave it to the reader to check that ψ is indeed a character of F∗q . By
construction, (7.12) follows from (7.14).

Proposition 7.2.3 Let ν ∈ F̂∗
q2

and suppose that it is not decomposable.

Then ∑
β∈F∗

q2
:

ββ=α

ν(β) = 0 (7.15)

for all α ∈ F∗q.

Proof First of all, we show that there exists γ ∈ Fq2 such that γγ = 1 for

which ν(γ) 6= 1. Indeed, otherwise, if α, β ∈ F∗q2 satisfy αα = ββ, then

αβ−1αβ−1 = 1 and therefore ν(αβ−1) = 1 so that ν(α) = ν(β). We may

then de�ne a character ψ of F∗q as in (7.14) and this would contradict our

assumptions on the indecomposability of ν.

Thus, for all α ∈ F∗q∑
β∈F∗

q2
:

ββ=α

ν(β) =
∑
β∈F∗

q2
:

ββ=α

ν(γβ) = ν(γ)
∑
β∈F∗

q2
:

ββ=α

ν(β),

where the �rst equality follows from the fact that γγ = 1. Since ν(γ) 6= 1,

(7.15) follows.



210 Character theory of �nite �elds

7.3 Generalized Kloosterman sums

In this section we introduce and study a family of generalized Kloosterman

sums, that we shall use (cf. Section 14.6), following Piatetski-Shapiro [123],

to describe the cuspidal representations of GL(2,Fq) and their associated

Bessel functions, a �nite analogue of the classical Bessel functions .

Let q = pn and consider the quadratic extension Fq2 of the �eld Fq.
Let also χ be a nontrivial character of Fq and ν an indecomposable char-

acter of F∗q2 .
We use the notation in Section 6.8 and Section 7.2.

The generalized Kloosterman sum associated with the pair (χ, ν) is the

map j = jχ,ν : F∗q → C de�ned by setting

j(x) =
1

q

∑
w∈F∗

q2
:

ww̄=x

χ(w + w̄)ν(w) (7.16)

for all x ∈ F∗q .
We need a few technical formulas involving these sums: we begin with two

results on additive characters.

Lemma 7.3.1 Let z ∈ F∗q2 and χ ∈ F̂q. Then

∑
t∈F∗

q2

χ[tz + t̄z̄] =

{
q2 − 1 if χ is trivial and/or z = 0

−1 otherwise.

Proof We �rst observe that the map χ̃ : Fq2 → C de�ned by

χ̃(t) = χ[tz + t̄z̄], (7.17)

for all t ∈ Fq2 , is a character of Fq2 .
Now, if χ is trivial and/or z = 0, then χ̃ is the trivial character and

therefore, ∑
t∈F∗

q2

χ[tz + t̄z̄] =
∑
t∈Fq2

χ̃(t) =
∑
t∈F∗

q2

1 = |F∗q2 | = q2 − 1.

Suppose now that χ is nontrivial and z 6= 0. We claim that the map

F q2 3 t 7→ tz + t̄z̄ ∈ Fq is surjective. Indeed, the map t 7→ tz is a bijection

of Fq2 and the map s 7→ s + s̄ = TrFq2/Fq(s) is surjective by Hilbert Satz 90

(Theorem 6.7.2). It follows that the character (7.17) is nontrivial and, by
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the orthogonality relations of characters (cf. (7.1)),

∑
t∈Fq2

χ[tz + t̄z̄] =
∑
t∈Fq2

χ̃(t) = 〈χ̃, 1〉 = 0.

Since

χ[tz + t̄z̄]t=0 = χ(0) = 1,

the result follows.

Lemma 7.3.2 Let χ ∈ F̂q be a nontrivial character. Let also z ∈ F∗q2 and

y ∈ F∗q. Then

∑
t∈F∗

q2

χ[y−1(t+ y + z)(t+ y + z)] = −q − χ[y−1(y + z)(y + z̄)].

Proof We have

∑
t∈F∗

q2

χ[y−1(t+ y + z)(t+ y + z)] =
∑
s∈Fq2 :

s 6=y+z

χ(y−1ss̄)

=
∑
s∈F∗

q2

χ(y−1ss̄) + 1− χ[y−1(y + z)(y + z̄)]

(by (6.25) and setting r = ss̄) = (q + 1)
∑
r∈F∗q

χ(y−1r)

+ 1− χ[y−1(y + z)(y + z̄)]

(by (7.1)) = −(q + 1) + 1− χ[y−1(y + z)(y + z̄)]

= −q − χ[y−1(y + z)(y + z̄)].

Proposition 7.3.3 For every x ∈ F∗q we have

j(x) = ν(−x)j(x).
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Proof Let x ∈ F∗q . Then, by de�nition of the Kloosterman sum j (cf. (7.16)),

j(x) =
1

q

∑
y∈F∗

q2
:

yȳ=x

χ(−y − ȳ)ν(y−1)

=∗
1

q

∑
t∈F∗

q2
:

tt̄=x

χ[x(t−1 + t̄−1)]ν(−x−1t)

=∗∗ ν(−x)
1

q

∑
t∈F∗

q2
:

tt̄=x

χ(t+ t̄)ν(t)

= ν(−x)j(x),

where equality =∗ follows by setting t = −xy−1 (so that tt̄ = x and y =

−xt−1), and equality =∗∗ follows from x(t−1 + t̄−1) = x t+t̄tt̄ = t+ t̄.

Proposition 7.3.4 For all x, y ∈ F∗q we have

∑
w∈F∗q

j(xw)j(yw)ν(w−1)χ(w) = −χ(−x− y)ν(−1)j(xy).

Proof We have

∑
w∈F∗q

j(xw)j(yw)ν(w−1)χ(w)

=
1

q2

∑
w∈F∗q

∑
t∈F∗

q2
:

tt̄=xw

∑
s∈F∗

q2
:

ss̄=yw

χ(t+ t̄+ s+ s̄+ w)ν(tsw−1) (7.18)

Let us set z = yts̄−1. First note that from ss̄ = yw we get

tsw−1 = yts̄−1 = z.

From tt̄ = xw we then deduce

zz̄ = yts̄−1yt̄s−1 = ytt̄y(ss̄)−1 = yxwyw−1y−1 = yx.
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Moreover,

y−1(s+ y + z)(s+ y + z) = (y−1s+ 1 + y−1z)(s+ y + z)

= y−1ss+ s+ y−1sz + s+ y

+ z + y−1zs+ z + y−1zz

= w + s+ t+ s+ y + z + t+ z + x

= w + s+ s+ t+ t+ y + z + z + x

(7.19)

and

y−1(y + z)(y + z) = (y + z)(1 + y−1z)

= y + z + z + y−1zz

= y + z + z + x.

(7.20)

Then the calculation (7.18) continues as follows:

=(i)
1

q2

∑
w∈F∗q

∑
s∈F∗

q2
:

ss̄=yw

∑
z∈F∗

q2
:

zz̄=xy

χ[y−1(s+ y + z)(s+ y + z)− x− y − z − z̄]ν(z)

=(ii)
1

q2

∑
s∈F∗

q2

∑
z∈F∗

q2
:

zz̄=xy

χ[y−1(s+ y + z)(s+ y + z)− x− y − z − z̄]ν(z)

=
1

q2

∑
z∈F∗

q2
:

zz̄=xy

χ[−x− y − z − z̄]ν(z)
∑
s∈F∗

q2

χ[y−1(s+ y + z)(s+ y + z)]

=(iii)
1

q2

∑
z∈F∗

q2
:

zz̄=xy

χ[−x− y − z − z̄]ν(z)
{
−q − χ[y−1(y + z)(y + z)]

}

= −1

q

∑
z∈F∗

q2
:

zz̄=xy

χ[−x− y − z − z̄]ν(z)

− 1

q2

∑
z∈F∗

q2
:

zz̄=xy

χ[−x− y − z − z̄ + y−1(y + z)(y + z)]ν(z)

=(iv) −
1

q
χ(−x− y)ν(−1)

∑
z∈F∗

q2
:

zz̄=xy

χ(z + z̄)ν(z)− 1

q2

∑
z∈F∗

q2
:

zz̄=xy

ν(z)

=(v) −χ(−x− y)ν(−1)j(xy)

where =(i) follows from (7.19), =(ii) follows from Hilbert satz 90, =(iii) follows
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from Lemma 7.3.2, =(iv) is obtained by changing z to −z and because −x−
y−z− z̄+y−1(y+z)(y+z) = 0, by (7.20), and =(v) follows from Proposition

7.2.3 and the de�nition of j (cf. (7.16)).

Proposition 7.3.5 (Orthogonality relations)
∑

w∈F∗q j(xw)j(yw) = δx,y
for all x, y ∈ F∗q.

Proof By de�nition of j, we have∑
w∈F∗q

j(xw)j(yw) =
1

q2

∑
w∈F∗q

∑
t∈F∗

q2
:

tt̄=xw

∑
s∈F∗

q2
:

ss̄=yw

χ(t+ t̄− s− s̄)ν(ts−1)

(setting z = ts−1) =
1

q2

∑
w∈F∗q

∑
s∈F∗

q2
:

ss̄=yw

∑
z∈F∗

q2
:

zz̄=xy−1

χ(zs+ z̄s̄− s− s̄)ν(z)

(by (6.25)) =
1

q2

∑
z∈F∗

q2
:

zz̄=xy−1

∑
s∈F∗

q2

χ((z − 1)s+ (z̄ − 1)s̄)

 ν(z).

If x 6= y, then z 6= 1 and, by virtue of Lemma 7.3.1,
∑

s∈F∗
q2
χ((z − 1)s +

(z̄ − 1)s̄) = −1, so that

1

q2

∑
z∈F∗

q2
:

zz̄=xy−1

∑
s∈F∗

q2

χ((z − 1)s+ (z̄ − 1)s̄)

 ν(z) = − 1

q2

∑
z∈F∗

q2
:

zz̄=xy−1

ν(z) = 0,

where the last equality follows from Proposition 7.2.3.

If x = y, then z = 1 is admissible and, again by virtue of Lemma 7.3.1,

1

q2

∑
z∈F∗

q2
:

zz̄=xy−1

∑
s∈F∗

q2

χ((z − 1)s+ (z̄ − 1)s̄)

ν(z) =
1

q2
[(q2 − 1)−

∑
z∈F∗

q2
\{1}:

zz̄=1

ν(z)]

=
1

q2
[(q2 − 1)− (−1)]

= 1,

where the last but one equality follows from Proposition 7.2.3.



7.3 Generalized Kloosterman sums 215

Corollary 7.3.6 For every x ∈ F∗q we have∑
y∈F∗q

j(xy)j(y)ν(y−1) =

{
ν(−1) if x = 1

0 if x 6= 1.

Proof Let x ∈ F∗q . Then∑
y∈F∗q

j(xy)j(y)ν(y−1) =
∑
y∈F∗q

j(xy)j(y)ν(−y−1)ν(−1)

(by Proposition 7.3.3) =

∑
y∈F∗q

j(xy)j(y)

 ν(−1)

(by Proposition 7.3.5) = δx,1ν(−1).

In the following (see also Section 14.6), in order to emphasize the depen-

dance of the map j from ν, we shall write jν (clearly, j also depends on χ).

Note that, from (7.16) it follows immediately that

jν̄ = jν , (7.21)

where ν̄ is the conjugate character of ν (cf. (7.13)).

Theorem 7.3.7 Suppose that jµ = jν and that

µ|F∗q = ν|F∗q . (7.22)

Then µ = ν or µ = ν.

Proof Our �rst assumption yields∑
y∈F∗

q2
:

yy=x

χ(y + y)µ(y) = qjµ(x) = qjν(x) =
∑
y∈F∗

q2
:

yy=x

χ(y + y)ν(y)

for all x ∈ F∗q . Moreover, for y ∈ F∗q2 and δ ∈ F∗q , we set z = δ−1y (i.e.

y = δz) and t = zz = δ−2yy, so that, taking into account (7.22), from the

above formula we deduce∑
z∈F∗

q2
:

zz=t

χ[δ(z + z)]µ(z) =
∑
z∈F∗

q2
:

zz=t

χ[δ(z + z)]ν(z) (7.23)

for all t ∈ F∗q and δ ∈ Fq (the case δ = 0 follows from Proposition 7.2.3).

Fix t ∈ F∗q . Then the solutions of the equation zz = t may be partitioned
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into sets of the form {z, z}. Choose a complete system Ct of representatives
for such sets, that is,

{z ∈ F∗q2 : zz = t} =
∐
z∈Ct

{z, z}.

Note (recall Proposition 6.4.4) that if t is a square in Fq, say t = u2, u ∈ F∗q ,
then also the singletons {u} and {−u} must be considered (and they coincide

if q is even). We may then write (7.23) in the form∑
z∈Ct\Fq

χ[δ(z + z)][µ(z) + µ(z)− ν(z)− ν(z)]

+
∑

z∈Ct∩Fq

χ[δ(z + z)][µ(z)− ν(z)] = 0, (7.24)

where Ct ∩ Fq is empty if t is not a square. In any case, the second sum in

the left hand side vanishes by virtue of (7.22).

We now set C̃t = {z + z : z ∈ Ct}. Since z + z = TrFq2/Fq(z) ∈ Fq for all
z ∈ Fq2 , we have C̃t ⊆ Fq. Moreover, every x ∈ C̃t corresponds to a unique

set {z, z} (possibly z = z) because the system{
z + z = x

zz = t

is equivalent to the equation z2 − xz + t = 0. In other words, x ∈ C̃t
determines {z, z} and the map

Ct → C̃t
z 7→ z + z

is a bijection. Then we may de�ne a function ft : C̃t → C by setting

ft(x) =

{
µ(z) + µ(z)− ν(z)− ν(z) if zz = t, z + z = x, and z 6= z

µ(z)− ν(z) ≡ 0 if z2 = t, z ∈ Fq, and 2z = x.

Therefore (7.24) may be written in the form∑
x∈C̃t

χ(δx)ft(x) = 0 (7.25)

for all t ∈ F∗q and δ ∈ Fq. By Proposition 7.1.1, the functions ψx ∈ L(Fq),
x ∈ C̃t, de�ned by ψx(δ) = χ(δx) for all δ ∈ Fq, are distinct characters of Fq,
and the left hand side of (7.25) may be considered as a linear combination of
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distinct characters. Since the characters are linearly independent, if follows

that ft = 0 for all t ∈ F∗q , that is,

µ(z) + µ(z) = ν(z) + ν(z) (7.26)

for all z ∈ Fq2 \ Fq. Moreover, since µ and ν are multiplicative, and zz =

NFq2/Fq(z) ∈ Fq for all z ∈ Fq2 , keeping in mind (7.22), we have

µ(z)µ(z) = ν(z)ν(z). (7.27)

From (7.26) and (7.27) we deduce that the sets {µ(z), µ(z)} and {ν(z), ν(z)}
solve the same quadratic equation, namely,

λ2 − [µ(z) + µ(z)]λ+ µ(z)µ(z) = 0.

It follows that {µ(z), µ(z)} = {ν(z), ν(z)}, that is, µ(z) = ν(z) or µ(z) =

ν(z), for each z ∈ Fq2 \ Fq.
Let z0 be a generator of the cyclic group F∗q2 (cf. Theorem 6.3.3). Then

µ(z0) = ν(z0) yields µ = ν, while µ(z0) = ν(z0) yields µ = ν.

The (ordinary) Kloosterman sums are de�ned by

K(χ; a, b) =
∑
c∈F∗q

χ(ac+ bc−1),

where χ is a nontrivial element of F̂q and a, b ∈ Fq. For more on these sums

we refer to [96] and the references therein. We limit ourselves to a couple of

elementary identities:

Exercise 7.3.8 Let a, b ∈ Fq.
(a) Show that K(χ; a, b) = K(χ; b, a);

(b) show that if a ∈ F∗q then K(χ; a, b) = K(χ; 1, ab).

7.4 Gauss sums

De�nition 7.4.1 Let χ ∈ F̂q and ψ ∈ F̂∗q . We de�ne the Gauss sum of

the multiplicative character ψ and the additive character χ as the complex

number

g(ψ, χ) =
∑
x∈F∗q

ψ(x)χ(x). (7.28)

Note that, by virtue of (4.18) and (4.22), the Gauss sum G(n, p) = τ(p, n)

coincides with g(`p, χn).
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Proposition 7.4.2 Denote by χ0 = 1 the trivial character of Fq (so that,

by (7.6), it is also the trivial multiplicative character). Then for all χ ∈ F̂q
and ψ ∈ F̂∗q we have:

(i) g(χ0, χ0) = q − 1;

(ii) g(χ0, χ) = −1 if χ 6= χ0;

(iii) g(ψ, χ0) = 0 if ψ 6= χ0;

(iv) g(ψ, χ) =
∑

x∈Fq ψ(x)χ(x) = 〈ψ, χ〉L(Fp) if ψ 6= χ0.

Proof These are all elementary consequences of the orthogonality relations

for the additive and multiplicative characters (in particular (7.2), (7.6), and

(7.9)). We thus leave it to the reader to �ll in the details of the proof.

Note that (iv) shows that for ψ 6= χ0, the Gauss sum g(ψ, χ) equals the

Fourier coe�cient (2.15) both of ψ with respect to χ as well as of χ|F∗q with
respect to ψ. We now present the basic properties of Gaussian sums.

Theorem 7.4.3 Let χy be the additive character as in (7.5), χ ∈ F̂q and

ψ ∈ F̂∗q. Then we have:

(i) g(ψ, χy) = ψ(y)g(ψ, χ1) if y 6= 0;

(ii) g(ψ, χ) = ψ(−1)g(ψ, χ);

(iii) g(ψ, χ) = ψ(−1)g(ψ, χ);

(iv)

ψ =
1

q

∑
χ∈F̂q
χ 6=χ0

g(ψ, χ)χ =
1

q
g(ψ, χ1)

∑
y∈F∗q

ψ(y)χy

if ψ 6= χ0;

(v) χ|F∗q = 1
q−1

∑
ψ∈F̂∗q

g(ψ, χ)ψ;

(vi) g(ψ, χ)g(ψ, χ) = ψ(−1)q if ψ, χ 6= χ0;

(vii) |g(ψ, χ)| = √q if ψ, χ 6= χ0;

(viii) g(ψp, χy) = g(ψ, χσ(y)), where σ(y) = yp is the Frobenius automor-

phism.
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Proof (i) Suppose y 6= 0. Then

g(ψ, χy) =
∑
x∈F∗q

ψ(x)χ1(xy)

(setting t = xy) =
∑
t∈F∗q

ψ(ty−1)χ1(t)

=
∑
t∈F∗q

ψ(y−1)ψ(t)χ1(t)

= ψ(y)g(ψ, χ1).

(ii) We have:

g(ψ, χ) =
∑
x∈F∗q

ψ(x)χ(x)

=
∑
x∈F∗q

ψ(x)χ(−x)

(setting y = −x) =
∑
y∈F∗q

ψ(−y)χ(y)

=
∑
y∈F∗q

ψ(−1)ψ(y)χ(y)

= ψ(−1)g(ψ, χ).

(iii) By (ii) and recalling that ψ(−1) = ±1 (cf. Lemma 7.1.4), we have:

g(ψ, χ) = ψ(−1)g(ψ, χ)

= ψ(−1)g(ψ, χ).

(iv) and (v) are immediate consequences of Proposition 7.4.2 (iii) and (iv),

the Fourier inversion formula (cf. (2.16)), and (i). We leave it to the reader

to �ll in the details.
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(vi) We have:

g(ψ, χ)g(ψ, χ) =

∑
x∈F∗q

ψ(x)χ(x)

 ·
∑
y∈F∗q

ψ(y)χ(y)


=
∑
x,y∈F∗q

ψ(xy−1)χ(x+ y)

(setting t = xy−1) =
∑
t∈F∗q

ψ(t)
∑
y∈F∗q

χ[y(t+ 1)]

(by Corollary 7.1.3) = (q − 1)ψ(−1)−
∑

t∈F∗q\{−1}

ψ(t)

(by (7.8)) = (q − 1)ψ(−1)− [−ψ(−1)]

= qψ(−1).

(vii) Recalling, once more, that ψ(−1) = ±1, we have:

|g(ψ, χ)|2 = g(ψ, χ)g(ψ, χ)

(by (iii)) = ψ(−1)g(ψ, χ)g(ψ, χ)

(by (vi)) = q.

(viii) We have:

g(ψp, χy) =
∑
x∈F∗q

ψp(x)χy(x)

=
∑
x∈F∗q

ψ(xp)χy(x)

(setting z = xp, and by bijectivity of σ) =
∑
z∈F∗q

ψ(z)χy[σ
−1(z)]

(by de�nition of χy) =
∑
z∈F∗q

ψ(z)χ1

(
σ−1[σ(y)z]

)
=∗

∑
z∈F∗q

ψ(z)χ1[σ(y)z]

= g(ψ, χσ(y)).

where =∗ follows from Tr ◦ σ−1 = Tr (cf. (7.3), (6.22), and (6.24)).

Even if its module is given by Theorem 7.4.3.(vii), the exact evaluation of

a Gauss sum g(ψ, χ) is a very di�cult problem and only a few special values

are known. See Gauss' original results in Theorem 4.4.15 for an important
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example. Other cases are in the books by Lidl and Niederreiter [96] and by

Berndt, Evans, and Williams [20].

7.5 The Hasse-Davenport identity

In this section we reproduce Weil's proof [165] of the Hasse-Davenport iden-

tity [70] which relates the Gauss sums over a �nite �eld and those over a

�nite extension. We split it into several preliminary results.

Let us �x ψ ∈ F̂∗q and χ ∈ F̂q, with ψ nontrivial. Moreover, for every

monic polynomial f(x) = xn + an−1x
n−1 + · · · + a0 ∈ Fq[x], de�ne the

complex number λ(f) = λψ,χ(f) by setting, keeping in mind (7.6),

λ(f) = ψ(a0)χ(an−1). (7.29)

Notice that if n = 1 then an−1 = a0 and therefore λ(f) = ψ(a0)χ(a0). Since

ψ is not trivial, we have |λ(f)| = 1 if a0 6= 0, while λ(f) = 0 if a0 = 0.

Moreover, if g(x) = xm + bm−1x
m−1 + · · ·+ b0 ∈ Fq[x] then

f(x)g(x) = xn+m + (an−1 + bm−1)xn+m−1 + · · ·+ a0b0

so that

λ(f · g) = ψ(a0b0)χ(an−1 + bm−1) = λ(f)λ(g),

that is, the map λ : Fmon

q [x]→ C is multiplicative (see Notation 6.6.6).

We de�ne the formal power series `(z) = `ψ,χ(z) by setting

`(z) =
∑

f∈Fmon
q [x]

λ(f)zdeg f ≡
∞∑
k=0

 ∑
f∈Fmon,k

q [x]

λ(f)

 zk. (7.30)

Proposition 7.5.1 The series `(z) converges for all z ∈ C and its sum is

given by

`(z) = 1 + g(ψ, χ)z.

Proof Clearly, Fmon,0
q [x] = {1}. Moreover, Fmon,1

q [x] = {x + a0 : a0 ∈ Fq} so
that (recalling Proposition 7.4.2.(iv))∑

f∈Fmon,1
q [x]

λ(f) =
∑
a0∈Fq

ψ(a0)χ(a0) = g(ψ, χ).

Let k ≥ 2. For every a0, ak−1 ∈ Fq there are exactly qk−2 monic polynomials
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of the form xk + ak−1x
k−1 + · · ·+ a0. Then we have∑

f∈Fmon,k
q [x]

λ(f) = qk−2
∑

ak−1,a0

ψ(a0)χ(ak−1) = 0,

since, being ψ nontrivial,
∑

a0∈Fq ψ(a0) = 0 (cf. (7.9)).

We have the following formal product development:

`(z) =
∏

f∈Fmon,irr
q [x]

1

1− λ(f)zdeg f
, (7.31)

where the right hand side must be seen as the product∏
f∈Fmon,irr

q [x]

( ∞∑
r=0

λ(f)rzr deg f

)
.

In other words, the coe�cient of zk in `(z) is given by∑
λ(f1)r1λ(f2)r2 · · ·λ(fs)

rs , (7.32)

where the (�nite) sum runs over all (distinct) f1, f2, . . . , fs ∈ Fmon,irr

q [x] and

r1, r2, . . . , rs ∈ N such that r1 deg f1 + r2 deg f2 + · · ·+ rs deg fs = k.

Indeed, (7.31) then amounts to saying that
∑

f∈Fmon,k
q [x]

λ(f) equals the

sum (7.32). But this simply follows from the fact that f may be written

uniquely (up to reordering the factors) in the form f = f r11 f r22 · · · f rss with

f1, f2, . . . , fs ∈ Fmon,irr

q [x], r1, r2, . . . , rs ∈ N, and, since λ is multiplicative,

λ(f r11 f r22 · · · f rss ) = λ(f1)r1λ(f2)r2 · · ·λ(fs)
rs .

Let now h > 1 and consider the �eld extension Fqh of Fq. We set

Ψ = ψ ◦NF
qh
/Fq and X = χ ◦ TrF

qh
/Fq (7.33)

and observe that Ψ ∈ F̂∗
qh

is nontrivial and X ∈ F̂qh .
Also, in analogy with (7.29), we de�ne Λ = ΛΨ,X : Fmon

qh
[x]→ C by setting

Λ(F ) = Ψ(A0)X(As−1)

for every monic polynomial F (x) = xs+As−1x
s−1 + · · ·+A1x+A0 ∈ Fqh [x].

Lemma 7.5.2 Let f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 be an irreducible

polynomial in Fq[x]. Let also h > 1 and set d = gcd(h, n). Then, if F (x) ∈
Fqh [x] is an irreducible and monic polynomial that divides f , we have

Λ(F ) = λ(f)
h
d .
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Proof We start by observing that, by (6.20), s = n
d equals degF . Write

F (x) = xs + As−1x
s−1 + · · · + A1x + A0. Let α ∈ Fqn be a root of f (see

Corollary 6.6.4). Clearly, f is the minimal polynomial of α over Fq (see

Corollary 6.6.5). Moreover, by virtue of (6.19), we may suppose that α is

also a root of F (if necessary, we may replace α by σ−`(α) for some ` ≥ 1).

Since hs = h
dn ≥ n, so that Fqhs ⊇ Fqn , we conclude that F is the minimal

polynomial of α ∈ Fqhs over Fqh (again by Corollary 6.6.5). By Proposition

6.7.3 (and the elementary fact that σ(−1) = −1), we have

A0 = (−1)sNF
qhs

/F
qh

(α) = NF
qhs

/F
qh

(−α) (7.34)

As−1 = −TrF
qhs

/F
qh

(α) = TrF
qhs

/F
qh

(−α) (7.35)

a0 = NFqn/Fq(−α) (7.36)

an−1 = TrFqn/Fq(−α). (7.37)

It follows that

Λ(F ) = Ψ(A0)X(As−1)

(by (7.34) and (7.35)) = Ψ[NF
qhs

/F
qh

(−α)] ·X[TrF
qhs

/F
qh

(−α)]

(by (7.33)) = ψ[NF
qh
/Fq ◦NF

qhs
/F
qh

(−α)]·

· χ[TrF
qh
/Fq ◦ TrFqhs/Fqh (−α)]

(by Proposition 6.7.1) = ψ[NF
qhs

/Fq(−α)] · χ[TrF
qhs

/Fq(−α)]

(again by Proposition 6.7.1) = ψ[NFqn/Fq ◦NF
qhs

/Fqn (−α)]·

· χ[TrFqn/Fq ◦ TrFqhs/Fqn (−α)]

(since α ∈ Fqn) = ψ[NFqn/Fq(−α)h/d] · χ
[
h

d
TrFqn/Fq(−α)

]
= {ψ[NFqn/Fq(−α)]}

h
d · {χ[TrFqn/Fq(−α)]}

h
d

(by (7.36) and (7.37)) = [ψ(a0)χ(an−1)]
h
d

= λ(f)
h
d .

Theorem 7.5.3 (Hasse-Davenport identity) With the above notation

(in particular, (7.33)) we have

g(Ψ, X) = (−1)h−1[g(ψ, χ)]h.
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Proof As in (7.30), with ψ and χ replaced by Ψ and X, respectively, we set

L(Z) =
∑

F∈Fmon

qh
[x]

Λ(F )ZdegF .

Then, Proposition 7.5.1 and (7.31) become

L(z) = 1 + g(Ψ, X)Z =
∏

F∈Fmon,irr

qh
[x]

1

1− Λ(F )ZdegF

(by Proposition 6.6.7) =
∏

f∈Fmon,irr
q [x]

∏
F∈Fmon,irr

qh
[x]:

F |f

1

1− Λ(F )ZdegF

=∗
∏

f∈Fmon,irr
q [x]

1

[1− λ(f)h/dZdeg f/d]d

(setting Z = zh) =
∏

f∈Fmon,irr
q [x]

[
1− λ(f)h/dzdeg(f)·h/d

]−d

=∗∗
∏

f∈Fmon,irr
q [x]

h/d−1∏
`=0

[
1− λ(f)ζd`zdeg f

]−d

=∗∗∗
∏

f∈Fmon,irr
q [x]

h−1∏
j=0

[
1− λ(f)(ζjz)deg f

]−1

(by (7.31) and Proposition 7.5.1) =
h−1∏
j=0

[1 + g(ψ, χ)ζjz]

=∗∗∗∗ 1− [−g(ψ, χ)]hzh

= 1− [−g(ψ, χ)]hZ,

where:

=∗ follows by Lemma 7.5.2 and recalling that d = gcd(deg f, h);

=∗∗ follows by observing that, for n ≥ 1, zn−1 =
∏n−1
`=0 (z− exp(2`πi/n))

which yields (after dividing by zn and setting w = z−1) 1 − wn =∏n−1
`=0 (1−exp(2`πi/n)w) so that, setting ζ = exp(2πi/h) and n = h/d,

1− wh/d =
∏h/d−1
`=0 (1− ζd`w);

=∗∗∗ the numbers

ζj deg f , j = 0, 1, . . . , h− 1, (7.38)

are the same as ζd`, ` = 0, 1, . . . , h/d, with each number in (7.38)
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repeated d times. Indeed, d = gcd(deg f, h) implies that the period of

ζdeg f is h/d, and if deg f = md then ζj deg f = ζmjd (and gcd(m,h) =

1);

=∗∗∗∗ �nally follows from the equality 1− wh =
∏h−1
j=0 (1− ζjw) (cf. =∗∗).

Then the Hasse-Davenport identity follows from simplifying

1 + g(Ψ, X)Z = 1− [−g(ψ, χ)]hZ.

7.6 Jacobi sums

De�nition 7.6.1 For a ∈ Fq and ψ1, ψ2, . . . , ψn ∈ F̂∗q , the associated Jacobi

sum is the complex number

Ja(ψ1, ψ2, . . . , ψn) =
∑

b1,b2,...,bn∈Fq :
b1+b2+···+bn=a

ψ1(b1)ψ2(b2) · · ·ψn(bn),

with the usual convention as in (7.6).

Note that this sum e�ectively depends only on n−1 terms: we can choose

b1, b2, . . . , bn−1 arbitrarily and then bn is uniquely determined. Recall that

1 denotes the trivial character in F̂∗q .

Proposition 7.6.2 Let a ∈ Fq and ψ1, ψ2, . . . , ψn ∈ F̂∗q. Then the following

holds.

(i) Ja (1,1, . . . ,1)︸ ︷︷ ︸
n−times

= qn−1;

(ii) if a 6= 0

Ja(ψ1, ψ2, . . . , ψn) = ψ1(a)ψ2(a) · · ·ψn(a)J1(ψ1, ψ2, . . . , ψn);

(iii) if some but not all of the characters ψ1, ψ2, . . . , ψn are trivial, then

Ja(ψ1, ψ2, . . . , ψn) = 0;

(iv) if ψn is nontrivial then

J0(ψ1, ψ2, . . . , ψn)

=

{
0 if ψ1ψ2 · · ·ψn 6= 1

ψn(−1)(q − 1)J1(ψ1, ψ2, . . . , ψn−1) if ψ1ψ2 · · ·ψn = 1.
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Proof (i) This is obvious: each term in the sum is equal to 1.

(ii) Setting cj = bja
−1, for j = 1, 2, . . . , n, from b1 + b2 + · · ·+ bn = a we

deduce that c1 + c2 + · · ·+ cn = 1 and therefore

Ja(ψ1, ψ2, . . . , ψn) =
∑

c1,c2,...,cn∈Fq :
c1+c2+···+cn=1

ψ1(ac1)ψ2(ac2) · · ·ψn(acn)

= ψ1(a)ψ2(a) · · ·ψn(a)
∑

c1,c2,...,cn∈Fq :
c1+c2+···+cn=1

ψ1(c1)ψ2(c2) · · ·ψn(cn)

= ψ1(a)ψ2(a) · · ·ψn(a)J1(ψ1, ψ2, . . . , ψn).

(iii) Up to reordering the characters, we may suppose that ψ1, ψ2, . . . , ψk are

nontrivial and ψk+1, ψk+2, . . . , ψn are trivial for some 1 ≤ k ≤ n − 1. Since

for all b1, b2, . . . , bk ∈ Fq there exist qn−k−1 choices of (bk+1, bk+2, . . . , bn)

such that bk+1 + bk+2 + · · ·+ bn = a− b1 − b2 − · · · − bk, we have

Ja(ψ1, ψ2, . . . , ψn) =
∑

b1,b2,...,bn∈Fq :
b1+b2+···+bn=a

ψ1(b1)ψ2(b2) · · ·ψk(bk)

= qn−k−1

∑
b1∈Fq

ψ1(b1)

∑
b2∈Fq

ψ2(b2)

· · ·
∑
bk∈Fq

ψk(bk)


(by (7.9)) = 0.

(iv) First note that we may assume n ≥ 2 because, for n = 1 and ψ1 6= 1,

the statement immediately follows from (7.6). Then

J0(ψ1, ψ2, . . . , ψn) =
∑
a∈Fq

 ∑
b1,b2,...,bn−1∈Fq :

b1+b2+···+bn−1=−a

ψ1(b1)ψ2(b2) · · ·ψn−1(bn−1)

ψn(a)

(ψn(0) = 0) =
∑
a∈F∗q

ψn(a)J−a(ψ1, ψ2, . . . , ψn−1)

(by (ii)) = J1(ψ1, ψ2, . . . , ψn−1)

·
∑
a∈F∗q

ψn(a)ψ1(−a)ψ2(−a) · · ·ψn−1(−a)

= J1(ψ1, ψ2, . . . , ψn−1)ψ1(−1)ψ2(−1) · · ·ψn−1(−1)

·
∑
a∈F∗q

(ψ1ψ2 · · ·ψn)(a).

Now, if ψ1ψ2 · · ·ψn is nontrivial, the statement follows from (7.9).
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If ψ1ψ2 · · ·ψn = 1 then
∑

a∈F∗q (ψ1 · · ·ψn)(a) = q − 1 and

ψ1(−1)ψ2(−1) · · ·ψn−1(−1) = ψn(−1) = ψn(−1)

(recall that ψn(−1) = ±1; see Lemma 7.1.4).

Corollary 7.6.3 Suppose that ψ1, ψ2, . . . , ψn ∈ F̂∗q are nontrivial as well as

their product. Then, setting ψ0 = (ψ1ψ2 · · ·ψn)−1, one has

J1(ψ1, ψ2, . . . , ψn) =
ψ0(−1)

q − 1
J0(ψ0, ψ1, . . . , ψn)

and

J−1(ψ1, ψ2, . . . , ψn) =
1

q − 1
J0(ψ0, ψ1, . . . , ψn).

Proof Applying Proposition 7.6.2.(iv) with ψn replaced by ψ0, we get

J0(ψ0, ψ1, . . . , ψn) = (q − 1)ψ0(−1)J1(ψ1, ψ2, . . . , ψn).

For the second identity, use 7.6.2.(ii).

Actually, the term �Jacobi sum� is attributed to J1 in [79] and [96], and

to J−1 in [95].

Proposition 7.6.4 Suppose that ψ1, ψ2, . . . , ψn ∈ F̂∗q are nontrivial as well

as their product. Then, for every nontrivial χ ∈ F̂q, we have:

J1(ψ1, ψ2, . . . , ψn) =
g(ψ1, χ)g(ψ2, χ) · · · g(ψn, χ)

g(ψ1ψ2 · · ·ψn, χ)
.
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Proof Indeed, by De�nition 7.4.1 and (7.6), we have

g(ψ1, χ)g(ψ2, χ) · · · g(ψn, χ)

=

 ∑
x1∈Fq

ψ1(x1)χ(x1)

 ∑
x2∈Fq

ψ2(x2)χ(x2)

· · ·
 ∑
xn∈Fq

ψn(xn)χ(xn)


=

∑
x1,x2,...,xn∈Fq

ψ1(x1)ψ2(x2) · · ·ψn(xn)χ(x1 + x2 + · · ·+ xn)

=
∑
a∈Fq

χ(a)
∑

x1,x2,...,xn∈Fq :
x1+x2+···+xn=a

ψ1(x1)ψ2(x2) · · ·ψn(xn)

=
∑
a∈Fq

χ(a)Ja(ψ1, ψ2, . . . , ψn)

=∗ J1(ψ1, ψ2, . . . , ψn)
∑
a∈F∗q

(ψ1ψ2 · · ·ψn)(a)χ(a)

= J1(ψ1, ψ2, . . . , ψn)g(ψ1ψ2 · · ·ψn, χ),

where =∗ follows from Proposition 7.6.2.(ii) and (iv). By Theorem 7.4.3.(vii),

g(ψ1ψ2 · · ·ψn, χ) 6= 0, and this observation ends the proof.

Proposition 7.6.5 Suppose that ψ1, ψ2, . . . , ψn ∈ F̂∗q are nontrivial while

their product ψ1ψ2 · · ·ψn is trivial. Then

J1(ψ1, ψ2, . . . , ψn−1) =
ψn(−1)

q
g(ψ1, χ)g(ψ2, χ) · · · g(ψn, χ),

for all nontrivial χ ∈ F̂q. Moreover,

J1(ψ1, ψ2, . . . , ψn) = −ψn(−1)J1(ψ1, ψ2, . . . , ψn−1).

Proof Since ψ−1
n = ψ1ψ2 · · ·ψn−1, by Theorem 7.4.3.(vi) we have

g(ψ1ψ2 · · ·ψn−1, χ)g(ψn, χ) = ψn(−1)q

and therefore, by Proposition 7.6.4 (recall also that ψn(−1) = ±1; see

Lemma 7.1.4),

J1(ψ1, ψ2, . . . , ψn−1) =
g(ψ1, χ)g(ψ2, χ) · · · g(ψn−1, χ)

g(ψ1ψ2 · · ·ψn−1, χ)

=
ψn(−1)

q
g(ψ1, χ)g(ψ2, χ) · · · g(ψn, χ)

and the �rst identity is proved.
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Note now that the triviality of ψ1ψ2 · · ·ψn and Proposition 7.6.2.(ii) yield

Ja(ψ1, ψ2, . . . , ψn) = J1(ψ1, ψ2, . . . , ψn)

for all a ∈ F∗q . Then

J0(ψ1, ψ2, . . . , ψn) + (q − 1)J1(ψ1, ψ2, . . . , ψn)

=
∑
a∈Fq

Ja(ψ1, ψ2, . . . , ψn)

(by De�nition 7.6.1) =
∑
a∈Fq

∑
b1,b2,...,bn∈Fq :
b1+b2+···+bn=a

ψ1(b1)ψ2(b2) · · ·ψn(bn)

=
∑

c1,c2,...,cn∈Fq

ψ1(c1)ψ2(c2) · · ·ψn(cn)

=

∑
c1∈Fq

ψ1(c1)

∑
c2∈Fq

ψ2(c2)

· · ·
 ∑
cn∈Fq

ψn(cn)


(by (7.9)) = 0.

Therefore

J1(ψ1, ψ2, . . . , ψn) =
1

1− q
J0(ψ1, ψ2, . . . , ψn)

(by Proposition 7.6.2.(iv)) = −ψn(−1)J1(ψ1, ψ2, . . . , ψn−1).

Corollary 7.6.6 Suppose that ψ1, ψ2, . . . , ψn ∈ F̂∗q are nontrivial. If their

product ψ1ψ2 · · ·ψn is nontrivial then

|J1(ψ1, ψ2, . . . , ψn)| = q(n−1)/2, (7.39)

while, if ψ1ψ2 · · ·ψn is trivial then

|J1(ψ1, ψ2, . . . , ψn)| = q(n−2)/2, (7.40)

and

|J0(ψ1, ψ2, . . . , ψn)| = (q − 1)q(n−2)/2. (7.41)

Proof (7.39) follows from Theorem 7.4.3.(vii) and Proposition 7.6.4. Also,

(7.40) follows from 7.4.3.(vii) and Proposition 7.6.5. Finally, (7.41) follows

from Proposition 7.6.2.(iv) and (7.39).
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Exercise 7.6.7 Let ψ1, ψ2, . . . , ψk ∈ F̂∗q and suppose that they are not all

trivial. Denote by Ψ1,Ψ2, . . . ,Ψk ∈ F̂qh their corresponding extensions as in

(7.33). Prove that

J1(Ψ1,Ψ2, . . . ,Ψk) = (−1)(h−1)(k−1)J1(ψ1, ψ2, . . . , ψk).

Hint. Use Proposition 7.6.2.(iii) if some character is trivial, then apply

Proposition 7.6.4, Proposition 7.6.5, and Theorem 7.5.3.

For more on Jacobi sums we refer to the aforementioned book by Berndt,

Evans, and Williams [20].

7.7 On the number of solutions of equations

This section is based on the original paper by Weil [165] and the monographs

by Ireland and Rosen [79], Lidl and Niederreiter [96], and Winnie Li [95]. It

contains very important results that led Weil (ibidem) to the statement of

his celebrated conjecture, solved by Deligne [51] (see also [95]).

Let r ∈ N and f(x0, x1, . . . , xr) ∈ Fq[x0, x1, . . . , xr]. We denote by Nf the

number of solutions of the equation f = 0, that is,

Nf = |{(x0, x1, . . . , xr) ∈ Fr+1
q : f(x0, x1, . . . , xr) = 0}|,

where Fr+1
q is the (r + 1)-dimensional vector space over Fq. Moreover, if

u ∈ Fq and n ∈ N, we denote by Nn(u) the number of solutions of the

equation xn = u, that is,

Nn(u) = |{x ∈ Fq : xn = u}|.

Lemma 7.7.1

(i) If d = gcd(n, q − 1) then

Nn(u) =


1 if u = 0

d if u is a d-th power in F∗q
0 otherwise.

(ii) If f(x0, x1, . . . , xr) = a0x
n0
0 + a1x

n1
1 + · · · + arx

nr
r with ai ∈ F∗q and

integers ni > 0, for i = 1, 2, . . . , r, then

Nf =
∑

u0,u1,...,ur∈Fq :∑r
i=0 aiui=0

Nn0(u0)Nn1(u1) · · ·Nur(ur).

Proof (i) The case u = 0 is obvious; the remaining is just Remark 1.2.14.
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(ii) Put xnii = ui for i = 0, 1, . . . , r, and count the number of solutions of

these equations.

Lemma 7.7.2 With the same notation as in Lemma 7.7.1.(i) we have

Nn(u) =
∑
ψ∈F̂∗q :

ψd=1

ψ(u).

Proof Suppose �rst that u ∈ F∗q is a d-power, say u = vd, for some v ∈ F∗q .
Then ∑

ψ∈F̂∗q :

ψd=1

ψ(u) =
∑
ψ∈F̂∗q :

ψd=1

ψ(vd)

=
∑
ψ∈F̂∗q :

ψd=1

[ψ(v)]d

= |{ψ ∈ F̂∗q : ψd = 1}|
= d,

where the last equality follows from Proposition 1.2.12 applied to the cyclic

group F̂∗q (recall also Corollary 2.3.4 and Exercise 7.1.6).

Suppose now that u is not a dth power and let α be a generator of F∗q .
Then we can �nd k, r ∈ N with 0 < r < d such that u = αdk+r. Thus, if

ψd = 1, we have

ψ(u) = ψ(αr)

and we may think of ψ as a character of the quotient group F∗q/H, where

H = {vd : v ∈ F∗q} = {αkd : k = 0, 1, . . . ,
q − 1

d
}.

Since F∗q/H is cyclic of order q − 1/((q − 1)/d) = d, we conclude that {ψ ∈
F̂∗q : ψd = 1} may be identi�ed with F̂∗q/H, so that, using the dual orthogonal

relations (7.10), we deduce that∑
ψ∈F̂∗q :

ψd=1

ψ(u) =
∑

ψ∈F̂∗q/H

ψ(1)ψ(αr) = 0.

To conclude, in both cases, we may invoke Lemma 7.7.1.(i).
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In the following we use the notation

Ξ = {(ψ0, ψ1, . . . , ψr) ∈ (F̂∗q)r+1 : ψi 6= 1, ψdii = 1, i = 0, 1, . . . , r}

and

Ξ1 = {(ψ0, ψ1, . . . , ψr) ∈ Ξ : ψ0ψ1 · · ·ψr = 1}.

Theorem 7.7.3 (Hua-Vandiver [77], Weil [165]: the homogeneous

case) Let f be as in Lemma 7.7.1.(ii) and set di = gcd(ni, q − 1), for i =

0, 1, . . . , r. Then

Nf = qr +
∑

(ψ0,ψ1,...,ψr)∈Ξ1

ψ0(a−1
0 )ψ1(a−1

1 ) · · ·ψr(a−1
r )J0(ψ0, ψ1, . . . , ψr)

(7.42)

and

|Nf − qr| ≤ (q − 1)q
r−1
2 M, (7.43)

where M = |Ξ1|.

Proof From Lemma 7.7.1 and Lemma 7.7.2 we deduce that

Nf =
∑

u0,u1,...,ur∈Fq :∑r
i=0 aiui=0

∑
ψ0,ψ1,...,ψr∈F̂∗q :

ψ
di
i =1, i=0,1,...,r

ψ0(u0)ψ1(u1) · · ·ψr(ur)

=
∑

ψ0,ψ1,...,ψr∈F̂∗q :

ψ
di
i =1, i=0,1,...,r

ψ0(a−1
0 )ψ1(a−1

1 ) · · ·ψr(a−1
r )

·
∑

u0,u1,...,ur∈Fq :∑r
i=0 aiui=0

ψ0(a0u0)ψ1(a1u1) · · ·ψr(arur)

=
∑

ψ0,ψ1,...,ψr∈F̂∗q :

ψ
di
i =1, i=0,1,...,r

ψ0(a−1
0 )ψ1(a−1

1 ) · · ·ψr(a−1
r )J0(ψ0, ψ1, . . . , ψr).

Then (7.42) follows from Proposition 7.6.2.(i),(iii),(iv). Moreover, we deduce

(7.43) from (7.42) and (7.41).

We now consider the equation

a0x
n0
0 + a1x

n1
1 + · · ·+ arx

nr
r = b, (7.44)

where n0, n1, . . . , nr are positive integers and b ∈ F∗q . We set

f(x0, x1, . . . , xr) = a0x
n0
0 + a1x

n1
1 + · · ·+ arx

nr
r − b
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and

Nf = |{(x0, x1, . . . , xr) ∈ Fr+1
q : f(x0, x1, . . . , xr) = 0}|.

Theorem 7.7.4 (Hua-Vandiver, Weil: the non-homogeneous case)

With the notation above, and setting again di = gcd(ni, q−1), i = 0, 1, . . . , r,

we have:

Nf = qr +
∑

(ψ0,ψ1,...,ψr)∈Ξ

(ψ0ψ1 · · ·ψr)(b)

· ψ0(a−1
0 )ψ1(a−1

1 ) · · ·ψr(a−1
r )J1(ψ0, ψ1, . . . , ψr) (7.45)

and

|Nf − qr| ≤Mq
r−1
2 +M ′q

r
2 (7.46)

where, as before, M = |Ξ1|, and M ′ = |Ξ \ Ξ1|.

Proof Arguing as in the proof of Theorem 7.7.3 we get

Nf =
∑

u0,u1,...,ur∈Fq :∑r
i=0 aiui=b

∑
ψ0,ψ1,...,ψr∈F̂∗q :

ψ
di
i =1, i=0,1,...,r

ψ0(u0)ψ1(u1) · · ·ψr(ur)

=
∑

ψ0,ψ1,...,ψr∈F̂∗q :

ψ
di
i =1, i=0,1,...,r

ψ0(a−1
0 b)ψ1(a−1

1 b) · · ·ψr(a−1
r b)

·
∑

u0,u1,...,ur∈Fq :∑r
i=0 b

−1aiui=1

ψ0(b−1a0u0)ψ1(b−1a1u1) · · ·ψr(b−1arur)

=
∑

ψ0,ψ1,...,ψr∈F̂∗q :

ψ
di
i =1, i=0,1,...,r

(ψ0ψ1 · · ·ψr)(b)ψ0(a−1
0 )ψ1(a−1

1 ) · · ·ψr(a−1
r )J1(ψ0, ψ1, . . . , ψr)

and (7.45) follows again from Proposition 7.6.2.(i),(iii), while the estimate

(7.46) follows easily from (7.39) and (7.40).

Corollary 7.7.5 With the same notation as in Theorem 7.7.4 we have

|Nf − qr| ≤ (d0 − 1)(d1 − 1) · · · (dr − 1)q
r
2 .

Proof Just note that M +M ′ = |Ξ| = (d0 − 1)(d1 − 1) · · · (dr − 1).

Remark 7.7.6 Note that, both in Theorem 7.7.3 and in Theorem 7.7.4, if
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di = 1 for some i, then Nf = qr. This is obvious: for instance, suppose that

n0 = 1. Then, for any choice of x1, x2, . . . , xr ∈ Fq, setting

x0 = − 1

a0
[a1x

n1
1 + a2x

n2
2 + · · ·+ arx

nr
r − b]

yields a solution of (7.44). Moreover, since the exact formulas and the es-

timates depend only on the numbers d0, d1, . . . , dr, one may assume that

n0, n1, . . . , nr are divisors of q − 1.

Corollary 7.7.7 Let p be a prime number, n0, n1, . . . , nr positive integers,

and a0, a1, . . . , ar, b ∈ Z. Then the number N(p) of (non-congruent) solu-

tions (x0, x1, . . . , xr) ∈ Zr+1 of the congruence

a0x
n0
0 + a1x

n1
1 + · · ·+ arx

nr
r = b mod p

satis�es the condition

|N(p)− pr| ≤ (n0 − 1)(n1 − 1) · · · (nr − 1)pr/2.

In particular,

lim
p→+∞:
p prime

N(p) = +∞.

Proof This follows immediately from Corollary 7.7.5 after observing that

ni ≥ di for all is.

We conclude this section with an exercise.

Exercise 7.7.8

(1) Prove that for every integer k ≥ 0

∑
x∈Fq

xk =

{
0 if k = 0 or (q − 1)6 |k
−1 if k > 0 and (q − 1)|k

(here we assume 00 = 1).

Hint: for k > 0 use a generator α of F∗q .
(2) Show that if f ∈ Fq[x1, x2, . . . , xn] and deg(f) < n(q − 1) then∑

α1,α2,...,αn∈Fq

f(α1, α2, . . . , αn) = 0.

Hint: from (1) deduce the statement for a monomial.
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(3) Show that if f ∈ Fq[x1, x2, . . . , xn] and F = 1− f q−1 then

Nf =
∑

α1,α2,...,αn∈Fq

F (α1, α2, . . . , αn),

where Nf is seen as an element of Fq.
(4) (Warning's Theorem [164]) Prove that if f ∈ Fq[x1, x2, . . . , xn] and

deg(f) < n, then Nf is divisible by p.

Hint: from (2) and (3) it follows that Nf = 0 mod p.

(5) (Chevalley's Theorem [39]) Show that if f ∈ Fq[x1, x2, . . . , xn] sat-

is�es f(0, 0, . . . , 0) = 0 and deg(f) < n, then Nf ≥ 2. In particular,

f = 0 has a nontrivial solution.

Remark 7.7.9 Chevalley's theorem was conjectured by E. Artin in 1935 and

immediately proved by Chevalley and generalized by Warning. The proof

sketched in the above exercise is due to Ax [16]. Warning, actually, proved

that Nf ≥ qn−deg(f); see the monograph by Lidl and Niederreiter [96], where

these results are proved also for systems of polynomials.

7.8 The FFT over a �nite �eld

In this section, following again [160], we describe the matrix form of several

algorithms for the additive Fourier transform over Fq, with q = ph, p ≥ 3

prime, and h ≥ 1. We generalize Rader's algorithm discussed at the end of

Section 5.4. The original sources are [2] and [14].

The Fourier Transform over Fq is de�ned as in (2.15) by setting

f̂(χ) =
∑
x∈Fq

f(x)χ(x) (7.47)

for all f ∈ L(Fq) and χ ∈ F̂q. However, to keep notation similar to that in

Section 5.4, we avoid conjugation for χ when describing the matrix repre-

senting (7.47). By means of Theorem 6.3.3, we �x a generator α of the cyclic

group F∗q and we introduce the following ordering for the elements of Fq:

0, α0 = 1, α, α2, . . . , αq−2. (7.48)

Then, using the representation (7.5), we de�ne the Fourier Matrix AFq of Fq
by setting

AFq =


1 1 · · · 1

1
... Cq−1

1

 , (7.49)
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where

Cq−1 =
(

exp[2πiTr(αk+j)/p]
)q−2

k,j=0
(7.50)

is the associated core matrix. Cq−1 has the following property: its (k, j)-

entry depends only upon k + j mod q − 1. A matrix with this property is

called skew circulant mod q− 1. In particular, Cq−1 is Hankel and therefore

symmetric. Note also that in [50] it is given a di�erent de�nition of skew-

circulant matrices, but we follow the terminology in [160]. Clearly, (7.49)

represents the matrix form of Rader's algorithm over Fq. Now we describe

three block decompositions of the core matrix Cq−1. First of all, we assume

that h ≥ 2 so that q − 1 = ph − 1 is not a prime number (for instance, it is

divisible by p−1). We begin with a description of an analogue of the Cooley-

Tuckey algorithm due to Agarwal and Tuckey. Suppose that q − 1 = mn is

a nontrivial (arbitrary) factorization of q − 1. Denote by

B = 〈αm〉 (7.51)

the subgroup generated by αm. Clearly, B is cyclic of order n and we have

the decomposition

F∗q =
m−1∐
k=0

αkB.

Now we choose a di�erent ordering for Fq (in place of (7.48)): we �rst order

B by setting

1, αm, α2m, . . . , α(n−1)m (7.52)

and then we order Fq:
0, B, αB, . . . , αm−1B. (7.53)

The core matrix corresponding to this ordering has the form
C(0, 0) C(0, 1) . . . C(0,m− 1)

C(1, 0) C(1, 1) . . . C(1,m− 1)
...

...
. . .

...

C(m− 1, 0) C(m− 1, 1) . . . C(m− 1,m− 1)

 (7.54)

where C(r, r′), with 0 ≤ r, r′ ≤ m− 1, is the n× n matrix

C(r, r′) =
(

exp[2πiTr(αr+r
′+(s+s′)m)/p]

)n−1

s,s′=0
. (7.55)

Note that C(r, r′) is skew-circulant mod n. It follows that (7.54) is a Hankel

(actually skew-circulant mod nm) matrix whose blocks are Hankel (actually
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skew-circulant mod n) matrices. A further property is presented in the

following proposition.

Proposition 7.8.1 Set

Sn =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

...

0 0 0 · · · 1

1 0 0 · · · 0

 . (7.56)

If r + r′ = r1 + r′1 mod m and

`m = r + r′ − r1 − r′1 (7.57)

for some positive `, then

C(r, r′) = S`nC(r1, r
′
1).

Proof From (7.57) we deduce that

r + r′ + (s+ s′)m = r1 + r′1 + (`+ s+ s′)m

so that

[C(r, r′)]s,s′ = [C(r1, r
′
1)]s+`,s′ = [S`nC(r1, r

′
1)]s,s′ ,

where s+ ` must be considered mod n.

Remark 7.8.2 Clearly, the matrices (7.50) and (7.54) are similar and the

similarity is realized by means of a permutation matrix (recall Corollary

5.3.2). More precisely, by means of the permutation of F∗q that transforms

the ordered sequence (7.48) into the ordered sequence (7.53). The easy

details are left to the reader and the same remark holds true for the block

decomposition (7.59).

Now we give an analogue of the Good formula (Corollary 5.4.13).

Suppose, as before, that q−1 = nm. We now also require that gcd(n,m) =

1. By Proposition 1.2.5 we have

Zmn ∼= Zm ⊕ Zn. (7.58)

More precisely, the generator of Zm is n and the generator of Zn is m (for

instance, take a = 1 in the proof of Proposition 1.2.5, or use Bezout's identity

(1.2): 1 = um+vn⇒ m = 1 mod n and n = 1 mod m). Setting A = 〈αn〉
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and recalling that B = 〈αm〉 (cf. (7.51)), (7.58) yields the multiplicative

decomposition

F∗q ∼= A×B

with A (respectively B) multiplicative cyclic of order m (respectively n).

Then, we may replace the ordering (7.53) by

0, B, αnB,α2nB, . . . , α(m−1)nB,

where B is ordered again as in (7.52). With this new ordering, the core

matrix has the form
C̃(0, 0) C̃(0, 1) . . . C̃(0,m− 1)

C̃(1, 0) C̃(1, 1) . . . C̃(1,m− 1)
...

...
...

C̃(m− 1, 0) C̃(m− 1, 1) . . . C̃(m− 1,m− 1)

 (7.59)

where C̃(r, r′), with 0 ≤ r, r′ ≤ m− 1, is the n× n matrix

C̃(r, r′) =
(

exp[2πiTr(α(r+r′)n+(s+s′)m)/p]
)n−1

s,s′=0
.

The C̃s have the same properties of the Cs in (7.54). Moreover,

C̃(r, r′) = C̃(r1, r
′
1)

if r + r′ = r1 + r′1 mod m. Setting T (r) = C̃(r, 0), matrix (7.59) takes the

form: 
T (0) T (1) · · · T (m− 1)

T (1) T (2) · · · T (0)
...

...
...

T (m− 1) T (0) · · · T (m− 2)

 .

This matrix is block skew-circulant mod m and each block is skew-circulant

mod n.

We consider now a particular case of (7.54). We take m = ph−1
p−1 and

n = p− 1. The matrix Sp−1 is as in (7.56). Set also ω = e2πi/p and ε = αm.

Note that now B ∼= Z∗p and ε ∈ F∗p is a generator of this group (recall

Corollary 6.3.5).

Theorem 7.8.3 (Auslander, Feigh, and Winograd) De�ne

ν : {0, 1, . . . , q − 1} → {0, 1, . . . , p− 2} ∪ {−∞}
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by means of the relation{
Tr(αr) = εν(r) if Tr(αr) 6= 0

ν(r) = −∞ if Tr(αr) = 0

for r = 0, 1, . . . , q − 1. Set also

S−∞p−1 =


−1 −1 · · · −1

−1 −1 · · · −1
...

...
. . .

...

−1 −1 · · · −1

 .

Then the matrix (7.54) may be factorized as

[Im ⊗ C(p)]S,

where we use the notation in (5.27) and

S =


S
−ν(0)
p−1 S

−ν(1)
p−1 · · · S

−ν(m−1)
p−1

S
−ν(1)
p−1 S

−ν(2)
p−1 · · · S

−ν(m)
p−1

...
...

...

S
−ν(m−1)
p−1 S

−ν(m)
p−1 · · · S

−ν(2m−2)
p−1


and

C(p) =
(
ωε

k+j
)p−2

k,j=0
.

Proof First of all, recall that the trace is Fp-linear by Hilbert Satz 90 (cf.

Theorem 6.7.2). Therefore, since ε = αm ∈ Fp in (7.55) we have

Tr(αr+r
′+(s+s′)m) = Tr(αr+r

′
εs+s

′
) = εs+s

′
Tr(αr+r

′
). (7.60)

We consider two cases.

First case: Tr(αr+r
′
) 6= 0. Then Tr(αr+r

′
) = εν(r+r′) so that (7.55) becomes

[C(r, r′)]s,s′ = ωε
s+s′+ν(r+r′)

.

On the other hand, since S−`p−1 = (δi−`,j)
p−2
i,j=0, we have

[C(p)S
−ν(r+r′)
p−1 ]s,s′ =

p−1∑
t=0

ωε
s+t
δt−ν(r+r′),s′ = ωε

s+s′+ν(r+r′)
.

Second case: Tr(αr+r
′
) = 0. Then, by means of (7.60), equation (7.55)
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becomes

C(r, r′) =


1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

 .

Moreover, since
∑

x∈Fp ω
x =

∑p−1
k=0 ω

k = ωp−1
ω−1 = 0, we have

[C(p)S−∞p−1 ]s,s′ = −
p−2∑
t=0

ωε
s+t

= −
∑
x∈F∗p

ωx = 1.

It follows that

C(p)S−∞p−1 =


1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

 = C(r, r′).



Part III

Graphs and expanders





8

Graphs and their products

This chapter is an introduction to (�nite) graph theory with emphasis on

spectral analysis of k-regular graphs. In Section 8.2 we study strongly regular

graphs with a description of the celebrated Petersen graph and the Clebsch

graph: the latter, in particular, is also described in terms of number theory

over the Galois �eld F16. In the subsequent sections, we describe bipartite

graphs as well as three basic examples (the complete graph, the hypercube,

and the discrete circle) based on the theories developed in Chapter 4. Other

explicit examples can be found in Section 8.8, where we give a detailed

exposition of various notions of graph products, culminating with the study

of the lamplighter graph, of the replacement product and the zig-zag product,

in Section 8.11, Section 8.12, and Section 8.13, respectively. See also our �rst

monograph [29]. In Chapter 9 we shall focus on more advanced topics such as

the Alon-Milman-Dodziuk theorem, the Alon-Boppana-Serre theorem, and

explicit constructions of expanders.

8.1 Graphs and their adjacency matrix

An undirected graph is a triple G = (X,E, r), where X is a nonempty set of

vertices, E is a set of edges, and r : E → P(X) is a map from the edge set into

the power set ofX such that 0 < |r(e)| ≤ 2 (as usual, |·| denotes cardinality).
If e ∈ E satis�es r(e) = {x}, then we say that e is a loop based at x. We

denote by E0 = {e ∈ E : |r(e)| = 1} the set of all loops of G and denote by

E1 = E \ E0 = {e ∈ E : |r(e)| = 2} the set of remaining edges. Moreover, if

there exist distinct edges e, e′ ∈ E such that r(e) = r(e′), equivalently, if the

map r is not injective, we say that the graph G has multiple edges. On the

other had, if the map r is injective, that is, G has no multiple edges, one says

that the graph is simple. Thus, a simple (undirected) graph without loops

can be regarded just as a pair G = (X,E), where X is the set of vertices

243
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and any edge e ∈ E is a two-subset {x, y} of (distinct) elements of X (we

identify e with r(e)).

A directed graph is a triple G = (X,E,~r), where X is a set of vertices,

E is a set of (oriented) edges, and ~r : E → X × X, called an orientation

of G, is a map from the edge set into the Cartesian square of X. Writing

~r(e) = (e−, e+), we say that e− (respectively e+) is the initial (respectively

terminal) vertex of the oriented edge e ∈ E. Note that a directed graph

G = (X,E,~r) can be viewed as an undirected graph G = (X,E, r) by setting

r(e) = {e−, e+} (8.1)

for all e ∈ E. Clearly, e ∈ E is a loop if and only if e− = e+. Conversely,

given an undirected graph G = (X,E, r), for every e ∈ E1 we may arbitrarily

choose a labeling of the two elements in r(e) and write r(e) = {e−, e+}. This
de�nes an orientation ~r : E → X ×X by setting

~r(e) =

{
(x, x) if e ∈ E0 and r(e) = {x}
(e−, e+) if e ∈ E1 and r(e) = {e−, e+}.

Note that there are exactly 2|E1| di�erent orientations on G. Moreover the

undirected graph associated (via (8.1)) with the newly de�ned directed graph

G = (X,E,~r) is the original undirected graph G = (X,E, r).

From now on, unless otherwise speci�ed, all graphs will be undirected.

Let G = (X,E, r) be an (undirected) graph.

Two vertices x and y are called neighbors or adjacent, and we write x ∼ y,
provided there exists e ∈ E such that r(e) = {x, y}. We then say that the

edge e joins the vertices x and y. Given a vertex x ∈ X, we denote by

N (x) = {y ∈ X : y ∼ x} ⊆ X

the neighborhood of x, by Ex = {e ∈ E : r(e) 3 x} the set of edges incident
to x, and by deg x = |Ex|, the number of edges incident to x, called the

degree of x. Note that a vertex x ∈ V belongs to N (x) if and only if there

exists a loop e ∈ E based at x (that is, r(e) = {x}). When deg(·) = k is

constant, we say that the graph is regular of degree k, or k-regular. Note

that if G is simple then |N (x)| = |Ex| = deg x.

If X and E are both �nite we say that G is �nite. Note that a simple

graph G = (X,E) without loops is �nite if (and only if) X is �nite.

Let F = (Y, F, s) be another (undirected) graph.

F is called a subgraph of G provided Y ⊆ X, F ⊆ E, and r|F = s.

F is said to be isomorphic to G if there exists a pair Φ = (φ, ϕ) of bijections
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φ : X → Y and ϕ : E → F such that

s(ϕ(e)) = φ(r(e))

for all e ∈ E. One then writes Φ: G → F and calls it an isomorphism of the

graphs G and F . Moreover, if G and F are both directed, then Φ = (φ, ϕ) is

a (directed graphs) isomorphism of G and F if

(φ(e−), φ(e+)) = (ϕ(e)−, ϕ(e)+)

for all e ∈ E.
A (�nite) path in G is a sequence p = (x0, e1, x1, e2, x2 . . . , em, xm), with

x0, x1, . . . , xm ∈ X and e1, e2, . . . , em ∈ E such that r(ei) = {xi−1, xi} for
all i = 1, . . . ,m. The vertices x0 and xm are called the initial and terminal

vertices of p, respectively, and one says that p connects them. The non-

negative number |p| = m is called the length of the path p. When m = 0

one calls p = (x0) the trivial path based at x0. If x0 = xm one says that

the path is closed and p is also called a cycle. The inverse of a path p =

(x0, e1, x1, e2, x2 . . . , em, xm) is the path p−1 = (xm, em, xm−1, . . . , x1, e1, x0);

note that |p−1| = |p|. Given two paths p = (x0, e1, x1, e2, x2 . . . , em, xm) and

p′ = (x′0, e
′
1, x
′
1, e
′
2, x
′
2 . . . , e

′
n, x
′
n) with xm = x′0 we de�ne their composition

as the path p·p′ = (x0, e1, x1, e2, x2 . . . , em, xm = x′0, e
′
1, x
′
1, e
′
2, x
′
2 . . . , e

′
n, x
′
n);

note that |p · p′| = |p|+ |p′|.
For x, y ∈ X we write x ≈ y if there exists a path connecting them:

clearly, ≈ is an equivalence relation on the set X of vertices of G. The

equivalence classes are called the connected components of G. One says that
G is connected if there exists a unique connected component, in other words,

if any two vertices in X are connected by a path. If this is the case, the

geodesic distance of two vertices x, y ∈ X, denoted d(x, y), is the minimal

length of a path connecting them.

The diameter of a �nite connected graph G, denoted D(G), is the maximal

distance of two vertices in G, in formulæ,

D(G) = max{d(x, y) : x, y ∈ X}.

Proposition 8.1.1 Let G = (X,E, r) be a �nite connected k-regular graph.

Then

D(G) ≥ logk[(k − 1)|X|+ 1]− 1.

Proof Fix a base vertex x0 ∈ X and set Xj = {x ∈ X : d(x, x0) = j} for j =

0, 1, 2, . . . , D = D(G) (note that we may have Xj0 = ∅ for some 0 < j0 ≤ D;

then Xj = ∅ for all j0 ≤ j ≤ D). We have |X0| = |{x0}| = 1 and, since G is
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k-regular, |X1| ≤ k and, recursively, |Xj | ≤ |Xj−1|(k−1) ≤ k(k−1)j−1 < kj ,

for j ≥ 2. Indeed, each y ∈ Xj is joined with at least one vertex x ∈ Xj−1

and, in turn, each such x ∈ Xj−1 is joined with at most k− 1 vertices in Xj .

It follows that

|X| = |X0 tX1 tX2 t · · · tXD| ≤ 1 + k + k2 + · · ·+ kD =
kD+1 − 1

k − 1
.

We deduce that kD+1 ≥ (k−1)|X|+1 and, �nally, D ≥ logk[(k−1)|X|+1]−1.

Corollary 8.1.2 Let (Gn = (Xn, En, rn))n∈N be a family of �nite connected

k-regular graphs such that |Xn| →
n→∞

∞. Then also D(Xn) →
n→∞

∞. �

Let G = (X,E, r) be a �nite graph. The adjacency matrix associated with

G is the X ×X-matrix A = (A(x, y))x,y∈X de�ned by setting

A(x, y) = |r−1({x, y})|

for all x, y ∈ X. In other words, if x 6= y we have A(x, y) = |Ex ∩Ey| equals
the number (possibly 0) of edges incident to both x and y, and A(x, x) is

the number (possibly 0) of loops based at x. Note that A is symmetric

(A(x, y) = A(y, x) for all x, y ∈ X), that A(x, y) 6= 0 if and only if x ∼ y,

and deg x =
∑

y∈X A(x, y). Thus, G is simple (respectively without loops) if

and only if A(x, y) ∈ {0, 1} for all x, y ∈ X (respectively A(x, x) = 0 for all

x ∈ X). Often, we shall identify the matrix A with the corresponding linear

operator A : L(X)→ L(X), called the adjacency operator associated with G,
de�ned by setting

[Af ](x) =
∑
y∈Y

A(x, y)f(y) =
∑
y∈Y

A(y, x)f(y),

for all f ∈ L(X) and x ∈ X. Note that Aδx =
∑

y∼xA(x, y)δy, for all x ∈ X.

Moreover, as A is symmetric, it is diagonalizable and its spectrum σ(A) =

{µ ∈ C : A− µI is not invertible} (that is, the set of its eigenvalues) is real
(σ(A) ⊆ R), and there exists an orthogonal basis of L(X) made up of real-

valued eigenfunctions (see [91]). One refers to σ(A) as to the spectrum of

the graph G.

Remark 8.1.3 Warning that if G = (X,E,~r) is directed, in this book

we de�ne its adjacency matrix as the adjacency matrix A of the associ-

ated undirected graph G = (X,E, r) (cf. (8.1)). In other contexts, one sets

A(x, y) = |(~r)−1(x, y)| for all x, y ∈ X and therefore, in general, A is not

symmetric. On the contrary, in our setting, A is always symmetric!
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We recall (cf. Proposition 2.1.1) that W0 ≤ L(X) is the space of constant

functions on X and W1 = {f ∈ L(X) :
∑

x∈X f(x) = 0}, so that L(X) =

W0
⊕
W1 (cf. (2.4)).

Proposition 8.1.4 Let G = (X,E, r) be a �nite graph, with adjacency matrix

A. If G is k-regular, then the decomposition L(X) = W0⊕W1 is A-invariant

and W0 is the eigenspace corresponding to the eigenvalue k. Conversely, if

W0 is an eigenspace of A, then the graph is regular and the degree is given

by the corresponding eigenvalue.

Proof Suppose �rst that G is k-regular and let us show that W0 and W1 are

A-invariant. Let f0 ∈W0 and x ∈ X. Then

[Af0](x) =
∑
y∈X

A(x, y)f0(y) =
∑
y∈X

A(x, y)f0(x) = deg xf0(x), (8.2)

showing that Af0 = kf0. Similarly, if f1 ∈W1 we have∑
x∈X

[Af1](x) =
∑
x∈X

∑
y∈X

A(x, y)f1(y)

=
∑
y∈X

∑
x∈X

A(x, y)f1(y)

(since
∑

x∈X A(x, y) = deg y = k) = k
∑
y∈X

f1(y) = 0,

showing that Af1 ∈W1.

Conversely, assume that a nontrivial constant function f0 ≡ c is an eigen-

vector of A, with eigenvalue α. Then, as in (8.2), [Af0](x) = (deg x)c, and

as Af0 = αf0 ≡ αc we deduce that deg x = α for all x ∈ X.

Proposition 8.1.5 Let G = (X,E, r) be a �nite k-regular graph. Let µ0 ≥
µ1 ≥ · · · ≥ µ|X|−1 be the eigenvalues of the adjacency matrix A of G. Then

(i) k is an eigenvalue and its multiplicity equals the number of connected

components of G; in particular, G is connected if and only if the mul-

tiplicity of k is equal to 1;

(ii) |µi| ≤ k for i = 0, 1, . . . , |X| − 1, so that µ0 = k.

Proof (i) It follows from (8.2) that if f ∈ L(X) is constant on each connected

component of G, then Af = kf . This shows that k is an eigenvalue of A

and that its multiplicity is, at least, the number of connected components of

G (the characteristic functions of these connected components are, clearly,

linearly independent). Conversely, suppose that Af = kf with f ∈ L(X)
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non-identically zero and real-valued. Let X0 ⊂ X be a connected component

of G and suppose that |f |, restricted to X0, attains its maximum at the point

x0 ∈ X0, i.e. |f(x0)| ≥ |f(x)| for all x ∈ X0. We may suppose, up to passing

to −f , that f(x0) > 0 so that f(x0) ≥ f(x) for all x ∈ X0. Then∑
x∈X0

A(x0, x)[f(x0)− f(x)] =
∑
x∈X0

A(x0, x)f(x0)−
∑
x∈X0

A(x0, x)f(x)

= kf(x0)− kf(x0) = 0.

Since A(x0, x) ≥ 0 and f(x0) − f(x) ≥ 0 for all x ∈ X0, we deduce that

f(x) = f(x0) for all x ∼ x0. By induction on the geodesic distance from

x0, we deduce that f(x) = f(x0) for all x ∈ X0, that is, f is constant

on X0. This shows that f is constant on the connected components of X.

In particular, the multiplicity of k is at most, and therefore equal to, the

number of connected components of G.
(ii) Let µ be an eigenvalue and denote by f ∈ L(X) a corresponding

(nontrivial) real-valued eigenfunction. Suppose that |f | attains its maximum

at the point x0 ∈ X, i.e. |f(x0)| ≥ |f(x)| for all x ∈ X. As before, up to

passing to −f , we may assume that f(x0) > 0 so that f(x0) ≥ |f(x)| for all
x ∈ X. Then we have

|µ|f(x0) = |µf(x0)| = |
∑
x∈X

A(x0, x)f(x)|

≤
∑
x∈X

A(x0, x)|f(x)|

≤

(∑
x∈X

A(x0, x)

)
f(x0),

= kf(x0),

so that |µ| ≤ k.

Proposition 8.1.6 Let G = (X,E, r) be a �nite graph and denote by A =

(A(x, y))x,y∈X the associated adjacency matrix. Then, denoting by A` =(
A(`)(x, y)

)
x,y∈X , ` ∈ N, the `-th power of A (with the convention that A0 =

I, the identity matrix; cf. Section 2.1), we have

A(`)(x, y) = the number of paths of length ` in G connecting x and y

for all x, y ∈ X.

Proof Let x, y ∈ X. If ` = 0 the statement follows from the fact that
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there is exactly one (respectively, no) path of length 0, the trivial path at x,

connecting x and y for x = y (respectively, x 6= y). Now, every path

p(x, y) = (x0 = x, e1, x1, e2, x2, . . . , e`, x` = z, e`+1, x`+1 = y)

of length `+1 in G connecting x to y is the composition of the path p(x, z) =

(x0 = x, e1, x1, e2, x2, . . . , e`, x` = z) of length ` connecting x to z, a neighbor

of y, and the edge e`+1 ≡ (z, e`+1, y). By induction, the number of such

paths p(x, z) equals A(`)(x, z), and the number of edges e ≡ (z, e, y) equals,

by de�nition, A(z, y). As a consequence, the number of paths of length `+ 1

connecting x to y is given by∑
e∈E:

r(e)={z,y}

A(`)(x, z) =
∑
z∈X

A(`)(x, z)A(z, y) = A(`+1)(x, y).

8.2 Strongly regular graphs

This section contains a series of exercises on a remarkable family of regular

graphs.

De�nition 8.2.1 A �nite simple graph G = (X,E) without loops is called

strongly regular of parameters (v, k, λ, µ) if

(i) it is regular of degree k and |X| = v;

(ii) for all {x, y} ∈ E there exist exactly λ vertices adjacent to both x

and y;

(iii) for all x, y ∈ X with x 6= y and {x, y} /∈ E there exist exactly µ

vertices adjacent to both x and y.

Note that, in the above de�nition, 0 ≤ λ ≤ k−1 and 0 ≤ µ ≤ k. Moreover,

if µ > 0 then G is connected.

Exercise 8.2.2 Let G = (X,E) be a �nite simple graph without loops and

set |X| = v. Denote by A its adjacency matrix and set J =

1 · · · 1
...

...

1 · · · 1


(the v×v matrix with all 1s). Show that G is strongly regular with parameters

(v, k, λ, µ) if and only if A satis�es the equations:

AJ = kJ (8.3)
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and

A2 + (µ− λ)A+ (µ− k)I = µJ. (8.4)

Hint: (8.3) is equivalent to k-regularity; (8.4) may be written in the form

A2 = kI + λA+ µ(J − I −A)

and one may use Proposition 8.1.6.

Exercise 8.2.3 Let G be a connected strongly regular graph with parameters

(v, k, λ, µ).

(1) Show that the adjacency matrix A of G has exactly three eigenvalues,

namely:

• k with multiplicity 1,

• θ = λ−µ+
√

∆
2 ,

• τ = λ−µ−
√

∆
2 ,

where ∆ = (λ− µ)2 + 4(k − µ).

Hint: use Proposition 8.1.6; apply (8.4) and use the fact that non-

constant eigenvectors f of A satisfy Jf = 0.

(2) Show that the multiplicities of θ and τ are

mθ =
1

2

[
(v − 1)− 2k + (v − 1)(λ− µ)√

∆

]

mτ =
1

2

[
(v − 1) +

2k + (v − 1)(λ− µ)√
∆

]
.

Hint: mθ +mτ = v − 1 and 0 = Tr(A) = θmθ + τmτ + k.

Exercise 8.2.4 Let m ≥ 4 and denote by X the set of all 2-subsets of

{1, 2, . . . ,m}. The triangular graph T (m) is the �nite graph with vertex set

X and such that two distinct vertices are adjacent if they are not disjoint.

Show that T (m) is strongly regular with parameters v =
(
m
2

)
, k = 2(m−2),

λ = m− 2, and µ = 4.

Exercise 8.2.5 Let G = (X,E) be a �nite simple graph without loops. The

complement of G is the graph G with vertex set X and edge set E = {{x, y} :

x, y ∈ X,x 6= y, {x, y} /∈ E}.
(1) Show that if G is strongly regular with parameters (v, k, λ, µ), then G

(which is not necessarily connected!) is strongly regular with param-

eters (v, v − k − 1, v − 2k + µ− 2, v − 2k + λ).
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Fig. 8.1. The Petersen graph

(2) From (1) deduce that the parameters of a strongly regular graph

satisfy the inequality v − 2k + µ− 2 ≥ 0.

(3) Suppose that G is strongly regular. Show that G and G are both

connected if and only if 0 < µ < k < v − 1. If this is the case, one

says that G is primitive.

Hint: show that µ = 0 implies λ = k− 1 and write µ < k in the form

v − 2k + µ− 2 < (v − k − 1)− 1.

The complement of the triangle graph T (5) (see Exercise 8.2.4) is the

celebrated Petersen graph (see Figure 8.1). The monograph [73] is entirely

devoted to this graph which turned out to serve as a counterexample to

several important conjectures.

Exercise 8.2.6 The Clebsch graph (see Figure 8.2) is de�ned as follows.

The vertex set X consists of all subsets of even cardinality of {1, 2, 3, 4, 5}.
Moreover, two vertices A,B ∈ X are adjacent if |A4B| = 4 (here 4 denotes

the symmetric di�erence of two sets). Show that it is a (16, 5, 0, 2) strongly

regular graph.

In the following, we shall present another description of the Clebsch graph

by using methods of number theory. An edge coloring of a graph G = (X,E)

is a map c : E → C, where C is a set of colors. A monochromatic triangle

in G is a set of three vertices x, y, z such that {x, y}, {y, z}, {z, x} ∈ E and

have the same color. In the following exercise, we construct a very important

coloring of the complete graph K16, due to Greenwood and Gleason [67].

Exercise 8.2.7 Let F16[x] denote the ring of polynomials in one indetermi-

nate over the �eld F16.
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Fig. 8.2. The Clebsch graph: for 1 ≤ i < j < h < k ≤ 5 the string ij (respectively
ijhk) indicates the subset {i, j} (respectively {i, j, h, k, }). See also Figure 8.3.
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Fig. 8.3. The Clebsch graph (cf. Figure 8.2): now the vertices are identi�ed with the
elements of F16. Moreover, F16 = {0, 1, x, x2, x3, . . . , x14}, where x is a generator
of the cyclic group F∗16.

(1) Show that

x15 + 1 = (x4 + x+ 1)(x11 + x8 + x7 + x5 + x3 + x2 + x+ 1).

(2) Show that the polynomial p(x) = x4 +x+1 is irreducible over F2. Let

α ∈ F∗16 be a root of p. Show that α is a generator of F∗16 and deduce

from Proposition 6.2.5 that every element of F16 may be uniquely

represented in the form

ε0 + ε1α+ ε2α
2 + ε3α

3, (8.5)

where εi ∈ {0, 1} for 0 ≤ i ≤ 3.
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(3) Let α be as in (2). Represent each element αk, k = 0, 1, . . . , 14, in

the form (8.5) and show that the �ve cubes in F∗16 coincide with the

elements

1, α3, α3 + α2, α3 + α, and α3 + α2 + α+ 1.

Also show that the sum of two cubes in F∗16 is not a cube.

Hint: for instance, 1 + α3 = α14 in F∗16.

(4) Consider the elements of F16 as the vertices of K16 (the complete

graph on 16 vertices). Color the edges of K16 in the following way: if

a, b ∈ F16, a 6= b and a− b = αm, then

• if m ≡ 0 mod 3 (i.e. a− b is a cube) the color of {a, b} is red;
• if m ≡ 1 mod 3 the color of {a, b} is blue;
• if m ≡ 2 mod 3 the color of {a, b} is green.
Show that, with this coloring, K16 does not contain a monochromatic

triangle.

Hint: show that if it contains a monochromatic triangle then it con-

tains a red monochromatic triangle and then apply (3).

(5) Show that the graph (F16, E), where E is the set of all red edges in

(4), is isomorphic to the Clebsch graph (cf. Exercise 8.2.6).

Another important example of a strongly regular graph, namely the Paley

graph, will be discuss in Exercise 9.4.5. For more on strongly regular graphs

we refer to the monographs by van Lint and Wilson [97] and Godsil and

Royle [64].

8.3 Bipartite graphs

De�nition 8.3.1 A graph G = (X,E, r) is called bipartite if there exists a

nontrivial partition X = X0
∐
X1 of the set of vertices such that every edge

e ∈ E joins a (unique) vertex in X0 with a (unique) vertex in X1 (that is,

|r(e) ∩X0| = 1 = |r(e) ∩X1| for all e ∈ E). The sets X0 and X1 are called

partite sets.

Note that if a bipartite graph is connected, then the (nontrivial) partition

of the set of vertices is unique. Moreover any bipartite graph has necessarily

no loops.

Exercise 8.3.2 Let G = (X,E, r) be a graph. Show that the following

conditions are equivalent:

(a) G is bipartite;
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Fig. 8.4. The bipartite graph G = (X,E) with vertex set X = X0

∐
X1, where

X0 = {x, y} and X1 = {u, v, z}, and edge set E = {{x, u}, {x, v}, {y, v}, {y, z}}.

(b) G is bicolorable, i.e. there exists a map φ : X → {0, 1} such that x ∼ y
infers φ(x) 6= φ(y);

(c) G does not contain cycles of odd length.

Exercise 8.3.3 Let G = (X,E, r) be a �nite bipartite graph with X =

X0
∐
X1 its partite sets partition. Consider the decomposition L(X) =

L(X0)⊕ L(X1). Show that if A denotes the adjacency matrix of G then we

have:

(1) A [L(X0)] ⊆ L(X1) (respectively A [L(X1)] ⊆ L(X0));

(2) de�ne ε : L(X)→ L(X) (respectively τ : L(X)→ L(X)) by setting

[εf ](x) =

{
f(x) if x ∈ X0

−f(x) if x ∈ X1

(respectively, τf = −εf)

for all f ∈ L(X) and x ∈ X. Show that (i) Aε = τA, (ii) ε2 = τ2 = I,

and (iii) τε = ετ = −I.

The following provides another example of a structural (geometrical) prop-

erty that re�ects on the spectral theory of the graph.

Proposition 8.3.4 Let G = (X,E, r) be a �nite connected k-regular graph

and denote by A the corresponding adjacency matrix. Then the following

conditions are equivalent:

(a) G is bipartite;

(b) the spectrum of A is symmetric with respect to 0;

(c) −k is an eigenvalue of A.

Proof Suppose that G is bipartite and letX = X0
∐
X1 be the corresponding

partite sets partition. Let λ ∈ σ(A) and denote by f ∈ L(X) a corresponding
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eigenfunction, so that, Af = λf . Consider the function g = εf ∈ L(X) (cf.

Exercise 8.3.3). Then we have (cf. Exercise 8.3.3):

Ag = Aεf = τAf = λτf = −λεf = −λg.

It follows that −λ is an eigenvalue (with eigenfunction g). This shows that

σ(A) is symmetric with respect to 0, proving the implication (a) ⇒ (b).

(b) ⇒ (c) follows immediately from Proposition 8.1.5.(i).

(c) ⇒ (a): suppose that Af = −kf with f ∈ L(X) nontrivial and real-

valued. Denote by x0 ∈ X a maximum point for |f |; then, up to switching

f to −f , we may suppose that f(x0) > 0. Then the equality −kf(x0) =

[Af ](x0) =
∑

y∈X A(x0, y)f(y) may be rewritten
∑

y:y∼x0 A(x0, y)[f(x0) +

f(y)] = 0. Since f(x0) + f(y) ≥ 0, we deduce f(y) = −f(x0) for all y ∼ x0.

Set Xj = {y ∈ X : f(y) = (−1)jf(x0)} for j = 0, 1. Arguing as in the

proof of Proposition 8.1.5.(i), and using induction on the geodesic distance

from x0, we deduce that indeed X = X0
∐
X1 is a partite set decomposition,

showing that X is bipartite.

Exercise 8.3.5 The complete bipartite graph Kn,m = (Xn,m, En,m) on n+m

vertices, n,m ≥ 1, is the (�nite, simple and without loops) graph whose

vertex set Xn,m = XtY is the disjoint union of a set X of cardinality n, and

another set Y of cardinality m, and edge set En,m = {{x, y} : x ∈ X, y ∈ Y }.
Show that the adjacency matrix of Kn,m has the following eigenvalues:

• 0 with multiplicity n+m− 2

•
√
nm with multiplicity 1

• −
√
nm with multiplicity 1.

8.4 The complete graph

De�nition 8.4.1 The complete graph on n vertices, n ≥ 1, is the (�nite,

simple and without loops) graph Kn = (Xn, En) with vertex set Xn =

{1, 2, . . . , n} and edge set En = {{x, y} : x, y ∈ Xn, x 6= y}, that is, two
vertices are connected if and only if they are distinct.
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Fig. 8.5. The complete graphs K2, K3, K4 and K5.
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Note that Kn is regular: indeed, each vertex has degree n− 1.

The adjacency matrix A of Kn is given by

A(x, y) =

{
1 if x 6= y

0 if x = y.

The graph Kn is always connected and it is bipartite if and only if n = 2.

Moreover (cf. Proposition 8.1.4), setting W0 = {f ∈ L(Xn) : f is constant}
and W1 = {f ∈ L(Xn) :

∑
y∈Xn f(y) = 0}, we have, for f ∈W0,

[Af ](x) =
∑
y∈Xn

A(x, y)f(y) = (n− 1)f(x)

and, for f ∈W1,

[Af ](x) =
∑
y∈Xn

A(x, y)f(y) =
∑
y∈Xn
y 6=x

f(y) =

∑
y∈Xn

f(y)

− f(x) = −f(x)

for all x ∈ Xn.

We deduce that (cf. Proposition 8.1.4):

• W0 is an eigenspace for A corresponding to the eigenvalue (n− 1), whose

multiplicity is equal to dimW0 = 1;

• W1 is an eigenspace for A corresponding to the eigenvalue −1, whose

multiplicity is equal to dimW1 = n− 1.

8.5 The hypercube

De�nition 8.5.1 The n-dimensional hypercube, n ∈ N, is the (�nite, simple

and without loops) graph Qn = (Xn, En) with vertex set Xn = {0, 1}n and

edge set En = {{x, y} : d(x, y) = 1}, where

d(x, y) = |{i : xi 6= yi, 1 ≤ i ≤ n}|

is the Hamming distance of x=(x1, x2, . . . , xn) and y=(y1, y2, . . . , yn) ∈ Xn.

It is clear from the de�nition that the adjacency matrixA = (A(x, y))x,y∈Xn
of Qn is given by

A(x, y) =

{
1 if d(x, y) = 1

0 otherwise,

for all x, y ∈ Xn.

We observe that Xn, equipped with the addition operation (that is, (x+



8.5 The hypercube 257

•

•

•

••

•

• •

000 100

010 110

001 101

011 111

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Fig. 8.6. The 3-dimensional hypercube Q3.

y)i = xi + yi mod 2, for all x, y ∈ Xn and 1 ≤ i ≤ n), is an Abelian group,

with identity element 0 = (0, 0, . . . , 0), isomorphic to Zn2 . The characters

(cf. De�nition 2.3.1) of such a group are given by (cf. Proposition 2.3.3) the

functions χx ∈ L(Xn), x ∈ Xn, de�ned by setting

χx(y) = (−1)x·y (8.6)

for all y ∈ Xn, where x · y =
∑n

i=1 xiyi.

Exercise 8.5.2 Show that A ∈ End(L(Xn)) satis�es the equivalent condi-

tions in Theorem 2.4.10 (warning: the notation has changed), namely: A

is Zn2 -invariant and it is the convolution operator with kernel h ∈ L(Xn)

de�ned by

h(x) =

{
1 if d(x,0) = 1

0 otherwise,
(8.7)

for all x ∈ Xn, so that its eigenfunctions are exactly the characters χx,

x ∈ Zn2 .

For x = (x1, x2, . . . , xn) ∈ Xn we de�ne w(x) = |{j : xj = 1}| the weight
of x. Note that d(x, y) = w(x− y) for all x, y ∈ Xn.

Keeping in mind Corollary 2.4.11, the following provides a complete list

of the eigenvalues of A.

Proposition 8.5.3 The Fourier transform of the function h ∈ L(Xn) in

(8.7) is given by

ĥ(x) = n− 2w(x) (8.8)

for all x ∈ Xn.
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Proof Let x ∈ Xn. Then we have

ĥ(x) = 〈h, χx〉

(by (8.6)) =
∑
y∈Xn

h(y)(−1)x·y

(by (8.7)) =

n∑
j=1

(−1)xj

=
∑
j:xj=1

(−1)xj +
∑
j:xj=0

(−1)xj

= −w(x) + (n− w(x))

= n− 2w(x).

Note that, according to Proposition 8.3.4, the spectrum of A is symmetric

with respect to 0, as Qn is bipartite: its partite set partition is Xn = {x ∈
Xn : w(x) is odd}

∐
{x ∈ Xn : w(x) is even}.

We now determine the multiplicities of the eigenvalues (8.8) of A. It is

clear that, for 0 ≤ k ≤ n, the eigenspace associated with the eigenvalue

n− 2k is the subspace

Vk = 〈χx : w(x) = k〉 ≤ L(Xn).

Moreover, its dimension is given by dim(Vk) = |{x ∈ Xn : w(x) = k}| =
(
n
k

)
.

8.6 The discrete circle

De�nition 8.6.1 The discrete circle (or cycle graph) on n ≥ 3 vertices, is

the (�nite, simple and without loops) graph Cn = (Xn, En), where Xn = Zn
and x, y ∈ Xn are adjacent if x− y = ±1.

Note that Cn is 2-regular and it is bipartite if and only if n is even. The

associated adjacency matrix is circulant (see Exercise 2.4.16) and is given by

A =



0 1 0 0 · · · 0 0 1

1 0 1 0 · · · 0 0 0

0 1 0 1 · · · 0 0 0
...

. . .
...

0 0 0 0 · · · 1 0 1

1 0 0 0 · · · 0 1 0


.
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Fig. 8.7. The discrete circle Cn.

Exercise 8.6.2 Show that A ∈ End(L(Xn)) satis�es the equivalent condi-

tions in Theorem 2.4.10 (warning: the notation has changed), namely: A is

Zn-invariant and it is the convolution operator with kernel h = δ1 + δ−1 ∈
L(Xn), so that its eigenfunctions are exactly the characters χx, x ∈ Zn.

Recall (cf. De�nition 2.2.1) that the characters of Zn are the functions

χx, x ∈ Zn, de�ned by

χx(y) = ωxy

for all y ∈ Zn, where ω = exp(2πi
n ). Moreover (cf. Exercise 2.4.4), the Fourier

transform of a Dirac δx, x ∈ Zn, is given by δ̂x(y) ≡ δ̂x(χy) = χy(x) for all

y ∈ Zn. By linearity we have, for all y ∈ Zn,

ĥ(y) = δ̂1(y) + δ̂−1(y) = χ1(y) + χ−1(y)

= exp(−2πyi

n
) + exp(

2πyi

n
)

= 2 cos(
2πy

n
).

We remark that ĥ(y) = ĥ(y′), y, y′ ∈ Zn, if and only if y = ±y′. From

Corollary 2.4.11 and the above remark, we deduce that the eigenvalues of A

are exactly the numbers

2 cos(
2πy

n
), y = 0, 1, . . . ,

[n
2

]
. (8.9)

We now determine their multiplicities, arguing separately on the parity of n.

If n is even, then the eigenvalues (8.9) corresponding to y = 0 and y =[
n
2

]
= n

2 (these are 2 and −2, respectively) have multiplicity one, and all

other have multiplicity two. Note that, according to Proposition 8.3.4, the

spectrum of A is symmetric with respect to 0 as, in this case, Cn is bipartite.
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If n is odd, then the eigenvalue (8.9) corresponding to y = 0 (namely, 2)

has multiplicity one, and all other have multiplicity two. Moreover, in this

case, Cn is not bipartite.

Exercise 8.6.3 (The 2-regular segment) For n ≥ 2 let Gn = (Xn, En, rn)

denote the simple graph (with loops!) where: Xn = {0, 1, 2, . . . , n − 1},
En = tn−2

i=0 {i, i+ 1} t {0} t {n− 1}, and rn : En → P(Xn) is the restriction

to En of the identity map on P(Xn). This is called the 2-regular segment on

n ≥ 1 vertices.

• • • •

0 1 2

•

n− 2 n− 1
��
��

��
��

Fig. 8.8. The 2-regular segment Gn.

Show that the eigenvalues of Gn are

2 cos
kπ

n
, k = 0, 1, . . . , n− 1. (8.10)

Hint: see [29, Exercise A1.0.15] as well as the books by Feller [60] and Karlin

and Taylor [84].

8.7 Tensor products

In this section we introduce some notation and preliminary results that we

shall use both in the present chapter as well as in other parts of the book. For

a similar approach see also the beginning of [124, Chapter 5]. This section

is in the same spirit of Section 2.1 and contains some complements to that

section. It is also connected with Section 5.3, where the Kroncecker products

of matrices are introduced, and it will be generalized in Section 10.5, where

we study tensor products of representations.

Let X and Y be two �nite sets. The tensor product of two functions

f ∈ L(X) and g ∈ L(Y ) is the function f ⊗ g ∈ L(X ×Y ) de�ned by setting

(f ⊗ g)(x, y) = f(x)g(y) (8.11)

for all (x, y) ∈ X × Y . This way, we have the natural identi�cation δ(x,y) =

δx ⊗ δy, so that the standard basis of L(X × Y ) may be written in the form

{δx ⊗ δy : x ∈ X, y ∈ Y }.
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It is also easy to check that, for f, f ′ ∈ L(X) and g, g′ ∈ L(Y ), we have:

〈f ⊗ g, f ′ ⊗ g′〉L(X×Y ) = 〈f, f ′〉L(X) · 〈g, g′〉L(Y ). (8.12)

If V is a subspace of L(X) and W a subspace of L(Y ) then their tensor

product V ⊗W is the subspace of L(X ×Y ) generated by all products f ⊗ g
with f ∈ V and g ∈W .

Now suppose that A ∈ End(L(X)) and B ∈ End(L(Y )) are linear opera-

tors. We de�ne their tensor product A⊗B ∈ End(L(X × Y )) by setting

(A⊗B)(f ⊗ g) = Af ⊗Bg (8.13)

for all f ∈ L(X) and g ∈ L(Y ) (and then extending by linearity). It is easy to

check that this de�nition is well posed. Indeed, we now derive the matrix rep-

resenting A⊗B. Suppose that (a(x, x′))x,x′∈X (respectively, (b(y, y′))y,y′∈Y )

is the matrix representing A (respectively, B) with respect to the standard

basis of L(X) (respectively, of L(Y )), see (2.2). Then, for all x, x′ ∈ X and

y, y′ ∈ Y ,{
[A⊗B] (δx′ ⊗ δy′)

}
(x, y) =

{
(Aδx′)⊗ (Bδy′)

}
(x, y) (by (8.13))

= (Aδx′)(x) · (Bδy′)(y) (by (8.11))

= a(x, x′)b(y, y′) (by (2.1)).

This shows that the matrix representing A⊗B with respect to the standard

basis of L(X × Y ) is (
a(x, x′)b(y, y′)

)
(x,y),(x′,y′)∈X×Y.

It is easy to see that this is a coordinate-free description of the Kronecker

product introduced in Section 5.3: just take X = {1, 2, . . . , n} and Y =

{1, 2, . . . ,m}. We leave it to the reader to check the details.

The Kronecker sum of A and B is the operator A ⊗ IY + IX ⊗ B ∈
End(L(X × Y )); see the monograph by Lancaster and Tismenetsky [91].

Clearly, this sum is represented by the matrix(
a(x, x′)δy(y

′) + δx(x′)b(y, y′)
)

(x,y),(x′,y′)∈X×Y.

Now suppose that both A and B are symmetric, that is, a(x, x′) = a(x′, x)

and b(y, y′) = b(y′, y) for all x, x′ ∈ X and y, y′ ∈ Y . Then also A ⊗ B

and A ⊗ IY + IX ⊗ B are symmetric. Recall that symmetric matrices are

diagonalizable and have real eigenvalues. Let us denote by

• λ0, λ1, . . . , λ|X|−1 (respectively, µ0, µ1, . . . , µ|Y |−1) the eigenvalues of A (re-

spectively, of B);
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• {f0, f1, . . . , f|X|−1} (respectively, {g0, g1, . . . , g|Y |−1}) an orthonormal ba-

sis of (real-valued) eigenvectors for A (respectively, for B)

so that

Afi = λifi and Bgj = µjgj (8.14)

for all i = 0, 1, . . . , |X|−1 and j = 0, 1, . . . , |Y |−1. The proof of the following

proposition is immediate.

Proposition 8.7.1 The set {fi⊗gj : i = 0, 1, . . . , |X|−1, j = 0, 1, . . . , |Y |−
1} is an orthonormal basis of (real-valued) eigenvectors for both A⊗ B and

A⊗IY +IX⊗B. Moreover, for all i = 0, 1, . . . , |X|−1 and j = 0, 1, . . . , |Y |−1,

[A⊗B](fi ⊗ gj) = λiµj(fi ⊗ gj)

and

[A⊗ IY + IX ⊗B](fi ⊗ gj) = (λi + µj)(fi ⊗ gj);

in particular, the eigenvalues of A⊗B are the λiµjs while those of A⊗ IY +

IX ⊗B are the (λi + µj)s.

More generally, if F is a two variable complex polynomial, then the eigen-

values of F (A,B) (here the powers of matrices are the usual powers, while

the other products (respectively, sums) involved are tensor products (re-

spectively, Kronecker sums)) are F (λi, µj), i = 0, 1, . . . , |X| − 1 and j =

0, 1, . . . , |Y | − 1 (this is Stephanov's theorem [153]: see the monograph by

Lancaster and Tismenetsky [91, Theorem 1, Section 12.2]).

Recall (cf. Proposition 2.1.1) that W0 is the space of constant functions

on X and W1 = {f ∈ L(X) :
∑

x∈X f(x) = 0}. We also denote by JY
the matrix (j(y, y′))y,y′∈Y with j(y, y′) = 1 for all y, y′ ∈ Y . This way, for

f ∈ L(Y ) we have

JY f =

∑
y∈Y

f(y)

1Y . (8.15)

Proposition 8.7.2 Let A : L(X) → L(X) and B : L(Y ) → L(Y ) be two

linear operators and suppose that the decomposition L(Y ) = W0(Y )⊕W1(Y )

is B-invariant. Then the decomposition

L(X × Y ) = [L(X)⊗W0(Y )]⊕ [L(X)⊗W1(Y )]

is invariant for A⊗ JY + IX ⊗B. Moreover,

W1(X × Y ) = [W1(X)⊗W0(Y )]⊕ [L(X)⊗W1(Y )]. (8.16)
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Proof Just note that W0(Y ) and W1(Y ) are JY -invariant (JY − IY is the

adjacency matrix of the complete graph with vertex set Y ; see Section 8.4).

Also, (8.16) follows immediately after observing thatW0(X×Y ) = W0(X)⊗
W0(Y ).

Following [128] we introduce a notation for the decomposition (8.16) (see

also the generalizations in [28] and [44]).

For f ∈W1(X × Y ) we de�ne f‖ ∈ L(X × Y ) by setting

f‖(x, y) =
1

|Y |
∑
z∈Y

f(x, z)

for all (x, y) ∈ X × Y . Clearly, f‖ does not depend on y ∈ Y , and f‖ ∈
W1(X)⊗W0(Y ). Moreover, setting

f⊥ = f − f‖,

so that

f = f‖ + f⊥,

we have f⊥ ∈ L(X)⊗W1(Y ).

Another useful notation is the following. For f ∈ L(X × Y ) and x ∈ X
we de�ne fx ∈ L(Y ) by setting

fx(y) = f(x, y)

for all y ∈ Y . Then
f =

∑
x∈X

δx ⊗ fx. (8.17)

Moreover, setting

f‖x =
1

|Y |
JY fx and f⊥x = fx − f‖x (8.18)

we have

f‖ =
∑
x∈X

δx ⊗ f‖x (8.19)

and

f⊥ =
∑
x∈X

δx ⊗ f⊥x . (8.20)

Finally, following again [128], we de�ne C : L(X × Y )→ L(X) by setting

[Cf ](x) =
∑
y∈Y

f(x, y) (8.21)
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for all f ∈ L(X × Y ) and x ∈ X. Note the similarity between f‖ and Cf :

however, the former is a function of two variables (constant with respect

to the second variable), while the latter is a function of a single variable.

Moreover, f‖ is normalized. Their relationship is expressed in (iv) of the

following lemma.

Lemma 8.7.3

(i) C(δx ⊗ δy) = δx for all (x, y) ∈ X × Y ;
(ii) C|W1(X×Y ) is a linear operator from W1(X × Y ) onto W1(X);

(iii) (Cf)⊗ 1Y = (IX ⊗ JY )f for all f ∈ L(X × Y );

(iv) Cf‖ = Cf for all f ∈ L(X × Y ).

Proof (i) For x, z ∈ X and y ∈ Y we have

[C(δx ⊗ δy)](z) =
∑
t∈Y

(δx ⊗ δy)(z, t) = δx(z).

(ii) This is clear.

(iii) Using (8.17) we have, for all f ∈ L(X × Y ),

(IX ⊗ JY )f = (IX ⊗ JY )
∑
x∈X

(δx ⊗ fx)

(by (8.15)) =
∑
x∈X

δx ⊗

∑
y∈Y

f(x, y)

1Y


=
∑
x∈X

([Cf ](x)δx)⊗ 1Y

= (Cf)⊗ 1Y .

(iv) It is a simple computation: for f ∈ L(X × Y ) and x ∈ X we have

[Cf‖](x) =
∑
y∈Y

f‖(x, y) =
∑
y∈Y

1

|Y |
∑
z∈Y

f(x, z) =
∑
z∈Y

f(x, z) = [Cf ](x).

Lemma 8.7.4 Let f ∈W1(X × Y ). Then

f‖ =
1

|Y |
(IX ⊗ JY )f =

1

|Y |
(Cf)⊗ 1Y .
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Proof Using again (8.17) we have

(IX ⊗ JY )f = (IX ⊗ JY )
∑
x∈X

δx ⊗ fx

=
∑
x∈X

δx ⊗ (JY fx)

(by (8.18)) = |Y |
∑
x∈X

δx ⊗ f‖x

(by (8.19)) = |Y |f‖.

The second equality follows from Lemma 8.7.3.(iii).

We use the notation Y X to denote the space of all maps f : X → Y and

refer to it as to an exponential set. Clearly,

Y X = Y × Y × · · · × Y︸ ︷︷ ︸
|X| times

.

We introduce a coordinate-free description of the tensor product

L
(
Y X
)

= L(Y )⊗ L(Y )⊗ · · · ⊗ L(Y )︸ ︷︷ ︸
|X| times

.

Given φx ∈ L(Y ), x ∈ X, we de�ne the tensor product of the family (φx)x∈X
as in (8.11) by setting:(⊗

x∈X
φx

)
(f) =

∏
x∈X

φx(f(x)),

for all f ∈ Y X . Analogously, given Ax ∈ End(L(Y )), x ∈ X, the tensor

product of the corresponding family of operators is de�ned as in (8.13) by

setting: (⊗
x∈X

Ax

)(⊗
x∈X

φx

)
=
⊗
x∈X

Axφx, (8.22)

for all tensors
(⊗

x∈X φx
)
(and then extended by linearity). Finally, note

that for every f ∈ Y X we have

δf =
⊗
x∈X

δf(x). (8.23)



266 Graphs and their products

8.8 Cartesian, tensor, and lexicographic products of graphs

In this section we give a detailed de�nition of three basic notions of graph

products. See Remark 8.8.2 for a shorter description.

Recall that we use the symbol ∼ to denote the adjacency relation of ver-

tices in a given graph.

De�nition 8.8.1 Let G = (X,E, r) and F = (Y, F, s) be two �nite graphs.

(i) The Cartesian product of G and F is the graph G�F = (X×Y,E�F, r�s)
where the edge set is

E�F =(E × Y ) t (X × F )

and r�s : E�F → P(X × Y ) is de�ned by setting

[r�s](e, y) = r(e)× {y} and [r�s](x, f) = {x} × s(f)

for all e ∈ E, y ∈ Y , x ∈ X, and f ∈ F .
Note that if G and F are both directed, then G�F is also directed after

de�ning the orientation ~r�~s : E�F → X × Y by setting

[~r�~s](e, y) = ((e−, y), (e+, y)) and [~r�~s](x, f) = ((x, f−), (x, f+))

for all e ∈ E, y ∈ Y , x ∈ X, and f ∈ F .
Finally note that if G and F are both simple (respectively, without loops),

then G�F is also simple, with edge set

E�F =
{{

(x, y), (x′, y′)
}
⊆ X × Y :

[
x ∼ x′and y = y′

]
or
[
x = x′and y ∼ y′

]}
(respectively, without loops).
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Fig. 8.9. An example of Cartesian product of graphs

(ii) Equip G and F with arbitrary orientations ~r and ~s, respectively: di�erent

orientations will produce isomorphic graph products (exercise). Also, we
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denote, as usual, by E0 ⊆ E (respectively, F0 ⊆ F ) the set of all loops of

G (respectively, F) and E1 = E \ E0 (respectively, F1 = F \ F0). Let also

(E1×F1)e and (E1×F1)o be two disjoint copies of the Cartesian product of

the edge subsets E1 and F1 (�e� stands for even and �o� for odd).

The tensor product of G and F is the (undirected) graph G ⊗ F = (X ×
Y,E ⊗ F,~r ⊗ ~s) where

E ⊗ F = ((E × F ) \ (E1 × F1)) t (E1 × F1)e t (E1 × F1)o

≡ (E0 × F0) t (E0 × F1) t (E1 × F0) t (E1 × F1)e t (E1 × F1)o

and

[~r ⊗ ~s](e, f) =


r(e)× s(f) if (e, f) ∈ (E × F ) \ (E1 × F1)

{(e−, f−), (e+, f+)} if (e, f) ∈ (E1 × F1)e

{(e−, f+), (e+, f−)} if (e, f) ∈ (E1 × F1)o

for all (e, f) ∈ E⊗F . Note that if G and F have no loops one has |E⊗F | =
2|E| · |F |
The tensor product G⊗F admits the natural orientation ~t : E⊗F → X×Y

de�ned by setting

~t(e, f) =



((x, y), (x, y)) if (e, f) ∈ E0 × F0

((e−, y), (e+, y)) if (e, f) ∈ E1 × F0

((x, f−), (x, f+)) if (e, f) ∈ E0 × F1

((e−, f−), (e+, f+)) if (e, f) ∈ (E1 × F1)e

((e−, f+), (e+, f−)) if (e, f) ∈ (E1 × F1)o

for all (e, f) ∈ E ⊗ F .
Moreover, if G and F are both simple (respectively, without loops), then

G ⊗ F is also simple, with edge set

E ⊗ F =
{{

(x, y), (x′, y′)
}
⊆ X × Y : x ∼ x′ and y ∼ y′

}
(respectively, without loops).

(iii) Equip G with an arbitrary orientation ~r: di�erent orientations will pro-

duce isomorphic graph products (exercise). The lexicographic product (or

composition) of G and F is the (undirected) graph G◦F = (X×Y,E◦F,~r◦s)
where

E ◦ F = (E × Y × Y ) t (X × F )

and

[~r ◦ s](e, y, y′) = {(e−, y), (e+, y
′)} and [~r ◦ s](x, f) = {x} × s(f)
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Fig. 8.10. An example of tensor product of graphs

for all e ∈ E, y, y′ ∈ Y , x ∈ X, and f ∈ F .
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Fig. 8.11. An example of lexicographic product of graphs

Note that if also the second graph F is directed, say with an orientation

~s, then G ◦ F admits the orientation ~t : E ◦ F → X × Y de�ned by setting

~t(e, y, y′) =
(
(e−, y), (e+, y

′)
)

and ~t(x, f) = ((x, f−), (x, f+))

for all e ∈ E, y, y′ ∈ Y , x ∈ X, and f ∈ F .
Also, we may regard the Cartesian product G�F as a subgraph of G ◦ F

(via the injection E × Y 3 (e, y) 7→ (e, y, y) ∈ E × Y × Y ).
Finally note that if G and F are both simple (respectively, without loops),

then G ◦ F is also simple, with edge set

E ◦ F =
{{

(x, y), (x′, y′)
}
⊆ X × Y :

[
x ∼ x′

]
or
[
x = x′and y ∼ y′

]}
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(respectively, without loops).

Remark 8.8.2 Summarizing, in all these products the vertex set is X × Y .
In the Cartesian product, two vertices (x, y) and (x′, y′) are adjacent if and

only if one of the following two conditions is satis�ed: x ∼ x′ and y = y′,

or x = x′ and y ∼ y′. In the tensor product they are adjacent if and only if

x ∼ x′ and y ∼ y′. Finally, in the lexicographic product they are adjacent

if and only if one of the following two conditions is satis�ed: x ∼ x′ (edge

of the �rst type), or x = x′ and y ∼ y′ (edge of the second type). The more

involved de�nitions given above are necessary in order to keep into account

possible multiple edges and loops, as well as orientability.

Now denote by A (respectively, B) the adjacency matrix of G (respec-

tively, F) and suppose that λ0 ≥ λ1 ≥ · · · ≥ λ|X|−1 (respectively, µ0 ≥
µ1 ≥ · · · ≥ µ|Y |−1) are the eigenvalues of A (respectively, of B). Let

{f0, f1, . . . , f|X|−1} ⊂ L(X) (respectively, {g0, g1, . . . , g|Y |−1} ⊂ L(Y )) be

an orthonormal basis of eigenvectors, as in (8.14). Recall that JY denotes

the matrix (j(y, y′))y,y′∈Y with j(y, y′) = 1 for all y, y′ ∈ Y .

Proposition 8.8.3

(i) The adjacency matrix of G�F is A⊗IY +IX⊗B, and its eigenvalues

are λi + µj, i = 0, 1, . . . , |X| − 1, j = 0, 1, . . . , |Y | − 1.

(ii) The adjacency matrix of G⊗F is A⊗B, and its eigenvalues are λiµj,
i = 0, 1, . . . , |X| − 1, j = 0, 1, . . . , |Y | − 1.

(iii) The adjacency matrix of G ◦ F is A⊗ JY + IX ⊗ B. Moreover, if F
is k-regular, then its eigenvalues are:

• λi|Y |+ k, i = 0, 1, . . . , |X| − 1;

• µj, j = 1, . . . , |Y | − 1, each of them with multiplicity |X|.

Proof (i) By de�nition, we have

AG�F
(
(x, y), (x′, y′)

)
= A(x, x′)δy,y′ + δx,x′B(y, y′)

for all x, x′ ∈ X and y, y′ ∈ Y , proving the statement relative to the adja-

cency matrix. For the eigenvalues we apply Proposition 8.7.1.

(ii) We now have

AG⊗F
(
(x, y), (x′, y′)

)
= A(x, x′)B(y, y′)

for all x, x′ ∈ X and y, y′ ∈ Y , and Proposition 8.7.1 applies again.
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(iii) In this �nal case we have

AG◦F
(
(x, y), (x′, y′)

)
= A(x, x′) + δx,x′B(y, y′)

= A(x, x′)JY (y, y′) + δx,x′B(y, y′)

for all x, x′ ∈ X and y, y′ ∈ Y , proving the statement relative to the adja-

cency matrix. Suppose now that F is k-regular so that µ0 = k, g0 ∈W0(Y )

and gj ∈ W1(Y ) for all j = 1, 2, . . . , |Y | − 1. Then JY g0 = |Y |g0 while

JY gj = 0 for j = 1, 2, . . . , |Y | − 1. Therefore

[A⊗ JY + IX ⊗B] (fi ⊗ g0) = (λi|Y |+ k)(fi ⊗ g0),

for i = 0, 1, 2 . . . , |X| − 1, while

[A⊗ JY + IX ⊗B] (fi ⊗ gj) = µj(fi ⊗ gj),

for i = 0, 1, 2 . . . , |X| − 1 and j = 1, 2, . . . , |Y | − 1.

Remark 8.8.4 In [44], in the framework of the theory of Markov chains, the

matrices A⊗IY +IX⊗B and A⊗JY +IX⊗B are called the crossed and nested

products, respectively, and are combined to get a further generalization,

called the crested product of the given Markov chains.

Corollary 8.8.5 Suppose that G is h-regular and F is k-regular. Then

(i) G�F is (h+ k)-regular, G ⊗F is hk-regular, and G ◦F is (|Y |h+ k)-

regular.

(ii) G�F is connected if and only G and F are both connected; G ⊗ F is

connected if and only if both factors are connected and at least one of

them is nonbipartite; G ◦F is connected if and only if G is connected.

(iii) Assuming that it is connected, the graph G�F is bipartite if and only

if both G and F are bipartite. Similarly, assuming that it is connected,

the graph G ⊗ F is bipartite if and only if at least one of the factors

is bipartite. Finally, assuming that it is connected, the graph G ◦F is

not bipartite.

Proof We have λ0 = h (respectively, µ0 = k), Af0 = hf0 and f0 is a nonzero

constant function (respectively, Bg0 = kg0 and g0 is a nonzero constant

function).

(i) The function f0 ⊗ g0 ∈ L(X × Y ) is constant and it is a nontrivial

eigenvector of

• A⊗ IY + IX ⊗B, with eigenvalue h+ k,

• A⊗B, with eigenvalue hk,
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• A⊗ JY + IX ⊗B, with eigenvalue |Y |h+ k.

In order to show regularity and determine the corresponding degree, we use

the last statement in Proposition 8.1.4.

(ii) By virtue of Proposition 8.1.5, the graph G�F is connected if and only

if λ0 + µ0 > λi + µj for all (i, j) 6= (0, 0), that is if and only if λ0 > λ1 and

µ0 > µ1, and this is equivalent to saying that G and F are both connected.

Similarly, G ⊗ F is connected if and only if

λ0µ0 > λiµj for all (i, j) 6= (0, 0). (8.24)

If both factors are connected and at least one of them, say G, is non-bipartite,
by Proposition 8.3.4 we have h = λ0 > λ1 ≥ · · ·λ|X|−1 > −h and k = µ0 >

µ1 ≥ · · ·µ|Y |−1 ≥ −k; an elementary case�by�case analysis shows that (8.24)

is satis�ed. Conversely, if one of the graphs, say G, is not connected then

λ1 = λ0 = h so that λ1µ0 = λ0µ0 and (8.24) is not veri�ed; if both graphs

are connected and bipartite then λ|X|−1 = −h and µ|Y |−1 = −k, so that

λ|X|−1µ|Y |−1 = (−h)(−k) = hk = λ0µ0 and, again, (8.24) is not veri�ed.

Finally, observe that the eigenvalues of G ◦ F are

h|Y |+k = λ0|Y |+µ0 ≥ λ1|Y |+µ0 ≥ · · · ≥ λ|X|−1|Y |+µ0 ≥ µ1 ≥ µ2 ≥ µ|Y |−1

and G◦F is connected if and only if the multiplicity of the eigenvalue h|Y |+k
is one, and this happens if and only if the multiplicity of h = λ0 is one, that

is, if and only if G is connected.

(iii) We again apply Proposition 8.3.4. The number −(h+k) is an eigenvalue

of the adjacency matrix of G�F if and only if λ|X|−1 = −h and µ|Y |−1 = −k.
Similarly, −hk is an eigenvalue of the adjacency matrix of G ⊗F if and only

if λ|X|−1 = −h or µ|Y |−1 = −k. Finally, since

µ|Y |−1 ≥ −µ0 = −k > − (h|Y |+ k) ,

the number − (h|Y |+ k) cannot be an eigenvalue of the adjacency matrix of

G ◦ F .

Exercise 8.8.6 Give a direct combinatorial (i.e. not spectral) proof of Corol-

lary 8.8.5.

Exercise 8.8.7 (The Hamming graph) Let n,m be two positive inte-

gers. The Hamming graph Hn,m+1 = (Xn,m+1, En,m+1), is the (�nite simple

without loops) graph with vertex set

Xn,m+1 = {0, 1, . . . ,m}n = {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ {0, 1, . . . ,m}}

and two vertices (x1, x2, . . . , xn) and (y1, y2, . . . , yn) ∈ Xn,m+1 are adjacent
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if there exists 1 ≤ j ≤ n such that xj 6= yj and xi = yi for all i 6= j. The

Hamming distance between two vertices (x1, x2, . . . , xn) and (y1, y2, . . . , yn)

is given by

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = |{j : xj 6= yj}|.

Note that Hn,2 (i.e. m = 1) coincides with the n-dimensional hypercube Qn
(cf. Section 8.5).

(1) Show that Hn,m+1 is an nm-regular graph. Moreover show that the

Hamming distance coincides with the geodesic distance on the graph.

(2) Show that Hn,m+1 is the Cartesian product of n copies of the com-

plete graph Km+1 (with vertices {0, 1, . . . ,m}), that is, its adjacency
matrix is

n∑
j=1

Im+1 ⊗ · · · ⊗ Im+1 ⊗A⊗ Im+1 ⊗ · · · ⊗ Im+1,

where Im+1 is the (m + 1) × (m + 1) identity matrix and A (in the

j-th position) is the adjacency matrix of Km+1.

(3) For i = (i1, i2, . . . , in) ∈ {0, 1}n set w(i) = |{k : ik = 1}| (the weight
of i). Recalling the spectral decomposition (see Proposition 8.1.4 and

Section 8.4)

L(Km+1) = W0 ⊕W1

for 0 ≤ ` ≤ n, we set

V` =
⊕
w(i)=`

Wi1 ⊗Wi2 ⊗ · · · ⊗Win .

In other words, V` is the subspace spanned by all tensor products

f1 ⊗ f2 ⊗ · · · ⊗ fn where ` (respectively, the remaining n − `) of the
fjs belong to W1 (respectively, W0). Show that

L(Xn,m+1) = ⊕n`=0V`

is the spectral decomposition relative to the adjacency matrix of

Hn,m+1, that the eigenvalue corresponding to V` is nm − `(m + 1),

and that dimV` = m`
(
n
`

)
.

8.9 Wreath product of �nite graphs

This section is based on [45]: in particular, for simplicity, we only consider

(�nite) simple graphs without loops.

Let X be a �nite set and F = (Y, F ) a �nite simple graph without loops.
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We endow the exponential set Y X with a graph structure, denoted FX , by
declaring that two vertices f, f ′ ∈ Y X are adjacent (and, as usual, we write

f ∼ f ′) if there exists x ∈ X such that f(z) = f ′(z) for all z ∈ X \ {x} and
f(x) ∼ f ′(x) in F . Note that FX is simple and without loops; moreover,

if |X| = 2 it coincides with the Cartesian square F�F . Denote by B the

adjacency operator of F (that is, Bδy =
∑

y′∼y δy′ = 1N (y) for all y ∈ Y )
and by B the adjacency operator of FX (that is, Bδf =

∑
f ′∼f δf ′ = 1N (f)

for all f ∈ Y X). Also, for all x, x′ ∈ X we de�ne the linear operator

Bx,x′ : L(Y )→ L(Y ) by setting

Bx,x′ =

{
B if x = x′

IY if x 6= x′.

We now generalize Proposition 8.8.3.(i).

Proposition 8.9.1 The adjacency operator B of FX has the expression

B =
∑
x∈X

⊗
x′∈X

Bx,x′ .

Proof Let f ∈ Y X and let us show that

Bδf =

(∑
x∈X

⊗
x′∈X

Bx,x′

)
δf . (8.25)

For x, x′ ∈ X de�ne 1x,x′ ∈ L(Y ) by setting

1x,x′ =

{
1N (f(x)) if x = x′

δf(x′) if x 6= x′.
(8.26)

Note that setting

Nx(f) =
{
f ′ ∈ Y X : [f ′(x′) = f(x′) for x 6= x′] and [f ′(x) ∼ f(x)]

}
(8.27)

for all x ∈ X, in the graph FX we have the partition

N (f) =
∐
x∈X
Nx(f) (8.28)

and the map α : N (f(x))→ Nx(f) de�ned by

α(y)(x′) =

{
y if x′ = x

f(x′) if x′ 6= x
(8.29)
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for all y ∈ N (f(x)) and x′ ∈ X, is a bijection. Then, on the one hand, we

have

Bδf = 1N (f)

(by (8.28)) =
∑
x∈X

1Nx(f)

=
∑
x∈X

∑
f ′∈Nx(f)

δf ′

(by (8.23)) =
∑
x∈X

∑
f ′∈Nx(f)

⊗
x′∈X

δf ′(x′)

=
∑
x∈X

∑
f ′∈Nx(f)

 ⊗
x′∈X\{x}

δf ′(x′)

⊗ δf ′(x)


(by (8.27)) =

∑
x∈X

∑
f ′∈Nx(f)

 ⊗
x′∈X\{x}

δf(x′)

⊗ δf ′(x)


=
∑
x∈X

 ⊗
x′∈X\{x}

δf(x′)

⊗
 ∑
f ′∈Nx(f)

δf ′(x)


=
∑
x∈X

 ⊗
x′∈X\{x}

δf(x′)

⊗
 ∑
y∈N (f(x))

δα(y)(x)


(by (8.29)) =

∑
x∈X

 ⊗
x′∈X\{x}

δf(x′)

⊗
 ∑
y∈N (f(x))

δy


=
∑
x∈X

 ⊗
x′∈X\{x}

δf(x′)

⊗ 1N (f(x))


(by (8.26)) =

∑
x∈X

⊗
x′∈X

1x,x′ .

(8.30)

Moreover,

Bx,x′δf(x′) =

{
Bδf(x) if x = x′

IY δf(x′) if x 6= x′
= 1x,x′ , (8.31)
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so that, on the other hand, keeping in mind (8.23), we have(⊗
x′∈X

Bx,x′

)
δf =

[(⊗
x′∈X

Bx,x′

)(⊗
x′∈X

δf(x′)

)]

( by (8.22)) =

[(⊗
x′∈X

Bx,x′δf(x′)

)]
(by (8.31)) =

⊗
x′∈X

1x,x′ .

(8.32)

Summing up (over x ∈ X) in (8.32), and comparing it with (8.30), we �nally

deduce (8.25).

Exercise 8.9.2 Show that the set of all eigenvalues of the adjacency operator

B of FX is given by{∑
x∈X

µξ(x) : ξ ∈ {0, 1, . . . , |Y | − 1}X
}
,

where µ0, µ1, . . . , µ|Y |−1 are the eigenvalues of F . Deduce, as a particular

case, the set of all eigenvalues of the hypercube (cf. Section 8.5) and of the

Hamming graph (cf. Exercise 8.8.7).

Let now G = (X,E) and F = (Y, F ) be two �nite simple graphs without

loops.

De�nition 8.9.3 The wreath product of G and F is the graph G o F =(
Y X ×X, E

)
where the edge set is

E =
{{

(f, x), (f ′, x′)
}
⊆ Y X ×X :

[
x = x′ and f ′ ∈ Nx(f)

]
or
[
x ∼ x′ and f = f ′

]}
,

where Nx(f) ⊆ Y X is as in (8.28). Moreover,
{

(f, x), (f ′, x′)
}
∈ E is called

an edge of the �rst type (respectively, edge of the second type) provided x = x′

and f ′ ∈ Nx(f) (respectively, x ∼ x′ and f = f ′).

Remark 8.9.4 Note that, modulo the map Y X × X 3 (f, x) 7→ (x, f) ∈
X × Y X , the wreath product G o F can be viewed as a subgraph of the

Cartesian product G�FX , and therefore of the lexicographic product G◦FX .
Indeed, the set of all edges of the �rst type in G o F forms a subset of those

edges of the Cartesian product that are given by the less restrictive condition

x = x′ and f ∼ f ′; the set of all edges of the second type in G oF are de�ned



276 Graphs and their products

by the analogous condition in the Cartesian product (but they form a subset

of the edges of the �rst type in the lexicographic product).

Theorem 8.9.5 The adjacency operator of the wreath product G o F has the

expression ∑
x∈X

[(⊗
x′∈X

Bx,x′

)⊗
∆x

]
+ IY X ⊗A, (8.33)

where ∆x ∈ End(L(X)) is de�ned by setting ∆x(δx′) = δx(x′)δx for all

x, x′ ∈ X.

Proof Let us show that the �rst summand in (8.33) takes into account all

edges of the �rst type. Indeed, arguing as in the proof of Proposition 8.9.1,

for z ∈ X and f ∈ Y X , we have:{∑
x∈X

[(⊗
x′∈X

Bx,x′

)⊗
∆x

]}
(δf ⊗ δz) =

∑
x∈X

[(⊗
x′∈X

Bx,x′

)
(δf )

⊗
∆x(δz)

]

=

(⊗
x′∈X

Bz,x′

)
(δf )

⊗
δz

(by (8.32)) =

(⊗
x′∈X

1z,x′

)⊗
δz,

where the last expression is precisely the characteristic function of the set of

all vertices adjacent to (f, z) by an edge of the �rst type.

Finally, the term IY X ⊗A takes into account all edges of the second type;

compare with the expression of the adjacency matrix of the Cartesian prod-

uct in Proposition 8.8.3.(i).

In [45], D'Angeli and Donno introduced and used (8.33) as a de�nition of

wreath product of matrices.

8.10 Lamplighter graphs and their spectral analysis

This section is based on our monograph [34] and the paper [136], but the

version of the lamplighter that we analyze is the one described in [45, 57, 58].

Let G = (X,E) be a �nite simple graph without loops.

De�nition 8.10.1 The lamplighter graph associated with G is the �nite

graph L = (X , E) with vertex set

X = {0, 1}X ×X =
{

(ω, x) : ω ∈ {0, 1}X , x ∈ X
}
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and edge set

E =
{{

(ω, x), (θ, y)
}

:
[
x = y, ω(z) = θ(z) for all z 6= x and ω(x) 6= θ(x)

]
or
[
x ∼ y and ω = θ

]}
.

Clearly, L coincides with the wreath product GoK2, whereK2 is the complete

graph on two vertices (cf. Figure 8.5).

Remark 8.10.2 Another description of the lamplighter graph is the follow-

ing. We associate with each vertex x ∈ X a lamp which may be either on or

o�. A con�guration of the lamps is a map ω : X → {0, 1}: the value ω(x) = 1

(respectively, ω(x) = 0) indicates that the lamp at x is on (respectively, o�).

A vertex of the lamplighter is a pair (ω, x) consisting of a con�guration of the

lamps and a vertex of X. Two vertices (ω, x) and (θ, y) of the lamplighter

graph are adjacent if and only if one of these two conditions are satis�ed:

x ∼ y and ω = θ (a walk edge);

x = y and ω and θ di�er exactly in x (a switch edge).
(8.34)

This is the so-called walk or switch lamplighter: the neighbors of the vertex

(ω, x) may be obtained by either walking to a neighbor of x in G and leaving

all the lamps at their current states, or remaining at x but changing the

state of the lamp at x.

Finally note that two con�gurations ω and θ may be added: (ω+ θ)(x) =

ω(x) + θ(x) mod 2.

In the literature, several variations on this construction have been ana-

lyzed; see [136], and, for in�nite lamplighters and their spectral computa-

tions, [17, 68, 69, 94].

Let A ∈ End(L(X )) denote the adjacency operator associated with the

lamplighter graph L, so that

[AΦ](ω, x) =
∑

(θ,y)∼(ω,x)

Φ(θ, y),

for all Φ ∈ L(X ) and (ω, x) ∈ X . Since L(X ) ≡ L
(
{0, 1}X

)
⊗ L(X),

it is useful to determine the A-image of a tensor product of functions: if

F ∈ L
(
{0, 1}X

)
and f ∈ L(X) we have

[A(F ⊗ f)](ω, x) = F (ω + δx)f(x) + F (ω)
∑
y∼x

f(y) (8.35)

for all (ω, x) ∈ {0, 1}X ×X. Indeed, the �rst term corresponds to a switch
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at x (δx is regarded as the con�guration with only the lamp at x on) and

the second to a walk from x.

With each θ ∈ {0, 1}X we associate the linear operator Aθ : L(X)→ L(X)

de�ned by setting

[Aθf ](x) = (−1)θ(x)f(x) +
∑
y∼x

f(y) (8.36)

for all f ∈ L(X) and x ∈ X, and the character χθ ∈ Ẑ2
X ≡ ̂{0, 1}X ⊆

L({0, 1}X) de�ned by setting

χθ(ω) = (−1)
∑
x∈X θ(x)ω(x)

for all ω ∈ {0, 1}X (cf. Section 8.5).

Theorem 8.10.3 For all θ ∈ {0, 1}X and f ∈ L(X) we have:

A(χθ ⊗ f) = χθ ⊗Aθf. (8.37)

Suppose also that λθ,1, λθ,2, . . . , λθ,h(θ) are the distinct eigenvalues of Aθ
and Vθ,j is the eigenspace of Aθ corresponding to the eigenvalue λθ,j, j =

1, . . . , h(θ). Then {
λθ,j : θ ∈ {0, 1}X , j = 1, 2, . . . , h(θ)

}
are the eigenvalues of A (not necessarily distinct) and Wθ,j = {χθ ⊗ f : f ∈
Vθ,j} is the eigenspace of A corresponding to λθ,j.

Proof Applying (8.35) we get

[A(χθ ⊗ f)] (ω, x) = χθ(ω + δx)f(x) + χθ(ω)
∑
y∼x

f(y)

= χθ(ω)

[
(−1)θ(x)f(x) +

∑
y∼x

f(y)

]
= [χθ ⊗Aθf ] (ω, x).

(8.38)

The other statements follow easily from (8.37).

8.11 The lamplighter on the complete graph

This section is based on [45]. See also [34] and [136] for another version of

the following construction.

Given a �nite set X, we denote, as usual, by W0(X) the space of constant
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functions on X and W1(X) = {f ∈ L(X) :
∑

x∈X f(x) = 0}. Then (cf.

Proposition 2.1.1), we have the decomposition

L(X) = W0(X)⊕W1(X). (8.39)

Let now Kn = (X,E) be the complete graph on n vertices so that X =

{1, 2, . . . , n} and E = {{x, y} : x, y ∈ X,x 6= y}). The eigenspaces of the ad-
jacency operator on the complete graph on n vertices areW0(X) andW1(X),

with corresponding eigenvalues n − 1 and −1, respectively; see Section 8.4.

Let L = (X , E) be the associated lamplighter graph. Let θ ∈ {0, 1}X and set

Xθ = {x ∈ X : θ(x) = 0}.

For f ∈ L(X) and x ∈ X, equation (8.36) becomes:

[Aθf ] (x) =


f(x) +

∑
y∈Xθ:
y 6=x

f(y) +
∑

y∈X\Xθ
f(y) if x ∈ Xθ

−f(x) +
∑
y∈Xθ

f(y) +
∑

y∈X\Xθ:
y 6=x

f(y) if x ∈ X \Xθ.
(8.40)

Let f ∈ L(X). If

f |Xθ ∈W1(Xθ) and f |X\Xθ ≡ 0 (8.41)

then (8.40) becomes

[Aθf ] (x) =


f(x) +

∑
y∈Xθ:
y 6=x

f(y) if x ∈ Xθ

∑
y∈Xθ

f(y) if x ∈ X \Xθ

=
∑
y∈Xθ

f(y) = 0 (in both cases).

Therefore, the space of all functions satisfying the conditions in (8.41) con-

stitutes an Aθ-eigenspace with eigenvalue 0.

Similarly, if

f |X\Xθ ∈W1(X \Xθ) and f |Xθ ≡ 0 (8.42)
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then

[Aθf ] (x) =


∑

y∈X\Xθ
f(y) if x ∈ Xθ

−f(x) +
∑

y∈X\Xθ:
y 6=x

f(y) if x ∈ X \Xθ

=

{
0 if x ∈ Xθ

−2f(x) if x ∈ X \Xθ

= −2f(x) (in both cases).

Therefore, the space of all functions satisfying the conditions in (8.42) con-

stitutes an Aθ-eigenspace with eigenvalue −2.

Finally, suppose that |Xθ| = k with 0 ≤ k ≤ n, and let f = α1Xθ+β1X\Xθ ,

for some α, β ∈ C. From (8.40) it follows that

[Aθf ] (x) =

{
kα+ (n− k)β if x ∈ Xθ

kα+ (n− k − 2)β if x ∈ X \Xθ.

Note that if k = 0 (respectively, k = n), that is, Xθ = ∅ (respectively,

Xθ = X), then f is constant and is an Aθ-eigenvector with eigenvalue n− 2

(respectively, n). When 1 ≤ k ≤ n − 1, elementary calculations show that

the eigenvalues of the matrix
(
k n−k
k n−k−2

)
are λ

(k)
± =

n−2±
√

(n−2)2+8k

2 and the

corresponding eigenvectors are
(

1, ω
(k)
±

)T
, where ω

(k)
± =

λ
(k)
±

2+λ
(k)
±
.

We then de�ne the one-dimensional Aθ-eigenspaces (subspaces of L(X))

W±θ = {f = α1Xθ + ω
(k)
± α1X\Xθ : α ∈ C},

for 1 ≤ |Xθ| ≤ n− 1, and

W0 = {f = α1X : α ∈ C},

if |Xθ| = 0, n.

We also de�ne the following subspaces of L(X ):

W0;0 = span(1⊗ f : f ∈W0),

Wn;0 = span((−1)⊗ f : f ∈W0),

where 1(ω) = 1 and [−1](ω) = (−1)
∑
x∈X ω(x), for all ω ∈ {0, 1}X , and, for
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1 ≤ k ≤ n− 1,

W±k;0 = span(χθ ⊗ f : |Xθ| = k, f ∈W±θ ),

Wk;1 = span(χθ ⊗ f : |Xθ| = k, f |Xθ ∈W1(Xθ) and f |X\Xθ ≡ 0),

Wk;2 = span(χθ ⊗ f : |Xθ| = k, f |Xθ ≡ 0 and f |X\Xθ ∈W1(X \Xθ)).

Exercise 8.11.1 Show that

(1) W0;0 is the A-eigenspace with eigenvalue n− 2;

(2) Wn;0 is the A-eigenspace with eigenvalue n;

(3) W±k;0 is the A-eigenspace with eigenvalue λ
(k)
± , for k = 1, 2, . . . , n− 1;

(4)
⊕n

k=1Wk;1 is the A-eigenspace with eigenvalue 0;

(5)
⊕n−1

k=0Wk;2 is the A-eigenspace with eigenvalue −2.

8.12 The replacement product

In this section, based on [57], we introduce the replacement product. This

is a natural construction but it is worthwhile to introduce speci�c notation

in order to get a precise description of it. This notation will be also used for

the zig-zag product (cf. Section 8.13).

Let G = (X,E, r) be a �nite d-regular graph possibly with multiple edges

and loops.

Let x and y be two distinct vertices in X. Recall that Ex denotes the set

of edges incident to x. This way, Ex ∩Ey is the set of edges joining x and y

(note that x 6∼ y if and only if Ex ∩ Ey = ∅).
Set [d] = {1, 2, . . . , d}. Then for each x ∈ X we (arbitrarily) choose a

bijective labelling of the edges incident to x using [d] as the set of labels,

that is, a bijection hx : Ex → [d]. We refer to (hx)x∈X as to the (edge)

labelling of G and we say that G is a labelled graph. Given a vertex x ∈ X
and an edge e ∈ E such that r(e) 3 x, the label h = hx(e) is called the

color of the edge e near x and we also say that e is the h-edge near x. Note

that, unless otherwise speci�ed, if x, y ∈ X are distinct and adjacent, and

e ∈ Ex ∩ Ey, then there is no relation between the color hx(e) of e near x

and the color hy(e) of e near y. Moreover, if r(e) = {x}, that is, e is a loop

at x, then e has only the color hx(e) near x.

De�nition 8.12.1 The rotation map

RotG : X × [d] −→ X × [d]
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associated with the labelling (hx)x∈X is the (bijective) map de�ned by setting

RotG(x, i) = (y, j) where e = h−1
x (i), r(e) = {x, y}, and j = hy(e), (8.43)

for all x ∈ X and i ∈ [d].

In other words, if e = h−1
x (i) ∈ E is a loop at x, then RotG(x, i) = (x, i),

while if r(e) = {x, y}, with y 6= x, then RotG(x, i) = (y, j), where j is the

color of e near y. Note that

E = (X × [d])/ ≈ (8.44)

where ≈ is the equivalence relation de�ned by setting (x, i) ≈ (x, i) and

(x, i) ≈ (y, j) if (y, j) = RotG(x, i)

for all x, y ∈ X and i, j ∈ [d].

With the rotation map RotG we associate the permutation matrix RG
indexed by X × [d] de�ned by setting, for all (x, i), (y, j) ∈ X × [d],

RG
(
(x, i), (y, j)

)
=

{
1 if RotG(x, i) = (y, j)

0 otherwise.
(8.45)

In the following proposition, we show the connection between the permuta-

tion matrix RG and the adjacency matrix A = AG of G. We use the operator

C in (8.21) and we think of RG (respectively, A) as a linear endomorphism

of L(X × [d]) (respectively, L(X)).

Proposition 8.12.2 For all f ∈ L(X) one has

CRG(f ⊗ 1[d]) = Af.

Proof Clearly, for (x, i) ∈ X × [d] we have

RG(δy ⊗ δj) = δx ⊗ δi

where (y, j) = RotG(x, i). Then

RG(δx ⊗ 1[d]) =
∑
i∈[d]

RG(δx ⊗ δi) =
∑
i∈[d]

∑
(y,j)∈X×[d]:

RotG(y,j)=(x,i)

(δy ⊗ δj)
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so that

CRG(δx ⊗ 1[d]) =
∑
i∈[d]

∑
(y,j)∈X×[d]:

RotG(y,j)=(x,i)

C(δy ⊗ δj)

(by Lemma 8.7.3.(ii)) =
∑
i∈[d]

∑
(y,j)∈X×[d]:

RotG(y,j)=(x,i)

δy

=
∑
y∈X:

x∼y in G

δy

= Aδx.

The general result follows by linearity.

Exercise 8.12.3 Show that, if X is a �nite nonempty set, then a map

Rot : X × [d] −→ X × [d] is the rotation map of a labelled d-regular graph

with vertex set X if and only if Rot ◦ Rot is the identity map. Moreover,

loops correspond to �xed-points of Rot.

Hint: Suppose Rot◦Rot is the identity map. For x ∈ X set Ex = {Rot(x, i) :

i ∈ [d]} and de�ne E =
(
∪x∈XEx

)
/ ≈, where ≈ is as in (8.44). Moreover,

r : E → P(X) is de�ned by setting r[Rot(x, i)] = {x, y}, where Rot(x, i) =

(y, j), for all x ∈ X and i ∈ [d].

De�nition 8.12.4 Let G = (X,E, rG) be a d-regular graph and F =

(Y, F, rF ) a k-regular graph with Y = [d]. Assume that in both graphs

we have de�ned a labelling and a rotation map as in De�nition 8.12.1. Then

their replacement product is the (k + 1)-regular graph G r©F with vertex set

X × [d] and the rotation map de�ned by setting, for x ∈ X, i ∈ [d], and

j ∈ [k + 1],

RotG r©F ((x, i), j) =

{
((x,m), h) if j ∈ [k] and RotF (i, j) = (m,h)

(RotG(x, i), j) if j = k + 1.

Exercise 8.12.5 Show that RotG r©F ◦RotG r©F is the identity map so that,

by Exercise 8.12.3, the de�nition of replacement product is well posed.

Remark 8.12.6 Actually, to de�ne the replacement product it is not neces-

sary to label F . The de�nition may be modi�ed by saying that (x, i), (z,m) ∈
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X × [d] are adjacent in G r©F if

x ∼ z and RotG(x, i) = (z,m) (edges of the �rst type)

or

x = z and i ∼ m in F (edges of the second type).

(8.46)

Clearly, each vertex is incident to exactly one edge of the �rst type and

to k edges of the second type. Note also that the replacement product is

a subgraph of the lexicographic product (cf. De�nition 8.8.1). Indeed, the

edges of the �rst type (respectively, second type) in (8.46) are a subset of

the edges of the �rst type (respectively, precisely the set of all edges of the

second type) in the lexicographic product.

Remark 8.12.7 A d-regular graph G = (X,E, r) is d-edge-colorable if there

exists a map φ : E → [d] such that the restriction of φ to Ex is a bijection

for each x ∈ X. In other words, G is d-edge-colorable when we may assign a

color to each edge in such a way that for each x ∈ X and j ∈ [d] there exists

exactly one edge with color j incident to x. If such a map φ exists, we may

use it to get a labelling of G such that if x, y ∈ X and e ∈ Ex∩Ey then e has
the same color φ(e) both near x and near y. This way, in (8.43) we always

have i = j. If this condition is satis�ed, we may write the �rst condition in

(8.46) in the form:

x ∼ z, i = m, and the label of the edge connecting x and z is i. (8.47)

Here is an informal description of the replacement product G r©F ; compare

with the �gures in Exercise 8.12.8. Replace each vertex of G by a copy of

F . The edges of each copy of F constitute the edges of the second type in

(8.46). Then join the copies of F by means of the edges of G, taking into

account the labelling of G, as in (8.46) (edges of the �rst type).

Exercise 8.12.8 Prove that the replacement products K5 r©C4 of the com-

plete graph K5 on 5 vertices (with the corresponding labellings) and the

4-circle C4, are as in Figures 8.12 and 8.13. These examples, taken from [1],

show that the replacement product does depend on the labelling of the �rst

graph.

Proposition 8.12.9 Let B be the adjacency matrix of F and RG the per-

mutation matrix in (8.45). Then the adjacency matrix of the replacement
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Fig. 8.12. The replacement product K5 r©C4 (with a given labelling of K5).
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Fig. 8.13. The replacement product K5 r©C4 (with another labelling of K5).

product G r©F is given by

MG r©F = RG + IX ⊗B.

Proof The matrix RG (respectively, IX ⊗B) takes into account all edges of

the �rst type (respectively, second type) of G r©F ; compare with Proposition

8.8.3.(i).

We end this section by showing that the lamplighter construction in Sec-

tion 8.10 may be obtained as a replacement product.

Let then Qn = (X,E) be the n-dimensional hypercube (see Section 8.5).

Using the notation in both Section 8.10 and in the present section, we may

identify X with {0, 1}[n]. Moreover, two vertices ω, θ ∈ {0, 1}[n] are adjacent

when there exists j ∈ [n] such that: ω(j) 6= θ(j) and ω(h) = θ(h) for h 6= j.

In this case, the edge {ω, θ} ∈ E is labelled by the color j both near ω and

near θ. This shows (cf. Remark 8.12.7) that the n-dimensional hypercube is

n-edge-colorable.
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Proposition 8.12.10 Let F = ([n], E) be a simple graph without loops on

n vertices. Then the product replacement Qn r©F obtained by means of the

labelling described above is isomorphic to the lamplighter F oK2.

Proof In the terminology of Remarks 8.10.2, 8.12.6, and 8.12.7, a switch

edge in F o K2 corresponds to an edge of the �rst type in Qn r©F : both

the switch condition in (8.34) and the conditions in (8.47) become: i = m,

ω ∼ θ, and the color of the edge connecting ω with θ is i.

Similarly, a walk edge in F oK2 corresponds to an edge of the second type

in Qn r©F : for (ω, i), (θ,m) ∈ Qn× [n] both the walk condition in (8.34) and

the second condition in (8.46) become: i ∼ m and ω = θ.

8.13 The zig-zag product

This section is based on the exposition in [57]. The original sources are

[74] and [128]. We assume all the notation in Section 8.12, in particular

in De�nition 8.12.4, so that G = (X,E, rG) is a d-regular graph and F =

(Y, F, rF ) a k-regular graph with Y = [d].

De�nition 8.13.1 The zig-zag product of G and F is the k2-regular graph

G z©F with vertex set X × [d] and rotation map RotG z©F described by the

following conditions. We use the set [k]× [k] to label the edges of the graph

and, for x ∈ X, h ∈ [d], and i, j ∈ [k],

RotG z©F ((x, h), (i, j)) = ((y, l), (j′, i′)),

where y ∈ X, l ∈ [d] and i′, j′ ∈ [k] are determined by means of the following

steps:

(i) (h′, i′) = RotF (h, i),

(ii) (y, l′) = RotG(x, h′),

(iii) (l, j′) = RotF (l′, j).

Remark 8.13.2 Here is a more detailed description of these steps. We

replace each vertex x of G with the vertices (x, 1), (x, 2), . . . , (x, d). Then

the vertices (x, h), (y, l) ∈ X × [d] are adjacent in the zig-zag product G z©F
if it is possible to connect them in the replacement product G r©F with a

path of length three and of the following form.

(i) First of all, we choose an edge of the second type in G r©F incident

to (x, h), that is, we choose a label i ∈ [k] so that the vertex (x, h′) is

determined by the rotation map: RotF (h, i) = (h′, i′), this also yields

the label i′ ∈ [k]; we refer to this as to a zig move.
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(ii) It is then determined the unique edge of the �rst type in G r©F in-

cident to (x, h′), that is, the vertex (y, l′) = RotG(x, h′); we refer to

this as to the jump move.

(iii) Finally, we choose an edge of the second type in G r©F incident to

(y, l′), that is, we choose a label j ∈ [k] so that the vertex (y, l)

is determined by the rotation map: RotF (l′, j) = (l, j′), which also

yields the label j′ ∈ [k]; we refer to this as to a zag move.

Proposition 8.13.3 Using the notation in Proposition 8.12.9, the adjacency

matrix of the zig-zag product is:

MG z©F = (IX ⊗B)RG(IX ⊗B). (8.48)

Moreover, there exists a
[
(k + 1)3 − k2

]
-regular graph H such that

M3
G r©F = MG z©F +H,

where H is the adjacency matrix of H.

Proof Clearly, in (8.48) the two factors (IX ⊗ B) take into account the zig

and zag moves, while RG the jump move. Now consider the following graph

C. Its vertex set is again X× [d] and two vertices are adjacent in C if there is
a path in G r©F of length three connecting them. By Proposition 8.1.6, the

adjacency matrix of C is M3
G r©F . Moreover, C is regular of degree (k + 1)3,

possibly with multiple edges and loops. Finally, we conclude by noting that

G z©F is a subgraph of C so that, denoting by H = (X × [d], E(H)) the

subgraph of C with edge set E(H) = E(C)\E(G z©F), we have, cf. Proposition

8.12.9,

H = [RG + (IX ⊗B)]3 − (IX ⊗B)RG(IX ⊗B).

Exercise 8.13.4 Using the �rst result in Exercise 8.12.8, prove that the zig-

zag product of the complete graph K5 on 5 vertices (with the given labelling)

and the 4-circle C4, is as in Figure 8.14.

Remark 8.13.5 Proposition 8.13.3 and Exercise 8.13.4 show that it is not

necessary to introduce a labelling in F in order to construct the zig-zag

product. But the labelling of F is necessary to get a [k] × [k]-labelling on

the zig-zag graph.

Exercise 8.13.6 Assume the notation in Proposition 8.12.10. De�ne the

walk-switch-walk lamplighter as follows: (ω, i), (θ,m) ∈ Qn× [n] are adjacent
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Fig. 8.14. The zig-zag product K5 z©C4.

if there exists j ∈ [n] such that i ∼ j, j ∼ m, ω(h) = θ(h) for h 6= j and

ω(j) 6= θ(j). Show that this graph is isomorphic to the zig-zag product

Qn z©F .

8.14 Cayley graphs, semidirect products, replacement products,

and zig-zag products

In this section we introduce the concepts of a Cayley graph of a (�nite) group

(with respect to a given generating subset) and of a semidirect product of

two (�nite) groups. Then, by means of several exercises, we illustrate the

connections between the Cayley graph of a semidirect product of two groups

and a modi�ed version of the replacement and zig-zag products of the Cayely

graphs of these groups (with respect to suitable generating subsets). They

are based on the exposition in [57]. The original sources are [8] and [74].

Let G be a �nite group. A subset S ⊆ G is termed generating if ev-

ery element g ∈ G may be written as a product g = s1s2 · · · sm with

s1, s2, . . . , sm ∈ S ∪ S−1 for some m ≥ 0, where S−1 = {s−1 : s ∈ S}.
A subset S ⊆ G is said to be symmetric provided S = S−1.

Let S ⊂ G be a symmetric generating subset. Then the associated Cayley

graph Γ(G,S) is the graph with vertex set G and edge set {{g, gs} : s ∈
S, g ∈ G}. In other words, two vertices g, g′ ∈ G are adjacent if and only if

g−1g′ ∈ S. Note that Γ(G,S) is undirected since S is symmetric: g−1g′ ∈ S
if and only if (g′)−1g = (g−1g′)−1 ∈ S. Moreover, Γ(G,S) has no multiple

edges: if gs = gs′ for some g ∈ G and s, s′ ∈ S, then the cancellation

property implies that s = s′. Moreover, Γ(G,S) has loops if and only if S
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contains the identity element (and, if this is the case, then there is exactly

one loop based at each vertex of Γ(G,S)). Finally, note that we may use the

elements of S to get a labelling of Γ(G,S): the rotation map (8.43) is then

de�ned by setting

RotΓ(G,S)(g, s) = (gs, s−1)

for all g ∈ G and s ∈ S.

Exercise 8.14.1

(1) Show that the discrete circle Cn (cf. De�nition 8.6.1) is the Cayley

graph of the cyclic group Zn with respect to the (symmetric) gener-

ating set S = {1, n− 1}.
(2) Show that the hypercube Qn (cf. De�nition 8.5.1) is the Cayley graph

of the group Zn2 with respect to the (symmetric) generating set S =

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}.

We now recall the well known construction of a semidirect product of two

(�nite) groups (see, for instance, [12, pp. 20�24], [148, pp. 6�8]).

De�nition 8.14.2 (Semidirect product) Let G be a �nite group and

N,H ≤ G two subgroups of G. Then G is the (internal) semidirect product

of N by H and we write G = N o H, when the following conditions are

satis�ed:

(a) N E G;
(b) G = NH;

(c) N ∩H = {1G}.

Proposition 8.14.3 Suppose that G is a semidirect product of N by H.

Then

(i) G/N ∼= H;

(ii) every g ∈ G has a unique expression g = nh with n ∈ N and h ∈ H;

(iii) for any h ∈ H and n ∈ N set φh(n) = hnh−1. Then φh ∈ Aut(N)

for all h ∈ H and the map

H −→ Aut(N)

h 7−→ φh

is a homomorphism (conjugation homomorphism);

(iv) if nh, n1h1 ∈ G are as in (ii), then their product is given by

n1h1 · n2h2 = [n1 · h1n2h
−1
1 ]h1h2 = [n1φh1(n2)]h1h2. (8.49)
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Conversely, suppose that H and N are two (�nite) groups and we are given

a homomorphism

H −→ Aut(N)

h 7−→ φh.

Set G = {(n, h) : n ∈ N,h ∈ H} and de�ne a product in G by setting

(n, h)(n1, h1) = (nφh(n1), hh1)

for all n, n1 ∈ N and h, h1 ∈ H (compare with (8.49)). Then G is a group

and it is isomorphic to the (inner) semidirect product of Ñ = {(n, 1H) : n ∈
N} ∼= N by H̃ = {(1N , h) : H ∈ H} ∼= H. The group G is called the external

semidirect product of N by H with respect to φ and it is usually denoted by

N oφ H Moreover, with the above notation, the following conditions are

equivalent:

(a) G is isomorphic to the direct product Ñ × H̃;

(b) H̃ is normal in G;

(c) φh is the trivial automorphism of N for all h ∈ H.

Proof The proof is just an easy exercise and it is left to the reader.

Clearly, the internal and external semidirect products are equivalent con-

structions and we shall make no distinction between them.

Suppose now that G = N o H is a semidirect product. For n ∈ H we

denote by nH its orbit under the action of H, that is nH = {hnh−1 : h ∈
H}. Let SH (respectively, SN ) be a symmetric generating subset for H

(respectively, N) and suppose that nH ∈ SN for all n ∈ SN (in other words,

SN is H-invariant). Let then x1, x2, . . . , xk ∈ SN form a set of representative

elements for the orbits of SN under the action of H, that is,

SN = xH1
∐

xH2
∐
· · ·
∐

xHk ,

and set S′N =
{
x±1

1 , x±1
2 , . . . , x±1

k

}
. In the following exercises we ask the

reader to investigate the connections between the construction in Sections

8.12 and 8.13 and the semidirect product of groups.

Exercise 8.14.4

(1) Show that

S = SH ∪ S′N

is a symmetric generating subset for G.
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(2) Prove that the Cayley graph Γ(G,S) is the modi�ed replacement prod-

uct

Γ(N,S′N ) r©Γ(H,SH)

de�ned as follows. The vertex set is G ≡ NH. Each g = nh ∈ G is

incident to |SH | edges of the second type, which connect it with the

vertices {nhs : s ∈ SH}; this is as in Remark 8.12.6. Moreover, nh is

also incident to 2k edges of the �rst type, which connect it with the

vertices {
nhx±1

j ≡ (n · hx±1
j h−1)h : j = 1, 2, . . . , k

}
.

(3) Show that the set

S̃ =
{
sx±1

j t : s, t ∈ SH , j = 1, 2, . . . , k
}

is another symmetric generating subset for G.

(4) Prove that the Cayley graph Γ(G, S̃) is the modi�ed zig-zag product

Γ(N,S′N ) z©Γ(H,SH)

which may be de�ned as in Remark 8.13.2 but using the modi�ed

replacement product in (2).

Remark 8.14.5 If k = 1 and x1 = x−1
1 , then the modi�ed replacement prod-

uct in Exercise 8.14.4.(2) coincides with an ordinary replacement product.

The same holds for the modi�ed zig-zag product in Exercise 8.14.4.(4). In

general, a modi�ed product may be seen as a �union� of ordinary products.



9

Expanders and Ramanujan graphs

This chapter is an introduction to the theory of expanders and Ramanujan

graphs. It is based mainly on the exposition in the monograph by Davido�-

Sarnak-Valette [48] and the paper [74]. First of all, we present the basic

theorems of Alon-Milman and Dodziuk, and of Alon-Boppana-Serre, on the

isoperimetric constant and the spectral gap of a (�nite, undirected, con-

nected) regular graph, and their connections. We discuss a few examples

with explicit computations showing optimality of the bounds given by the

above theorems. Then we give the basic de�nitions of expanders and describe

three fundamental constructions due to Margulis, Alon-Schwartz-Schapira

(based on the replacement product, cf. Section 8.12) and Reingold-Vadhan-

Wigderson [128] (based on the zig-zag product, cf. Section 8.13). In these

constructions, the harmonic analysis on �nite abelian groups (cf. Chapter 2)

and �nite �elds (cf. Chapter 6) we developed so far, plays a crucial role.

The original motivation for expander graphs was to build economical ro-

bust networks (e.g., for phones or computers): an expander with bounded

valence is precisely an asymptotic robust graph with the number of edges

growing linearly with size (number of vertices), for all subsets. Since their

de�nition, expanders have found extensive applications in several branches of

science and technology, for instance: in computer science, in designing algo-

rithms, error correcting codes, extractors, pseudorandom generators, sorting

networks (Ajtai, Komlós, and Szemerédi, [6]), robust computer networks (as

in their initial motivation), and in cryptography (in order to construct hash

functions: these are used in hash tables to quickly locate a data record given

its search key). From a more theoretical viewpoint, they have also been used

in proofs of many important results in computational complexity theory,

such as SL = L (Reingold, [126]) and the PCP theorem (Dinur, [55]).

292
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9.1 The Alon-Milman-Dodziuk Theorem

In this section we present the discrete analogues, due to Dodziuk [56] and

Alon-Milman [9], of the well-known Cheeger-Buser inequalities in Rieman-

nian geometry (cf. [38] and [26, 27]).

Let G = (X,E, r) be a �nite (undirected) k-regular graph (possibly with

multiple edges and loops). Recall that E0 = {e ∈ E : |r(e)| = 1} denotes
the set of all loops of G and E1 = {e ∈ E : |r(e)| = 2} = E \ E0.

De�nition 9.1.1 Let F ⊆ X be a set of vertices of G. The boundary of F

is the set

∂F = {e ∈ E : r(e) ∩ F 6= ∅ and r(e) ∩ (X \ F ) 6= ∅} ⊆ E1

of all edges in G joining (vertices in) F with (vertices in) its complement

X \ F .
The isoperimetric constant (also called the Cheeger constant) of G is the

nonnegative number

h(G) = min

{
|∂F |
|F |

: F ⊆ X, 0 < |F | ≤ |X|
2

}
.

Note that one has

|∂F | =
∑
x∈F

y∈X\F

A(x, y) =
∑

{x,y}∈r(∂F )

A(x, y). (9.1)

Moreover, h(G) is strictly positive if and only if G is connected, and

h(G) ≤ k. (9.2)

Indeed, if G is connected, then ∂F is nonempty for all ∅ 6= F $ X, thus

showing that h(G) > 0. If G is not connected, then there exists a connected

component whose vertex set F satis�es 0 < |F | ≤ |X|2 and, clearly, ∂F = ∅,
showing, in this case, that h(G) = 0. Moreover, if ∅ 6= F ⊆ X, since G is

k-regular, the total number of edges incident to some vertices in F is at most

|F |k, so that |∂F | ≤ |F |k, and (9.2) follows.

Finally note that some papers (for instance [10]) use the normalized isoperi-

metric constant (or edge expansion constant) which is de�ned as h′(G) = h(G)
k ,

and, by virtue of (9.2), satis�es h′(G) ≤ 1.

Let A be the adjacency operator of G and set ∆ = kI − A ∈ End(L(X)),

where, as usual, I denotes the identity map. Then, for f ∈ L(X) and x ∈ X
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we have that

[∆f ](x) = kf(x)−
∑
y∈X

A(x, y)f(y) = kf(x)−
∑
y∼x

A(x, y)f(y).

Moreover, keeping in mind Proposition 8.1.5 and the notation therein, we

have that the eigenvalues of ∆ are:

λ0 = 0 ≤ λ1 = k − µ1 ≤ · · · ≤ λ|X|−1 = k − µ|X|−1. (9.3)

In the sequel we shall often use the following summation argument.

Remark 9.1.2 In our setting, for a ∈ L(X ×X) symmetric (i.e. such that

a(x, y) = a(y, x) for all x, y ∈ X) and b ∈ L(X), we have

∑
{x,y}∈r(E1)

a(x, y) =
1

2

∑
x∈X

∑
y∈X:
y∼x
y 6=x

a(x, y) =
1

2

∑
y∈X

∑
x∈X:
x∼y
x6=y

a(x, y) (9.4)

and, by the regularity of G (namely, deg x = k for all x ∈ X),

∑
{x,y}∈r(E1)

A(x, y) (b(x) + b(y)) =
∑
x∈X

(k −A(x, x))b(x). (9.5)

In particular, taking b = 1X we get 2|E1| = k|X| − |E0|, that is,

2|E1|+ |E0| = k|X|. (9.6)

Lemma 9.1.3 Let f ∈ L(X) be real valued. Then

〈∆f, f〉 =
∑

{x,y}∈r(E1)

A(x, y) (f(x)− f(y))2 . (9.7)
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Proof We have∑
{x,y}∈r(E1)

A(x, y) (f(x)− f(y))2

=
∑

{x,y}∈r(E1)

A(x, y)
(
f(x)2 + f(y)2

)
− 2

∑
{x,y}∈r(E1)

A(x, y)f(x)f(y)

=∗
∑
x∈X

(k −A(x, x))f(x)2 −
∑
x∈X

∑
y∈X:
y∼x
y 6=x

A(x, y)f(x)f(y)

= k
∑
x∈X

f(x)2 −
∑
x∈X

∑
y∈X:
y∼x

A(x, y)f(x)f(y)

= k
∑
x∈X

f(x)2 −
∑
x∈X

∑
y∈X

A(x, y)f(x)f(y)

= k
∑
x∈X

f(x)2 −
∑
x∈X

[Af ](x)f(x)

= k〈f, f〉 − 〈Af, f〉
= 〈∆f, f〉,

where =∗ follows from (9.5) with b(x) = f(x)2, and (9.4) with a(x, y) =

A(x, y)f(x)f(y).

De�nition 9.1.4 The operator ∆ ∈ End(L(X)) is called the combinatorial

Laplacian and the right hand side of (9.7) the Dirichlet form on G.

The terminology in the above de�nition is based on the classical mean-

value property of harmonic functions on Rn (which constitute the kernel of

the Euclidean Laplace operator ∆ = ∂2

∂x21
+ ∂2

∂x22
+ · · ·+ ∂2

∂x2n
).

Remark 9.1.5 Suppose that G = (X,E) is a �nite simple graph without

loops. Recall that we may identify the edge set E with the set of two-

elements sets {x, y} ⊂ X such that x ∼ y. In this setting, the boundary of

a subset F ⊂ X is given by the set of edges

∂F = {{x, y} ∈ E : x ∈ F and y /∈ F} ⊆ E.

Moreover, if G is k-regular, the combinatorial Laplacian and its associated
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Dirichlet form (9.7) can be expressed as

[∆f ](x) = kf(x)−
∑
y∼x

f(y)

and

〈∆f, f〉 =
∑
{x,y}∈E

(f(x)− f(y))2 ,

respectively, for all f ∈ L(X) and x ∈ X.

We recall (cf. Proposition 8.1.4) that if W0 is the space of constant func-

tions on X and W1 = {f ∈ L(X) :
∑

x∈X f(x) = 0}, then L(X) = W0⊕W1.

Lemma 9.1.6 Suppose that G is connected. Then we have

λ1 = k − µ1 = min

{
〈∆f, f〉
〈f, f〉

: f ∈W1, f 6= 0

}
(9.8)

and

µ1 = k − λ1 = max

{
〈Af, f〉
〈f, f〉

: f ∈W1, f 6= 0

}
. (9.9)

Proof Since G is connected, the multiplicity of the eigenvalue λ0 = 0 of ∆ is

one: the corresponding eigenspace is W0 (cf. Proposition 8.1.5). Therefore,

the other eigenvalues of ∆, namely λ1 ≤ · · · ≤ λn−1 (n = |X|), are all

positive with corresponding eigenfunctions φ1, . . . , φn−1 that can be chosen

to be real valued and to constitute an orthonormal basis of W1. Then, for

every f = α1φ1 + · · ·+ αn−1φn−1 ∈W1 \ {0} (α1, . . . , αn−1 ∈ C) we have

〈∆f, f〉 =〈∆(α1φ1 + · · ·+ αn−1φn−1), α1φ1 + · · ·+ αn−1φn−1〉
= 〈λ1α1φ1 + · · ·+ λn−1αn−1φn−1, α1φ1 + · · ·+ αn−1φn−1〉
= λ1|α1|2 + · · ·+ λn−1|αn−1|2

(by (9.3)) ≥ λ1|α1|2 + · · ·+ λ1|αn−1|2

= λ1(|α1|2 + · · ·+ |αn−1|2)

= λ1〈f, f〉,

showing that λ1 ≤ 〈∆f,f〉
〈f,f〉 . Since λ1 = 〈∆φ1,φ1〉

〈φ1,φ1〉 , (9.8) follows. The proof of

(9.9) is analogous and is left to the reader.

Theorem 9.1.7 (Alon-Milman) Let G = (X,E, r) be a �nite connected

k-regular graph. Then

k − µ1

2
≤ h(G).
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Proof We apply Lemma 9.1.6 to a suitable function in W1. For F ⊆ X such

that 0 < |F | ≤ |X|2 , we de�ne fF ∈ L(X) by setting

fF (x) =

{
|X \ F | if x ∈ F
−|F | if x ∈ X \ F .

Then
∑

x∈X fF (x) = |X \ F | · |F | − |F | · |X \ F | = 0, so that fF ∈W1, and

〈fF , fF 〉 =
∑
x∈X

fF (x)2 = |X \ F |2 · |F |+ |F |2 · |X \ F |

= |X \ F | · |F | · (|X \ F |+ |F |) = |X \ F | · |F | · |X|.

Moreover,

fF (x)− fF (y) =

{
±|X| if {x, y} ∈ r(∂F )

0 otherwise.

Therefore, by virtue of Lemma 9.1.3 we have

〈∆fF , fF 〉 =
∑

{x,y}∈r(E1)

A(x, y) (fF (x)− fF (y))2

= |X|2
∑

{x,y}∈r(∂F )

A(x, y)

(by (9.1)) = |X|2 · |∂F |.

Thus, from Lemma 9.1.6 we deduce that

|X|
|X \ F |

· |∂F |
|F |

=
|X|2 · |∂F |

|X \ F | · |F | · |X|
=
〈∆fF , fF 〉
〈fF , fF 〉

≥ λ1 = k − µ1.

Since |F | ≤ |X|2 , we have |X\F ||X| ≥
1
2 and therefore

|∂F |
|F |

≥ (k − µ1)
|X \ F |
|X|

≥ k − µ1

2
. (9.10)

As the isoperimetric constant h(G) is, by de�nition, the minimum of the left

hand side values (with 0 < |F | ≤ |X|2 ) of (9.10), the statement follows.

In the following theorem we give an upper bound for the isoperimetric

constant.

Theorem 9.1.8 (Dodziuk) Let G = (X,E, r) be a �nite connected k-regular

graph. Then

h(G) ≤
√

2k(k − µ1).
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Proof Let f ∈ L(X) be a nonnegative function and denote by αr > αr−1 >

· · · > α1 > α0 ≥ 0 its values. Consider the map j : X → {0, 1, . . . , r} de�ned
by

f(x) = αj(x)

for all x ∈ X (such a map j is clearly well de�ned). We also de�ne the level

sets

Xi = {x ∈ X : f(x) ≥ αi} ≡ {x ∈ X : j(x) ≥ i}

for i = 0, 1, . . . , r. Clearly, X0 = X ⊃ X1 ⊃ · · · ⊃ Xr 6= ∅. Finally, set

Bf =
∑

{x,y}∈r(E)

A(x, y)|f(x)2 − f(y)2| =
∑

{x,y}∈r(E1)

A(x, y)|f(x)2 − f(y)2|.

Claim 1.

Bf =
r∑

h=1

|∂Xh|(α2
h − α2

h−1).

Proof of Claim 1. Given any {x, y} ∈ r(E1) we may suppose, up to ex-

changing x and y, that f(x) ≥ f(y), equivalently, j(x) ≥ j(y). This way, we

have

r(∂Xh) = {{x, y} : j(y) < h ≤ j(x)} (9.11)

for all h = 1, 2, . . . , r. Moreover,

Bf =
∑

{x,y}∈r(E1):
j(x)>j(y)

A(x, y)
(
α2
j(x) − α

2
j(y)

)
=

∑
{x,y}∈r(E1):
j(x)>j(y)

A(x, y)

j(x)∑
h=j(y)+1

(α2
h − α2

h−1).

In the last expression, each �telescopic� summand (α2
h − α2

h−1) appears ex-

actly A(x, y) times for every {x, y} ∈ r(E1) such that j(x) ≥ h > j(y),

equivalently (cf. (9.11)), exactly A(x, y) times for every {x, y} ∈ r(∂Xh).

In other words, each �telescopic� summand appears exactly |∂Xh| times (cf.

(9.1)). The claim follows. �

Claim 2.

Bf ≤
√

2k ‖f‖ 〈∆f, f〉
1
2 .

Proof of Claim 2. From the inequality 2ab ≤ a2 + b2, for all a, b ∈ R, we
deduce that

(f(x) + f(y))2 = f(x)2 + f(y)2 + 2f(x)f(y) ≤ 2[f(x)2 + f(y)2] (9.12)
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for all x, y ∈ X. Now,

Bf =
∑

{x,y}∈r(E1)

√
A(x, y)|f(x) + f(y)| ·

√
A(x, y)|f(x)− f(y)|

≤(∗)

 ∑
{x,y}∈r(E1)

A(x, y)[f(x) + f(y)]2


1
2
 ∑
{x,y}∈r(E1)

A(x, y)[f(x)− f(y)]2


1
2

≤(∗∗)
√

2

 ∑
{x,y}∈r(E1)

A(x, y)[f(x)2 + f(y)2]


1
2

〈∆f, f〉
1
2

=(∗∗∗)
√

2

{∑
x∈X

(k −A(x, x))f(x)2

} 1
2

〈∆f, f〉
1
2

≤
√

2k

{∑
x∈X

f(x)2

} 1
2

〈∆f, f〉
1
2 ,

where ≤(∗) follows from the Cauchy-Schwarz inequality, ≤(∗∗) follows from

(9.12) and Lemma 9.1.3, and =(∗∗∗) follows from (9.5). �

We recall that the support of f ∈ L(X) is the set

supp(f) = {x ∈ X : f(x) 6= 0}.

Claim 3. Suppose that

|supp(f)| ≤ |X|
2
.

Then

Bf ≥ h(G)‖f‖2.

Proof of Claim 3. By our hypothesis on f , we have α0 = 0, so that X1 =

supp(f), and 0 < |Xh| ≤ |X|2 for every h = 1, 2, . . . , r. Keeping in mind the

de�nition of the isoperimetric constant, this implies that

|∂Xh| ≥ h(G)|Xh| (9.13)



300 Expanders and Ramanujan graphs

for every h = 1, 2 . . . , r. From Claim 1 we deduce that

Bf =
r∑

h=1

|∂Xh|(α2
h − α2

h−1)

(by (9.13)) ≥ h(G)
r∑

h=1

|Xh|(α2
h − α2

h−1)

= h(G)
[
|Xr|(α2

r − α2
r−1) + |Xr−1|(α2

r−1 − α2
r−2)+

+ · · ·+ |X2|(α2
2 − α2

1) + |X1|α2
1

]
= h(G)

[
|Xr|α2

r + |Xr−1 \Xr|α2
r−1+

+|Xr−2 \Xr−1|α2
r−2 + · · ·+ |X1 \X2|α2

1

]
= h(G)‖f‖2,

where the last equality follows from the fact that Xh−1 \ Xh is the set on

which f takes the value αh−1. �

Claim 4. Let 1 ≤ i ≤ n − 1. Denote by φi ∈ L(X) a real eigenfuntion

associated with the eigenvalue λi = k − µi and de�ne fi ∈ L(X) by setting

fi(x) = max{φi(x), 0} =
φi(x) + |φi(x)|

2

for all x ∈ X. Then

[∆fi](x) ≤ λiφi(x)

for all x ∈ X such that φi(x) > 0. Moreover, we have

〈∆fi, fi〉 ≤ λi‖fi‖2.

Proof of Claim 4. Let x ∈ X such that φi(x) > 0. Then we have fi(x) =

φi(x) and therefore

[∆fi](x) = kfi(x)−
∑
y∈X

A(x, y)fi(y)

= kφi(x)−
∑
y∈X:
φi(y)>0

A(x, y)φi(y)

≤ kφi(x)−
∑
y∈X

A(x, y)φi(y)

= [∆φi](x)

= λiφi(x),
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proving the �rst part of the claim. On the other hand,

〈∆fi, fi〉 =
∑
x∈X

[∆fi](x)fi(x) =
∑
x∈X:
φi(x)>0

[∆fi](x)φi(x)

≤ λi
∑
x∈X:
φi(x)>0

φi(x)2 = λi‖fi‖2,

where the inequality follows form the �rst part of the claim. �

We are now in position to complete the proof of Dodziuk's Theorem.

Let φ1 be a real eigenfunction associated with the eigenvalue λ1 = k−µ1.

Switching φ1 with −φ1, if necessary, we may suppose that the subset X+ =

{x ∈ X : φ1(x) > 0} satis�es the condition 0 < |X+| ≤ |X|
2 (observe that

since φ1 ∈ W1 and φ1 6≡ 0, the set {x ∈ X : φ1(x) > 0} is nonempty).

Taking into account, in order, Claim 3, Claim 2, and Claim 4 (and the

notation therein), we deduce

h(G)‖f1‖2 ≤ Bf1 ≤
√

2k〈∆f1, f1〉
1
2 ‖f1‖ ≤

√
2k(k − µ1)‖f1‖2,

and the statement follows after dividing by ‖f1‖2.

De�nition 9.1.9 Let G = (X,E, r) be a �nite connected k-regular graph.

Denote by k = µ0 > µ1 ≥ · · · ≥ µn the eigenvalues of the adjacency matrix

of G. The spectral gap of G is the positive number

δ(G) = µ0 − µ1 = k − µ1.

Remark 9.1.10 The theorem of Alon-Milman ensures that, in order to have

a �large� isoperimetric constant h(G), it su�ces to have a �large� spectral gap

δ(G). Conversely, the theorem of Dodziuk ensures that this is also a necessary

condition. More speci�cally:

δ(G) ≥ δ ⇒ h(G) ≥ δ

2
(Alon-Milman)

h(G) ≥ ε⇒ δ(G) ≥ ε2

2k
(Dodziuk).

In the remaining of this section we compare the exact values of the isoperi-

metric constant with the estimates provided by the theorems of Alon-Milman

and Dodziuk for some graphs (simple and without loops) presented in Chap-

ter 8.

Example 9.1.11 (The complete graph) Let Kn be the complete graph
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on n ≥ 1 vertices (cf. Section 8.4). Recall that the graph Kn is regular of

degree k = n − 1 and the eigenvalues of the associated adjacency matrix

are µ0 = n − 1 (with multiplicity one) and µ1 = −1 (with multiplicity

n − 1). As a consequence, by virtue of Theorem 9.1.7 and Theorem 9.1.8,

the isoperimetric constant h(Kn) satis�es

n

2
=
k − µ1

2
≤ h(Kn) ≤

√
2k(k − µ1) =

√
2(n− 1)n ≤

√
2n.

Moreover, if Fh = {1, 2, . . . , h}, h = 1, 2, . . . , n, we have |∂Fh| = h(n− h) so

that
|∂Fh|
|Fh|

= n− h. It follows that

h(Kn) = min
1≤h≤n/2

|∂Fh|
|Fh|

=
|∂F[n/2]|
|F[n/2]|

= n− [n/2],

where, as usual, [·] denotes the integer part (�oor function). It follows that
h(Kn) ≈ n/2 showing that the Alon-Milman inequality is asymptotically

optimal; in fact, for n even we have h(Kn) = n/2 and, in this case, the

Alon-Milman inequality is indeed an equality.

Example 9.1.12 (The hypercube) LetQn = (Xn, En) be the n-dimensional

hypercube, n ≥ 1 (cf. Section 8.5). Recall that Xn = {0, 1}n, the graph Qn
is regular of degree k = n, and that the second eigenvalue of the associated

adjacency matrix is µ1 = n − 2. As a consequence, by virtue of Theorem

9.1.7 and Theorem 9.1.8, the isoperimetric constant h(Qn) satis�es

1 =
k − µ1

2
≤ h(Qn) ≤

√
2k(k − µ1) =

√
4n = 2

√
n. (9.14)

Moreover, if F ′ = {x ∈ Xn : x1 = 0} is the hyperplane x1 = 0, we have

|F ′| = |Xn|/2 = 2n−1 and, for every x ∈ F ′, there exists exactly one edge in

∂F ′ issuing from the vertex x, namely {x, x′}, where x′1 = 1 and x′i = xi for

i = 2, 3, . . . , n. It follows that |∂F ′| = |F ′| and therefore from the Left Hand

Side estimate in (9.14) we deduce

1 ≤ h(Qn) = min
0<|F |≤2n−1

|∂F |
|F |

≤ |∂F
′|

|F ′|
= 1,

showing that h(Qn) = 1. We remark that, as for the complete graph, the

Alon-Milman inequality is indeed an equality.

Example 9.1.13 (The discrete circle) Let Cn = (Xn, En) be the discrete

circle on n ≥ 3 vertices (cf. Section 8.6). Recall that Xn = Zn, the graph
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Cn is regular of degree k = 2, and that the second eigenvalue of the associ-

ated adjacency matrix is µ1 = 2 cos(2π/n). As a consequence, by virtue of

Theorem 9.1.7 and Theorem 9.1.8, the isoperimetric constant h(Cn) satis�es

1− cos(2π/n) =
k − µ1

2
≤ h(Cn) ≤

√
2k(k − µ1) = 2

√
2(1− cos(2π/n)).

(9.15)

Let Fh = {0, 1, . . . , h}, h = 0, 1, . . . , [n/2]−1. Then 0 < |Fh| = h+1 ≤ [n/2]

and ∂Fh consists of the two edges {n−1, 0} and {h, h+1}, so that |∂Fh| = 2

and
|∂Fh|
|Fh|

=
2

h
. It is also clear that if F ⊆ Xn, 0 < |F | ≤ [n/2] is not

connected (as a subgraph of Cn), then |∂F | > 2. It follows that

h(Cn) = min
0<|F |≤[n/2]

|∂F |
|F |

= min
0<h≤[n/2]−1

2

h+ 1
=

2

[n/2]
≈ 4

n
.

Comparing with (9.15), since

1− cos(2π/n) = 2 sin2(π/n) ≈ 2π2

n2

and

2
√

2(1− cos(2π/n)) = 4 sin(π/n) ≈ 4π

n
,

we deduce that in this case the upper bound provided by Dodziuk (Theo-

rem 9.1.8) is asymptotically better than the lower bound provided by Alon-

Milman (Theorem 9.1.7).

Example 9.1.14 (The 2-regular segment) Let Gn = (Xn, En, rn) be

the 2-regular segment on n ≥ 2 vertices (cf. Exercise 8.6.3). Recall that

Xn = {0, 1, 2, . . . , n − 1} and that the second eigenvalue of the associated

adjacency matrix is µ1 = 2 cos(π/n) (cf. (8.10)). The isoperimetric constant

h(Gn) then satis�es the inequalities

1− cos(π/n) =
k − µ1

2
≤ h(Gn) ≤

√
2k(k − µ1) = 2

√
2(1− cos(π/n)).

(9.16)

For 0 ≤ h ≤ k ≤ [n/2] − 1 we set Fh,k = {h, h + 1, . . . , k}. Then |Fh,k| =

k − h+ 1 ≤ [n/2] and

∂Fh,k =

{
{{h− 1, h}, {k, k + 1}} if h > 0

{{k, k + 1}} if h = 0.

We then have
|∂Fh,k|
|Fh,k|

≥
|∂F0,k|
|F0,k|

=
1

k + 1
≥ 1

[n/2]
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so that

h(Gn) = min
0<|F |≤[n/2]

|∂F |
|F |

= min
0<k≤[n/2]−1

1

k + 1
=

1

[n/2]
≈ 2

n
.

Comparing with (9.16), since

1− cos(π/n) = 2 sin2(π/2n) ≈ π2

2n2

and

2
√

2(1− cos(π/n)) = 4 sin(π/2n) ≈ 2π

n
,

we deduce that, as for the discrete circle, the upper bound provided by

Dodziuk is asymptotically better than the lower bound provided by Alon-

Milman.

9.2 The Alon-Boppana-Serre Theorem

In this section we present the Alon-Boppana-Serre Theorem. A weaker ver-

sion (cf. Corollary 9.2.7) was originally proved by Alon and Boppana [7]. The

present statement (cf. Theorem 9.2.6) is due to J.P. Serre [146] who stud-

ied eigenvalues of Hecke operators and their distribution. Our proof closely

follows the presentation in the monograph by Davido�, Sarnak, and Valette

[48]. For another proof, due to Alon Nilli, we refer to the next section.

Let G = (X,E, r) be a �nite connected k-regular graph.

De�nition 9.2.1 (Hecke operators) A path p = (x0, e1, x1, e2, . . . , er, xr)

in G is said to be non-backtracking if ei+1 6= ei for all i = 1, 2, . . . , r − 1.

(a) For r ≥ 1 de�ne the X ×X matrix Ar by setting

Ar(x, y) = |{non-backtracking paths of length r from x to y}|

for all x, y ∈ X.

(b) For m ≥ 1 set

Tm =
∑

0≤r≤[m/2]

Am−2r.

We also set T0 = A0 = I the identity matrix.

Clearly, A1 = T1 equals the adjacency matrix A of G. Moreover, T2 =

A0 +A2 and, more generally, for h ≥ 1,

T2h = A0 +A2 + · · ·+A2h and T2h+1 = A1 +A3 + · · ·+A2h+1. (9.17)
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Proposition 9.2.2 (Hecke relations I) The matrices Aj's satisfy the

following relations:

(i) A2
1 = A2 + kI;

(ii) A1Ar = ArA1 = Ar+1 + (k − 1)Ar−1 for all r ≥ 2.

Proof Let x, y ∈ X and r ∈ N. We �rst recall (cf. Proposition 8.1.6) that

Ar1(x, y) equals the number of all paths of length r connecting x and y, in

particular, A1(x, y) 6= 0 if and only if x ∼ y.
(i) If x and y are distinct, then a path of length 2 connecting x and y is

necessarily non-backtracking. Therefore, A2
1(x, y) = A2(x, y).

Suppose now that x = y. For every neighbor z ∼ x (possibly, z = x)

there are exactly A(x, z) edges connecting x and z. Thus, among all the

A(x, z)2-many paths p = (x, e1, z, e2, x) of length 2 starting at x, passing by

z, and returning at x (note that A(x, z)2 = A(x, z)A(z, x)), there are exactly

A(x, z)-many which are backtracking (e1 = e2) and A(x, z)(A(x, z)−1)-many

which are non-backtracking (e1 6= e2). Altogether we have

A2(x, x) =
∑
z∼x

A(x, z)2 =
∑
z∼x

A(x, z)+
∑
z∼x

A(x, z)(A(x, z)−1) = k+A2(x, x),

showing that A2
1 = A2 = A2 + kI.

(ii) By de�nition we have

[A1Ar](x, y) =
∑
z∈X

A1(x, z)Ar(z, y). (9.18)

Now, Ar(z, y) counts the number of non-backtracking paths of length r con-

necting z and y. If (z = x0, e1, x1, e2, . . . , xr−1, er, xr = y) is one of these

paths, we have two possibilities:

(a) x 6= x1: then for every e ∈ E such that r(e) = {x, z}, we have

that (x, e, z = x0, e1, x1, e2, . . . , xr−1, er, xr = y) is a non-backtracking

path of length r+1 connecting x and y, and it contributes to the count

of Ar+1(x, y);

(b) x = x1: then (x = x1, e2, x2, e3, . . . , xr−1, er, xr = y) is a non-

backtracking path of length r − 1 connecting x and y: it contributes

to the count of Ar−1(x, y) and it appears exactly (k − 1) times in

(9.18) since e1 can be any of the (k − 1)-edges such that r(e1) 3 x
and e1 6= e2.

This shows the equality A1Ar = Ar+1 +(k−1)Ar−1. The proof that ArA1 =

Ar+1 + (k−1)Ar−1 (thus yielding also A1Ar = ArA1) is similar and it is left

to the reader.
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Corollary 9.2.3 (Hecke relations II) For all m ≥ 1 we have

Tm+1 = TmT1 − (k − 1)Tm−1.

Proof By Proposition 9.2.2.(i) we have

T 2
1 = A2

1 = A2 + kI = T2 + (k − 1)T0

and the case m = 1 immediately follows. In order to prove the general case

observe that, for h ≥ 1,

T2hT1 = T2hA1

(by (9.17)) = A0A1 +A2A1 + · · ·+A2hA1

(by Proposition 9.2.2.(ii)) = A1+A3+· · ·+A2h+1

+ (k − 1)(A1+A3+· · ·+A2h−1)

(again by (9.17)) = kT2h−1 +A2h+1,

and, similarly,

T2h+1T1 = A2
1 +A3A1 + · · ·+A2h+1A1

= A2 + kA0 +A4 + · · ·+A2h+2 + (k − 1)(A2 +A4 + · · ·+A2h)

= kA0 +A2h+2 + k(A2 + · · ·+A2h)

= kT2h +A2h+2.

In other words,

TmT1 = kTm−1 +Am+1

for all m ≥ 2. From this we deduce

Tm+1 − [TmT1 − (k − 1)Tm−1] = Tm+1 − kTm−1 −Am+1 + (k − 1)Tm−1

= Tm+1 − Tm−1 −Am+1

= 0,

and the statement follows.

Let Pm denote the modi�ed Chebyshev polynomial as in (A.4).

Theorem 9.2.4 For every m ∈ N we have

Tm = Pm(A).

Proof We proceed by induction on m. Clearly, P0 = 1 so that P0(A) = I =
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T0, while P1(x) = x so that P1(A) = A = T1. Moreover,

Pm+1(A) = Pm(A)A− (k − 1)Pm−1(A)

= TmT1 − (k − 1)Tm−1

= Tm+1,

where the �rst equality follows from Lemma A1.0.9, the second one from the

inductive hypothesis, and the last one from Corollary 9.2.3.

Theorem 9.2.5 (Trace formula) Denoting by µ0 ≥ µ1 ≥ · · · ≥ µn−1 the

eigenvalues of A, we have

∑
x∈X

∑
0≤r≤[m/2]

Am−2r(x, x) =
n−1∑
j=0

Pm(µj)

for all m ≥ 1.

Proof First note that

TrA` = µ`0 + µ`1 + · · ·+ µ`n−1 (9.19)

for all ` ∈ N. Then we compute TrTm in two di�erent ways. By de�nition

of Tm (cf. De�nition 9.2.1) we have

TrTm =
∑

0≤r≤[m/2]

TrAm−2r =
∑

0≤r≤[m/2]

∑
x∈X

Am−2r(x, x).

On the other hand, from Theorem 9.2.4 we deduce that

TrTm = TrPm(A) =
n−1∑
j=0

Pm(µj),

where the last equality follows from (9.19) and linearity of the trace.

Theorem 9.2.6 (Alon-Boppana-Serre) For every ε > 0 and k ≥ 3 there

exists a positive constant C(ε, k) such that for every �nite connected k-regular

graph G = (X,E, r) the number of eigenvalues of the corresponding adjacency

matrix belonging to the interval [(2−ε)
√
k − 1, k] is at least C(ε, k)|X|. Note

that C(ε, k) does not depend on |X| but only on ε and k.

Proof Let G = (X,E, r) be a �nite connected k-regular graph with |X| =

n vertices and denote by µ0 ≥ µ1 ≥ · · · ≥ µn−1 the eigenvalues of the



308 Expanders and Ramanujan graphs

associated adjacency matrix. From Theorem 9.2.5 and (A.6) we then deduce

that
n−1∑
j=0

Xm

(
µj√
k − 1

)
≥ 0 (9.20)

for all m ∈ N. Let Zε be as in Corollary A1.0.14. Then, by (9.20) and

Corollary A1.0.14.(i), we have

n−1∑
j=0

Zε

(
µj√
k − 1

)
≥ 0.

Set q = q(ε, k) = max[2−ε,k/
√
k−1] Zε and observe that, by virtue of Corollary

A1.0.14.(iii), we have q > 0 (since k ≥ 3 implies k√
k−1

> 2). If µj ≥
(2− ε)

√
k − 1 for all j = 0, 1, . . . , n− 1 there is noting to prove. Otherwise,

there exists 0 < j0 ≤ n− 1 such that

µj ≥ (2− ε)
√
k − 1 for 0 ≤ j < j0

µj < (2− ε)
√
k − 1 for j0 ≤ j ≤ n− 1.

Then
j0−1∑
j=0

Zε

(
µj√
k − 1

)
≤ qj0

while, by virtue of Corollary A1.0.14.(ii),

n−1∑
j=j0

Zε

(
µj√
k − 1

)
≤ −(n− j0).

Therefore

0 ≤
n−1∑
j=0

Zε

(
µj√
k − 1

)
≤ qj0 − (n− j0) = −n+ j0(q + 1)

so that, the number j0 of eigenvalues in [(2− ε)
√
k − 1, k] satis�es

j0 ≥
n

q + 1
=

1

q + 1
|X|,

and the proof is achieved by taking C(ε, k) = 1
q+1 .

Corollary 9.2.7 (Alon-Boppana) Let Gn = (Xn, En, rn), n ∈ N, be a
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family of �nite connected k-regular graphs, k ≥ 2, such that limn→∞ |Xn| =
+∞. Then

lim inf
n→∞

µ1(Gn) ≥ 2
√
k − 1.

Proof For k = 2, each Gn is either a cycle or a 2-regular segment (cf. Exercise

8.6.3), and the result follows from (8.9) and Exercise 8.6.3, respectively. For

k ≥ 3, the statement follows from the previous theorem (since

lim inf
n→∞

µ1(Gn) ≥ (2− ε)
√
k − 1

for all ε > 0).

9.3 Nilli's proof of the Alon-Boppana-Serre theorem

We now give an alternative proof of the Alon-Boppana-Serre theorem given

by Alon Nilli [122] (a pseudonym of Noga Alon: Nilli Alon is his daughter;

see [5] for a picture of Nilli Alon when she was a child). Our proof extends

the original proof in [122] to graphs with multiple edges but with no loops.

See also the discussion in [74].

We begin with an elementary lemma.

Lemma 9.3.1 Let k and h be positive integers with k ≥ 3. Set α = π
2h and

βi =
cos[(i− h)α]

(k − 1)i/2

for i = 0, 1, . . . , 2h. Then the sequence β0, β1, . . . , β2h is unimodal, that is,

there exists 0 ≤ i0 ≤ 2h such that

β0 < β1 · · · < βi0 < βi0+1 ≥ βi0+2 ≥ · · · ≥ β2h.

More precisely:

• for k = 3, i0 = 2

• for k = 4, i0 = 1

• for k ≥ 5, i0 = 0.

Proof First of all, note that (recall that α = π
2h)

cos[(i− h)α] = cos

(
iπ

2h
− π

2

)
= sin

iπ

2h
= sin(iα). (9.21)

Therefore, for 1 ≤ i ≤ 2h− 1,

βi+1

βi
=

sin[(i+ 1)α]√
k − 1 sin(iα)

. (9.22)
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The function

g(α) = i sin[(i+ 1)α]− (i+ 1) sin(iα)

satis�es g(0) = 0 and

g′(α) = i(i+ 1) (cos[(i+ 1)α]− cos(iα)) ≤ 0

for 0 ≤ iα ≤ (i+ 1)α ≤ π. This is the case since (i+ 1)α ≤ 2h π
2h = π. Then

0 = g(0) ≥ g(α) and therefore, from (9.22), it follows that

βi+1

βi
≤ i+ 1

i
√
k − 1

, (9.23)

for 1 ≤ i ≤ 2h− 1. On the other hand, by the addition formulas for the sine

function applied to the numerator of (9.22), we get

βi+1

βi
=

cosα+ cot(iα) sinα√
k − 1

, (9.24)

so that βi+1

βi
is decreasing for 1 ≤ i ≤ 2h − 1. Moreover, from (9.21) β0 =

0 < β1 = 1√
k−1

sin π
2h . Then we can take i0 +1 as the smallest 1 ≤ i ≤ 2h−1

such that the quantity in (9.24) is smaller than 1: this exists because for

i = h the quantity in (9.24) is equal to cosα√
k−1

< 1 (recall that k ≥ 3).

We now determine the values of i0 for all k ≥ 3.

Case k = 3. For i = 3, from (9.23) we get β4
β3
≤ 4

3
√

2
< 1. Note that for i = 2,

from (9.22) we get

β3

β2
=

sin 3α√
2 sin 2α

→
h→+∞

3

2
√

2
> 1,

so that i0 = 2 is the correct index which works for all h.

Case k = 4. Again from (9.23) for i = 2 we get β3
β2
≤ 3

2
√

3
< 1. For i = 1 we

have β2
β1

= sin 2α√
3 sinα

→
h→+∞

2√
3
. Therefore, i0 = 1.

Case k ≥ 5. From (9.22), for i = 1 we get

β2

β1
=

sin 2α√
k − 1 sinα

=
2 cosα√
k − 1

≤ 1.

Then we have i0 = 0.

Let now G = (X,E, r) be a �nite graph. Given two subsets Y,Z ⊆ X we

set

A(Y, Z) =
∑

(y,z)∈Y×Z

A(y, z). (9.25)
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In other words, A(Y,Z) equals the number of edges that join a vertex in Y

with a vertex in Z. Note that A({y}, {z}) = A(y, z), so that we shall also

write A(y, Z) instead of A({y}, Z), for all y, z ∈ X and Z ⊆ X. Moreover,

if x1, x2 ∈ Y ∩ Z are distinct and adjacent, then in the sum (9.25) the

equal summands A(x1, x2) and A(x2, x1) both appear, giving altogether a

contribution of 2A(x1, x2); in other words, the edges in r−1({x1, x2}) are

counted twice.

For k and h positive integers, with k ≥ 3, we set

γi = βi+i0 for 0 ≤ i ≤ 2h− i0, (9.26)

where the βi's and i0 are as in Lemma 9.3.1. Note that γ2h−i0 = β2h =

cos π2 = 0.

We now give a second lemma, of a pure combinatorial nature, which is the

core of the proof of the main theorem of this section.

Lemma 9.3.2 Let G = (X,E, r) be a �nite connected k-regular graph, with

k ≥ 3, and denote by A its adjacency matrix. Suppose there exists a vertex

x0 ∈ X with no loops based at it, and de�ne f ∈ L(X) by setting

f(x) =

{
γi if 0 ≤ d(x, x0) = i < 2h− i0
0 if d(x, x0) ≥ 2h− i0,

where the γi's are as in (9.26). Then

〈Af, f〉L(X) ≥ 〈f, f〉L(X)2
√
k − 1 cosα.

Proof Set Xi = {x ∈ X : d(x, x0) = i} and ni = |Xi|. By our assumption

on x0 we have A(x0, x0) = 0 and therefore

A(x0, X1) = k = |X1| = n1. (9.27)

Moreover, for i ≥ 1,

A(Xi−1, Xi) ≥ |Xi| = ni (9.28)

and

A(Xi−1, Xi) +A(Xi, Xi) +A(Xi+1, Xi) = kni (9.29)

because the left hand side counts all edges with a vertex in Xi (and the edges

with both vertices in Xi, but which are not loops, are counted twice). Then

〈f, f〉L(X) =
∑
x∈X

f(x)2 =

2h−i0−1∑
i=0

∑
x∈Xi

f(x)2 =

2h−i0−1∑
i=0

niγ
2
i (9.30)
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and

〈Af, f〉L(X) =
∑
x∈X

∑
y∈X:
y∼x

A(x, y)f(x)f(y)

=

2h−i0−1∑
i=0

γi
∑
x∈Xi

∑
y∈X:
y∼x

A(x, y)f(y)

= γ0γ1A(x0, X1)+

+

2h−i0−1∑
i=1

γi [γi−1A(Xi−1, Xi) + γiA(Xi, Xi) + γi+1A(Xi+1, Xi)] .

(9.31)

In order to give a lower bound for (9.31), we �rst note that from 0 ≤ γ0 <

γ1 (cf. Lemma 9.3.1) and (9.27) we deduce that

γ0γ1A(x0, X1) ≥ γ2
0A(x0, X1) = γ2

0k ≥ [2
√
k − 1 cosα]γ2

0 (9.32)

(the last inequality follows immediately from (k − 2)2 ≥ 0 and cosα ≤ 1).

In the last line of (9.31), for the �rst term of the sum, corresponding to

i = 1, keeping in mind (9.27) and γ1 ≥ γ2, we have

γ0A(X0, X1) + γ1A(X1, X1) + γ2A(X2, X1)

≥ γ0A(X0, X1) + γ2[A(X1, X1) +A(X2, X1)]

(by (9.29)) = γ0A(X0, X1) + γ2[kn1 −A(X0, X1)]

(by (9.27)) = γ0k + γ2[k2 − k]

= k[γ0 + (k − 1)γ2]

(by (9.27)) = n1[γ0 + (k − 1)γ2].

As the terms corresponding to i ≥ 2 are concerned, keeping in mind that

γi−1 ≥ γi ≥ γi+1, from (9.28) and (9.29) we deduce that

γi−1A(Xi−1, Xi) + γiA(Xi, Xi) + γi+1A(Xi+1, Xi)

≥ γi−1A(Xi−1, Xi) + γi+1[A(Xi, Xi) +A(Xi+1, Xi)]

= γi−1[ni − ni +A(Xi−1, Xi)] + γi+1[A(Xi, Xi) +A(Xi+1, Xi)]

= γi−1ni + γi−1[A(Xi−1, Xi)− ni] + γi+1[A(Xi, Xi) +A(Xi+1, Xi)]

≥ γi−1ni + γi+1[A(Xi−1, Xi)− ni] + γi+1[A(Xi, Xi) +A(Xi+1, Xi)]

= γi−1ni + γi+1[−ni +A(Xi−1, Xi) +A(Xi, Xi) +A(Xi+1, Xi)]

= γi−1ni + γi+1(k − 1)ni

= ni[γi−1 + (k − 1)γi+1].
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Moreover, for all i ≥ 1 we have

ni[γi−1 + (k − 1)γi+1]

=

√
k − 1

(k − 1)(i+i0)/2
ni {cos[(i+ i0 − h− 1)α] + cos[(i+ i0 − h+ 1)α]}

=
2
√
k − 1

(k − 1)(i+i0)/2
ni cosα cos[(i+ i0 − h)α]

= [2
√
k − 1 cosα]ni

cos[(i+ i0 − h)α]

(k − 1)(i+i0)/2

= [2
√
k − 1 cosα]niγi,

where the �rst equality follows from (9.26).

Using the above estimates, we get the desired lower bound for (9.31):

〈Af, f〉L(X) ≥ [2
√
k − 1 cosα]

2h−i0−1∑
i=0

niγ
2
i

(by (9.30)) = [2
√
k − 1 cosα]〈f, f〉L(X).

To derive the main result of this section, we need to recall the Courant-

Fischer min-max formula for the eigenvalues of a Hermitian operator.

Exercise 9.3.3 (Courant-Fischer min-max formula) Let W be an n-

dimensional vector space and T : W →W a Hermitian operator. Denote by

µ0 ≥ µ1 ≥ · · · ≥ µn−1 the (real) eigenvalues of T and by {u0, u1, . . . , un−1} a
corresponding orthonormal basis of eigenvectors. Let 0 ≤ s ≤ n− 1. Denote

by G(W, s) the Grassmann variety of all s-dimensional subspaces of W and

set Us = 〈us, us+1, . . . , un−1〉.
(1) Prove that for each V ∈ G(W, s+ 1) one has dim(V ∩ Us) ≥ 1

(Hint: use the Grassmann identity).

(2) Show that

max{〈Tw,w〉 : w ∈ Us, ‖w‖ = 1} = µs.

(3) From (1) and (2) deduce that for each V ∈ G(W, s+ 1)

min{〈Tv, v〉 : v ∈ V, ‖v‖ = 1} ≤ µs.

(4) Show that if V = 〈u0, u1, . . . , us〉 then

min{〈Tv, v〉 : v ∈ V, ‖v‖ = 1} = µs.
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(5) From (3) and (4) deduce the Courant-Fischer min-max formula

max
V ∈G(W,s+1)

min{〈Tv, v〉 : v ∈ V, ‖v‖ = 1} = µs.

We are now in position to present some fundamental estimates for the

eigenvalues of a k-regular graph.

Theorem 9.3.4 Let G = (X,E, r) be a �nite connected k-regular graph,

k ≥ 3, with no loops. Suppose that there exist a positive integer h and s+ 1

vertices x1, x2, . . . , xs+1 ∈ X such that d(xi, xj) ≥ 4h, for i 6= j. Then

µs(G) ≥ 2
√
k − 1 cos

π

2h
. (9.33)

Proof For j = 1, 2, . . . , s+ 1 de�ne fj ∈ L(X) by setting

fj(x) =

{
γi if 0 ≤ d(x, xj) = i ≤ 2h− i0
0 if d(x, xj) > 2h− i0,

where the γi's are as in (9.26). Then 〈fj , fk〉L(X) = 0 (because fj and fk
have disjoint supports) for 1 ≤ j 6= k ≤ s+ 1, so that U = 〈f1, f2, . . . , fs+1〉
is an (s + 1)-dimensional subspace of L(X). Moreover, from Lemma 9.3.2

(where x0 therein is replaced time after time by x1, x2, . . . , xs+1) we deduce

that

〈Af, f〉L(X) ≥ 〈f, f〉L(X)2
√
k − 1 cos

π

2h
(9.34)

for all f ∈ U .
From Exercise 9.3.3 (the Courant-Fischer min-max formula) and with the

notation therein we deduce

µs = max
V ∈G(L(X),s+1)

min{〈Af, f〉L(X) : f ∈ V, ‖f‖L(X) = 1}. (9.35)

Then (9.33) follows from (9.35) and (9.34).

Corollary 9.3.5 Let G be a �nite connected k-regular graph, k ≥ 3, with

no loops. Suppose that the diameter of G satis�es that D(G) ≥ 4h for some

positive integer h. Then

µ1(G) ≥ 2
√
k − 1

(
1− π2

8h2

)
.

Proof Apply Theorem 9.3.4 with s = 1 and the estimate cos θ ≥ 1− θ2

2 .
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Corollary 9.3.6 (Alon-Boppana-Serre: II proof) Let ε > 0 and k ≥ 3.

Then there exists a positive constant C(ε, k) such that the following holds.

For every �nite connected k-regular graph G = (X,E, r) with no loops, the

number of eigenvalues of the corresponding adjacency matrix belonging to the

interval [(2− ε)
√
k − 1, k] is at least C(ε, k)|X|. Explicitly, we may choose

C(ε, k) =

{
2
− 2π√

ε
−5

if k = 3

(k − 1)
− 2π√

ε
−4

if k ≥ 4.

Proof We start by denoting by h the (positive) integer satisfying

h ≥ π

2
√
ε
> h− 1, (9.36)

so that ε ≥ π2

4h2
and therefore (recall that cos θ ≥ 1− θ2

2 )

2
√
k − 1 cos

π

2h
≥ 2
√
k − 1(1− π2

8h2
) ≥
√
k − 1(2− ε).

(We want to use the inequality in Theorem 9.3.4, that is,

µ0, µ1, . . . , µs ≥ 2
√
k − 1 cos

π

2h
≥
√
k − 1(2− ε) (9.37)

with the best possible, that is, the smallest, h.) According to Theorem 9.3.4,

choose the largest s such that the hypotheses therein are satis�ed, and let

x1, x2, . . . , xs+1 ∈ X be the corresponding points. Then, for every x ∈ X

there exists 1 ≤ j ≤ s + 1 such that d(x, xj) ≤ 4h − 1. Arguing as in the

proof of Proposition 8.1.1, we conclude that

|X| ≤ (s+ 1)[1 + k + k(k − 1) + · · ·+ k(k − 1)4h−2]

= (s+ 1)

[
1 + k

(k − 1)4h−1 − 1

k − 2

]
.

From (9.37) we deduce that such a constant C(ε, k) exists and satis�es

C(ε, k) ≥ s+ 1

|X|
≥
[
1 + k

(k − 1)4h−1 − 1

k − 2

]−1

. (9.38)

Now, for k ≥ 4 we have

1 + k
(k − 1)4h−1 − 1

k − 2
≤ (k − 1)4h (9.39)

because this is equivalent to

−2 + k(k − 1)4h−1 ≤ (k − 2)(k − 1)4h
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which is certainly satis�ed as k ≤ (k − 2)(k − 1) for k ≥ 4. Therefore,

C(ε, k) ≥ (k − 1)−4h ≥ (k − 1)−2π/
√
ε−4

where the �rst inequality follows from (9.38) and (9.39), and the second from

(9.36). Finally, for k = 3 we may use

1 + k
(k − 1)4h−1 − 1

k − 2
|k=3 = 3 · 24h−1 − 2 ≤ 24h+1

in place of (9.39).

9.4 Ramanujan graphs

De�nition 9.4.1 Let G = (X,E, r) be a �nite connected k-regular graph.

Denote by k = µ0 > µ1 ≥ · · · ≥ µn−1 the eigenvalues of the adjacency matrix

of G. Setting

µ(G) = max{|µi| : |µi| 6= k, i = 1, 2, . . . , n− 1} (9.40)

one says that G is a Ramanujan graph provided

µ(G) ≤ 2
√
k − 1.

Note that if G is bipartite then (cf. Proposition 8.3.4) G is Ramanujan if

and only if

µ1 ≤ 2
√
k − 1.

Exercise 9.4.2 (see [99]) Let G be a connected strongly regular graph with

parameters (v, k, λ, µ) (cf. De�nition 8.2.1). Show that G is Ramanujan if

and only if

2|λ− µ|
√
k − 1 ≤ 3k + µ− 4.

In the remaining of this section, we apply methods and results on �nite

�elds established in Section 7.1 to introduce and describe the Paley graph

which constitutes an interesting example of a Ramanujan graph. We follow

the approach in the monograph by van Lint and Wilson [97].

Let p be an odd prime and q = pn. The Legendre symbol on Fq may be

de�ned, as in De�nition 4.4.7, by setting

η(y) =


1 if y 6= 0 is a square in Fq
−1 if y 6= 0 is not a square in Fq
0 if y = 0
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(see also Proposition 6.4.4).

Exercise 9.4.3 Let q = pn with p an odd prime.

(1) Show that η is a multiplicative character of Fq and that, in the nota-

tion of (7.11), we have

η(xk) = exp(πik) for k = 0, 1, . . . , q − 1.

(2) Prove that, for z 6= 0, ∑
y∈Fq

η(y)η(y + z) = −1

Hint: for y 6= 0, η(y)η(y + z) = η(y2)η(1 + y−1z).

(3) Prove that −1 is a square in Fq if and only if q ≡ 1 mod 4.

(4) De�ne a matrix R = (r(x, y))x,y∈Fq by setting

r(x, y) = η(x− y) for all x, y ∈ Fq.

Prove that

• R is symmetric (resp. antisymmetric) if q ≡ 1 mod 4 (resp. q ≡ 3

mod 4).

• RJ = JR = 0, where J is as in Exercise 8.2.2.(1).

• RRT = qI − J
Hint: Use (2).

Example 9.4.4 (The Paley graph) Let p be an odd prime and q = pn.

Suppose that q ≡ 1 mod 4. The Paley Graph P (q) has vertex set Fq and

two distinct vertices x, y ∈ Fq are joined if x− y is a square. Note that, by

virtue of Exercise 9.4.3.(3), x− y is a square if and only if y− x is a square.

We deduce that P (q) is an undirected simple graph without loops.
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Fig. 9.1. The Paley graph P (13)
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Exercise 9.4.5 We use the same notation as in Exercise 9.4.3 and Example

9.4.4.

(1) Show that the adjacency matrix of P (q) is

A =
1

2
(R+ J − I).

(2) Deduce that P (q) is a strongly regular graph with parameters (q, 1
2(q−

1), 1
4(q − 5), 1

4(q − 1))

Hint: See Exercise 8.2.2 and Exercise 9.4.3.(4).

(3) [99, 161] Show that P (q) is a Ramanujan graph

Hint: Use Exercise 9.4.2.

9.5 Expander graphs

De�nition 9.5.1 Let Gn = (Xn, En, rn), n ∈ N, be a sequence of �nite

(undirected) graphs. Suppose that there exist and integer k ≥ 2 and ε > 0

such that

• Gn is k-regular for all n ∈ N;
• |Xn| → +∞ as n→ +∞;

• h(Gn) ≥ ε for all n ∈ N,
where h(·) denotes the isoperimetric constant (cf. De�nition 9.1.1). Then we

say that (Gn)n∈N is a family of expander graphs (brie�y, expanders).

Remark 9.5.2 From (9.6)† we deduce that if (Gn)n∈N is a family of k-regular

graphs, then

k

2
|Xn| ≤ |En| ≤ k|Xn|

for all n ∈ N, that is, the number of edges grows linearly with the size, i.e.

with the number of vertices, of the graphs Gn (because k is �xed).

Also, the condition h(Gn) ≥ ε ensures a good connectivity of the graph

Gn in the following sense: if An ⊆ Xn is a subset such that |An| ≤ |Xn|
2 ,

then, in order to �disconnect� An from its complement Xn \ An, that is, to
remove ∂An, we need to �cut� at least ε|An| edges of Gn. Note that if |An| ≈
|Xn|, then the quantity ε|An| grows linearly with |Xn|. In other words,

expanders provide a solution to the following min-max problem: to minimize

the number of edges and to maximize the connectivity of the graphs.

Moreover, keeping k �xed and letting |Xn| → +∞ for n → +∞, the

† Note that in (9.6), E0 (respectively, E1) is not the edge set of G0 (respectively, G1), but denotes
the loops (respectively, E \ E0) of a generic graph G = (X,E, r).
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graphs Gn become more and more �sparse�, that is, they have a large number

|Xn| of vertices, but each vertex has a �small� �xed number k of neighbours.

Recalling Remark 9.1.10, we immediately have the following equivalent

de�nition of expanders.

De�nition 9.5.3 (Spectral de�nition of expanders) Let Gn = (Xn, En, rn),

n ∈ N, be a sequence of �nite connected graphs. Suppose that there exist

and integer k ≥ 2 and δ > 0 such that

• Gn is k-regular for all n ∈ N;
• |Xn| → +∞ as n→ +∞;

• δ(Gn) ≥ δ for all n ∈ N,
where δ(·) denotes the spectral gap (cf. De�nition 9.1.9). Then (Gn)n∈N is a

family of expanders.

Remark 9.5.4 We may reformulate Corollary 9.2.7 as follows:

lim sup
n→∞

δ(Gn) = k − lim inf
n→∞

µ1(G) ≤ k − 2
√
k − 1. (9.41)

As a consequence, if δ(Gn) ≥ δ for all n ∈ N, then necessarily

δ ≤ k − 2
√
k − 1. (9.42)

Example 9.5.5 Let (Gn)n∈N be a sequence of �nite connected k-regular

Ramanujan graphs. Suppose that |Xn| → +∞ as n → +∞. Then (Gn)n∈N
is a family of expanders with δ = k−2

√
k − 1 (cf. De�nition 9.5.3). It follows

from Remark 9.5.4 that a sequence of Ramanujan graphs is asymptotically

optimal within the sequences of expanders.

The construction of a single Ramanujan graph is not di�cult (see Exercise

9.4.2 and Exercise 9.4.5). On the contrary, the construction of a sequence of

Ramanujan graphs of �xed degree (and increasing size) requires very deep

results from number theory. One of these results is the so-called Ramanujan

conjecture, eventually proved by several mathematicians including Deligne

and Drinfeld. For this reason, although Ramanujan never worked in graph

theory, these expanders were named after him.

The �rst explicit construction of a sequence of Ramanujan graphs (of

constant degree k and increasing size) were given for the following values of

k:

• k = p+ 1, with p an odd prime, by Lubotzky, Phillips, and Sarnak [101],

and Margulis [112] in 1988;
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• k = 3, by Chiu [40] in 1992;

• k = q + 1, with q = pr, p prime and r ≥ 1, by Morgenstern [116] in 1994.

An elementary account of the Lubotzky-Phillips-Sarnak graphs and Mar-

gulis graphs is in the monograph by Davido�, Sarnak, and Valette [48] where,

however, the authors do not provide a full proof of the Ramanujan property

but only a weaker explicit estimate of the spectral gap (the construction

of these graphs is relatively easy, but the proof of the Ramanujan property

is indeed the di�cult point). Se also the monographs by Winnie Li [95],

Lubotzky [99], and Sarnak [135, Chapter 3].

Very recently, in 2015, Marcus, Spielman, and Srivastava [109] proved

that there exist in�nite families of regular bipartite Ramanujan graphs of

every degree k ≥ 3. Later, in [110] they proved the existence of regular

bipartite Ramanujan graphs of every degree and every number of vertices.

With respect to the previous work, this is more elementary (although based

on the probabilistic method, cf. [11]), but it does not provide an explicit

construction. On the other hand, however, the construction of expanders

is much more elementary: in the following sections we shall give several

examples.

9.6 The Margulis example

In 1973 Margulis constructed the �rst example of a family of expanders [111].

His approach was quite abstract, based on the notion of Kazhdan property

(T) (cf. the monograph by Bekka, de la Harpe, and Valette [19]). In 1981

Gabber and Galil [63], using classical Fourier analysis, were able to simplify

Margulis example and to provide a lower bound of the spectral gap. Similar

improvements were obtained in 1987 by Jimbo and Marouka [83] who used

Fourier analysis on the �nite group Zn ⊕ Zn. Further simpli�cations were

made by Hoory, Linial, and Wigderson [74], although they attributed the

merit to Boppana. Our exposition is strictly based on this last reference.

We start by introducing some basic notation taken from Chapter 1 and

Chapter 2. Let n ≥ 1. Write the group A = Zn ⊕ Zn as a set of column

vectors:

A =

{(
x1

x2

)
: x1, x2 ∈ Zn

}
,

equipped with the usual componentwise addition, and denote by 0 =

(
0

0

)
the zero of A. We also consider 2× 2 matrices with entries in Zn. Clearly, a
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matrix

(
a b

c d

)
, with a, b, c, d ∈ Zn, is invertible if and only if its determinant

det

(
a b

c d

)
= ad − bc is invertible in Zn. Moreover, if this is the case, we

have the usual formula(
a b

c d

)−1

=

(
d(ad− bc)−1 −b(ad− bc)−1

−c(ad− bc)−1 a(ad− bc)−1

)
.

Let us set ω = e2πi/n and, for x =

(
x1

x2

)
and y =

(
y1

y2

)
∈ A, write

〈x, y〉 = x1y1 + x2y2. Arguing as in Section 2.4, we can write the Fourier

transform of a function f ∈ L(A) as

f̂(y) =
∑
x∈A

f(x)ω−〈x,y〉 ∀y ∈ A.

Then, the inversion formula (cf. Theorem 2.4.2) takes the form

f(x) =
1

n2

∑
y∈A

f̂(y)ω〈x,y〉 ∀x ∈ A,

while the Plancherel and Parseval formulas (cf. Theorem 2.4.3) become re-

spectively: √∑
y∈A
|f̂(y)|2 = n ·

√∑
x∈A
|f(x)|2 ∀f ∈ L(A)

and ∑
y∈A

f̂1(y)f̂2(y) = n2
∑
x∈A

f1(x)f2(x) ∀f1, f2 ∈ L(A).

Note also that f̂(0) =
∑

x∈A f(x) so that

f̂(0) = 0⇔
∑
x∈A

f(x) = 0. (9.43)

The following result is elementary but new.

Proposition 9.6.1 Let f ∈ L(A), B a 2×2 invertible matrix with entries in

Zn, and b ∈ A. De�ne g ∈ L(A) by setting g(x) = f(Bx+ b) for all x ∈ A.
Then,

ĝ(y) = ω〈B
−1b,y〉f̂((B−1)T y),

for all y ∈ A.
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Proof Let y ∈ A. Then we have

ĝ(y) =
∑
x∈A

f(Bx+ b)ω−〈x,y〉

(z = Bx+ b) =
∑
z∈A

f(z)ω−〈B
−1z−B−1b,y〉

= ω〈B
−1b,y〉

∑
z∈A

f(z)ω−〈z,(B
−1)T y〉

= ω〈B
−1b,y〉f̂((B−1)T y).

In what follows, a special role will be played by the following 2×2 matrices

with entries in Zn:

T1 =

(
1 2

0 1

)
and T2 =

(
1 0

2 1

)
whose inverses are

T−1
1 =

(
1 −2

0 1

)
and T−1

2 =

(
1 0

−2 1

)
.

Clearly,

T1

(
x1

x2

)
=

(
x1 + 2x2

x2

)
, T−1

1

(
x1

x2

)
=

(
x1 − 2x2

x2

)

T2

(
x1

x2

)
=

(
x1

2x1 + x2

)
, T−1

2

(
x1

x2

)
=

(
x1

−2x1 + x2

) (9.44)

(everything mod n). Moreover, we identify Zn with the integral interval

[−n
2 ,

n
2 ) = {k ∈ Z : −n

2 ≤ k <
n
2 }. Clearly,[

−n
2
,
n

2

)
=

{
[−m,m) if n = 2m is even

[−m,m] if n = 2m+ 1 is odd.

Then we can identify A with the set{(
x1

x2

)
: x1, x2 ∈

[
−n

2
,
n

2

)}
.

The diamond in A is the set (see Figure 9.2)

D =

{(
x1

x2

)
∈ A : |x1|+ |x2| <

n

2

}
.
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Fig. 9.2. The diamond D in A.

We de�ne a partial order in A by setting

(
x1

x2

)
>

(
y1

y2

)
if


|x1| > |y1| and |x2| ≥ |y2|
or

|x1| ≥ |y1| and |x2| > |y2|.

We now present a series of technical lemmas which are essential for our

subsequent calculations.

Lemma 9.6.2 Let x =

(
x1

x2

)
∈ D \ {0}.

(i) If |x1| = |x2| then two of the four points

T1x, T−1
1 x, T2x, T−1

2 x (9.45)

are strictly greater than x and the other two are incomparable with x;

(ii) if |x1| 6= |x2| and x1 6= 0 6= x2, then three of the points in (9.45) are

strictly greater than x and the other one is strictly smaller;

(iii) if |x1| 6= |x2| but either x1 = 0 or x2 = 0, then two of the points in

(9.45) are strictly greater than x and the other two are equal to x.

Proof (i) Suppose �rst that x1 = x2. Then

T−1
1 x = T−1

1

(
x1

x1

)
=

(
−x1

x1

)
and T−1

2 x = T−1
2

(
x1

x1

)
=

(
x1

−x1

)
are incomparable with x. Moreover,

|x1|+ |x1| <
n

2
⇒ |x1| <

n

4
,
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and therefore

T1x = T1

(
x1

x1

)
=

(
3x1

x1

)
and T2x = T2

(
x1

x1

)
=

(
x1

3x1

)
.

First case: suppose −n
6 ≤ x1 < n

6 . Then −n
2 ≤ 3x1 < n

2 and therefore

|3x1| > |x1| ensures that T1x > x and T2x > x.

Second case: suppose −n
4 < x1 < −n

6 . Then −
3
4n < 3x1 < −n

2 so that

n

4
< 3x1 + n <

n

2
,

and we must take 3x1 + n to represent 3x1 in the range [−n
2 ,

n
2 ). This gives

|3x1 + n| > n
4 > |x1| so that T1x > x and T2x > x.

Third case: suppose n
6 ≤ x1 <

n
4 . Then

n
2 ≤ 3x1 <

3
4n so that

−n
2
≤ 3x1 − n < −

n

4
,

and we must take 3x1 − n to represent 3x1 in the range [−n
2 ,

n
2 ). This gives

|3x1 − n| > n
4 > |x1| and, again, T1x > x and T2x > x.

When x1 = −x2 we may argue similarly: now T−1
1 x > x and T−1

2 x > x,

while T1x and T2x are incomparable with x. We leave the easy details to

the reader.

(ii) By (9.44) it su�ces to compare |x1 + 2x2| and |x1 − 2x2| with |x1|,
and |x2 + 2x1| and |x2 − 2x1| with |x2|. It is easy to check (exercise) that,

by means of the symmetries

x1 ↔ −x1, x2 ↔ −x2, and x1 ↔ x2,

we may reduce to the case

0 < x2 < x1.

Clearly, we also have x1 <
n
2 , x1 + x2 <

n
2 , and x2 <

n
4 .

First comparison: We have

|x1 − 2x2| =

{
x1 − 2x2 < x1 if x2 <

x1
2

2x2 − x1 = x2 − (x1 − x2) < x1 if x12 ≤ x2 < x1,

and therefore T−1
1 x < x.

Second comparison:

If x1 + 2x2 <
n
2 then |x1 + 2x2| = x1 + 2x2 > x1.

If x1 + 2x2 ≥ n
2 then x2 <

n
4 yields n

2 ≤ x1 + 2x2 ≤ 3
4n which in turn

implies that −n
2 ≤ −n + x1 + 2x2 < −n

4 , so that −n + x1 + 2x2 represents

x1 + 2x2 in the range [−n
2 ,

n
2 ) and | − n + x1 + 2x2| = n − x1 − 2x2 > x1,

since x1 + x2 <
n
2 .
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In both cases, T1x > x.

Third comparison:

If 2x1 + x2 <
n
2 then |2x1 + x2| = 2x1 + x2 > x2.

If 2x1+x2 ≥ n
2 then, from 2x1+x2 = (x1+x2)+x1 <

n
2 + n

2 = n we deduce

that n
2 ≤ 2x1 + x2 < n which in turn implies that −n

2 ≤ 2x1 + x2 − n < 0,

so that 2x1 + x2 − n represents 2x1 + x2 in [−n
2 ,

n
2 ) and |2x1 + x2 − n| =

n− 2x1 − x2 > x2, because x1 + x2 <
n
2 .

In both cases, T2x > x.

Fourth comparison:

If −2x1 + x2 ≥ −n
2 then | − 2x1 + x2| = 2x1 − x2 > x2.

If −2x1 + x2 < −n
2 , from x1 <

n
2 we deduce that −2x1 + x2 > −n which

in turn implies that 0 < −2x1 +x2 +n < n
2 , so that −2x1 +x2 +n represents

−2x1 + x2 in [−n
2 ,

n
2 ) and | − 2x1 + x2 + n| = n − 2x1 + x2 > x2 (because

x1 <
n
2 ).

In both cases, T−1
2 x > x.

(iii) Arguing as in (ii), we may reduce to the case 0 = x2 < x1. Then

T±1
1 x = x, T2x = (x1, 2x1)T > x and T−1

2 x = (x1,−2x1)T > x.

Lemma 9.6.3 Let γ : A×A→ R denote the function de�ned by setting

γ(x, y) =


5
4 if x > y
4
5 if y > x

1 otherwise,

for all x, y ∈ A. Then

γ(x, y)γ(y, x) = 1 (9.46)

and

γ(x, y) ≤ 5

4
(9.47)

for all x, y ∈ A. Moreover, if x =

(
x1

x2

)
∈ A \ {0}, we have

|cos
πx1

n
|·[γ(x, T2x)+γ(x, T−1

2 x)]+|cos
πx2

n
|·[γ(x, T1x)+γ(x, T−1

1 x)] ≤ 3.65.

(9.48)

Proof (9.46) and (9.47) are obvious. We divide the proof of (9.48) into two

cases.

First case: x is outside the diamond D. By virtue of (9.47), the left hand
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side of (9.48) is bounded above by

5

2
(| cos

πx1

n
|+ | cos

πx2

n
|). (9.49)

Since the cosine function is even, we may assume that 0 ≤ x1, x2 ≤ n
2 so that

0 ≤ πx2
n ≤

π
2 and x2 7→ cos πx2n is positive and decreasing. It follows that

the maximum of (9.49) is achieved on the boundary of the diamond, and

therefore (9.49) is bounded above by (here the max is over all 0 ≤ x1 ≤ n
2 ):

max

(
5

2
(| cos

πx1

n
|+ | cos

π(n/2− x1)

n
|)
)

= max

(
5

2
(cos

πx1

n
+ sin

πx1

n
)

)
≤ 5
√

2

2
< 3.65.

Second case: x is inside the diamond D. Now, using the trivial estimate

| cos θ| ≤ 1 we get that the left hand side of (9.48) is bounded by

γ(x, T1x) + γ(x, T−1
1 x) + γ(x, T2x) + γ(x, T−1

2 x). (9.50)

If |x1| = |x2| by Lemma 9.6.2.(i) and the de�nition of γ we have that (9.50) is

bounded above by 1+1+ 4
5 + 4

5 = 3.6 < 3.65. Suppose now that |x1| 6= |x2|. If
x1 6= 0 6= x2, then by Lemma 9.6.2.(ii) we have that (9.50) is bounded above

by 3·45+5
4 = 3.65. If either x1 or x2 is equal to zero, then by Lemma 9.6.2.(iii),

we again have that (9.50) is bounded above by 1 + 1 + 4
5 + 4

5 = 3.6 < 3.65.

Lemma 9.6.4 Let G : A→ R be a non-negative function such that G(0) = 0.

Then∑
x∈A

2G(x)
[
G(T−1

2 x)| cos
πx1

n
|+G(T−1

1 x)| cos
πx2

n
|
]
≤ 3.65

∑
x∈A

G(x)2.

(9.51)

Proof Let x, y ∈ A. From (9.46) we deduce that

2G(x)G(y) ≤ γ(x, y)G(x)2 + γ(y, x)G(y)2.

Then, the left hand side of (9.51) is bounded above by∑
x∈A

{
| cos

πx1

n
| ·
[
γ(x, T−1

2 x)G(x)2 + γ(T−1
2 x, x)G(T−1

2 x)2
]

+

+| cos
πx2

n
| ·
[
γ(x, T−1

1 x)G(x)2 + γ(T−1
1 x, x)G(T−1

1 x)2
]}
. (9.52)
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Setting x′ = T−1
2 x and observing that x′1 = x1 (that is, T2 and T−1

2 do not

change x1, see (9.44)), we get∑
x∈A
| cos

πx1

n
|γ(T−1

2 x, x)G(T−1
2 x)2 =

∑
x′∈A
| cos

πx′1
n
|γ(x′, T2x

′)G(x′)2.

Similarly, with the change of variable x′′ = T−1
1 x, we have x′′2 = x2 and∑

x∈A
| cos

πx2

n
|γ(T−1

1 x, x)G(T−1
1 x)2 =

∑
x′′∈A

| cos
πx′′2
n
|γ(x′′, T1x

′′)G(x′′)2.

Therefore, recalling that cos
πx′1
n = cos πx1n and cos

πx′′2
n = cos πx2n , the upper

bound (9.52) equals∑
x∈A

G(x)2
{
| cos

πx1

n
| · [γ(x, T2x) + γ(x, T−1

2 x)]

+ | cos
πx2

n
| · [γ(x, T1x) + γ(x, T−1

1 x)]
}
,

which, by virtue of Lemma 9.6.3 and the hypothesis G(0) = 0, is bounded

above by 3.65
∑

x∈AG(x)2.

Finally, we state a result which is a consequence of the previous lem-

mas and that will quickly lead to the proof that the Margulis graphs are

expanders. Recall that W1(A) = {f ∈ L(A) :
∑

x∈A f(x) = 0}, and set

e1 = (1, 0)T and e2 = (0, 1)T .

Theorem 9.6.5 For all real valued f ∈W1(A) we have∑
x∈A

f(x)[f(T1x)+f(T1x+e1)+f(T2x)+f(T2x+e2)] ≤ 3.65 ‖f‖2L(A). (9.53)

Proof First of all, note that, by virtue of Proposition 9.6.1, if F denotes the

Fourier transform of f , then the Fourier transform of the function

x 7→ f(T1x) + f(T1x+ e1) + f(T2x) + f(T2x+ e2)

is the function

x =

(
x1

x2

)
7→ F (T−1

2 x) + F (T−1
2 x)ωx1 + F (T−1

1 x) + F (T−1
1 x)ωx2 ,

because (T−1
1 )T = T−1

2 , (T−1
2 )T = T−1

1 , T−1
1 e1 = e1, and T−1

2 e2 = e2.

Therefore, by the identities of Plancherel and Parseval, (9.53) is equivalent
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to∑
x∈A

F (x)[F (T−1
2 x)(1 + ωx1) + F (T−1

1 x)(1 + ωx2)] ≤ 3.65 ‖F‖2L(A), (9.54)

while condition
∑

x∈A f(x) = 0 is equivalent to F (0) = 0 (see (9.43)). Since

|1 + ωt|2 = |1 + cos
2πt

n
+ i sin

2πt

n
|2

= 2(1 + cos
2πt

n
)

= 4 cos2 πt

n
,

then (9.54) follows from Lemma 9.6.4 and the triangular inequality (by set-

ting G = |F |).

We now present the Gabber-Galil version of the Margulis construction.

De�nition 9.6.6 (Margulis expanders) For every integer n ≥ 1, we

de�ne the 8-regular graph Mn = (Xn, E, rMn), where Xn = Z2
n, equipped

with the rotation map (cf. Exercise 8.12.3) RotMn : Xn × [8] → Xn × [8]

de�ned by setting

RotMn(x, i) = (yi, i+ 4 mod 8)

for all x ∈ Xn and i ∈ [8], where

y1 = T1x, y2 = T2x, y3 = T1x+ e1, y4 = T2x+ e2

y5 = T−1
1 x, y6 = T−1

2 x, y7 = T−1
1 x− e1, y8 = T−1

2 x− e2,
(9.55)

for all x ∈ X.

Observe that the second line of (9.55) can be rewritten as

x = T1y5 = T2y6 = T1y7 + e1 = T2y8 + e2, (9.56)

showing, in particular, that RotMn is indeed a rotation map (cf. Exercise

8.12.3).

Note also that Mn may have multiple edges and loops. For instance,

T10 = T20 = T−1
1 0 = T−1

2 0 = 0 so that there are (exactly) four loops at 0.

Exercise 9.6.7

(1) Show that, if n is divisible by 4, then there are two (distinct) edges

connecting

(
x1

n/4

)
and

(
x1 + n/2

n/4

)
.
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(2) Show that, if n − 1 is divisible by 4, then there are two (distinct)

edges connecting

(
x1

(n− 1)/4

)
and

(
x1 + (n− 1)/2

(n− 1)/4

)
.

Theorem 9.6.8 The 8-regular graphsMn = (Xn, En, rMn) satisfy:

µ1(Mn) ≤ 7.3

for all n ∈ N. In particular, (Mn)n≥1 is a family of expanders.

Proof Let n ≥ 5. For f ∈W1 real valued we have

〈AMnf, f〉 =
∑
x∈Xn

[AMnf ](x)f(x)

=
∑
x∈Xn

f(x)[f(T1x) + f(T2x) + f(T1x+ e1) + f(T2x+ e2)

+ f(T−1
1 x) + f(T−1

2 x) + f(T−1
1 x− e1) + f(T−1

2 x− e2)]

(by (9.56)) = 2
∑
x∈Xn

f(x)[f(T1x) + f(T2x) + f(T1x+ e1) + f(T2x+ e2)]

≤ 7.3 ‖f‖2L(Xn),

where the inequality follows from Theorem 9.6.5. From (9.9) we deduce that

µ1(Mn) ≤ 7.3 and therefore

0.7 = 8− 7.3 ≤ k − µ1(Mn) = δ(Mn).

Thus, in accordance with De�nition 9.5.3, (Mn)n∈N is a family of expanders

with spectral gap δ ≥ 0.7.

9.7 The Alon-Schwartz-Shapira estimate

This section is an exposition of the main result in [10], where the authors

� using, however, a slightly di�erent de�nition of a replacement product �

give a lower bound for the isoperimetric constant of a replacement product.

This result is interesting because it does not rely on spectral techniques but

on a direct combinatorial argument.

We use the notation of De�nition 8.12.4.

Theorem 9.7.1 Let G = (X,E, rG) be a d-regular graph and F = (Y, F, rF )

a k-regular graph with Y = [d]. Assume that in both graphs we have de�ned
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a labelling and a rotation map as in De�nition 8.12.1. Then:

h(G r©F) ≥ min

{
1

40

[
h(G)

d

]2

h(F),
1

8

h(G)

d

}
. (9.57)

Proof First of all, for x ∈ X we set Ξx = {x} × [d], so that we can regard

the vertex set X × [d] of G r©F as the disjoint union
∐
x∈X Ξx (observe that

each Ξx is a copy of F and the Ξxs are joined according to the structure of

G, as explained in De�nition 8.12.4 and Remark 8.12.6).

Let now Γ ⊆ X × [d] such that

|Γ| ≤ 1

2
|X × [d]| = |X|d

2
. (9.58)

Set

• Γx = Γ ∩ Ξx;

• X ′ = {x ∈ X : |Γx| ≤ d− h(G)
4 } and X

′′ = X \X ′;
• Γ′ =

∐
x∈X′ Γx and Γ′′ =

∐
x∈X′′ Γx (clearly, Γ′

∐
Γ′′ = Γ).

We distinguish two cases.

First case:

|Γ′| ≥ 1

10

h(G)

d
|Γ|. (9.59)

Note that, by de�nition, for x ∈ X ′ we have

|Ξx \ Γx| = d− |Γx| ≥
h(G)

4

so that (observing that |Γx| ≤ d)

|Ξx \ Γx| ≥
h(G)

4d
d ≥ h(G)

4d
|Γx|.

Similarly, from (9.2) we deduce that h(G)
4d ≤

1
4 < 1, so that

|Γx| ≥
h(G)

4d
|Γx|.

Then, both in the case |Γx| ≤ d
2 and in the case |Ξ \ Γx| ≤ d

2 , by de�nition

of h(F), we deduce that there are at least h(G)
4d |Γx|h(F) edges (of the second

kind) connecting Γx and its complement Ξx \Γx (a copy of F). Then, by our

assumption (9.59), the edges connecting Γ and its complement are at least

1

10

h(G)

d

h(G)

4d
|Γ|h(F) =

1

40

(
h(G)

d

)2

|Γ|h(F).

After dividing by |Γ|, this yields the �rst term in the minimum in (9.57).
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Second case:

|Γ′| < 1

10

h(G)

d
|Γ|. (9.60)

Since Γ = Γ′
∐

Γ′′, this gives

|Γ′′| >
(

1− h(G)

10d

)
|Γ|. (9.61)

Moreover, since, by de�nition, |Γx| > d− h(G)
4 for each x ∈ X ′′, summing up

over X ′′ we get |Γ′′| > |X ′′|
(
d− h(G)

4

)
, and therefore

|X ′′| < |Γ′′|
d− h(G)

4

≤ |Γ|
d− h(G)

4

≤
1
2d|X|
d− h(G)

4

(where the last inequality follows from (9.58)). From the inequality h(G) ≤ d
we deduce that

d
2

d− h(G)
4

≤ 2

3
,

so that

|X ′′| ≤ 2

3
|X|. (9.62)

Note also that

|X ′′| ≥ 1

d
|Γ′′|. (9.63)

simply because

|Γ′′| = |
∐
x∈X′′

Γx| ≤ |
∐
x∈X′′

Ξx| = d|X ′′|.

We claim that

min{|X ′|, |X ′′|} ≥ |X
′′|

2
.

Indeed, from (9.62) we deduce that

|X ′| = |X| − |X ′′| ≥ 1

3
|X| ≥ 1

2
|X ′′|.

By de�nition of h(G), it follows that there exists a set F of edges of G such

that

|F | ≥ 1

2
h(G)|X ′′|

and F connects X ′ with X ′′. Denote by Φ the corresponding set of edges

(of the �rst type) in G r©F (so that they connect vertices in
∐
x∈X′ Ξx with
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vertices in
∐
x∈X′′ Ξx). Since for x ∈ X ′′ we have |Γx| > d − h(G)

4 then

|Ξx \ Γx| < h(G)
4 so that at most h(G)

4 |X
′′| of the edges in Φ connect a vertex

in
∐
x∈X′′(Ξx \ Γx) with a vertex in

∐
x∈X′ Ξx (recall that each vertex is

incident to exactly one edge of the �rst type, cf. Remark 8.12.6). Therefore,

if we denote by Φ2 the subset of Φ of all edges that connect vertices of Γ′′

with vertices in
∐
x∈X′ Ξx, then

|Φ2| ≥ |Φ| −
h(G)

4
|X ′′| ≥ 1

4
h(G)|X ′′|. (9.64)

Consider the decomposition Φ2 = Φ3
∐

Φ4, where Φ3 are the edges that

connect vertices of Γ′′ with vertices in Γ′ and Φ4 its complement (so that an

edge of Φ4 connects a vertex of Γ′′ ⊆ Γ with a vertex in the complement of

Γ). Then

|Φ3| ≤ |Γ′|

(by (9.60)) ≤ 1

10

h(G)

d
|Γ|

(by (9.61)) ≤ h(G)/10d

1− h(G)/10d
|Γ′′|

(because h(G) ≤ d) ≤ h(G)

9d
|Γ′′|

(by (9.63)) ≤ h(G)

9
|X ′′|.

It follows that

|Φ4| = |Φ2| − |Φ3|

(by (9.64)) ≥
(

1

4
− 1

9

)
h(G)|X ′′|

(by (9.63)) ≥ 5

36

h(G)

d
|Γ′′|

(by (9.61)) ≥ 5

36

h(G)

d

(
1− h(G)

10d

)
|Γ|

(because 1− h(G)

10d
≥ 9

10
) ≥ 1

8

h(G)

d
|Γ|.

This computation yields the second term in the min of (9.57), ending the

proof of the theorem.

Theorem 9.7.1 applies to situations where we have a lower bound for the

normalized isoperimetric constant of G. Here, we give an example.

Corollary 9.7.2 Let (Gn)n∈N be a family of regular graphs such that
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• the degree of Gn is dn and dn → +∞ as n→ +∞;

• Gn has an vertices and an → +∞ as n→ +∞;

• there exists δ > 0 such that h(Gn)
dn
≥ δ for all n ∈ N.

Let also (Fn)n∈N be a family of k-degree expander graphs. Suppose that Fn
has dn vertices and there exists ε > 0 such that h(Fn) ≥ ε for all n ∈ N.
Then Gn r©Fn is a family of (k + 1)-degree expanders with andn vertices and

h(Gn r©Fn) ≥ min

(
δ2ε

40
,
δ

8

)
for all n ∈ N.

Proof It is an immediate consequence of Theorem 9.7.1.

Following [10], we construct a family of graphs that may take the role of

Gn in Corollary 9.7.2.

Let p be a prime number, q = pt for some positive integer t, and denote by

Fq the �eld of order q. Given a positive integer r, we de�ne the �nite graph

LD(q, r) as follows. The vertex set is Fr+1
q = {(a0, a1, . . . , ar) : aj ∈ F, j =

0, 1, . . . , r}. For each a = (a0, a1, . . . , ar) ∈ Fr+1
q and for each (x, y) ∈ F2

q

there is a edge connecting a with

a+ y(1, x, x2, . . . , xr) = (a0 + y, a1 + yx, . . . , ar + yxr).

This way, there are q loops at each vertex (these correspond to the case

y = 0), and all other edges are simple. It follows that LD(q, r) is regular of

degree q2 and has qr+1 vertices.

Theorem 9.7.3 Suppose that 1 ≤ r ≤ q. Then

µ1(LD(q, r)) ≤ qr.

Proof We give a complete spectral analysis of the graph LD(q, r), by ex-

hibiting an orthonormal set of eigenvectors and by computing the relative

eigenvalues. Actually, the eigenvectors are the character of the additive

Abelian group Fr+1
q , but, in our exposition, we prefer to follow the original

sources and derive their properties from scratch. Fix a nontrivial linear map

L : Fq → Fp. For instance, thinking of Fq as a t-dimensional vector space

over Fp (i.e., Fq = {(α1, α2, . . . , αt) : αi ∈ Fp, i = 1, 2, . . . , t}), then we can

take L(α1, α2, . . . , αt) = α1. Another choice could be the trace map TrFq/Fp
(cf. Section 6.7). Also, for a = (a0, a1, . . . , ar) and b = (b0, b1, . . . , br) ∈ Fr+1

q
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we set

a · b =
r∑
j=0

ajbj .

Let ω = e2πi/p be a primitive p-th root of the unity and, for a ∈ Fr+1
q , de�ne

va : Fr+1
q → C by setting

va(b) = ωL(a·b)

for all b ∈ Fr+1
q .

Note that

va = v−a, va(b) = vb(a), and va(b+ c) = va(b)va(c) (9.65)

for all a, b, c ∈ Fr+1
q .

We claim that for a 6= (0, 0, . . . , 0)∑
b∈Fr+1

q

va(b) = 0. (9.66)

Indeed, ∑
b∈Fr+1

q

va(b) =
∑

b∈Fr+1
q

ωL(a·b)

=
∑
h∈Fp

∑
b∈Fr+1

q

L(a·b)=h

ωh

= K
∑
h∈Fp

ωh

= 0,

where

K = |{b ∈ Fr+1
q : L(a · b) = h}| =

|Fr+1
q |
|Fq|

· |Fq|
p

is independent of h, and the last equality follows from the fact that ω is a

primitive p-th root of the unity (recall Lemma 2.2.3). The claim is proved.

As a consequence, for a, b ∈ Fr+1
q from (9.65) and (9.66) we deduce

〈va, vb〉L(Fr+1
q ) =

∑
c∈Fr+1

q

va(c)vb(c) =
∑

c∈Fr+1
q

va−b(c) = δa,b|Fr+1
q |,

that is, the set {va : a ∈ Fr+1
q } is an orthogonal basis in L(Fr+1

q ). More

precisely, (va)a∈Fr+1
q

constitutes a parameterization of the characters of Fr+1
q .
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We now show that the functions va ∈ L(Fr+1
q ) are eigenvectors of the

adjacency matrix A of the graph LD(q, r). Indeed, for a, b ∈ Fr+1
q we have

[Ava](b) =
∑
x,y∈Fq

va(b+ y(1, x, x2, . . . , xr))

(by (9.65)) =

 ∑
x,y∈Fq

va(y(1, x, x2, . . . , xr))

 va(b)

so that, setting pa(x) =
∑r

j=0 ajx
j , we have that va is an eigenvector whose

corresponding eigenvalue µa is given by

µa =
∑
x,y∈Fq

va(y(1, x, x2, . . . , xr))

=
∑
x,y∈Fq

ωL(ypa(x))

=
∑
x∈Fq

pa(x)=0

∑
y∈Fq

ωL(ypa(x))

= |Fq| · |{x ∈ Fq : pa(x) = 0}|,

(9.67)

where the two last equalities follow from the identity
∑

y∈Fq ω
L(ypa(x)) =

|Fq|δ0,pa(x). Now, if a = (0, 0, . . . , 0), then µa = |Fq|2 = q2: this is the largest

eigenvalue (recall that LD(q, r) is q2-regular). If a 6= (0, 0, . . . , 0), then the

polynomial pa(x) has at most r roots in Fq and therefore µa ≤ |Fq|r = qr.

Corollary 9.7.4 Suppose that 1 ≤ r ≤ q/2. Then

h(LD(q, r)) ≥ q2

4
.

Proof This follows from Theorem 9.7.3 and the Alon-Milman theorem (The-

orem 9.1.7):

h(LD(q, r)) ≥ q2 − µ1(LD(q, r))

2
≥ q2 − qr

2
≥ q2

4
.

Example 9.7.5 For n ∈ N let

Gn = LD(2n, 2n−1)
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and

Fn =M2n

the Margulis graph (cf. De�nition 9.6.6). Recall that Gn has 2n(2n−1+1) ver-

tices and degree d(Gn) = 22n. Moreover, by Corollary 9.7.4, h(Gn) ≥ 22n

4 so

that
h(Gn)

d(Gn)
≥ 1

4
.

Also, Fn has 22n vertices and constant degree d(Fn) = 8. Moreover, by

virtue of Theorem 9.6.8 and the Alon-Milman theorem (Theorem 9.1.7), we

have

h(Fn) ≥ 8− µ1(Fn)

2
≥ 8− 7.3

2
=

7

20
.

Then by Corollary 9.7.2 (with ε = 7
20 and δ = 1

4) we have that {Gn r©Fn}n∈N
is a family of 9-degree expanders. In fact, for every n ∈ N, the graph Gn r©Fn
has 2n(2n−1+1) · 22n = 2n(2n−1+3) vertices and its isoperimetric constant sat-

is�es

h(Gn r©Fn) ≥ min

(
1

40
· 1

16
· 7

20
,

1

8
· 1

4

)
=

7

12800
.

9.8 Estimates of the �rst nontrivial eigenvalue for the Zig-Zag

product

In this section, following [128], we give an upper bound for the �rst nontrivial

eigenvalue of a zig-zag product in terms of the �rst nontrivial eigenvalues of

its factors.

We �rst need to introduce a slightly modi�ed version of µ1(G). Keeping

the notation of Proposition 8.1.5, for a connected k-regular graph G we set

µ̃1(G) = max{|µ1|, |µn−1|}.

In other words, µ̃1(G) is the largest (in absolute value) eigenvalue of the

adjacency matrix of G di�erent from µ0 = k. Note that, if G is bipartite,

then, by Proposition 8.3.4, µ̃1(G) = k. Moreover, µ1(G) ≤ µ̃1(G) and, by

replacing µ1 by µ̃1, we obtain a variant of the spectral de�nition of expanders

(cf. De�nition 9.1.9 and De�nition 9.5.3).

In the notation of Proposition 8.1.4 and Lemma 9.1.6 we have

µ̃1(G) = max
f∈W1,f 6=0

‖Af‖
‖f‖

= max
f∈W1,f 6=0

|〈Af, f〉|
‖f‖2

. (9.68)

Indeed, if v0, v1, . . . , vn−1 is an orthonormal basis of L(X) such that Avj =
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µjvj for j = 0, 1, . . . , n− 1, then v1, . . . , vn−1 is an orthonormal basis of W1.

Thus, if f =
∑n−1

j=1 αjvj we have Af =
∑n−1

j=1 αjµjvj and

〈Af,Af〉 =
n−1∑
j=1

|αj |2µ2
j ≤ µ̃1(G)2‖f‖2

so that

〈Af,Af〉
‖f‖2

≤ µ̃1(G)2.

On the other hand, if |µj | = µ̃1(G) (j = 1 or j = n− 1) then

〈Avj , Avj〉
‖vj‖2

= µ̃1(G)2.

The proof of the other equality is similar.

Remark 9.8.1 It is important to notice that since the adjacency ma-

trix A of G is real and symmetric, we can select the orthonormal basis

{v0, v1, . . . , vn−1} of L(X) made up of real-valued functions. Thus, denot-

ing by LR(X) the space of all real-valued functions on X, in (9.68) we can

replace W1 by W1 ∩ LR(X).

In the following we shall use the notation in Sections 8.7, 8.12, and 8.13.

Lemma 9.8.2 Let f ∈W1(X × [d]). Then

(IX ⊗B)f⊥ ∈ L(X)⊗W1([d]) (9.69)

and

‖(IX ⊗B)f⊥‖ ≤ µ̃1(F)‖f⊥‖.

Proof First of all, using (8.20) we have

(IX ⊗B)f⊥ = (IX ⊗B)

(∑
x∈X

δx ⊗ f⊥x

)
=
∑
x∈X

δx ⊗Bf⊥x .

Then, using again (8.20) and the B-invariance of W1([d]) (cf. Proposition

8.1.4), (9.69) follows. Moreover, by (9.68)

‖Bf⊥x ‖L([d]) ≤ µ̃1(F)‖f⊥x ‖L([d])
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for all x ∈ X so that

‖(IX ⊗B)f⊥‖2L(X×[d]) ≤
∑
x∈X
‖δx ⊗Bf⊥x ‖2L(X×[d])

(by (8.12)) =
∑
x∈X
‖Bf⊥x ‖2L([d])

≤ µ̃1(F)2
∑
x∈X
‖f⊥x ‖2L([d])

= µ̃1(F)2‖f⊥‖2L(X×[d]).

Lemma 9.8.3 Let f ∈W1(X × [d]). Then

|〈RGf‖, f‖〉| ≤
µ̃1(G)

d
‖f‖‖2.

Proof First of all, note that, from Lemma 8.7.4 and Proposition 8.12.2, it

follows that

CRGf
‖ =

1

d
CRG

[
(Cf)⊗ 1[d]

]
=

1

d
ACf. (9.70)

Then, again by Lemma 8.7.4, we have

〈RGf‖, f‖〉 =
1

d
〈RGf‖, (Cf)⊗ 1[d]〉L(X×[d])

=
1

d

∑
(x,i)∈X×[d]

(RGf
‖)(x, i)[Cf ](x)

(by (8.21)) =
1

d
〈CRGf‖, Cf〉L(X)

(by (9.70)) =
1

d2
〈ACf,Cf〉L(X).

Now, by Lemma 8.7.3.(ii), Cf ∈W1(X) and therefore

|〈RGf‖, f‖〉| =
1

d2
|〈ACf,Cf〉|

(by (9.68)) ≤ µ̃1(G)

d2
‖Cf‖2L(X)

(by (8.12)) =
µ̃1(G)

d3
‖(Cf)⊗ 1[d]‖2L(X×[d])

(by Lemma 8.7.4) =
µ̃1(G)

d
‖f‖‖2.
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f f2

f1

θ

Fig. 9.3. The decomposition f = f1 + f2, with f1 ∈ V1 and f2 ∈ V2.

Recall that LR(X × [d]) denotes the space of all real valued functions

de�ned on X× [d]. Since RG is a symmetric matrix, LR(X× [d]) decomposes

into eigenspaces of RG and, since R2
G = IX×[d], we deduce that RG has only

1 and −1 as eigenvalues. Set

• V1 = {f ∈ LR(X × [d]) : RGf = f}
• V2 = {f ∈ LR(X × [d]) : RGf = −f}.

Then

LR(X × [d]) = V1 ⊕ V2

is the orthogonal decomposition of LR(X × [d]) into eigenspaces of RG .

Lemma 9.8.4 Let f ∈ LR(X × [d]). Then we have

〈RGf, f〉 = cos(2θ)‖f‖2,

where θ is the angle between f and V1.

Proof Write f = f1 + f2, with f1 ∈ V1 and f2 ∈ V2, so that

‖f1‖ = cos θ‖f‖ and ‖f2‖ = sin θ‖f‖,

as shown in Figure 9.3.

Then

〈RGf, f〉 = 〈f1 − f2, f1 + f2〉
= ‖f1‖2 − ‖f2‖2

= (cos2 θ − sin2 θ)‖f‖2

= cos(2θ)‖f‖2.



340 Expanders and Ramanujan graphs

We now introduce an auxiliary function: for 0 ≤ α, β ≤ 1 we set

Φ(α, β) =
1

2
(1− β2)α+

1

2

√
(1− β2)2α2 + 4β2.

The elementary properties of this function are described in the next lemma.

Lemma 9.8.5 Let 0 ≤ α, β ≤ 1. Then the following holds.

(i) Φ(α, 0) = α, Φ(0, β) = β, and Φ(α, 1) = Φ(1, β) = 1.

(ii) For β < 1 �xed, the function α 7→ Φ(α, β) is strictly increasing.

(iii) For α < 1 �xed, the function β 7→ Φ(α, β) is strictly increasing.

(iv) If α, β < 1 then Φ(α, β) < 1.

(v) Φ(α, β) ≤ (1− β2)α+ β ≤ α+ β (First upper bound).

(vi) Φ(α, β) ≤ 1− 1
2(1− α)(1− β2) (Second upper bound).

(vii) Φ(α, β) ≥ 2β2

1−α+β2(1+α)
(Lower bound).

Proof (i) and (ii) are obvious. (iii) requires some elementary algebra. For the

moment, suppose that 0 ≤ α < 1 and 0 ≤ β1 < β2 ≤ 1. Set A1 = (1− β2
1)α

and A2 = (1− β2
2)α. We have to prove that

A1 +
√
A2

1 + 4β2
1 < A2 +

√
A2

2 + 4β2
2 . (9.71)

First of all, note that A1 > A2 and

A2
1 −A2

2 = α2(β2
2 − β2

1)(2− β2
1 − β2

2)

≤ 2(β2
2 − β2

1)

< 4(β2
2 − β2

1)

so that

A2
1 + 4β2

1 < A2
2 + 4β2

2 . (9.72)

We then write (9.71) in the form

A1 −A2 <
√
A2

2 + 4β2
2 −

√
A2

1 + 4β2
1

which, by virtue of (9.72), is equivalent to (by squaring both sides)√
A2

2 + 4β2
2

√
A2

1 + 4β2
1 < A1A2 + 2β2

1 + 2β2
2 .

Squaring again both sides, with some elementary calculations, (9.71) is in

turn equivalent to

A2
1β

2
2 +A2

2β
2
1 < (β2

1 − β2
2)2 +A1A2(β2

1 + β2
2). (9.73)
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Now recalling that Aj = (1− β2
j )α for j = 1, 2 one easily checks that

A2
1β

2
2 +A2

2β
2
1 = α2(β2

1 − β2
2)2 +A1A2(β2

1 + β2
2)

and (9.73) follows. This shows (9.71).

(iv) follows from (i) and (ii) (or (iii)), but we give a straightforward direct

proof. If 0 ≤ α, β < 1 then (1− β2)α < 1− β2 so that

Φ(α, β) =
1

2
(1− β2)α+

1

2

√
(1− β2)2α2 + 4β2

<
1

2
(1− β2) +

1

2

√
(1− β2)2 + 4β2

=
1

2
(1− β2) +

1

2
(1 + β2) = 1.

(v) Completing the square inside the square root we have

Φ(α, β) ≤ 1

2
(1− β2)α+

1

2

√
(1− β2)2α2 + 4β2 + 4β(1− β2)α

=
1

2
(1− β2)α+

1

2
[(1− β2)α+ 2β]

= (1− β2)α+ β.

(vi) The inequality

Φ(α, β) ≤ 1− 1

2
(1− α)(1− β2)

is equivalent to √
(1− β2)2α2 + 4β2 ≤ 1 + β2.

Squaring both sides this becomes

α2(1− β2)2 ≤ (1− β2)2

which is satis�ed since α2 ≤ 1.

(vii) If 2β2

1−α+β2(1+α)
≤ 1

2(1 − β2)α then there is nothing to prove. Other-

wise, we can write the inequality in the form

2β2

1− α+ β2(1 + α)
− 1

2
(1− β2)α ≤ 1

2

√
(1− β2)2α2 + 4β2

and squaring both sides (the left hand side is positive) we get

4β2 ≤ 2α(1− β2)[(1− α) + β2(1 + α)] + [(1− α) + β2(1 + α)]2,

that is,

4β2 + α2(1− β2)2 ≤ {α(1− β2) + [(1− α) + β2(1 + α)]}2

= (1 + β2)2



342 Expanders and Ramanujan graphs

which becomes

α2(1− β2)2 ≤ (1− β2)2.

This is clearly satis�ed since α2 ≤ 1.

Remark 9.8.6 The �rst upper bound is useful when α and β are small, while

the second upper bound is useful when α and β are close to one. Moreover,

it is an easy exercise to show that if β < 1 then

α(1− β2) + β ≤ 1− 1

2
(1− α)(1− β2)

if and only if

α ≤ 1− β
1 + β

.

In [127] the authors use the function Ψ(α, β) = 1− (1−α)(1−β)2 in place

of Φ. This is also useful when α and β are close to one. We just note that

1− 1

2
(1− α)(1− β2) ≤ 1− (1− α)(1− β)2

if and only if β ≥ 1
3 . As a consequence, as soon as β ≥ 1

3 , the second upper

bound in Lemma 9.8.5 yields a better estimate than the one provided by Ψ

in [127].

We are now in position to state and prove the main result of this section.

Theorem 9.8.7 [Reingold-Vadhan-Wigderson] In the notation of Section

8.13 we have the following inequality for the �rst nontrivial eigenvalue of a

zig-zag product:

µ̃1(G z©F) ≤ k2Φ

(
µ̃1(G)

d
,
µ̃1(F)

k

)
,

where Φ is the function in Lemma 9.8.5.

Proof Let 0 6= f ∈W1(X × [d])∩LR(X × [d]) (cf. Remark 9.8.1). By virtue

of Lemma 8.7.4 (recall that B is the adjacency matrix of F) we have

(IX ⊗B)f‖ =
1

d
(IX ⊗B)[(Cf)⊗ 1[d]]

(as B1[d] = k1[d]) =
1

d
[(Cf)⊗ k1[d]]

= kf‖.

Therefore

(IX ⊗B)f = (IX ⊗B)(f‖ + f⊥) = kf‖ + (IX ⊗B)f⊥. (9.74)
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Setting B̃ = 1
k (IX ⊗B) and recalling Proposition 8.13.3 we have

〈MG z©Ff, f〉 = 〈(IX ⊗B)RG(IX ⊗B)f, f〉
= 〈RG(IX ⊗B)f, (IX ⊗B)f〉

(by (9.74)) = k2〈RG(f‖ + B̃f⊥), f‖ + B̃f⊥〉

(by Lemma 9.8.4) = k2 cos 2θ‖f‖ + B̃f⊥‖2

(where θ ∈ [0, π/2] is the angle between f‖ + B̃f⊥ and V1) so that

〈MG z©Ff, f〉
‖f‖2

= k2 cos 2θ
‖f‖ + B̃f⊥‖2

‖f‖ + f⊥‖2
. (9.75)

By virtue of (9.68), the remaining part of the proof is devoted to get an

upper bound for the modulus of the right hand side of the above equality.

We introduce three further angles:

• ϕ ∈ [0, π/2] is the angle between f‖ and f = f‖+f⊥ (see Figure 9.4);
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f f⊥

f‖

ϕ

Fig. 9.4. ϕ ∈ [0, π/2] is the angle between f‖ and f = f‖ + f⊥.

• ϕ′ is the angle between f‖ and f‖ + B̃f⊥ (see Figure 9.5);
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f‖ + B̃f⊥ B̃f⊥

f‖

ϕ′

Fig. 9.5. ϕ′ is the angle between f‖ and f‖ + B̃f⊥.
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• ψ ∈ [0, π/2] is the angle between f‖ and V1.

-








�

@
@
@

@I

f‖ + B̃f⊥

f‖

h ϕ′
ψ

Fig. 9.6. ψ ∈ [0, π/2] is the angle between f‖ and V1.

By (9.69) we have that f‖ ⊥ B̃f⊥ so that ϕ′ ∈ [0, π/2]. We claim that

θ ∈ [ψ − ϕ′, ψ + ϕ′].

By simmetry, it su�cies to prove that θ ≤ ψ + ϕ′, because by switching the

role of ψ and θ (that is, switching f‖ with f‖ + B̃f⊥, see Figure 9.5) the

inequality ψ ≤ ϕ′ + θ follows. Let h be the orthogonal projection of f‖ into

V1 and denote by θ̃ the angle between f‖+ B̃f⊥ and h. Then, ψ is the angle

between h and f‖, θ̃ ≤ ψ + ϕ′, by virtue of the triangular inequality for

angles in a three dimensional real space and θ ≤ θ̃ because θ is the minimal

angle between f‖ + B̃f⊥ and a vector h̃ ∈ V1.

Keeping in mind Figure 9.4 and Figure 9.5, and by virtue of Lemma 9.8.2,

we have

tanϕ′

tanϕ
=
‖f‖‖ tanϕ′

‖f‖‖ tanϕ
=
‖B̃f⊥‖
‖f⊥‖

≤ 1

k
µ̃1(F). (9.76)

By Lemma 9.8.3, Lemma 9.8.4 and the de�nition of ψ

cos 2ψ =
〈RGf‖, f‖〉
‖f‖‖2

≤ µ̃1(G)

d
. (9.77)

By Figure 9.4 and Figure 9.5,

‖f‖ + B̃f⊥‖2

‖f‖ + f⊥‖2
=

1
cos2 ϕ′ ‖f

‖‖2
1

cos2 ϕ
‖f‖‖2

=
cos2 ϕ

cos2 ϕ′
.

In conclusion (see equation (9.75) and the observation following it), we

have to maximize

k2| cos 2θ|‖f
‖ + B̃f⊥‖2

‖f‖ + f⊥‖2
= k2| cos 2θ| cos2 ϕ

cos2 ϕ′

subject to the constraints:
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(1) ϕ,ϕ′, ψ ∈ [0, π2 ];

(2) θ ∈ [ψ − φ′, ψ + ϕ′];

(3) β = tanϕ′

tanϕ ≤
µ̃1(F)
k (cf. (9.76));

(4) α = | cos 2ψ| ≤ µ̃1(G)
d (cf. (9.77)).

We distinguish two cases, namely

0,
π

2
/∈ [ψ − ϕ′, ψ + ϕ′]⇔ ϕ′ < min{ψ, π

2
− ψ} ⇔ ϕ′ < ψ <

π

2
− ϕ′

(this condition ensures that cos 2ψ < 1) and

ϕ′ ≥ min{ψ, π
2
− ψ}

(now cos 2ψ = 1 is possible).

Case I: ϕ′ < min{ψ, π2 − ψ}.
First of all, note that since

0 < ψ − ϕ′ ≤ θ ≤ ψ + ϕ′ <
π

2

we have

|cos 2θ| ≤ max{| cos 2(ψ + ϕ′)|, | cos 2(ψ − ϕ′)|}
= max{|cos 2ψ cos 2ϕ′−sin 2ψ sin 2ϕ′|, |cos 2ψ cos 2ϕ′+sin 2ψ sin 2ϕ′|}

=∗

{
cos 2ψ cos 2ϕ′ + sin 2ψ sin 2ϕ′ if cos 2ψ cos 2ϕ′ ≥ 0

− cos 2ψ cos 2ϕ′ + sin 2ψ sin 2ϕ′ if cos 2ψ cos 2ϕ′ < 0

= | cos 2ψ cos 2ϕ′|+ sin 2ψ sin 2ϕ′,

where =∗ follows from sin 2ψ sin 2ϕ′ ≥ 0. Therefore

|cos 2θ| cos2 ϕ

cos2 ϕ′
≤
∣∣∣∣ cos2 ϕ

cos2 ϕ′
cos 2ϕ′ cos 2ψ

∣∣∣∣+
cos2 ϕ

cos2 ϕ′
sin 2ψ sin 2ϕ′

=
1

2
|(1− β2) cos 2ψ+(1 + β2) cos 2ψ cos 2ϕ|+β sin 2ψ sin 2ϕ

(9.78)

where β = tanϕ′

tanϕ as in (3), and the last equality follows from two elementary

trigonometric identities, namely

cos2 ϕ

cos2 ϕ′
cos 2ϕ′ =

1

2
[1− β2 + (1 + β2) cos 2ϕ],

which has a long but elementary proof, left to the reader, and

cos2 ϕ

cos2 ϕ′
sin 2ϕ′ =

sin 2ϕ
2 tanϕ

sin 2ϕ′

2 tanϕ′

sin 2ϕ′ =

1
tanϕ

1
tanϕ′

sin 2ϕ = β sin 2ϕ.
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Finally, the triangular inequality applied to (9.78) (recall that |β| < 1 by

(9.76)) yields

| cos 2θ| cos2 ϕ

cos2 ϕ′
≤ 1

2
(1− β2)| cos 2ψ|

+
1

2
(1 + β2)| cos 2ψ| · | cos 2ϕ|+ 1

2
· 2β sin 2ψ · sin 2ϕ

≤∗∗
1

2
(1− β2)| cos 2ψ|

+
1

2

√
(1 + β2)2(cos 2ψ)2 + 4β2(sin 2ψ)2

(by (4)) =
1

2
(1− β2)α+

1

2

√
(1− β2)2α2 + 4β2

= Φ(α, β),

where ≤∗∗ follows by applying the Cauchy-Schwarz inequality. We then

conclude by invoking Lemma 9.8.5.(ii) and (iii), and keeping in mind the

inequalities in (3) and (4).

Case II: ϕ′ ≥ min{ψ, π2 − ψ}.
We now have ψ − ϕ′ ≤ 0 or ψ + ϕ′ ≥ π

2 so that

| cos 2θ| cos2 ϕ

cos2 ϕ′
≤ cos2 ϕ

cos2 ϕ′

=
tan2 ϕ′

tan2 ϕ
+ (1− tan2 ϕ′

tan2 ϕ
) cos2 ϕ

(by (3)) = β2 + (1− β2) cos2 ϕ,

(9.79)

where the �rst equality is an elementary trigonometric identity, whose proof

is left to the reader. Now, since ϕ′ ≥ min{ψ, π2 − ψ}, we have
2ϕ′ ≥ 2ψ

or

2ϕ′ ≥ π − 2ψ

⇒


cos 2ϕ′ ≤ cos 2ψ

or

cos 2ϕ′ ≤ − cos 2ψ

⇒ cos 2ϕ′ ≤ | cos 2ψ| = α.

Since

cos 2ϕ′ =
(1 + β2) cos2 ϕ− β2

(1− β2) cos2 ϕ+ β2

(another trigonometric identity whose proof is left as an exercise) we get

(1 + β2) cos2 ϕ− β2

(1− β2) cos2 ϕ+ β2
≤ α
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which is equivalent to

cos2 ϕ ≤ β2(1 + α)

β2(1 + α) + 1− α
.

Applying this inequality to (9.79) we get

| cos 2θ| cos2 ϕ

cos2 ϕ′
≤ β2 + (1− β2)

β2(1 + α)

β2(1 + α) + 1− α

=
2β2

1− α+ β2(1 + α)

≤ Φ(α, β),

where the last inequality follows from Lemma 9.8.5.(vii). The statement then

follows, as in the previous case, from Lemma 9.8.5.(ii) and (iii), together with

the inequalities in (3) and (4).

9.9 Explicit construction of expanders via the Zig-Zag product

In this section we present the basic recursive construction that uses the

estimates in Theorem 9.8.7 to construct a family of expander graphs. Let

G = (X,E, r) be a �nite connected graph. We de�ne the non-oriented square

of G as the graph G2 = (X,F, s) with the same vertex set of G, edge set

de�ned as

F = {{x, e1, y, e2, z} : x, y, z ∈ X, e1, e2 ∈ E, r(e1) = {x, y}, r(e2) = {y, z}} ,

where {x, e1, y, e2, z} should be thought of as the pair of paths (x, e1, y, e2, z)

and (z, e2, y, e1, x), and s({x, e1, y, e2, z}) = {x, z} for all {x, e1, y, e2, z} ∈ F
(note that x, y, z are not necessarily distinct). In other words, F is the set

of all (non-oriented) paths of length two in G.
Clearly, if A is the adjacency matrix of G, then A2 is the adjacency matrix

of G2 (see Proposition 8.1.6). Moreover, it is immediate to see that G2 is

connected if and only if G is not bipartite: the reader is invited to �nd a

direct proof of this fact and, in the case G is k-regular, to deduce it from

Proposition 8.3.4 and Proposition 8.1.5.

Finally, if G is k-regular we clearly have

µ̃1(G2) = µ̃1(G)2. (9.80)

Theorem 9.9.1 Let G be a d-regular graph with d4 vertices, d ≥ 2 and

suppose that

µ̃1(G) ≤ d

4
.
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Set

G1 = G2 and Gn+1 = G2
n z©G for n ≥ 1.

Then Gn is a d2-regular graph with d4n vertices and

µ̃1(Gn) ≤ d2

2
. (9.81)

In particular, the sequence (Gn)n∈N is a family of expanders.

Proof By construction, G1 has d
4 vertices, is regular of degree d2, and satis�es

µ̃1(G1) ≤ d2

16 (by (9.80)). We proceed by induction. Suppose that Gn is

a d2-regular graph with d4n vertices and (9.81) holds. Then G2
n has d4n

vertices, is regular of degree d4, and satis�es µ̃1(G2
n) ≤ d4

4 . Therefore Gn+1

has d4n · d4 = d4(n+1) vertices, is regular of degree d2 (by De�nition 8.13.1),

and, by Theorem 9.8.7 and Lemma 9.8.5.(v),

µ̃1(Gn+1) ≤ d2

(
1

4
+

1

4

)
=
d2

2
.

The sequence (Gn)n∈N then forms a family of expanders (cf. De�nition 9.5.3).

Example 9.9.2 Consider the graph LD(q, r) introduced in Section 9.7,

where q = pt with p prime, and t, r positive integers. We use the nota-

tion in the proof of Theorem 9.7.3. Recall (cf. (9.67)) that the eigenvalues

of LD(q, r) are given by

µa =
∑
x∈Fq

pa(x)=0

∑
y∈Fq

ωL(ypa(x)),

a ∈ Fr+1
q . Now, for a 6= (0, 0, . . . , 0), the polynomial pa(x) has at most r

roots in Fq and therefore (cf. the end of the proof of Theorem 9.7.3)

|µa| ≤ qr. (9.82)

Then, for r = 7 and q ≥ 4r the graph G = LD(q, 7) satis�es the hypotheses

of Theorem 9.9.1. Indeed, G is d-regular of degree d = q2, the number of its

vertices is qr+1 = q8 = d4, and (cf. (9.82))

µ̃1(G) ≤ r
√
d ≤ d

4
.



Part IV

Harmonic Analysis on Finite Linear Groups





10

Representation theory of �nite groups

In this chapter we give a concise but quite detailed and complete exposition

of the basic representation theory of �nite groups. This may be considered

as a noncommutative analogue of Chapter 2. Indeed, we emphasize the

harmonic analytic point of view, focusing on unitary representations and

Fourier transforms. Our exposition is based on our previous books [29], [33].

We also refer to the useful monographs by: Alperin and Bell [12], Diaconis

[52], Fulton and Harris [62], Naimark and Stern [119], Serre [145], Simon

[148], and Sternberg [154].

10.1 Representations, irreducibility and equivalence

Let G be a �nite group and V a �nite dimensional vector space over C. We

denote by End(V ) the algebra (see Section 10.3) of all linear maps T : V →
V and by GL(V ) the general linear group of V consisting of all invertible

elements in End(V ).

De�nition 10.1.1 A representation of G over V is a homomorphism ρ : G→
GL(V ). In other words, we have:

• ρ(g) : V → V is linear and invertible for all g ∈ G;
• ρ(g1g2) = ρ(g1)ρ(g2) for all g1, g2 ∈ G;
• ρ(g−1) = ρ(g)−1 for all g ∈ G;
• ρ(1G) = IV where 1G is the identity element in G and IV : V → V is

the identity map (and thus the identity element in GL(V )).

We shall denote a representation by a pair (ρ, V ). Note also that ρ may

be seen as an action (g, v) 7→ ρ(g)v of G on V , where ρ(g) is an invertible

linear map for all g ∈ G. Denoting by n the dimension dim(V ) of V , since

GL(V ) is isomorphic to GL(n,C), the group of invertible n-by-n complex

351
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matrices, we can regard a representation of G as a group homomorphism

ρ : G → GL(n,C). Then n is the dimension or degree of ρ and it will be

usually denoted by dρ.

The kernel of the representation (ρ, V ) is Kerρ = {g ∈ G : ρ(g) = IV }.
The representation (ρ, V ) is called faithful if Kerρ = {1G}. In other words,

ρ is faithful if and only if it is an isomorphism between G and a subgroup of

GL(V ).

Let (ρ, V ) be a representation of G and suppose thatW ≤ V is a subspace.

We say thatW is G-invariant (or ρ-invariant) if ρ(g)w ∈W for all g ∈ G and

w ∈W . Then, denoting by ρW (g) the restriction of ρ(g) to the subspace W ,

that is, ρW (g)w = ρ(g)w for all g ∈ G and w ∈W , we say that (ρW ,W ) is the

restriction of ρ to the (invariant) subspaceW and call it a sub-representation

of (ρ, V ). We also say that ρW is contained in ρ and write (ρW ,W ) � (ρ, V ),

or simply ρW � ρ. One also says that an element v ∈ V is a G-invariant

vector, provided ρ(g)v = v for all g ∈ G. It is clear that the set of G-invariant
vector is a G-invariant subspace V G ≤ V , which we call the subspace of G-

invariant vectors. Clearly, every representation is a sub-representation of

itself.

Let K ≤ G be a subgroup of G. Then setting [ResGKρ](k) = ρ(k) for all

k ∈ K, yields a K-representation (ResGKρ, V ). This is called the restriction

of ρ to the subgroup K.

The representation (ρ, V ) is called irreducible if the only G-invariant sub-

spaces are trivial: W ≤ V and ρ(g)W ≤W for all g ∈ G implies that either

W = {0} or W = V .

The direct sum of given G-representations (ρj ,Wj), j = 1, 2, . . . , k, is the

G-representation (ρ, V ) where V = W1⊕W2⊕ · · · ⊕Wk is the direct sum of

the corresponding spaces, and ρ = ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρk is de�ned by setting

ρ(g)v = ρ1(g)w1 + ρ2(g)w2 + · · ·+ ρk(g)wk

for all v = w1 +w2 + · · ·+wk ∈ V , wi ∈Wi, and g ∈ G. Conversely, if (ρ, V )

is a G-representation and

V = W1 ⊕W2 ⊕ · · · ⊕Wk (10.1)

is a direct sum decomposition into G-invariant subspaces, then ρ = ρ1⊕ρ2⊕
· · · ⊕ ρk, where ρj = ρWj , j = 1, 2, . . . , k; we then say that (10.1) constitutes

a (direct sum) decomposition of ρ.

Let (ρ, V ) and (θ,W ) be two representations of the same groupG. Suppose

that there exists a linear isomorphism T : V →W such that, for all g ∈ G,

θ(g)T = Tρ(g). (10.2)
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Then one says that the two representations are equivalent and we write ρ ∼ θ.
Note that ∼ is an equivalence relation and that two equivalent representa-

tions have the same degree. We write ρ 6∼ θ to denote that ρ and θ are

not equivalent. We will also use the notation V ∼= W to indicate that the

representations of G on V and W are equivalent. However, in expressions

as (10.1) we prefer to use equality to emphasize that we have a concrete

decomposition on V into direct sum of subspaces.

Suppose now that the complex vector space V is unitary, that is, it is en-

dowed with an inner product that we shall denote by 〈·, ·〉V (with associated

norm ‖·‖V ); the subscript will be usually omitted when the space V is clear

from the context. We recall (see [93, 91, 75]) that the adjoint of a linear

operator T : W → V between two unitary spaces W,V is the unique linear

operator T ∗ : V →W such that 〈Tw, v〉V = 〈w, T ∗v〉W , for all w ∈W, v ∈ V .
Moreover, an endomorphism U : V → V is unitary if U∗U = I = UU∗ and

this is equivalent to the condition 〈Uv1, Uv2〉 = 〈v1, v2〉 for all v1, v2 ∈ V .
Moreover, if U is a unitary matrix then U∗ = U

T
, the conjugate transpose

of U .

A representation (ρ, V ) is called unitary if ρ(g) is unitary for all g ∈ G,
that is, 〈ρ(g)v1, ρ(g)v2〉 = 〈v, w〉 for all and v1, v2 ∈ V . We shall then say

that the inner product 〈·, ·〉 is ρ-invariant (or G-invariant).

Exercise 10.1.2 Show that every one-dimensional representation is unitary.

Hint: Show that every inner product on C is of the form 〈z1, z2〉 = αz1z2,

where α > 0, for all z1, z2 ∈ C.

Given an arbitrary representation (ρ, V ) of a �nite group G it is always

possible to endow V with an inner product making ρ unitary. If 〈·, ·〉 is an
arbitrary inner product on V , we de�ne, for all v1 and v2 in V ,

(v, w) =
∑
g∈G
〈ρ(g)v, ρ(g)w〉 . (10.3)

Proposition 10.1.3 The representation (ρ, V ) is unitary with respect to the

scalar product (·, ·). In particular, every representation of G is equivalent to

a unitary representation.

Proof First of all, it is easy to see that (10.3) de�nes an inner product on
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V . Moreover, for all v1, v2 ∈ V and h ∈ G we have

(ρ(h)v1, ρ(h)v2) =
∑
g∈G
〈ρ(g)ρ(h)v1, ρ(g)ρ(h)v2〉

=
∑
g∈G
〈ρ(gh)v1, ρ(gh)v2〉

(t = gh) =
∑
t∈G
〈ρ(t)v1, ρ(t)v2〉

= (v, w).

This shows that the inner product (·, ·) is G-invariant.

We are mostly interested in equivalence classes of representations, thus we

might con�ne ourselves to unitary representations. Thus, from now on, given

a G-representation (ρ, V ), it is understood that V is a �nite dimensional

(complex) vector space endowed with a G-invariant inner product and that

ρ(g) is unitary for all g ∈ G: note that, under these assumptions, we thus

have

ρ(g−1) = ρ(g)−1 = ρ(g)∗ (10.4)

for all g ∈ G. Also, we shall use the polar decomposition of a linear operator

(see any book of linear algebra, for instance [75]) in the following form: if

T : V →W is a linear invertible map between two unitary spaces V and W

then there exist a unique positive, self-adjoint operator |T | : V → V (that is,

〈|T |v, v〉V > 0 and 〈|T |v1, v2〉V = 〈v1, |T |v2〉V for all v, v1, v2 ∈ V , v 6= 0)

and a unique unitary isomorphism U : V → W such that T = U |T |. We

also recall that |T | is the unique positive square root of the positive operator
T ∗T : this means that |T |2 = T ∗T and |T | is positive.

Lemma 10.1.4 Let (ρ, V ) and (θ,W ) be two unitary representations of a

�nite group G and suppose that they are equivalent. Then they are also

unitarily equivalent, that is, there exists a unitary isomorphism U : V → W

such that ρ(g) = U−1θ(g)U for all g ∈ G.

Proof Let g ∈ G. Since ρ and θ are equivalent, we write (10.2) in the form

ρ(g) = T−1θ(g)T. (10.5)

Taking adjoints, using (10.4), and replacing g by g−1, we have

ρ(g) = T ∗θ(g)(T ∗)−1.

From (10.5) we then deduce that T ∗Tρ(g)(T ∗T )−1 = T ∗θ(g)(T ∗)−1 = ρ(g),
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equivalently,

ρ(g)−1(T ∗T )ρ(g) = T ∗T. (10.6)

Now we use the polar decomposition of T : since |T |2 = T ∗T we have,

ρ(g)−1|T |2ρ(g) = |T |2, that is,
[
ρ(g)−1|T |ρ(g)

]2
= |T |2, and ρ(g)−1|T |ρ(g)

is positive: 〈
ρ(g)−1|T |ρ(g)v, v

〉
= 〈|T |ρ(g)v, ρ(g)v〉 > 0

for all v ∈ V , v 6= 0. Since ρ(g)−1|T |ρ(g) is the square root of the left

hand side of (10.6), by the uniqueness of the positive square root we have

ρ(g)−1|T |ρ(g) = |T |, that we write in the form

|T |ρ(g)|T |−1 = ρ(g). (10.7)

Then, if T = U |T | is the polar decomposition of T , we have

U−1θ(g)U = |T |T−1θ(g)T |T |−1

(by (10.5)) = |T |ρ(g)|T |−1

(by (10.7)) = ρ(g).

This shows that ρ is unitarily equivalent to θ.

The assumption that the representation ρ is unitary has a simple but

fundamental consequence: if W is a G-invariant subspace of V then W⊥ =

{v ∈ V : 〈v, w〉 = 0, ∀w ∈ W}, the orthogonal complement of W , is also G-

invariant. Indeed, if v ∈W⊥ and g ∈ G one has 〈ρ(g)v, w〉 =
〈
v, ρ(g−1)w

〉
=

0 for all w ∈ W . Moreover, V can be expressed as the direct sum of the

orthogonal subspacesW andW⊥, namely V = W ⊕W⊥ and ρ = ρW ⊕ρW⊥ .

Lemma 10.1.5 Every representation of G is the orthogonal direct sum of a

�nite number of irreducible representations.

Proof Let (ρ, V ) be a representation of G. If ρ is irreducible there is nothing

to prove. If not, as above we get a nontrivial orthogonal decomposition into

G-invariant subspaces of the form V = W ⊕W⊥. Then the proof follows by

an easy inductive argument on the dimension of V , because dimW < dimV

and dimW⊥ < dimV .

De�nition 10.1.6 (Dual) Let G be a �nite group. We denote by Ĝ, called

the dual of G, a complete set of irreducible pairwise non-equivalent (unitary)

representations of G (in other words, Ĝ contains exactly one element in each

equivalence class of irreducible G-representations).
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We will also use the following notation: if ρ, θ ∈ Ĝ then

δρ,θ =

{
1 if ρ = θ

0 if ρ 6= θ,

(note that if ρ, θ ∈ Ĝ then ρ 6∼ θ is the same thing as ρ 6= θ). We end this

section by illustrating some fundamental examples.

Example 10.1.7 For any �nite group G we de�ne the trivial representation

(ι,C) as the one-dimensional representation of G de�ned by setting ι(g) =

IdC for all g ∈ G. As it is one-dimensional, it is also unitary (cf. Exercise

10.1.2) and irreducible.

Example 10.1.8 Let G be a �nite group. Denote by L(G) = {f : G→ C}
the space of all complex valued functions on G; it is a vector space with

respect to the pointwise linear combinations: (α1f1 + α2f2)(g) = α1f1(g) +

α2f2(g) for all f1, f2 ∈ L(G), α1, α2 ∈ C and g ∈ G. Introduce in L(G) the

inner product

〈f1, f2〉 =
∑
g∈G

f1(g)f2(g) (10.8)

for all f1, f2 ∈ L(G). Then the representation (λG, L(G)) de�ned by

[λG(g)f ](h) = f(g−1h) (10.9)

for all g, h ∈ G and f ∈ L(G), is called the left regular representation of

G. It is easy to show that it is indeed a representation: if g1, g2, g ∈ G and

f ∈ L(G) then we have

[λG(g1)λG(g2)f ](g) = {λG(g1)[λG(g2)f ]}(g)

= [λG(g2)f ](g−1
1 g)

= f(g−1
2 g−1

1 g)

= [λG(g1g2)f ](g),

that is, λG(g1)λG(g2) = λG(g1g2). Moreover, λG is unitary: if g ∈ G and

f1, f2 ∈ L(G) then we have

〈λG(g)f1, λG(g)f2〉 =
∑
h∈G

f1(g−1h)f2(g−1h)

(t = g−1h) =
∑
t∈G

f1(t)f2(t)

= 〈f1, f2〉 .
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Analogously, the representation (ρG, L(G)) de�ned by

[ρG(g)f ](h) = f(hg) (10.10)

for all g, h ∈ G and f ∈ L(G), is again a unitary representation, called the

right regular representation. Note that these two representations commute:

λG(g)ρG(h) = ρG(h)λG(g) for all g, h ∈ G.
As in Section 2.1, we denote by δg ∈ L(G) the Dirac function at g ∈ G,

de�ned by

δg(h) =

{
1 if h = g

0 otherwise.

It is clear that {δg : g ∈ G} is an orthonormal basis in L(G). Note also that

λG(h)δg = δhg, for all h, g ∈ G so that we may represent every f ∈ L(G) in

the form

f =
∑
g∈G

f(g)δg =
∑
g∈G

f(g)λG(g)δ1G . (10.11)

Remark 10.1.9 In many books, the inner product (10.8) is normalized,

that is 〈f1, f2〉L(G) = 1
|G|
∑

g∈G f1(g)f2(g) and this changes many formulæ

given in the following chapters by a factor of 1/|G|. Our choice makes the

Dirac functions an orthonormal basis. The normalized scalar product comes

from the theory of compact groups, where the Haar measure is normalized

in order to be a probability measure; see the monographs by Bump [23] and

Simon [148].

Example 10.1.10 Let G = Sn be the symmetric group of degree n, that

is, the group of all permutations on n elements. The sign representation is the

one-dimensional representation (ε,C) de�ned by setting ε(g) = (−1)sign(g)IdC,

where sign(g), the sign of the permutation g ∈ Sn, is de�ned to be 1 if g is

an even permutation (that is, g is the product of an even number of trans-

positions, equivalently g ∈ An, the alternating group), and −1 if g is an odd

permutation (that is, g ∈ Sn \ An). As the map sign : G → Sn/An ≡ C2 is

a group homomorphism, we have ε(g1g2) = ε(g1)ε(g2) for all g1, g2 ∈ Sn, so
that ε is indeed a representation. As it is one-dimensional, it is also unitary

(cf. Exercise 10.1.2) and irreducible.

Example 10.1.11 Let A be an Abelian group. Then its characters (see

Section 2.3) are unitary representations of A and its dual Â is itself a group

(cf. De�nition 2.3.1; see also Corollary 10.2.7 and Example 10.2.27).
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10.2 Schur's lemma and the orthogonality relations

Given two �nite dimensional vector spaces V and W , recall that Hom(V,W )

(respectively, End(V )) denotes the vector space of all linear maps T : V →W

(respectively, T : V → V ). Let G be a �nite group and suppose that (ρ, V )

and (θ,W ) are two representations of G.

De�nition 10.2.1 One says that L ∈ Hom(V,W ) intertwines ρ and θ if

Lρ(g) = θ(g)L,

for all g ∈ G. We will denote by HomG(V,W ) (or HomG(ρ, θ)) the space of

all such intertwiners; it is called the commutant of ρ and θ. When W = V

and θ = ρ it is denoted by EndG(V ) (or EndG(ρ)), and it is simply called

the commutant of ρ.

We begin with an elementary but useful property.

Proposition 10.2.2 A linear map L : V → W belongs to HomG(V,W ) if

and only if L∗ belongs to HomG(W,V ).

Proof For all g ∈ G we have

L∗θ(g) = L∗θ(g−1)∗ = (θ(g−1)L)∗ and ρ(g)L∗ = ρ(g−1)∗L∗ = (Lρ(g−1))∗,

so that L∗θ(g) = ρ(g)L∗ if and only if θ(g−1)L = Lρ(g−1).

The map L→ L∗ is an antilinear isomorphism between HomG(V,W ) and

HomG(W,V ): indeed, (αT1 + βT2)∗ = αT ∗1 + βT ∗2 , for α, β ∈ C, T1, T2 ∈
HomG(V,W ).

We now illustrate the fundamental results that relate the notion of re-

ducibility of a representation with the existence of intertwiners.

Lemma 10.2.3 (Schur) Let (ρ, V ) and (θ,W ) be two irreducible represen-

tations of G. If L ∈ HomG(V,W ) then either L is the zero homomorphism,

or it is an isomorphism.

Proof Consider the kernel KerL = {v ∈ V : Lv = 0} ≤ V and the range

RanL = {Lv : v ∈ V } ≤ W of L. If L intertwines ρ and θ then KerL and

RanL are ρ- and θ-invariant, respectively:

v ∈ KerL ⇒ Lv = 0 ⇒ Lρ(g)v = θ(g)Lv = 0 ⇒ ρ(g)v ∈ KerL

and

w ∈ RanL ⇒ ∃v ∈ V : w = Lv ⇒ θ(g)w = Lρ(g)v ∈ RanL.
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By irreducibility, either KerL = V (and necessarily RanL = {0}) or KerL =

{0} (and necessarily RanL = W ). In the �rst case L vanishes, in the second

case it is an isomorphism.

Corollary 10.2.4 Let (ρ, V ) be an irreducible representation of G and sup-

pose that L ∈ EndG(V ) (that is, L intertwines ρ with itself: Lρ(g) = ρ(g)L

for all g ∈ G). Then L is a multiple of the identity: there exists λ ∈ C such

that L = λIV .

Proof Let λ be an eigenvalue of L (which exists because V is a complex

vector space and C is algebraically closed). Then (L−λIV ) ∈ EndG(V ) and,

by Schur's lemma, it is either an isomorphism or the zero homomorphism.

But, by de�nition of an eigenvalue, it cannot be invertible, and therefore

necessarily L = λIV .

The last corollary may be expressed in the form: if V is G-irreducible then

EndG(V ) = {λIV : λ ∈ C} ≡ CIV .

Corollary 10.2.5 Suppose that (ρ, V ) and (θ,W ) are irreducible equivalent

G-representations. Then dimHomG(V,W ) = 1

Proof Let T1, T2 ∈ HomG(V,W ) \ {0}. Then, by Proposition 10.2.2 T ∗2 T1 ∈
EndG(V ) so that, by Corollary 10.2.4, there exists λ ∈ C such that T ∗2 T1 =

λIV , equivalently, T1 = λT2.

Corollary 10.2.6 Suppose that (ρ, V ) and (η, U) are G-representations.

Then HomG(V,U) is nontrivial if and only if ρ and η contain a common

isomorphic irreducible G-representation.

Proof Suppose that T ∈ HomG(V,U) is nontrivial. Then (KerT )⊥ ≤ V is

nontrivial, ρ-invariant, and therefore it contains an irreducible representation

W ≤ V (recall Lemma 10.1.5). Clearly, T |W is an isomorphism intertwining

W and T (W ) ≤ U . The proof of the converse is left as an exercise (see also

Exercise 10.6.9).

Corollary 10.2.7 Let G be a (�nite) Abelian group. A representation (ρ, V )

of G is irreducible if and only if it is one dimensional (so that it is a char-

acter).

Proof Let us use multiplicative notation for G. Then, for all g, h ∈ G we
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have ρ(g)ρ(h) = ρ(h)ρ(g), so that ρ(g) ∈ EndG(ρ). By Corollary 10.2.4,

there exists a function χ : G → C such that ρ(g) = χ(g)IV ,∀g ∈ G. Then

every subspace of V is ρ-invariant so that ρ is irreducible if and only if

dimV = 1. We leave it to the reader to check that χ is indeed a character.

Exercise 10.2.8 Show that if ρ ∈ Ĝ and g is in the center Z(G) = {z ∈ G :

zh = hz for all h ∈ G} of G, then there exists λ ∈ C such that ρ(g) = λIV .

Exercise 10.2.9 (Converse to Schur's lemma) Suppose that the com-

mutant of a G-representation (ρ, V ) is trivial, that is, EndG(V ) = CIV .
Show that ρ is irreducible (see also Corollary 10.6.4).

Let (ρ, V ) be a representation of G. Given v, w ∈ V the element uρv,w ∈
L(G) de�ned by uρv,w(g) = 〈ρ(g)w, v〉 for all g ∈ G, is called a (matrix) co-

e�cient of the representation ρ; we will omit the superscript �ρ� when the

representation ρ is clear from the context. If {v1, v2, . . . , vn} is an orthonor-

mal basis for V , then ρ(g), viewed as an n-by-n matrix, coincides with the

matrix (uρvi,vj (g))ni,j=1 (see Lemma 10.2.13.(ii)).

Note that if f ∈ L(G) and g ∈ G, then (cf. (10.11)) one has

f(g) =
〈
λG(g)δ1G , f

〉
= uλG

δ1G ,f
(g),

where λG is the left regular representation of G and δ1G is the Dirac function

at the identity element 1G of G. This shows that any f ∈ L(G) may be

realized as a coe�cient of a (unitary) representation.

Lemma 10.2.10 Let (ρ, V ) and (θ,W ) be two irreducible, non equivalent

representations of G. Then all coe�cients of ρ are orthogonal to all coe�-

cients of θ.

Proof Let v1, v2 ∈ V and w1, w2 ∈W . Our goal is to show that the functions

uρv2,v1(g) = 〈ρ(g)v1, v2〉V and uθw2,w1
(g) = 〈θ(g)w1, w2〉W are orthogonal in

L(G). Consider the linear transformation L : V →W de�ned by

Lv = 〈v, v2〉V w2, (10.12)

for all v ∈ V . Then, the linear transformation L̃ : V →W de�ned by

L̃ =
∑
g∈G

θ(g−1)Lρ(g)
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belongs to HomG(ρ, θ). Indeed, for every g ∈ G,

L̃ρ(g) =
∑
h∈G

θ(h−1)Lρ(hg)

(k = hg) =
∑
k∈G

θ(gk−1)Lρ(k)

= θ(g)L̃.

Thus, by virtue of Schur's lemma, we have that either L̃ is invertible or

L̃ = 0. As ρ 6∼ θ, necessarily the second possibility occurs and therefore

0 =
〈
L̃v1, w1

〉
W

=
∑
g∈G
〈Lρ(g)v1, θ(g)w1〉W

(by (10.12)) =
∑
g∈G
〈ρ(g)v1, v2〉V · 〈w2, θ(g)w1〉W

=
∑
g∈G
〈ρ(g)v1, v2〉V · 〈θ(g)w1, w2〉W

=
∑
g∈G

uρv2,v1(g)uθw2,w1
(g)

=
〈
uρv2,v1 , u

θ
w2,w1

〉
L(G)

.

Theorem 10.2.11 Let G be a �nite group. Then there exist only �nitely

many pairwise inequivalent irreducible unitary representations. In other

words, |Ĝ| <∞.

Proof The space L(G) is �nite dimensional and contains only �nitely many

distinct pairwise orthogonal functions, and the statement follows from pre-

vious lemma.

Let now (ρ, V ) be an irreducible G-representation, d = dimV , and choose

an orthonormal basis {v1, v2, . . . , vd} of V . Recall that the trace of a linear

operator T : V → V is given by Tr(T ) =
∑n

j=1〈Tvj , vj〉. It is easy to check

that Tr : End(V )→ C is a linear map, that it does not depend on the choice

of the basis and that it satis�es the following central properties:

Tr(TS) = Tr(ST ) for all S, T ∈ End(V );

Tr(T−1ST ) = Tr(S) for all S ∈ End(V ) and T ∈ GL(V ). (10.13)
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Lemma 10.2.12 The coe�cients

uρi,j(g) = 〈ρ(g)vj , vi〉V , i, j = 1, 2, . . . , d, (10.14)

are pairwise orthogonal in L(G). In formualæ,〈
uρi,j , u

ρ
k,h

〉
L(G)

=
|G|
d
δikδjh

for all i, j, h, k = 1, 2, . . . , d.

Proof Fix indices 1 ≤ i, k ≤ d and de�ne Lik ∈ End(V ) by setting

Lik(v) = 〈v, vi〉 vk,

for all v ∈ V . It is easy to check that Tr(Lik) = δik. Now set

L̃ik =
1

|G|
∑
g∈G

ρ(g−1)Likρ(g)

and observe that L̃ik ∈ EndG(ρ) (see the proof of Lemma 10.2.10). As ρ is

irreducible, from Corollary 10.2.4 we deduce that L̃ik = αIV , for a suitable

α ∈ C. Indeed, α = δik/d:

dα = Tr(L̃ik)

=
1

|G|
∑
g∈G

Tr
[
ρ(g−1)Likρ(g)

]
(by (10.13)) = Tr(Lik).

It follows that L̃ik = (1/d)δikIV and therefore
〈
L̃ikvj , vh

〉
V

= (1/d)δjhδik.

Since 〈
L̃ikvj , vh

〉
V

=
1

|G|
∑
g∈G
〈Likρ(g)vj , ρ(g)vh〉V

=
1

|G|
∑
g∈G
〈ρ(g)vj , vi〉V · 〈vk, ρ(g)vh〉V

=
1

|G|

〈
uρi,j , u

ρ
k,h

〉
L(G)

,

this ends the proof.

The following lemma presents further properties of the matrix coe�cients;

these do not require the irreducibility of ρ.
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Lemma 10.2.13 Let (ρ, V ) be a G-representation and let {v1, v2, . . . , vd} be
an orthonormal basis of V . With the notation in (10.14) one has:

(i) uρi,j(g
−1) = uρj,i(g);

(ii) ρ(g)vj =
∑d

i=1 viu
ρ
i,j(g);

(iii) uρi,j(g1g2) =
∑d

h=1 u
ρ
i,h(g1)uρh,j(g2);

(iv)
∑d

j=1 u
ρ
i,j(g)uρk,j(g) = δi,k and

∑d
i=1 u

ρ
i,j(g)uρi,k(g) = δj,k (dual or-

thogonality relations)

for all g, g1, g2 ∈ G and i, j, k = 1, 2, . . . , d.

Proof

(i) This follows immediately from ρ(g)∗ = ρ(g−1) and 〈v, w〉 = 〈w, v〉 for
all g ∈ G and v, w ∈ V .

(ii) This is obvious, since for all v ∈ V one has v =
∑n

h=1 vh〈v, vh〉.
(iii) From (ii) we deduce that

d∑
h=1

vhu
ρ
h,j(g1g2) = ρ(g1g2)vj = ρ(g1)ρ(g2)vj =

d∑
h=1

ρ(g1)vhu
ρ
h,j(g2)

and taking the scalar product with vi we get the desired equality.

(iv) This is an immediate consequence of the unitarity of ρ(g), that is, of

the relation ρ(g)ρ(g)∗ = ρ(g)∗ρ(g) = IV , for all g ∈ G.

In the following, we shall refer to
(
uρi,j(g)

)n
i,j=1

as a matrix realization of

the representation ρ.

De�nition 10.2.14 Let (ρ, V ) be a G-representation. Then the map χρ ∈
L(G) de�ned by setting

χρ(g) = Tr[ρ(g)] for all g ∈ G

is called the character of ρ.

Note that, for every g ∈ G, we have that ρ(g), being unitary, is diago-

nalizable and therefore its trace Tr[ρ(g)] = χρ(g) coincides with the sum

of its eigenvalues. From (10.13) it follows that two equivalent representa-

tions have the same character: indeed, Tr[Tρ(g)T−1] = Tr[ρ(g)] for every

invertible operator T . Therefore, with each equivalence class of irreducible

representations is associated a character. Clearly, using a matrix realization

of ρ, one has Tr[ρ(g)[=
∑n

i=1 u
ρ
i,i(g) and this sum does not depend on the
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particular choice of the orthonormal system {v1, v2, . . . , vd} in V . We ob-

serve that if ρ is one-dimensional, then ρ(g) = χρ(g)IV for all g ∈ G and,

by abuse of language, we say that the representation ρ coincides with its

character and write ρ = χρ.

Proposition 10.2.15 Let (ρ, V ) be a G-representation. Then we have:

(i) χρ(1G) = dimV ;

(ii) χρ(s−1) = χρ(s), for all s ∈ G;
(iii) χρ(t−1st) = χρ(s), for all s, t ∈ G.
(iv) If ρ = ρ1 ⊕ ρ2 then χρ = χρ1 + χρ2.

(v) With the notation as in Lemma 10.2.13 we have:

χρ =

d∑
i=1

uρi,i. (10.15)

Proof

(i) This is easy: ρ(1G) = IV and Tr(IV ) = dimV = d.

(ii) We have

χρ(s−1) = Tr[ρ(s−1)] = Tr[ρ(s)∗] = χρ(s)

since ρ(s) is unitary and Tr(A∗) = Tr(A) for all A ∈ GL(V ).

(iii) This follows again from the central property of the trace.

(iv) This is easy and left as an exercise.

(v) This is obvious.

Exercise 10.2.16

Let ρ be a G-representation and let n = |G|.
(1) Show that the eigenvalues of ρ(g), g ∈ G are nth roots of the unity;

(2) deduce that |χρ(g)| ≤ dρ for all g ∈ G.

Proposition 10.2.17 (Orthogonality relations for characters) Let

ρ, θ ∈ Ĝ. Then 〈
χρ, χθ

〉
L(G)

= |G|δρ,θ. (10.16)

In particular, two non-equivalent irreducible G-representations have di�erent

characters.
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Proof From (10.15), Lemma 10.2.10 and Lemma 10.2.12 we get〈
χρ, χθ

〉
L(G)

=

dρ∑
i=1

dθ∑
j=1

〈
uρi,i, u

θ
j,j

〉
L(G)

=

dρ∑
i=1

dθ∑
j=1

δρ,θδi,j
|G|
dρ

= |G|δρ,θ.

We thus have that the characters of irreducible representations consti-

tute an orthogonal system in L(G) (in general not complete: see Theorem

10.3.13). Therefore they are �nitely many and their cardinality equals the

number of equivalence classes of irreducible representations (cf. Proposition

10.2.17 and the comments after De�nition 10.2.14).

Proposition 10.2.18 Let ρ and θ be two G-representations. Suppose that

ρ = ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρk is a decomposition of ρ into irreducible subrepresen-

tations and that θ is irreducible. Then, setting mθ = |{j : ρj ∼ θ}|, one
has

mθ =
1

|G|

〈
χρ, χθ

〉
L(G)

. (10.17)

In particular, mθ does not depend on the particular decomposition of ρ.

Proof From Proposition 10.2.15.(iv) it follows that χρ =
∑k

j=1 χ
ρj . There-

fore, from Proposition 10.2.17 we deduce that

〈χρ, χθ〉L(G) =
k∑
j=1

〈χρj , χθ〉L(G) =
k∑
j=1

|G|δρj ,θ = |G|mθ.

Corollary 10.2.19 Let (ρ, V ) be a representation of G. Then, with the

notation as in Proposition 10.2.18, one has

ρ ∼
⊕
θ∈Ĝ

mθθ,

where mθθ = θ ⊕ θ ⊕ · · · ⊕ θ is the direct sum of mθ copies of θ, and

V ∼=
⊕
θ∈Ĝ

mθWθ,

where mθWθ = Wθ ⊕Wθ ⊕ · · · ⊕Wθ is the direct sum of mθ copies of Wθ,

the representation space of θ. Moreover,

χρ =
∑
θ∈Ĝ

mθχ
θ.
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De�nition 10.2.20 The number mθ in (10.17) is called the multiplicity of θ

as a sub-representation of ρ. If θ is not contained in ρ then clearly mθ = 0.

The subspace (of V which is isomorphic to) mθWθ is called the θ-isotypic

component of V .

Example 10.2.21 Let (ρ, V ) be a G-representation. Then the dimension

dim(V G) of the subspace of G-invariant vectors equals the multiplicity mι

of the trivial representation ι of G as a sub-representation of ρ.

Corollary 10.2.22 Let ρ, η be two representations of G. Suppose that

ρ = ⊕
θ∈Ĝmθθ and η = ⊕

θ∈Ĝnθθ are their decompositions into irreducible

subrepresentations, so that the numbers mθ's and nθ's are the corresponding

multiplicities. Then, denoting by J the set of common irreducible represen-

tations, that is, J = {θ ∈ Ĝ : mθ > 0 and nθ > 0}, we have

1

|G|
〈χρ, χη〉 =

∑
θ∈J

mθnθ.

Corollary 10.2.23 A G-representation ρ is irreducible if and only if ‖χρ‖L(G) =√
|G|.

Corollary 10.2.24 Two G-representations ρ and θ are equivalent if and

only if χρ = χθ.

Theorem 10.2.25 (Peter-Weyl) Let G be a �nite group and denote by

(λG, L(G)) its left regular representation (see Example 10.1.8). Then the

following hold:

(i) Every irreducible representation θ ∈ Ĝ appears in the decomposition

of λG with multiplicity equal to its dimension dθ, that is,

L(G) ∼=
⊕
θ∈Ĝ

dθWθ, (10.18)

where Wθ denotes the representation space of θ. Moreover,∑
θ∈Ĝ

dθχ
θ = |G|δ1G ; (10.19)

(ii) |G| =
∑

θ∈Ĝ d
2
θ;

(iii) denoting by uθi,j the matrix coe�cient of θ ∈ Ĝ with respect to an
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orthonormal basis (see (10.14)), then the set{√
dθ
|G|

uθi,j : i, j = 1, . . . , dθ, θ ∈ Ĝ

}
is a complete orthonormal system in L(G).

Proof

(i) Denote by

λG ∼
⊕
θ∈Ĝ

mθθ (10.20)

the decomposition of λG into irreducibles, as in Corollay 10.2.19, so

that the integer mθ denotes the multiplicity in the irreducible rep-

resentation θ ∈ Ĝ in λG. Using the complete orthonormal system

{δg : g ∈ G} of Dirac deltas in L(G) and the identity λG(h)δg = δhg,

we immediately obtain that

χλG(g) =
∑
h∈G
〈λG(g)δh, δh〉 =

∑
h∈G
〈δgh, δh〉 =

{
|G| if g = 1G

0 if g 6= 1G,

(10.21)

for all g ∈ G; in other words,

χλG = |G|δ1G . (10.22)

From Proposition 10.2.18, (10.22) and Proposition 10.2.15, we deduce

mθ =
1

|G|

〈
χλG , χθ

〉
= χθ(1G) = dθ. (10.23)

Then, (10.18) follows from (10.20) and (10.23), while (10.19) follows

from, in order, (10.22), (10.20), and (10.23).

(ii) Taking dimensions in (10.18), we deduce that |G| ≡ dimL(G) =∑
θ∈Ĝ d

2
θ.

(iii) From Lemma 10.2.10 and Lemma 10.2.12 we have that the functions√
dθ
|G|

uθi,j : i, j = 1, 2, . . . , dθ, θ ∈ Ĝ

constitute an orthonormal system in L(G). This system is indeed

complete since its cardinality
∑

θ∈Ĝ d
2
θ = |G| equals the dimension of

the space L(G).
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The structure of the Peter-Weyl theorem will be examined further in Sec-

tions 10.3 and 10.5. For future reference, it is convenient to state explicitly

the orthogonality relations for matrix coe�cients in the following form, which

immediately follows from Lemma 10.2.10 and Lemma 10.2.12. Let (θ,W )

and (ρ, U) be two irreducible G-representations. Then

〈uθi,j , u
ρ
h,k〉 =

|G|
dθ
δθ,ρδi,hδj,k. (10.24)

We now present a useful formula for irreducible characters.

Proposition 10.2.26 Let (θ,W ) ∈ Ĝ, w ∈ W be a vector of norm 1, and

φ(g) = 〈θ(g)w,w〉 the diagonal matrix coe�cient associated with w. Then

χθ(g) =
dθ
|G|

∑
h∈G

φ(h−1gh) (10.25)

for all g ∈ G.

Proof Let {v1 = w, v2, . . . , vdθ} be an orthonormal basis of W and let uθi,j
be as in (10.14) (note that φ = uθ1,1). Then∑

h∈G
φ(h−1gh) =

∑
h∈G
〈θ(g)θ(h)v1, θ(h)v1〉

(by Lemma 10.2.13.(ii)) =

dθ∑
i,j=1

∑
h∈G

uθi,1(h)uθj,1(h)〈θ(g)vi, vj〉

(by (10.24) and (10.15)) =
|G|
dθ
χθ(g).

Example 10.2.27 Let A be a �nite Abelian group. In Corollary 10.2.7 we

have shown that its irreducible representations coincide with its characters.

Now we can also deduce that A has exactly |A| distinct characters: this

agrees with Proposition 2.3.3.

Example 10.2.28 Let Dn = 〈a, b : an = b2 = 1, bab = a−1〉 denote the

dihedral group of degree n, i.e. the group of isometries of a regular polygon

with n vertices. Recall that |Dn| = 2n and that any element of Dn may

be written uniquely in the form akbε, where 0 ≤ k ≤ n − 1 and ε ∈ {0, 1}.
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Moreover, the product of two elements is given by the following rule:

ahbδ · akbε = ah(bδakbδ)bδ+ε =

{
ah−kb1+ε if δ = 1

ah+kbε if δ = 0

for all h, k = 0, 1, . . . , n− 1 and δ, ε ∈ {0, 1}. Alternatively, Dn may be seen

as the group of matrices generated by

a =

(
ω 0

0 ω−1

)
and b =

(
0 1

1 0

)
,

where ω = e2πi/n ≡ cos 2π
n + i sin 2π

n (compare with the representation ρ1

below).

In the following, we determine D̂n. We consider �rst the case when

n is even. We have four one-dimensional representations (we identify these

with the corresponding characters), χi, i = 1, 2, 3, 4, de�ned by

χ1(akbε) = 1

χ2(akbε) = (−1)ε

χ3(akbε) = (−1)k

χ4(akbε) = (−1)k+ε

(10.26)

for all ε = 0, 1 and k = 0, 1, . . . , n− 1. Setting ω = e2πi/n as above, we also

de�ne the two-dimensional representations ρt, t = 0, 1, . . . , n, by setting

ρt(a
k) =

(
ωtk 0

0 ω−tk

)
and ρt(a

kb) =

(
0 ωtk

ω−tk 0

)
for all k = 0, 1, . . . , n− 1.

Exercise 10.2.29

(1) Show that each ρt is indeed a representation.

(2) Show that ρt ∼ ρn−t.
(3) Show that χρ0 = χ1 + χ2 and χρn/2 = χ3 + χ4.

(4) Show that ρt, with 1 ≤ t ≤ n
2 − 1, are pairwise non equivalent irre-

ducible representations in two di�erent ways, namely:

(i) by inspecting the invariant subspaces and intertwining operators;

(ii) by computing the characters and their inner products.

(5) Conclude that χ1, χ2, χ3, χ4, ρt, with 1 ≤ t < n/2, constitute a com-

plete list of irreducible representations of Dn.

Solution of (2): ρn−t(g) = ρt(b)ρt(g)ρt(b) for all g ∈ Dn.
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Exercise 10.2.30 Determine a complete list of irreducible representations

of Dn in the case n is odd.

Solution: D̂n consists of χ1, χ2, and ρt with t = 1, 2, . . . , n−1
2 .

Exercise 10.2.31 The generalized quaternion group is Qn = 〈a, b : b2 =

an, b−1ab = a−1〉. Note that Q2 is the classical quaternionic group.

(1) Show that b2 = a−n, b4 = 1, a2n = 1 and that every element g ∈ Qn
may be written in the form g = akbh with 0 ≤ k ≤ 2n − 1 and

h ∈ {0, 1}.
(2) Show that Qn may be seen as the group of matrices generated by

a =
(
ω 0
0 ω−1

)
and b =

(
0 −1
1 0

)
, where ω = eπi/n. Deduce that the

expression g = akbh is unique and that Qn has 4n elements.

(3) Show that if n is even then Qn/〈a2〉 ∼= C2×C2 while if n is odd then

Qn/〈a2〉 ∼= C4.

(4) Denote by π : Qn → Qn/〈a2〉 the canonical quotient map. For every

ψ ∈ Q̂n/〈a2〉 set ψ = ψ ◦ π: this is called the in�ation of ψ (cf.

Section 11.6). Show that the in�ations ψ, with ψ ∈ Q̂n/〈a2〉, are four
one-dimensional, nonequivalent representations of Qn.

(5) For t = 0, 1, . . . , n− 1 set

ρt(a) =

(
ωt 0

0 ω−t

)
and ρt(b) =

(
0 (−1)t

1 0

)
. (10.27)

Show that (10.27) de�ne n− 1 irreducible, nonequivalent representa-

tions of Qn which, added to the four one-dimensional representations

determined in (4), form a complete list for Q̂n.

10.3 The group algebra and the Fourier transform

An (associative) algebra over C (or complex algebra) is a vector space A over

C endowed with a multiplication operation, the product, such that A is a

ring with respect to the sum and the product, and the following associative

law holds for the product and multiplication by a scalar:

α(AB) = (αA)B = A(αB)

for all α ∈ C and A,B ∈ A. The basic example is End(V ), where V is a

�nite-dimensional vector space over C, with the usual operations of sum and

product of operators, and of multiplication by scalars.

Let A be a complex algebra. A subalgebra of A is a subspace B ≤ A which

is closed under multiplication. For instance, if V is a �nite-dimensional
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vector space over C, �x a basis B = {v1, v2, . . . , vd} of V . An operator T ∈
End(V ) is called B-diagonal provided there exist scalars α1, α2, . . . , αd ∈ C
such that Tvi = αivi for all i = 1, 2, . . . , d. Then the B-diagonal operators
constitute a subalgebra of End(V ).

An involution in A is a bijective map A 7→ A∗ such that

• (A∗)∗ = A

• (αA+ βB)∗ = αA∗ + βB∗

• (AB)∗ = B∗A∗ (anti-multiplicative property)

for all α, β ∈ C and A,B ∈ A. For instance, if A = End(V ), then the map

T 7→ T ∗ (where T ∗ is the adjoint of T ) is an involution on A; similarly for

EndG(V ) (see Proposition 10.2.2). An algebra with involution is called an

involutive algebra or ∗-algebra. An element A in a ∗-algebra A such that

A = A∗ is called self-adjoint .

A is unital if it has a unit, that is, there exists an element I ∈ A such

that AI = IA = A for all for all A ∈ A. Note that a unit is necessarily

unique and self-adjoint. Indeed, if I and I ′ are units in A, then I = II ′ = I ′.

Moreover, if A ∈ A

I∗A = ((I∗A)∗)∗ = (A∗(I∗)∗)∗ = (A∗I)∗ = (A∗)∗ = A

and, similarly, AI∗ = A. Thus I = I∗, by uniqueness of the unit.

The dimension of A is simply its dimension as a complex vector space.

In the following, we shall consider only �nite-dimensional, unital, involu-

tive, complex algebras.

The algebra A is commutative (or Abelian) if it is commutative as a ring,

namely if AB = BA for all A,B ∈ A. A basic example is the following: let

J be a �nite set and denote by CJ the space of all functions f : J → C with

multiplication and involution given respectively by:

(f1f2)(j) = f1(j)f2(j) and f∗(j) = f(j), (10.28)

for all f, f1, f2 ∈ CJ and j ∈ J . Clearly, CJ is isomorphic to the subalgebra

of B-diagonal operators in End(V ) (for any basis B of V and) for any vector

space V with dimV = |J |, as well as to the direct sum C⊕ C⊕ · · · ⊕ C︸ ︷︷ ︸
|J |−times

.

The center Z(A) of A is the commutative subalgebra

Z(A) = {B ∈ A : AB = BA for all A ∈ A}.

The direct sum A⊕B of two algebras A,B is the vector space direct sum

with the product de�ned componentwise: (a1, b1)(a2, b2) = (a1a2, b1b2), for

all a1, a2 ∈ A, b1, b2 ∈ B.
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Let A1 and A2 be two involutive algebras and let φ : A1 → A2 be a map.

One says that φ is a ∗-homomorphism provided that

• φ(αA+ βB) = αφ(A) + βφ(B) (linearity)

• φ(AB) = φ(A)φ(B) (multiplicative property)

• φ(A∗) = [φ(A)]∗ (preservation of involution)

for all α, β ∈ C and A,B ∈ A1. If in addition φ is a bijection, then it is

called a ∗-isomorphism between A1 and A2 and one says that A1 and A2

are ∗-isomorphic. On the other hand, φ is a ∗-anti-homomorphism if the

multiplicative property is replaced by

φ(AB) = φ(B)φ(A) (anti-multiplicative property).

for all A,B ∈ A1. Finally, φ is a ∗-anti-isomorphism if it is a bijective ∗-
anti-homomorphism. If such a ∗-anti-isomorphism exists, then one says that

A1 and A2 are ∗-anti-isomorphic.
Let G be a �nite group. Recall that L(G) denotes the vector space of all

functions f : G→ C.

De�nition 10.3.1 Let f, f1, f2 ∈ L(G). We de�ne the convolution of f1

and f2 and the adjoint of f as the functions f1 ∗ f2 ∈ L(G) and f∗ ∈ L(G)

de�ned by setting

[f1 ∗ f2](g) =
∑
h∈G

f1(gh−1)f1(h) (10.29)

and

f∗(g) = f(g−1) (10.30)

for all g ∈ G, respectively.

Note that the convolution (10.29) may be also written in the following

equivalent ways:

[f1 ∗ f2](g) =
∑

s,t∈G:st=g

f1(s)f2(t)

=
∑
h∈G

f1(h)f2(h−1g) =
∑
h∈G

f1(h)[λG(h)f2](g). (10.31)

Proposition 10.3.2 The vector space L(G) endowed with the the convolu-

tion product (10.29) and the involution (10.30) is a unital, involutive algebra,

with unit δ1G. It is called the group algebra of G.
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Proof We leave it as an exercise to prove that the convolution is distributive

with respect to the sum, and that δ1G is the unit.

Let f1, f2, f3 ∈ L(G) and g ∈ G. Then we have:

[f1 ∗ (f2 ∗ f3)](g) =
∑
h∈G

f1(gh−1)(f2 ∗ f3)(h)

=
∑
h∈G

∑
t∈G

f1(gh−1)f2(ht−1)f3(t)

(setting h = st) =
∑
t∈G

∑
s∈G

f1(gt−1s−1)f2(s)f3(t)

=
∑
t∈G

(f1 ∗ f2)(gt−1)f3(t) = [(f1 ∗ f2) ∗ f3](g).

This shows the associativity of the convolution product. Finally,

[f∗1 ∗ f∗2 ](g) =
∑
s∈G

f∗1 (gs)f∗2 (s−1)

=
∑
s∈G

f1(s−1g−1)f2(s)

= [f2 ∗ f1](g−1)

= [f2 ∗ f1]∗(g)

which shows the anti-multiplicative property of the involution.

Proposition 10.3.3

(i) For s, t ∈ G we have δs ∗ δt = δst.

(ii) For s ∈ G, f ∈ L(G) we have: δs∗f = λG(s)f and f ∗δs = ρG(s−1)f .

(iii) The center Z[L(G)] of the group algebra coincides with the set of all

functions f ∈ L(G) which are constant on each conjugacy class of G,

that is, f(s−1ts) = f(t) for all s, t ∈ G. Such functions are termed

central or class functions.

(iv) L(G) is commutative if and only if G is Abelian.

Proof Let g, s, t ∈ G and f ∈ L(G).

(i) (δs ∗ δt)(g) =
∑

h∈G δs(gh
−1)δt(h) = δs(gt

−1) = δst(g).

(ii)

(δs ∗ f)(g) =
∑
h∈G

δs(h)f(h−1g) = f(s−1g) = [λG(s)f ](g)

and similarly (f ∗ δs)(g) = f(gs−1) = [ρG(s−1)f ](g).



374 Representation theory of �nite groups

(iii) f belongs to the center if and only if f ∗ δs = δs ∗ f for all s ∈ L(G),

that is if and only if δs ∗ f ∗ δs−1 = f and this is equivalent to saying

that f is central since, by (ii), δs ∗ f ∗ δs−1(t) = f(s−1ts).

(iv) L(G) is commutative if and only if δst = δs ∗ δt = δt ∗ δs = δts for

all s, t ∈ G, that is, if and only if G is Abelian. Alternatively, L(G)

is commutative if and only if it coincides with its center, that is, by

(iii), if and only if each conjugacy class consists of one single element,

and this is again equivalent to saying that G is Abelian.

Exercise 10.3.4 Show that f ∈ L(G) is a class function if and only if

f(g1g2) = f(g2g1) for all g1, g2 ∈ G.

Given f ∈ L(G) the convolution operator with kernel f is the linear oper-

ator Tf ∈ End(L(G)) de�ned by setting:

Tff
′ = f ′ ∗ f, (10.32)

for all f ′ ∈ L(G).

Proposition 10.3.5 Tf ∈ EndG(L(G)) for every f ∈ L(G); here, EndG(L(G))

is the commutant (cf. De�nition 10.2.1) of the left regular representation of

G. Moreover, the map

L(G) −→ EndG(L(G))

f 7−→ Tf
(10.33)

is a ∗-anti-isomorphism of algebras, that is

Tf1∗f2 = Tf2Tf1 and Tf∗ = (Tf )∗ (10.34)

for all f1, f2, f ∈ L(G).

Proof First of all, for f, f ′ ∈ L(G) and g, g0 ∈ G we have:

[TfλG(g)f ′](g0) =
(
[λG(g)f ′] ∗ f

)
(g0)

=
∑
h∈G

[λG(g)f ′](g0h)f(h−1)

=
∑
h∈G

f ′(g−1g0h)f(h−1)

= [Tff
′](g−1g0)

=
(
λG(g)[Tff

′]
)

(g0)
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so that TfλG(g) = λG(g)Tf . This shows that Tf ∈ EndG(L(G)). Moreover,

if f, f1, f2 ∈ L(G) then, by associativity of the convolution product,

Tf1(Tf2f) = (f ∗ f2) ∗ f1 = f ∗ (f2 ∗ f1) = Tf2∗f1f,

so that Tf1Tf2 = Tf2∗f1 . Moreover,

〈Tff1, f2〉L(G) =
∑
g∈G

∑
s∈G

f1(gs)f(s−1)f2(g)

(setting g = ts−1) =
∑
t∈G

∑
s∈G

f1(t)f(s−1)f2(ts−1)

=
∑
t∈G

∑
s∈G

f1(t)f∗(s)f2(ts−1)

= 〈f1, Tf∗f2〉L(G),

that is, (Tf )∗ = Tf∗ . We now prove that the map f 7→ Tf is a bijection

by showing that if T ∈ EndG(L(G)), then there exists a unique element

f ∈ L(G) such that T = Tf and that, indeed, f = Tδ1G . Uniqueness is clear:

let f1, f2 ∈ L(G) and suppose that Tf1 = Tf2 . Then, recalling that δ1G is the

unit in L(G), we deduce that f1 = δ1G∗f1 = Tf1δ1G = Tf2δ1G = δ1G∗f2 = f2.

Finally, if f ′ ∈ L(G), then, using (10.11), we have

Tf ′ = T

∑
g∈G

f ′(g)λG(g)δ1G


(since T ∈ EndG(L(G)) =

∑
g∈G

f ′(g)λG(g)Tδ1G

(by (10.31)) = f ′ ∗ (Tδ1G).

We now compute the convolution of matrix coe�cients and characters.

From now on, for each θ ∈ Ĝ we �x an orthonormal basis {vθj : j =

1, 2, . . . , dθ} in the representation space Vθ and denote by uθi,j , i, j = 1, 2, . . . , dθ,

the corresponding matrix coe�cients (as in (10.14)).

Proposition 10.3.6 For all θ, σ ∈ Ĝ we have:

uθi,j ∗ uσh,k =
|G|
dθ
δθ,σδj,hu

θ
i,k (10.35)

for all 1 ≤ i, j ≤ dθ and 1 ≤ h, k ≤ dσ. Moreover,

χθ ∗ χσ = |G|δθ,σχθ. (10.36)
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Proof For all g ∈ G we jave[
uθi,j ∗ uσh,k

]
(g) =

∑
s∈G

uθi,j(gs)u
σ
h,k(s

−1)

(by (i) and (iii) in Proposition 10.2.13) =

dθ∑
`=1

uθi,`(g)
∑
s∈G

uθ`,j(s)u
σ
k,h(s)

(by (10.24)) =

dθ∑
`=1

uθi,`(g)δθ,σδ`,kδj,h
|G|
dθ

=
|G|
dθ
δθ,σδj,hu

θ
i,k(g).

The convolutional property of the characters (10.36) then follows from (10.15)

and (10.35).

De�nition 10.3.7 Let f ∈ L(G) and (θ,Wθ) ∈ Ĝ. The Fourier transform of

f with respect to θ is the linear operator f̂(θ) ∈ End(Wθ) de�ned by setting

f̂(θ) =
∑
g∈G

f(g)θ(g).

Proposition 10.3.8 Let f1, f2, f ∈ L(G) and θ ∈ Ĝ. Then we have

f̂1 ∗ f2(θ) = f̂1(θ)f̂2(θ) (10.37)

and

f̂∗(θ) = f̂(θ)∗. (10.38)

Proof We have

f̂1 ∗ f2(θ) =
∑
g∈G

[∑
h∈G

f1(gh−1)f2(h)

]
θ(g)

=
∑
g∈G

∑
h∈G

f1(gh−1)f2(h)θ(gh−1)θ(h)

=
∑
h∈G

∑
g∈G

f1(gh−1)θ(gh−1)

 f2(h)θ(h)

= f̂1(θ)f̂2(θ).
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This shows (10.37). For v, w ∈Wθ we have:〈
f̂∗(θ)v, w

〉
=
∑
g∈G

f(g−1)〈θ(g)v, w〉

=

〈
v,
∑
g∈G

f(g−1)θ(g)∗w

〉

=

〈
v,
∑
g∈G

f(g−1)θ(g−1)w

〉

=
〈
v, f̂(θ)w

〉
and (10.38) follows as well.

Proposition 10.3.9 Let f ∈ Z(L(G)) and (θ,Wθ) ∈ Ĝ. Then the Fourier

transform of f with respect to θ is a scalar multiple of the identity, more

precisely,

f̂(θ) = λIW with λ =
1

dθ

∑
g∈G

f(g)χθ(g) =
1

dθ

〈
f, χθ

〉
.

Proof Observe that

θ(g)f̂(θ)θ(g−1) =
∑
h∈G

f(h)θ(g)θ(h)θ(g−1) =
∑
h∈G

f(h)θ(ghg−1)

(by Proposition 10.3.3.(iii)) =
∑
h∈G

f(ghg−1)θ(ghg−1) = f̂(θ),

so that f̂(θ) ∈ EndG(Wθ). By Corollary 10.2.4 we deduce that f̂(θ) = λIW .

Computing the trace, we obtain

λdθ = Tr(λIW ) = Tr
[
f̂(θ)

]
=
∑
h∈G

f(h)χθ(h) =
〈
f, χθ

〉
,

which yields the desired value of λ.

Theorem 10.3.10 (Fourier's inversion formula) For f ∈ L(G) one has

f(g) =
1

|G|
∑
θ∈Ĝ

dθTr
[
θ(g−1)f̂(θ)

]
(10.39)

for all g ∈ G. In particular, if f1, f2 ∈ L(G) satisfy the condition f̂1(θ) =

f̂2(θ) for every θ ∈ Ĝ, then one has f1 = f2.
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Proof Let {vθ1, vθ2, . . . , vθdθ} be an orthonormal basis for Wθ for all θ ∈ Ĝ.

By virtue of Theorem 10.2.25, the corresponding (normalized) coe�cients√
dθ
|G| u

θ
i,j , i, j = 1, 2, . . . , dθ, θ ∈ Ĝ, constitute an orthonormal basis in L(G).

As a consequence, also their conjugates
√
dθ
|G| u

θ
i,j constitute an orthonormal

basis and thus for every function f ∈ L(G) we have

f(g) =
1

|G|
∑
θ∈Ĝ

dθ

dθ∑
i,j=1

〈
f, uθi,j

〉
uθi,j(g), (10.40)

for all g ∈ G. Now, recalling that f̂(θ) =
∑

g∈G f(g)θ(g) we have

〈f, uθi,j〉 =
∑
g∈G

f(g)uθi,j(g) =
∑
g∈G

f(g)〈θ(g)vθj , v
θ
i 〉 =

〈
f̂(θ)vθj , v

θ
i

〉
(10.41)

and

dθ∑
i,j=1

〈
f, uθi,j

〉
uθi,j(g) =

dθ∑
i,j=1

〈
f̂(θ)vθj , v

θ
i

〉
〈vθi , θ(g)vθj 〉

=

dθ∑
j=1

〈
f̂(θ)vθj , θ(g)vθj

〉

=

dθ∑
j=1

〈
θ(g−1)f̂(θ)vθj , v

θ
j

〉
= Tr

[
θ(g−1)f̂(θ)

]
.

Thus, replacing this expression in (10.40), we deduce (10.39).

Exercise 10.3.11 Deduce the Fourier inversion formula (10.39) from (10.19),

�rst in the case f = δg, g ∈ G, and then, using linearity, in the general case

(cf. (10.11)).

The Fourier inversion Theorem shows that every function in L(G) is

uniquely determined by its Fourier transforms f̂(θ), θ ∈ Ĝ. Note that al-

though the expression of f , with respect to an orthonormal system made

up of matrix coe�cients is not unique but depends on the choice of an or-

thonormal basis in each representation spaceWθ, θ ∈ Ĝ, the Fourier inversion
formula, however, does not depend on the choice of such bases.

Finally, from this analysis we deduce that the algebra L(G) is isomorphic

to a direct sum of matrix algebras, namely, L(G) ∼= ⊕θ∈ĜMdθ(C), where

Mdθ(C) ∼= End(Wθ) is the algebra of dθ-by-dθ matrices over C. In order to



10.3 The group algebra and the Fourier transform 379

formulate more explicitly the properties of the Fourier transform as a linear

map, we de�ne the complex algebra

C(Ĝ) =
⊕
θ∈Ĝ

End(Wθ).

Clearly, C(Ĝ) is a direct sum of algebras and every element T ∈ C(Ĝ) will be

written in the form T = ⊕
θ∈ĜT (θ), where T (θ) ∈ End(Wθ) for each θ ∈ Ĝ.

It is also involutive with respect to the map T 7→ T ∗ = ⊕
θ∈ĜT (θ)∗.

Corollary 10.3.12 The Fourier transform

L(G) −→ C(Ĝ)

f 7−→ f̂

is a ∗-isomorphism of ∗-algebras and its inverse is given by the map (inverse

Fourier transform)

C(Ĝ) −→ L(G)

T 7−→ T∨,

where T∨(g) = 1
|G|
∑

θ∈Ĝ dθTr
[
θ(g−1)T (θ)

]
.

Theorem 10.3.13 The Fourier inversion formula for a central function f

has the form

f =
1

|G|
∑
θ∈Ĝ

〈f, χθ〉L(G)χθ.

In particular:

(i) the characters χθ, θ ∈ Ĝ, constitute an orthogonal basis for the sub-

space of central functions;

(ii) |Ĝ| equals the number of conjugacy classes in G.

Proof The inversion formula follows from Proposition 10.3.9, taking into ac-

count that Tr θ(g−1) = χθ(g) for all g ∈ G. Note also that from Proposition

10.2.15 and Proposition 10.2.17 it follows that the characters of irreducible

representations form an orthogonal system in the space of central functions;

the inversion formula ensures that it is also complete. Since the dimension

of the space of central functions is equal to the number of conjugacy classes

(recall Proposition 10.3.3.(iii)), this dimension must also equal the number

of irreducible representations of G.

Corollary 10.3.14 (Dual orthogonality relations for characters) Let
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L ⊆ G be a set of representatives for the conjugacy classes of G and denote

by C(t) = {g−1tg : g ∈ G} the conjugacy class of t ∈ L. Then∑
θ∈Ĝ

χθ(t)χθ(t′) =
|G|
|C(t)|

δt,t′ (10.42)

for all t, t′ ∈ L.

Proof We begin by observing that (10.16) may be rewritten in the form∑
t∈L

|C(t)|
|G|

χθ1(t)χθ2(t) = δθ1,θ2 ,

thus showing that the square (recall that |L| = |Ĝ|) matrix U = (Uθ,t)θ∈Ĝ,t∈L,

with Uθ,t =
√
|C(t)|
|G| χ

θ(t), is unitary. Therefore

∑
θ∈Ĝ

√
|C(t1)|
|G|

χθ(t1) ·

√
|C(t2)|
|G|

χθ(t2) = δt1,t2

and the statement follows.

Exercise 10.3.15 Deduce (10.42) from the dual orthogonality relations for

matrix coe�cients (cf. Lemma 10.2.13).

Exercise 10.3.16 Let G be a �nite group.

(1) Use Theorem 10.3.13 to prove that G is Abelian if and only if its

irreducible representations are all one-dimensional.

(2) More generally, prove that if G contains an Abelian subgroup A, then

dθ ≤ |G/A| for all θ ∈ Ĝ.
Solution of (2): Let (θ, V ) ∈ Ĝ. Consider the restriction (ResGAθ, V ) and let

W ≤ V be a non-trivial ResGAθ-irreducible subspace. By (1) we have that

W is one-dimensional. Set H = {g ∈ G : θ(g)W ⊆ W} and denote by

T ⊂ G a complete set of representatives for the left cosets of H in G, so that

G =
∐
t∈T tH. Clearly A ≤ H, θ(g)W ∈ {θ(t)W : t ∈ T } for all g ∈ G, and

dimθ(t)W = 1 for all t ∈ T . Since, by irreducibility, V = ⊕t∈T θ(t)W , we

deduce that dθ = |T | = |G/H| ≤ |G/A|.

Theorem 10.3.17 (Plancherel formula) For all f1, f2 ∈ L(G) we have:

〈f1, f2〉L(G) =
1

|G|
∑
θ∈Ĝ

dθTr
[
f̂1(θ)f̂2(θ)∗

]
. (10.43)
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Proof From Theorem 10.2.25.(iii) we deduce that

〈f1, f2〉 =
∑
θ∈Ĝ

dθ
|G|

dθ∑
i,j=1

〈
f1, uθi,j

〉〈
uθi,j , f2

〉
,

and then, applying (10.41), we get

〈f1, f2〉 =
1

|G|
∑
θ∈Ĝ

dθ

dθ∑
i,j=1

〈
f̂1(θ)vθj , v

θ
i

〉
·
〈
vθi , f̂2(θ)vθj

〉
=

=
1

|G|
∑
θ∈Ĝ

dθTr
[
f̂1(θ)f̂2(θ)∗

]
.

10.4 Group actions and permutation characters

In the present section we suppose that the �nite group G acts on a �nite set

X. We recall that this means that we have a map

G×X −→ X

(g, x) 7−→ gx

such that

• for each g ∈ G the map x 7→ gx is a bijection (a permutation) of X, that

we denote π(g);

• the map g 7→ π(g) is a homomorphism between G and Sym(X), the group

of all permutations of X.

This is equivalent to saying that (g1g2)x = g1(g2x) and 1Gx = x so that, in

particular, x 7→ g−1x is the inverse permutation π(g)−1, for all g1, g2 ∈ G
and x ∈ X. We usually call gx the g-image of x.

For x ∈ X denote by StabG(x) = {g ∈ G : gx = x} (orGx) and OrbG(x) =

{gx : g ∈ G} (or Gx) the stabilizer and the G-orbit of x. It is easy to see that

the orbits form a partition of X (see Exercise 10.4.1); the action is transitive

if there is a single orbit, that is OrbG(x) = X (and this clearly holds for all

x ∈ X). Equivalently, it is transitive if and only if for all x1, x2 ∈ X there

exists g ∈ G such that gx1 = x2. If G acts transitively on X we also say

that X is a (homogeneous) G-space.

Exercise 10.4.1 Let X be a G-space.

(1) Show that StabG(gx) = gStabG(x)g−1, for all g ∈ G and x ∈ X.
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(2) Show that for x, x′ ∈ X, the relation x ∼ x′ if x and x′ belong to the

same G-orbit is an equivalence relation on X, so that the G-orbits on

X constitute the corresponding partition of X.

Lemma 10.4.2 Let X be a G-space. Then

|G| = |StabG(x)| · |OrbG(x)| (10.44)

for all x ∈ X. Moreover,

1

|G|
∑
x∈X
|StabG(x)| = number of G-orbits in X.

Proof Let x ∈ X and consider the map φ : G → OrbG(x) which maps g

to gx. By de�nition it is surjective; moreover one has φ−1(x) = StabG(x)

and, more generally, φ−1(gx) = {gk : k ∈ StabG(x)} = gStabG(x) so that,

in particular, |φ−1(x′)| = |φ−1(x)| = |StabG(x)| for all x′ ∈ OrbG(x). Thus

φ is a surjective |StabG(x)|−to−one map and (10.44) follows. Moreover, if

X1, X2, . . . , Xh are the orbits of G on X then

1

|G|
∑
x∈X
|StabG(x)| =

1

|G|

h∑
i=1

∑
x∈Xi

|StabG(x)|

(by (10.44)) =
1

|G|

h∑
i=1

∑
x∈Xi

|G|
|Xi|

=
h∑
i=1

1

|Xi|
· |Xi|

= h.

Example 10.4.3 Let X be a G-space. As in Section 2.1, let L(X) denote

the vector space of all complex valued functions de�ned on X endowed with

the inner product de�ned by 〈f1, f2〉L(X) =
∑

x∈X f1(x)f2(x), for all f1, f2 ∈
L(X). The permutation representation of G on X is the G-representation

(λ, L(X)) de�ned by

[λ(g)f ] (x) = f(g−1x)

for all f ∈ L(X), g ∈ G and x ∈ X. As in Example 10.1.8 (which is actually

a particular case of the present construction), it is easy to check that this

is a unitary representation and that the Dirac functions δx, x ∈ X, form

an orthonormal basis (now, δx(x) = 1 and δx(y) = 0 if y 6= x). Moreover,
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λ(g)δx = δgx for all g ∈ G, x ∈ X, and f =
∑

x∈X f(x)δx for all f ∈ L(X).

Let now X =
∐h
j=1Xj be the decomposition of X into G-orbits. Then

L(X) =
h⊕
j=1

L(Xj) (10.45)

is clearly a direct sum decomposition into G-invariant subspaces. Indeed,

any f ∈ L(X) may be written in the form f =
∑h

j=1 fj , where fj ∈ L(X) is

de�ned by setting

fj(x) =

{
f(x) if x ∈ Xj

0 otherwise,
(10.46)

for all j = 1, 2, . . . , h, so that fj may be naturally identi�ed with a function in

L(Xj). Moreover, (10.46) implies G-invariance of the decomposition (10.45).

For this reason, it is customary, in representation theory, to consider only

transitive actions (that is, the case h = 1). Note also that even in this

case, a permutation representation on a set X with more that one element is

not irreducible because the (|X| − 1)-dimensional space W1 = {f ∈ L(X) :∑
x∈X f(x) = 0} is always G-invariant: if f ∈W1 and g ∈ G then∑

x∈X
[λ(g)f ](x) =

∑
x∈X

f(g−1x) =
∑
y∈X

f(y) = 0

so that λ(g)f ∈W1. Note also that, as in Section 2.1, we have the orthogonal

decomposition L(X) = W0 ⊕W1, where W0 = {f ∈ L(X) : f constant} =

W⊥1 . More explicitly, for any f ∈ L(X) we have

f =
1

|X|
∑
x∈X

f(x) +

[
f − 1

|X|
∑
x∈X

f(x)

]
where the �rst summand (the mean value) belongs toW0 and the second one

to W1. Another important consequence of transitivity is the following: the

trivial representation of G is contained in L(X) with multiplicity exactly one

and coincides with W0. Indeed, if λ(g)f = f for all g ∈ G then transitivity

implies that f is constant (in general, the multiplicity of the trivial repre-

sentation in (λ, L(X)) equals the number of G-orbits). In Exercise 10.4.16

we will give a necessary and su�cient condition for the irreducibility of W1.

Example 10.4.4 Let G = Sn be the symmetric group of degree n (cf. Exam-

ple 10.1.10). The natural permutation representation of Sn is n-dimensional

representation constructed as in Example 10.4.3, using the natural action of

Sn on X = 1, 2, . . . , n. See also Exercise 10.4.16.
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Example 10.4.5 (The a�ne group over Fq) Let Fq be the �nite �eld

with q = pm elements, where p is a prime number andm ≥ 1 (see Chapter 6).

The (general) a�ne group (of degree one) over Fq is the group of matrices

A�(Fq) =

{(
a b

0 1

)
: a ∈ F∗q , b ∈ Fq

}
.

The terminology is due to the fact that A�(Fq) acts (transitively: this is

an easy exercise) on Fq ≡
{(

x

1

)
: x ∈ Fq

}
by multiplication

(
a b

0 1

)(
x

1

)
=

(
ax+ b

1

)
and the maps x 7→ ax+b (with a ∈ F∗q , b ∈ Fq) are the a�ne transformations

of Fq. For this reason, one often also refers to A�(Fq) as to the �nite ax+ b

group.

This de�nes a permutation representation of A�(Fq), that will be examined

in Exercise 10.4.7 and Exercise 10.4.16. In Section 12.1 we shall fully describe

all irreducible representations of A�(Fq).

Consider the permutation representation of G on L(X) de�ned in Example

10.4.3. The corresponding character χλ is called the permutation character

of the action of G on X. In the following, we prove a basic formula for χλ.

Proposition 10.4.6 (Fixed point character formula) Let g ∈ G. Then
we have

χλ(g) = |{x ∈ X : gx = x}|, (10.47)

that is, χλ(g) equals the number of points in X which are �xed by g.

Proof Recall that the set {δx : x ∈ X} is an orthonormal basis in L(X) and

therefore

χλ(g) =
∑
x∈X
〈λ(g)δx, δx〉L(X) =

∑
x∈X
〈δgx, δx〉L(X) .

This clearly counts the points in X which are �xed by g (compare with

(10.21), which is just a special case).

Another formula for χλ, in the case of a transitive permutation represen-

tation, will be given in Corollary 11.1.14.

Example 10.4.7 Consider the permutation representation λ of the �nite



10.4 Group actions and permutation characters 385

a�ne group A�(Fq) (cf. Example 10.4.5). The corresponding permutation

character χλ is given by

χλ
(
a b

0 1

)
=


1 if a 6= 1

q if a = 1 and b = 0

0 otherwise

for all a ∈ F∗q and b ∈ Fq. Indeed, solving the equation ax + b = x, that is,

(a− 1)x+ b = 0, we �nd:

• if a 6= 1 there is a unique solution given by x = − b
a−1 ;

• if a = 1 and b = 0 then each x ∈ Fq is a solution (the identity �xes

every point);

• if a = 1 and b 6= 0 there are no solutions.

The following lemma is usually called �the Burnside lemma�, but it was

known already to Cauchy (see [21, 121, 169]).

Lemma 10.4.8 (Burnside's lemma) Let G be a �nite group acting on a

�nite set X and denote by (λ, L(X)) the corresponding permutation repre-

sentation. Then we have:

1

|G|
∑
g∈G

χλ(g) = number of G-orbits on X.

Proof We clearly have

1

|G|
∑
g∈G

χλ(g) =
1

|G|

〈
χλ,1G

〉
L(G)

, (10.48)

where 1G = χι, the character of the trivial representation of G. By Propo-

sition 10.2.18, the right hand side of (10.48) equals the multiplicity of the

trivial representation as a sub-representation of the permutation representa-

tion λ. Since (cf. Example 10.4.3) L(X)G = ⊕hi=1C1Xi , where 1Xi denotes

the characteristic function of the orbit Xi, i = 1, 2, . . . , h, and (cf. Example

10.2.21) the multiplicity of the trivial representation in any G-representation

V equals the dimension of the subspace V G of G-invariant vectors, the right

hand side of (10.48) is therefore equal to dim(L(X)G) = h, the number of

G-orbits on X.

Exercise 10.4.9 Deduce Burnside's Lemma from Lemma 10.4.2 and Propo-

sition 10.4.6.
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Form now on, we assume that G acts transitively on X, that K ≤ G is

the stabilizer of a �xed element x0 ∈ X, and that T is a complete set of

representatives for the left cosets of K in G, that is,

G =
∐
t∈T

tK. (10.49)

Then the map

Ψ: G/K → X

gK 7→ gx0,
(10.50)

where G/K is the set of all left cosets of K in G, is a bijection. Indeed, for

g1, g2 ∈ G we have g1x0 = g2x0 if and only if g−1
1 g2 ∈ K, that is, g1K = g2K.

De�ne an action of G on G/K by setting g(g0K) = (gg0)K. It is easy to see

that the map (10.50) is G-equivariant (or, that the G-spaces X and G/K

are isomorphic), that is,

gΨ(g0K) = Ψ (g(g0K)) ∀g, g0 ∈ G.

In other words, every transitive G-space is isomorphic to a G-space G/K

(where K, as above, is the stabilizer of a point in X).

Exercise 10.4.10 (1) Let H,K ≤ G be two subgroups. Show that G/H

and G/K are isomorphic as G-spaces if and only if H and K are conjugate

in G (there exists g ∈ G such that H = g−1Kg).

(2) Let X be a transitive G-space. Let x0, x
′
0 ∈ X and denote by K,K ′ ≤

G the corresponding stabilizers. Using Exercise 10.4.1 and (1) show that the

G-spaces G/K and G/K ′ are isomorphic.

Given an action of a group G on a set X, the corresponding diagonal

action of G on X ×X is de�ned by setting

g(x1, x2) = (gx1, gx2), g ∈ G, x1, x2 ∈ X.

We denote by (λ2, L(X×X)) the corresponding permutation representation.

Proposition 10.4.11 Let X be a G-space and denote by (λ, L(X)) and

(λ2, L(X ×X)) the corresponding permutation representations. Then

χλ
2

= (χλ)2.

Proof Let g ∈ G. From the �xed point character formula (10.47) we deduce
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that (
χλ(g)

)2
= |{x ∈ X : gx = x}|2

= |{x1 ∈ X : gx1 = x1}| · |{x2 ∈ X : gx2 = x2}|
= |{(x1, x2) ∈ X ×X : g(x1, x2) = (x1, x2)}|

(again by (10.47)) = χλ
2
(g).

Proposition 10.4.12 Let X be a G-space and denote, as usual, by K ≤ G

the stabilizer of a �xed point x0 ∈ X. Let X = Ω0
∐

Ω1
∐
· · ·
∐

Ωn denote

the decomposition of X into K-orbits (with Ω0 = {x0}) and choose xi ∈ Ωi,

i = 1, 2, . . . , n. Then the sets

G(xi, x0) = {(gxi, gx0) : g ∈ G} ⊆ X ×X,

i = 0, 1, 2, . . . , n, are the orbits of the diagonal action of G on X ×X.

Proof First of all, note that if (x, y) ∈ X×X then there exist g ∈ G, k ∈ K,

and i ∈ {0, 1, . . . , n} such that gx0 = y (G is transitive on X) and gkxi = x

(let Kxi = Ωi be the K-orbit containing g−1x). Therefore,

(x, y) = (gkxi, gx0) = (gkxi, gkx0) ∈ G(xi, x0).

This shows that

X ×X =
n⋃
i=0

G(xi, x0). (10.51)

It is also easy to show that G(xi, x0) ∩ G(xj , x0) = ∅ if i 6= j: indeed if

g1, g2 ∈ G satisfy g1xi = g2xj and g1x0 = g2x0 then, necessarily, g−1
2 g1 ∈ K,

and this forces i = j. Therefore (10.51) is in fact a disjoint union.

Conversely, we may rephrase the above result as follows.

Corollary 10.4.13 Let Θ be a G-orbit on X ×X. Then the set Ω = {x ∈
X : (x, x0) ∈ Θ} is an orbit of K on X and the map Θ 7→ Ω is a bijection

between the set of orbits of G on X×X (with the diagonal action) and those

of K on X.

The following result was surely known to Schur and possibly even to Frobe-

nius. Since a standard reference for it is the book by Wielandt [167], for

convenience we refer to it as to �Wielandt's lemma�. Another proof will be

indicated in Exercise 11.4.9.
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Lemma 10.4.14 (Wielandt) Let X be a G-space. Suppose that L(X) =

⊕Ni=0miVi is the decomposition of L(X) into irreducible G-representations,

where mi denotes the multiplicity of Vi. Then

N∑
i=0

m2
i = number of G-orbits on X ×X = number of K-orbits on X.

(10.52)

Proof Denote again by χλ the permutation character associated with the

G-action on X. From Corollary 10.2.22 we deduce that:

h∑
i=1

m2
i =

1

|G|

〈
χλ, χλ

〉
L(G)

(χλ = χλ by Proposition 10.4.6) =
1

|G|
∑
g∈G

χλ(g)2

(by Proposition 10.4.11) =
1

|G|
∑
g∈G

χλ
2
(g)

(by Lemma 10.4.8) = number of G-orbits on X ×X
(by Corollary 10.4.13) = number of K-orbits on X.

In other words, by Proposition 10.2.18,

1

|G|

〈
χλ, χλ

〉
=

1

|G|

〈(
χλ
)2
,1G

〉
=

1

|G|

〈
χλ

2
,1G

〉
is equal to the multiplicity of the trivial representation in the permutation

representation of G on X ×X.

The following is a slight but useful generalization of the previous result.

Exercise 10.4.15 Let G act transitively on two �nite sets X = G/K and

Y = G/H. De�ne the diagonal action of G on X × Y by setting, for all

x ∈ X, y ∈ Y and g ∈ G

g(x, y) = (gx, gy).

(1) Show that the number of G-orbits on X × Y equals the number of

H-orbits on X which in turn equals the number of K-orbits on Y .

(2) Let L(X) = ⊕i∈ImiVi and L(Y ) = ⊕j∈JnjVj denote the decompo-

sition of the permutation representations L(X) and L(Y ) into irre-

ducible representations. Denoting by I ∩ J the set of indices corre-

sponding to common (equivalent) sub-representations, show that the

number of G-orbits on X × Y equals the sum
∑

i∈I∩J mini.
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An action of G on X is called doubly transitive if for all (x1, x2), (y1, y2) ∈
(X ×X) \ {(x, x) : x ∈ X} there exists g ∈ G such that gxi = yi for i = 1, 2.

Exercise 10.4.16 Suppose that G acts transitively on X.

(1) Prove that G is doubly transitive on X if and only if K is transitive

on X \ {x0}.
(2) Let W0 and W1 be as in Example 10.4.3. Prove that L(X) = W0 ⊕

W1 is the decomposition of the permutation representation into irre-

ducibles if and only if G acts doubly transitively on X.

(3) Prove that if the action of G on X = G/K is doubly transitive, then

K is a maximal subgroup (K < H ≤ G infers H = G).

Solution. Suppose that K < H ≤ G and let h ∈ H \ K and g ∈
G \ K. By double transitivity applied to (K,hK), (K, gK) ∈ (X ×
X) \ {(x, x) : x ∈ X}, there exists g′ ∈ G such that g′K = K and

g′hK = gK. But then g′ ∈ K, g′h ∈ H and therefore g ∈ H. This

shows that H = G.

(4) Show that the action of Sn on {1, 2, . . . , n} is doubly transitive.

(5) Show that the action of A�(Fq) on Fq de�ned in Exemple 10.4.5 is

doubly transitive. Deduce that the corresponding permutation repre-

sentation decomposes into the sum of the trivial representation and

of a (q − 1)-dimensional, irreducible representation. See also Section

12.1.

Exercise 10.4.17 Consider the dihedral group Dn in Example 10.2.28 and

de�ne an action of Dn on the additive cyclic group Zn by setting ah = h+ 1

and bh = −h for all h ∈ Zn. Show that this coincides with the natural action

of Dn on the regular polygon with n sides. Also show that the corresponding

permutation representation λ decomposes as follows:

λ =


χ0 ⊕ χ3 ⊕

(⊕n
2
−1

j=1 ρj

)
if n is even

χ0 ⊕
(⊕n−1

2
j=1 ρj

)
if n is odd.

10.5 Conjugate representations and tensor products

The present section is devoted to two basic constructions in linear and multi-

linear algebra, namely dual spaces and tensor products, in the framework of

the representation theory of �nite groups. We recall all basics notions but
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only for �nite dimensional, complex unitary spaces.

Let V be a �nite dimensional complex vector spaces. The dual V ′ of V is

the space of all linear functionals f : V → C. If V is unitary, then the Riesz

representation theorem ensures that for each f ∈ V ′ there exists a unique

vector ξ(f) ∈ V such that:

f(v) = 〈v, ξ(f)〉, for all v ∈ V. (10.53)

The Riesz map ξ = ξV : V ′ → V is anti-linear, i.e. ξ(αf1 + βf2) = αξ(f1) +

βξ(f2), for all α, β ∈ C and f1, f2 ∈ V ′, and bijective. In V ′ we introduce an

inner product by setting, for all f1 and f2 ∈ V ′,

〈f1, f2〉V ′ = 〈ξ(f2), ξ(f1)〉V . (10.54)

Thus, for f ∈ V ′ and v ∈ V one has

f(v) = 〈v, ξ(f)〉V = 〈f, ξ−1(v)〉V ′

which shows that V ′′ = (V ′)′, the bi-dual of V , is isometrically identi�ed

with V by means of ξ−1.

De�nition 10.5.1 Let G be a �nite group and (ρ, V ) a unitary representa-

tion of G. We de�ne the adjoint or conjugate representation (ρ′, V ′) of (ρ, V )

by setting, for all f ∈ V ′, v ∈ V and g ∈ G

[ρ′(g)f ](v) = f [ρ(g−1)v]. (10.55)

It is easy to check that ρ′ is a linear representation of G and ρ′ is irreducible

if and only if ρ is irreducible: this is an immediate consequences of the next

proposition.

Proposition 10.5.2 For all g ∈ G we have:

ρ′(g) = ξ−1ρ(g)ξ. (10.56)

Proof For all g ∈ G, v ∈ V and f ∈ V ′ we have:

〈v, ξ[ρ′(g)f ]〉 = [ρ′(g)f ](v) by (10.53)

= f [ρ(g−1)v] by (10.55)

= 〈ρ(g−1)v, ξ(f)〉 by (10.53)

= 〈v, ρ(g)[ξ(f)]〉

so that ξρ′(g) = ρ(g)ξ.
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Remark 10.5.3 Note that, despite (10.56), in general ρ′ 6∼ ρ: recall that

the map ξ is anti-linear! However, the following result holds true (modulo

the identi�cation of V ′′ and V ).

Corollary 10.5.4 The double adjoint (ρ′)′ coincides with ρ.

Proof We �rst observe that

ξV ′ = (ξV )−1. (10.57)

Thus, by applying Proposition 10.5.2 twice and (10.57), we obtain

(ρ′)′(g) = ξ−1
V ′ ρ

′(g)ξV ′ = ξV ξ
−1
V ρ(g)ξV ξ

−1
V = ρ(g)

for all g ∈ G.

We now �x an orthonormal basis {v1, v2, . . . , vd} of V and denote by

{f1, f2, . . . , fd} the orthonormal basis in V ′ which is dual to {v1, v2, . . . , vd},
that is, such that fi(vj) = δi,j (or, equivalently, fi = ξ−1(vi)), for all

i, j = 1, 2, . . . , d.

Proposition 10.5.5 The matrix coe�cients u′i,j(g) of ρ′ with respect to the

dual basis {f1, f2, . . . , fd} are the conjugates of those of ρ, in fomulæ:

u′i,j(g) = ui,j(g) (10.58)

for all g ∈ G and i, j = 1, 2, . . . , d.

Proof Keeping in mind (10.14), we have

u′i,j(g) = 〈ρ′(g)fj , fi〉V ′
(by (10.54)) = 〈ξ(fi), ξ[ρ′(g)fj ]〉V

(since ξ(fi) = vi and by (10.56)) = 〈vi, ρ(g)vj〉V
= 〈ρ(g)vj , vi〉V
= ui,j(g)

for all g ∈ G and i, j = 1, 2, . . . , d.

Corollary 10.5.6 The character of ρ′ is the conjugate of the character of ρ:

χρ(g) = χρ′(g) (10.59)

for all g ∈ G.
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For instance, if χk (0 ≤ k ≤ n− 1) is a character of the cyclic group Zn as

in Section 2.2, then the character of the corresponding adjoint representation

is χ−k.

Exercise 10.5.7 (Fourier transform of a character) Prove that for θ

and σ in Ĝ we have χ̂σ(θ) = δθ,σ′
|G|
dθ
IVθ .

Remark 10.5.8 A representation ρ ∈ Ĝ is self-conjugate when ρ and ρ′ are

equivalent; it is complex when it is not self-conjugate. By virtue of (10.59),

we may say that ρ is self-conjugate if and only if χρ(g) ∈ R for all g ∈ G, that
is, its character is a real valued function. Similarly, ρ is complex if and only

if χρ(g) ∈ C \ R for some g ∈ G. The class of self-conjugate representations
can be further split into two subclasses (real and quaternionic); we refer to

[29, Section 9.7] for more details.

Now we apply the notion of a conjugate representation to the decompo-

sition of the group algebra. Suppose that our choice of the elements of the

dual Ĝ of G makes it invariant under conjugation: for all θ ∈ Ĝ, also θ′ ∈ Ĝ.
Using the notation in Theorem 10.2.25, for each θ ∈ Ĝ we set:

M θ
i,∗ = 〈uθi,j : j = 1, 2, . . . , dθ〉, i = 1, 2, . . . , dθ;

M θ
∗,j = 〈uθi,j : i = 1, 2, . . . , dθ〉, j = 1, 2, . . . , dθ;

M θ = 〈uθi,j : i, j = 1, 2, . . . , dθ〉.

where 〈· · · 〉 indicates C-linear span. Recall also the de�nition of the left

(respectively right) regular representation in Example 10.1.8.

Theorem 10.5.9 The following orthogonal decompositions hold:

(i) L(G) = ⊕
θ∈ĜM

θ and each M θ is both λG- and ρG-invariant;

(ii) M θ = ⊕dθi=1M
θ
i,∗; each M

θ
i,∗ is ρG-invariant and the restriction of ρG

to M θ
i,∗ is equivalent to θ;

(iii) M θ = ⊕dθj=1M
θ
∗,j; each M

θ
∗,j is λG-invariant and the restriction of λ

to M θ
∗,j is equivalent to θ

′.

Proof

(i) The decomposition L(G) =
⊕

θ∈ĜM
θ is just the Peter�Weyl theorem

(Theorem 10.2.25); the λG- and ρG-invariance are proved below.
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(ii) Let g, g1 ∈ G and i, j ∈ {1, 2, . . . , dθ}. Then, by Lemma 10.2.13.(iii),

[ρG(g)uθi,j ](g1) = uθi,j(g1g) =

dθ∑
k=1

uθi,k(g1)uθk,j(g),

i.e.

ρG(g)uθi,j =

dθ∑
k=1

uθi,ku
θ
k,j(g).

Since, by Lemma 10.2.13.(ii), θ(g)vθj =
∑dθ

k=1 v
θ
ku

θ
k,j(g), we conclude

that the map vθj 7→ uθi,j , j = 1, 2, . . . , dθ, extends to an invertible

operator that intertwines θ with ρG|Mθ
i,∗
.

(iii) Let g, g1 ∈ G and i, j ∈ {1, 2, . . . , dθ}. Then, by Lemma 10.2.13.(iii),

Lemma 10.2.13.(i), and (10.58), we have

[λG(g)uθi,j ](g1) = uθi,j(g
−1g1)

=

dθ∑
k=1

uθi,k(g
−1)uθk,j(g1)

=

dθ∑
k=1

uθk,i(g)uθk,j(g1)

=

dθ∑
k=1

uθ
′
k,i(g)uθk,j(g1),

i.e. λG(g)uθi,j =
∑dθ

k=1 u
θ
k,ju

θ′
k,i(g). Again by Lemma 10.2.13.(ii) we

have θ′(g)vθ
′
i =

∑dθ
k=1 v

θ′
k u

θ′
k,i(g), and this shows that the map vθ

′
i 7→

uθi,j , i = 1, 2, . . . , dθ, extends to an invertible operator that intertwines

θ′ with λG|Mθ
∗,j
.

The representationM θ is the θ-isotypic component of L(G) (see De�nition

10.2.20).

Exercise 10.5.10 Show that the orthogonal projection Eθ : L(G)→ M θ is

given by Eθf = 1
|G|f ∗ χ

θ, for all f ∈ L(G).

We now turn to the second fundamental construction in linear and multi-

linear algebra in the framework of representation theory of �nite groups we

alluded to above, namely tensor products. In Section 8.7 we have already

given an elementary introduction to tensor products
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Let then V and W be two �nite dimensional, complex, unitary spaces. A

map B : V ×W → C is said to be bi-antilinear provided

B(v1 + v2, w) = B(v1, w) +B(v2, w)

B(v, w1 + w2) = B(v, w1) +B(v, w2)

B(αv, βw) = αβB(v, w)

for all v1, v2 ∈ V,w1, w2 ∈ W and α, β ∈ C. Clearly, the set of all such

bi-antilinear maps is a complex vector space in a natural way; we denote it

by V
⊗
W and call it the tensor product of V and W .

For v ∈ V and w ∈W we denote by v⊗w the element in V
⊗
W de�ned

by

[v ⊗ w](v′, w′) = 〈v, v′〉V 〈w,w′〉W

for all v′ ∈ V and w′ ∈ W . Elements of this kind are called simple tensors.

Note that the map

V ×W −→ V
⊗
W

(v, w) 7−→ v ⊗ w

is bilinear, that is,

(α1v1 + α2v2)⊗ (β1w1 + β2w2)

= α1β1v1 ⊗ w1 + α1β2v1 ⊗ w2 + α2β1v2 ⊗ w1 + α2β2v2 ⊗ w2,

for all αi, βi ∈ C, vi ∈ V and wi ∈ W , i = 1, 2. We claim that the cor-

responding image spans the whole V
⊗
W . Indeed, if {vi}dVi=1 and {wj}dWj=1

denote two bases for V and W , respectively, then for all B ∈ V
⊗
W we

clearly have

B =

dV∑
i=1

dW∑
j=1

B(vi, wj)vi ⊗ vj .

This incidentally shows that the simple tensors vi ⊗ wj , i = 1, . . . , dV and

j = 1, . . . , dW , generate V
⊗
W . Since these are also linearly indepen-

dent (exercise), they constitute a basis for V
⊗
W , so that, in particular,

dim(V
⊗
W ) = dim(V ) · dim(W ).

We now endow V
⊗
W with a scalar product 〈·, ·〉V ⊗

W by setting

〈v1 ⊗ w1, v2 ⊗ w2〉V ⊗
W = 〈v1, v2〉V 〈w1, w2〉W (10.60)

and then extending by linearity. This way, if the bases {vi}dVi=1 and {wj}dWj=1

are orthonormal in V and W , respectively, then so is {vi ⊗ wj} i=1,...,dV
j=1,...,dW

in

V
⊗
W .



10.5 Conjugate representations and tensor products 395

Let now A ∈ End(V ) and B ∈ End(W ). De�ne A⊗B ∈ End(V
⊗
W ) by

setting, for all C ∈ V
⊗
W ,

{[A⊗B](C)} (v′, w′) = C(A∗v′, B∗w′)

for all v′ ∈ V and w′ ∈ W , where A∗ ∈ End(V ) and B∗ ∈ End(W ) are the

adjoint operators. For v, v′ ∈ V and w,w′ ∈W we then have

{[A⊗B](v ⊗ w)} (v′, w′) = [v ⊗ w](A∗v′, B∗w′)

= 〈v,A∗v′〉V 〈w,B∗w′〉W
= 〈Av, v′〉V 〈Bw,w′〉W
= [(Av)⊗ (Bw)](v′, w′).

This shows that

[A⊗B](v ⊗ w) = (Av)⊗ (Bw). (10.61)

Lemma 10.5.11 Let A ∈ End(V ) and B ∈ End(W ). Then Tr(A ⊗ B) =

Tr(A)Tr(B).

Proof Let {vi}dVi=1 and {wj}dWj=1 be two orthonormal bases in V and W ,

respectively. Then

Tr(A⊗B) =
∑

i=1,...,dV
j=1,...,dW

〈[A⊗B](vi ⊗ wj), vi ⊗ wj〉V ⊗
W

(by (10.61)) =
∑

i=1,...,dV
j=1,...,dW

〈(Avi)⊗ (Bwj), vi ⊗ wj〉V ⊗
W

(by (10.60)) =
∑

i=1,...,dV
j=1,...,dW

〈Avi, vi〉V 〈Bwj , wj〉W

= Tr(A)Tr(B).

Exercise 10.5.12

(1) Show that the bilinear map

φ : V ×W → V
⊗
W

(v, w) 7→ v ⊗ w

is universal in the sense that if Z is another complex vector space

and ψ : V ×W → Z is bilinear, then there exists a unique linear map
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θ : V
⊗
W → Z such that θ(v ⊗ w) = φ(v, w), that is, such that the

diagram

V ×W φ−→ V
⊗
W

↘ ψ ↙ θ

Z

is commutative (i.e. ψ = θ ◦ φ).
(2) Show that the above universal property characterizes the tensor prod-

uct: let U be a complex vector space and let ψ : V ×W → U be a

bilinear map such that

(a) ψ(V ×W ) = {ψ(v, w) : v ∈ V,w ∈W} generates U ;
(b) for any complex vector space Z and any bilinear map τ : V×W → Z

there exists a unique linear map θ : U → Z such that τ = θ ◦ ψ.

Then there exists a linear isomorphism α : V
⊗
W → U such that

ψ = α ◦ φ.

Exercise 10.5.13 Let V,W and Z be �nite dimensional, complex unitary

spaces. Prove that the following natural isomorphisms hold:

(1) V
⊗
W ∼= W

⊗
V ;

(2) C
⊗
V ∼= V ;

(3) (V
⊗
W )

⊗
Z ∼= V

⊗
(W

⊗
Z);

(4) (V
⊕
W )

⊗
Z ∼= (V

⊗
Z)
⊕

(W
⊗
Z).

Note that the third isomorphism, namely the associativity of the ten-

sor product, may be recursively extended to the tensor product of k vector

spaces: we then denote by V1
⊗
V2
⊗
· · ·
⊗
Vk the set of all k-antilinear

maps B : V1 × V2 × · · · × Vk → C.
We now introduce and study two kinds of tensor product of representa-

tions.

De�nition 10.5.14 Let G1 and G2 be two �nite groups and let (ρ1, V1)

and (ρ2, V2) be representations of G1 and G2, respectively. We de�ne the

outer tensor product of ρ1 and ρ2 as the representation (ρ1� ρ2, V1
⊗
V2) of

G1 ×G2 de�ned by setting

[ρ1 � ρ2](g1, g2) = ρ1(g1)⊗ ρ2(g2) ∈ End
(
V1

⊗
V2

)
for all gi ∈ Gi, i = 1, 2.
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When G1 = G2 = G the internal tensor product of ρ1 and ρ2 is the G-

representation (ρ1 ⊗ ρ2, V1
⊗
V2) de�ned by setting

[ρ1 ⊗ ρ2](g) = ρ1(g)⊗ ρ2(g) ∈ End
(
V1

⊗
V2

)
for all g ∈ G.

In the above de�nition, we have used the symbols ��� and �⊗� to make

a distinction between these two notions of tensor product (compare with

[62]). Note that, however, in both cases the space will be simply denoted by

V1
⊗
V2. Moreover, it is obvious that, modulo the isomorphism between G

and G̃ = {(g, g) : g ∈ G} ≤ G × G, the internal tensor product ρ1 ⊗ ρ2 is

unitarily equivalent to the restriction ResG×G
G̃

(ρ1 � ρ2).

Lemma 10.5.15 Let ρ1 and ρ2 be two representations of two �nite groups

G1 and G2, respectively, and denote by χρ1 and χρ2 their characters. Then,

the character of ρ1 � ρ2 is given by

χρ1�ρ2(g1, g2) = χρ1(g1)χρ2(g2) (10.62)

for all g1 ∈ G1 and g2 ∈ G2. In particular, if both ρ1 and ρ2 are one�

dimensional, so that they coincide with their characters, then one has that

ρ1�ρ2 = χρ1�χρ2 = χρ1χρ2, the pointwise product of the characters. When

G1 = G2 = G, as the internal tensor product is concerned, (10.62) becomes

χρ1⊗ρ2(g) = χρ1(g)χρ2(g) (10.63)

for all g ∈ G

Proof This follows immediately from De�nition 10.2.14 and Lemma 10.5.11.

Theorem 10.5.16 Let G1 and G2 be two �nite groups and let θ1 ∈ Ĝ1 and

θ2 ∈ Ĝ2. Then θ1�θ2 is an irreducible representation of G1×G2. Moreover,

if also σ1 ∈ Ĝ1 and σ2 ∈ Ĝ2 then θ1 � θ2 ∼ σ1 � σ2 if and only if θ1 = σ1

and θ2 = σ2.

Proof By Proposition 10.2.17 and Corollary 10.2.23 it su�ces to check that

〈χθ1�θ2 , χσ1�σ2〉 is either |G1 ×G2| ≡ |G1| · |G2| if σ1 = θ1 and σ2 = θ2, or 0
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otherwise. Now we have

〈χθ1�θ2 , χσ1�σ2〉 =
∑

(g1,g2)∈G1×G2

χθ1�θ2(g1, g2)χσ1�σ2(g1, g2)

(by Lemma 10.5.15) =
∑
g1∈G1
g2∈G2

χθ1(g1)χθ2(g2)χσ1(g1)χσ2(g2)

=
∑
g1∈G1

χθ1(g1)χσ1(g1)
∑
g2∈G2

χθ2(g2)χσ2(g2)

= 〈χθ1 , χσ1〉 · 〈χθ2 , χσ2〉

(by Proposition 10.2.17) =

{
|G1| · |G2| if θ1 = σ1 and θ2 = σ2

0 otherwise.

Corollary 10.5.17 Let G1 and G2 be two �nite groups. Then the map

Ĝ1 × Ĝ2 −→ Ĝ1 ×G2

(θ1, θ2) 7−→ θ1 � θ2
(10.64)

is a bijection.

Proof We �rst observe that every conjugacy class in G1×G2 is the Cartesian

product of a conjugacy class in G1 by one in G2, and vice versa. Thus,

keeping in mind Theorem 10.3.13, we have that |Ĝ1 ×G2| equals the number
of conjugacy classes in G1 × G2 which in turn equals the product of the

numbers of conjugacy classes in G1 and G2, and therefore, again by Theorem

10.3.13, equals |Ĝ1| · |Ĝ2|. Therefore, by the previous theorem, the map

(10.64) is indeed a bijection. Alternatively, it is immediate to check (exercise)

that ∑
θ1∈Ĝ1

∑
θ2∈Ĝ2

(dθ1�θ2)2 = |G1 ×G2|

and then we may invoke Theorem 10.2.25.(iii).

Exercise 10.5.18 Let G (respectively H) be a �nite group and let X (re-

spectively Y ) be a �nite homogenous G-space (respectively H-space). Let

λ and µ denote the corresponding permutation representations. In Section

8.7 we showed that the map δx ⊗ δy 7→ δ(x,y), x ∈ X, y ∈ Y , yields a natural

isomorphism L(X)
⊗
L(Y ) ∼= L(X × Y ).

(1) Show that λ � µ is equivalent to the permutation representation of

G×H on X × Y .
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(2) Show that if G = H and X = Y , then the internal tensor product

λ⊗µ is equivalent to the permutation representation associated with

the diagonal action of G on X ×X.

By means of the two basic constructions (adjoints and tensor products),

we now reinterpret the decomposition of the group algebra (cf. Theorem

10.5.9).

First of all, we recall that if V is a �nite dimensional vector space and V ′

denotes its dual, then End(V ) ∼= V ′
⊗
V . An explicit isomorphism is given

by linearly extending to the whole of V ′
⊗
V the map

V ′
⊗
V −→ End(V )

f ⊗ v 7−→ Tf,v
(10.65)

where Tf,v(w) = f(w)v for all w ∈ V .

Exercise 10.5.19 Fill up all the details relative to (10.65).

Now consider the action of G×G on G given by

(g1, g2) · g = g1gg
−1
2

for all g, g1, g2 ∈ G, and the associated (G×G)-permutation representation

(η, L(G)) given by

[η(g1, g2)f ](g) = f(g−1
1 gg2),

for all f ∈ L(G) and g, g1, g2 ∈ G. Note that, in terms of the left and right

regular representations, we have η(g1, g2) = λG(g1)ρG(g2) = ρG(g2)λG(g1),

for all g1, g2 ∈ G. The stabilizer of the point 1G is the diagonal subgroup

G̃ = {(g, g) : g ∈ G}, clearly isomorphic to G, and in the present setting

(10.50) yields:

G = (G×G)/G̃.

Theorem 10.5.20 With the notation as in Theorem 10.5.9, the restriction

of η to M θ is equivalent to θ′ � θ. In particular, it is irreducible.

Proof For f ∈Wθ′ and v ∈Wθ de�ne F
θ
f,v ∈ L(G) by setting

F θf,v(g) = f(θ(g)v), (10.66)
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for all g ∈ G. Noticing that, for all i, j = 1, 2, . . . , dθ and g ∈ G, one has

uθi,j(g) = 〈θ(g)vθj , v
θ
i 〉

(by (10.53)) = [ξ−1(vθi )]
(
θ(g)vθj

)
= F θ

ξ−1(vθi ),vθj
(g),

we deduce that the F θf,vs span the whole ofM θ. Moreover, if (g1, g2) ∈ G×G
and g ∈ G, we have

[η(g1, g2)F θf,v](g) = F θf,v(g
−1
1 gg2)

(by (10.66)) = f
(
θ(g−1

1 gg2)v
)

(by (10.53)) = 〈θ(g−1
1 gg2)v, ξ(f)〉

(by (10.56)) = 〈θ(g)θ(g2)v, ξ[θ′(g1)f ]〉
= [θ′(g1)f ](θ(g)θ(g2)v)

= F θθ′(g1)f,θ(g2)v(g)

so that the surjective map

Wθ′ ⊗Wθ −→ M θ

f ⊗ v 7−→ F θf,v

intertwines θ′�θ with η|Mθ . The irreducibility of θ′�θ follows from Theorem

10.5.16.

Recalling Corollary 10.3.12, the Fourier transform may be seen as an iso-

morphism between L(G) and
⊕

θ∈Ĝ (W ′θ
⊗
Wθ), if we identify End(Wθ) with

W ′θ ⊗Wθ as in (10.65).

Exercise 10.5.21 Using the notation in (10.65), (10.66), and in Corollary

10.3.12, show that the inverse Fourier transform of a tensor product f ⊗ v ∈
W ′θ
⊗
Wθ is given by:

(f ⊗ v)∨(g) =
dθ
|G|

F θf,v(g
−1)

for all g ∈ G.

10.6 The commutant of a representation

In this section we study the commutant EndG(V ) of a G-representation

(ρ, V ). First of all, we recall some basic facts on projections (see any book

on linear algebra, for instance [91]). Let V be �nite dimensional unitary
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space. A linear transformation E ∈ End(V ) is called a projection if it is

idempotent, that is, E2 = E. If the range W = RanE is orthogonal to the

null space KerE, we say that E is an orthogonal projection of V onto W . It

is easy to see that a projection E is orthogonal if and only if it is self-adjoint,

that is, E = E∗.

Let now (V, ρ) be a representation of a �nite group G and suppose that

V ∼=
⊕
θ∈J

mθWθ (10.67)

is the decomposition into irreducibles as in Corollary 10.2.19 (with J = {θ ∈
Ĝ : mθ > 0}). We can decompose the isotypic componentmθWθ by choosing

suitable operators Iθ,1, Iθ,2, . . . , Iθ,mθ ∈ HomG(Wθ, V ), in such a way that

V =
⊕
θ∈J

mθ⊕
j=1

Iθ,jWθ (10.68)

is an orthogonal decomposition, and

〈Iθ,iw1, Iσ,jw2〉V = δθ,σδi,j〈w1, w2〉Wθ
(10.69)

for all θ, σ ∈ J , i = 1, 2, . . . ,mθ, j = 1, 2, . . . ,mσ, w1 ∈ Wθ and w2 ∈ Wσ.

In particular, each Iθ,j is an isometry and the Iθ,js are linearly independent

in HomG(W,V ), Then any vector v ∈ V may be uniquely written in the

form v =
∑

θ∈J
∑mθ

j=1 vθ,j , with vθ,j ∈ Iθ,jWθ. The operator Eθ,j ∈ End(V ),

de�ned by setting Eθ,j(v) = vθ,j for all v ∈ V , is the orthogonal projection
from V onto Iθ,jWθ. In particular, IV =

∑
θ∈J

∑mθ
j=1Eθ,j .

Observe that if v =
∑

θ∈J
∑mθ

j=1 vθ,j then ρ(g)v =
∑

θ∈J
∑mθ

j=1 ρ(g)vθ,j . As

ρ(g)vθ,j ∈ Iθ,jWθ, by the uniqueness of such a decomposition, we have that

Eθ,jρ(g)v = ρ(g)vθ,j = ρ(g)Eθ,jv. Therefore, Eθ,j ∈ EndG(V ).

Lemma 10.6.1 With the above notation the following hold.

(i) The space HomG(Wθ, V ) is spanned by Iθ,1, Iθ,2, . . . , Iθ,mθ . In partic-

ular, mθ = dimHomG(Wθ, V ).

(ii) We have

I∗θ,kIσ,j = δσ,θδj,kIWθ
(10.70)

for all θ, σ ∈ J , k = 1, 2, . . . ,mθ, j = 1, 2, . . . ,mσ; in particular,

I∗θ,j |Iθ,jWθ
is the inverse of Iθ,j : Wθ → Iθ,jWθ(≤ V ).

Proof
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(i) If T ∈ HomG(Wθ, V ), then

T = IV T =
∑
σ∈J

mσ∑
k=1

Eσ,kT.

Since RanEσ,k = Iσ,kWσ, if follows from Lemma 10.2.3 that, if σ 6= θ,

then Eσ,kT = 0. Moreover, from Corollary 10.2.5, one deduces that

Eθ,kT = αkIθ,k for some αk ∈ C. Thus,

T =

mθ∑
k=1

Eθ,kT =

mθ∑
k=1

αkIθ,k.

(ii) By Proposition 10.2.2, I∗θ,jIθ,j ∈ EndG(Wθ) so that, by Schur's Lemma,

I∗θ,jIθ,j = αIWθ
for some α ∈ C. Moreover, from (10.69) it follows that

〈I∗θ,jIθ,jw,w〉Wθ
= 〈Iθ,jw, Iθ,jw〉V = ‖w‖2Wθ

,

for all w ∈ Wθ, so that necessarily α = 1. On the other hand, if

(σ, j) 6= (θ, k) then, again by means of (10.69), we deduce that

〈I∗θ,kIσ,jw, u〉Wθ
= 〈Iσ,jw, Iθ,ku〉V = 0.

Clearly, the decomposition of the θ-isotypic component of V into irre-

ducible sub-representations is not unique: it corresponds to the choice of a

basis in HomG(Wθ, V ).

Now, for all θ ∈ J and 1 ≤ j, k ≤ mθ, de�ne T
θ
k,j ∈ EndG(V ) by setting

T θk,jv =

{
Iθ,kI

∗
θ,jv if v ∈ Iθ,jWθ

0 if v ∈ V 	 Iθ,jWθ.
(10.71)

where V 	 Iθ,jWθ is the orthogonal complement of Iθ,jWθ in V .

Lemma 10.6.2 With the above notation, we have:

RanT θk,j = Iθ,kWθ, KerT θk,j = V 	 Iθ,jWθ,

T σk,jT
θ
s,t = δσ,θδj,sT

θ
k,t (10.72)

and (
T θk,j

)∗
= T θj,k. (10.73)

In particular,

T θj,j ≡ Eθ,j .
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and

HomG(Iθ,jWθ, Iθ,kWθ) = CT θk,j .

Proof From (10.70) and (10.71) we deduce that, for all w ∈Wθ,

T θk,jIθ,jw = Iθ,kI
∗
θ,jIθ,jw = Iθ,kw (10.74)

so that RanT θk,j = Iθ,kWθ. The same arguments yield KerT θk,j = V 	 Iθ,jWθ,

T σk,jT
θ
s,tv =

{
T σk,jIθ,sI

∗
θ,tv if v ∈ Iθ,tWθ

0 if v ∈ V 	 Iθ,tWθ.

= δσ,θδj,sT
θ
k,tv,

and

〈T θk,jv1, v2〉V =

{
〈Iθ,kI∗θ,jv1, v2〉V if v1 ∈ Iθ,jWθ and v2 ∈ Iθ,kWθ

0 otherwise

= 〈v1, T
θ
j,kv2〉.

Finally, from (10.71) and (10.74) we deduce that T θjjIσ,kw = δσ,θδj,kIθ,jw,

which yields T θj,j ≡ Eθ,j , while Corollary 10.2.5 ensures that every operator

T ∈ HomG(Iθ,jWθ, Iθ,kWθ) is a scalar multiple of T θk,j .

Theorem 10.6.3 With the above notation, the set

{T θk,j : θ ∈ J, k, j = 1, 2, . . . ,mθ} (10.75)

is a vector space basis for EndG(V ). Moreover, the map

EndG(V ) −→
⊕

θ∈J Mmθ(C)

T 7−→
⊕

θ∈J

(
αθk,j

)mθ
k,j=1

where the αθk,js are the coe�cients of T with respect to the basis (10.75), that

is,

T =
∑
θ∈J

mθ∑
k,j=1

αθk,jT
θ
k,j ,

is a ∗-isomorphism of algebras.
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Proof Let T ∈ EndG(V ). We have

T = IV TIV =

(∑
σ∈J

mσ∑
k=1

Eσ,k

)
T

∑
θ∈J

mθ∑
j=1

Eθ,j


=
∑
σ,θ∈J

mσ∑
k=1

mθ∑
j=1

Eσ,kTEθ,j .

Observe that

• RanEσ,kTEθ,j ≤ RanEσ,k = Iσ,kWσ;

• KerEσ,kTEθ,j ≥ KerEθ,j = V 	 Iθ,jWθ;

• the restriction to Iθ,jWθ of Eσ,kTEθ,j is in HomG(Iθ,jWθ, Iσ,kWσ).

From Lemma 10.2.3, it follows that Eσ,kTEθ,j = 0 if σ 6= θ, while, if σ = θ,

by Corollary 10.2.5 one has that Eθ,kTEθ,j is a multiple of T
θ
k,j , that is, there

exist αθk,j ∈ C such that

Eθ,kTEθ,j = αθk,jT
θ
k,j .

This proves that the T θk,js generate EndG(V ). To prove independence, sup-

pose that we can express the 0-operator as

0 =
∑
θ∈J

mθ∑
k,j=1

αθk,jT
θ
k,j .

For v ∈ Iθ,jWθ, v 6= 0, we obtain that 0 =
∑mθ

k=1 α
θ
k,jT

θ
k,jv and this in turn

implies that αθk,j = 0 for all k = 1, 2, . . . ,mθ, as T
θ
k′,jv and T θk,jv belong to

independent subspaces in V if k 6= k′.

The isomorphism of the algebras follows from (10.72):∑
θ∈J

mθ∑
k,j=1

αθk,jT
θ
k,j

∑
σ∈J

mσ∑
h,i=1

βσh,iT
σ
h,i

 =
∑
θ,σ∈J

mθ∑
k,j=1

mσ∑
h,i=1

αθk,jβ
σ
h,iδσ,θδj,hT

θ
k,i

=
∑
θ∈J

mθ∑
k,i=1

mθ∑
j=1

αθk,jβ
θ
j,i

T θk,i.

The fact that it is also a ∗-isomorphism easily follows from (10.73).

Corollary 10.6.4 With the above notation we have that

dimEndG(V ) =
∑
θ∈J

m2
θ.

In particular, V is irreducible if and only if dimEndG(V ) = 1.
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De�nition 10.6.5 A representation (ρ, V ) is multiplicity-free if mθ = 1 for

all θ ∈ J .

Corollary 10.6.6 A representation (ρ, V ) is multiplicity-free if and only if

EndG(V ) is commutative.

Observe that

Eθ =

mθ∑
j=1

Eθ,j ≡
mθ∑
j=1

T θj,j

is the projection from V onto the θ-isotypic component mθWθ. It is called

the minimal central projection associated with θ.

Recall the de�nition of the product in CJ in (10.28).

Corollary 10.6.7 The center Z = Z(EndG(V )) is isomorphic to CJ . More-

over, the minimal central projections Eθ, θ ∈ J , constitute a basis for Z.

Proof The space EndG(V ) is isomorphic to the direct sum
⊕

θ∈J Mmθ(C).

But A ∈Mmθ(C) commutes with any other B ∈Mmθ(C) if and only if it is

a scalar multiple of the identity: A ∈ CImθ .

Exercise 10.6.8 Show that Eθ = dθ
|G|
∑

g∈G ρ(g)χθ
′
(g). Compare with Ex-

ercise 10.5.7 and Exercise 10.5.10.

Exercise 10.6.9 Let (ρ, V ) and (η, U) be two G-representations. Suppose

that V ∼=
⊕

θ∈J mθWθ and U ∼=
⊕

θ∈K nθWθ, J,K ⊆ Ĝ, are the decompo-

sitions of V and U into irreducible representations. Show that we have an

isomorphism

HomG(U, V ) ∼=
⊕

θ∈K∩J
Mnθ,mθ(C)

as vector spaces.

Exercise 10.6.10 Let V and W be two inner product vector spaces.

(1) Show that

〈T1, T2〉Hom(W,V ) =
1

dimW
Tr(T ∗2 T1),

with T1, T2 ∈ Hom(W,V ), de�nes an inner product in Hom(W,V )

(called the normalized Hilbert-Schmidt inner product).

(2) Show that if dimW ≤ dimV and T ∈ Hom(W,V ) is an isometry then

‖T‖Hom(W,V ) = 1.
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Exercise 10.6.11 Let (ρ, V ) and (θ,W ) be two G-representations. Suppose

that (θ,W ) is irreducible and denote by m = dimHomG(W,V ) the multi-

plicity of θ in (ρ, V ). Let also T1, T2, . . . , Tm ∈ HomG(W,V ). Show that the

following facts are equivalent:

(a) 〈Tiw1, Tjw2〉V = 〈w1, w2〉W δi,j , for all w1, w2 ∈W and i, j = 1, 2, . . . ,m;

(b) the W -isotypic component of V is equal to the orthogonal direct sum

T1W ⊕ T2W ⊕ · · · ⊕ TmW,

and each operator Tj is a isometry from W onto TjW ;

(c) the operators T1, T2, . . . , Tm form an orthonormal basis for HomG(W,V )

(with respect to the normalized Hilbert-Schmidt inner product).

(d) T ∗j Ti = δi,jIW , for all i, j = 1, 2, . . . ,m.

Exercise 10.6.12 In the notation of Corollary 10.3.12, see also Exercise

10.5.21,

(1) show that Fourier transform is an isometric ∗-isomorphism between

the group algebra L(G) and C(Ĝ), where the scalar product is de�ned

by setting

〈T, S〉
C(Ĝ)

=
1

|G|
∑
θ∈Ĝ

dθTr[S(θ)∗T (θ)],

for all S, T ∈ C(Ĝ).

(2) Show that the Fourier transform and the inverse Fourier transform are

one the adjoint of the other, that is, if we identify M θ with W ′θ ⊗Wθ

by means of Theorem 10.5.20, then

〈F, (f ⊗ v)∨〉L(G) = 〈F̂ , f ⊗ v〉
C(Ĝ)

for all F ∈ L(G), v ∈Wθ, f ∈W ′θ, and θ ∈ Ĝ.

Solution. Fix θ ∈ Ĝ and let {v1, v2, . . . , vdθ} be an orthonormal basis in Wθ.
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Then, for v ∈Wθ and f ∈W ′θ one has

〈F, (f ⊗ v)∨〉L(G) =
dθ
|G|

∑
g∈G

F (g)f [θ(g−1)v]

=
dθ
|G|

∑
g∈G

F (g)f

(
dθ∑
i=1

〈θ(g−1)v, vi〉Wθ
vi

)

=
dθ
|G|

dθ∑
i=1

f(vi)
∑
g∈G
〈F (g)θ(g)vi, v〉Wθ

=
dθ
|G|

dθ∑
i=1

f(vi)〈F̂ (θ)vi, v〉Wθ

=
dθ
|G|

dθ∑
i=1

〈F̂ (θ)vi, [f ⊗ v](vi)〉Wθ

= 〈F̂ , f ⊗ v〉
C(Ĝ)

.

10.7 A noncommutative FFT

The aim of this section is to present a noncommutative version of the FFT

developed by Diaconis and Rockmore in [53]. Let G be a �nite group, K ≤ G
a subgroup, and T ⊂ G a complete set of representatives for the left cosets

of K (cf. (10.49)). Given an irreducible G-representation (θ,W ), we consider

an orthogonal decomposition

ResGKW =

m⊕
j=1

Vσj (10.76)

of its restriction to K, into irreducible K-representations. Note that in

(10.76) the K-representations (σj , Vσj ), j = 1, 2, . . . ,m, are not necessarily

pairwise inequivalent. Then, by choosing an orthonormal basis in each Vσj
in (10.76), we get an orthonormal basis for W such that, identifying a linear

operator with the associated matrix,

θ(k) =


σ1(k)

σ2(k)
. . .

σm(k)

 , (10.77)

for all k ∈ K.
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Exercise 10.7.1 Check the details of (10.77).

The orthogonal basis for W that leads to (10.77) is called an adapted basis

to the decomposition in (10.76). Then, for f ∈ L(G), its Fourier transform

evaluated at θ is given by

f̂(θ) =
∑
g∈G

f(g)θ(g)

=
∑
t∈T

θ(t)
∑
k∈K

ft(k)θ(k),
(10.78)

where ft ∈ L(K), t ∈ T , is de�ned by ft(k) = f(tk) for all k ∈ K. By virtue

of (10.77), we have, for all t ∈ T ,

∑
k∈K

ft(k)θ(k) =


f̂t(σ1)

f̂t(σ2)
. . .

f̂t(σm)

 . (10.79)

By combining (10.78) and (10.79), we get an algorithm that reduces the

computation of f̂(θ) to the computation of smaller (dimension) Fourier trans-

forms (the f̂t(σj)s) and then to multiplications of these by the matrices θ(t)s.

Exercise 10.7.2 Denote by T (G) (respectively T (K)) the number of opera-

tions required to compute the Fourier transform of a given f ∈ L(G) at each

irreducible representation of G (respectively of K), and byM(d) the number

of operations needed to compute the product of two (d× d)-matrices. Show

that

T (G) = |T | · T (K) + (|T | − 1)
∑
σ∈K̂

M(dσ).

Exercise 10.7.3 Show that the Cooley-Tuckey algorithm in (5.62) is a par-

ticular case of the algorithm considered in this section.

Hint. Just observe that G = Znm and K = Zm.

Diaconis and Rockmore also considered recursive applications of this basic

algorithm when a chain

G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gm ≥ Gm+1 = {1G}

of subgroups is available, providing several speci�c examples.
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Induced representations and Mackey theory

In this chapter we introduce the theory of induced representations. This is

a central topic in the representation theory of �nite groups. We emphasize

the analytic approach and include a detailed treatment of Mackey's theory,

which will play a fundamental role in the following chapters, and of the little

group method, due to Mackey and Wigner, that will be used extensively in

Chapter 12. Other treatments of these topics are in the books by Naimark

and Stern [119], Sternberg [154], Simon [148], Serre [145], by Curtis and

Reiner [42, 43], Huppert [78], Shaw [147], and Bump [23]. See also our

previous monographs [33, 34] and the expository paper [30].

11.1 Induced representations

Throughout this section, G is a �nite group, K a subgroup of G and (σ, V )

a �nite dimensional unitary representation of K. We suppose that T is a

system of representatives for the set G/K of left cosets of K in G as in

(10.49). We also assume that 1G ∈ T is the representative of K. We denote

by V [G] the vector space of all functions f : G→ V .

De�nition 11.1.1 (Induced representation) The induced representation

of a K-representation (σ, V ) is the G-representation (λ, IndGKV ) whose rep-

resentation space is

IndGKV = {f ∈ V [G] : f(gk) = σ(k−1)f(g), for all g ∈ G, k ∈ K}, (11.1)

with the action λ given by

[λ(g1)f ](g2) = f(g−1
1 g2), for all g1, g2 ∈ G and f ∈ IndGKV. (11.2)

409
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Note that λ(g)f ∈ IndGKV for all g ∈ G and f ∈ IndGKV , and that λ is indeed

a representation (compare with the de�nition of the left regular representa-

tion in (10.9)). Sometimes we shall denote λ by IndGKσ.

In IndGKV we can de�ne an invariant scalar product by setting

〈f1, f2〉IndGKV =
1

|K|
∑
g∈G
〈f1(g), f2(g)〉V (11.3)

for f1, f2 ∈ IndGKV ; it is easy to check that (λ, IndGKV ) is unitary with respect

to this scalar product. We also use the following reduced form of (11.3):

〈f1, f2〉IndGKV =
∑
t∈T
〈f1(t), f2(t)〉V . (11.4)

Indeed, if g ∈ G and g = tk, k ∈ K, t ∈ T , then from (11.1) and the uni-

tarity of σ we deduce that 〈f1(g), f2(g)〉V = 〈σ(k−1)f1(t), σ(k−1)f2(t)〉V =

〈f1(t), f2(t)〉V .
Now we explore the structure of an induced representation. For every

v ∈ V de�ne the function fv ∈ V [G] by setting

fv(g) =

{
σ(g−1)v if g ∈ K
0 otherwise.

(11.5)

It is easy to check that fv ∈ IndGKV and that the subspace Ṽ = {fv : v ∈ V }
of IndGKV is K-invariant and K-isomorphic to V ; indeed,

λ(k)fv = fσ(k)v (11.6)

for all k ∈ K.

Proposition 11.1.2 With the same notation as in (10.49), we have the

direct sum decomposition

IndGKV =
⊕
t∈T

λ(t)Ṽ . (11.7)

Proof Take f ∈ IndGKV and set vt = f(t) ∈ V for every t ∈ T . Then, for

t0 ∈ T and k ∈ K, we have t−1t0k ∈ K if and only if t = t0, and therefore∑
t∈T

λ(t)fvt(t0k) =
∑
t∈T

fvt(t
−1t0k) = fvt0 (k)

= σ(k−1)vt0 = σ(k−1)f(t0) = f(t0k)
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that is, since t0k ∈ G is arbitrary,

f =
∑
t∈T

λ(t)fvt . (11.8)

Note also that such an expression is unique: indeed, from (11.1) it follows

that every f ∈ IndGKV is uniquely determined by its values on T .

Conversely, we have:

Lemma 11.1.3 Let (τ,W ) be a representation of G and V a K-invariant

subspace such that the direct decomposition

W =
⊕
t∈T

τ(t)V (11.9)

holds. Then the G-representations W and IndGKV are isomorphic.

Proof If we de�ne Ṽ as in (11.7) it follows that IndGKV and W are G-

isomorphic. The easy details are left as an exercise.

Remark 11.1.4 In some books, as for instance Serre's monograph [145],

induced representations are de�ned by means of the property in Lemma

11.1.3.

We observe that the dimension of the induced representation is given by

dim(IndGKV ) = [G : K] · dim(V ) (11.10)

as it immediately follows from (11.7) and observing that |T | = [G : K]. We

now prove that induction is transitive.

Proposition 11.1.5 (Induction in stages) Let K ≤ H ≤ G be �nite

groups and (σ, V ) a K-representation.

(i) The map f 7→ F given by F (g, h) = [f(g)](h), for all f ∈ (V [H]) [G],

F ∈ V [G × H], g ∈ G, and h ∈ H, yields a vector space isomor-

phism between (V [H]) [G] and V [G×H]. By restriction, it yields an

isomorphism between the G-representations IndGH(IndHKV ) and

{F ∈ V [G×H] : F (gh, h′k) = σ(k−1)F (g, hh′),

∀g ∈ G, h, h′ ∈ H, k ∈ K}. (11.11)

(ii) The map F 7→ F̃ , where F is in the space (11.11) and F̃ ∈ V [G] is de-

�ned by setting F̃ (g) = F (g, 1G), for all g ∈ G, yields an isomorphism
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between the G-representations (11.11) and IndGKV . The correspond-

ing inverse map is given by F̃ 7→ F , where F (g, h) = F̃ (gh), for all

h ∈ H, g ∈ G.
(iii) The following isometric isomorphism of G-representations holds:

IndGH(IndHKV ) ∼= IndGKV. (11.12)

Proof (i) The isomorphism (V [H]) [G] ∼= V [G×H] induced by the map f 7→
F is obvious. Moreover, from the de�nition of an induced representation, we

get

IndHKV = {f ′ ∈ V [H] : f ′(hk) = σ(k−1)f ′(h), ∀h ∈ H, k ∈ K}

and, setting θ = IndHKσ,

IndGH(IndHKV ) = {f ∈ (IndHKV )[G] : f(gh) = θ(h−1)f(g), ∀g ∈ G, h ∈ H}.

We deduce that if f ∈ IndGH(IndHKV ) then we have

F (gh, h′k) = [f(gh)](h′k)

= σ(k−1)
(
[f(gh)](h′)

)
= σ(k−1)[θ(h−1)f(g)](h′)

= σ(k−1)[f(g)](hh′)

= σ(k−1)F (g, hh′),

for all g ∈ G, h, h′ ∈ H, and k ∈ K. This shows that F belongs to (11.11).

By means of the same arguments, it is easy to check that each F in (11.11)

is the image of some f ∈ IndGH(IndHKV ).

(ii) Let F be in the space (11.11). It is immediate to check that F (g, h) =

F (gh, 1G), for all g ∈ G and h ∈ H, so that F is uniquely determined by its

values on G× {1G}. As a consequence, we have

F̃ (gk) = F (gk, 1G) = F (g, k) = σ(k−1)F (g, 1G) = σ(k−1)F̃ (g),

for all g ∈ G and k ∈ K, so that F̃ ∈ IndGKV .

(iii) The isomorphism follows immediately from (i) and (ii). Finally, it is

immediate to check that, modulo the identi�cations in (i) and (ii), one has

‖F̃‖IndGKV = ‖F‖IndGH IndHKV .

Example 11.1.6 (Permutation representation) Let G be a �nite group

acting transitively on a �nite set X. Choose x0 ∈ X and let K = {g ∈ G :

gx0 = x0} be its stabilizer. As in Example 10.4.3, we denote by (λ, L(X))
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the corresponding permutation representation of G. Let now (ιK ,C) denote

the trivial (one dimensional) representation of K. Then

IndGKC = {f ∈ L(G) : f(gk) = f(g), ∀g ∈ G, k ∈ K} = L(G)K

(the space of all right-K-invariant functions on G). The latter is isomorphic

to L(X): the map f 7→ f̃ , where f ∈ L(X) and f̃ ∈ L(G)K is given by

f̃(g) = f(gx0) (11.13)

for all g ∈ G, yields the desired G-isomorphism. We can rephrase the above

discussion by saying that the permutation representation λ and the induced

representation IndGKιK are equivalent. Recalling the identi�cation X = G/K

as G-spaces, we can thus write:

(λ, L(G/K)) ∼ (IndGKιK , L(G)K). (11.14)

Exercise 11.1.7 Suppose that K ≤ H ≤ G, set X = G/K, Y = G/H,

Z = H/K, and suppose that x0 ∈ X (respectively, y0 ∈ Y ) is the point

stabilized by K (respectively H).

(1) Show that there exists a unique surjective map π : X → Y such that

π(x0) = y0 and π(gx) = gπ(x) for all x ∈ X and g ∈ G (that is, π is

G-equivariant).

(2) Show that, in the present setting, transitivity of induction has the

following more explicit form: L(X) ∼= IndGHL(Z) ∼= ⊕y∈Y L(π−1(y)).

See [138] for some examples and applications of these simple facts.

Example 11.1.8 Let G be a �nite group and N ≤ G a normal subgroup.

Denote by λG/N the left regular representation ofG/N and by λ the permuta-

tion representation of G on G/N (note that the corresponding representation

spaces are the same, namely L(G/N)). Then

λ(g) = λG/N (gN) (11.15)

for all g ∈ G. Indeed, if f ∈ L(G/N) and g, g0 ∈ G, one has

[λG/N (gN)f ](g0N) = f [(gN)−1(g0N)] = f(g−1g0N) = [λ(g)f ](g0N).

Example 11.1.9 Let G be a �nite group and K ≤ G a subgroup. Let also

χ be a one-dimensional representation of K. Recall that χ : K → C satis�es:

|χ(k1)| = 1, χ(k1k2) = χ(k1)χ(k2), so that χ(k−1) = χ(k)−1 = χ(k), for all

k1, k2, k ∈ G, and χ(1K) = 1. Then the representation space of IndGKχ, that

we denote by IndGKC, is made up of all f ∈ L(G) such that

f(gk) = χ(k)f(g) (11.16)
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for all k ∈ K and g ∈ G. The corresponding G-action is again given by left

translation:

[IndGKχ(g)f ](g′) = f(g−1g′)

for all f ∈ IndGKC and g, g′ ∈ G.
Now (11.7) becomes

IndGKC =
⊕
t∈T

λ(t) (Cχ) , (11.17)

where χ is extended to the whole G by setting χ(g) = 0 for all g ∈ G \K
(note that, this way, f = χ ∈ L(G) satis�es (11.16)).

Exercise 11.1.10 Suppose that A,B are �nite Abelian groups, B ≤ A and

let χ be a character of B. Show that a character ψ of A is contained in

IndABχ if and only if ψ(b) = χ(b) for all b ∈ B and, if this is the case, its

multiplicity is equal to 1.

Now we give a formula for the matrix coe�cients and the character of an

induced representation.

Theorem 11.1.11 Let G be a �nite group, K ≤ G a subgroup, and T ⊆ G a

complete set of representatives for the left cosets of K in G. Let also (σ, V ) be

a K-representation, {e1, e2, . . . , ed} an orthonormal basis for V and denote

by λ = IndGKσ the corresponding induced representation. De�ne fej ∈ IndGKV

as in (11.5) and ft,j = λ(t)fej ∈ IndGKV for all t ∈ T and j = 1, 2, . . . , d.

Then {ft,j : t ∈ T , j = 1, 2, . . . , d} is an orthonormal basis for IndGKV with

respect to the scalar product (11.3) and the corresponding matrix coe�cients

of λ are given by the formula

〈λ(g)ft,j , fs,i〉IndGKV =

{
〈σ(s−1gt)ej , ei〉V if s−1gt ∈ K
0 otherwise

for all s, t ∈ T and i, j = 1, 2, . . . , d.

Proof The fact that {ft,j : t ∈ T , j = 1, 2, . . . , n} is an orthonormal basis

easily follows from (11.4) and the formula ft,j(s) = δstej , for s, t ∈ T . Now
suppose that g ∈ G and r ∈ T . Then there exist t1 ∈ T and k ∈ K such

that g−1r = t1k and therefore

[λ(g)ft,j ](r) = ft,j(g
−1r)

= ft,j(t1k)

= δt,t1σ(k−1)ej .
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Since k = t−1
1 g−1r and

t = t1 ⇐⇒ g−1r ∈ tK ⇐⇒ r−1gt ∈ K,

we deduce that

[λ(g)ft,j ](r) =

{
σ(r−1gt)ej if r−1gt ∈ K
0 otherwise.

We can use this formula and (11.4) to compute the matrix coe�cients of the

induced representation λ: for s, t ∈ T and i, j = 1, 2, . . . , d, we have

〈λ(g)ft,j , fs,i〉IndGKV =
∑
r∈T
〈[λ(g)ft,j ](r), fs,i(r)〉V =

=

{
〈σ(s−1gt)ej , ei〉V if s−1gt ∈ K
0 otherwise.

Corollary 11.1.12 (Frobenius character formula) Let G be a �nite

group, K ≤ G a subgroup and (σ, V ) a K-representation. Then the character

of the induced representation IndGKσ is given by

χInd
G
Kσ(g) =

∑
t∈T :

t−1gt∈K

χσ(t−1gt). (11.18)

Proof Let uσi,j denote the matrix coe�cients of σ and uλs,i;t,j those of λ. Then

Theorem 11.1.11 yields:

uλs,i;t,j(g) =

{
uσi,j(s

−1gt) if s−1gt ∈ K
0 otherwise,

(11.19)

that is, if U(k) =
(
uσi,j(k)

)d
i,j=1

, then the matrix
(
uλt,i;s,j(g)

)
i,j=1,2,...,d
t,s∈T

is

given in block form by
(
U(t−1gs)

)
t,s∈T , where U(t−1gs) = 0 whenever

t−1gs /∈ K. By taking the trace of this block matrix, we immediately get

the expression for the character of λ in terms of the character of σ.

There is another useful way to write Frobenius character formula. If C is a
conjugacy class in G, then C ∩K is invariant under conjugation by elements

of K so that it is partitioned as

C ∩K =

m∐
i=1

Di, (11.20)
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where the Di's are conjugacy classes in K.

Proposition 11.1.13 Let G be a �nite group, K ≤ G a subgroup and (σ, V )

a K-representation. Then we have:

χInd
G
Kσ(C) =

|G|
|K| · |C|

m∑
i=1

|Di|χσ(Di), (11.21)

where χ(C) denotes the value χ(c) of the character χ in each c ∈ C.

Proof If c, c′ ∈ C, then

|{g ∈ G : g−1cg = c′}| = |G|
|C|

. (11.22)

Indeed, G acts transitively on C by conjugation (c 7→ g−1cg, for all c ∈ C
and g ∈ G), and the stabilizer of c coincides with its centralizer, whose order

is |G|/|C|; see Lemma 10.4.2. Therefore, by Frobenius character formula, for

c ∈ C we have

χInd
G
Kσ(C) =

∑
t∈T :

t−1ct∈K

χσ(t−1ct)

=
1

|K|
∑
k∈K

∑
t∈T :

t−1ct∈K

χσ(k−1t−1ctk)

(g = tk) =
1

|K|
∑
g∈G:

g−1cg∈K

χσ(g−1cg)

(by (11.22)) =
1

|K|

m∑
i=1

|G|
|C|

∑
k∈Di

χσ(k)

=
|G|
|K| · |C|

m∑
i=1

|Di|χσ(Di).

Corollary 11.1.14 For a permutation representation (λ, L(X)) (cf. Example

11.1.6), formula (11.21) becomes:

χλ(C) =
|X|
|C|
|C ∩K|.

Exercise 11.1.15 Deduce the �xed point character formula (Proposition

10.4.6) from Frobenius character formula.
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In the last part of this section, we illustrate two fundamental results that

connect tensor products (cf. Section 10.5) and induced representations.

Theorem 11.1.16 Let G be a �nite group and K ≤ G a subgroup. Let

(θ,W ) be a G-representation and (σ, V ) a K-representation. Then the map

φ : W
⊗

IndGKV → IndGK [(ResGKW )
⊗

V ] (11.23)

de�ned by setting

[φ(w ⊗ f)](g) = θ(g−1)w ⊗ f(g),

for all w ∈ W, f ∈ IndGKV , and g ∈ G, is an isometric isomorphism of

G-representations, so that, in particular,

φ ∈ HomG

(
θ ⊗ IndGKσ, Ind

G
K [ResGKθ ⊗ σ]

)
.

Proof The spaceW
⊗

IndGKV is spanned by all products w⊗f where w ∈W
and f ∈ V [G] satis�es f(gk) = σ(k−1)f(g), for all k ∈ K and g ∈ G. Let us
set, as usual, λ = IndGKσ. The space Ind

G
K [(ResGKW )

⊗
V ] is made up of all

functions F ∈ (W
⊗
V )[G] such that

F (gk) = [θ(k−1)⊗ σ(k−1)]F (g), (11.24)

for all k ∈ K and g ∈ G, and it is spanned by all functions of the form

λ1(g)Fw⊗v, for g ∈ G, w ∈ W , v ∈ V , where λ1 = IndGK [(ResGKθ) ⊗ σ] is as

in (11.2) and Fw⊗v is given by (11.5). First of all, observe that φ(w ⊗ f) ∈
IndGK [(ResGKW )

⊗
V ]. Indeed, φ(w⊗f) ∈ (W

⊗
V )[G] and satis�es (11.24):

[φ(w ⊗ f)](gk) = θ(k−1g−1)w ⊗ f(gk)

= [θ(k−1)⊗ σ(k−1)]
(
θ(g−1)w ⊗ f(g)

)
= [θ(k−1)⊗ σ(k−1)] (φ(w ⊗ f)) (g).

Let us show that the map (11.23) is G-equivariant: for all g, g0 ∈ G we have

(φ {[θ(g)w]⊗ [λ(g)f ]}) (g0) = θ(g−1
0 g)w ⊗ f(g−1g0)

= [φ(w ⊗ f)](g−1g0)

= [λ1(g)φ(w ⊗ f)](g0),

that is, φ intertwines θ⊗λ and λ1. Now we prove that the map φ is surjective.

For w ∈W , v ∈ V , and k ∈ K we have

[φ(w ⊗ fv)](k) = θ(k−1)w ⊗ fv(k) = θ(k−1)w ⊗ σ(k−1)v = Fw⊗v(k)

and [φ(w ⊗ fv)](g) = 0 = Fw⊗v(g) if g ∈ G \K, so that φ(w ⊗ fv) = Fw⊗v.
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Since the functions of the form λ1(g)Fw⊗v span IndGK [(ResGKW )
⊗
V ], we

conclude that φ is surjective. Since

dim
[
W
⊗

IndGKV
]

= dimWdimV |G/K| = dim
{
IndGK [(ResGKW )

⊗
V ]
}

it is also injective, so that it is an isomorphism. We leave it to the reader to

check that φ is indeed an isometry.

Corollary 11.1.17 Let G be a �nite group, K ≤ G a subgroup, and x0 ∈
X = G/K be the point stabilized by K. Let (θ,W ) (respectively, (λ, L(X)))

be a representation (respectively, the corresponding permutation representa-

tion) of G. Then the map

φ : W
⊗

L(X)→ IndGKRes
G
KW

de�ned by setting

[φ(w ⊗ f)](g) = f(gx0)θ(g−1)w,

for all f ∈ L(X), w ∈W , and g ∈ G, is an isometric isomorphism.

Proof Apply Theorem 11.1.16 with σ = ιK the trivial representation of K.

In this case IndGKV
∼= L(X) (see Example 11.1.6, in particular (11.14)) and

(ResGKW )
⊗
V = (ResGKW )

⊗
C ∼= ResGKW .

In the last corollary, we have shown that IndGKRes
G
KW is isomorphic to

W
⊗
L(X). This is the �rst elementary result that connects induction and

restriction. Sections 11.2, 11.4, and 11.5 are devoted to deeper results of

this kind. In particular, Mackey's lemma in Section 11.5 examines the struc-

ture of ResGHInd
G
KV , where V is a K-representation and H ≤ G is another

subgroup.

Another property of the induction operation is additivity.

Proposition 11.1.18 Let G be a �nite group and K ≤ G a subgroup. Let

(σ1, V1) and (σ2, V2) be two representations of K. Then

IndGK

(
ρ1

⊕
ρ2

)
∼ IndGK(ρ1)

⊕
IndGK(ρ2).

Proof We leave it to the reader to check that the map

Φ:
(
IndGKV1 ⊕ IndGKV2

)
→ IndGK(V1 ⊕ V2),

de�ned by [Φ(f1 + f2)](g) = f1(g) + f2(g), for all fi ∈ IndGKVi, i = 1, 2 and

g ∈ G is a bijective map in HomG(IndGK(ρ1)
⊕

IndGK(ρ2), IndGK (ρ1
⊕
ρ2)).
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Exercise 11.1.19 Let G be a �nite group and K ≤ G a subgroup. Let

(σ, V ) be a K-representation. Consider the tensor product L(G)
⊗
V , its

subspace V spanned by {δgk ⊗ v − δg ⊗ σ(k)v : g ∈ G, k ∈ K, v ∈ V }, and
the G-representation (γ, L(G)

⊗
V ) given by

γ(g)(δg′ ⊗ v) = δgg′ ⊗ v

for all g, g′ ∈ G and v ∈ V . Show that V is γ-invariant and that IndGKV
∼=

[L(G)
⊗
V ]/V as G-representations.

The above yields a classical, more algebraic, de�nition of an induced repre-

sentation; see the monograph by Alperin and Bell [12].

11.2 Frobenius reciprocity

This section is devoted to the �rst fundamental result, due to Frobenius,

that relates the operations of induction and restriction for group representa-

tions. We assume all the notation in Section 11.1; in particular, we suppose

that (θ,W ) is a G-representation (with dθ = dimW ) and (σ, V ) is a K-

representation. For a more detailed analysis of Frobenius reciprocity, we

refer to [137, 140, 37].

Theorem 11.2.1 (Frobenius reciprocity) For each T ∈ HomG(W, IndGKV )

de�ne
∧
T : W → V by setting, for every w ∈W ,

∧
Tw = [Tw](1G). (11.25)

Then
∧
T ∈ HomK(ResGKW,V ) and the map

HomG(W, IndGKV ) −→ HomK(ResGKW,V )

T 7−→
∧
T

is an isomorphism of vector spaces. Its inverse is the map L 7→
∨
L where, for

L ∈ HomK(ResGKW,V ), [
∨
Lw

]
(g) = Lθ(g−1)w, (11.26)

for all w ∈W and g ∈ G.
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Proof First of all, we show that
∧
T ∈ HomK(ResGKW,V ):

∧
Tθ(k)w = {T [θ(k)w]}(1G)(

T ∈ HomG(W, IndGKV )
)

= [λ(k)(Tw)](1G)

(by (11.2)) = [Tw](k−1)

(by (11.1)) = σ(k)[Tw](1G)

= σ(k)
∧
Tw

for all k ∈ K and w ∈W .

Conversely, if L ∈ HomK(ResGKW,V ) then from (11.26) we deduce that[
∨
Lw

]
(gk) = Lθ(k−1)θ(g−1)w = σ(k−1)Lθ(g−1)w = σ(k−1)

[
∨
Lw

]
(g),

for all w ∈ W , k ∈ K and g ∈ G, so that
∨
Lw ∈ IndGKV . Moreover, if also

g0 ∈ G we have[
∨
Lθ(g)w

]
(g0) = Lθ(g−1

0 )θ(g)w = Lθ[(g−1g0)−1)]w

=

[
∨
Lw

]
(g−1g0) =

[
λ(g)

∨
Lw

]
(g0),

and this shows that
∨
L ∈ HomG(W, IndGKV ). Finally,[(

∧
T

)∨
w

]
(g) =

∧
Tθ(g−1)w = [Tθ(g−1)w](1G)

=
[
λ(g−1)(Tw)

]
(1G) = [Tw](g)

and (
∨
L

)∧
w =

[
∨
Lw

]
(1G) = Lw,

for all w ∈ W and g ∈ G, that is, (
∧
T )∨ = T and (

∨
L)∧ = L. It follows

that the linear maps T 7→
∧
T and L 7→

∨
L are one inverse to the other, and

therefore are isomorphisms.

From Theorem 11.2.1, Lemma 10.6.1.(i), and Lemma 10.6.2 we deduce the

following:

Corollary 11.2.2 Suppose that W and V are irreducible. Then the multi-

plicity of W in IndGKV equals the multiplicity of V in ResKW .
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Corollary 11.2.3 Suppose that W and V are irreducible, and that W is

contained in IndGKV with multiplicity m. Then

dimW ≥ mdimV.

In particular, if dimW = 1 one has dimV = 1 and m = 1.

Proof ResGKW contains m copies of V and dimResGKW = dimW .

From the point of view of character theory, Frobenius reciprocity may be

formulated in the following form:

Proposition 11.2.4

1

|G|
〈χθ, χInd

G
Kσ〉L(G) =

1

|K|
〈χRes

G
Kθ, χσ〉L(K).

Proof Although this may be deduced from Corollary 11.2.2 (see Exercise

11.2.5), we reproduce the easy proof based on Frobenius character formula.

Let Cj , j = 1, 2, . . . , n be the conjugacy classes of G and suppose that Cj ∩
K =

∐mj
i=1Di,j (with Di,j ⊂ Cj a K-equivalence class) as in (11.20). Then

we have:

1

|G|
〈χθ, χInd

G
Kσ〉L(G) =

1

|G|

n∑
j=1

|Cj |χθ(Cj)χInd
G
Kσ(Cj)

(by (11.21)) =
1

|K|

n∑
j=1

mj∑
i=1

|Di,j |χθ(Di,j)χσ(Di,j)

=
1

|K|
〈χRes

G
Kθ, χσ〉L(K).

Exercise 11.2.5 Deduce Proposition 11.2.4 from Proposition 10.2.18 and

Corollary 11.2.2.

Exercise 11.2.6 With the notation as in Theorem 11.2.1, show that the

map T 7→
√
|G/K|

∧
T is an isometry with respect to the scalar product in

Exercise 10.6.10.

Exercise 11.2.7 (The other side of Frobenius reciprocity) For each

T ∈ HomG(IndGKV,W ) de�ne
◦
T ∈ Hom(V,W ) by setting

◦
Tv = Tfv, for all

v ∈ V (fv is as in (11.5)).
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(1) Show that
◦
T ∈ HomK(V,ResGKW ).

(2) Show that (T ∗)◦ =

(
∧
T

)∗
.

(3) Show that the map

HomG(IndGKV,W ) −→ HomK(V,ResGKW )

T 7−→
◦
T

is an isometric isomorphism of vector spaces and that its inverse is

the map L 7→
�
L de�ned by setting

�
Lf =

∑
t∈T θ(t)Lf(t) for all

L ∈ HomK(V,ResGKW ) and f ∈ IndGKV .

We now examine Frobenius reciprocity in a particular case: from now on,

the K-representation (σ, V ) is one-dimensional and we shall identify it with

its character χ = χσ. We then denote by IndGKC the representation space of

λ = IndGKχ (see also Example 11.1.9).

We denote by WK,χ the χ-isotypic component in ResGKW , that is,

WK,χ = {w ∈W : θ(k)w = χ(k)w for all k ∈ K}. (11.27)

Note that when χ = ιK is the trivial K-representation, then

WK,ιK = WK = {w ∈W : θ(k)w = w for all k ∈ K}

is the subspace of K-invariant vectors in W .

Proposition 11.2.8 Suppose thatWK,χ is non�trivial. With each u ∈WK,χ

we associate a linear map Tu : W → L(G) de�ned by setting

[Tuw](g) =

√
dθ
|G/K|

〈w, θ(g)u〉W , (11.28)

for all w ∈W and g ∈ G. Then:

(i) for all u ∈WK,χ we have Tu ∈ HomG(θ, IndGKχ);

(ii) if (θ,W ) is irreducible and ‖u‖W = 1 then Tu : W → IndGKC is iso-

metric.

Proof (i) Let u ∈ WK,χ and de�ne a linear functional L : W → C by

setting Lw = 〈w, u〉W , for all w ∈ W (that is, in the notation of (10.53),

L = ξ−1(u)). Then L ∈ HomK(ResGKW,χ):

Lθ(k)w = 〈θ(k)w, u〉W = 〈w, θ(k−1)u〉W = χ(k)〈w, u〉W = χ(k)Lw,
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for all w ∈W , k ∈ K. Since Tu =
√

dθ
|G/K|

∨
L, from Theorem 11.2.1 we deduce

that Tu ∈ HomG(θ, IndGKχ).

(ii) Suppose that {ui : i = 1, 2, . . . , dθ} is an orthonormal basis in W with

u1 = u. Then, for every w =
∑dθ

i=1 αiui ∈W , αi ∈ C, we have (cf. (11.3)):

‖Tuw‖2IndGKχ =
1

|K|
· dθ
|G/K|

∑
g∈G
〈w, σ(g)u〉W 〈w, σ(g)u〉W

=
dθ
|G|

dθ∑
i,j=1

αiαj
∑
g∈G
〈ui, σ(g)u1〉W 〈uj , σ(g)u1〉W

(by(10.24)) =

dθ∑
i=1

|αi|2

= ‖w‖2W .

This shows that Tu is an isometry.

11.3 Preliminaries on Mackey's theory

In the present and next two sections, we use all the notation of Section 11.1.

We also suppose that H is another subgroup of G and that (ν, U) is an H-

representation. We set λ1 = IndGHν. Moreover, we assume that S is a set of

representatives for the set H\G/K of all H-K double cosets in G, so that

G =
∐
s∈S

HsK, (11.29)

with 1G ∈ S (this is the representative of HK). For each s ∈ S, we set

Gs = H ∩ sKs−1. (11.30)

Clearly, Gs is a subgroup of H while s−1Gss is a subgroup of K. We start

with a simple but useful Lemma.

Lemma 11.3.1 Let h, h1 ∈ H, k, k1 ∈ K and s ∈ S. Then we have

hsk = h1sk1 ⇔ ∃x ∈ Gs such that h1 = hx and k1 = s−1x−1sk.

Proof We have hsk = h1sk1 if and only if skk−1
1 s−1 = h−1h1. By (11.30),

this holds if and only if h1 = hx and k1 = s−1x−1sk with x = h−1h1(=

skk−1
1 s−1) ∈ Gs.
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Remark 11.3.2 From the lemma above it follows that

|HsK| = |H||K|
|Gs|

.

Indeed, for each g ∈ HsK there exist exactly |Gs| pairs (h, k) ∈ H ×K such

that g = hsk. Observe also that H\G/K can be interpreted as the set of

H-orbits on X = G/K: if x0 ∈ X is the point stabilized by K, then these

orbits are

{Hsx0 : s ∈ S}.

Moreover, the subgroup Gs can be identi�ed with the stabilizer in H of the

point sx0.

We leave it as an exercise to check the above statements.

For all s ∈ S, we denote by (σs, Vs) the representation of Gs on Vs = V

de�ned by setting

σs(x) = σ(s−1xs) (11.31)

for all x ∈ Gs. We also de�ne

S0 = {s ∈ S : HomGs(Res
H
Gsν, σs) is nontrivial}. (11.32)

11.4 Mackey's formula for invariants

In this section, we expose a series of results of Mackey on the space of

intertwining operators between two induced representations. The particular

case of the commutant of the representation obtained by inducing a one

dimensional representation will be analyzed more closely in Chapter 13. See

also [140] and [37].

We assume the notation from the previous section.

De�nition 11.4.1 We denote by V = V(G,H,K, ν, σ) the set of all maps

F : G→ Hom(U, V ) such that

F (hgk) = σ(k−1)F (g)ν(h−1)

for all g ∈ G, h ∈ H, and k ∈ K.

Lemma 11.4.2

(i) For s ∈ S0 and T ∈ HomGs(Res
H
Gsν, σs) de�ne LT : G → Hom(U, V )

by setting

LT (g) =

{
σ(k−1)Tν(h−1) if g = hsk ∈ HsK
0 otherwise.

(11.33)
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Then LT is well de�ned and belongs to V.
(ii) Let F ∈ V. Then F (s) ∈ HomGs(Res

H
Gsν, σs) for all s ∈ S.

(iii) Let F ∈ V. Then F =
∑

s∈S0 LF (s) and the nontrivial elements in

this sum are linearly independent.

(iv) The map

V −→
⊕

s∈S0 HomGs(Res
H
Gsν, σs)

F 7−→ ⊕s∈S0F (s)
(11.34)

is an isomorphism of vector spaces.

Proof (i) It su�ces to show that LT is well de�ned. Indeed, if hsk = h1sk1,

then, by Lemma 11.3.1, h1 = hx and k1 = s−1x−1sk with x ∈ Gs, so that

σ(k−1
1 )Tν(h−1

1 ) = σ(k−1s−1xs)Tν(x−1h−1)

(by (11.31)) = σ(k−1)σs(x)Tν(x−1h−1)

(T ∈ HomGs(Res
H
Gsν, σs)) = σ(k−1)Tν(x)ν(x−1h−1)

= σ(k−1)Tν(h−1).

(ii) For all x ∈ Gs, by de�nition of V, we have

F (s)ν(x) = F (x−1s)

= F (s · s−1x−1s)

= σ(s−1xs)F (s)

= σs(x)F (s)

that is, F (s) ∈ HomGs(Res
H
Gsν, σs).

(iii) Clearly, F is determined by its values on S: indeed if g = hsk, with

h ∈ H, k ∈ K, and s ∈ S, we have

F (g) = F (hsk) = σ(k−1)F (s)ν(h−1) = LF (s)(g).

Moreover, this vanishes on the cosets HsK with s /∈ S0. As a consequence,

F =
∑

s∈S0 LF (s) and the nontrivial elements in this sum are linearly inde-

pendent because they are supported on di�erent double cosets.

(iv) Surjectivity of the map follows from (11.33). Indeed, T is the image of

LT . Injectivity is a consequence of (iii).

For F ∈ V de�ne the operator ξ(F ) ∈ Hom(IndGHU, Ind
G
KV ) by setting

[ξ(F )f ](g) =
∑
r∈G

F (r−1g)f(r), (11.35)

for all f ∈ IndGHU and g ∈ G. It is then immediate to check that ξ(F )f ∈
IndGKV .
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Also, for T ∈ HomG(IndGHU, Ind
G
KV ) de�ne the map FT : G→ Hom(U, V )

by setting

FT (g)u =
1

|H|
[Tfu](g) (11.36)

for all u ∈ U and g ∈ G, where fu is as in (11.5) (but with K,V now replaced

by H,U , respectively).

Theorem 11.4.3 We have ξ(F ) ∈ HomG(IndGHU, Ind
G
KV ) for all F ∈ V and

the map

ξ : V −→ HomG(IndGHU, Ind
G
KV )

is an isomorphism of vector spaces. The corresponding inverse map is given

by T 7→ FT .

Proof Let F ∈ V, f ∈ IndGHU and g0, g ∈ G. Then we have

[λ(g)ξ(F )f ](g0) = [ξ(F )f ](g−1g0)

=
∑
r∈G

F (r−1g−1g0)f(r)

(setting q = gr) =
∑
q∈G

F (q−1g0)f(g−1q)

=
∑
q∈G

F (q−1g0)[λ1(g)f ](q)

= [ξ(F )λ1(g)f ](g0),

that is, λ(g)ξ(F ) = ξ(F )λ1(g). This shows that ξ(F ) ∈ HomG(IndGHU, Ind
G
KV ).

Let now h ∈ H, k ∈ K, g ∈ G, u ∈ U and T ∈ HomG(IndGHU, Ind
G
KV ).

Then we have

FT (hgk)u =
1

|H|
[Tfu](hgk)

(T ∈ HomG(IndGHU, Ind
G
KV )) = σ(k−1)

{
1

|H|
[Tλ1(h−1)fu](g)

}
(by (11.6)) = σ(k−1)

{
1

|H|
[Tfν(h−1)u](g)

}
= σ(k−1)FT (g)ν(h−1)u.

This shows that FT ∈ V.
We now prove that ξ is a bijection. Let T ∈ HomG(IndGHU, Ind

G
KV ) and
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F ∈ V. Since the functions λ1(g)fu, g ∈ G and u ∈ U , span IndGHU (cf.

Proposition 11.1.2), we have that ξ(F ) = T if and only if

ξ(F )λ1(g)fu = Tλ1(g)fu (11.37)

for all g ∈ G and u ∈ U .
We have

[Tλ1(g)fu](g0) = [λ(g)Tfu](g0) (T ∈ HomG(IndGHU, Ind
G
KV ))

= [Tfu](g−1g0)

= |H|FT (g−1g0)u (by (11.36))

and

[ξ(F )λ1(g)fu](g0) =
∑
r∈G

F (r−1g0)fu(g−1r) (by (11.35))

=
∑
h∈H

F (h−1g−1g0)ν(h−1)u (by (11.5) with g−1r = h)

= |H| · F (g−1g0)u. (by De�nition 11.4.1)

for all u ∈ U , g, g0 ∈ G. From (11.37) we then deduce that ξ(F ) = T if and

only if F = FT .

From Lemma 11.4.2.(iv) and Theorem 11.4.3 we deduce the following:

Corollary 11.4.4 (Mackey's formula for invariants) The map

HomG(IndGHν, Ind
G
Kσ) −→

⊕
s∈S0 HomGs(Res

H
Gsν, σs)

T 7−→ ⊕s∈S0FT (s),
(11.38)

is an isomorphism of vector spaces.

Proof This map is nothing but the composition of the isomorphisms ξ−1

and (11.34).

By taking dimensions we deduce:

Corollary 11.4.5 (Mackey's intertwining number theorem)

dimHomG(IndGHν, Ind
G
Kσ) =

∑
s∈S

dimHomGs(Res
H
Gsν, σs).

Note that in the above sum the only contribution to the right hand side

comes from the elements s ∈ S0. The following is one of the most useful

results in Mackey's theory.
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Corollary 11.4.6 (Mackey's irreducibility criterion) Suppose H = K

and ν = σ. Then IndGKσ is irreducible if and only if the following conditions

are both met:

(a) (σ, V ) is irreducible;

(b) for every s ∈ S \{1G}, the Gs-representations ResKGsσ and σs contain

no common irreducible subrepresentations.

Proof First of all, note that G1G = K and σ1G = σ, so that Mackey's

intertwining number theorem (Corollary 11.4.5) yields

dimHomG(IndGKσ, Ind
G
Kσ) = dimHomK(σ, σ) +

∑
s∈S\{1G}

dimHomGs(Res
K
Gsσ, σs).

We conclude by recalling that from Corollary 10.6.4 it follows that IndGKσ

is irreducible if and only if dimHomG(IndGKσ, Ind
G
Kσ) = 1 and then invoking

Corollary 10.2.6 (see also Problem 10.6.9).

Remark 11.4.7 Now we explain the terminology for �invariant� in Corollary

11.4.4. If (θ,W ) is a G-representation, its invariant subspace is {w ∈ W :

θ(g)w = w, ∀g ∈ G}, that is, the isotypic component of the trivial repre-

sentation ιG in θ. If (ξ, Z) is another representation of G, then, de�ning a

G-representation (η,Hom(W,Z)) by setting

η(g)T = ξ(g)Tθ(g−1),

for all g ∈ G and T ∈ Hom(W,Z), we have that HomG(W,Z) is exactly the

invariant subspace of η.

Exercise 11.4.8 Show that, for H = G and (ν, U) = (θ,W ), Mackey's

formula for invariants (11.38) reduces to Frobenius reciprocity (Theorem

11.2.1). More precisely, show that the maps (11.25) and (11.26) and their

properties may be deduced from (11.33), (11.35) and (11.36). Examine the

connections between the case K = G and the other side of Frobenius reci-

procity in Exercise 11.2.7.

Exercise 11.4.9 Deduce Lemma 10.4.14 from Corollary 11.4.5, taking into

account Remark 11.3.2.

Remark 11.4.10 We now examine the case in which σ = χ and ν = ψ

are one-dimensional (see Example 11.1.9). We have U = V = C and S0 =

{s ∈ S : ResHGsψ = χs}. Moreover, in the map (11.38), we have FT (s) =
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1
|H| [Tψ](s) ∈ C, and the intertwining number theorem (Corollary 11.4.5) is

just the formula

dimHomG(IndGHψ, Ind
G
Kχ) = |S0|.

Finally, in the case H = K and ψ = χ, the representation IndGKχ is ir-

reducible if and only if ResKGsχ 6= χs for all s ∈ S \ {1G} (equivalently,

S0 = {1G}).

Exercise 11.4.11 Suppose that H = K and ν = σ. De�ne a multiplication

operation in V = V(G,K,K, σ, σ) (cf. De�nition 11.4.1) by setting [F1 ∗
F2](g) =

∑
g1∈G F1(g−1

1 g)F2(g1) for all F1, F2 ∈ V and g ∈ G. Also de�ne

the map F 7→ F ∗ by setting F ∗(f) = [F (g−1)]∗, for all F ∈ V, g ∈ G.

(1) Show that V is an involutive algebra.

(2) Show that if ξ : V → HomG(IndGKσ, Ind
G
Kσ) is as in (11.35), then we

gave ξ(F1∗F2) = ξ(F1)ξ(F2) and ξ(F ∗) = ξ(F )∗. Taking into account

Theorem 11.4.3, deduce that ξ is a ∗-isomorphism.

(3) With the notation in (10.49) and (11.5), show that [ξ(F )λ(t)fv](g) =

|K| · F (t−1g)v, for all F ∈ V, v ∈ V , t ∈ T and g ∈ G.
(4) Deduce that Tr[ξ(F )] = |G| · Tr[F (1G)].

Exercise 11.4.12 Let ξ : V(G,H,K, ν, σ) → HomG(IndGHν, Ind
G
Kσ) and

ξ̃ : V(G,H,H, ν, ν)→ HomG(IndGHν, Ind
G
Hν) be as in (11.35).

(1) Let F1, F2 ∈ V(G,H,K, ν, σ) and de�ne F : G→ Hom(IndGHν, Ind
G
Hν)

by setting

F (g) =
|H|
|K|

∑
g1∈G

[F2(g−1g1)]∗F1(g1),

for all g ∈ G. Show that F ∈ V(G,H,H, ν, ν) and ξ(F2)∗ξ(F1) =

ξ̃(F ).

(2) Given two �nite-dimensional vector spaces Ũ and Ṽ and T1, T2 ∈
Hom(Ũ , Ṽ ), set

〈T1, T2〉Hom(Ũ ,Ṽ )
= Tr(T ∗2 T1).

Taking into account Exercise 11.4.11, deduce that

〈ξ(F1), ξ(F2)〉Hom(IndGHU,Ind
G
KV )

=
|H|2

|K|
∑
g∈G
〈F1(g), F2(g)〉Hom(U,V )

≡ |H|3
∑
s∈S

1

|Gs|
〈F1(s), F2(s)〉Hom(U,V ).
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11.5 Mackey's lemma

In Corollary 11.1.17 we have examined the composition Ind◦Res. The follow-
ing famous lemma, due to Mackey, considers the inverse composition, namely

Res ◦ Ind. It essentially constitutes a representation theoretic analogue of

the decomposition (11.29).

We assume the notation from Section 11.3.

Theorem 11.5.1 (Mackey's lemma) The map

ResGHInd
G
KV −→

⊕
s∈S Ind

H
GsVs

F 7−→ ⊕s∈Sfs,
(11.39)

where fs ∈ IndHGsVs is de�ned by setting fs(h) = F (hs) for all h ∈ H, is

an isomorphism of vector spaces. Moreover, the subspace Zs of Res
G
HInd

G
KV

isomorphic to IndHGsVs is given by

Zs = {F ∈ V [G] : F (hs′k) = δs,s′σ(k−1)F (hs), ∀h ∈ H, k ∈ K and s′ ∈ S},

that is, it is made up of all functions in IndGKV that vanish outside HsK.

Proof By de�nition of IndGKV and Zs, it is clear that

IndGKV =
⊕
s∈S

Zs. (11.40)

Suppose that F ∈ Zs and fs : H → V is as in the statement. Then, if x ∈ Gs
we have

fs(hx) = F (hxs) = F (hss−1xs) = σ(s−1x−1s)F (hs) = σs(x
−1)fs(h)

so that fs ∈ IndHGsVs. Vice versa, given f ∈ IndHGsVs consider the map

Fs : G → Vs de�ned by Fs(hs
′k) = δs,s′σ(k−1)f(h) for k ∈ K,h ∈ H and

s′ ∈ S. We claim that Fs is well de�ned: indeed if hsk = h1sk1, by Lemma

11.3.1 we have h1 = hx and k1 = s−1x−1sk with x ∈ Gs, so that

σ(k−1
1 )f(h1) = σ(k−1)[σ(s−1xs)f(h1)]

= σ(k−1)[σs(x)f(h1)]

= σ(k−1)f(h1x
−1)

= σ(k−1)f(h).

Moreover,

Fs(hs
′k) = δs,s′σ(k−1)f(h) = σ(k−1)Fs(hs),

so that Fs ∈ Zs. This shows that the map F 7→ fs is an isomorphism between

Zs and IndHGsVs; since H acts on both spaces by left translation, we deduce
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that this map is also an intertwiner. Recalling (11.40), this ends the proof.

Exercise 11.5.2 Show that the isomorphism in Corollary 11.4.4 may be

deduced from the isomorphism in Exercise 11.2.7.(3), from Mackey's lemma

(Theorem 11.5.1), and Frobenius reciprocity (Theorem 11.2.1). Deduce also

the explicit form of the isomorphism (11.34).

Theorem 11.5.3 (Mackey's tensor product theorem)

IndGHν ⊗ IndGKσ ∼
⊕
s∈S

IndGGs
[
ResHGsν ⊗ σs

]
.

Proof We have:

IndGHν ⊗ IndGKσ ∼ IndGH
[
ν ⊗ ResGH(IndGKσ)

]
(by Theorem 11.1.16)

∼ IndGH

[
ν ⊗

(⊕
s∈S

IndHGsσs

)]
(by Mackey's lemma)

∼ IndGH

{⊕
s∈S

IndHGs
[
ResHGsν ⊗ σs

]}
(by Theorem 11.1.16)

∼
⊕
s∈S

IndGGs
[
ResHGsν ⊗ σs

]
,

where the last equivalence follows from Proposition 11.1.5 and Proposition

11.1.18.

11.6 The Mackey-Wigner little group method

In this section we present a powerful method to construct irreducible repre-

sentations (sometimes exhausting the whole dual) for a class of �nite groups.

We actually examine a particular case that will su�ce for our subsequent

purposes. For a more general treatment, we refer to our monograph [34] (see

also [31]).

Let G be a �nite group and suppose that A ≤ G is an Abelian normal

subgroup. We assume the notation in Section 2.3.

There is a natural action of G on the dual of A: if χ ∈ Â and g ∈ G we

de�ne the g-conjugate gχ ∈ Â of χ by setting

gχ(a) = χ(g−1ag) (11.41)

for all a ∈ A. It is easy to check that g1(g2χ) = g1g2χ for all g1, g2 ∈ G and
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that 1Gχ = χ, so that G-conjugation is indeed an action on Â. The stabilizer

of an element χ ∈ Â is the subgroup

Kχ = StabG(χ) = {g ∈ G : gχ = χ}

which is called the inertia group of χ. Note that A ≤ Kχ since A is Abelian.

We say that χ ∈ Â has an extension to Kχ if there exists a one-dimensional

representation χ̃ ofKχ such that χ̃(a) = χ(a) for all a ∈ A, that is, ResKχA χ̃ =

χ. Now consider the quotient group Kχ/A. Given ψ ∈ K̂χ/A we de�ne its

in�ation to Kχ as the irreducible representation ψ of Kχ given by setting

ψ(h) = ψ(hA) for all h ∈ Kχ (compare with (11.15)). Clearly, this is

just the composition of the canonical homomorphism Kχ → Kχ/A with

ψ : Kχ/A→ Vψ, where Vψ is the representation space of ψ.

Theorem 11.6.1 Let χ ∈ Â and suppose that χ has an extension χ̃ to Kχ.

Then

Ind
Kχ
A χ =

⊕
ψ∈K̂χ/A

dψ(χ̃⊗ ψ), (11.42)

where, as usual, dψ denotes the dimension of ψ ∈ K̂χ/A. Moreover, the

G-representations

IndGKχ(χ̃⊗ ψ), ψ ∈ K̂χ/A, (11.43)

are irreducible and pairwise inequivalent.

Proof From (11.23) we deduce that

Ind
Kχ
A χ = Ind

Kχ
A (χ⊗ ιA) = Ind

Kχ
A

[(
Res

Kχ
A χ̃

)
⊗ ιA

]
= χ̃⊗ IndKχA ιA = χ̃⊗λ,

where ιA denotes the trivial representation of A and λ is the in�ation of

the regular representation λ of Kχ/A (cf. Example 11.1.8). Since λ =

⊕
ψ∈K̂χ/A

dψψ, we have λ = ⊕
ψ∈K̂χ/A

dψψ, from which (11.42) immediately

follows.

Now suppose that S is a complete set of representatives for the double Kχ

cosets inG (with 1G ∈ S) and, as in (11.30) and (11.31) (withH = K = Kχ),

set Gs = Kχ ∩ sKχs
−1 and

(χ̃⊗ ψ)s(x) = (χ̃⊗ ψ)(s−1xs),

for all x ∈ Gs and s ∈ S. Since s−1as ∈ A for all a ∈ A, we have

ψ(s−1asA) = ψ(A), and therefore

(χ̃⊗ ψ)s(a) = sχ(a)ψ(A)
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for all a ∈ A, so that (recalling Proposition 10.2.15.(i))

ResGsA (χ̃⊗ ψ)s ∼ dψsχ.

In particular, for s 6= 1G the Gs-representations Res
Kχ
Gs

(χ̃⊗ ψ) and (χ̃⊗ ψ)s
cannot have common irreducible subrepresentations because these would lead

to common subrepresentations between their restrictions to A, but sχ 6= χ

because s /∈ Kχ. From Corollary 11.4.6 we deduce that IndGKχ(χ̃ ⊗ ψ) is

irreducible.

Finally, denote now by µ the representation IndGKχ(χ̃ ⊗ ψ) and by Z its

representation space. If f ∈ Z and a ∈ A then, for all g ∈ G, we have:

[µ(a)f ](g) = f(a−1g) = f(g · g−1a−1g) = (χ̃⊗ ψ)(g−1ag)f(g) = gχ(a)f(g).

It follows that, in the notation as in Theorem 11.5.1 (with ν = σ = χ̃ ⊗ ψ)
we have: Z1G = {f ∈ Z : µ(a)f = χ(a)f, ∀a ∈ A}. Indeed, Z1G is the space

of all f ∈ Z supported on Kχ. Moreover, in the decomposition

ResGKχInd
G
Kχ(χ̃⊗ ψ) ∼=

⊕
s∈S

Ind
Kχ
Gs

(χ̃⊗ ψ)s,

Z1G is the representation space of χ̃ ⊗ ψ (because G1G = Kχ). This means

that the action of G on the χ-isotypic component of ResGAInd
G
Kχ(χ̃⊗ψ) corre-

sponds exactly to χ̃⊗ψ, and this implies that the representations in (11.43)

are pairwise inequivalent, because di�erent representations come from di�er-

ent ψs. In other words, IndGKχ(χ̃⊗ ψ) uniquely determines ψ.

Theorem 11.6.2 (The little group method) Suppose that every χ ∈ Â
has an extension χ̃ to its inertia group Kχ. De�ne on Â an equivalence

relation ≈ by setting χ1 ≈ χ2 if there exists g ∈ G such that gχ1 = χ2. Let

X be a complete set of representatives of the corresponding quotient space

Â/ ≈. Then

Ĝ =
{
IndGKχ(χ̃⊗ ψ) : χ ∈ X,ψ ∈ K̂χ/A

}
. (11.44)

More precisely, the right hand side in (11.44) is a complete list of all ir-

reducible G-representations and, for di�erent values of χ and ψ, the corre-

sponding representations are inequivalent.

Proof From Theorem 11.6.1 it follows that the representations in the list

are irreducible. Moreover, from (11.42) and transitivity of induction (cf.
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Proposition 11.1.5), for any χ ∈ X we deduce that

IndGAχ
∼=

⊕
ψ∈K̂χ/A

dψInd
G
Kχ(χ̃⊗ ψ). (11.45)

Suppose that T is a complete set of left (in this case, also right and double)

cosets of A if G. Set λ = IndGAχ and denote by IndGAC the corresponding

representation space (cf. Example 11.1.9). For t ∈ T and g ∈ G, we have

[λ(t)χ](g) 6= 0 only if g = a1t ∈ At = tA and

[λ(a)λ(t)χ] (g) = χ(t−1a−1g) = χ(t−1g · g−1a−1g)

= gχ(a)χ(t−1g) = tχ(a) [λ(t)χ] (g).

Thus,

λ(a) [λ(t)χ] = tχ(a) [λ(t)χ] ,

and (11.17) now implies that

ResGAInd
G
Aχ ∼

⊕
t∈T

tχ, (11.46)

which is clearly a particular case of (11.39). It follows that if χ1, χ2 ∈ X are

distinct, then two irreducible representations of the form IndGKχ1
(χ̃1 ⊗ ψ1)

and IndGKχ2
(χ̃2 ⊗ ψ2) as in (11.44) cannot be equivalent because, by virtue

of (11.45) and (11.46), their restrictions to A contain inequivalent represen-

tations (the G-conjugates of χ1 and χ2, respectively). The inequivalence of

two representations of the form IndGKχ(χ̃⊗ψ1) and IndGKχ(χ̃⊗ψ2), with the

same χ but ψ1 6= ψ2, has been already proved in Theorem 11.6.1.

Now suppose that (θ,W ) is a G-irreducible representation. Then ResGAθ

decomposes into the direct sum of characters of A. If ξ ∈ Â is contained in

ResGAθ then there exists w ∈ W , w 6= 0, such that θ(a)w = ξ(a)w. For any

g ∈ G we have:

θ(a)[θ(g)w] = θ(g · g−1ag)w = θ(g)θ(g−1ag)w

= ξ(g−1ag)θ(g)w = gξ(a)[θ(g)w],

that is, ResGAθ contains all the g-conjugates of ξ and, in particular, an element

χ ∈ X. By Frobenius reciprocity, θ is contained in IndGAχ. Keeping in mind

(11.45), this implies that θ equals one of the representations in (11.44).
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11.7 Semidirect products with an Abelian group

In this section we apply the little group method to an important class of

semidirect products (cf. Section 8.14), namely we suppose that the normal

subgroup is Abelian.

Theorem 11.7.1 Let G be a �nite group and suppose that G = AoH with A

an Abelian (normal) subgroup. Given χ ∈ Â, its inertia group Kχ coincides

with A oHχ, where Hχ = StabH(χ) = {h ∈ H : hχ = χ}. Moreover, any

χ ∈ Â may be extended to a one�dimensional representation χ̃ ∈ ÂoHχ by

setting

χ̃(ah) = χ(a) ∀a ∈ A, h ∈ Hχ. (11.47)

Finally, with the notation used in Theorem 11.6.2, we have:

Ĝ = {IndGAoHχ(χ̃⊗ ψ) : χ ∈ X,ψ ∈ Ĥχ}.

Proof For a, a1 ∈ A and h ∈ H we have

ahχ(a1) = χ(h−1a−1a1ah) = χ(h−1a−1h)χ(h−1a1h)χ(h−1ah)

= χ(h−1a1h) = hχ(a1)

thus showing that the inertia subgroup of χ coincides with AoHχ. Let χ ∈ Â
and let us show that the extension of χ de�ned by (11.47) is a representation.

By de�nition of Hχ, we have that χ is invariant by conjugation with elements

in Hχ so that, if a1, a2 ∈ A and h1, h2 ∈ Hχ, we have

χ̃(a1h1 · a2h2) = χ̃(a1h1a2h
−1
1 · h1h2) = χ(a1h1a2h

−1
1 )

= χ(a1)χ(a2) = χ̃(a1h1)χ̃(a2h2).

Finally, the last statement is just an application of Theorem 11.6.2.
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Fourier analysis on �nite a�ne groups and �nite
Heisenberg groups

In this chapter we study the representation theory of two �nite matrix

groups, the a�ne group (or ax + b group) and the Heisenberg group, with

entries in a �nite �eld or in the �nite ring Z/nZ.
We consider speci�c problems of Harmonic Analysis: our main results

(taken from [15]), consist in a revisitation of the Discrete Fourier Transform

and of the Fast Fourier Transform from the point of view of the representation

theory of the Heisenberg group. Other sources are the monograph by Terras

[159], our book on the representation theory of wreath products of �nite

groups [34], and [142]. The results of Section 12.1 will play a fundamental

role in Chapter 14.

We closely follow Notation 1.1.17, that is, we use Zn when we want to

emphasize that our arguments are based only on the structure of the additive

Abelian group of the integers mod n, while we use Z/nZ when the whole

structure of a �nite ring is used, that is, multiplication enters the picture. We

think that this distinction is important in view of possible generalizations

of some of our arguments, for instance to more general Abelian (or even

noncommutative) groups, and to other rings.

12.1 Representation theory of the a�ne group A�(Fq)
Let q be a power of a prime number and denote by Fq the �eld with q

elements (as in Chapter 6). Recall, cf. Example 10.4.5, that the (general)

a�ne group (of degree one) over Fq is the subgroup A�(Fq) of GL(2,Fq)
de�ned by

A�(Fq) =

{(
a b

0 1

)
: a ∈ F∗q , b ∈ Fq

}
.

Note that A�(Fq) acts doubly transitively (cf. Exercise 10.4.16.(5)) on

436
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Fq ≡
{(

x

1

)
: x ∈ Fq

}
by multiplication:

(
a b

0 1

)(
x

1

)
=

(
ax+ b

1

)
. (12.1)

We begin with some elementary algebraic properties and use the notion of

a semidirect product of groups (cf. De�nition 8.14.2). Consider the following

Abelian subgroups of A�(Fq):

A =

{(
a 0

0 1

)
: a ∈ F∗q

}
∼= F∗q and U =

{(
1 b

0 1

)
: b ∈ Fq

}
∼= Fq. (12.2)

Lemma 12.1.1

(i) The inverse of

(
a b

0 1

)
∈ A�(Fq) is

(
a b

0 1

)−1

=

(
a−1 −a−1b

0 1

)
;

(ii) the subgroup U is normal and one has

A�(Fq) ∼= U oA ≡ Fq o F∗q ; (12.3)

(iii) the conjugacy classes of the group A�(Fq) are the following:

• C0 =

{(
1 0

0 1

)}
;

• C1 =

{(
1 b

0 1

)
: b ∈ F∗q

}
;

• Ca =

{(
a b

0 1

)
: b ∈ Fq

}
, where a ∈ F∗q, a 6= 1.

Proof

(i) This is a trivial calculation. From this, one easily deduces the identity(
u v

0 1

)(
a b

0 1

)(
u v

0 1

)−1

=

(
a (1− a)v + bu

0 1

)
(12.4)

for all u, a ∈ F∗q and v, b ∈ Fq.
(ii) The normality of U follows from (12.4), after taking a = 1. Since(

a b

0 1

)
=

(
a 0

0 1

)(
1 a−1b

0 1

)
for all a ∈ F∗q and b ∈ Fq, we deduce that A�(Fq) = AU . Then (12.3)

follows from the fact that A ∩ U =

{(
1 0

0 1

)}
= {1A�(Fq)}.

(iii) This is a case-by-case analysis by means of (12.4).
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Since A�(Fq) is a semidirect product with an Abelian normal subgroup (cf.

(12.3)), we can apply the little group method (Theorem 11.7.1) in order to

get a complete list of all irreducible representations of A�(Fq). As usual, F̂q
(respectively F̂∗q) will denote the dual of the additive group Fq (respectively
of the multiplicative group F∗q).
From Lemma 12.1.1.(ii) and (12.4), after identifying A with the multiplica-

tive group F∗q (via the map

(
a 0

0 1

)
7→ a) and U with the additive group Fq

(via the map

(
1 b

0 1

)
7→ b), it follows that the conjugacy action (cf. (11.41))

of A ≡ F∗q on Û ≡ F̂q is given by

aχ(b) = χ(a−1b) (12.5)

for all χ ∈ Û , b ∈ Fq, and a ∈ F∗q .
Denote by χ0 ≡ 1 the trivial character of U .

Lemma 12.1.2 The action of A on Û has exactly two orbits, namely {χ0}
and F̂q \ {χ0}. Moreover, the stabilizer of χ ∈ Û is given by

StabA(χ) =

{
{1A} if χ 6= χ0

A if χ = χ0.

Proof It is clear that χ0 is a �xed point. From now on, let χ ∈ Û be a

nontrivial character. For a ∈ Fq let us set

aχ∗ =

{
a−1
χ if a ∈ F∗q

χ0 if a = 0,

that is, aχ∗(x) = χ(ax) for all x ∈ Fq. We claim that the map a 7→ aχ∗ yields

an isomorphism from Fq onto F̂q. Indeed, it is straightforward to check that
(a+b)χ∗(x) = aχ∗(x)bχ∗(x) for all a, b, x ∈ Fq. Moreover, if a 6= 0 we have
aχ∗ 6= χ0 since the map x 7→ ax is a bijection of Fq. This shows that the

homomorphism a 7→ aχ∗ is injective. Since |Fq| = |F̂q|, it is in fact bijective.

As a consequence, we have that {aχ : a 6= 0} = {aχ∗ : a 6= 0} coincides with
the set of all nontrivial characters.

Theorem 12.1.3 The group A�(Fq) has exactly q− 1 one-dimensional rep-

resentations and one (q−1)-dimensional irreducible representation. The �rst
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ones are obtained by associating with each ψ ∈ Â the group homomorphism

Ψ: A�(Fq)→ T de�ned by

Ψ

(
a b

0 1

)
= ψ(a) (12.6)

for all

(
a b

0 1

)
∈ A�(Fq). The (q−1)-dimensional irreducible representation

is given by

π = Ind
A�(Fq)
U χ, (12.7)

where χ is any nontrivial character of U . Moreover, the character χπ of π

is given by:

χπ
(
a b

0 1

)
=


q − 1 if a = 1 and b = 0

−1 if a = 1 and b 6= 0

0 otherwise.

(12.8)

Proof This is just an application of the little group method (Theorem 11.7.1).

Indeed, by Lemma 12.1.2, the inertia group of the trivial character χ0 ∈ Û is

A�(Fq). This provides the q − 1 one-dimensional representations simply by

taking any character ψ ∈ Â. Moreover, the inertia group of any nontrivial

character χ ∈ Û is U since, by Lemma 12.1.2, StabA(χ) = {1A}.
Finally, from (11.18) with T = A, and using again (12.5), we immediately

get

χπ
(
a b

0 1

)
=

{∑
α∈F∗q χ(α−1b) if a = 1

0 oterwise.

Then (12.8) follows from Corollary 7.1.3.

We now give a concrete realization of π.

Proposition 12.1.4 Fix χ ∈ F̂q \ {χ0} and set[
π]
(
a b

0 1

)
f

]
(x) = χ(bx−1)f(a−1x), (12.9)

for all f ∈ L(F∗q),
(
a b

0 1

)
∈ A�(Fq) and x ∈ F∗q. Then (π], L(F∗q)) is a

representation of A�(Fq) and

π] ∼ π = Ind
A�(Fq)
U χ.
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Proof From De�nition 11.1.1 it follows that the representation space of π is

W =
{
f̃ : A�(Fq)→ C : f̃(gu) = χ(u)f̃(g), ∀g ∈ A�(Fq), u ∈ U

}
.

Then for f̃ ∈W and

(
a b

0 1

)
∈ A�(Fq) we have

f̃

(
a b

0 1

)
= f̃

[(
a 0

0 1

)(
1 ba−1

0 1

)]
= χ(ba−1)f̃

(
a 0

0 1

)

so that the mapW 3 f̃ 7→ f ∈ L(F∗q), where f(x) = f̃

(
x 0

0 1

)
for all x ∈ F∗q ,

is a well de�ned isomorphism of vector spaces. Moreover,[
π

(
a b

0 1

)
f̃

](
x 0

0 1

)
= f̃

(
a−1x −a−1b

0 1

)
= χ(−bx−1)f(a−1x)

= χ(bx−1)f(a−1x).

Corollary 12.1.5

Res
A�(Fq)
A π ∼

⊕
ψ∈Â

ψ.

Proof If ψ ∈ Â (∼= F̂∗q), then ψ ∈ L(F∗q) satis�es[
π

(
a 0

0 1

)
ψ

]
(x) = ψ(a−1x) = ψ(a)ψ(x)

for all a, x ∈ F∗q .

Exercise 12.1.6 Check that π], de�ned by (12.9), is an irreducible repre-

sentation of A�(Fq) without using the theory of induced representations.

Corollary 12.1.7

Res
A�(Fq)
U π =

⊕
χ∈Û\{χ0}

χ.

Proof Since π = Ind
A�(Fq)
U χ for any nontrivial character χ ∈ Û and dim π =

q − 1 equals the cardinality of the set of all nontrivial characters of U , the

statement follows from Frobenius reciprocity.
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Exercise 12.1.8 Recalling the notation in (12.6) and (12.8), directly prove

the following:

(1) Res
A�(Fq)
U Ψ = χ0 and Res

A�(Fq)
A Ψ = ψ.

(2) Deduce (by using Frobenius reciprocity and Corollary 12.1.5) that

Ind
A�(Fq)
U χ0 = ⊕

ψ∈ÂΨ and Ind
A�(Fq)
A ψ = π ⊕Ψ.

(3) Show a connection between (12.8) and the character formula in Ex-

ample 10.4.7, taking into account Exercise 10.4.16.

Exercise 12.1.9 Consider Fq as a sub�eld of Fqm , m ≥ 2; see Section 6.6.

(1) Denote by πq (resp. πqm) the (q − 1)-dimensional irreducible repre-

sentation of Fq (resp. the (qm − 1)-dimensional of Fqm). Prove that

Ind
A�(Fqm )

A�(Fq) πq = qm−1πqm .

Hint: the restrictions of the one-dimensional representations of A�(Fqm)

cannot contain πq.

(2) For ξ ∈ F̂qm , set ξ] = Res
Fqm
Fq ξ and denote by Ξ the corresponding

one-dimensional representation of A�(Fqm). Prove that

Ind
A�(Fqm )

A�(Fq) ψ =
qm−1 − 1

q − 1
πqm ⊕


⊕

ξ∈F̂qm :

ξ]=ψ

Ξ

 .

Hint: Examine Res
A�(Fqm )

A�(Fq) Ξ.

See [140] for a detailed analysis of the commutant of Ind
A�(Fqm )

A�(Fq) πq.

We end this section with a brief treatment of the automorphism group

of A�(Fq). First we recall some elementary facts of group theory; see the

monongraphs by Robinson [129], Rotman [132], and Machì [103], for more

details.

Let G be a �nite group and denote by Aut(G) its automorphism group.

With each g ∈ G we associate the inner automorphism given by: ξg(h) =

ghg−1, for all h ∈ G. The inner automorphisms form a subgroup of Aut(G),

denoted Inn(G). If g ∈ G and α ∈ Aut(G) then α ◦ ξg ◦ α−1 = ξα(g); in

particular, Inn(G) is normal in Aut(G).

A subgroup N is characteristic if it is invariant with respect to every auto-

morphism of G: α(N) = N for all α ∈ Aut(G). Cleary, a subgroup is normal

if and only if it is invariant with respect to every inner automorphism and
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therefore a characteristic subgroup is also normal. Two particular character-

istic groups are: the center Z(G) = {g ∈ G : gh = hg for all h ∈ G} and the

derived subgroup G′, which is the subgroup generated by all commutators,

namely, the elements of the form ghg−1h−1, g, h ∈ G. Recall that if N is

normal in G then the quotient group G/N is abelian if and only if G′ ≤ N ,

and that, if G′ ≤ H ≤ G, then H is normal in G. Finally, given g ∈ G, the
inner automorphism ξg is trivial if and only if g ∈ Z(G). As a consequence,

Inn(G) ∼= G/Z(G).

Exercise 12.1.10 Verify all the statements in the last two paragraphs.

Exercise 12.1.11

(1) Prove that the center of A�(Fq) is trivial while its derived subgroup

is U .

(2) For u ∈ F∗q and v ∈ Fq denote by ξu,v the inner automorphism of

A�(Fq) associated with the element

(
u v

0 1

)
, that is, ξu,v

(
a b

0 1

)
=(

a (1− a)v + bu

0 1

)
for all a ∈ F∗q and b ∈ Fq. Prove that for all

choices of

(
a b

0 1

)
∈ A�(Fq), with a 6= 1 and

(
1 c

0 1

)
∈ U with

c 6= 0, there exists ξu,v such that

ξu,v

(
a b

0 1

)
∈ A and ξu,v

(
1 c

0 1

)
=

(
1 1

0 1

)
.

(3) Deduce the following fact: for each nontrivial α ∈ Aut(A�(Fq)) there
exists ξu,v ∈ Inn(A�(Fq)) such that:

ξu,v ◦ α(A) = A and ξu,v ◦ α
(

1 1

0 1

)
=

(
1 1

0 1

)
.

(4) Suppose that q = pn, p prime number, and denote by σ the Frobenius

automorphism of Fq (cf. Section 6.4). With the notation in (3), let

us set β = ξu,v ◦ α. Prove that there exists 0 ≤ k ≤ n − 1 such that

β

(
a b

0 1

)
=

(
σk(a) σk(b)

0 1

)
for all

(
a b

0 1

)
∈ A�(Fq).

Hint First of all, consider the restrictions β|A and β|U . Then apply

β to (12.4) with a = b = 1 and v = 0.

(5) Deduce that Aut (A�(Fq)) ∼= A�(Fq) oAut(Fq).
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12.2 Representation theory of the a�ne group A�(Z/nZ)

In this section we examine the representation theory of the group

A�(Z/nZ) =

{(
a b

0 1

)
: a ∈ U(Z/nZ), b ∈ Z/nZ

}
,

that is, the a�ne group over the ring Z/nZ. As far as we know, most of the

result presented here are new. We use the notation in Chapter 1. Clearly,

for n = p prime we have A�(Z/nZ) = A�(Fp).
First of all, in order to generalize the arguments in the proof of Lemma

12.1.2, we study the action γ of U(Z/nZ) on Z/nZ given by multiplication:

γ(a)b = ab,

for all a ∈ U(Z/nZ) and b ∈ Z/nZ. From the results in Section 1.5 it follows

that it coincides with the action of Aut(Zn) on Zn. This action has been

extensively studied in [4]. We limit ourselves to report some basic results,

which form an interesting complement to Gauss' results in Proposition 1.1.20

and Proposition 1.2.13. We �rst introduce the following notation: for n ∈ N,
we denote by D(n) the set of all positive divisors of n. Moreover for r ∈ D(n)

we set A(r) = {0 ≤ k ≤ n− 1 : gcd(k, n) = n/r} (cf. (1.6)), and regard A(r)

as a subset of Z/nZ. In particular, A(n) ≡ U(Z/nZ) and A(1) = {0}.

Theorem 12.2.1 The decomposition of Z/nZ into the orbits of γ is

Z/nZ =
∐

r∈D(n)

A(r). (12.10)

Moreover, the stabilizer of nr ∈ A(r) is

Ur(Z/nZ) = {a ∈ U(Z/nZ) : a ≡ 1 mod r} (12.11)

and
U(Z/nZ)

Ur(Z/nZ)
∼= U(Z/rZ). (12.12)

Proof For each r ∈ D(n) let

Orb(n/r) =
{
a
n

r
mod n : a ∈ U(Z/nZ)

}
be the orbit containing n/r, Clearly, if gcd(a, n) = 1 then also gcd(a, r) = 1,

so that gcd(an/r, n) = gcd(a, r)n/r = n/r, and this yields

Orb(n/r) ⊆ A(r). (12.13)

The solutions a ∈ Z of the congruence equation anr ≡
n
r mod n are given



444 Fourier analysis on �nite a�ne groups and �nite Heisenberg groups

by Proposition 1.2.13 (and its proof): selecting 1 as a �xed solution, they

are:

1 + jr, j = 0, 1, . . . ,
n

r
− 1.

Among these numbers, we must select those belonging to U(Z/nZ), and this

proves (12.11).

Now consider the map

Θ : U(Z/nZ) ≡ A(n)→ U(Z/rZ)

given by Θ(a) = b, if a = b+jr with 0 ≤ b ≤ r−1 and j ≥ 0, that is, b is the

remainder of the division of a by r. Clearly, it is well de�ned: if gcd(a, n) = 1

then gcd(b, r) = 1. Indeed, gcd(b, r)|a and r|n force gcd(b, r)| gcd(a, n).

Moreover, it is straightforward to check that it is a homomorphism, namely

Θ(a1a2) ≡ Θ(a1)Θ(a2) mod r. Let us prove that it is surjective. Let b ∈
U(Z/rZ), that is 0 ≤ b ≤ r − 1 and gcd(b, r) = 1. Consider the integer

a = b+ p1p2 · · · pmr,

where p1, p2, . . . , pm are the (distinct) primes that divide n but not b. Now,

if p is a prime and p|n then we have two possibilities:

• if p |b then p - p1p2 · · · pmr and therefore p cannot divide a;

• if p - b then p|p1p2 · · · pm and therefore again p cannot divide a.

In conclusion, p does not divide a and we have proved that gcd(a, n) = 1.

As, clearly, b = Θ(a), this ensures that Θ is surjective. Finally, from (12.11)

we deduce that Ur(Z/nZ) = KerΘ and this implies (12.12). In particular,

|Ur(Z/nZ)| = ϕ(n)

ϕ(r)
,

where ϕ is the Euler totient function (see De�nition 1.1.18). Then we have:

ϕ(r) = |A(r)| (by (1.8))

≥ |Orb(n/r)| (by (12.13))

=
|U(Z/nZ)|
|Ur(Z/nZ)|

(by (10.44))

= ϕ(r),

which forces the equality in (12.13), and (12.10) follows.

We recall (cf. De�nition 1.1.6 and Exercise 1.1.5) that the greatest common

divisor gcd(m,n, k) of three integersm,n, k is the largest positive integer that

divides each of m,n, k and it equals the smallest positive integer that may be
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written in the form um+ vn+wk, with u, v, w ∈ Z; in fact {um+ vn+wk :

u, v, w ∈ Z} is the principal ideal in Z generated by gcd(m,n, k). Compare

with Section 1.1. See also the monographs by Apostol [13] and Nathanson

[118]. In the following, we consider the action of A�(Z/nZ) on Z/nZ, in
analogy with (12.1), as well as the subgroups (cf. (12.2))

A =

{(
a 0

0 1

)
: a ∈ U(Z/nZ)

}
and U =

{(
1 b

0 1

)
: b ∈ Z/nZ

}
.

Lemma 12.2.2

(i) The subgroup U is normal and one has

A�(Z/nZ) ∼= U oA ≡ Zn o U(Z/nZ); (12.14)

(ii) the conjugacy classes of the group A�(Z/nZ) are listed as follows:

• C0 =

{(
1 0

0 1

)}
;

• Cr =

{(
1 b

0 1

)
: b ∈ A(r)

}
, where r ∈ D(n);

• Ca,d =

{(
a b

0 1

)
: b ∈ Z/nZ and gcd(a− 1, n, b) = d

}
, where a ∈

U(Z/nZ), a 6= 1, and d ∈ D(gcd(a− 1, n)).

Proof (i) See the proof of the corresponding statement in Lemma 12.1.1.

(ii) By (12.4), for a = 1 the computation of the conjugacy orbits reduces

to the computation of the γ-orbits in Theorem 12.2.1 and, this way, we

determine the orbits Cr, r ∈ D(n).

Now suppose that a ∈ U(Z/nZ), a 6= 1, and b ∈ Z/nZ. Again by (12.4),

we have to determine those c ∈ Z/nZ such that the equation

v(1− a) + ub = c (12.15)

has solutions u ∈ U(Z/nZ) and v ∈ Z/nZ. First of all, note that if we think
of a, b, c, u, v as integers, then this equation may be rewritten in the form

v(1− a) + ub+ kn = c and gcd(u, n) = 1, (12.16)

with v, u, k ∈ Z (k serves as another unknown). By the properties of the gcd,

equation (12.16) has a solution only if gcd(1−a, b, n)|c. Since we can switch

the role of b and c in (12.15) (because u is invertible mod n), we conclude

that this equation has a solution only if gcd(1− a, b, n) = gcd(1− a, c, n).

Now suppose that gcd(1 − a, b, n) = gcd(1 − a, c, n); we want to show

that (12.16) has a solution. Set r = gcd(1 − a, n), so that gcd(b, r) =
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gcd(1− a, b, n) = gcd(1− a, c, n) = gcd(c, r). Then there exist v, k ∈ Z such

that r = v(1− a) + kn. With this position, (12.16) becomes:

ub+ r = c and gcd(u, n) = 1.

Moreover, in the last equation r may be replaced by any of its multiples

hr, h ∈ Z, because this corresponds to the replacement of v, k by vh, kh,

respectively. Therefore, to solve (12.16) it su�cies to solve ub ≡ c mod r

which, multiplied by n
r , yields the equivalent equation

u
nb

r
≡ nc

r
mod n and gcd(u, n) = 1.

By Theorem 12.2.1 the last equation has a solution because

gcd

(
nb

r
, n

)
= gcd

(n
r
b,
n

r
r
)

=
n

r
gcd(b, r) =

n

r
gcd(c, r) = gcd

(nc
r
, n
)
.

Since A�(Z/nZ) is a semidirect product with an Abelian normal subgroup

(cf. (12.14)), we can again apply Theorem 11.7.1 (the little group method) to

get a complete list of all irreducible representations of A�(Z/nZ). As usual,

Ẑ/nZ (respectively ̂U(Z/nZ)) will denote the dual of the additive group

Z/nZ (respectively the multiplicative group U(Z/nZ)). After identifying A

with the multiplicative group U(Z/nZ) (via the map

(
a 0

0 1

)
7→ a) and U

with the additive group Z/nZ (via the map

(
1 b

0 1

)
7→ b), it follows from

(12.4) that the conjugacy action (cf. (11.41)) of A on Û ≡ Ẑ/nZ is given by

aχ(b) = χ(a−1b) (12.17)

for all χ ∈ Û , b ∈ Z/nZ, and a ∈ U(Z/nZ). For 0 ≤ k ≤ n − 1, denote by

χk the character of U given by: χk(b) = exp 2πkbi
n , for all 0 ≤ b ≤ n − 1, so

that (12.17) becomes: aχk = χa−1k.

Lemma 12.2.3 The orbits of the action of A on Û are:

Ωr = {χk : k ∈ A(r)}, r ∈ D(n).

Moreover, the stabilizer of χn/r ∈ Ωr is the group Ur(Z/nZ).

Proof This is an immediate consequence of Theorem 12.2.1.

Now we may apply the little group method.
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Theorem 12.2.4

̂A�(Z/nZ) =
{
πr,ψ = Ind

A�(Z/nZ)
UoUr(Z/nZ)

(
χ̃n/r ⊗ ψ

)
: r ∈ D(r), ψ ∈ ̂Ur(Z/nZ)

}
.

More precisely, the right hand side is a complete list of irreducible, pairwise

inequivalent representations of A�(Z/nZ). Moreover,

dimπr,ψ = ϕ(r),

and A�(Z/nZ) has ϕ(n)
ϕ(r) irreducible, pairwise inequivalent representations of

dimension ϕ(r).

Note that∑
r∈D(n)

∑
ψ∈ ̂Ur(Z/nZ)

(dimπr,ψ)2 =
∑

r∈D(n)

ϕ(n)

ϕ(r)
· ϕ(r)2 = ϕ(n)

∑
r∈D(n)

ϕ(r)

(by Proposition 1.1.20) = ϕ(n)n

(by (12.14)) = |A�(Z/nZ)| ,

in agreement with Theorem 10.2.25.(iii).

12.3 Representation theory of the Heisenberg group H3(Z/nZ)

This section is based on [142]. A recent application of the material in this

section is in [24].

The Heisenberg group over Z/nZ is the matrix group

H3(Z/nZ) =


1 x z

0 1 y

0 0 1

 : x, y, z ∈ Z/nZ

 .

Exercise 12.3.1

Show that H3(Z/nZ) is isomorphic to the direct product Z/nZ×Z/nZ×
Z/nZ endowed with the multiplication

(x, y, z) · (u, v, w) = (x+ u, y + v, xv + w + z), (12.18)

for all x, y, z, u, v, w ∈ Z/nZ. In particular, check that

(x, y, z)−1 = (−x,−y,−z + xy), (12.19)

(x, y, z)−1(u, v, w) = (u− x, v − y, w − z + xy − xv), (12.20)

(x, y, z)(u, v, w)(x, y, z)−1 = (u, v, w + xv − yu), (12.21)
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and

(x, y, z) = (0, y, z)(x, 0, 0) = (0, 0, z) · (0, y, 0) · (x, 0, 0). (12.22)

In what follows, we use the notation in Exercise 12.3.1 rather than the

matrix notation.

Proposition 12.3.2 The conjugacy classes of H3(Z/nZ) are:

Ca,b,c =

{
(a, b, c+ k gcd(a, b, n) : k = 0, 1, . . . ,

n

gcd(a, b, n)
− 1

}
,

a, b ∈ Z/nZ and c = 0, 1, . . . , gcd(a, b, n)− 1.

Proof By (12.21), the conjugacy class containing a �xed element (a, b, c) ∈
H3(Z/nZ) is

{(a, b, c+ xb− ya) : x, y ∈ Z/nZ}.

We argue as in the proof of Lemma 12.2.2(ii). We �x an element m ∈ Z/nZ
and study the equation xb− ya = m in the unknowns x, y ∈ Z/nZ. This is
equivalent to

xb− ya+ kn = m (12.23)

in the unknowns x, y, k ∈ Z (we think of a, b,m as integers). Clearly,

(12.23) has a solution if and only if gcd(a, b, n)|m. Therefore, two elements

(a, b, c), (u, v, w) ∈ H3(Z/nZ) are conjugate if and only if a = u, b = v, and

c ≡ w mod gcd(a, b, n).

Proposition 12.3.3 The Heisenberg group is the semidirect product

H3(Z/nZ) ∼= Z2
n oφ Zn, (12.24)

where Z2
n = {(0, v, w) : v, w ∈ Zn} and Zn = {(x, 0, 0) : x ∈ Zn} are viewed

as additive groups, and φ is the Zn-action on Z2
n given by

φx(v, w) = (v, w + xv),

for all x ∈ Zn and (v, w) ∈ Z2
n (here x, v, w are viewed as elements in Z/nZ).

Proof This follows from (12.21) and (12.22). Just note that, in particular,

(x, 0, 0)(0, v, w)(x, 0, 0)−1 = (0, v, w + xv).

We next apply Theorem 11.7.1, with

G = H3(Z/nZ), A = Z2
n, and H = Zn.
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To this end, we need some preliminary results. Recall that the elements of

Â are the characters χs,t, s, t = 0, 1, . . . , n− 1, given by

χs,t(v, w) = exp

(
2πi

n
(sv + tw)

)
, (12.25)

for all u, v ∈ Zn; see Section 2.3.

Proposition 12.3.4 The orbits of H on Â are:

Rk,t = {χs,t : s ≡ k mod gcd(t, n)} ,

for 0 ≤ t ≤ n − 1 and 0 ≤ k ≤ gcd(t, n) − 1. Moreover, the stabilizer of

χs,t ∈ Rk,t does not depend on the choice of s and it is given by

Hχs,t =

{
(x, 0, 0) ∈ H : x ≡ 0 mod

n

gcd(t, n)

}
∼= Zgcd(t,n).

Proof The action of H on Â is given explicitely by:

(x,0,0)χs,t(v, w) = χs,t(v, w − xv)

= exp

[
2πi

n
[sv + t(w − xv)]

]
= exp

{
2πi

n
[(s− tx)v + tw]

}
= χs−tx,t(v, w).

Then χs1,t1 and χs2,t2 belong to the same H-orbit if and only if t1 = t2 = t

and there exists x ∈ Z such that s1 − tx ≡ s2 mod n. By Proposition 1.2.13

this equation has a solution if and only if s1 ≡ s2 mod gcd(t, n). Finally,

we observe that the stabilizer of χs,t is made up of those x ∈ H such that

xt = 0 mod n.

In more explicit form,

Rk,t =

{
χs,t : s = k + j gcd(t, n), 0 ≤ j ≤ n

gcd(n, t)
− 1

}
and

Hχs,t =

{(
j

n

gcd(t, n)
, 0, 0

)
: 0 ≤ j ≤ gcd(n, t)− 1

}
.

Moreover, for a given t with 0 ≤ t ≤ n− 1 we have the following particular

cases:
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• If t = 0 then gcd(0, n) = n and Rk,0 = {χk,0}, k = 0, 1, . . . , n − 1: now

each orbit consists of a single element and its stabilizer is Hχk,0 = H.

• If gcd(t, n) = 1 then we have exactly one orbit of n elements, namely

R0,t = {χs,t : s = 0, 1, . . . , n − 1}, and the stabilizer is trivial: Hχs,t =

{(0, 0, 0)}.

According to the preceding analysis, we can choose

X = {χk,t : 0 ≤ t ≤ n− 1, 0 ≤ k ≤ gcd(t, n)− 1}

as a set of representatives of the quotient space Â/ ≈ (cf. Theorem 11.6.2).

By (11.47) and (12.22) we deduce that the extension of these characters to

AoHχk,t is given by

χ̃k,t(x, y, z) = χk,t(y, z), (12.26)

for all (x, y, z) ∈ AoHχk,t . We also need a parameterization of the characters

of the groups Hχk,t
∼= Zgcd(t,n): they are given by

ψgcd(t,n),h(j) = exp

(
2πi

gcd(t, n)
hj

)
,

h, j = 0, 1, . . . , gcd(t, n)− 1. Their in�ation to AoHχk,t is given by

ψgcd(t,n),h(x, y, z) = ψgcd(t,n),h

(
x gcd(t, n)

n

)
≡ exp

(
2πi

n
hx

)
,

for all (x, y, z) ∈ A o Hχk,t (so that n
gcd(t,n) |x). We now have all necessary

tools needed to apply Theorem 11.7.1.

Theorem 12.3.5

̂H3(Z/nZ) =
{
πk,t,h = Ind

H3(Z/nZ)
AoHχk,t

(
χ̃k,t ⊗ ψgcd(t,n),h

)
:

0 ≤ t ≤ n− 1, 0 ≤ h, k ≤ gcd(t, n)− 1} . (12.27)

More precisely, the right hand side is a complete list of irreducible, pairwise

inequivalent representations of H3(Z/nZ). Moreover,

dimπk,t,h =
n

gcd(t, n)

and, for each d ∈ D(n), the group H3(Z/nZ) has exactly d2ϕ(n/d) irre-

ducible, pairwise inequivalent representations of dimension n
d . In particular,

it has n2 one-dimensional representations (case d = n) and ϕ(n) irreducible

representations of maximal dimension n (case d = 1).
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As for A�(Z/nZ), note that

∑
d∈D(n)

∑
0≤t≤n−1:
gcd(t,n)=d

d−1∑
k,h=1

(dimπk,t,h)2 =
∑

d∈D(n)

(n
d

)2
· d2ϕ(n/d)

(by Proposition 1.1.20) = n3

= |H3(Z/nZ)| ,

in agreement with Theorem 10.2.25.(iii).

Proposition 12.3.6 Fix 0 ≤ t ≤ n − 1 and 0 ≤ h, k ≤ d − 1, where

d = gcd(t, n). Then a matrix form of πk,t,h is given by the map

H3(Z/nZ) 3 (x, y, z)→ Πk,t,h(x, y, z) =
(

Πk,t,h;r,s(x, y, z)
)n
d
−1

r,s=0
,

where Πk,t,h;r,s(x, y, z) = 0 if nd - (x+ s− r) and

Πk,t,h;r,s(x, y, z) = exp

(
2πi

n
[ky + t(z − ry) + h(x+ s− r)]

)
, (12.28)

otherwise.

Proof If (x, y, z) ∈ H3(Z/nZ) we may compute the remainder of xmodulo n
d ,

namely the integer 0 ≤ r ≤ n
d−1 given by the Euclidean division: x = q nd +r.

Therefore (x, y, z) = (r, 0, 0)(q nd , y, z− ry), where (q nd , y, z− ry) ∈ AoHχk,t

and

H3(Z/nZ) =

n
d
−1∐
r=0

(r, 0, 0)
(
AoHχk,t

)
(12.29)

is the decomposition of H3(Z/nZ) into left cosets of AoHχk,t ; see (10.49).

Moreover, if 0 ≤ r, s ≤ n
d − 1 then

(r, 0, 0)−1(x, y, z)(s, 0, 0) = (x+ s− r, y, z − ry)

belongs to AoHχk,t if and only if nd |(x+ s− r). If this is the case, we have

(
χ̃k,t ⊗ ψd,h

)
(x+ s− r, y, z − ry) = χk,t(y, z − ry)ψd,h

(
(x+ s− r)d

n

)
.

Then (12.28) follows from (11.19), taking into account the explicit formulas

for χ̃k,t and ψd,h.

We now study some particular cases of (12.28).
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• For t = 0 we get the n2 one-dimensional representations, given by:

Πk,0,h(x, y, z) = exp

[
2πi

n
(ky + hx)

]
,

for (x, y, z) ∈ H3(Z/nZ), 0 ≤ k, h ≤ n− 1.

• Suppose that x = 1 and y = z = 0. Then the number 1 + s − r is

divisible by n
d in the following two cases: if 1 + s − r = 0, and therefore

the corresponding entry is equal to 1, and if s = n
d − 1, r = 0, so that the

entry is equal to exp(2πi
d h). Therefore,

Πk,t,h(1, 0, 0) =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

. . .
...

...
...

. . . 1

exp(2πi
d h) 0 0 · · · 0

 .

• For y = z = 0 we have (x, 0, 0) = (1, 0, 0)x and therefore:

Πk,t,h(x, 0, 0) =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

. . .
...

...
...

. . . 1

exp(2πi
d h) 0 0 · · · 0



x

. (12.30)

• Suppose that x = 0. Then n
d |(s−r) if and only if s = r, so that the matrix

is diagonal and the r-th coe�cient is

exp

(
2πi

n
[ky + t(z − ry)]

)
= exp

[
2πi

n
(ky + tz)

]
exp

(
−rty2πi

n

)
.

Therefore

Πk,t,h(0, y, z) = exp

[
2πi

n
(ky + tz)

]

·


1 0 0 · · · 0

0 exp
(
−ty 2πi

n

)
0 · · · 0

0 0 exp
(
−2ty 2πi

n

) ...
...

...
. . . 0

0 0 0 · · · exp
[
−
(
n
d − 1

)
ty 2πi

n

]

 .

(12.31)



12.3 Representation theory of the Heisenberg group H3(Z/nZ) 453

In particular, if also y = 0, then the matrix is scalar: Πk,t,h(0, 0, z) =

exp
(

2πi
n tz

)
In/d.

• Finally, we observe that we can use (12.22) to reduce the computation

of Πk,t,h(x, y, z) to the cases (12.30) and (12.31), because Πk,t,h(x, y, z) =

Πk,t,h(0, y, z)Πk,t,h(x, 0, 0).

Exercise 12.3.7 Prove the following explicit expression for the character

χk,t,h of the representation πk,t,h:

χk,t,h(x, y, z) = 1n/d(x)1n/d(y)
n

d
exp

[
2πi

n
(hx+ ky + tz)

]
, (12.32)

where

1n/d(x) =

{
1 if nd |x
0 otherwise.

Exercise 12.3.8

(1) By means of Proposition 10.2.18 and (12.32) prove that

Res
H3(Z/nZ)
H πk,t,h =

⊕
0≤`≤n−1:
`≡h mod d

χ`

and

Res
H3(Z/nZ)
A πk,t,h =

⊕
0≤s≤n−1:
s≡k mod d

χs,t,

where χ`(x) = exp
(

2πi
n `x

)
for all 0 ≤ x ≤ n − 1 (characters of

H ≡ Zn) and χs,t is as in (12.25).

(2) By means of Frobenius reciprocity, deduce that

Ind
H3(Z/nZ)
H χ` ∼

⊕
0≤t≤n−1

0≤k≤gcd(t,n)−1

πk,t,h(t,`),

where h(t, `) is the remainder of the division of ` by gcd(t, n), and

Ind
H3(Z/nZ)
A χs,t ∼

⊕
0≤h≤d−1

πk,t,h,

where k is the remainder of the division of s by d.
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12.4 The DFT revisited

The connection between classical Fourier analysis and the continuous Heisen-

berg group has been well studied and we refer to the expository paper [76],

and Folland's monograph [61]. In one of our main sources, namely [15], this

connection is extended to the �nite case and our purpose is to give a clear

exposition of these facts; see also [142]. We focus on the key point: by means

of suitable realizations of the irreducible representation π0,1,0, the Heisenberg

group may be seen as a group of unitary transformations of L(Z/nZ), and

the Fourier transform intertwines two di�erent such realizations.

For the moment, we �x a positive integer n and we set χ(k) = exp
(

2πi
n k
)
,

for k ∈ Z. Also, to simplify notation, we set G = H3(Z/nZ). Moreover, in

the notation of (12.27), we set π = π0,1,0 and we denote by Vπ its represen-

tation space. From (11.16), and (12.18) with u = 0, it follows that Vπ is

made up of all functions f : G→ C such that

f(x, y + v, xv + z + w) = χ(−w)f(x, y, z), (12.33)

for all (x, y, z) ∈ G and v, w ∈ Z/nZ. Indeed, in (12.25) we have χ0,1(v, w) =

χ(w), in (12.26) and (12.27) the subgroup Hχ0,1 is trivial, and, �nally, π =

IndGAχ0,1. From (12.33) and the identity (x, y, z) = (x, 0, 0)(0, y, z − xy), it

follows that f ∈ L(G) belongs to Vπ if and only if it satis�es the condition:

f(x, y, z) = χ(−z + xy)f(x, 0, 0), (12.34)

for all (x, y, z) ∈ G, so that it is determined by its values on the subgroup

H. In other words, in (11.17) T ≡ H (actually, this is a particular case of

(12.29)). Finally, we observe that from (12.20) with v = w = 0 it follows

that

[π(x, y, z)f ](u, 0, 0) = f(u− x,−y,−z + xy). (12.35)

We now translate π into an equivalent representation on L(Z/nZ) showing

its relevance to the DFT on a cyclic group. We need a series of notation

and identities. First of all, invoking (12.34) we can de�ne the linear operator

U : Vπ → L(Z/nZ) by setting

[Uf ](x) = f(x, 0, 0), (12.36)

for all f ∈ Vπ and x ∈ Z/nZ. Its inverse is given by[
U−1f

]
(x, y, z) = χ(−z + xy)f(x), (12.37)

for all f ∈ L(Z/nZ) and (x, y, z) ∈ G. It is immediate to show that U
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(and therefore U−1) is an isometric isomorphism; just recall the de�nition of

scalar product in an induced representation (11.3). Then we set

π](x, y, z) = Uπ(x, y, z)U−1 (12.38)

for all (x, y, z) ∈ G. Clearly, π] is a unitary representation of G on L(Z/nZ),

equivalent to π. But another description of π] will reveal its importance. We

introduce three unitary operators Tx (translation operator), My (multiplier

operator) and Sz on L(Z/nZ) by setting:

[Txf ](u) = f(u−x), [Myf ](u) = χ(−yu)f(u), [Szf ](u) = χ(z)f(u),

for all f ∈ L(Z/nZ) and x, y, z, u ∈ Z/nZ. Note that Tx has already been

de�ned in Section 2.4.

Lemma 12.4.1 We have the following commutation relation:

TxMy = SxyMyTx, (12.39)

for all x, y ∈ Z/nZ.

Proof Let f ∈ L(Z/nZ) and x, y, u ∈ Z/nZ. Then

[TxMyf ] (u) = [Myf ] (u− x) = χ(−yu+ xy)f(u− x)

= χ(−yu+ xy) [Txf ] (u) = χ(xy) [MyTxf ] (u) = [SxyMyTxf ] (u).

The Fourier transform intertwines Tx and My: from Exercise 2.4.7 (see

also Lemma 4.1.1) it follows that

FTx = MxF and FMy = T−yF . (12.40)

We use the normalized Fourier transform, see Section 4.1. Note also the

analogous identities for the inverse Fourier transform: F−1Tx = M−xF−1

and F−1My = TyF−1.

Theorem 12.4.2

(i) The irreducible representation π] de�ned in (12.38) may be expressed

in the form:

π](x, y, z) = SzMyTx, (12.41)

(x, y, z) ∈ G. Moreover, it is a faithful representation of G as a group

of unitary operators on L(Z/nZ).
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(ii) The map J : G → G de�ned by setting J(x, y, z) = (−y, x, z − xy),

for all (x, y, z) ∈ G, is an order four automorphism of G.

(iii) The G-representation π[ = π] ◦ J is equivalent to π] and the equiva-

lence is realized by the Fourier transform:

Fπ](x, y, z) = π[(x, y, z)F , (12.42)

for all (x, y, z) ∈ G.

Proof (i) For all f ∈ L(Z/nZ), (x, y, z) ∈ G, and u ∈ Z/nZ, we have:[
π](x, y, z)f

]
(u) =

[
Uπ(x, y, z)U−1f

]
(u)

(by (12.36)) =
[
π(x, y, z)U−1f

]
(u, 0, 0)

(by (12.35)) =
[
U−1f

]
(u− x,−y,−z + xy)

(by (12.37)) = χ(z − uy)f(u− x)

= [SzMyTxf ] (u).

Moreover, if (x, y, z) ∈ Kerπ] then π](x, y, z)δ0 = δ0, that is, χ(z−uy)δx(u) =

δ0(u) for all u ∈ Z/nZ. It follows that x = 0 = y = z.

(ii) This follows from easy calculations. For instance, J2(x, y, z) = (−x,−y, z)
yields J4 = IdG.

(iii) First of all, note that from (12.41) and (12.39) we deduce that:

π[(x, y, z) = π](−y, x, z − xy) = Sz−xyMxT−y = SzT−yMx.

Therefore, using the identities in (12.40) we get:

Fπ](x, y, z) = FSzMyTx = SzT−yFTx = SzT−yMxF = π[(x, y, z)F .

Note that, in the proof above, we have also obtained the following explicit

form of π]:

[π](x, y, z)f ](u) = χ(z − uy)f(u− x). (12.43)

In other words, G may be seen as the group generated by the translation

operators Tx and the multiplier operatorsMy; then the operators Sz enter the

picture by virtue of the commutation relation (12.39). The automorphism

J switches the role of x and y, giving a di�erent realization of G as a group

of unitary operators. The Fourier transform intertwines the translation and

multiplier operators and therefore also the di�erent realizations of G. That

is, J corresponds to the conjugation by F , in formulæ π[ = Fπ]F−1. Note

also that the order of J as an automorphism of G coincides with the order
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of F as a unitary operator; see Proposition 4.1.2. We may also express all

of this by saying that the diagram in Figure 12.1 is commutative

G

π[

$$

π]
//

J

��

U(L(Z/nZ))

F(·)F−1

��
G

π]
// U(L(Z/nZ))

Fig. 12.1. The commutative diagram showing that the Fourier transform F inter-
twines the representations π[ and π]. Here, U(L(Z/nZ)) is the group of unitary
operators on L(Z/nZ), and F(·)F−1 indicates conjugation by F .

Finally, note that the J-image of the group Z2
n in (12.24) is nothing but

{(u, 0, w) : u,w ∈ Zn}.

Exercise 12.4.3 De�ne π] by means of (12.41). Then, using the commuta-

tion relations (12.39), prove that π] is a representation ofG and, furthermore,

using the converse to Schur's lemma (Exercise 10.2.9) and Theorem 2.4.10,

prove that it is irreducible.

12.5 The FFT revisited

In this section, following again [15], we derive an operator form of the Fast

Fourier Transform by means of intertwining operators between di�erent real-

izations of the representation π0,1,0. We begin by �xing two integersm,n ≥ 2

and setting G = H3(Z/nmZ). We introduce the subgroups

K1 = {(rn, sm, 0) : 0 ≤ r ≤ m− 1, 0 ≤ s ≤ n− 1}

and

K2 = {(sm, rn, 0) : 0 ≤ r ≤ m− 1, 0 ≤ s ≤ n− 1},

both isomorphic to Zm ⊕ Zn. Clearly, an element (x, y, z) ∈ G belongs to

K1 if and only if z = 0, n|x, and m|y, while it belongs to K2 if and only if

z = 0,m|x, and n|y. In what follows, we use some notation similar to that

in Chapter 5. In particular, for 0 ≤ u, v ≤ nm− 1 we set

u = s̃+ rn, v = r̃ + sm, with 0 ≤ s, s̃ ≤ n− 1, 0 ≤ r, r̃ ≤ m− 1.

(12.44)

We also use the notation χ(u) = exp( 2πi
mnu) and π], π[ as in Section 12.4, but

now n is replaced with nm. Then we de�ne Z1 as the space of all f ∈ L(G)
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such that:

f(u, v, w) = χ(ss̃m− w)f(s̃, r̃, 0) (12.45)

for all (u, v, w) ∈ G, where u, v are as in (12.44). Finally, we de�ne the

Weil-Berezin map W1 : L(Z/nmZ)→ L(G) by setting

[W1f ] (x, y, z) =
1

m
√
n
χ(xy − z)

m−1∑
`=0

f(`n+ x)χ(`ny), (12.46)

for all f ∈ L(Z/nmZ) and (x, y, z) ∈ G.

Proposition 12.5.1

(i) In the notation of Example 11.1.6, L(G/K1) is the space of all f ∈
L(G) such that:

f(u, v, w) = f(s̃, r̃, w − ss̃m) (12.47)

for all (u, v, w) ∈ G, where s, s̃, r, r̃ are as in (12.44).

(ii) Z1 is a subspace of L(G/K1) and it is invariant with respect to the

left regular representation λ of G.

(iii) Denote by λ1 the restriction of the left regular representation of G to

Z1 and endow this space with the norm of L(G/K1) (recall (11.3)).

Then theW1-image of L(Z/nmZ) is exactly Z1 andW1 is an isometry

that intertwines π] with λ1: for all (x, y, z) ∈ G

W1π
](x, y, z) = λ1(x, y, z)W1. (12.48)

Proof (i) A function f ∈ L(G) is right K1-invariant if and only if

f(u+ rn, v + sm,w + usm) = f(u, v, w), (12.49)

for all (u, v, w) ∈ G and (rn, sm, 0) ∈ K1. Moreover, in the notation of

(12.44), each element of G may be written uniquely in the form

(u, v, w) = (s̃, r̃, w − ss̃m)(rn, sm, 0).

Therefore

{(s̃, r̃, w) : 0 ≤ s̃ ≤ n− 1, 0 ≤ r̃ ≤ m− 1, 0 ≤ w ≤ mn− 1, }

is a set of representatives for the left cosets of K1 in G and our assertion is

a particular case of (11.7) and (11.17); see also Example 11.1.6.

(ii) If f satis�es (12.45), then it also satis�es (12.47). Indeed, (12.45), with

s = r = 0 and w replaced with w − ss̃m, yields

f(s̃, r̃, w − ss̃m) = χ(ss̃m− w)f(s̃, r̃, 0), (12.50)
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and therefore, for arbitrary u, v, w,

f(u, v, w) = χ(ss̃m− w)f(s̃, r̃, 0) (by (12.45))

= f(s̃, r̃, w − ss̃m). (by (12.50))

It follows that Z1 ≤ L(G/K1). Note also that if f ∈ Z1 then

f(u, v, w) = χ(−w)f(u, v, 0), (12.51)

because both sides are equal to χ(−w)χ(ss̃m)f(s̃, r̃, 0). Moreover, it is easy

to check that Z1 is exactly the set of all f ∈ L(G) that verify both (12.47)

and (12.51). Finally, by means of (12.20), we deduce that if f satis�es (12.51)

then

[λ(x, y, z)f ](u, v, w) = f(u− x, v − y, w − z + xy − xv)

= χ(−w)χ(z − xy + xv)f(u− x, v − y, 0)

= χ(−w)f(u− x, v − y,−z + xy − xv)

= χ(−w)[λ(x, y, z)f ](u, v, 0).

That is, the space of all functions satisfying condition (12.51) is λ-invariant.

Therefore, also Z1 is λ-invariant, because it is the subspace of all functions

in L(G/K1) satisfying (12.51).

(iii) For f ∈ L(Z/nmZ) and assuming (12.44), we have:

m
√
n[W1f ](u, v, w) = m

√
n[W1f ](s̃+ rn, r̃ + sm,w)

= χ(−w + s̃r̃ + s̃sm+ r̃rn)

·
m−1∑
`=0

f(`n+ rn+ s̃)χ(`(r̃ + sm)n)

= χ(−w + s̃r̃ + s̃sm+ r̃rn)

m−1∑
`=0

f((`+ r)n+ s̃)χ(`r̃n)

(t = `+ r) = χ(−w + s̃r̃ + s̃sm)
m−1∑
t=0

f(tn+ s̃)χ(tr̃n)

= m
√
nχ(−w + s̃sm)[W1f ](s̃, r̃, 0).

Therefore, by (12.45), the image of W1 is contained in Z1. Moreover, for



460 Fourier analysis on �nite a�ne groups and �nite Heisenberg groups

f1, f2 ∈ L(Z/nmZ) we have:

〈W1f1,W1f2〉Z1
=

1

nm

∑
(x,y,z)∈G

[W1f1](x, y, z)[W1f2](x, y, z)

=
1

n2m3

∑
z∈Z/nmZ

m−1∑
`1,`2=0

∑
x∈Z/nmZ

f1(`1n+ x)f2(`2n+ x)

·
∑

y∈Z/nmZ

χ(`1ny)χ(`2ny)

(by (2.7)) =
1

m

m−1∑
`1=0

∑
x∈Z/nmZ

f1(`1n+ x)f2(`1n+ x)

= 〈f1, f2〉L(Z/nmZ).

It follows that W1 is an isometry. Finally, for (x, y, z), (u, v, w) ∈ G and

f ∈ L(Z/nmZ) we have:

[λ1(x, y, z)W1f ] (u, v, w) = [W1f ] (u− x, v − y,−z + xy + w − xv)

=
1

m
√
n
χ(z − w + uv − uy)

·
m−1∑
`=0

f(`n+ u− x)χ(`n(v − y))

(by (12.43)) =
1

m
√
n
χ(−w + uv)

·
m−1∑
`=0

[π](x, y, z)f ](`n+ u)χ(`nv)

=
[
W1π

](x, y, z)f
]

(u, v, w).

In Exercise 12.5.9 we outline a di�erent proof of the fact that W1 is an

intertwining operator, also showing how to derive its expression.

Now we concentrate on K2. First of all, we change the notation in (12.44):

for 0 ≤ u, v ≤ nm− 1 we set

u = r̃ + sm, v = s̃+ rn, with 0 ≤ s, s̃ ≤ n− 1, 0 ≤ r, r̃ ≤ m− 1.

(12.52)

Then we de�ne Z2 as the space of all f ∈ L(G) such that

f(u, v, w) = χ(rr̃n− w)f(r̃, s̃, 0) (12.53)
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for all (u, v, w) ∈ G, where u, v are as in (12.52). Moreover, we de�ne

W2 : L(Z/nmZ)→ L(G) by setting

[W2f ] (x, y, z) =
1

n
√
m
χ(xy − z)

n−1∑
t=0

f(tm− x)χ(−tmy), (12.54)

for all f ∈ L(Z/nmZ), (x, y, z) ∈ G. Finally, we de�ne M : L(G) → L(G)

by setting Mf = f ◦ J , where J is as in Theorem 12.4.2(ii), that is,

[Mf ](x, y, z) = f(−y, x, z − xy)

for all f ∈ L(G) and (x, y, z) ∈ G.

Proposition 12.5.2

(i) Z2 is a subspace of L(G/K2) and it is the M -image of Z1.

(ii) If we set λ2(x, y, z) = Mλ1(x, y, z)M−1, that is,

Mλ1(x, y, z) = λ2(x, y, z)M, (12.55)

then λ2 is a representation of G on Z2 equivalent to λ1 (by means of

(12.55)). Moreover,

[λ2(x, y, z)f ](u, v, w) = f(y − u, v + x,w − z − yv),

for all (x, y, z), (u, v, w) ∈ G and f ∈ Z2.

(iii) Endow the space Z2 with the norm of L(G/K2) (recall (11.3)). Then

the W2-image of L(Z/nmZ) is exactly Z2 and W2 is an isometry that

intertwines π[ with λ2. Moreover, if F is the Fourier transform on

Znm then

W2 = MW1F−1. (12.56)

Proof (i) The proof that Z2 ≤ L(G/K2) is the same of that in Proposition

12.5.1(ii); see also Exercise 12.5.3. Moreover, using the notation in (12.52),

for all f ∈ Z1 we have:

[Mf ](r̃ + sm, s̃+ rn,w) = f(−s̃− rn, r̃ + sm,w − r̃s̃− r̃rn− s̃sm)

(by (12.51)) = χ(−w + r̃rn)f(−s̃− rn, r̃ + sm,−r̃s̃− s̃sm)

(by (12.49)) = χ(−w + r̃rn)f(−s̃, r̃,−r̃s̃)
= χ(−w + r̃rn)[Mf ](r̃, s̃, 0),

so that Mf ∈ Z2.

(ii) From its de�nition and the fact that M is an isometry between Z1
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and Z2 it follows that λ2 is a G-representation on Z2. Moreover, for all

(x, y, z), (u, v, w) ∈ G, we get[
Mλ1(x, y, z)M−1f

]
(u, v, w) =

[
λ1(x, y, z)M−1f

]
(−v, u, w − uv)

(by (12.20)) =
[
M−1f

]
(−v−x, u−y, w−uv−z+xy−xu)

= f(u− y, v + x,w − z − yv).

(iii) For all (x, y, z) ∈ G, we have:

MW1F−1π[(x, y, z) = MW1π
](x, y, z)F−1 (by (12.42))

= Mλ1(x, y, z)W1F−1 (by (12.48))

= λ2(x, y, z)MW1F−1 (by (12.55)).

Therefore, it su�ces to prove directly (12.56). Indeed, for every f ∈ L(Z/nmZ)

we have:[
MW1F−1f

]
(x, y, z) =

[
W1F−1f

]
(−y, x, z − xy)

(by (12.46)) =
χ(−z)
m
√
n

m−1∑
`=0

[
F−1f

]
(`n− y)χ(`nx)

=
χ(−z)
nm
√
m

m−1∑
`=0

nm−1∑
u=0

f(u)χ(u(`n− y))χ(`nx)

=
χ(−z)
nm
√
m

nm−1∑
u=0

f(u)χ(−uy)

m−1∑
`=0

χ(`(x+ u)n)

(by (2.7)) =
χ(−z)
n
√
m

nm−1∑
u=0

u≡−x mod m

f(u)χ(−uy)

(u = −x+ tm) =
χ(xy − z)
n
√
m

n−1∑
t=0

f(tm− x)χ(−tmy).

Exercise 12.5.3

(1) Let G be a �nite group, J an automorphism of G, K ⊂ G a subgroup,

and set [Mf ](g) = f(J(g)), for all g ∈ G and f ∈ L(G). Prove that

the M -image of L(G/K) is L
(
G/J−1(K)

)
.

(2) Prove that Z2 ≤ L(G/K2) (cfr. Proposition 12.5.2.(i)) by showing

that J−1(K1) = K2.

As a direct consequence of (12.56), we get immediately the �rst formula-

tion of the main result of this section.
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Corollary 12.5.4 The Discrete Fourier Transform on Znm has the following

factorization:

F = W−1
2 MW1. (12.57)

In other words, the diagram in Figure 12.2 is commutative.

L(Z/nmZ)
W1 //

F
��

Z1

M

��
L(Z/nmZ)

W2 // Z2

Fig. 12.2. The commutative diagram representing the factorization (12.57) of the
Fourier transform F . Compare it with the diagram in Figure 12.1: note that, in
both cases, the DFT is connected with the action of the automorphism J .

We now introduce some notation in order to give a second version of

(12.57). We de�ne the linear operators C1 : Z1 → L (Z/nZ× Z/mZ) and

C2 : Z2 → L (Z/mZ× Z/nZ) by setting

[C1f1](s̃, r̃) = f1(s̃, r̃, 0) and [C2f2](r̃, s̃) = f1(r̃, s̃, 0),

for all fj ∈ Zj , j = 1, 2, 0 ≤ s̃ ≤ n− 1 and 0 ≤ r̃ ≤ m− 1. From (12.45) and

(12.53) it follows that C1 and C2 are isomorphisms of vector spaces. Then

we set

W̃1 = C1W1 and W̃2 = C2W2.

That is, [W̃1f1](s̃, r̃) = [W1f1](s̃, r̃, 0), and similarly for W̃2. Finally, we

de�ne M̃ : L (Z/nZ× Z/mZ)→ L (Z/mZ× Z/nZ) by setting

[M̃f ](r̃, s̃) = χ(r̃s̃)f(−s̃, r̃).

Proposition 12.5.5

(i) We have M̃ = C2MC−1
1 , that is, the diagram

Z1
C1//

M
��

L (Z/nZ× Z/mZ)

M̃
��

Z2
C2// L (Z/mZ× Z/nZ)

is commutative.

(ii) The Discrete Fourier Transform on Zmn may be factorized in the

form:

F = W̃−1
2 M̃W̃1. (12.58)
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Proof (i) For f ∈ L (Z/nZ× Z/mZ) and (r̃, s̃) ∈ Z/mZ× Z/nZ we have:[
C2MC−1

1 f
]

(r̃, s̃) =
[
MC−1

1 f
]

(r̃, s̃, 0) =
[
C−1

1 f
]

(−s̃, r̃,−s̃r̃)
(by (12.51)) =χ(s̃r̃)f(−s̃, r̃).

(ii) From the de�nition of W̃1, W̃2, from (i) and from (12.57) it follows

that

W̃−1
2 M̃W̃1 = W−1

2 C−1
2 M̃C1W1 = W−1

2 MW1 = F

In other words, also the diagram in Figure 12.5 is commutative.

L(Z/nmZ)
W̃1 //

F
��

L (Z/nZ× Z/mZ)

M̃
��

L(Z/nmZ)
W̃2 // L (Z/mZ× Z/nZ)

Fig. 12.3. The commutative diagram representing the factorization (12.58) of the
Fourier transform F . Compare it with the diagram in Figure 12.2.

In order to give the third and �nal factorization of the DFT, we introduce

the following �ve operators

D1 : L(Z/nmZ) −→ L (Z/nZ× Z/mZ)

D2 : L(Z/nmZ) −→ L (Z/mZ× Z/nZ)

R1 : L (Z/nZ× Z/mZ) −→ L (Z/nZ× Z/mZ)

R2 : L (Z/mZ× Z/nZ) −→ L (Z/mZ× Z/nZ)

T : L (Z/nZ× Z/mZ) −→ L (Z/mZ× Z/nZ)

de�ned by setting

[D1f ](s̃, r̃) = f(r̃n+ s̃)

[D2f ](r̃, s̃) = f(s̃m+ r̃)

[R1f1](s̃, r̃) = χ(s̃r̃)f1(s̃,−r̃)
[R2f2](r̃, s̃) = χ(−s̃r̃)f2(−r̃,−s̃)
[Tf1](r̃, s̃) = χ(−s̃r̃)f1(s̃, r̃),

for all f ∈ L(Z/nmZ), f1 ∈ L (Z/nZ× Z/mZ), f2 ∈ L (Z/mZ× Z/nZ), and

0 ≤ s̃ ≤ n− 1, 0 ≤ r̃ ≤ m− 1. Finally, we introduce the following notation:

we denote by Fk (respectively F−1
k , Ik) the normalized Fourier transform,
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cf. Exercise 2.4.13, (respectively its inverse, the identity operator) on Z/kZ.
Moreover, we identify L (Z/nZ× Z/mZ) with L (Z/nZ) ⊗ L (Z/mZ); see

Section 8.7 and Section 10.5.

Proposition 12.5.6 We have:

(In ⊗Fm)D1 =
√
nmR1W̃1,(

Im ⊗F−1
n

)
D2 =

√
nmR2W̃2

and

R2M̃R1 = T

Proof Indeed, for f ∈ L(Z/nmZ), (s̃, r̃) ∈ Z/nZ× Z/mZ, we have:

[(In ⊗Fm)D1f ] (s̃, r̃) =
1√
m

m−1∑
`=0

[D1f ](s̃, `)χ(−`nr̃)

=
1√
m

m−1∑
`=0

f(`n+ s̃)χ(−`nr̃)

(by (12.46)) =
√
nmχ(s̃r̃)[W1f ](s̃,−r̃, 0)

=
√
nm

[
R1W̃1f

]
(s̃, r̃).

Similarly,

[(
Im ⊗F−1

n

)
D2f

]
(r̃, s̃) =

1√
n

n−1∑
t=0

[D2f ](r̃, t)χ(tms̃)

=
1√
n

n−1∑
t=0

f(tm+ r̃)χ(tms̃)

=
√
nmχ(−s̃r̃)[W2f ](−r̃,−s̃, 0)

=
√
nm

[
R2W̃2f

]
(r̃, s̃).

Finally, for f ∈ L (Z/nZ× Z/mZ),[
R2M̃R1f

]
(r̃, s̃) = χ(−s̃r̃)

[
M̃R1f

]
(−r̃,−s̃)

= [R1f ] (s̃,−r̃)
= χ(−s̃r̃)f(s̃, r̃).
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Finally, we are in position to present the third version of (12.57), which

is an operator version of the matrix factorizations in Section 5.5; see, in

particular, the Vector Form in Exercise 5.5.1.

Theorem 12.5.7

Fnm = D−1
2 (Im ⊗Fn)T (In ⊗Fm)D1. (12.59)

Proof From Proposition 12.5.5.(ii) and Proposition 12.5.6, noting also that

R−1
1 = R1, we get:

F = W̃−1
2 M̃W̃1

= D−1
2 (Im ⊗Fn)R2 · M̃ ·R1 (In ⊗Fm)D1

= D−1
2 (Im ⊗Fn)T (In ⊗Fm)D1.

The factorization (12.59) is equivalent to the commutativity of the follow-

ing diagram:

L(Z/nmZ)
D1 //

Fnm

��

L (Z/nZ× Z/mZ)

In⊗Fm
��

L (Z/nZ× Z/mZ)

T
��

L (Z/mZ× Z/nZ)

Im⊗Fn
��

L(Z/nmZ)
D2 // L (Z/mZ× Z/nZ)

Clearly, the signi�cance of the machinery developed in this section is not

in the proof of (12.59) (see the following exercise), but in the group theoretic

interpretation of each operator involved and of the various formulas obtained.

Exercise 12.5.8 Give a direct proof of (12.59), based only on the de�nition

of the operators involved.

In the following exercise, we present an alternative approach to Proposition

12.5.1.(ii). In particular, we show how the machinery developed in Chapter

10 and Chapter 11 may be used to derive the exact form of the Weil-Berezin

map (12.46).
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Exercise 12.5.9

(1) Let d be a divisor of mn. Set d1 = gcd(m, d), m1 = m/d1, d2 = d/d1,

and d3 = gcd(n, d), n1 = n/d3, d4 = d/d3. Prove that d2|d3 and give

an example in which d3 > d2.

(2) Arguing as in Exercise 12.3.8, and with the preceding notation, prove

that the multiplicity of πk,t,h in the permutation representation L(G/K1)

is equal to d3/d2 if h ≡ 0 mod d1 and k ≡ 0 mod d3, and, otherwise, it

is equal to zero. In particular, L(G/K1) is not generally multiplicitiy

free.

(3) Show that the multiplicity of π0,1,0 in L(G/K1) is equal to 1 in

two ways: (i) by using the results in (2); (ii) by showing that the

space of K1-invariant vectors in L(Z/mnZ) with respect to the rep-

resentation π] is one-dimensional and it is spanned by the function

ϕ = 1√
m

∑m−1
r=0 δrn.

(4) Use Proposition 11.2.8 and (3) to prove Proposition 12.5.1.(iii), in

particular to get the expression for W1 in (12.46) (that is, W1 = Tϕ).

12.6 Representation theory of the Heisenberg group H3(Fq)
This section is based on Chapter 18 of Terras' monograph [159]; see also the

exposition in [34]. Some details are similar to those in Section 12.3 so that

they are omitted and/or left as exercises.

Let Fq be a �nite �eld, q = pr with p a prime number. The Heisenberg

group over Fq is the matrix group

H3(Fq) =


1 x z

0 1 y

0 0 1

 : x, y, z ∈ Fq

 .

Clearly, all the identities in Exercise 12.3.1 still hold. In particular, we shall

denote the elements of H3(Fq) by (x, y, z) ∈ Fq × Fq × Fq ≡ F3
q with the

multiplication as in (12.18).

Exercise 12.6.1

(1) From (12.21) deduce that the conjugacy classes of H3(Fq) are:
• Cw = {(0, 0, w)}, w ∈ Fq (q one-element classes);

• Cu,v = {(u, v, w) : w ∈ Fq}, u, v ∈ Fq, (u, v) 6= (0, 0)

(q2 − 1 classes of q elements each).

(2) Prove also that

H3(Fq) ∼= F2
q oφ Fq,
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where F2
q = {(0, v, w) : v, w ∈ Fq} and Fq = {(x, 0, 0) : x ∈ Fq} are

viewed as additive groups and φ is the Fq-action on F2
q given by

φx(v, w) = (v, w + xv)

with x, v, w ∈ Fq.

Using the notation from Theorem 11.7.1 (with G = H3(Fq), A = F2
q and

H = Fq), given χs,t ∈ Â (cf. (7.4)), we have

Hχs,t =

{
{1H} if t 6= 0

H if t = 0.

Indeed, from

(x,0,0)χs,t(v, w) = χs,t(v, w − xv)

= χprinc(sv + t(w − xv))

= χprinc((s− tx)v + tw)

= χs−tx,t(v, w)

we deduce that (x,0,0)χs,t = χs,t if and only if either t = 0 (in this case, the ≈
equivalence class of each χs,0 reduces to the element χs,0 itself, and therefore

Hχs,0 = H), or t 6= 0 and x = 0 (so that Hχs,t = {1H}).
According to the preceding analysis, we can choose

X = {χs,0 : s ∈ Fq} ∪ {χ0,t : t ∈ Fq, t 6= 0}

as a set of representatives of the quotient space Â/ ≈ (cf. Theorem 11.6.2).

Then, for every s, u ∈ Fq if we denote by ψs,u ∈ Ĥ3(Fq) the character de�ned
by

ψs,u(x, y, z) = χprinc(sy + ux)

recalling that Hχs,0 = H (so that AoHχs,0 = H3(Fq)) and that χu ∈ Ĥ3(Fq)
denotes the in�ation of χu ∈ ̂H3(Fq)/A = Ĥ = F̂q, we have

Ind
H3(Fq)
AoHχs,0

(χ̃s,0 ⊗ χu)(x, y, z) = (χ̃s,0 ⊗ χu)(x, y, z)

= χs,0(y, z)χu(x)

= χprinc(sy + ux)

= ψs,u(x, y, z)

so that

Ind
H3(Fq)
AoHχs,0

(χ̃s,0 ⊗ χu) = ψs,u.
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On the other hand, if t 6= 0, then Hχ0,t = {1H} (so that AoHχ0,t = A) and

we may set

πt := Ind
H3(Fq)
AoHχ0,t

(χ̃0,t) = Ind
H3(Fq)
A χ0,t ∈ Ĥ3(Fq). (12.60)

From Theorem 11.7.1 we deduce that Ĥ3(Fq) consists exactly of the q2 one-

dimensional representations ψs,u, s, u ∈ Fq, and the q− 1 representations πt,

t ∈ F∗q , of dimension [H3(Fq) : A] = |H| = |Fq| = q.

Exercise 12.6.2 Use (12.60) to show that a matrix realization of πt, t ∈ F∗q ,
is given by

U(x, y, z) = χprinc(tz)D(ty)W (x),

for all x, y, z ∈ Fq, where D(ty) is the q × q diagonal matrix

D(ty) =


1 0 0 0 · · · 0

0 χ(−ty) 0 0 · · · 0

0 0 χ(−αty) 0 · · · 0
...

...
...

. . .
...

0 0 0 0 · · · χ(−αq−2ty)


α being a generator of the cyclic group F∗q , and W (x) being the q × q per-

mutation matrix de�ned by

W (x)i,j = δi(j + x),

for all i, j ∈ Fq.
Hint. Use equation (12.22) and observe that S = {(i, 0, 0) : i ∈ Fq} = H =

Fq is a system of representatives for the left cosets of A = F2
q in G = H3(Fq).

Use the identities

(−i, 0, 0)(0, 0, z)(j, 0, 0) = (j − i, 0, z)
(−i, 0, 0)(0, y, 0)(j, 0, 0) = (j − i, y,−iy)

(−i, 0, 0)(x, 0, 0)(j, 0, 0) = (j − i+ x, 0, 0)

for all i, j, x, y, z ∈ Fq. To get the matrixD(ty) set i, j = 0, 1, α, α2, . . . , αq−2.
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Hecke algebras and multiplicity-free triples

In this chapter we develop the basic theory of �nite multiplicity-free triples.

This is a subject which has not yet received the attention it deserves. As far

as we know, the only book that treats this topic is Macdonald's [105]. The

classical theory of �nite Gelfand pairs, which constitutes a particular yet

fundamental case, was essentially covered in our �rst monograph [29]. Other

references on the material of this chapter include [139, 140], [37], [152], and

[25].

13.1 Preliminaries and notation

Let G be a �nite group and K ≤ G a subgroup. We assume all the basic

notation in Section 11.1 and Section 11.3 (the latter with H = K). In

addition, we suppose that χ is a one-dimensional representation of K. We

consider the representation space IndGKC of IndGKχ as a subspace of the group

algebra L(G) (see Example 11.1.9) and we de�ne ψ ∈ L(K) by setting

ψ(k) =
1

|K|
χ(k) ≡ 1

|K|
χ
(
k−1

)
(13.1)

for all k ∈ K. Then, regarding L(K) as a subalgebra of L(G), we de�ne the

convolution operator P : L(G)→ L(G) by setting Pf = f ∗ ψ, that is,

[Pf ](g) =
1

|K|
∑
k∈K

f(gk)χ(k)

for all f ∈ L(G) and g ∈ G.

Proposition 13.1.1 The function ψ satis�es the identities

ψ ∗ ψ = ψ and ψ∗ = ψ. (13.2)

470
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Moreover, P is the orthogonal projection of L(G) onto IndGKC. In other

words,

IndGKC = {f ∗ ψ : f ∈ L(G)} ≡ {f ∈ L(G) : f ∗ ψ = f}. (13.3)

Proof The �rst identity in (13.2) follows from (10.36) and, together with

the �rst formula in (10.34), ensures that P is an idempotent. The second

identity follows immediately from the analogous properties of characters (cf.

Proposition 10.2.15.(ii)). This, together with the second formula in (10.34),

implies that P is self-adjoint. This shows that P is an orthogonal projection.

Moreover, from (11.16) we deduce that

[Pf ](g) = [f ∗ ψ](g) =
1

|K|
∑
k∈K

f(gk)χ(k) = f(g)
1

|K|
∑
k∈K

1 = f(g)

for all f ∈ IndGKC and g ∈ G, that is, Pf = f (and, in particular, RanP ⊇
IndGKC). Finally, let us show that the range of P is contained in (and there-

fore equals) IndGKC. Indeed, for all f ∈ L(G), g ∈ G and k1 ∈ K we have

[Pf ](gk1) =
1

|K|
∑
k∈K

f(gk1k)χ(k)

(k2 = k1k) =
1

|K|
∑
k2∈K

f(gk2)χ(k−1
1 k2)

= χ(k1)[Pf ](g),

that is, Pf satis�es (11.16) and therefore Pf ∈ IndGKC. We conclude that

RanP = IndGKC.

Let now J ⊆ Ĝ denote the set of all irreducible G-representations con-

tained in IndGKχ. For (θ,Wθ) ∈ J , denote by mθ > 0 its multiplicity in

IndGKχ, that is,

IndGKχ ∼
⊕
θ∈J

mθθ. (13.4)

From Corollary 10.6.6 we deduce that IndGKχ is multiplicity free (that is,

mθ = 1 for all θ ∈ J) if and only if EndG(IndGKχ) is commutative, and, if

this is the case, Corollary 10.6.7 ensures that

EndG(IndGKC) ∼= CJ . (13.5)

Finally, note that now (11.30) becomes Gs = K ∩ sKs−1, and (11.32) be-

comes

S0 = {s ∈ S : χ(x) = χ(s−1xs), ∀x ∈ Gs}. (13.6)
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13.2 Hecke algebras

De�nition 13.2.1 The Hecke algebra H(G,K,χ) associated with G, K and

χ, is

H(G,K,χ)=
{
f ∈L(G) : f(k1gk2) = χ(k1k2)f(g), for all g∈G, k1, k2∈K

}
.

Note that, in the notation of De�nition 11.4.1, we have

H(G,K,χ) = V(G,K,K, χ, χ).

Remark 13.2.2 When χ = ιK (see Example 11.1.6), the Hecke algebra

H(G,K,χ) equals the subalgebra of all bi-K-invariant functions

L(K\G/K) = {f ∈ L(G) : f(k1gk2) = f(g), for all g ∈ G, k1, k2 ∈ K}.

Note that, under the isomorphism (11.13), L(K\G/K) corresponds the the

subpace L(G/K)K of all functions in L(G/K) that are invariant under the

action of K, that is, that are constant on the orbits of K on G/K.

Theorem 13.2.3 H(G,K,χ) is an involutive subalgebra of L(G). Moreover,

(i) H(G,K,χ) is contained in IndGKC and in fact

H(G,K,χ) = {ψ ∗ f ∗ ψ : f ∈ L(G)} ≡ {f ∈ L(G) : f = ψ ∗ f ∗ ψ}.

(ii) The map

H(G,K,χ) −→ EndG
(
IndGKC

)
f 7−→ Tf |IndGKC

(13.7)

is a ∗-anti-isomorphism of algebras and

KerTf ⊇
[
IndGKC

]⊥ ≡ KerP

(see Proposition 13.1.1), for all f ∈ H(G,K,χ).

Proof We leave it to the reader the easy task to check that the vector space

H(G,K,ψ) is closed under convolution and involution, thus showing that it

is an involutive subalgebra of L(G).

(i) Suppose that f = ψ ∗ f ∗ ψ, that is, f = 1
|K|2χ ∗ f ∗ χ. Then for all
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k1, k2 ∈ K, g ∈ G, we have

f(k1gk2) =
1

|K|2
[χ ∗ f ∗ χ](k1gk2)

=
1

|K|2
∑

r∈k−1
2 g−1K
k∈K

χ(k1gk2r)f(r−1k)χ(k−1)

(u = k2r and h = k2k) =
1

|K|2
∑

u∈g−1K
h∈K

χ(k1gu)f(u−1h)χ(h−1k2)

=
1

|K|2
∑

u∈g−1K
h∈K

χ(k1)χ(gu)f(u−1h)χ(h−1)χ(k2)

=
1

|K|2
χ(k1) · [χ ∗ f ∗ χ](g) · χ(k2)

= χ(k1)f(g)χ(k2),

so that f ∈ H(G,K,χ).

Vice versa, if f ∈ H(G,K,χ) then, for all g ∈ G and k1, k2 ∈ K, we have:

[ψ ∗ f ∗ ψ](g) =
1

|K|2
[χ ∗ f ∗ χ](g)

=
1

|K|2
∑

r∈g−1K
k2∈K

χ(gr)f(r−1k2)χ(k−1
2 )

(setting k1 = gr) =
1

|K|2
∑

k1,k2∈K
χ(k1)f(k−1

1 gk2)χ(k−1
2 )

(f ∈ H(G,K,χ)) = f(g).

It is now easy to check that H(G,K,ψ) is contained in IndGKC: indeed, if
f = ψ ∗ f ∗ ψ then

Pf = f ∗ ψ = ψ ∗ f ∗ ψ ∗ ψ = ψ ∗ f ∗ ψ = f, (13.8)

and we can invoke (13.3).

(ii) Let f ∈ H(G,K,χ). Then if f ′ ∈ KerP we have

Tff
′ = f ′ ∗ f = f ′ ∗ ψ ∗ f ∗ ψ = [Pf ′] ∗ f ∗ ψ = 0,

so that f ′ ∈ KerTf . This shows the inclusion KerP ⊆ KerTf .

Also, if f ′′ ∈ IndGKC we have

P (Tff
′′) = P (f ′′ ∗ f) = P (f ′′ ∗ ψ ∗ f) = f ′′ ∗ ψ ∗ f ∗ ψ = f ′′ ∗ f = Tff

′′,
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that is, Tf (IndGKC) ⊆ IndGKC. It follows that the restriction of the anti-

isomomorphism (10.33) to the subalgebra H(G,K,χ) yields the desired anti-

isomomorphism (13.7).

The following is a useful computational rule.

Lemma 13.2.4 For all f1 ∈ H(G,K,χ) and f2 ∈ L(G) we have

[f1 ∗ ψ ∗ f2 ∗ ψ](1G) = [f1 ∗ f2](1G). (13.9)

Proof Indeed, from (13.8) we deduce f1 ∗ ψ ∗ f2 ∗ ψ = f1 ∗ f2 ∗ ψ so that

[f1 ∗ ψ ∗ f2 ∗ ψ](1G) = [f1 ∗ f2 ∗ ψ](1G)

=
∑
h∈G

∑
k∈K

f1(kh)f2(h−1)ψ(k−1) = [ψ ∗ f1 ∗ f2](1G) = [f1 ∗ f2](1G).

De�nition 13.2.5 The Curtis and Fossum basis of H(G,K,χ) is the set

{as : s ∈ S0} of functions in L(G) de�ned by setting

as(g) =

{
1
|K|χ(k1)χ(k2) if g = k1sk2 for some k1, k2 ∈ K
0 if g /∈ KsK

(13.10)

for all g ∈ G.

Note that (13.10) is well-de�ned: indeed, if k1sk2 = k3sk4 then by Lemma

11.3.1 there exists x ∈ Gs such that k1 = k3x and k2 = s−1x−1sk4, and

therefore

χ(k1)χ(k2) = χ(k3)χ(k4)χ(x)χ(s−1x−1s) = χ(k3)χ(k4),

because s ∈ S0 (see (13.6)). See also Lemma 13.2.6 below.

Clearly, for each f ∈ H(G,K,χ) we have:

f = |K|
∑
s∈S0

f(s)as. (13.11)

Moreover, for s, t ∈ S0

〈as, at〉L(G) = δs,t
1

|Gs|
. (13.12)

Indeed, for s 6= t the supports of as and at are disjoint, so that these functions
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are orthogonal. For s = t we have:
∑

g∈KsK |as(g)|2 = |KsK|
|K|2 = 1

|Gs| (see

Remark 11.3.2). From (13.11) and (13.12) we deduce that

f(s) =
|Gs|
|K|
〈f, as〉L(G). (13.13)

Note also that changing the double cosets representatives will multiply each

basis element by some root of 1 (if χ = ιK , such a root is just 1). Finally,

a1G ≡ ψ and, more generally, as(k1sk2) = |K|ψ(k1)ψ(k2), for all k1, k2 ∈ K.

Lemma 13.2.6 For all s ∈ S0 we have

as =
|K|
|Gs|

ψ ∗ δs ∗ ψ.

Proof Let s ∈ S0. First of all, observe that

[ψ ∗ δs ∗ ψ](g) =
1

|K|2
∑

t∈g−1K
k∈K

χ(gt)δs(t
−1k)χ(k−1) (13.14)

for all g ∈ G. Moreover, δs(t
−1k) 6= 0 only if t−1k = s and this forces

g = gt · t−1 = gt · s · k−1 ∈ KsK

so that if g /∈ KsK then the above convolution is 0. Let g = k1sk2 with

k1, k2 ∈ K. Then (13.14) becomes (setting t = ks−1)

[ψ ∗ δs ∗ ψ](k1sk2) =
1

|K|2
∑
k∈K

χ(k1sk2ks−1)χ(k−1)

(x = sk2ks
−1) =

1

|K|2
∑
x∈Gs

χ(k1)χ(x)χ(s−1x−1sk2)

(χ(x) = χs(x)) =
1

|K|2
χ(k1)χ(k2)

∑
x∈Gs

χ(x)χ(x)

=
|Gs|
|K|2

χ(k1)χ(k2)

= as(k1sk2).

For all r, s ∈ S0 there exist complex numbers µrst, t ∈ S0, such that

ar ∗ as =
∑
t∈S0

µrstat. (13.15)
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The numbers µrst, r, s, t ∈ S0, are called the structure constants of the Hecke

algebra H(G,K,χ) relative to the basis {as : s ∈ S0}.

Lemma 13.2.7 The structure constants are given by the following formula:

µrst = |K|
∑

g∈(KrK)∩(tKs−1K)

ar(g)as(g
−1t),

for all r, s, t ∈ S0

Proof On the one hand, from (13.10) and (13.15) we have

[ar ∗ as](t) =
1

|K|
µrst (13.16)

for all r, s, t ∈ S0. On the other hand, just computing the convolution, we

get:

[ar ∗ as](t) =
∑
g∈G

ar(g)as(g
−1t)

=
∑

g∈(KrK)∩(tKs−1K)

ar(g)as(g
−1t).

(13.17)

Comparing (13.16) and (13.17), the lemma follows.

13.3 Commutative Hecke algebras

De�nition 13.3.1 Let G be a �nite group, K ⊂ G a subgroup, and χ a one-

dimensional K-representation. We say that (G,K,χ) is a multiplicity-free

triple provided the Hecke algebra H(G,K,χ) is commutative.

Moreover, we say that (G,K) is a Gelfand pair provided that (G,K, ιK) is

a multiplicity-free triple, that is,H(G,K, ιk)(∼= L(K\G/K)) is commutative.

Theorem 13.3.2 The following conditions are equivalent.

(a) (G,K,χ) is a multiplicity-free triple;

(b) the induced representation IndGKχ decomposes without multiplicity;

(c) dimWK,χ
θ ≤ 1 for each irreducible G-representation (θ,Wθ) (cf. Def-

inition (11.27)).

Moreover, if these equivalent conditions are satis�ed, with the notation of

Remark 11.4.10 (with H = K and ν = χ) and (13.4), we have

dimH(G,K,χ) = |J | = |S0|.
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Proof From Corollary 10.6.6 it follows that (G,K,χ) is a multiplicity-free

triple if and only if IndGKχ decomposes without multiplicity; see also (13.5).

Moreover, from Frobenius reciprocity (Theorem 11.2.1) this is equivalent to

the fact that χ has multiplicity at most one in the restriction to K of each

irreducible G-representation. Finally, if IndGKχ is multiplicity free, we may

invoke Remark 11.4.10, (13.5) and (13.6) to conclude that dimH(G,K,χ) =

dimCJ = |J | = |S0|.

Now we examine a series of su�cient conditions for the commutativity of

the Hecke algebra. An anti-automorphism of G is a bijective map τ : G→ G

such that:

τ(g1g2) = τ(g2)τ(g1)

for all g1, g2 ∈ G. It is involutive if τ2 = idG, where idG is the identity

map on G. Clearly, τ(1G) = 1G and τ(g−1) = τ(g)−1 for all g ∈ G. Note

that the map inv : G → G, de�ned by inv(g) = g−1 for all g ∈ G, is an

involutory anti-automorphism, while if τ is as above, then g 7→ τ(g−1) is an

automorphism of G.

Let τ be an anti-automorphism of G. We de�ne a linear map

L(G) −→ L(G)

f 7−→ f τ

by setting

f τ (g) = f (τ(g)) (13.18)

for all f ∈ L(G), g ∈ G.
Given an algebra A, a bijective linear map ϕ : A → A such that ϕ(a1a2) =

ϕ(a2)ϕ(a1) for all a1, a2 ∈ A, is called an anti-automorphism of A. If in

addition, ϕ2 = idA, where idA is the identity map on A, then one says that

ϕ is involutive.

Lemma 13.3.3 Let τ be an (involutive) anti-automorphism of G. Then the

map f 7→ f τ is an (involutive) anti-automorphism of L(G).

Proof It is clear that the map f 7→ f τ is a linear isomorphism. Let f1, f2, f ∈



478 Hecke algebras and multiplicity-free triples

L(G) and g ∈ G. We have

(f1 ∗ f2)τ (g) = (f1 ∗ f2) (τ(g)) =
∑
h∈G

f1 (τ(g)h) f2(h−1)

=
∑
h∈G

f1

(
τ [τ−1(h)g]

)
f2

(
τ
[
τ−1(h)−1

])
=
∑
h∈G

f τ2
(
τ−1(h)−1

)
f τ1
(
τ−1(h)g

)
= (f τ2 ∗ f τ1 ) (g).

Moreover, if τ is involutive, so is the maps f 7→ f τ . Indeed,

[(f τ )τ ](g) = [f τ ](τ(g)) = f(τ2(g)) = f(g).

The next proposition is just a generalization of the following well known

and easy fact: if A is a subalgebra of the full matrix algebra Mn(F), n ∈
N where F is any �eld, and each matrix A ∈ A is symmetric, then A is

commutative.

Proposition 13.3.4 Let τ be an anti-automorphism of G and A a subalgebra

of L(G) such that f τ = f for all f ∈ A. Then A is commutative.

Proof For all f1, f2 ∈ A we have:

f1 ∗ f2 = (f1 ∗ f2)τ = f τ2 ∗ f τ1 = f2 ∗ f1.

Remark 13.3.5 In Proposition 13.3.4, the anti-automophism f 7→ f τ may

be replaced by any anti-automorphism Φ: L(G)→ L(G).

Corollary 13.3.6 Let τ be an anti-automorphism of G. Suppose that

f τ = f for all f ∈ H(G,K,χ). (13.19)

Then (G,K,χ) is a multiplicity-free triple.

Moreover, condition (13.19) is satis�ed if:

(i) (Bump and Ginzburg [25]) τ(K) = K, χτ = χ, and for every s ∈ S0

there exist k1, k2 ∈ K such that τ(s) = k1sk2 and χ(k1)χ(k2) = 1;

(ii) (symmetric Gelfand pairs) χ = ιK , τ = inv, and g−1 ∈ KgK for all

g ∈ G.
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Proof (i) In this case, it is immediate to check that the elements in the

Curtis-Fossum basis (De�nition 13.2.5) satisfy aτs = as, for all s ∈ S0.

(ii) This is just a particular case of (i).

Exercise 13.3.7 Assume the notation in Proposition 10.4.12 with X =

G/K. Prove that (G,K) is a symmetric Gelfand pair (i.e. satis�es the

conditions in (ii) of Corollary 13.3.6) if and only if the orbits of G on X ×X
are symmetric, that is, for all x, y ∈ X, the pairs (x, y) and (y, x) belong to

the same G-orbit.

A group G is said to be ambivalent if g−1 is conjugate to g for all g ∈ G.

Exercise 13.3.8 Denote by G̃ the diagonal subgroup of G × G, that is,

G̃ = {(g, g) : g ∈ G} ∼= G.

(1) Prove that L(G) = ⊕
σ∈ĜM

σ (see Theorem 10.5.9) is the decomposi-

tion of L(G) into irreducible G×G-representations.
(2) Deduce that (G×G, G̃) is a Gelfand pair.

(3) Prove that the Gelfand pair (G×G, G̃) is symmetric if and only if G

is ambivalent.

Exercise 13.3.9 (Weakly symmetric Gelfand pairs) Suppose that there

exists ξ ∈ Aut(G) such that g−1 = Kξ(g)K, for all g ∈ G. Show that (G,K)

is a Gelfand pair; see [52].

Exercise 13.3.10 (A�(Fq), U) is a Gelfand pair: this follows immediately

from Exercise 12.1.8. Use the characterization of the automorphisms of

A�(Fq) in Exercise 12.1.11 to deduce that it is not weakly symmetric.

13.4 Spherical functions: intrinsic theory

In this section we introduce and develop the theory of spherical function

(associated with a multiplicity-free triple) in an intrinsic way, that is, we

consider and analyze all the properties of spherical functions without ap-

pealing to their explicit form as matrix coe�cients (this will be treated in

Section 13.5).

Let (G,K,χ) be a multiplicity-free triple.

De�nition 13.4.1 An element φ ∈ H(G,K,χ) is called a spherical function

if it satis�es the following conditions:

φ(1G) = 1 (13.20)
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and, for all f ∈ H(G,K,χ) there exists λφ,f ∈ C such that

φ ∗ f = λφ,fφ. (13.21)

Condition (13.21) may be reformulated in the following way: φ is an eigen-

vector of the convolution operator Tf , for every f ∈ H(G,K,χ). Moreover,

by means of (13.20) and (13.21) we get λφ,f = [φ ∗ f ](1G). As a conse-

quence, the following equivalent formulation of (13.21) holds (recall that,

by de�nition of a multiplicity-free triple, the Hecke algebra H(G,K,χ) is

commutative):

φ ∗ f = [φ ∗ f ](1G)φ = [f ∗ φ](1G)φ = f ∗ φ. (13.22)

Now we give the basic functional identity satis�ed by all spherical func-

tions; it involves the function ψ de�ned in (13.1).

Theorem 13.4.2 A function φ ∈ L(G), φ 6= 0, is spherical if and only if it

satis�es the functional identity∑
k∈K

φ(gkh)ψ(k) = φ(g)φ(h), (13.23)

for all g, h ∈ G.

Proof Suppose that φ ∈ L(G), φ 6= 0, satis�es (13.23). Choose h ∈ G such

that φ(h) 6= 0; writing (13.23) in the form φ(g) = 1
φ(h)

∑
k∈K φ(gkh)ψ(k) we

get

[φ ∗ ψ](g) =
1

φ(h)

∑
k,k1∈K

φ(gk1kh)ψ(k)ψ(k−1
1 )

(k1k = k2) =
1

φ(h)

∑
k2∈K

φ(gk2h)[ψ ∗ ψ](k2)

(by (13.2)) =
1

φ(h)

∑
k2∈K

φ(gk2h)ψ(k2)

(by (13.23)) = φ(g)

for all g ∈ G, showing that φ ∗ ψ = φ. Similarly, one proves that ψ ∗ φ = φ.

As a consequence, ψ ∗ φ ∗ ψ = ψ ∗ φ = φ, that is, (cf. Theorem 13.2.3.(i))

φ ∈ H(G,K,χ). Then, taking h = 1G in (13.23) we get

φ(g)φ(1G) =
∑
k∈K

φ(gk)ψ(k) = [φ ∗ ψ](g) = φ(g)
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for all g ∈ G, and therefore (recall that φ 6= 0) φ(1G) = 1. Finally, for all

f ∈ H(G,K,χ) and g ∈ G, we have

[φ ∗ f ](g) = [φ ∗ f ∗ ψ](g)

=
∑
h∈G

∑
k∈K

φ(gkh)f(h−1)ψ(k)

(by (13.23)) = φ(g)
∑
h∈G

φ(h)f(h−1)

= [φ ∗ f ](1G)φ(g)

so that also (13.22) is satis�ed. It follows that φ is spherical.

Conversely, suppose that φ is spherical. For all g ∈ G, de�ne Fg ∈ L(G)

by setting

Fg(h) =
∑
k∈K

φ(gkh)ψ(k),

for all h ∈ G. For f ∈ H(G,K,χ) and g, g1 ∈ G we then have

[Fg ∗ f ](g1) =
∑
k∈K

∑
h∈G

φ(gkg1h)f(h−1)ψ(k)

(by (13.22)) = [φ ∗ f ](1G)
∑
k∈K

φ(gkg1)ψ(k)

= [φ ∗ f ](1G)Fg(g1).

(13.24)

For all g ∈ G, we also de�ne Jg ∈ L(G) by setting

Jg(h) =
∑
k∈K

f(hkg)ψ(k)

for all h ∈ G. We claim that Jg ∈ H(G,K,χ). Indeed,

[ψ ∗ Jg ∗ ψ](h) =
∑

k,k1,k2∈K
ψ(k1)f(k−1

1 hk−1
2 kg)ψ(k2)ψ(k)

(k3 = k−1
2 k) =

∑
k,k3∈K

[ψ ∗ f ](hk3g)ψ(kk−1
3 )ψ(k−1)

=
∑
k3∈K

f(hk3g)[ψ ∗ ψ](k−1
3 )

=
∑
k3∈K

f(hk3g)ψ(k3)

= Jg(h).
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This shows that ψ ∗ Jg ∗ ψ = Jg. Moreover, for g1 ∈ G we have

[φ ∗ Jg1 ](1G) =
∑
h∈G

φ(h−1)
∑
k∈K

f(hkg1)ψ(k)

(hk = t) =
∑
t∈G

[∑
k∈K

ψ(k−1)φ(kt−1)

]
f(tg1)

=
∑
t∈G

[ψ ∗ φ](t−1)f(tg1)

=
∑
t∈G

φ(t−1)f(tg1)

= [φ ∗ f ](g1)

(by (13.22)) = [φ ∗ f ](1G)φ(g1).

(13.25)

It follows that, for g, g1 ∈ G,

[Fg ∗ f ](g1) =
∑
h∈G

∑
k∈K

φ(gkg1h)ψ(k)f(h−1)

(kg1h = t) =
∑
t∈G

φ(gt)
∑
k∈K

ψ(k)f(t−1kg1)

= [φ ∗ Jg1 ](g)

(by (13.22)) = [φ ∗ Jg1 ](1G)φ(g)

(by (13.25)) = [φ ∗ f ](1G)φ(g1)φ(g).

(13.26)

From (13.24) and (13.26) we get

[φ ∗ f ](1G)Fg(g1) = [φ ∗ f ](1G)φ(g1)φ(g),

and taking f ∈ H(G,K,χ) such that [φ ∗ f ](1G) 6= 0 this yields∑
k∈K

φ(gkg1)ψ(k) = Fg(g1) = φ(g1)φ(g),

which is exactly (13.23) with h replaced by g1. In order to complete the

proof, we are only left to show the existence of such an f . Since φ 6= 0, we

can �nd f1 ∈ L(G) such that [φ∗f1](1G) 6= 0. Then, keeping in mind (13.9),

we have that f = ψ ∗ f1 ∗ ψ ∈ H(G,K,χ) satis�es [φ ∗ f ](1G) 6= 0.

De�nition 13.4.3 A linear functional Φ: H(G,K,χ)→ C is multiplicative

if

Φ(f1 ∗ f2) = Φ(f1)Φ(f2)

for all f1, f2 ∈ H(G,K,χ).
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Theorem 13.4.4 Let φ be a spherical function and set

Φ(f) =
∑
g∈G

f(g)φ(g−1) ≡ [f ∗ φ](1G) (13.27)

for all f ∈ H(G,K,χ). Then Φ is a linear multiplicative functional on

H(G,K,χ). Moreover, any nontrivial linear multiplicative functional on

H(G,K,χ) is of this form.

Proof Let Φ as in (13.27). For f1, f2 ∈ H(G,K,χ), by means of a repeated

application of (13.22), we get:

Φ(f1 ∗ f2) = [(f1 ∗ f2) ∗ φ](1G)

= [f1 ∗ (f2 ∗ φ)](1G)

= [[f2 ∗ φ](1G)f1 ∗ φ](1G)

= [f1 ∗ φ](1G)[f2 ∗ φ](1G)

= Φ(f1)Φ(f2).

This shows that Φ is multiplicative. Conversely, suppose that Φ is a nontriv-

ial multiplicative linear functional on H(G,K,χ). We extend Φ to a linear

functional on the whole L(G) by considering the map f2 7→ Φ(ψ ∗ f2 ∗ ψ)

for all f2 ∈ L(G). By Riesz theorem, we can �nd an element ϕ ∈ L(G) such

that

Φ(ψ ∗ f2 ∗ ψ) =
∑
g∈G

f2(g)ϕ(g−1) (13.28)

for all f2 ∈ L(G). From (13.9) we deduce that if f1 ∈ H(G,K,χ) then

Φ(f1) = [f1 ∗ ϕ](1G) = [f1 ∗ ψ ∗ ϕ ∗ ψ](1G).

Therefore, setting φ = ψ ∗ ϕ ∗ ψ ∈ H(G,K,χ), we then have

Φ(f1) = [φ ∗ f1](1G) (13.29)

for all f1 ∈ H(G,K,χ). With this position, (13.9) also yields

Φ(ψ ∗ f2 ∗ ψ) = [φ ∗ ψ ∗ f2 ∗ ψ](1G) = [φ ∗ f2](1G) =
∑
h∈G

φ(h)f2(h−1)

for all f2 ∈ L(G), and therefore in (13.28) the function ϕ may be replaced by

the function φ. Since Φ is multiplicative, for f1 ∈ H(G,K,χ) and f2 ∈ L(G)
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the expression

Φ(f1 ∗ ψ ∗ f2 ∗ ψ) = [φ ∗ f1 ∗ ψ ∗ f2 ∗ ψ](1G)

(by (13.9)) = [φ ∗ f1 ∗ f2](1G)

=
∑
h∈G

[φ ∗ f1](h)f2(h−1)

must be equal to

Φ(f1)Φ(ψ ∗ f2 ∗ ψ) =
∑
h∈G

Φ(f1)φ(h)f2(h−1).

Since f2 ∈ L(G) was arbitrary, we get the equality [φ ∗ f1](h) = Φ(f1)φ(h),

so that, in particular, φ satis�es condition (13.21). Taking h = 1G and

choosing f1 ∈ H(G,K,χ) such that Φ(f1) 6= 0 (recall that Φ is nontrivial),

and keeping in mind (13.29), this gives Φ(f1) = [φ ∗ f1](1G) = Φ(f1)φ(1G).

It follows that φ(1G) = 1. In conclusion, φ is a spherical function.

Corollary 13.4.5 The number of distinct spherical functions is equal to |J |,
the number of irreducible G-representations contained in IndGKχ.

Proof We have H(G,K,χ) ∼= CJ (see (13.5)) and every linear multiplicative

functional on CJ is of the form CJ 3 λ 7→ λ(θ), for a �xed θ ∈ J .

In the following we use the notation in (10.9).

Proposition 13.4.6 Let φ and µ be two distinct spherical functions. Then

the following holds.

(i) φ(g−1) = φ(g) for all g ∈ G, that is φ∗ = φ;

(ii) φ ∗ µ = 0;

(iii) 〈λG(g1)φ, λG(g2)µ〉L(G) = 0 for all g1, g2 ∈ G, in particular φ and µ

are orthogonal: 〈φ, µ〉L(G) = 0.

Proof (i) By de�nition of a spherical function, one has

φ∗ ∗ φ = [φ∗ ∗ φ](1G)φ = ‖φ‖2φ.

As a consequence, since (φ∗ ∗ φ)∗ = φ∗ ∗ φ, we have

[φ∗ ∗ φ](g) = [φ∗ ∗ φ](g−1) = [φ∗ ∗ φ](1G) · φ(g−1) = ‖φ‖2φ(g−1)

and therefore we must have φ = φ∗.

(ii) By commutativity,

[φ ∗ µ](1G)φ(g) = [φ ∗ µ](g) = [µ ∗ φ](g) = [µ ∗ φ](1G)µ(g).
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Therefore, if φ 6= µ, necessarily [φ ∗ µ](1G) = [µ ∗ φ](1G) = 0 and this also

yields φ ∗ µ = 0.

(iii) Let g1, g2 ∈ G. Then

〈λG(g1)φ, λG(g2)µ〉 = 〈φ, λG(g−1
1 g2)µ〉 =

∑
h∈G

φ(h)µ
[
(g−1

1 g2)−1h
]

=
∑
h∈G

φ(h)µ∗(h−1g−1
1 g2) = [φ ∗ µ∗](g−1

1 g2) = [φ ∗ µ](g−1
1 g2) = 0,

where the last equality follows from (ii).

Theorem 13.4.7 For each spherical function φ de�ne Uφ = 〈λG(g)φ : g ∈
G〉, the subspace of L(G) spanned by all translates of φ. Then

IndGKC =
⊕
φ

Uφ,

where the sum runs over all spherical functions, is the decomposition of

IndGKC into irreducible G-representations.

Proof Each subspace Uφ is clearly G-invariant and contained in IndGKC
(recall Theorem 13.2.3). Moreover, by virtue of Lemma 13.4.6.(iii), if φ and

µ are distinct then the spaces Uφ and Uµ are orthogonal. Finally, we can

invoke Corollary 13.4.5 to conclude that each Uφ is irreducible and that the

sum
⊕

φ Uφ exhausts the whole IndGKC.

The space Uφ is called the spherical representation associated with the

spherical function φ.

13.5 Harmonic analysis on the Hecke algebra H(G,K,χ)

The �rst purpose of this section is to present a di�erent realization of spheri-

cal functions as matrix coe�cients associated with spherical representations.

Suppose again that (G,K,χ) is a multiplicity-free triple. Let J be as in

(13.5) (but now mθ = 1 for all θ ∈ J). For each θ ∈ J choose a vector

wθ ∈ WK,χ of norm one (recall (11.27)). Such wθ is unique up to a scalar

multiple of modulus one (usually called a phase factor); see Theorem 13.3.2.

Moreover, we are in the multiplicity free case of Theorem 10.6.3: for each

θ ∈ J we may choose Tθ ∈ HomG(Wθ, Ind
G
KC) which is also an isometry, so

that HomG(Wθ, Ind
G
KC) = 〈Tθ〉 and

IndGKC =
⊕
θ∈J

TθWθ (13.30)
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is an explicit orthogonal decomposition. Clearly, our choice of wθ and (11.28)

in Proposition 11.2.8 may be used to get an explicit form for Tθ = Twθ :

[Tθw](g) =

√
dθ
|G/K|

〈w, θ(g)wθ〉Wθ
, (13.31)

for all w ∈ Wθ and g ∈ G. Again, Tθ is de�ned up to a phase factor. Note

that now the map (13.7) is a ∗-isomorphism because the algebras involved

are commutative.

Proposition 13.5.1 Let (13.30) be an explicit decomposition of IndGKC into

irreducible, inequivalent G-representation. Then for f ∈ H(G,K,χ) the fol-

lowing hold:

(i) the decomposition of IndGKC into eigenspaces of the convolution oper-

ator Tf is given by (13.30);

(ii) if λf (θ) denotes the eigenvalue of Tf associated with the subspace

TθWθ then the map

H(G,K,χ) −→ CJ
f 7−→ λf ,

is an algebra isomorphism.

Proof (i) By Theorem 13.2.3.(ii) and multiplicity freeness of IndGKχ, the

convolution operator Tf intertwines each irreducible representation TθWθ

with itself so that, by Schur's lemma, it is a multiple of the identity on each

irreducible space.

(ii) If f1 ∈ H(G,K,χ), f ∈ IndGKC, and f =
∑

θ∈J fθ with fθ ∈ TθWθ,

then Tf1(f) =
∑

θ∈J λf1(θ)fθ. Therefore Tf1∗f2 = Tf1Tf2 yields

λf1∗f2 = λf1λf2

for all f1, f2 ∈ H(G,K,χ).

An explicit expression of λf will be given in Proposition 13.5.4.

For each θ de�ne φθ ∈ L(G) by setting

φθ(g) = 〈wθ, θ(g)wθ〉Wθ
(13.32)

for all g ∈ G.

Theorem 13.5.2 The function φθ is spherical and it is associated with Wθ,
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that is, in the notation of Theorem 13.4.7, we have Uφθ = TθWθ. Moreover,

the spherical functions satisfy the following orthogonality relations:

〈φθ, φρ〉L(G) =
|G|
dθ
δθ,ρ, (13.33)

for θ, ρ ∈ J .

Proof By (13.31) we have φθ =
√
|G/K|
dθ

Tθw
θ and therefore, by Proposition

11.2.8, φθ belongs to the subspace of IndGKC isomorphic to Wθ, namely to

TθWθ in (13.30). Now we use the functional identity (13.23) to show that

φθ is a spherical function. We need to prove a preliminary identity. First

of all, we choose an orthonormal basis {ui : i = 1, 2, . . . , dθ} for Wθ in the

following way. Let ResGKθ = χ ⊕ (⊕ηmηη) be the decomposition of ResGKθ

into irreducible K-representations (the η's are pairwise distinct and each

of them is distinct from χ; mη is the multiplicity of η). We suppose that

u1 = wθ and that each ui, 2 ≤ i ≤ dθ, belongs to some irreducible Wη. Then

by (10.24) we have∑
k∈K
〈u1, θ(k)u1〉Wθ

〈θ(k)ui, uj〉Wθ
= |K|δ1iδ1j . (13.34)

Since θ(k)u1 = χ(k)u1 we have ψ(k) = 1
|K|〈u1, θ(k)u1〉 and therefore (13.34)

may be written in the form〈∑
k∈K

ψ(k)θ(k)ui, uj

〉
Wθ

= δ1iδ1j

and this yields ∑
k∈K

ψ(k)θ(k)ui = δi1u1 (13.35)

for all i = 1, 2, . . . , dθ. We are now in position to check (13.23):∑
k∈K

φθ(gkh)ψ(k) =
∑
k∈K
〈wθ, θ(gkh)wθ〉Wθ

ψ(k)

=∗

dθ∑
i=1

〈θ(g−1)wθ, ui〉Wθ

∑
k∈K
〈θ(kh)u1, ui〉Wθ

ψ(k)

=

dθ∑
i=1

〈θ(g−1)wθ, ui〉Wθ
〈θ(h)u1,

∑
k∈K

ψ(k−1)θ(k−1)ui〉Wθ

(by (13.35)) = φθ(g)φθ(h),
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where equality =∗ follows from θ(kh)u1 =
∑dθ

i=1〈θ(kh)u1, ui〉Wθ
ui: recall

that {ui : i = 1, 2, . . . , dθ} is an orthonormal basis. Finally, (13.33) is a

particular case of (10.24).

Remark 13.5.3 Suppose that (G,K,χ) is a multiplicity-free triple. Then

(G,K,χ) is also multiplicity-free. Indeed, H(G,K,χ) = H(G,K,χ), that is,

the functions inH(G,K,χ) are the conjugates of the functions inH(G,K,χ).

Moreover, if {φθ : θ ∈ J} are the spherical functions with respect to χ

then their conjugates {φθ : θ ∈ J} are the spherical functions with respect

to χ (this may be deduced, for instance, directly from De�nition 13.4.1).

Finally, from (11.18) it follows that χInd
G
Kχ = χInd

G
Kχ and therefore θ ∈ Ĝ

is contained in IndGKχ if and only if its conjugate θ′ (cf. Section 10.5) is

contained in IndGKχ. Indeed, φθ equals the spherical function with respect

to χ associated with θ′.

Moreover, from (13.32) it follows that φθ is not a matrix coe�cient of

θ but of θ′. This happens because φθ belongs to the sub-representation of

IndGKC ≤ L(G) isomorphic to θ but, by Theorem 10.5.9, the restriction of the

left regular representation λ to M θ
∗,1 is isomorphic to θ′, that is, Wθ ∼M θ′

∗,1.

The spherical Fourier transform is the linear map

F : H(G,K,χ) −→ L(J)

de�ned by setting, for f ∈ H(G,K,χ) and θ ∈ J ,

[Ff ](θ) =
∑
g∈G

f(g)φθ(g).

From the orthogonality relations (13.33) we immediately deduce the inver-

sion formula:

f =
1

|G|
∑
θ∈J

dθFf(θ)φθ

and the Plancherel formula:

〈f1, f2〉L(G) =
1

|G|
∑
θ∈J

dθFf1(θ)Ff2(θ),

for all f, f1, f2 ∈ H(G,K,χ). In particular, ‖f‖2L(G) = 1
|G|
∑

θ∈J dθ|Ff(θ)|2.
Finally, the convolution formula

F(f1 ∗ f2) = (Ff1)(Ff2)

follows from the inversion formula and (10.35).
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Now we are in position to give an explicit formula for the eigenvalues

λf (θ), θ ∈ J , in Proposition 13.5.1.(ii).

Proposition 13.5.4 For all f ∈ H(G,K,χ) we have

λf = Ff.

Proof Let f ∈ H(G,K,χ) and θ ∈ J . It su�ces to compute λf (θ) for the

eigenvector φθ:

[Tfφ
θ](g) = [f ∗ φθ](g)

(by (13.22)) = [f ∗ φθ](1G)φθ(g)

=
∑
h∈G

f(h)φθ(h−1)φθ(g)

(by Proposition 13.4.6.(i)) = [Ff ](θ)φθ(g).

Proposition 13.5.5 The operator Eθ : IndGKC −→ L(G) de�ned by setting

Eθf =
dθ
|G|

f ∗ φθ,

for all f ∈ IndGKC, is the orthogonal projection from IndGKC onto TθWθ.

Proof First of all, note that, for g ∈ G and f ∈ IndGKC, we have:

[Eθf ](g) =
dθ
|G|

∑
h∈G

f(h)φθ(h−1g)

=
dθ
|G|

∑
h∈G

f(h)φθ(g−1h) =
dθ
|G|
〈f, λG(g)φθ〉L(G),

where λG is as in (10.9). Therefore, for η ∈ J \ {θ} and h ∈ G,

[EθλG(h)φη] (g) =
dθ
|G|
〈λG(h)φη, λG(g)φθ〉L(G) = 0
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by Proposition 13.4.6.(iii), that is,
⊕

η∈J,η 6=θ
TηWη ⊆ KerEθ. Similarly,

[
EθλG(h)φθ

]
(g) =

dθ
|G|
〈λG(h)φθ, λG(g)φθ〉L(G)

=
dθ
|G|
〈φθ, λG(h−1g)φθ〉L(G)

=
dθ
|G|

[φθ ∗ φθ](h−1g)

(by (13.22)) =
dθ
|G|

[φθ ∗ φθ](1G)φθ(h−1g)

(φθ ∗ φθ(1g) = ‖φθ‖2L(G) = |G|/dθ) = λG(h)φθ(g).

We then conclude by using Theorem 13.4.7.

We now show that the spherical function φθ and the character χθ may be

expressed one in terms of the other.

Proposition 13.5.6 For all g ∈ G we have:

χθ(g) =
dθ
|G|

∑
h∈G

φθ(h−1gh) (13.36)

and

φθ(g) = [χθ ∗ ψ](g). (13.37)

Proof Clearly, (13.36) is just a particular case of (10.25), keeping into ac-

count (13.32). On the other hand, using the bases in (13.35) we have

[χθ ∗ ψ](g) =
∑
k∈K

dθ∑
i=1

〈θ(gk−1)ui, ui〉ψ(k)

=
∑
k∈K

dθ∑
i=1

〈θ(g)
∑
k∈K

ψ(k−1)θ(k−1)ui, ui〉

(by (13.35)) = φθ(g).

In what follows, for f ∈ L(G) and θ ∈ J we set

χθ(f) =
∑
g∈G

χθ(g)f(g) ≡ 〈χθ, f〉
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and, similarly,

φθ(f) =
∑
g∈G

φθ(g)f(g) ≡ 〈φθ, f〉.

We use the Curtis-Fossum basis in De�nition 13.2.5.

Proposition 13.5.7 (Curtis-Fossum) Let θ ∈ J . Then the following hold:

(i) The spherical function φθ can be expressed as

φθ =
∑
s∈S0

|Gs|φθ (as) as.

(ii) The orthogonality relations for the spherical functions may be written

in the form: ∑
s∈S0

|Gs|φθ(as)φρ(as) = δθ,ρ
|G|
dθ
, ρ ∈ J.

(iii) The dimension dθ is given by

dθ =
|G|∑

s∈S0 |Gs| · |φ
θ(as)|2

.

Proof (i) This is an immediate consequence of (13.11) and (13.13).

(ii) From (i) and (13.12) we have:

〈φθ, φρ〉L(G) =
∑
s∈S0

|Gs|2φθ (as)φρ (as)‖as‖2L(G) =
∑
s∈S0

|Gs|φθ (as)φρ (as).

Then we may invoke (13.33).

(iii) It follows immediately from (ii).

Remark 13.5.8 When χ = ιK and (G,K) is a Gelfand pair, it is cus-

tomary to use the isomorphism (11.13) to de�ne the spherical functions as

K-invariant functions on X (see Remark 13.2.2). That is, for θ ∈ J we

de�ne ϕθ ∈ L(X) by setting ϕθ(x) = φθ(g) if gx0 = x. Then the orthogo-

nality relations become:
∑

x∈X ϕ
θ(x)ϕρ(x) = δθ,ρ

|X|
dθ
. We refer to [29] for an

extensive treatment of this case.

Exercise 13.5.9 Prove that, in the setting of Exercise 13.3.8, the spherical

function in M θ is equal to 1
dθ
χθ.

Exercise 13.5.10 Let G be a �nite group and suppose it acts doubly tran-

sitively on a set X. Denote by K the stabilizer of a �xed element x0 ∈ X.
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Show that (G,K) is a symmetric Gelfand pair, that L(X) = W0 ⊕W1 (cf.

Proposition 2.1.1) is the decomposition into spherical representations, and

that the corresponding spherical functions are given by φ0 ≡ 1 and

φ1(x) =

{
1 if x = x0

− 1
1−|X| otherwise

for all x ∈ X.

Exercise 13.5.11 From Exercise 12.1.8 we deduce that (A�(Fq), A, ψ) is a

multiplicity-free triple for any character ψ ∈ Â. By means of (13.31) and/or

(13.37) applied to (12.8), show that the spherical functions are given by:

φπ
(
a b

0 1

)
=

{
ψ(a) if b = 0

− 1
q−1ψ(a) otherwise,

and φΨ

(
a b

0 1

)
= ψ(a), for all

(
a b

0 1

)
∈ A�(Fq).
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Representation theory of GL(2,Fq)

This chapter is devoted to the representation theory of the general linear

group GL(2,Fq). It contains an exposition of all the results in Piatetski-

Shapiro's monograph [123]. We have added some more details and reinter-

preted the whole theory in terms of our �multiplicity-free triples� developed

in the preceding chapter. Section 7.3, on generalized Kloosterman sums, also

plays here a fundamental role. In the �nal sections, we present a complete

set of formulas for the decomposition of induced representations Ind
Fqm
Fq and

of inner tensor products.

14.1 Matrices associated with linear operators

First of all, we need to study the conjugacy classes in GL(2,F). For this

purpose, we recall some basic facts of linear algebra over an arbitrary �eld

F and, subsequently, we concentrate on the �nite case. If the �eld F is

algebraically closed, we shall make use of the Jordan canonical form, while,

in the general case, our standard tool will be the rational canonical form.

Le F be a �eld and denote by Mn(F) the algebra of all n × n matrices

with entries in F. Then the multiplicative group GL(n,F) = U(Mn(F)),

consisting of all invertible matrices, acts on Mn(F) by conjugation. The

action of an element A ∈ GL(n,F) on Mn(F) is then given by:

B 7→ ABA−1

for all B ∈Mn(F). The orbits under this action are the conjugacy classes of

Mn(F) and the choice of a suitable canonical element in the conjugacy class

of a matrix B ∈Mn(F) is called a canonical form for B.

We identify the n-dimensional vector space Fn with the vector space

Mn,1 of n-dimensional column vectors. Also we �x an (ordered) basis Y =

(Y1, Y2, . . . , Yn) of Fn.

493
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Let L : Fn → Fn be a linear operator. Then the matrix C = C(L;Y) =

(ci,j)
n
i,j=1 representing the operator L with respect to the basis Y is de�ned

by

L(Yj) =
n∑
i=1

ci,jYi

for all j = 1, 2, . . . , n.

Vice versa, with eachB ∈Mn(F) we associate the linear operator LB : Fn →
Fn de�ned by setting LB(X) = BX for all X ∈ Fn.
Let now X = (X1, X2, . . . , Xn) denote the canonical (ordered) basis of Fn,

that is,

X1 =


1

0

0
...

0

 , X2 =


0

1

0
...

0

 , . . . , Xn =


0

0

0
...

1

 .

Then, for j = 1, 2, . . . , n, the vector LB(Xj) equals the j-th column of the

matrix B. In other words, the matrix C(LB;X) representing LB with respect

to the canonical basis is the matrix B itself.

Let A = A(Y) ∈ GL(n,F) denote the change of basis matrix, that is, the

unique invertible matrix A such that Yj = A−1Xj , equivalently, Xj = AYj ,

for all j = 1, 2, . . . , n. Then the matrix C = C(LB;Y) representing the

linear operator LB in the basis Y is given by C = ABA−1. Indeed, if

BYj = LB(Yj) =

n∑
i=1

ci,jYi,

then

ABA−1Xj = ABYj = A
n∑
i=1

ci,jYi =
n∑
i=1

ci,jAYi =
n∑
i=1

ci,jXi = CXj

for all j = 1, 2, . . . , n.

This shows that �nding a canonical form C for B corresponds to choosing

a suitable basis Y in Fn such that C = C(LB;Y).

14.2 Canonical forms for M2(F)

We now describe a canonical form for matrices in M2(F).

We denote by F[λ] the F-vector space of all polynomials with coe�cients

in F and indeterminate λ.
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Let B =

(
α β

γ δ

)
∈M2(F).

Given t(λ) = ant
n + an−1t

n−1 + · · · + a1t + a0 ∈ F[λ] we set t(B) =

anB
n +an−1B

n−1 + · · ·+a1B+a0I ∈M2(F), where I ∈M2(F) denotes the

identity matrix.

The characteristic polynomial q = qB ∈ F[λ] of the matrix B is de�ned as

q(λ) = det(λI −B) = det

(
λ− α β

γ λ− δ

)
= λ2 − λ(α+ δ) + (αδ − βγ).

Exercise 14.2.1 Show, by a direct calculation, that q(B) = 0 ∈ M2(F)

(Cayley-Hamilton theorem). Moreover, given λ1 ∈ F show that q(λ1) = 0

if and only if λ1 is an eigenvalue of B (i.e., there exists an eigenvector

Y ∈ F2 \ {0} such that BY = λ1Y ).

The minimal polynomial p = pB ∈ F[λ] of B is the monic polynomial of

least degree such that p(B) = 0. We clearly have two cases:

(a) deg(p) = 1. Then p(λ) = λ − λ1 for some λ1 ∈ F and p(B) = 0 implies

that B = λ1I is a scalar matrix.

(b) deg(p) = 2. Then p(λ) = q(λ) and B is not a scalar matrix. We further

distinguish three subcases:

(b1) p(λ) has two distinct roots in F: there exist λ1, λ2 ∈ F, λ1 6= λ2,

such that p(λ) = (λ − λ1)(λ − λ2), equivalently, B has two distinct

eigenvalues. Let Y1, Y2 ∈ F2 be two corresponding eigenvectors: BY1 =

λ1Y1 and BY2 = λ2Y2. Then Y1 and Y2 are linearly independent: if

α1Y1 + α2Y2 = 0, with α1, α2 ∈ F, by applying B to both sides we

deduce that α1λ1Y1 + α2λ2Y2 = 0 so that

α2(λ1 − λ2)Y2 = λ1(α1Y1 + α2Y2)− (α1λ1Y1 + α2λ2Y2) = 0.

Since λ1 6= λ2, we deduce that α2 = 0 and, in turn, α1 = 0.

The matrix C = C(LB;Y) representing LB in the basis Y = (Y1, Y2) is

then given by

C =

(
λ1 0

0 λ2

)
that is, C is a diagonal matrix with distinct diagonal terms.

Note also that the matrices

(
λ1 0

0 λ2

)
and C(LB; (Y2, Y1)) =

(
λ2 0

0 λ1

)
are conjugate. Indeed:(

0 1

1 0

)(
λ1 0

0 λ2

)(
0 1

1 0

)
=

(
λ2 0

0 λ1

)
. (14.1)
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(b2) p(λ) = (λ − λ1)2, where λ1 ∈ F. Then there exists an eigenvector Y1

associated with λ1, so that BY1 = λ1Y1. Moreover, there exists a vector

Ỹ ∈ F2 (any vector which is not a scalar multiple of Y1) such that

(B−λ1I)Ỹ 6= 0, because B−λ1I 6= 0. Then (B−λ1I)2Ỹ = p(B)Ỹ = 0

implies (exercise) that there exists α′ ∈ F \ {0} such that

(B − λ1I)Ỹ = α′Y1. (14.2)

Setting Y2 = 1
α′ Ỹ equation (14.2) becomes

BY2 = λ1Y2 + Y1

and, in the basis Y = (Y1, Y2), the operator LB is represented by the

matrix C = C(LB;Y) given by

C =

(
λ1 1

0 λ1

)
which constitutes the simplest (non-trivial) example of a Jordan canon-

ical form.

(b3) p(λ) = λ2 + α′λ + β′, where α′, β′ ∈ F, is irreducible over F. Consider
a vector Y1 6= 0. Then Y2 = BY1 is not a multiple of Y1 (otherwise

Y1 would be an eigenvector) and therefore Y = (Y1, Y2) is a basis for

F2. Since B2 + α′B + β′I = 0 (cf. Exercise 14.2.1), we have that

BY2 = B2Y1 = −α′BY1−β′Y1 = −β′Y1−α′Y2, so that, in the basis Y,

the operator LB is represented by the matrix C = C(LB;Y) given by

C =

(
0 −β′
1 −α′

)
. (14.3)

This is the simplest (non-trivial) example of a rational canonical form.

From the previous case-by-case analysis we immediately deduce the fol-

lowing:

Theorem 14.2.2 Two matrices in M2(F) are conjugate if and only if they

have the same minimal and characteristic polynomials. For non-scalar ma-

trices it su�ces that they have the same characteristic polynomial.

Remark 14.2.3 In Mn(F) with n > 2, Theorem 14.2.2 is no longer true and

the full machinery for the rational canonical form and the theory of invariant

factors (or invariant polynomials, or elementary divisors) must be used to

get a parameterization of the conjugacy classes, i.e., in the terminology of

linear algebra, to establish if two matrices are similar.
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If the �eld F is algebraically closed, the Jordan canonical form may be

used in place of the rational canonical form. See, for instance, Herstein's

book [71].

We now introduce four important subgroups of GL(2,F), namely,

B =

{(
α β

0 δ

)
: α, δ ∈ F∗, β ∈ F

}
(the Borel subgroup)

D =

{(
α 0

0 δ

)
: α, δ ∈ F∗

}
(the subgroup of diagonal matrices)

U =

{(
1 β

0 1

)
: β ∈ F

}
(the subgroup of unipotent matrices)

Z =

{(
α 0

0 α

)
: α ∈ F∗

}
(the center),

where, as usual, F∗ denotes the multiplicative subgroup of F consisting of all

non-zero elements.

Clearly, U is Abelian and isomorphic to the additive group of F:(
1 β1

0 1

)(
1 β2

0 1

)
=

(
1 β1 + β2

0 1

)
for all β1, β2 ∈ F; see Section 12.1.

Moreover, U is a normal subgroup of B:(
α β

0 δ

)(
1 β′

0 1

)(
α β

0 δ

)−1

=

(
α αβ′ + β

0 δ

)(
α−1 −βδ−1α−1

0 δ−1

)
=

(
1 αδ−1β′

0 1

)
for all β, β′ ∈ F and α, δ ∈ F∗.
Recall that given a group G, the derived subgroup (or commutator sub-

group) of G is the subgroup G′ = [G,G] generated by the commutators

[g, h] = g−1h−1gh, with g, h ∈ G. Moreover, setting G(0) = G and G(k) =

[G(k−1), G(k−1)] for k = 1, 2, . . ., one says that G is solvable provided there

exists k0 ∈ N such that G(k0) = {1G}. Finally, given g ∈ G and a subgroup

H ≤ G, the centralizer of g in H is the subgroup {h ∈ H : hg = gh} ≤ H.

See also Section 12.1.

Lemma 14.2.4

(i) The centralizer in GL(2,F) of the matrix

(
λ1 0

0 λ2

)
, with λ1 6= λ2 ∈

F, is the subgroup D.
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(ii) The centralizer in GL(2,F) of the matrix

(
λ1 1

0 λ1

)
, with λ1 ∈ F, is

the subgroup ZU which equals

{(
α β

0 α

)
: α ∈ F∗, β ∈ F

}
.

(iii) B = U oD, i.e. B is the semidirect product of U by D. Moreover,

U is the derived subgroup of B, and B is solvable.

(iv) Setting w =

(
0 1

1 0

)
, we have the Bruhat decomposition:

GL(2,F) = B
∐

BwU ≡ B
∐

UwB,

where
∐

denotes a disjoint union. Moreover, every element g ∈
GL(2,F)\B may be uniquely written in the form g = uwb with u ∈ U
and b ∈ B.

Proof The proof is nothing but easy calculations which we leave to the reader

as an exercise.

For instance, (iv) follows from the fact that if

(
α β

γ δ

)
∈ GL(2,F) \B (so

that γ ∈ F∗) then, as one easily checks,(
α β

γ δ

)
=

(
β − αγ−1δ α

0 γ

)(
0 1

1 0

)(
1 γ−1δ

0 1

)
=

(
1 αγ−1

0 1

)(
0 1

1 0

)(
γ δ

0 β − αγ−1δ

)
,

and these factorizations are unique.

Another important subgroup is

A�(F) =

{(
α β

0 1

)
: α ∈ F∗, β ∈ F

}
,

the a�ne group over F (cf. Example 10.4.5 and Section 12.1).

Exercise 14.2.5 Show the following:

(1) Z ∩A�(F) = {I} and Z ·A�(F) = A�(F) · Z = B;

(2) A�(F) is a normal subgroup of B and deduce that B ∼= A�(F) × Z
(direct product);

(3) A�(F) = U o A (semi-direct product), where A is the subgroup{(
α 0

0 1

)
: α ∈ F∗

}
∼= F∗; see Section 12.1.
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14.3 The �nite case

From now on, we concentrate on the �nite case, that is, we consider the

group GL(2,Fq), where Fq is a �nite �eld of order q = ph, where p is a prime

number and h ≥ 1.

Proposition 14.3.1 GL(2,Fq) is a �nite group of order

|GL(2,Fq)| = (q2 − 1)(q2 − q) = q(q + 1)(q − 1)2.

Proof The �rst row of a matrix

(
α β

γ δ

)
∈ GL(2,Fq) may be chosen in q2−1

ways: it is an arbitrary ordered pair (α, β) ∈ (Fq × Fq) \ {(0, 0)}. Then the

second row (γ, δ) is an arbitrary ordered pair in (Fq×Fq)\{(λa, λb) : λ ∈ Fq},
and there are q2 − q such pairs.

Another proof is the following. Consider the projective line P(Fq) =

((Fq × Fq) \ {(0, 0)}) /∼, where ∼ is the equivalence relation on (Fq × Fq) \
{(0, 0)} de�ned by (x, y) ∼ (u, v) if there exists λ ∈ F∗q such that (x, y) =

(λu, λv). The action of GL(2,Fq) on Fq × Fq �xes (0, 0) and preserves ∼,
and therefore induces an action of GL(2,Fq) on P(Fq). Moreover, it is easy

to check that this induced action is transitive. The stabilizer of the ∼-
class of (1, 0) is the Borel subgroup B. Since |P(Fq)| = q2−1

q−1 = q + 1 and

|B| = q(q−1)2, we obtain again |GL(2,Fq)| = |P(Fq)| · |B| = (q+1)q(q−1)2;

recall (10.44).

Using the notation (and results) of Section 6.8, we introduce another fun-

damental subgroup of GL(2,Fq). The Cartan (or non-split Cartan) subgroup

of GL(2,Fq) is the subgroup C de�ned by

C =

{(
α ωβ

β α+ β

)
: α, β ∈ Fq, (α, β) 6= (0, 0)

}
if p = 2, where ω ∈ Fq is as in Theorem 6.8.3, and

C =

{(
α ηβ

β α

)
: α, β ∈ Fq, (α, β) 6= (0, 0)

}
if p > 2, where η ∈ Fq is as in Theorem 6.8.1.

In both cases, we have (cf. the just mentioned theorems) a group isomor-

phism

C ∼= F∗q2 .

In the following theorem, we use the elements of C \ Z to parameterize the
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conjugacy classes of type (b3) in Section 14.2. Note that

C \ Z =

{(
α ωβ

β α+ β

)
: α ∈ Fq, β ∈ F∗q

}
if p = 2, and

C \ Z =

{(
α ηβ

β α

)
: α ∈ Fq, β ∈ F∗q

}
if p > 2.

Theorem 14.3.2 The following describes the conjugacy classes of GL(2,Fq)

TYPE RE NC NE NAME C(RE)

(a)
(
λ 0
0 λ

)
, λ 6= 0 q − 1 1 central GL(2,Fq)

(b1)
(
λ1 0
0 λ2

)
, λ1 6= λ2 (q − 1)(q − 2)/2 q2 + q hyperbolic D

(b2)
(
λ 1
0 λ

)
, λ 6= 0 q − 1 q2 − 1 parabolic ZU

(b3) C \ Z q(q − 1)/2 q2 − q elliptic C

Table 14.1. The conjugacy classes of GL(2,Fq).

where

• TY PE stands for type of the conjugacy class according to the clas-

si�cation in Section 14.2;

• RE stands for representative element: for each (conjugacy) class we

indicate a representative element;

• NC stands for number of conjugacy classes: this equals the number

of representative elements;

• NE stands for the number of elements in each class;

• NAME stands for the denomination of this type of class;

• C(RE) stands for the centralizer in GL(2,Fq) of the representative

element.

Moreover, the two matrices of type (b1)(
λ1 0

0 λ2

)
and

(
λ2 0

0 λ1

)
(14.4)
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represent the same class. Similarly, the two matrices of type (b3)(
α ωβ

β α+ β

)
and

(
α+ β ωβ

β α

)
∈ C \ Z (14.5)

when p = 2, and (
α ηβ

β α

)
and

(
α −ηβ
−β α

)
∈ C \ Z (14.6)

when p > 2, represent the same class.

Proof The �rst row in the above table follows from Section 14.2.(a) and the

trivial fact that any central element is �xed under conjugation.

The second row follows from Section 14.2.(b1), Lemma 14.2.4.(i) and the

fact that the number of elements in each conjugacy class is given by

|GL(2,Fq)|
|D|

=
q(q + 1)(q − 1)2

(q − 1)2
= q2 + q.

Moreover, we have already observed (cf. (14.1)) that the matrices in (14.4)

are conjugate. Similarly, the third row follows from Section 14.2.(b2) and

Lemma 14.2.4.(ii), noticing also that the number of elements in each conju-

gacy class now equals

|GL(2,Fq)|
|ZU |

=
q(q + 1)(q − 1)2

(q − 1)q
= q2 − 1,

where the �rst equality follows from Proposition 14.3.1.

Finally, to get the fourth row, we distinguish two cases according to the

parity of p.

For p = 2 the characteristic polynomial of the representative

(
α ωβ

β α+ β

)
is given by

det

(
λ+ α ωβ

β λ+ (α+ β)

)
= λ2 + βλ+ (α2 + αβ + β2ω) (14.7)

so that, by Corollary 6.8.4, it is irreducible.

Moreover, since the matrices

(
0 α2 + αβ + β2ω

1 β

)
and

(
α+ β ωβ

β α

)
have

the same characteristic polynomial as in (14.7), we deduce that the matrix(
α ωβ

β α+ β

)
belongs to the same conjugacy class of

(
0 α2 + αβ + β2ω

1 β

)
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and

(
α+ β ωβ

β α

)
. Since, by Corollary 6.8.4, all irreducible quadratic poly-

nomials over Fq are as in (14.7), we deduce that the elements in C \ Z
parameterize all conjugacy classes of type (b3). Finally, (recall that β 6= 0)

we have (
x y

z u

)(
α ωβ

β α+ β

)
=

(
xα+ yβ xωβ + y(α+ β)

zα+ uβ zωβ + u(α+ β)

)
equals (

α ωβ

β α+ β

)(
x y

z u

)
=

(
αx+ ωβz αy + ωβu

βx+ z(α+ β) βy + u(α+ β)

)
if and only if ωz = y and x+z = u. As a consequence, the centralizer of any

element in C \Z is the subgroup C. We deduce that the number of elements

in each conjugacy class is given by

|GL(2,Fq)|
|C|

=
q(q + 1)(q − 1)2

q2 − 1
= q2 − q. (14.8)

Suppose now that p > 2. The characteristic polynomial of the representa-

tive

(
α ηβ

β α

)
is given by

det

(
λ− α −ηβ
−β λ− α

)
= λ2 − 2αλ+ α2 − ηβ2 (14.9)

which is again irreducible by virtue of Corollary 6.8.2.

As in the case p = 2, we deduce that the element

(
α ηβ

β α

)
belongs to

the same conjugacy class of

(
0 ηβ2 − α2

1 2α

)
(see Section 14.2.(b3) or (14.3)).

Again, since all irreducible quadratic polynomials are as in (14.9), the ele-

ments in C \ Z parameterize the conjugacy classes of type (b3). Moreover,(
α ηβ

β α

)
and

(
α −ηβ
−β α

)
have the same characteristic polynomial, so that

they are conjugate (by

(
0 −η
1 0

)
, for instance).

Finally, (recall, once more, that β 6= 0) another simple computation shows

that (
x y

z u

)(
α ηβ

β α

)
=

(
α ηβ

β α

)(
x y

z u

)
if and only if ηz = y and x = u. As a consequence, the centralizer of an
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element in C \ Z is again C and the number of elements in each conjugacy

class is again expressed by (14.8).

Remark 14.3.3 From the discussion in Section 14.2 and from the proof of

Theorem 14.3.2, it follows that the representatives of type (b3) may be also

taken of the form

(
0 −zz
1 z + z

)
, with z ∈ Fq2 \ Fq.

14.4 Representation theory of the Borel subgroup

As in (12.6), we associate with each ψ ∈ F̂∗q the function Ψ: Z → C de�ned

by

Ψ

(
α 0

0 α

)
= ψ(α) (14.10)

for all α ∈ F∗q . It is immediate to check that Ψ is a character of Z.

The representation theory of B may be then easily deduced from Theorem

12.1.3 and the isomorphism

B ∼= A�(Fq)× Z ∼= A�(Fq)× F∗q

which gives (see Corollary 10.5.17)

B̂ ∼= Â�(Fq)× Ẑ ∼= Â�(Fq)× F̂∗q .

Theorem 14.4.1 The Borel subgroup B has exactly (q−1)2 one-dimensional

representations, namely Ψ1�Ψ2, where Ψ1 ∈ Â�(Fq) is one-dimensional and
Ψ2 ∈ Ẑ, and q − 1 irreducible (q − 1)-dimensional representations, namely

π �Ψ, where π ∈ Â�(Fq) is as in (12.7) and Ψ ∈ Ẑ.
Explicitly, these are given by

(Ψ1 �Ψ2)

(
α β

0 δ

)
= ψ1(αδ−1)ψ2(δ) for all

(
α β

0 δ

)
∈ B, (14.11)

where Ψ1 ∈ Â�(Fq) (resp. Ψ2 ∈ Ẑ) is the character associated with ψ1 ∈ F̂∗q
(resp. ψ2 ∈ F̂∗q) , and

(π �Ψ)

(
α β

0 δ

)
= π

(
αδ−1 βδ−1

0 1

)
ψ(δ) for all

(
α β

0 δ

)
∈ B,

where Ψ ∈ Ẑ is the character associated with ψ ∈ F̂∗q.
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Proof Each irreducible representation of B is the tensor product of an ir-

reducible representation of A�(Fq) and an irreducible representation of Z

(see Corollary 10.5.17). Moreover, for any

(
α β

0 δ

)
∈ B we have the unique

decomposition(
α β

0 δ

)
=

(
αδ−1 βδ−1

0 1

)(
δ 0

0 δ

)
∈ A�(Fq)Z.

Remark 14.4.2 Given ψ1, ψ2 ∈ F̂∗q let us set ψ′2 := ψ−1
1 ψ2 ∈ F̂∗q . Then the

irreducible one dimensional representation (14.11) can be expressed by

(Ψ1 �Ψ2)

(
α β

0 δ

)
= ψ1(α)ψ′2(δ) for all

(
α β

0 δ

)
∈ B.

As a consequence, we shall rearrange the parameterization of the pairs

(ψ1, ψ2) (equivalently, (ψ1, ψ
′
2)) in F̂∗q × F̂∗q and denote by χψ1,ψ2 ∈ B̂ the

one-dimensional representation given by

χψ1,ψ2

(
α β

0 δ

)
= ψ1(α)ψ2(δ) (14.12)

for all

(
α β

0 δ

)
∈ B. We deduce from (14.12) that restricting to D all

one-dimensional representations of B provides us with all irreducible repre-

sentations of its (Abelian) subgroup D. Also, for simplicity of notation, we

shall identify ResBDχψ1,ψ2 and χψ1,ψ2 .

In the following, for every character χ of D we denote by wχ (cf. (11.41))

the character of D de�ned by wχ(d) = χ(wdw) for all d ∈ D, where the

element w is as in Lemma 14.2.4.(iv). We shall then say that χ is w-invariant,

provided wχ = χ.

We thus have

wχψ1,ψ2

(
α 0

0 δ

)
= χψ1,ψ2

(
w

(
α 0

0 δ

)
w

)
= χψ1,ψ2

(
δ 0

0 α

)
= ψ1(δ)ψ2(α)

= χψ2,ψ1

(
α 0

0 δ

)
(14.13)
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for all

(
α 0

0 δ

)
∈ D.

It follows that χψ1,ψ2 is w-invariant if and only if ψ1 = ψ2.

Proposition 14.4.3 Let ψ ∈ F̂∗q. Then

χψ,ψ(b) = ψ(det(b))

for all b ∈ B.

Proof This is a simple calculation: indeed we have

χψ,ψ

(
α β

0 δ

)
= ψ(α)ψ(δ) = ψ(αδ) = ψ(det

(
α β

0 δ

)
)

for all α, δ ∈ F∗q and β ∈ Fq.

14.5 Parabolic induction

In this section we determine the irreducible representation of GL(2,Fq) that
may be obtained by inducing up the characters of the Borel subgroup B.

First we give a general principle.

Proposition 14.5.1 Let G be a �nite group and N E G a normal subgroup.

Then the map (ρ, U) 7→ (ρ̃, U) de�ned by

ρ̃(gN)u = ρ(g)u (14.14)

for all g ∈ G and u ∈ U , yields a bijection between the set of all G-

representations (ρ, U) such that ResGNρ is trivial and the set of all G/N -

representations. Moreover, this bijection preserves irreducibility and direct-

sums.

Proof Let (ρ, U) be aG-representation and suppose that ResGNρ is trivial. We

note that (14.14) is well de�ned. Indeed, if g1, g2 ∈ G satisfy g1N = g2N ,

then g−1
1 g2 ∈ N so that ρ(g−1

1 g2)u = u, equivalently, ρ(g1)u = ρ(g2)u,

for all u ∈ U , showing that ρ̃(g1N) = ρ̃(g2N). Vice versa, given a G/N -

representation (σ, U), let (σ̌, U) be the G-representation de�ned by

σ̌(g)u = σ(gN)u (14.15)

for all u ∈ U . In other words, σ̌ is the composition of σ with the quotient

map G → G/N . Clearly, ResGN σ̌ is trivial. Moreover the map σ 7→ σ̌ is the

inverse of the map ρ 7→ ρ̃ given by (14.14). It is straightforward to check that
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if ρ is irreducible (resp. ρ = ρ1⊕ρ2) then ρ̃ is irreducible (resp. ρ̃ = ρ̃1⊕ ρ̃2).

The G-representation (σ̌, U) de�ned in (14.15) is called the in�ation of

the G/N -representation (σ, U). See also Section 11.6.

Corollary 14.5.2 Let H be a �nite group and denote by H ′ its derived

subgroup. Then there exists a bijective correspondence between the set of all

(irreducible) one-dimensional H-representations and the characters of H/H ′.

Proof We �rst observe that if (ρ, U) ∈ Ĥ is one-dimensional, then Ker(ρ) =

{h ∈ H : ρ(h) = idU} necessarily contains H ′: indeed H/Ker(ρ) ∼= ρ(H) ≤
T = {z ∈ C : |z| = 1} is Abelian. Then the corollary follows from Proposition

14.5.1 after noticing that H ′ is normal in H and that H/H ′ is Abelian so

that its irreducible representations are all one-dimensional, i.e. characters.

Proposition 14.5.3 Let G be a �nite group and H ≤ G a subgroup. Denote

by H ′ the derived group of H. Let (ρ, V ) be an irreducible G-representation.

Then the following conditions are equivalent:

(a) the subspace V H′ of H ′-invariant vectors is nontrivial;

(b) there exists a one-dimensional representation χ of H such that ρ is

contained in IndGHχ.

Proof First of all, note that the subspace V H′ is H-invariant. Indeed, H ′ is

normal in H and therefore for h ∈ H and v ∈ V H′ we have

ρ(h′)ρ(h)v = ρ(h · h−1h′h)v = ρ(h)ρ(h−1h′h)v = ρ(h)v

for all h′ ∈ H ′, thus showing that ρ(h)v ∈ V H′ (observe that, in fact, the

H-invariance of V H′ only depends on the normality of H ′ in H).

Consider the H-representation (ResGHρ, V
H′) and observe that its restric-

tion to H ′ is trivial. By virtue of Proposition 14.5.1 we can identify it

with a representation of the Abelian group H/H ′ and therefore, again by

Proposition 14.5.1, it decomposes as a direct sum of one-dimensional H-

representations.

Thus, if V H′ is not trivial, we can �nd a character χ ∈ Ĥ such that

χ � (ResGHρ, V
H′) � (ResGHρ, V ). By Frobenius reciprocity we have that

ρ � IndGHχ.

Conversely, if ρ is contained in IndGHχ, for some character χ ∈ Ĥ, then,

again by Frobenius reciprocity, ResGHρ contains χ which, by Corollary 14.5.2,

is trivial on H ′. It follows that V contains H ′-invariant vectors.
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The space J(V ) = V H′ is called the Jacquet module of theG-representation

(ρ, V ) relative to the subgroup H ≤ G.
We now apply the above results in the case where G = GL(2,Fq) (and,

unless otherwise speci�ed, we shall keep this position in order to simplify

notation for the remaining of this section) and H = B, so that H ′ = B′ = U

(see Lemma 14.2.4).

Notation 14.5.4 In what follows, if χ is a one-dimensional representation

of B, we use the notation (χ̂, V ) to denote (IndGBχ, Ind
G
BC). Also, given the

correspondence between the one-dimensional representations of B and the

characters of its subgroup D, by abuse of notation (observe that B is not

invariant by conjugation by w) we also denote by wχ the one-dimensional

representation of B corresponding to the character wχ ∈ D̂ (cf. (11.41)).

Proposition 14.5.5 Let χ be a one-dimensional representation of B. Then

(ResGBχ̂, V
U ) ∼ (χ⊕ wχ,C2).

Proof First of all note that the space V U ≤ IndGBC is made up of all functions

f : G→ C such that

f(gb) = χ(b)f(g) for all b ∈ B and g ∈ G (14.16)

(by the de�nition of an induced representation) and

f(u−1g) = f(g) for all u ∈ U and g ∈ G

(by U -invariance). Then, by the Bruhat decomposition (see Lemma 14.2.4),

any function f satisfying these conditions is uniquely determined by its values

at 1G and w:

f(b) = χ(b)f(1G) for all b ∈ B
f(uwb) = χ(b)f(w) for all b ∈ B and u ∈ U.

(14.17)

As a consequence, dimV U = 2 and the functions f0 and f1 in V U satisfying

f0(1G) = 1, f0(w) = 0 and f1(1G) = 0, f1(w) = 1

constitute a basis for V U .

Let us determine the corresponding matrix coe�cients for the representa-

tion (ResGBχ̂, V
U ). We have

[χ̂(b)f0](1G) = f0(b−1) = χ(b)f0(1G) for all b ∈ B.
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Moreover, for every b ∈ B there exist b′ ∈ B and u ∈ U such that b−1w =

uwb′ so that

[χ̂(b)f0](w) = f0(b−1w) = f0(uwb′) = χ(b′)f0(w) = 0.

This shows that

χ̂(b)f0 = χ(b)f0.

We now consider the action of B on f1. Let b ∈ B. Then we can �nd

α0, α1 ∈ C such that

χ̂(b)f1 = α0f0 + α1f1.

Evaluating this expression at 1G we get

α0 = [χ̂(b)f1](1G) = f1(b−1) = χ(b)f1(1G) = 0

so that

χ̂(b)f1 = α1f1.

Since f1 is U -invariant, arguing as in the proof of Proposition 14.5.3, the

action of B on f1 is given by the action of D ∼= B/U ≡ B/B′. As a

consequence, setting d = bU ∈ B/U we have

[χ̂(d)f1](1G) = f1(d−1) = 0 for all d ∈ D

and

[χ̂(d)f1](w) = f1(d−1w)

= f(w · wd−1w)

= χ(wdw)f1(w)

= wχ(d)f1(w)

that is, χ̂(d)f1 = wχ(d)f1, for all d ∈ D. This, in turn, implies χ̂(b)f1 =
wχ(b)f1, for all b ∈ B.

For the convenience of the reader, we now recall from Section 11.4 two basic

facts on the theory of induced representations in the particular case when the

representations that we are inducing are one-dimensional. See also Remark

11.4.10. Let G be a �nite group, K ≤ G a subgroup, and S 3 1G a system of

representatives for the double K-cosets, so that we have the decomposition

G =
∐
s∈S KsK. Let χ, ξ be one dimensional representations of K. For

s ∈ S let Ks = sKs−1 ∩K and de�ne a one-dimensional representation of

Ks by setting

ξs(x) = ξ(s−1xs) for all x ∈ Ks.



14.5 Parabolic induction 509

Then we have Mackey's formula for invariants (cf. Corollary 11.4.4)

HomG(IndGKχ, Ind
G
Kξ)
∼=
⊕
s∈S

HomKs(Res
K
Ksχ, ξs)

and

HomKs(Res
K
Ksχ, ξs)

∼=

{
C if ResKKsχ = ξs

{0} otherwise.

In particular, for ξ = χ we get Mackey's criterion for irreducibility (cf.

Corollary 11.4.6): IndGKχ is irreducible if and only if

ResKKsχ 6= χs for all s ∈ S \ {1G}.

Let again G = GL(2,Fq) and, for each ψ ∈ F̂∗q , de�ne a one-dimensional

representation χ̂0
ψ of G by setting

χ̂0
ψ(g) = ψ(det g) for all g ∈ G. (14.18)

Theorem 14.5.6 Keeping in mind (14.12) and Notation 14.5.4, we have:

(i) Let ψ1, ψ2, ξ1, ξ2 ∈ F̂∗q. If ψ1 6= ψ2 then χ̂ψ1,ψ2 is an irreducible repre-

sentation of G of dimension q + 1. Moreover, χ̂ψ1,ψ2 ∼ χ̂ξ1,ξ2 if and

only if {ψ1, ψ2} = {ξ1, ξ2}. In particular,{
χ̂ψ1,ψ2(= χ̂ψ2,ψ1) : ψ1 6= ψ2 ∈ F̂∗q

}
consists of (q−1)(q−2)

2 pairwise nonequivalent irreducible representa-

tions of G.

(ii) For each ψ ∈ F̂∗q there exists an irreducible G-representation χ̂1
ψ of

dimension q such that

χ̂ψ,ψ = χ̂0
ψ ⊕ χ̂1

ψ.

Moreover, {
χ̂1
ψ : ψ ∈ F̂∗q

}
is a set of (q−1) pairwise nonequivalent q-dimensional G-representations,

while {
χ̂0
ψ : ψ ∈ F̂∗q

}
is the set of all one-dimensional G-representations.
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Proof First of all, note that the Bruhat decomposition in Lemma 14.2.4 may

be also written in the form

G = B
∐

BwB

yielding a decomposition of G into double B-cosets. Moreover, wBw ∩B =

D, so that, if χ, ξ are one-dimensional representations of B, Mackey's formula

for invariants becomes

HomG(χ̂, ξ̂) ∼= HomB(χ, ξ)⊕HomD(ResBDχ,
wξ)

= HomB(χ, ξ)⊕HomD(χ,wξ). (14.19)

In particular, for ξ = χ and ξ 6= wχ (more precisely, χ 6= wχ) we get the

irreducibility of χ̂; for χ 6= wχ, ξ 6= wξ and {χ,wχ} 6= {ξ,wξ} we get the

nonequivalance of the irreducible representations χ̂ and ξ̂. Their dimension

is just [G : B] = q + 1. Note that their nonequivalence also follows from

Proposition 14.5.5. Finally, we can invoke Theorem 14.4.1 and (14.13).

Now suppose that χ = wχ. From (14.19) we deduce that dimHomG(χ̂, χ̂) =

2, so that χ̂ decomposes into the sum of two irreducible B-representations.

Moreover, χ̂0
ψ is contained in χ̂ψ,ψ. Indeed, setting f(g) = ψ(det g), we have

f(gb) = ψ(det(gb)) = ψ(det g) · ψ(det b) = χψ,ψ(b)f(g) (14.20)

for all g ∈ G and b ∈ B, so that (14.16) is satis�ed, and

[χ̂ψ,ψ(g)f ](g0) = f(g−1g0) = χ̂0
ψ(g)f(g0) (14.21)

for all g, g0 ∈ G. Therefore, there exists a second irreducible representation

χ̂1
ψ in χ̂ with dimχ̂1

ψ = (q+ 1)− 1 = q. Again by (14.19), for di�erent ψs we

get nonequivalent representations (this also follows from Proposition 14.5.5).

Finally, if ξ is a one-dimensional G-representation, then it is contained in

IndGBχ, where χ = ResGBξ. This follows from computations as in (14.20) and

(14.21). Alternatively, ResGUξ ≡ 1, because U is the commutator subgroup

of B so that, by Proposition 14.5.3, ξ is contained in some IndGBχ. In any

case, we have proved that {χ̂0
ψ, ψ ∈ F̂q} is the list of all one-dimensional

G-representations.

As a byproduct, we deduce the following result of a purely algebraic �avor:

Corollary 14.5.7 The commutator subgroup of GL(2,Fq) is SL(2,Fq).

Proof SL(2,Fq) is normal and GL(2,Fq)/SL(2,Fq) is Abelian, because we
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have the homomorphism

GL(2,Fq) → F∗q
g 7→ det g

whose kernel is SL(2,Fq). In particular, GL(2,Fq)/SL(2,Fq) ∼= F∗q , so that

SL(2,Fq) ⊇ GL(2,Fq)′, and |GL(2,Fq)/SL(2,Fq)| = q − 1. But, for any

�nite group G, the quantity |G/G′| equals the number of one-dimensional

irreducible G-representations (see Corollary 14.5.2) and, by Theorem 14.5.6,

this number is exactly |F∗q | = q − 1. This forces SL(2,Fq) = GL(2,Fq)′.

Remark 14.5.8 From Proposition 14.5.3 and Proposition 14.5.5 it follows

that for any one-dimensional representation χ of B, the induced representa-

tion χ̂ decomposes as the sum of at most two irreducible G-representations.

Indeed, if χ̂ = σ1 ⊕ σ2 ⊕ · · · ⊕ σm, by Proposition 14.5.3 each σi contains

a nontrivial U -invariant vector, while, by Proposition 14.5.5, χ̂ contains ex-

actly a two-dimensional space of U -invariant vectors. This fact might be

used to get an alternative proof of the fact that χ̂ψ,ψ contains exactly two

irreducible representations.

Proposition 14.5.9 Let ψ,ψ1, ψ2 ∈ F̂∗q and denote by Ψ,Ψ1,Ψ2 the corre-

sponding representations of A�(Fq) (cf. Theorem 12.1.3). Then

ResGA�(Fq)χ̂
1
ψ = Ψ⊕ π

and, if ψ1 6= ψ2,

ResGA�(Fq)χ̂ψ1,ψ2 = Ψ1 ⊕Ψ2 ⊕ π,

where π is the unique (q−1)-dimensional irreducible representation of A�(Fq)
(cf. Theorem 12.1.3).

Proof We �rst note that the space V U (with V as in Proposition 14.5.5) being

B-invariant, it is also A�(Fq)-invariant, and, moreover, dimV U = 2. It is also

clear that ResGA�(Fq)χ̂ψ1,ψ2 � Ψ1 ⊕ Ψ2. Indeed, by (14.13) and Proposition

14.5.5, the B-representation on V U is isomorphic to χψ1,ψ2 ⊕ χψ2,ψ1 and

ResBA�(Fq)χ̂ψ1,ψ2 = Ψ1. Then, there exists an A�(Fq)-invariant subspace W
such that V = V U ⊕W . The space W cannot contain a one-dimensional

representation of A�(Fq), otherwise it would contain U -invariant vectors

(note that U is the commutator subgroup also of A�(Fq)). Therefore, W

necessarily coincides with the representation space of π.

The case ψ1 = ψ2 = ψ is analogous.
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Exercise 14.5.10 (1) From Proposition 14.5.9 and Frobenius reciprocity,

deduce that, for all ψ ∈ F̂∗q ,

IndGA�(Fq)Ψ = χ̂0
ψ ⊕ χ̂1

ψ ⊕

 ⊕
ψ1∈F̂∗q :
ψ1 6=ψ

χ̂ψ1,ψ

 .

(2) From Exercise 12.1.8.(2) and transitivity of induction, deduce that

IndGUχ0 =

⊕
ψ∈F̂∗q

χ̂0
ψ

⊕
⊕
ψ∈F̂∗q

χ̂1
ψ

⊕ 2

 ⊕
{ψ1,ψ2}

χ̂ψ1,ψ2

 ,

where {ψ1, ψ2} runs over all two-subsets of F̂∗q (in other words, in the last

summand, the representation χ̂ψ1,ψ2 = χ̂ψ2,ψ1 is counted once, but it appears

with multiplicity 2 in the decomposition).

14.6 Cuspidal representations

This section is devoted to a close analysis of the cuspidal representations

of G The last part heavily relies on the material from Section 7.3. Let G

be a �nite group and K ≤ G a subgroup. Consider a one-dimensional K-

representation (χ,C) that we identify with its character. As usual, we �x a

complete set S ⊆ G of representatives for the double K-cosets in G, so that

G =
∐
s∈S KsK, and set Ks = K ∩ sKs−1. Also, cf. (11.32), we denote by

S0 the set of s ∈ S such that HomKs(Res
K
Ksχ, χs) is not trivial.

For the convenience of the reader, in the following theorem we collect some

results about the Hecke algebra H(G,K,χ) from Chapter 13.

Theorem 14.6.1 Let

H(G,K,χ) = {f ∈ L(G) : f(k1gk2) = χ(k1)f(g)χ(k2), ∀k1, k2 ∈ K, g ∈ G}.

Then the following hold:

(i) EndG(IndGKχ) ∼= H(G,K,χ);

(ii) S0 = {s ∈ S : χ(s−1xs) = χ(x), for all x ∈ Ks};
(iii) every function f ∈ H(G,K,χ) only depends on its values on S0,

namely,

f(g) =

{
χ(k1)f(s)χ(k2) if g = k1sk2 with s ∈ S0

0 otherwise.
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De�nition 14.6.2 A GL(2,Fq)-representation (ρ, V ) whose subspace V U

of U -invariant vectors is trivial is called a cuspidal representation. We de-

note by Cusp = Cusp(GL(2,Fq)) ⊂ ̂GL(2,Fq) a complete set of pairwise

nonequivalent irreducible cuspidal representations.

Theorem 14.6.3 Let χ be a non-trivial character of the (Abelian) group U .

Then IndGUχ is multiplicity-free and does not depend on the particular choice

of χ. Moreover

IndGUχ =

⊕
ψ∈F̂∗q

χ̂1
ψ

⊕
 ⊕
ψ1 6=ψ2∈F̂∗q

χ̂ψ1,ψ2

⊕
 ⊕
ρ∈Cusp

ρ

 . (14.22)

In other words, (G,U, χ) is a multiplicity-free triple for every non-trivial

character χ ∈ Û (cf. Chapter 13) and IndGUχ contains all the irreducible

G-representations of dimension greater than one.

Proof We present two proofs of (14.22): the �rst one is of a more theoretical

�avour, the second one relies on the computation of the number of conjugacy

classes of G.

First proof. We �rst observe that U is a normal subgroup of B and that

one has B =
∐
d∈D dU =

∐
d∈D UdU . From the Bruhat decomposition (cf.

Lemma 14.2.4) we then get

G = B
∐

UwB =

(∐
d∈D

UdU

)∐(∐
d∈D

UwdU

)
.

As a consequence we can take S := D
∐
wD as a complete set of repre-

sentatives for the double U -cosets in G. Moreover, it is easy to check that

dUd−1∩U = U and wdUd−1w∩U = {1G} for all d ∈ D. Thus (cf. Theorem

14.6.1.(ii)), we have that

S0 = Z
∐

wD = S \ (D \ Z). (14.23)

From Theorem 14.6.1.(iii) we deduce that every function f ∈ H(G,K,ψ)

vanishes on
∐
d∈D\Z dU .

Consider now the map τ : G→ G de�ned by setting

τ

(
α β

γ δ

)
=

(
δ β

γ α

)
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for all

(
α β

γ δ

)
∈ G. It is easy to check that τ is an involutive anti-

automorphism of G, that is, τ(g1g2) = τ(g2)τ(g1) and τ2(g) = g for all

g1, g2, g ∈ G. We claim that

f τ = f for all f ∈ H(G,U, χ), (14.24)

where f τ ∈ L(G) is de�ned by setting f τ (g) = f(τ(g)) for all g ∈ G (cf.

(13.18)). In order to show (14.24), we recall that every f ∈ H(G,U, χ) is

supported in
∐
s∈Z

∐
wD UsU and observe that τ �xes pointwise the subgroup

U . As a consequence, it su�ces to show that τ also �xes all elements in

Z
∐
wD. First of all, it is obvious that τ(z) = z for all z ∈ Z. The

remaining part is a simple calculation:

τ(wd) = τ

((
0 1

1 0

)(
α 0

0 β

))
= τ

((
0 β

α 0

))
=

(
0 β

α 0

)
= wd

for all d =

(
α 0

0 β

)
∈ D. The claim follows.

By Proposition 13.3.4, the algebra H(G,U, χ) is commutative and there-

fore IndGUχ is multiplicity-free. By transitivity of induction and (12.7) we

have

IndGUχ = IndGA�(Fq)Ind
A�(Fq)
U χ = IndGA�(Fq)π (14.25)

so that also IndGA�(Fq)π is multiplicity-free.

The multiplicity of χ̂1
ψ and χ̂ψ1,ψ2 in IndGUχ is equal to one by (14.25),

Proposition 14.5.9, and Frobenius reciprocity. If ρ is cuspidal, then ResGA�(Fq)ρ

cannot contain a one-dimensional representation Ψ of A�(Fq), because oth-
erwise it would contain also nontrivial U -invariant vectors (recall the proof

of Proposition 14.5.9 and the fact that U is the commutator subgroup of

A�(Fq)). Then ResGA�(Fq)ρ must be a multiple of π. Therefore

1 ≥ multiplicity of a cuspidal representation ρ in IndGA�(Fq)π

= multiplicity of π in ResGA�(Fq)ρ (by Frobenius reciprocity)

≥ 1

implies that all these multiplicities are equal to 1. Finally, from Corollary

11.2.3 and (14.25) it follows that IndGUχ cannot contain one-dimensional G-

representations.

Second proof. In Theorem 14.5.6 we have determined:

• q − 1 one-dimensional representations of G (the χ̂0
ψs);
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• q − 1 irreducible q-dimensional representations of G (the χ̂1
ψs);

• (q−1)(q−2)
2 irreducible (q + 1)-dimensional representations of G (the

χ̂ψ1,ψ2s).

Since G has 2(q− 1) + (q−1)(q−2)
2 + q(q−1)

2 conjugacy classes (see Theorem

14.3.2), from Theorem 10.3.13.(ii) it follows that there exist exactly q(q−1)
2

irreducible representations missing in the above list: these are the cuspidal

representations. Moreoever (cf. (11.10) and Proposition 14.3.1)

dimIndGUχ = [G : U ] = (q + 1)(q − 1)2. (14.26)

Invoking again Theorem 14.5.6 and using the last part of the �rst proof, we

deduce that the χ̂1
ψs and χ̂ψ1,ψ2s sum up in IndGUχ forming a subspace of

dimension∑
ψ∈F̂∗q

dimχ̂1
ψ +

∑
ψ1 6=ψ2∈F̂∗q

dimχ̂ψ1,ψ2 = q(q − 1) +
(q2 − 1)(q − 2)

2

= (q − 1)
q2 + q − 2

2
.

(14.27)

Denoting by rρ ≥ 1 the multiplicity of π in ResGA�(Fq)ρ ∈ Cusp, so that

dimρ = rρdimπ = rρ(q− 1) (cf. the �rst proof), by subtracting (14.27) from

(14.26), we deduce ∑
ρ∈Cusp

rρ(q − 1) = (q − 1)
q(q − 1)

2
,

that is,
∑

ρ∈Cusp rρ = q(q−1)
2 . Since this is a sum of q(q−1)

2 integers rρ ≥ 1,

we deduce that rρ = 1 for every cuspidal representation ρ.

Remark 14.6.4 Alternatively, from (14.23) and the multiplicity freeness of

IndGUχ one deduces that

dimEndG(IndGUχ) = |Z|+ |wD| = (q − 1) + (q − 1)2 = q(q − 1).

Since parabolic induction yields

q − 1 +
(q − 1)(q − 2)

2
=
q(q − 1)

2

irreducible representations in IndGUχ, there are other
q(q−1)

2 irreducible rep-

resentations in IndGUχ, and these must be exactly the q(q−1)
2 cuspidal repre-

sentations.



516 Representation theory of GL(2,Fq)

Corollary 14.6.5 A G-representation (ρ, V ) (not necessarily irreducible)

is a cuspidal representation if and only if ResGA�(Fq)ρ = π. In particular,

dimρ = q − 1 for every cuspidal representation.

Proof The �only if� part can be immediately deduced from the proof of

the previous theorem where we have shown that, if ρ is cuspidal, then

ResGA�(Fq)ρ = π and, in particular, dimρ = q − 1. The �if� part is trivial: if

(ρ, V ) is a G-representation and ResGA�(Fq)ρ = π then ρ is G-irreducible, since

π is A�(Fq)-irreducible. Moreover, V cannot contain nontrivial U -invariant

vectors because,

ResGUρ = Res
A�(Fq)
U ResGA�(Fq)ρ = Res

A�(Fq)
U π =

⊕
χ∈Û

χ nontrivial

χ,

where the last equality follows from Corollary 12.1.7.

We now introduce a special element in B:

b0 =

(
−1 −1

0 1

)
. (14.28)

The following property is elementary, but useful: for all b ∈ B \D there exist

d1, d2 ∈ D such that

b = d1b0d2. (14.29)

Indeed, if

(
α β

0 δ

)
∈ B \D, that is β 6= 0, then

(
α β

0 δ

)
=

(
1 0

0 −δβ−1

)(
−1 −1

0 1

)(
−α 0

0 −β

)
.

Also note that if d =

(
α 0

0 δ

)
∈ D then

d̃ = wdw =

(
δ 0

0 α

)
∈ D. (14.30)

Exercise 14.6.6 From Exercise 14.5.10 and Exercise 12.1.8, deduce that,

for ψ ∈ Â,

IndGAψ =
(
IndGUχ

)
⊕

χ̂0
ψ ⊕ χ̂1

ψ ⊕

 ⊕
ψ1∈F̂∗q :
ψ1 6=ψ

χ̂ψ1,ψ


 ,
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where χ is any nontrivial character of U .

Proposition 14.6.7 Let V be a �nite dimensional vector space and ρ : G→
End(V ) a map such that:

(a) ResGBρ is an irreducible B-representation;

(b) ρ(b1wb2) = ρ(b1)ρ(w)ρ(b2) for all b1, b2 ∈ B;
(c) ρ(wdw) = ρ(w)ρ(d)ρ(w) for all d ∈ D;

(d) ρ(wb0w) = ρ(w)ρ(b0)ρ(w).

Then (ρ, V ) is an irreducible G-representation.

Proof We show that ρ(g1g2) = ρ(g1)ρ(g2) for all g1, g2 ∈ G. Note that, this
gives, in particular, that ρ(g) ∈ GL(V ) for all g ∈ G. When g1, g2 ∈ B, this
follows from the hypothesis (a) (which also implies that ρ(1G) = IV ). By

virtue of the Bruhat decomposition (cf. Lemma 14.2.4) we have the following

remaining cases:

First case: g1 = b ∈ B and g2 = b1wb2 ∈ BwB. Then

ρ(g1g2) = ρ(bb1wb2)

(by hypothesis (b)) = ρ(bb1)ρ(w)ρ(b2)

(by hypothesis (a)) = ρ(b)ρ(b1)ρ(w)ρ(b2)

(by hypothesis (b)) = ρ(b)ρ(b1wb2)

= ρ(g1)ρ(g2).

The case g1 ∈ BwB and g2 ∈ B can be treated in the same way.

Second case: g1 = b1wb2 ∈ BwB and g2 = b3wb4 ∈ BwB. We must further

distinguish two subcases:

First subcase: b2b3 = d ∈ D. Then

ρ(g1g2) = ρ(b1wdwb4)

(by (14.30)) = ρ(b1d̃b4)

(by hypothesis (a)) = ρ(b1)ρ(d̃)ρ(b4)

(by hypothesis (c)) = ρ(b1)ρ(w)ρ(d)ρ(w)ρ(b4)

(by hypothesis (a)) = ρ(b1)ρ(w)ρ(b2)ρ(b3)ρ(w)ρ(b4)

(by hypothesis (b)) = ρ(g1)ρ(g2).

Second subcase: b2b3 ∈ B \D. By (14.29) there exist d1, d2 ∈ D such that

b2b3 = d1b0d2. (14.31)
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Then

ρ(g1g2) = ρ(b1wd1b0d2dwb4)

(by (14.30)) = ρ(b1d̃1wb0wd̃2b4)

(by the �rst case for wb0w ∈ BwB) = ρ(b1d̃1)ρ(wb0w)ρ(d̃2b4)

(by hypothesis (d)) = ρ(b1d̃1)ρ(w)ρ(b0)ρ(w)ρ(d̃2b4)

(by the �rst case) = ρ(b1d̃1w)ρ(b0)ρ(wd̃2b4)

(by (14.30)) = ρ(b1wd1)ρ(b0)ρ(d2wb4)

(by the �rst case and hypothesis (a)) = ρ(b1w)ρ(d1b0d2)ρ(wb4)

(by (14.31)) = ρ(b1w)ρ(b2b3)ρ(wb4)

(by the �rst case and hypothesis (a)) = ρ(b1wb2)ρ(b3wb4).

This shows that ρ is a representation. Its G-irreducibility follows from B-

irreducibility (hypothesis (a)).

We now �x χ ∈ F̂q and consider an indecomposable character ν ∈ F̂∗
q2

(cf.

De�nition 7.2.1). Let j = jχ,ν be the associated generalized Kloostermann

sum (cf. (7.16)). Set V = L(F∗q). We de�ne a map ρ : G → End(V ) by

setting, for all f ∈ V and y ∈ F∗q ,

[ρ(g)f ](y) = ν(δ)χ(δ−1βy−1)f(δα−1y) (14.32)

if g =

(
α β

0 δ

)
∈ B and

[ρ(g)f ](y) = −
∑
x∈F∗q

ν(−γx)χ(αγ−1y−1 + γ−1δx−1)j(γ−2y−1x−1 det(g))f(x)

(14.33)

if g =

(
α β

γ δ

)
∈ G \B ≡ BwB (that is, if γ 6= 0).

Remark 14.6.8 As noted by Terras [159, p. 372], the minus sign in the

right hand side of (14.33) is essential for the de�nition of ρ(g) for g ∈ G \B.
Note that Piatetski-Shapiro [123] de�nes an induced representation by a

right-translation action, namely, given a K-representation (σ, V ), he de�nes

(ρ, IndGKV ) by setting

IndGKV = {f : G→ V : f(kg) = σ(k)f(g) for all k ∈ K and g ∈ G}
(14.34)

and

[ρ(g1)f ](g2) = f(g2g1)
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for all f ∈ IndGKV , and g1, g2 ∈ G (compare with (11.1) and (11.2)). More-

over, if k(y, x; g) is as in [123, p. 40], our ρ is de�ned by

[ρ(g)f ](y) =
∑
x∈F∗q

k(y−1, x−1; g)f(x)

for all f ∈ IndGKV , g ∈ G, and y ∈ F∗q .

Theorem 14.6.9 The above de�ned map ρ is an irreducible unitary G-

representation and ResGA�(Fq)ρ = π (cf. Proposition 14.5.9).

Proof The proof is an application of Proposition 14.6.7.

First of all, we prove that

ResGBρ ∼
(
Res

F∗
q2

F∗q
ν

)
� π.

Indeed, using Theorem 14.4.1, we get{[(
Res

F∗
q2

F∗q
ν � π

)(
α β

0 δ

)]
f

}
(y) = ν(δ)

[
π

(
αδ−1 βδ−1

0 1

)
f

]
(y)

(by Proposition 12.1.4) = ν(δ)χ(βδ−1y−1)f(α−1δy)

(by (14.32)) = [ρ(g)f ](y),

for all

(
α β

0 δ

)
∈ B, f ∈ V , and y ∈ F∗q . This shows that ResGBρ is B-

irreducible, and condition (a) in Proposition 14.6.7 is satis�ed.

We also note that, for all y ∈ F∗q ,

[ρ(w)f ](y) = −
∑
x∈F∗q

ν(−x)j(−x−1y−1)f(x). (14.35)

Let now b1 =

(
α1 β1

0 δ1

)
, b2 =

(
α2 β2

0 δ2

)
∈ B. Then

b1wb2 =

(
β1α2 β1β2 + α1δ2

δ1α2 δ1β2

)
and det(b1wb2) = −α1α2δ1δ2 so that

[ρ(b1wb2)f ](y) = −
∑
x∈F∗q

ν(−δ1α2x)χ(β1δ
−1
1 y−1 + α−1

2 β2x
−1)·

· j(−α1δ2α
−1
2 δ−1

1 x−1y−1)f(y)
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and

[ρ(b1)ρ(w)ρ(b2)f ](y) = ν(δ1)χ(δ−1
1 β1y

−1)[ρ(w)ρ(b2)f ](δ1α
−1
1 y)

(by (14.35)) = −ν(δ1)χ(δ−1
1 β1y

−1)
∑
x∈F∗q

ν(−x)·

· j(−x−1y−1δ−1
1 α1)[ρ(b2)f ](x)

= −
∑
x∈F∗q

ν(−xδ1δ2)χ(δ−1
1 β1y

−1 + δ−1
2 β2x

−1)·

· j(−x−1y−1δ−1
1 α1)f(δ2α

−1
2 x)

(setting z = δ2α
−1
2 x) = −

∑
z∈F∗q

ν(−zδ1α2)χ(β1δ
−1
1 y−1 + α−1

2 β2z
−1)·

· j(−z−1y−1α1δ2α
−1
2 δ−1

1 )f(z).

This shows that ρ(b1wb2) = ρ(b1)ρ(w)ρ(b2), and we have proved condition

(b) in Proposition 14.6.7.

We now consider d =

(
α 0

0 δ

)
∈ D so that wdw =

(
δ 0

0 α

)
(cf. (14.30)).

Then, by (14.35),

[ρ(w)ρ(d)ρ(w)f ](y) = −
∑
x∈F∗q

ν(−x)j(−x−1y−1)[ρ(d)ρ(w)f ](x)

= −
∑
x∈F∗q

ν(−xδ)j(−x−1y−1)[ρ(w)f ](α−1δx)

=
∑
x,z∈F∗q

ν(xzδ)j(−x−1y−1)j(−αδ−1x−1z−1)f(z)

(set t = −x−1z−1αδ−1) = ν(−α)
∑
z∈F∗q

∑
t∈F∗q

ν(t−1)j(t)j(y−1zα−1δt)

 f(z)

(by Corollary 7.3.6) =
∑
z∈F∗q

ν(α)δ1,y−1zα−1δf(z)

= ν(α)f(αδ−1y)

(by (14.32)) = [ρ(wdw)f ](y)

and condition (c) also is proved.

Finally, if b0 =

(
−1 −1

0 1

)
is as in (14.28), then wb0w =

(
1 0

−1 −1

)
so
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that

[ρ(wb0w)f ](y) = −
∑
z∈F∗q

ν(z)χ(z−1 − y−1)j(−z−1y−1)f(z)

while, using again (14.35) and (14.32),

[ρ(w)ρ(b0)ρ(w)f ](y) = −
∑
x∈F∗q

ν(−x)j(−x−1y−1)[ρ(b0)ρ(w)f ](x)

= −
∑
x∈F∗q

ν(−x)j(−x−1y−1)χ(−x−1)[ρ(w)f ](−x)

=
∑
x,z∈F∗q

ν(xz)j(−x−1y−1)j(x−1z−1)χ(−x−1)f(z)

(setting w = −x−1) =
∑
z∈F∗q

ν(−z)

∑
w∈F∗q

j(wy−1)j(w(−z−1))ν(w−1)χ(w)

f(z)

= −
∑
z∈F∗q

ν(z)j(−y−1z−1)χ(z−1 − y−1)f(z),

where the last equality follows from Proposition 7.3.4. Thus condition (d) is

proved as well.

We are only left to show that ρ is unitary. Let f1, f2 ∈ L(F∗q). If g =(
α β

0 δ

)
then we have

〈ρ(g)f1, ρ(g)f2〉 =
∑
x∈F∗q

ν(δ)χ(δ−1βx−1)f1(δα−1x)ν(δ)χ(δ−1βx−1)f2(δα−1x)

=(∗)
∑
y∈F∗q

f1(y)f2(y)

= 〈f1, f2〉

where (∗) follows from the substitution y = δα−1x and the fact that |ν(·)| =
|χ(·)| = 1.
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Similarly, if g =

(
α β

γ δ

)
with γ 6= 0, then

〈ρ(g)f1, ρ(g)f2〉 =
∑
y∈F∗q

∑
x,z∈F∗q

ν(−γx)χ(αγ−1y−1 + γ−1δx−1)·

· j(γ−2y−1x−1 det(g))f1(x)ν(−γz)

· χ(αγ−1y−1 + γ−1δz−1)j(γ−2y−1z−1 det(g))f2(z)

=
∑
x,z∈F∗q

f1(x)f2(z)ν(xz−1)χ[γ−1δ(x−1 − z−1)]·

·
∑
y∈F∗q

j(γ−2y−1x−1 det(g))j(γ−2y−1z−1 det(g))

(by Proposition 7.3.5) =
∑
x,z∈F∗q

f1(x)f2(z)ν(xz−1)χ[γ−1δ(x−1 − z−1)]δx,z

= 〈f1, f2〉.

In the following, we write ρν (resp. jν) to emphasize the dependence of

the representation ρ (resp. the generalized Kloosterman sum) from the in-

decomposable character ν.

Theorem 14.6.10 Let µ and ν be indecomposable characters of F∗q2. Then
the following conditions are equivalent.

(a) the representations ρµ and ρν are equivalent;

(b) µ = ν or µ = ν;

(c) jµ = jν and µ|F∗q = ν|F∗q .

Proof The implication (b) ⇒ (c) follows immediately from the de�nitions,

and the converse, namely (c) ⇒ (b), is Theorem 7.3.7. The fact that (c)

implies (a) is trivial. We are only left to prove (a) ⇒ (c). We thus suppose

that ρµ ∼ ρν . Then there exists an invertible operator T : L(F∗q) → L(F∗q)
such that

Tρµ(g) = ρν(g)T

for all g ∈ G. Since, taking into account Theorem 14.6.9,

ResGA�(Fq)ρµ = ResGA�(Fq)ρν = π

and π is A�(Fq)-irreducible, we deduce that T = λIL(F∗q) for some λ ∈ C\{0},
so that

ρµ(g) = ρν(g)
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for all g ∈ G.
In particular, for all x, δ ∈ F∗q and f ∈ L(F∗q) we have:

ρµ

(
1 0

0 δ

)
= ρν

(
1 0

0 δ

)
so that

µ(δ)f(δx) = ν(δ)f(δx)

and therefore

µ(δ) = ν(δ). (14.36)

This shows that µ|F∗q = ν|F∗q . Similarly, from (14.35) and the equality

ρµ(w) = ρν(w) we deduce∑
x∈F∗q

µ(−x)jµ(−x−1y−1)f(x) =
∑
x∈F∗q

ν(−x)jν(−x−1y−1)f(x),

for all y ∈ F∗q , which implies (taking into account (14.36)) that

jµ(x) = jν(x) (14.37)

for all x ∈ F∗q .

Corollary 14.6.11 The set {ρν : ν indecomposable character of F∗q2} coin-
cides with the set Cusp of all irreducible cuspidal representations of G.

Proof Let ν be an indecomposable character of F∗q2 . By Theorem 14.6.9,

ResGA�(Fq)ρν = π (and ρν is irreducible) so that, by virtue of Corollary 14.6.5,

ρν ∈ Cusp (alternatively, keeping in mind dimρν = q − 1, to show that ρν
is cuspidal one may refer to the discussion in the second proof of Theorem

14.6.3). By Remark 14.6.4 (cf. also the second proof of Theorem 14.6.3),

there are exactly q(q−1)
2 pairwise non-equivalent irreducible cuspidal repre-

sentations. On the other hand, the number of indecomposable characters

is q(q − 1): thus, the ρνs exhaust Cusp (and, in fact, since ρν = ρν , each

cuspidal representation is listed twice).

14.7 Whittaker models and Bessel functions

In this section, we expose the the Piatetsky-Schapiro's theory of Whittaker

models and Bessel functions. Our approach, however, is based on our the-

ory of multiplicity-free triples (see Chapter 13): this way, we clarify many

intricate points and simplify calculations.
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Fix a nontrivial character (χ,C) ∈ Û ≡ F̂q. By Theorem 14.6.3, the

induced representation (IndGUχ, Ind
G
UC) is multiplicity free and contains all

the irreducible representations of G of dimension greater than 1. Let (ρ, V )

be an arbitrary irreducible G-representation with dimV > 1, so that, by the

above, dimHomG(ρ, IndGUχ) = 1. We �x an operator T ρ ∈ HomG(ρ, IndGUχ),

which is also an isometry (so that, T ρ is de�ned up to a complex constant

of modulus 1). The subspace T ρV ≤ IndGUC is called the Whittaker model

of ρ. Note that it does not depend on T ρ and, for all v ∈ V , the function

T ρv : G→ C satis�es

[T ρv](gu) = χ(u)[T ρv](g) (14.38)

for all g ∈ G, v ∈ V and u ∈ U (by de�nition of IndGUχ), and

[T ρv](h−1g) = [T ρρ(h)v](g) (14.39)

for all g, h ∈ G, v ∈ V (because T ρ is an intertwiner and, again, by de�nition

of IndGUχ). Finally, since T
ρ is an isometry we have

‖T ρv‖IndGUC = ‖v‖V .

In particular, T ρv = 0⇔ v = 0.

Proposition 14.7.1 Let (ρ, V ) be an irreducible G-representation satisfying

dimV > 1. Then

(i)

ResGA�(Fq)V ∼ J(V )⊕ Vπ

where J(V ) is the Jacquet module (see Section 14.5) and (π, Vπ) is

the unique q − 1 dimensional irreducible representation of A�(Fq).
(ii) Let v ∈ J(V ) then

ρ

(
1 β

0 1

)
v = v

for all

(
1 β

0 1

)
∈ U .

(iii) dimV > dimJ(V ).

Proof (i) It is an immediate consequence of the following facts: (ρ, V ) is

contained in IndGUχ ∼ IndGA�(Fq)π so that ResGA�(Fq)V contains Vπ with mul-

tiplicity one. If (ρ, V ) is cuspidal, then ResGA�(Fq)ρ ∼ π (cf. Corollary 14.6.5)

and J(V ) = 0 (by de�nition). If (ρ, V ) is parabolic, we may invoke Propo-

sition 14.5.9.
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(ii) If J(V ) is nontrivial, then by Theorem 12.1.3 and Proposition 14.5.9

we have

ResGA�(Fq)
[
ρ|J(V )

]
=

{
either Ψ1 ⊕Ψ2

or Ψ

and Ψ is trivial on U .

(iii) This follows immediately from (i).

The following is an elementary but useful identity.

Lemma 14.7.2 Let (ρ, V ) be an irreducible G-representation with dimV > 1.

Let also v ∈ V , α ∈ F∗q and β ∈ Fq. Then we have:

[T ρv]

(
α β

0 1

)
= χ(α−1β)[T ρv]

(
α 0

0 1

)
.

Proof

[T ρv]

(
α β

0 1

)
= [T ρv]

[(
α 0

0 1

)(
1 α−1β

0 1

)]
(by (14.38)) = χ(α−1β)[T ρv]

(
α 0

0 1

)
.

Proposition 14.7.3 Let (ρ, V ) be an irreducible G-representation with dimV >

1 and de�ne a linear map R : V → L(F∗q) by setting

[Rv](x) = [T ρv]

(
x 0

0 1

)
for all v ∈ V , x ∈ F∗q. Then R is a surjective A-homomorphism (cf. (12.2))

and its kernel is exactly J(V ).

Proof Suppose that v ∈ J(V ). Then, for α ∈ F∗q , β ∈ Fq we have

[T ρv]

(
α β

0 1

)
= [T ρv]

[(
α −β
0 1

)−1(
α 0

0 1

)]

(by (14.39)) =

[
T ρρ

(
1 −β
0 1

)
v

](
α 0

0 1

)
(by Proposition 14.7.1.(ii)) = [T ρv]

(
α 0

0 1

)
.
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Then, using Lemma 14.7.2, we deduce that

[T ρv]

(
α 0

0 1

)
= [T ρv]

(
α β

0 1

)
= χ(α−1β)[T ρv]

(
α 0

0 1

)

for all β ∈ Fq, and this implies that [T ρv]

(
α 0

0 1

)
≡ [Rv](α) = 0 for all α ∈

F∗q (since χ is nontrivial). That is, v ∈ KerR, showing that J(V ) ⊂ Ker(R).

Let us prove that KerR is A�(Fq)-invariant. If α, γ ∈ F∗q , β ∈ Fq and

v ∈ KerR then, taking into account (14.39), we have[
T ρρ

(
γ β

0 1

)
v

](
α 0

0 1

)
= [T ρv]

(
γ−1α −γ−1β

0 1

)
(by Lemma 14.7.2) = χ(−α−1β)[T ρv]

(
γ−1α 0

0 1

)
(v ∈ KerR) = 0.

Then, by Proposition 14.7.1.(i), the kernel of R must equal either J(V ) or

J(V ) ⊕ Vπ = V . Let us show that the second possibility cannot occur.

Indeed, Ker(R) = V implies [T ρv](1G) = 0 for all v ∈ V . From (14.39) we

then deduce that [T ρv](g) = [T ρρ(g−1)v](1G) = 0 for all v ∈ V and g ∈ G,
contradicting the fact that T ρ is an isometry. The fact that R commutes

with the A-representations on V and L(F∗q) is obvious.

Now consider again an irreducible G-representation (ρ, V ) with dimV > 1.

Since it is contained in IndGUχ with multiplicity one, by Frobenius reciprocity

ResGUρ contains χ with multiplicity one. That is, there exists v0 ∈ V , ‖v0‖ =

1 such that

ρ(u)v0 = χ(u)v0 (14.40)

for all u ∈ U . Moreover, if v ∈ V satis�es ρ(u)v = χ(u)v for all u ∈ U , then
v must be a multiple of v0. Clearly, v0 is de�ned up to a complex multiple

of modulus one; Piatetski-Shapiro called it the Bessel vector associated with

the representation (ρ, V ) (and the character χ ∈ Û).
We can now apply our theory of multiplicity-free triples developed in Chap-

ter 13. By (13.31), T ρ may be expressed by means of

[T ρv](g) =

√
dρ
|G/U |

〈v, ρ(g)v0〉. (14.41)

The Bessel (or spherical) function associated with ρ (and χ) is de�ned by
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setting

ϕρ(g) = 〈v0, ρ(g)v0〉 ≡

√
|G/U |
dρ

[T ρv](g) (14.42)

for all g ∈ G, see (13.32). Clearly ϕρ(1G) = 1.

Proposition 14.7.4 The Bessel function ϕρ satis�es

ϕρ
(
α 0

0 1

)
= 0

for all α ∈ F∗q \ {1}.

Proof On the one hand, for all α ∈ F∗q , β ∈ Fq, we have

ϕρ
(
α β

0 1

)
=

〈
v0, ρ

[(
1 −β
0 1

)−1(
α 0

0 1

)]
v0

〉

=

〈
ρ

(
1 −β
0 1

)
v0, ρ

(
α 0

0 1

)
v0

〉
(by (14.40)) = χ(β)ϕρ

(
α 0

0 1

)
.

On the other hand

ϕρ
(
α β

0 1

)
=

√
|G/U |
dρ

[T ρv0]

(
α β

0 1

)

(by Lemma 14.7.2) = χ(α−1β)

√
|G/U |
dρ

[T ρv0]

(
α 0

0 1

)
= χ(α−1β)ϕρ

(
α 0

0 1

)
.

If α 6= 1, letting β vary in Fq, we deduce that ϕρ
(
α 0

0 1

)
= 0.

First of all, we determine the Bessel vectors and Bessel functions associated

with parabolic representations. These representations (see Section 14.5) are

obtained as induced representations: if µ = χψ1,ψ2 (with ψ1 6= ψ2 or ψ1 = ψ2)

then the representation space of IndGBµ is

V = {f : G→ C : f(gb) = µ(b)f(g), for all g ∈ G, b ∈ B}. (14.43)

Now, if ψ1 6= ψ2, then it is irreducible, while if ψ1 = ψ2 = ψ, we have
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(see Theorem 14.5.6.(ii)) IndGBµ = χ̂ψ,ψ = χ̂0
ψ ⊕ χ̂1

ψ, where χ̂0
ψ is one-

dimensional and χ̂1
ψ is (irreducible and) q-dimensional. Since IndGUχ does

not contain one-dimensional G-representations (by Theorem 14.6.3), for ev-

ery T ∈ HomG(χ̂ψ,ψ, Ind
G
Uχ) we have Vχ̂0

ψ
⊆ KerT .

Proposition 14.7.5With the notation above and keeping in mind the Bruhat

decomposition (cf. Lemma 14.2.4), the Bessel vector f0 ∈ V is given by{
f0(b) = 0 for all b ∈ B
f0(uwb) = 1√

qµ(b)χ(u) for all b ∈ B, u ∈ U.
(14.44)

Proof Let f0 be a function satisfying (14.44). It is a straightforward compu-

tation to check that f0 belongs to V (cf. (14.43)). Moreover, for all u, u′ ∈ U
and b ∈ B, we have

f0(u−1b) = 0 = χ(u)f0(b)

and

f0(u−1u′wb) =
1
√
q
χ(u)µ(b)χ(u′) = χ(u)f0(u′wb)

that is, f0 belongs to the χ-component of ResGU Ind
G
Bµ.

In the case ψ1 = ψ2 = ψ, the one-dimensional representation χ̂0
ψ cannot

contain a χ-component, since χ ∈ Û is non-trivial, while ResGU χ̂
0
ψ is trivial by

(14.18) since det(u) = 1 for all u ∈ U . This can be alternatively deduced by

using Frobenius reciprocity and recalling that χ̂0
ψ is not contained in IndGUχ

(cf. Theorem 14.6.3).

Finally, by (11.4) and using the Bruhat decomposition, we have

〈f0, f0〉 =
1

|B|
∑
g∈G
|f0(g)|2

(by (14.44)) =
1

|B|
∑

g∈UwB
|f0(g)|2

=
1

|B|
∑
u∈U

∑
b∈B
|f0(uwb)|2

(by (14.44) and |U | = q) =
1

|B| · |U |
∑
u∈U

∑
b∈B
|µ(b)| · |χ(u)|

=
1

|B|
∑
b∈B
|µ(b)| · 1

|U |
∑
u∈U
|χ(u)|

= 1.
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Corollary 14.7.6 Let ρ = χ̂ψ1,ψ2 be a parabolic representation. Then, with

the same notation as in Proposition 14.7.5, we have

[T ρf ](g) =

√
dρ
|G|

∑
u∈U

f(guw)χ(u)

for all f ∈ V (cf. (14.43)) and g ∈ G.

Proof Let f ∈ V and g ∈ G. By (14.41) we have

[T ρf ](g) =

√
dρ
|G/U |

〈f, ρ(g)f0〉IndGBµ

=

√
dρ
|G/U |

1

|B|
∑
h∈G

f(h)f0(g−1h)

(setting h = gt) =

√
dρ
|G/U |

1

|B|
∑
t∈G

f(gt)f0(t)

(by Proposition 14.7.5) =

√
dρ
|G|

1

|B|
∑
u∈U

∑
b∈B

f(guwb)µ(b)χ(u)

(by (14.43)) =

√
dρ
|G|

∑
u∈U

f(guw)χ(u).

Corollary 14.7.7 With the same notation as in Corollary 14.7.6, the spher-

ical function associated with ρ is given by

ϕρ(g) =
1
√
q

∑
u∈U

f0(guw)χ(u)

for all g ∈ G.

Proof Set f = f0 in Corollary 14.7.6 and use (14.42).

It is interesting to analyze a special value of ϕρ.
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Proposition 14.7.8With the same notation as in Corollary 14.7.7, we have

ϕρ
(

0 α

1 0

)
=

1

q

∑
x,y∈F∗q :
xy=−α

ψ1(x)ψ2(y)χ(x+ y)

for all α ∈ F∗q.

Proof First of all, note that, for x 6= 0, the Bruhat decomposition yields(
α 0

x 1

)
=

(
1 αx−1

0 1

)(
0 1

1 0

)(
x 1

0 −αx−1

)
so that by Proposition 14.7.5

f0

(
α 0

x 1

)
=

1
√
q
µ

(
x 1

0 −αx−1

)
χ

(
1 αx−1

0 1

)
=

1
√
q
ψ1(x)ψ2(−αx−1)χ(αx−1).

(14.45)

From Corollary 14.7.7, the identity

(
0 α

1 0

)(
1 x

0 1

)(
0 1

1 0

)
=

(
α 0

x 1

)
,

and f0

(
α 0

0 1

)
= 0, we then deduce that

ϕρ
(

0 α

1 0

)
=

1
√
q

∑
x∈F∗q

f0

(
α 0

x 1

)
χ(x)

(by (14.45)) =
1

q

∑
x∈F∗q

ψ1(x)ψ2(−αx−1)χ(x− αx−1)

(y = −αx−1) =
1

q

∑
x,y∈F∗q :
xy=−α

ψ1(x)ψ2(y)χ(x+ y).

We now examine the Bessel vector and the Bessel function for a cuspidal

representation (ρ, V ) (cf. De�nition 14.6.2). Let {fx : x ∈ F∗q} be the

orthonormal basis of V = L(F∗q), where

fx(y) = δx,y =

{
1 if y = x

0 if y 6= x
(14.46)

for all x, y ∈ F∗q .
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Proposition 14.7.9

(i) f1 is the Bessel vector for ρ.

(ii) The associated intertwining operator is given by:

[T ρf ](g) =
1√
q2 − 1

ν(δ)χ(βα−1)f(αδ−1)

if g =

(
α β

0 δ

)
∈ B and by

[T ρf ](g) = − 1√
q2 − 1

∑
x∈F∗q

ν[γxdet(g)−1]χ(δγ−1 + γ−1αx−1)

· j(γ−2x−1 det(g))f(x)

if g =

(
α β

γ δ

)
∈ G \B, for all f ∈ V .

(iii) The spherical function of ρ is given by:

ϕρ(g) = ν(δ)χ(βα−1)δα,δ

if g =

(
α β

0 δ

)
∈ B and

ϕρ(g) = −ν[γ det(g)−1]χ(δγ−1 + γ−1α)j(γ−2 det(g))

if g =

(
α β

γ δ

)
∈ G \B.

Proof Let f ∈ V . (i) From (14.32) we have

[ρ

(
1 β

0 1

)
f ](x) = χ(βx−1)f(x)

for all x ∈ F∗q , so that f is a Bessel vector if and only if

χ(βx−1)f(x) = χ(β)f(x)

for all x ∈ F∗q and β ∈ Fq. Since χ is nontrivial, this forces f = λf1 for

some λ ∈ C. In particular, f1 is a Bessel vector. Note that we have actually

reproved that ResGUρ contains χ with multiplicity one and therefore that ρ

is contained in IndGUχ with multiplicity one.
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(ii) Note that, by (14.41),

[T ρf ](g) =

√
q − 1

|G/U |
〈f, ρ(g)f1〉V

(by Proposition 14.3.1) =
1√
q2 − 1

〈ρ(g−1)f, f1〉V

=
1√
q2 − 1

[ρ(g−1)f ](1),

and that (
α β

γ δ

)−1

=

(
δ det(g)−1 −β det(g)−1

−γ det(g)−1 α det(g)−1

)
in particular, (

α β

0 δ

)−1

=

(
α−1 −βα−1δ−1

0 δ−1

)
.

Then it su�ces to apply (14.32) and (14.33), respectively (and det(g−1) =

(det g)−1).

(iii) It is an immediate consequence of (14.41), (ii), and the de�nition of

f1: indeed, ϕ
ρ(g) = [ρ(g−1)f1](1) for all g ∈ G.

Corollary 14.7.10 Let (ρ, V ) be a cuspidal representation, f ∈ V and x ∈
F∗q. Then

[T ρf ]

(
x 0

0 1

)
=

1√
q2 − 1

f(x) (14.47)

and

ϕρ
(
x 0

0 1

)
= f1(x). (14.48)

Moreover, for all β, γ ∈ F∗q,

ϕρ
(

0 β

γ 0

)
= −ν(−β)j(−βγ−1). (14.49)

Proof (14.47) is immediate after Proposition 14.7.9.(ii). (14.48) follows

from Proposition 14.7.9.(iii) (or Proposition 14.7.4) and the de�nition of f1.

Finally, (14.49) is just a particular case of Proposition 14.7.9.(iii).
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Remark 14.7.11 With β = −1 and γ−1 in place of γ, (14.49) yields

j(γ) = −ϕρ
(

0 −1

γ−1 0

)
= −ϕρ

(
0 γ

−1 0

)
,

where the last equality follows from

(
0 −1

γ−1 0

)−1

=

(
0 γ

−1 0

)
and ϕρ(g−1) =

ϕρ(g). Analogously, setting γ = −1 we get

j(β) = −ν(−β)ϕρ
(

0 β

−1 0

)
.

Remark 14.7.12 With Piatetski-Shapiro's de�nition of an induced repre-

sentation (cf. (14.34)), the intertwining operator T ρ in (14.41) (respectively,

the associated spherical function in (14.42)) becomes

[T ρv](g) =

√
dρ
|G/U |

〈ρ(g)v, v0〉

and

ϕρ(g) = 〈ρ(g)v0, v0〉,

for all v ∈ V and g ∈ G. Therefore, our spherical functions are the conjugate
of the Bessel functions Jρ in [123]: indeed, one has

Jρ

(
0 x

−1 0

)
= −j(x)

for all x ∈ F∗q .

For the last result of this section, we identify the subgroup

A =

{(
a 0

0 1

)
: a ∈ F∗q

}
⊂ A�(Fq)

with F∗q via the isomorphism

(
a 0

0 1

)
7→ a.

Proposition 14.7.13 Let (ρ, V ) be a cuspidal representation of G. Then

[T ρf ](g) =
∑
a∈A

[T ρf ](a)ϕρ(a−1g) (14.50)

and

[ρ(g)f ](a) =
∑
a1∈A

f(a1)ϕρ(a−1
1 g−1a) (14.51)



534 Representation theory of GL(2,Fq)

for all f ∈ V , g ∈ G, and a ∈ A.

Proof (14.50) is an immediate consequence of (14.47) and the explicit ex-

pressions in Proposition 14.7.9.(ii) and (iii).

We now prove (14.51). Let g ∈ G and a ∈ A. Then, by (14.47),

[ρ(g)f ](a) =
√
q2 − 1[T ρρ(g)f ](a)

(by (14.39)) =
√
q2 − 1[T ρf ](g−1a)

(by (14.50)) =
√
q2 − 1

∑
a1∈A

[T ρf ](a1)ϕρ(a−1
1 g−1a)

(by (14.47)) =
∑
a1∈A

f(a1)ϕρ(a−1
1 g−1a).

For another approach, we refer to [86].

14.8 Gamma coe�cients

Following Piatetski-Schapiro [123], we introduce another set of functions,

connected with the representation theory of GL(2,Fq) that may be expressed

in terms of Gauss sums (cf. Section 7.4). We recall (see Section 10.5) that if

(ρ, V ) is a representation of a �nite group G, then, denoting by V ′ the dual

space of V , the associated adjoint representation is the G-representation

(ρ′, V ′) de�ned by setting

[ρ′(g)ϕ](v) = ϕ[ρ(g−1)v]

for all g ∈ G, v ∈ V and ϕ ∈ V ′. Moreover, the associated character is given

by χρ
′
(g) = χρ(g−1) = χρ(g), for all g ∈ G.

Suppose now that (ρ, V ) is an irreducible representation of G = GL(2,Fq)
with dimV > 1. We say that ω ∈ F̂∗q is an exceptional character for ρ if ρ is

parabolic and

ρ = χ̂ψ1,ψ2 with ψ1 = ω = ω−1 or ψ2 = ω = ω−1

or

ρ = χ̂1
ψ with ψ = ω = ω−1.

By Proposition 14.5.9, ω is exceptional for (ρ, V ) if and only if ω is contained

in ResGAρ|J(V ), that is, ω is contained in
(
ResGAρ

)′ |J(V ′).
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Proposition 14.8.1 Let ω ∈ F̂∗q and suppose that it is not exceptional for

ρ. Then ω is contained in
(
ResGAρ

)′
with multiplicity one.

Proof If ω ∈ F̂∗q is not exceptional, then ω it is not contained in ResGAρ|J(V )

and, by Corollary 12.1.5, it is contained in ResGAρ|Vπ with multiplicity one.

By Proposition 14.7.1.(i) it is contained in ResGAρ with multiplicity one. From

the discussion above we deduce that ω is contained in
(
ResGAρ

)′
with multi-

plicity one.

Lemma 14.8.2 (De�nition and existence of Γρ(ω)) Let ω ∈ F̂∗q and sup-
pose that it is nonexceptional for (ρ, V ). Then there exists Γρ(ω) = Γρ,χ(ω) ∈
C such that

Γρ(ω)
∑
x∈F∗q

[T ρv]

(
x 0

0 1

)
ω(x) =

∑
x∈F∗q

[T ρv]

(
0 x

1 0

)
ω(x)

for all v ∈ V .

Proof De�ne ϕ and ψ in V ′ by setting

ϕ(v) =
∑
x∈F∗q

[T ρv]

(
x 0

0 1

)
ω(x)

and

ψ(v) =
∑
x∈F∗q

[T ρv]

(
0 x

1 0

)
ω(x)

for all v ∈ V . Then

ϕ

[
ρ

(
α 0

0 1

)
v

]
=
∑
x∈F∗q

[
T ρρ

(
α 0

0 1

)
v

](
x 0

0 1

)
ω(x)

(by (14.39)) =
∑
x∈F∗q

[T ρv]

(
xα−1 0

0 1

)
ω(x)

(setting x = yα) = ω(α)
∑
y∈F∗q

[T ρv]

(
y 0

0 1

)
ω(y)

= ω(α)ϕ(v),

so that, for α ∈ A,

[ρ′(α)ϕ](v) = ϕ[ρ(α−1)v] = ω(α)ϕ(v)



536 Representation theory of GL(2,Fq)

for all v ∈ V , that is, ρ′(α)ϕ = ω(α)ϕ.

Similarly,

ψ

[
ρ

(
α 0

0 1

)
v

]
= ω(α)ψ(v),

so that we also have ρ′(α)ψ = ω(α)ψ, for α ∈ A, and, by Proposition 14.8.1,

there exists Γρ(ω) ∈ C such that ψ = Γρ(ω)ϕ.

Corollary 14.8.3 Γρ(ω) may be expressed in terms of the Bessel function

ϕρ (see (14.42)):

Γρ(ω) =
∑
x∈F∗q

ϕρ
(

0 x

1 0

)
ω(x). (14.52)

Proof If v0 is a Bessel vector, then Lemma 14.8.2 with v = v0 implies (recall

that ϕρ
(
x 0

0 1

)
=
√
|G/U |
dρ

[T ρv0]

(
x 0

0 1

)
= 0 for x 6= 1, see Proposition

14.7.4, and ϕρ(1G) = 1)

Γρ(ω)[T ρv0]

(
1 0

0 1

)
=
∑
x∈F∗q

[T ρv0]

(
0 x

1 0

)
ω(x)

which in turn yields the desired identity.

We can use (14.52) to de�ne Γρ(ω) also for exceptional characters and

cuspidal representations.

De�nition 14.8.4 Let ρ be an irreducible G-representation with dimρ > 1.

Then the complex-valued function Γρ(·), de�ned by means of (14.52), is

called the Gamma coe�cient associated with ρ (and the �xed character

χ ∈ Û).

We recall (see De�nition 7.4.1) that for χ ∈ F̂q and ψ ∈ F̂∗q , the associated
Gauss sum is de�ned as

g(ψ, χ) =
∑
x∈Fq

χ(x)ψ(x)

where we have set ψ(0) =

{
0 if ψ 6= 1

1 if ψ = 1.
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Proposition 14.8.5 Suppose that ρ is parabolic. Then, with the same no-

tation as in Theorem 14.5.6, and the beginning of this section, we have

Γρ(ω) =
ω(−1)

q
g(ψ1ω, χ)g(ψ2ω, χ).

In particular, |Γρ(ω)| = 1.

Proof By Proposition 14.7.8 and Corollary 14.8.3 we have:

Γρ(ω) =
1

q

∑
x∈F∗q

∑
r,s∈F∗q :
rs=−x

ψ1(r)ψ2(s)χ(r + s)ω(−rs)

=
ω(−1)

q

∑
x∈F∗q

∑
r,s∈F∗q :
rs=−x

(ψ1(r)ω(r)χ(r))(ψ2(s)ω(s)χ(s))

=
ω(−1)

q

∑
r∈F∗q

ψ1(r)ω(r)χ(r)
∑
s∈F∗q

ψ2(s)ω(s)χ(s)

=
ω(−1)

q
g(ψ1ω, χ)g(ψ2ω, χ).

Just note that ψ1ω, ψ2ω 6= 1, because ω is not exceptional for ρ so that the

sum
∑

r∈F∗q is in fact the sum
∑

r∈Fq (and, similarly, for the sums in s).

Since |g(ψ, χ)| = √q (cf. Theorem 7.4.3.(vii)), we get |Γρ(ω)| = 1.

Remark 14.8.6 If we use a di�erent character in place of χ, say χ̃, we get

a di�erent value of Γρ(ω). Since there exists α ∈ F∗q such that χ̃(x) = χ(αx)

for all x ∈ Fq (cf. Proposition 7.1.1), we deduce that, for ρ parabolic, the

Gamma coe�cient with respect to χ̃ is

Γρ,χ̃(ω) = ω(α)2ψ1(α)ψ2(α)Γρ,χ(ω).

Proposition 14.8.7 Suppose that ρ is the cuspidal representation associated

with the indecomposable character ν ∈ F̂∗
q2
. Then, denoting simply by Tr and

N the trace and the norm of the extension Fq2/Fq (see Section 6.7), we have

Γρ(ω) = −ω(−1)

q

∑
t∈F∗

q2

ν(t)ω(tt)χ(t+ t)

= −ω(−1)

q
g(ν−1(ω ◦ Tr)−1, χ ◦N)

for every ω ∈ F̂∗q. In particular, |Γρ(ω)| = 1.
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Proof By De�nition 14.8.4 we have

Γρ(ω) =
∑
x∈F∗q

ϕρ
(

0 x

1 0

)
ω(x)

(by (14.49)) = −
∑
x∈F∗q

ν(−x)j(−x)ω(x)

(by (7.16)) = −1

q

∑
x∈F∗q

ν(−x)ω(x)
∑
t∈F∗

q2
:

tt=−x

χ(t+ t)ν(t)

= −1

q

∑
x∈F∗q

ν(x)ω(−x)
∑
t∈F∗

q2
:

tt=x

χ(t+ t)ν(t)

(Hilbert Satz 90) = −1

q

∑
t∈F∗

q2

ν(tt)ω(−tt)χ(t+ t)ν(t)

= −ω(−1)

q

∑
t∈F∗

q2

ν(t)ω(tt)χ(t+ t)

= −ω(−1)

q

∑
t∈F∗

q2

ν(t)ω(tt)χ(t+ t)

= −ω(−1)

q
g(ν−1(ω ◦ Tr)−1, χ ◦N).

Since |g(·, ·)| =
√
|Fq2 | = q (cf. Theorem 7.4.3.(vii)), we also have |Γρ(ω)| =

1.

Remark 14.8.8 As in Remark 14.8.6, if χ̃ is another character of Fq and

χ̃(x) = χ(αx), then, for a cuspidal representation ρ we have

Γρ,χ̃(ω) = ν(α)ω(α)2Γρ,χ(ω).

14.9 Character theory of GL(2,Fq)

In this section we compute the characters of all irreducible representations

of G as well as the Gelfand-Graev character ξ of GL(2,Fq), that is, the

character of IndGUχ, where χ is, as usual, a �xed nontrivial character of U .
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Proposition 14.9.1 Let ξ denote the character of IndGUχ. Then

ξ(g) =


(q − 1)2(q + 1) if g = 1G

1− q if g is conjugate to

(
1 1

0 1

)
0 otherwise,

for all g ∈ G.

Proof First of all, note that D
∐
DUw is a set of representatives for the left

cosets of U in G:

G =

(∐
d∈D

dU

)∐∐
d∈D,
u∈U

duwU

 . (14.53)

Indeed, one just needs to recall the Bruhat decomposition and to note that,

for g =

(
α β

γ δ

)
∈ G \B (i.e. with γ 6= 0) we have

(
x 0

0 y

)(
1 z

0 1

)(
0 1

1 0

)(
1 v

0 1

)
=

(
xz x+ xzv

y yv

)
=

(
α β

γ δ

)
if and only if y = γ, v = δγ−1, x = β − αδγ−1 ≡ −γ−1 det(g) and z =

−αγ det(g)−1. In other words, any g ∈ G \ B may be written in a unique

way in the form g = duwu1, with d ∈ D and u, u1 ∈ U .
First of all we clearly have

ξ(1G) = dimIndGUχ =
|G|
|U |

= (q2 − 1)(q − 1).

From Frobenius character formula (cf. (11.18)) it follows that

ξ(g) =
∑
d∈D:

d−1gd∈U

χ(d−1gd) +
∑

d∈D,u∈U :
(duw)−1gduw∈U

χ(wu−1d−1gduw). (14.54)

In particular, if g is not conjugated to an element of U , we have ξ(g) = 0.

Recalling Theorem 14.3.2, we have that U\{1G} is contained in the conjugacy

class of

(
1 1

0 1

)
. We deduce that ξ(g) = 0 if g is not conjugated to

(
1 1

0 1

)
.

We are only left to the case when g is conjugated to

(
1 1

0 1

)
. If h =
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α β

γ δ

)
∈ G, and setting ∆ = det(h), we have

(
α β

γ δ

)−1(
1 1

0 1

)(
α β

γ δ

)
=

(
α β

γ δ

)−1 [(
1 0

0 1

)
+

(
0 1

0 0

)](
α β

γ δ

)
=

(
1 0

0 1

)
+

(
δ∆−1 −β∆−1

−γ∆−1 α∆−1

)(
0 1

0 0

)(
α β

γ δ

)
=

(
1 + γδ∆−1 δ2∆−1

−γ2∆−1 1− γδ∆−1

)
(14.55)

so that h−1

(
1 1

0 1

)
h is not in U if γ 6= 0. Therefore, for the expression of

ξ

(
1 1

0 1

)
in (14.54), only the �rst sum may be di�erent from 0 (the second

one vanishes since (duw)−1

(
1 1

0 1

)
duw does not even belong to B).

Thus,

ξ

(
1 1

0 1

)
=
∑
x,y∈F∗q

χ

[(
x 0

0 y

)−1(
1 1

0 1

)(
x 0

0 y

)]

=
∑
x,y∈F∗q

χ

(
1 x−1y

0 1

)
=
∑
x,y∈F∗q

χ(x−1y)

= (q − 1)
∑
x∈F∗q

χ(x)

= 1− q,

where the last equality follows from the orthogonality relation

0 = 〈χ,1〉 =
∑
x∈Fq

χ(x) = 1 +
∑
x∈F∗q

χ(x). (14.56)

In the following table (where in the �rst column there are the irreducible

representations and in the �rst line the representatives of the conjugacy

classes), we give the values of the characters of the higher dimensional rep-

resentations of G on each conjugacy class, as well as the cardinality of the

corresponding irreducible representations (here, x, y ∈ F∗q and z ∈ Fq2 \ Fq).
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x 0
0 x

) (
x 0
0 y

)
y 6=x

(
x 1
0 x

) (
0 −zz
1 z + z

)
|irr|

χ̂0
ψ ψ(x2) ψ(xy) ψ(x2) ψ(zz) q − 1

χ̂1
ψ qψ(x2) ψ(xy) 0 −ψ(zz) q − 1

χ̂ψ1,ψ2

(q+1)
ψ1(x)ψ2(x)

ψ1(x)ψ2(y)
+ψ1(y)ψ2(x)

ψ1(x)ψ2(x) 0 (q−1)(q−2)
2

ρν (q − 1)ν(x) 0 −ν(x) −ν(z)− ν(z) q(q−1)
2

Table 14.2. The character table of GL(2,Fq).

In order to compute the characters of χ̂1
ψ and χ̂ψ1,ψ2 we need the following

remarks:

(a) h−1

(
x 1

0 x

)
h ∈ B if and only if h ∈ B. The proof follows the same

lines as in (14.55).

(b) An element (uw)−1duw, with u ∈ U and d ∈ D \Z, belongs to B if and

only if u = 1G. Indeed, an element in Uw is of the form

uw =

(
1 β

0 1

)(
0 1

1 0

)
=

(
β 1

1 0

)
and its inverse is (

0 1

1 0

)(
1 −β
0 1

)
=

(
0 1

1 −β

)

so that if d =

(
x 0

0 y

)
∈ D \ Z (x, y ∈ F∗q , x 6= y) then

(uw)−1duw =

(
0 1

1 −β

)(
x 0

0 y

)(
β 1

1 0

)
=

(
y 0

β(x− y) x

)
.

(c) An element in C \ Z is not conjugate to any B (see table in Theorem

14.3.2) because its eigenvalues (as a 2× 2 matrix) are not in Fq.
(d) G = B

∐
(
∐
u∈U uwB) is the decomposition into left B-cosets (cf. (14.53)

and the Bruhat decomposition).

Proof of the character table. The �rst row follows from (14.18).
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From (d) and Frobenius character formula, it follows that the character of

χ̂ψ1,ψ2 evaluated at g ∈ G equals∑
u∈U :

wu−1guw∈B

χψ1,ψ2(wu−1guw) + χψ1,ψ2(g)1B(g). (14.57)

By (c), this is equal to 0 if g ∈ C \Z. If g =

(
x 0

0 x

)
∈ Z, then it is equal to

(q + 1)χψ1,ψ2

(
x 0

0 x

)
= (q + 1)ψ1(x)ψ2(x).

From (b), it follows that if g =

(
x 0

0 y

)
∈ D \Z, then all terms but the one

corresponding to u = 1G in the summation in (14.57) are equal to zero, so

that (14.57) is equal to

χψ1,ψ2

(
x 0

0 y

)
+ χψ1,ψ2

(
y 0

0 x

)
= ψ1(x)ψ2(y) + ψ1(y)ψ2(x).

From (a), it follows that if g =

(
x 1

0 x

)
, then all terms in the summation

(14.57) are equal to zero, so that χψ1,ψ2

(
x 1

0 x

)
= ψ1(x)ψ2(x).

The values of the character of χ̂1
ψ may be found in the same way, setting

ψ1 = ψ2 in the previous formulas and using the identities

χ̂ψ,ψ = χ̂0
ψ + χ̂1

ψ and χ̂0
ψ = ψ(det(g)).

In order to compute the character of a cuspidal representation, we use (14.51)

which yields the matrix coe�cients of ρν in terms of the spherical functions.

Indeed, if {fx : x ∈ F∗q} is as (14.46), then the character of ρν has the

following expression: ∑
x∈F∗q

〈ρν(g)fx, fx〉 =
∑
x∈F∗q

[ρν(g)fx](x)

(by (14.51) and A ∼= F∗q) =
∑
a∈A

ϕρν (a−1g−1a).
(14.58)

For g =

(
x 0

0 x

)
, (14.58) is equal to

(q − 1)ϕρν (g−1) = (q − 1)ν(x−1) = (q − 1)ν(x)
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where the �rst equality follows from Proposition 14.7.9.(iii). For g =

(
x 1

0 x

)
we have g−1 =

(
x−1 −x−2

0 x−1

)
and

(
α−1 0

0 1

)(
x−1 −x−2

0 x−1

)(
α 0

0 1

)
=

(
x−1 −α−1x−2

0 x−1

)

so that, in this case, (14.58) is equal to

∑
α∈F∗q

ϕρν
(
x−1 −α−1x−2

0 x−1

)
=
∑
α∈F∗q

ν(x−1)χ(−x · α−1x−2)

= ν(x)
∑
α∈F∗q

χ(α−1x−1)

= −ν(x),

where the �rst equality follows from Proposition 14.7.9.(iii) and the last one

from (14.56).

For g =

(
x 0

0 y

)
, with x 6= y, we have

(
α−1 0

0 1

)(
x−1 0

0 y−1

)(
α 0

0 1

)
=

(
x−1 0

0 y−1

)

so that, in this case, (14.58) is equal to (q − 1)ϕρν
(
x−1 0

0 y−1

)
and this

vanishes, by Proposition 14.7.9.(iii).

Finally, if g =

(
0 −zz
1 z + z

)
, z ∈ Fq2 \Fq, setting β = −zz, δ = z+ z we have

g−1 =

(
−β−1δ 1

β−1 0

)
and

(
α−1 0

0 1

)(
−β−1δ 1

β−1 0

)(
α 0

0 1

)
=

(
−β−1δ α−1

αβ−1 0

)
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so that (14.58) is equal to (by Proposition 14.7.9.(iii))

−
∑
α∈F∗q

ν(−β · αβ−1)χ(−β−1δ · α−1β)j[α−2β2(−β−1)]

= −
∑
α∈F∗q

ν(−α)χ(α−1δ)j(−α−2β)

(by (7.16)) = −1

q

∑
α∈F∗q

χ(α−1δ)
∑

xx∈F∗
q2

:

xx=−α−2β

χ(x+ x)ν(−αx)

(y = −αx) = −1

q

∑
α∈F∗q

χ(α−1δ)
∑
y∈F∗

q2
:

yy=−β

χ[−α−1(y + y)]ν(y)

(α−1 7→ α) = −1

q

∑
y∈F∗

q2
:

yy=−β

ν(y)
∑
α∈F∗q

χ(α[δ − (y + y)])

= −1

q

∑
y∈F∗

q2
:

y 6=z,z
yy=−β

ν(y)
∑
α∈F∗q

χ(α[δ − (y + y)])

− 1

q
ν(z)

∑
α∈F∗q

χ(α[δ − (z + z)])

− 1

q
ν(z)

∑
α∈F∗q

χ(α[δ − (z + z)])

(δ = z + z) =∗ −
1

q

∑
y∈F∗

q2
:

y 6=z,z
yy=−β

ν(y)
∑
γ∈F∗q

χ(γ)− q − 1

q
[ν(z) + ν(z)]

(by (14.56)) = −1

q
[(q − 1)[ν(z) + ν(z)]−

∑
y∈F∗

q2
:

y 6=z,z
yy=−β

ν(y)]

= −1

q
[q[ν(z) + ν(z)]−

∑
y∈F∗

q2
:

yy=−β

ν(y)]

(by Proposition 7.2.3) = −ν(z)− ν(z),

where =∗ follows from the fact that, assuming yy = −β, we have δ = y + y
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if and only if y = z or y = z (see Section 6.8) and, if δ 6= y+ y, then we may

set γ = α[δ − (y + y)] ∈ F∗q . �

Proposition 14.9.2 Let ρµ and ρν be cuspidal representations associated

with the indecomposable characters µ and ν, respectively. Suppose that

• ρµ and ρν have the same central character;

• Γρµ = Γρν .

Then ρµ ∼ ρν .

Proof From the character table of GL(2,Fq) (cf. Table 14.2) we deduce that

µ|F∗q = ν|F∗q . (14.59)

Moreover, Corollary 14.8.3 implies that∑
x∈F∗q

ϕρµ
(

0 x

1 0

)
ω(x) =

∑
x∈F∗q

ϕρν
(

0 x

1 0

)
ω(x)

for all ω ∈ F̂∗
q2
, so that

ϕρµ
(

0 x

1 0

)
= ϕρν

(
0 x

1 0

)
.

By using (14.49) and taking into account (14.59), we deduce that jρµ = jρν .

From Theorem 14.6.10, we �nally deduce that ρµ ∼ ρν .

14.10 Induced representations from GL(2,Fq) to GL(2,Fqm).

In this section we give a series of formulas for the decomposition of the

induced representation Ind
GL(2,Fqm )

GL(2,Fq)
ρ for every irreducible representation ρ

of GL(2,Fq). These formulas may be easily obtained from the character

table of GL(2,Fq) (see. Table 14.2). The proofs are tedious calculations, but
the results are very interesting. We limit ourselves to:

• give all the preliminary results and introduce a suitable notation in order

to simplify the exposition;

• give all the formulas;

• prove one formula to indicate the method and leaving the remaining for-

mulas as exercises;

• indicate an alternative proof for one formula that avoids the use of the

character table, suggesting the reader how to develop similar techniques.
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We �x a prime power q = pn and an integer m ≥ 2. We set G = GL(2,Fq)
and Gm = GL(2,Fqm).

• We indicate by ψ,ψ1, and ψ2 characters of F∗q and by χ̂0
ψ, χ̂

1
ψ, and χ̂ψ1,ψ2

the associated parabolic representations of G.

• Similarly, ξ denotes a character of F∗qm .
• Also, ν (respectively µ) denotes an indecomposable character of F∗q2 (re-

spectively F∗q2m) and ρν (respectively ρµ) the associated cuspidal represen-

tation of G (respectively Gm).

• By ξ], ν], and µ] we denote the restriction of these characters to F∗q , that

is, ξ] = Res
F∗qm
F∗q

ξ, and so on.

• By µ[ we denote the restriction of µ to F∗q2 , that is, µ
[ = Res

F∗
q2m

F∗
q2

µ. If m

is even, so that Fq2 ⊆ Fqm , then ξ[ is the restriction of ξ to F∗q2 , that is,

ξ[ = Res
F∗qm
F∗
q2
ξ.

• By ν, µ (and ξ, if m is even) we denote the conjugate character, as in

Section 7.2, that is ν(z) = ν(z), for all z ∈ F∗q2 . Warning: recall that ν(z)

is the complex conjugate of ν(z).

• As in Section 7.5, we set Ψ = ψ ◦ N , where N : F∗q2 → Fq is the norm,

that is Ψ(z) = ψ(zz), for all z ∈ F∗q . Similarly, we set Ξ = ξ] ◦N , that is,

Ξ(z) = ξ(zz), for all z ∈ Fq2 .

Clearly,

F̂∗qm → F̂∗q
ξ 7→ ξ]

(14.60)

is a surjective homomorphism of Abelian (indeed cyclic) groups and each ψ

is the image of q
m−1
q−1 characters of F∗qm .

Exercise 14.10.1 Consider the map (14.60) form = 2, so that q
m−1
q−1 = q+1.

Prove that

(1) if ψ is not a square, then it is the image of q + 1 indecomposable

characters;

(2) if ψ is a square and q is odd, then ψ is the image of q − 1 indecom-

posable characters and 2 decomposable characters;

(3) if q is even, then each ψ is a square and the image of q indecomposable

characters and 1 decomposable character.

Hint. Recall Proposition 6.4.4.
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When restricting an irreducible representation from Gm to G we need the

following remarks:

• if m is even, then the conjugacy class of G of type (b3) represented by(
0 −zz
1 z + z

)
is contained in a conjugacy class of type (b2) in Gm (because

Gm contains G2), and it is represented by

(
z 0

0 z

)
;

• if m is odd, then

(
0 −zz
1 z + z

)
is of type (b3) also in Gm.

(
x 0
0 x

) (
x 0
0 y

)
y 6=x

(
x 1
0 x

) (
0 −zz
1 z + z

)
ResGm

G χ̂0
ξ ξ(x2) ξ(xy) ξ(x2) ξ(zz)

ResGm

G χ̂1
ξ qmξ(x2) ξ(xy) 0

ξ(zz) m even
−ξ(zz) m odd

ResGm

G χ̂ξ1,ξ2
(qm+1)
ξ1(x)ξ2(x)

ξ1(x)ξ2(y)
+ξ1(y)ξ2(x)

ξ1(x)ξ2(x)
ξ1(z)ξ2(z)

+ξ1(z)ξ2(z)
m even

0 m odd

ResGm

G ρµ (qm − 1)µ(x) 0 −µ(x)
0 m even

−µ(z)− µ(z) m odd

Table 14.3. The �character table� of the restrictions from Gm to G.

We shall use a series of abbreviated notation:

•
⊕

ξ]=ψ indicates the direct sum over all ξ ∈ F̂∗qm such that ξ] = ψ;

•
⊕

(ξ])2=ν] indicates the direct sum over all ξ ∈ F̂∗qm such that (ξ])2 = ν],

that is, ξ(x2) = ν(x) for all x ∈ F∗q ;
•
⊕

(ξ1ξ2)]=ν] indicates the direct sum over all pairs {ξ1, ξ2} where ξ1, ξ2 ∈
F̂∗qm , ξ1 6= ξ2 such that (ξ1ξ2)] = ν]: each unordered pair is counted once;

• 	(ξ1ξ2)[=ν indicates that we subtract (from the previous sum) the sum over

all pairs {ξ1, ξ2} such that (ξ1ξ2)[ = ν, that is, ξ1(z)ξ2(z) = ν(z) for all

z ∈ F∗q2 ; note that (ξ1ξ2)[ = ν implies (ξ1ξ2)] = ν], so that we subtract

terms that are e�ectively present (in the previous sum).

Other notation will be clear from the context. Finally, we observe that

ResGmG χ̂0
ξ cannot contain χ̂

1
ψ, χ̂ψ1,ψ2 , nor ρν , because it is one-dimensional.



548 Representation theory of GL(2,Fq)

Therefore, by Frobenius reciprocity, IndGmG χ̂1
ψ, IndGmG χ̂ψ1,ψ2 , and IndGmG ρν

do not contain one-dimensional representation of Gm (cf. Corollary 11.2.3).

We are now in position to give the desired decomposition formulas for the

induced representations. For three cases we have to distinguish between the

case where m is odd or even.

Suppose that m is odd. Then,

IndGmG χ̂0
ψ =

qm−1 − 1

q2 − 1

 ⊕
(ξ])2=ψ2

χ̂1
ξ

⊕ ⊕
(ξ1ξ2)]=ψ2

χ̂ξ1,ξ2


⊕ ⊕

µ]=ψ2

ρµ

⊕⊕
ξ]=ψ

χ̂0
ξ


⊕ ⊕

ξ]1=ξ]2=ψ

χ̂ξ1,ξ2

	
⊕
µ[=Ψ

ρµ

 ,

(14.61)

IndGmG χ̂1
ψ =

q(qm−1 − 1)

q2 − 1

 ⊕
(ξ])2=ψ2

χ̂1
ξ

⊕ ⊕
(ξ1ξ2)]=ψ2

χ̂ξ1,ξ2


⊕ ⊕

µ]=ψ2

ρµ

⊕⊕
ξ]=ψ

χ̂1
ξ


⊕ ⊕

ξ]1=ξ]2=ψ

χ̂ξ1,ξ2

⊕
⊕
µ[=Ψ

ρµ

 ,

(14.62)

and

IndGmG ρν =
qm−1 − 1

q + 1

 ⊕
(ξ])2=ν]

χ̂1
ξ

⊕ ⊕
(ξ1ξ2)]=ν]

χ̂ξ1,ξ2


⊕⊕

µ]=ν]

ρµ

⊕⊕
µ[=ν

ρµ

 .

(14.63)

Suppose now that m is even. Then,
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IndGmG χ̂0
ψ =

q(qm−2 − 1)

q2 − 1

 ⊕
(ξ])2=ψ2

χ̂1
ξ

⊕ ⊕
(ξ1ξ2)]=ψ2

χ̂ξ1,ξ2


⊕ ⊕

µ]=ψ2

ρµ

⊕⊕
ξ]=ψ

χ̂0
ξ


⊕⊕

ξ]=ψ

χ̂1
ξ

⊕
 ⊕
ξ]1=ξ]2=ψ

χ̂ξ1,ξ2


⊕ ⊕

(ξ1ξ2)[=Ψ

χ̂ξ1,ξ2

 ,

IndGmG χ̂1
ψ =

qm − 1

q2 − 1

 ⊕
(ξ])2=ψ2

χ̂1
ξ

⊕ ⊕
(ξ1ξ2)]=ψ2

χ̂ξ1,ξ2


⊕ ⊕

µ]=ψ2

ρµ

⊕
 ⊕
ξ]1=ξ]2=ψ

χ̂ξ1,ξ2


	

 ⊕
(ξ1ξ2)[=Ψ

χ̂ξ1,ξ2

 ,

and

IndGmG ρν =
qm−1 + 1

q + 1

 ⊕
(ξ])2=ν]

χ̂1
ξ

⊕ ⊕
(ξ1ξ2)]=ν]

χ̂ξ1,ξ2


⊕⊕

µ]=ν]

ρµ

	
 ⊕

(ξ1ξ2)[=ν

χ̂ξ1,ξ2

 .
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Finally, the next formula does not depend on the parity of m:

IndGmG χ̂ψ1,ψ2 =
qm−1 − 1

q − 1

 ⊕
(ξ])2=ψ1ψ2

χ̂1
ξ

⊕ ⊕
(ξ1ξ2)]=ψ1ψ2

χ̂ξ1,ξ2


⊕ ⊕

µ]=ψ1ψ2

ρµ

⊕

⊕
ξ]1=ψ1

ξ]2=ψ2

χ̂ξ1,ξ2

 .

(14.64)

Exercise 14.10.2 Prove the seven last decomposition formulas; see Example

14.10.4.

Exercise 14.10.3 Prove that IndG2
G ρν decomposes without multiplicity,

write down the decomposition (it is just (14.63) for m = 2), and check

that the dimension of the left hand side equals the sum of the dimensions of

the irreducible representations in the right hand side.

Example 14.10.4 We show how to derive the seven decomposition formulas

above. We just compute the multiplicity of χ̂0
ψ in ResGmG ρµ for m odd. Let

χµ denote the character of ResGmG ρµ. From Table 14.1, Table 14.2, and Table

14.3 we get

〈χ̂0
ψ, ξ

µ〉 = (qm − 1)
∑
x∈F∗q

ψ(x2)µ(x)− (q2 − 1)
∑
x∈F∗q

ψ(x2)µ(x)

− q2 − q
2

∑
z∈Fq2\Fq

ψ(zz)[µ(z) + µ(z)]

=(∗) (qm − q2)
∑
x∈F∗q

ψ(x2)µ(x)− (q2 − q)
∑
z∈F∗

q2

ψ(zz)µ(z)

+ (q2 − q)
∑
x∈F∗q

ψ(x2)µ(x)

= (qm − q)
∑
x∈F∗q

ψ2(x)µ(x) + (q2 − q)
∑
z∈F∗

q2

Ψ(z)µ(z)

=(∗∗) q(q
2 − 1)(q − 1)

[
qm−1 − 1

q2 − 1
δψ2,µ] − δΨ,µ[

]
where (∗) follows from Fq2 \Fq = F∗q2 \F

∗
q and (∗∗) follows from Proposition
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2.3.5 and Theorem 6.7.2. That is, since |G| = q(q2−1)(q−1), by Proposition

10.2.18, the multiplicity of χ̂0
ψ in ResGmG ρµ is equal to qm−1−1

q2−1
if ψ2 = µ] and

Ψ 6= µ[, while it is equal to qm−1−1
q2−1

− 1 if ψ2 = µ] and Ψ = µ[ (note

that Ψ = µ[ ⇒ ψ2 = µ]). By Frobenius reciprocity, these are also the

multiplicities of ρµ in IndGmG χ̂0
ψ. This leads to the termsqm−1 − 1

q2 − 1

⊕
µ]=ψ2

ρµ

	
⊕
µ[=Ψ

ρµ


in (14.61).

Exercise 14.10.5

(1) Recalling the notation in Section 14.4 (so that, in particular, Ψ is not

ψ ◦N), prove that

• ResGBχ̂
1
ψ = [π �Ψ2]⊕ χψ,ψ;

• ResGBχ̂
1
ψ1,ψ2

= [π �Ψ1Ψ2]⊕ 2χψ1,ψ2 ;

• ResGBρν = π � ν].

Hint. Use the decomposition B = A�(Fq)×Z and compute ResGZ by

means of the character table of G.

(2) Deduce that

IndGB[π �Ψ] =

⊕
ψ2
1=ψ

χ̂1
ψ1

⊕
 ⊕
ψ1ψ2=ψ

χ̂ψ1,ψ2

⊕
⊕
ν]=ψ

ρν


(clearly, the �rst term is absent if ψ is not a square).

Exercise 14.10.6 Denote by Bm the Borel subgroup of Gm and, for ξ1, ξ2 ∈
F̂∗qm , denote by Ξ1 � Ξ2 the corresponding representation of Bm. From

Exercise 12.1.9, Exercise 11.1.10, and the decomposition B = A�(Fq) × Z,
deduce that

IndBmB [Ξ1 � Ξ2] =
qm−1 − 1

q − 1

 ⊕
ξ]2=ψ2

(πqm � Ξ2)

⊕

⊕
ξ]1=ψ1

ξ]2=ψ2

(Ψ1 �Ψ2)

 .

Exercise 14.10.7
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(1) Use Exercise 14.10.6, the de�nition of χ̂ψ1,ψ2 , and transitivity of in-

duction, to give another proof of (14.64).

Hint. Recall that χψ1,ψ2 = Ψ1 � (Ψ1Ψ2).

(2) For the remaining six decomposition formulas for IndGmG , try to �nd

alternative proofs that avoid the character tables but make use of the

theory of induced representations.

14.11 Decomposition of tensor products

In this section we give a complete series of formulas for the decomposition of

the tensor products of irreducible representations of GL(2,Fq). In general,

this is a very di�cult problem: for instance, for the symmetric group (cf.

Section 2.9 of the monograph by James and Kerber [82]) no complete solution

is known; nowadays it constitutes an active area of research (see [162] for a

recent contribution and a reference to the current literature). See also our

recent papers [35, 36] for a suitable harmonic analysis of tensor products of

irreducible representations. The style is the same as in the previous section

and we keep the same notation therein. In addition, we also write

•
⊕

ν]=(ψ1ψ2)2 to denote the direct sum over all indecomposable characters

ν ∈ F∗q2 such that ν] = (ψ1ψ2)2;

•
⊕

ψ3ψ4=ψ2
1ν
]
1
for the direct sum over all unordered pairs {ψ3, ψ4} ⊂ F̂∗q ,

with ψ3 6= ψ4 and such that ψ3ψ4 = ψ2
1ν

]
1, and so on.

The formulas below are given without proof; they may be proved by means

of the character table of GL(2,Fq) (see Table 14.2) and the table of conjugacy
classes (see Table 14.1). At the end, we give an example of such computa-

tions.

We have the following trivial identities:

χ̂0
ψ ⊗ χ̂0

ψ0
= χ̂0

ψψ0
χ̂0
ψ0
⊗ χ̂1

ψ = χ̂1
ψψ0

χ̂0
ψ0
⊗ χ̂ψ1,ψ2 = χ̂ψ0ψ1,ψ0ψ2 χ̂0

ψ ⊗ ρν = ρΨν .

Moreover,

χ̂1
ψ1
⊗ χ̂1

ψ2
= χ̂0

ψ1ψ2
⊕ χ̂1

ψ1ψ2
⊕ χ̂1

−ψ1ψ2

⊕

 ⊕
ψ3ψ4=(ψ1ψ2)2

χ̂ψ3,ψ4

⊕
 ⊕
ν]=(ψ1ψ2)2

ρν

 ,



14.11 Decomposition of tensor products 553

where the third term appears only if q is odd.

χ̂1
ψ1
⊗ χ̂ψ2,ψ3 =

 ⊕
ψ2=ψ2

1ψ2ψ3

χ̂1
ψ

⊕
 ⊕
ψ4ψ5=ψ2

1ψ2ψ3

χ̂ψ4,ψ5


⊕ χ̂ψ1ψ2,ψ1ψ3 ⊕

 ⊕
ν]=ψ2

1ψ2ψ3

ρν

 .

χ̂1
ψ1
⊗ ρν =

 ⊕
ψ2=ψ2

1ν
]

χ̂1
ψ

⊕
 ⊕
ψ2ψ3=ψ2

1ν
]

χ̂ψ2,ψ3



⊕

 ⊕
ν]1=ψ2

1ν
]

ν1 6=Ψ1ν,Ψ1ν

ρν1

 .

χ̂ψ1,ψ2 ⊗ χ̂ψ3,ψ4 =
(
δψ1ψ3,ψ2ψ4χ̂

0
ψ1ψ3

)
⊕
(
δψ1ψ4,ψ2ψ3χ̂

0
ψ1ψ4

)
⊕

 ⊕
ψ2=ψ1ψ2ψ3ψ4

χ̂1
ψ

⊕ (δψ1ψ3,ψ2ψ4χ̂
1
ψ1ψ3

)

⊕
(
δψ1ψ4,ψ2ψ3χ̂

1
ψ1ψ4

)
⊕

 ⊕
ψ5ψ6=ψ1ψ2ψ3ψ4

χ̂ψ5,ψ6


⊕

 ⊕
ν]=ψ1ψ2ψ3ψ4

ρν

⊕ χ̂ψ1ψ3,ψ2ψ4 ⊕ χ̂ψ1ψ4,ψ2ψ3 ,

where the last but one (respectively, last) term appears only if ψ1ψ3 6= ψ2ψ4

(respectively, ψ1ψ4 6= ψ2ψ3).

χ̂ψ1,ψ2 ⊗ ρν1 =

 ⊕
ψ3ψ4=ψ1ψ2ν

]
1

χ̂ψ3,ψ4


⊕

 ⊕
ν]=ψ1ψ2ν

]
1

ρν

⊕
 ⊕
ψ2=ψ1ψ2ν

]
1

χ̂1
ψ

 ,

where the last term appears only if ψ1ψ2ν
]
1 is a square.
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Finally,

ρν1 ⊗ ρν2 = (δν1,ν2 + δν1,ν2) χ̂0
ν]1
⊕

 ⊕
ψ2=(ν1ν2)]

Ψ 6=ν1ν2,ν1ν2

χ̂1
ψ



⊕

 ⊕
ψ1ψ2=(ν1ν2)]

χ̂ψ1,ψ2

⊕
 ⊕

ν]=(ν1ν2)]

ν 6=ν1ν2,ν1ν2,ν1ν2,ν1ν2

ρν

 ,

(14.65)

where the second term appears only if (ν1ν2)] is a square and ν1 6= ν2, ν2.

Exercise 14.11.1 Prove the above decomposition formulas (cf. Example

below).

Example 14.11.2 We show how to compute the multiplicity of ρν in ρν1 ⊗
ρν2 . Denoting by χν , χν1 , and χν2 the characters of ρν , ρν1 , and ρν2 , respec-

tively, and recalling that, by (10.63), the character of ρν1 ⊗ ρν2 is χν1χν2 , we
have

〈χν1χν2 , χν〉 = (q − 1)3
∑
x∈F∗q

ν1(x)ν2(x)ν(x)− (q2 − 1)
∑
x∈F∗q

ν1(x)ν2(x)ν(x)

− q2 − q
2

∑
z∈Fq2\Fq

[ν1(z) + ν1(z)]·[ν2(z) + ν2(z)]·
[
ν(z) + ν(z)

]
=
[
(q − 1)3(q − 1)− (q2 − 1)(q − 1)

]
δ(ν1ν2)],ν]

+ 4(q2 − q)(q − 1)
∑
x∈F∗q

ν1(x)ν2(x)ν(x)

− (q2 − q)
∑
z∈F∗

q2

[
ν1(z)ν2(z)ν(z) + ν1(z)ν2(z)ν(z)

+ν1(z)ν2(z)ν(z) + ν1(z)ν2(z)ν(z)
]

= |G|
[
δ(ν1ν2)],ν] − (δν1ν2,ν + δν1ν2,ν + δν1ν2,ν + δν1ν2,ν)

]
,

and this explains the last term in (14.65).



Appendix 1

Chebyshëv polynomials

De�nition A1.0.1 Let I ⊆ R be an interval. We say that the real valued

functions φ1, φ2, . . . , φn de�ned on I form a Chebyshëv set on I if, for all

choices of a1, a2, . . . , an ∈ R, the function
∑n

j=1 ajφj has at most n − 1

distinct zeroes in I.

Proposition A1.0.2 Let {φ1, φ2, . . . , φn} be a Chebyshëv set on the interval

I. Then

(i) if t1, t2, . . . , tn ∈ I are distinct, then the vectors

zk = (φk(t1), φk(t2), . . . , φk(tn)),

k = 1, 2, . . . , n are R-linearly independent in Rn;
(ii) if t1, t2, . . . , tn+1 ∈ I are distinct and s1, s2, . . . , sn+1 are real numbers

that alternate in sign (i.e. sjsj+1 < 0 for j = 1, 2, . . . , n), then

the vectors wk = (φk(t1), φk(t2), . . . , φk(tn+1)) k = 1, 2, . . . , n and

wn+1 = (s1, s2, . . . , sn+1) are R-linearly independent in Rn+1.

Proof (i) The linear relation
∑n

j=1 ajzj = 0 yields
∑n

j=1 ajφj(tk) = 0, for

k = 1, 2, . . . , n which forces, by de�nition of a Chebyshëv set, aj = 0 for all

j = 1, 2, . . . , n.

(ii) Suppose that there exist a1, a2, . . . , an+1 ∈ R such that
∑n+1

j=1 ajwj =

0. This is equivalent to saying

a1φ1(tk) + a2φ2(tk) + · · ·+ anφn(tk) = −an+1sk

for all k = 1, 2, . . . , n+ 1. If an+1 = 0 we can argue as in (i). Otherwise we

deduce that
∑n

j=1 ajφj alternates the sign at the points t1, t2, . . . , tn+1. We

may suppose that t1 < t2 < · · · < tn+1 and conclude, by virtue of the mean

value Theorem, that there exist t̃k ∈ (tk, tk+1) such that
∑n

j=1 ajφj(t̃k) = 0

555
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for k = 1, 2, . . . , n. By de�nition of a Chebyshëv set, we get the aj = 0 for

all j = 1, 2, . . . , n and thus also an+1 = 0.

Proposition A1.0.3

(i) The functions 1, cos θ, cos 2θ, . . . , cosnθ constitute a Chebyshëv set in

[0, π].

(ii) The functions sin θ, sin 2θ, . . . , sinnθ constitute a Chebyshëv set in

(0, π).

Proof (i) First of all, note that cos kθ may be written as a polynomial of

degree k in cos θ. Indeed, De Moivre's formula yields

cos kθ + i sin kθ = (cos θ + i sin θ)k =

k∑
h=0

(
k

h

)
(cos θ)k−hih(sin θ)h (A.1)

so that (since ih is real if and only if h is even)

cos kθ =

[k/2]∑
h=0

(
k

2h

)
(−1)h(cos θ)k−2h(sin θ)2h

and, using the identity sin2 θ = 1 − cos2 θ, we get the desired expression.

Therefore, a function of the form φ(θ) = a0 +a1 cos θ+ · · ·+an cosnθ can be

written in the form φ(θ) = P (cos θ) where P is a real polynomial of degree

≤ n. Since P has at most n roots in [−1, 1] and the map θ 7→ cos θ is a

bijection between [0, π] and [−1, 1], we deduce that φ(θ) has at most n roots

in [0, π].

(ii) From (A.1) we also deduce that

sin kθ =

[(k−1)/2]∑
h=0

(
k

2h+ 1

)
(−1)h(cos θ)k−2h−1(sin θ)2h+1

that yields an expression of sin kθ
sin θ as a polynomial of degree k − 1 in cos θ.

Then, for 0 < θ < π, we have that ψ(θ) = b1 sin θ+ b2 sin 2θ+ · · ·+ bn sinnθ

can be written in the form

ψ(θ) = sin θ

(
b1 + b2

sin 2θ

sin θ
+ · · ·+ bn

sinnθ

sin θ

)
= sin θP (cos θ)

where P is a polynomial of degree ≤ n− 1. Then we may conclude as in (i).



Chebyshëv polynomials 557

In the proof of Proposition A1.0.3 we have shown the existence of polyno-

mials Tn ∈ R[x] and Un ∈ R[x] of degree n such that

cosnθ = Tn(cos θ) and
sin(n+ 1)θ

sin θ
= Un(cos θ).

The Tn's are called the Chebyshëv polynomials of the �rst kind. As we shall

see (cf. Lemma A.3) the Un's are the so-called Chebyshëv polynomials of the

second kind.

Exercise A1.0.4 Show that the Chebyshëv polynomials of the �rst kind

are expressed as

Tn(x) =

[n/2]∑
k=0

(
n

2k

)
(x2 − 1)kxn−2k

and satisfy:

(1) the recurrence relation

Tn+1(x) = 2xTn(x)− Tn−1(x) for n ≥ 1 with T0(x) = 1, T1(x) = x;

(2) the di�erential equation

(1− x2)y′′ − xy′ + n2y = 0;

(3) the orthogonality relations

∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

=


0 if n 6= m

π if n = m = 0

π/2 if n = m 6= 0;

(4) the multiplicative property: TmTn = 1
2(Tn+m + T|m−n|);

(5) the semigroup property: Tm(Tn(x)) = Tmn(x);

(6) the discrete orthogonality relations

1

2
T0(cos

jπ

n
)T0(cos

kπ

n
) +

n−1∑
r=1

Tr(cos
jπ

n
)Tr(cos

kπ

n
)

+
1

2
Tn(cos

jπ

n
)Tn(cos

kπ

n
) =


0 if j 6= k

n/2 if j = k 6= 0, n

n if j = k = 0, n;
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(7) the dual discrete orthogonality relations:

1

2
Tj(1)Tk(1) +

n−1∑
r=1

Tj(cos
πr

n
)Tk(cos

πr

n
)

+
1

2
Tj(−1)Tk(−1) =


0 if j 6= k

n/2 if j = k 6= 0, n

n if j = k = 0, n;

(8) the associated generating function is:

∞∑
n=0

Tn(x)tn =
1− tx

1− 2tx+ t2
.

Exercise A1.0.5 LetXn = {0, 1, . . . , n} and X̃n = {cos jπn : j = 0, 1, . . . , n}.
The map F : L(X̃n)→ L(Xn), de�ned by setting

[Ff ](k) =
1

n
f(1)Tk(1) +

2

n

n−1∑
j=1

f(cos
jπ

n
)Tk(cos

jπ

n
) +

1

n
f(−1)Tk(−1)

for all f ∈ L(X̃n) and k ∈ Xn, is called the Discrete Chebyshëv Transform

(see the monograph [22] by Briggs and Henson for more on this). Show that

the following inversion formula holds:

f(cos
jπ

n
) =

1

2
[Ff ](0)T0(cos

jπ

n
)+

n−1∑
k=1

[Ff ](k)Tk(cos
jπ

n
)+

1

2
[Ff ](n)Tn(cos

jπ

n
),

for all f ∈ L(X̃n) and j = 0, 1, . . . , n. Moreover, for n even, analyze the re-

lations between the Discrete Chebyshëv Transform and the Discrete Fourier

Transform of an even function (4.6).

De�nition A1.0.6 The Chebyshëv polynomials of the second kind are the

polynomials Um(x), m ∈ N, de�ned by means of the initial positions U0(x) =

1 and U1(x) = 2x and the recurrence relation

Um+1(x) = 2xUm(x)− Um−1(x) (A.2)

for all m ≥ 1.

Note that degUm(x) = m and the leading coe�cient of Um(x) is 2m, for

all m ∈ N.
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Exercise A1.0.7 Show that the Chebyshëv polynomials of the second kind

are expressed as

Un(x) =

[n/2]∑
k=0

(
n+ 1

2k + 1

)
(x2 − 1)kxn−2k

and satisfy:

(1) the di�erential equation

(1− x2)y′′ − 3xy′ + n(n+ 2)y = 0;

(2) the orthogonality relations∫ 1

−1
Un(x)Um(x)

√
1− x2dx =

π

2
δn,m;

(3) the associated generating function is:

∞∑
n=0

Un(x)tn =
1

1− 2tx+ t2
;

(4) �nally prove that T ′n+1(x) = (n+ 1)Un(x).

Lemma A1.0.8

Um(cos θ) =
sin(m+ 1)θ

sin θ
(A.3)

for all m ∈ N and θ ∈ R \ πZ.

Note that we may interpret
sin(m+ 1)kπ

sin kπ
, k ∈ Z, as the limit of

sin(m+ 1)θ

sin θ
for θ → kπ that may be evaluated by means of L'Hôpital's rule, so that (A.3)

becomes

Um(cos kπ) ≡ Um((−1)k) = (−1)km(m+ 1).

Proof We prove it by induction on m. Clearly,

U0(cos θ) = 1 =
sin(0 + 1)θ

sin θ

and

U1(cos θ) = 2 cos θ =
sin 2θ

sin θ
=

sin(1 + 1)θ

sin θ
,
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showing the base of induction. Moreover,

sin(m+ 2)θ = sinmθ cos 2θ + sin 2θ cosmθ

(cos 2θ = 2 cos2 θ − 1) = 2 cos2 θ sinmθ − sinmθ + 2 sin θ cos θ cosmθ

= 2 cos θ(cos θ sinmθ + sin θ cosmθ)− sinmθ

= 2 cos θ sin(m+ 1)θ − sinmθ

and therefore, assuming that (A.3) holds both for m and m− 1, we have:

sin(m+ 2)θ

sin θ
= 2 cos θ

sin(m+ 1)θ

sin θ
− sinmθ

sin θ

(by inductive hypothesis) = 2 cos θUm(cos θ)− Um−1(cos θ)

(by (A.2)) = Um+1(cos θ).

We now de�ne a �rst set of modi�ed Chebyshëv polynomials of the second

kind. Let us �x, once and for all, a positive integer k, and de�ne Pm ∈ R[x],

m ∈ N, by setting

Pm(x) = (k − 1)
m
2 Um

(
x

2
√
k − 1

)
. (A.4)

Lemma A1.0.9 We have P0(x) = 1, P1(x) = x and, for all m ≥ 1,

Pm+1(x) = xPm(x)− (k − 1)Pm−1(x).

Proof

xPm(x)− (k − 1)Pm−1(x) = x(k − 1)
m
2 Um

(
x

2
√
k − 1

)
− (k − 1)

m+1
2 Um−1

(
x

2
√
k − 1

)
= (k − 1)

m+1
2

[
2

x

2
√
k − 1

Um

(
x

2
√
k − 1

)
−Um−1

(
x

2
√
k − 1

)]
(by (A.2)) = (k − 1)

m+1
2 Um+1

(
x

2
√
k − 1

)
= Pm+1(x).
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Another modi�ed version of the Um's is provided by the polynomialsXm ∈
R[x], m ∈ N, de�ned by setting

Xm(x) = Um

(x
2

)
. (A.5)

Lemma A1.0.10 The following properties hold for the polynomials Xm,

m ∈ N:

(i) Xm(2 cos θ) =
sin(m+ 1)θ

sin θ
.

(ii) Xm+1(x) = xXm(x)−Xm−1(x).

(iii) The roots of Xm are Ah = 2 cos hπ
m+1 for h = 1, 2, . . . ,m.

Proof (i) follows immediately from Lemma (A1.0.8), and (ii) is obvious.

Since degXm = m, the polynomial Xm has at most m roots. But by (i) we

have

Xm(2 cos θ) = 0⇔ sin(m+ 1)θ = 0 and sin θ 6= 0

⇔ (m+ 1)θ = hπ with h ∈ Z and (m+ 1)6 | h,

so that the Ah's as in the statement are precisely the m distinct roots of Xm.

Comparing (A.4) and (A.5), we deduce that

Pm(x) = (k − 1)m/2Xm(
x√
k − 1

) (A.6)

for all m ∈ N.
Now we give deeper and more di�cult properties of the polynomials Xm's.

Lemma A1.0.11

(i) For 0 ≤ ` ≤ h we have:

X`Xh =
∑̀
m=0

X`+h−2m.

(ii) For m ∈ N

Xm(x)

x− αm
=

m−1∑
j=0

Xm−1−j(αm)Xj(x),

where αm = 2 cos π
m+1 .
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Proof (i) The proof is by induction of `. For ` = 0 it is trivial (X0 = 1),

while for ` = 1 we have X1(x) = x and, by virtue of Lemma A1.0.10.(ii),

X1Xh = xXh = Xh+1 +Xh−1.

The inductive step is the following: for 2 ≤ ` ≤ h we have, taking into

account Lemma A1.0.10.(ii),

X`Xh = xX`−1Xh −X`−2Xh

(by inductive hypothesis) = x
`−1∑
m=0

X`−1+h−2m −
`−2∑
m=0

X`−2+h−2m

=

`−2∑
m=0

(xX`+h−2m−1 −X`+h−2m−2) + xXh−`+1

(by Lemma A1.0.10.(ii)) =
`−2∑
m=0

X`+h−2m +Xh−` +Xh−`+2

=
∑̀
m=0

X`+h−2m.

(ii) First of all, note that Lemma A1.0.10.(ii) may be rewritten as

xXj = Xj−1 +Xj+1. (A.7)

Moreover,

X0(αm) = 1 (A.8)

X1(αm)− αmX0(αm) = αm − αm = 0 (A.9)

and, for m ≥ 2:

Xm−2(αm)− αmXm−1(αm) = −Xm(αm) = 0 (A.10)

where the �rst (resp. second) equality follows from Lemma A1.0.10.(ii) (resp.
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(iii)). Therefore,

(x− αm)
m−1∑
j=0

Xm−1−j(αm)Xj(x) = xXm−1(αm)

+
m−1∑
j=1

Xm−1−j(αm)xXj(x)

−
m−1∑
j=0

Xm−j−1(αm)αmXj(x)

(by (A.7) and X1(x) = x) = X1(x)Xm−1(αm)

+
m−1∑
j=1

Xm−j−1(αm) [Xj+1(x) +Xj−1(x)]

−
m−1∑
j=0

Xm−j−1(αm)αmXj(x)

(by rearranging) = X0(x) [Xm−2(αm)−Xm−1(αm)αm]

+
m−2∑
j=1

Xj(x) [Xm−j(αm)

+Xm−j−2(αm)− αmXm−j−1(αm)]

+ [αm − αmX0(αm)]Xm−1(x)

+X0(αm)Xm(x)

= Xm(x)

where the last equality follows from (A.8), (A.9), (A.10) and Lemma A1.0.10.(ii)

applied to the main sum.

We now de�ne a further family of polynomials:

Ym(x) =
X2
m(x)

x− αm
. (A.11)

Since Xm(x) is divisible by x−αm, we deduce that Ym is indeed a polynomial

of degree 2m− 1.

Lemma A1.0.12

Ym(x) =

2m−1∑
i=1

yiXi(x)
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where the coe�cients yi ∈ R are given by the rule

yi =
∑
`

X`(αm), (A.12)

the sum running over all ` satisfying the following conditions:

(1) 0 ≤ ` ≤ min{i− 1, 2m− 1− i};
(2) 2m− 1− i− ` is even.

Proof We have

Ym(x) =
X2
m(x)

x− αm

(by Lemma A1.0.11.(ii)) = Xm(x)
m−1∑
j=0

Xm−j−1(αm)Xj(x)

(by Lemma A1.0.11.(i)) =

m−1∑
j=0

Xm−j−1(αm)

j∑
h=0

Xm+j−2h(x).

(A.13)

In the above sums the summation indices j and h satisfy 0 ≤ j ≤ m− 1 and

−2j ≤ −2h ≤ 0. Thus, if we set i = m+ j − 2h we have

1 ≤ m− j ≤ i = m+ j − 2h ≤ m+ j ≤ 2m− 1

so that

Ym(x) =
2m−1∑
i=1

yiXi(x), (A.14)

where yi =
∑

`X`(αm) with ` = m − j − 1. It remains to determine the

range of ` in terms of the new summation index i. Since 1 ≤ i ≤ 2m − 1

and 0 ≤ ` ≤ m − 1, then the product X`(αm)Xi(x) appears in (A.13) (and

therefore in (A.14)) if and only if, recalling that j = m− 1− `, there exists
0 ≤ h ≤ j such that i = m + j − 2h. Since i + ` = 2m − 1 − 2h then

2m − 1 − i − ` must be even (= 2h), thus showing (2), and the condition

0 ≤ h ≤ j is equivalent to

0 ≤ 2m− 1− i− `
2

(≡ m+ j − i
2

≡ h) ≤ m− 1− `(≡ j)

that is,

0 ≤ 2m− 1− i− ` ≤ 2m− 2− 2`.

This is equivalent to (1).
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Proposition A1.0.13 The coe�cients yi's in Lemma A1.0.12 are all posi-

tive, that is, Ym is a positive linear combination of the Xi's, 1 ≤ i ≤ 2m−1.

Proof By taking the arithmetical mean of the terms appearing in the upper

bound for the index ` in (A.12), we have

min{i− 1, 2m− i− 1} ≤ (i− 1) + (2m− i− 1)

2
= m− 1

so that ` ≤ m−1. Since 2 cos π
`+1 < αm = 2 cos π

m+1 , limx→+∞X`(x) = +∞,

and 2 cos π
`+1 is the largest root of X` (by Lemma A1.0.10.(iii)), we conclude

that X`(αm) > 0 for ` = 0, 1, . . . ,m − 1. As a consequence, (A.12) ensures

that yi > 0 for i = 1, 2, . . . , 2m− 1.

Corollary A1.0.14 For every ε ∈ (0, 1) there exists a polynomial Zε ∈ R[x]

such that

(i) Zε(x) =
∑

j≥0 zε,jXj(x) with zε,j ≥ 0;

(ii) Zε(x) ≤ −1 for x ≤ 2− ε;
(iii) Zε > 0 for x > 2.

Proof We look for Zε of the form

Zε = zYm + z′Ym′ (A.15)

for suitable m,m′ ∈ N and z, z′ > 0. With this choice of the form of Zε,

condition (i) follows from Proposition A1.0.13. Similarly, (iii) follows from

the de�nition of Ym (see (A.11)) and the fact that Ym(x) > 0 for x > αm
and, by de�nition, one always has αm < 2.

Now, if we choose m,m′ in such a way that αm, αm′ > 2−ε, then, arguing
as above, from (A.11) we deduce that the corresponding Zε in (A.15) satis�es

Zε(x) ≤ 0 for x ≤ 2− ε. If, in addition, m and m′ are chosen in such a way

that the numbers (cf. Lemma A1.0.10.(iii)) 2 cos jπ
m+1 , j = 1, 2, . . . ,m (the

roots of Ym) and 2 cos hπ
m′+1 , h = 1, 2, . . . ,m′ (the roots of Y ′m) are all distinct

(for instance, it su�ces to take m′ = m + 1: see Exercise A1.0.15) then we

have

Zε(x) < 0 for x ≤ 2− ε. (A.16)

Since limx→−∞ Zε(x) = −∞ we deduce that M = max(−∞,2−ε] Zε(x) is

negative. Thus from (A.16) we get (ii) by replacing z and z′ by z
−M and

z′

−M , respectively.

Exercise A1.0.15 Show that, for 1 ≤ j ≤ m and 1 ≤ h ≤ m + 1, we have
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j
m+1 6=

h
m+2 .

Hint: write the equation j
m+1 = h

m+2 in the form j
h = 1− 1

m+2 .
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Gauss law of � reciprocity (second proof),

190

Rader
� Winograd algorithm, 163
� algorithm, 164

radix identity
general �, 159
permutational reverse �, 142
reverse �, 154

Ramanujan graph, 316
rational canonical form, 496
regular

2- � segment, 260
� graph, 244
strongly � graph, 249

Reingold-Vadhan-Wigderson theorem, 342
replacement product of graphs, 283
modi�ed �, 291

representation, 351
(matrix) coe�cient of a �, 360
adjoint �, 390
character of a �, 363
commutant of a �, 358
conjugate �, 390
cuspidal �, 513
decomposition of a �, 352
decomposition of tensor products of �s of

GL(2,Fq), 552
degree of a �, 352
dimension of a �, 352
direct sum of �s, 352
equivalence of �s, 353
faithful �, 352
induced �, 409
induced � from GL(2,Fq) to GL(2,Fqm ),

545
in�ation of a �, 432, 506
irreducible �, 352
isotypic component of a �, 366
Jacquet module of a �, 507
kernel of a �, 352
left regular �, 356
multiplicity of a �, 366
multiplicity-free �, 405
permutation �, 382
permutation � of Sn, 383
restriction of a � to a subgroup, 352
restriction of a � to an invariant subspace,

352
right regular �, 357
sign �, 357
spherical �, 485
sub- �, 352
unitary �, 353

restriction
� of a representation to a subgroup, 352
� of a representation to an invariant

subspace, 352
reverse radix identity, 154
Riemann zeta function, 84
elementary asymptotics for the �, 85
Euler product formula for the �, 84

right regular representation, 357
root
� of a polynomial, 67
primitive �, 36

rotation map, 281
Ruritanian map, 142

Schur
� lemma, 358
� theorem on the DFT, 118
converse to � lemma, 360

self-adjoint
� element in a ∗-algebra, 371
� projection, 401
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semidirect product
� with an Abelian group, 435
external �, 290
internal �, 289

sequence
strictly multiplicative �, 82

shu�e permutation, 136
sign representation, 357
similarity identity, 163
simple
� tensor, 394
�graph, 243

solvable group, 497
spectral gap of a graph, 301
spectrum of a graph, 246
spherical
� Fourier transform, 488
� function associated with a � triple, 479
� function for GL(2,Fq), 527
� representation, 485
convolution formula for the � Fourier

transform, 488
inversion formula for the � Fourier

transform, 488
orthogonality relations for � functions, 487,

491
Plancherel formula for the � Fourier

transform, 488
splitting �eld, 180
existence and uniqueness, 180

stabilizer of a point, 381
strictly multiplicative sequence, 82
stride permutation, 136
partial �, 138

strongly regular graph, 249
structure constants of an Hecke algebra, 476
sub-representation, 352
subalgebra, 370
sub�eld, 177
subgraph, 244
symmetric Gelfand pair, 478
symmetric group, 357

Tao's uncertainty principle for cyclic groups,
64

tensor
� form of the eigenidentities, 158
� product of functions, 260
� product of graphs, 267
� product of linear operators, 261
� product of subspaces, 261
� product of two spaces, 394
� product and indiuced representations,

417
decomposition of � products of

representations of GL(2,Fq), 552
internal � product of representations, 397
outer � poduct of representations, 396
simple �, 394

terminal vertex of an oriented edge, 244
theorem

Alon-Boppana �, 309
Alon-Boppana-Serre �, 307
Alon-Boppana-Serre � (Nilli's proof), 315
Alon-Milman �, 296
Alon-Schwartz-Shapira �, 330
Auslander-Feigh-Winograd �, 238
Cauchy � for (not necessarily Abelian)

groups, 21
Cauchy � for Abelian groups, 20
Cayley-Hamilton �, 495
Chebotarëv �, 70
Chevalley �, 235
Chinese remainder �, 9, 10, 13
Dirichlet � L(1, χ) 6= 0, 98
Dirichlet � on primes in arithmetic

progressions, 102
Dodziuk �, 297
Euler �

∑
p prime

1
p

= +∞, 100

Euler �
∑
p prime

1
p

= +∞ (Erd®s' proof),

100
Fermat little �, 9
fundamental � of arithmetic, 5
Gauss � on cyclicity of U(Z/nZ), 35
Gauss totient function �, 8
Gauss-Schur � on the trace of the DFT,

119
Green-Tao �, 102
Hasse-Davenport �, 223
Hilbert Satz 90, 194, 195
Hua-Vandiver-Weil � (homogeneous case),

232
Hua-Vandiver-Weil � (non-homogeneous

case), 233
Mackey intertwining number �, 427
Mackey tensor product �, 431
Mackey-Wigner little group method �, 433
Peter-Weyl �, 366
Reingold-Vadhan-Wigderson �, 342
Schur � on the DFT, 118
Warning �, 235

trace
� of a �eld extension, 194
� of a linear operator, 361
Gauss-Schur theorem on the � of the DFT,

119
Hasse-Davenport identity, 223

transitive
� action, 381
doubly � action, 389

translation operator, 57, 455
triangular graph, 250
trivial path, 245
twiddle
� free identity, 162
� identity, 160
diagonal matrix of � factors, 158

uncertainty principle
� for Abelian groups, 63
Tao's � for cyclic groups, 64

undirected graph, 243
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unipotent matrices subgroup, 497
unipotent matrix, 497
unique factorization domain (UFD), 175
unit, 56
� in a commutative ring, 174
� in an algebra, 371

unital algebra, 56
unitary
� matrix, 353
� operator, 353
� representation, 353

vector
Bessel �, 526
invariant �, 352

vertex
� of a graph, 243, 244
�neighbor, 244
adjacent �, 244
degree of a �, 244
initial � of a path, 245
initial � of an oriented edge, 244
terminal � of a path, 245
terminal � of an oriented edge, 244

Warning theorem, 235
weight of a vertex of the hypercube, 257
Weil-Berezin map, 458
Whittaker model, 524
Wielandt lemma, 387, 388
Winograd
� method, 163
� similarity, 163
generalized � method, 162
Rader � algorithm, 163

wreath product of graphs, 275

zig-zag product of graphs, 286


