143 research outputs found

    Cryptography and Its Applications in Information Security

    Get PDF
    Nowadays, mankind is living in a cyber world. Modern technologies involve fast communication links between potentially billions of devices through complex networks (satellite, mobile phone, Internet, Internet of Things (IoT), etc.). The main concern posed by these entangled complex networks is their protection against passive and active attacks that could compromise public security (sabotage, espionage, cyber-terrorism) and privacy. This Special Issue “Cryptography and Its Applications in Information Security” addresses the range of problems related to the security of information in networks and multimedia communications and to bring together researchers, practitioners, and industrials interested by such questions. It consists of eight peer-reviewed papers, however easily understandable, that cover a range of subjects and applications related security of information

    From Chaos to Pseudorandomness: A Case Study on the 2-D Coupled Map Lattice

    Get PDF
    Applying the chaos theory for secure digital communications is promising and it is well acknowledged that in such applications the underlying chaotic systems should be carefully chosen. However, the requirements imposed on the chaotic systems are usually heuristic, without theoretic guarantee for the resultant communication scheme. Among all the primitives for secure communications, it is well accepted that (pseudo) random numbers are most essential. Taking the well-studied 2-D coupled map lattice (2D CML) as an example, this article performs a theoretical study toward pseudorandom number generation with the 2D CML. In so doing, an analytical expression of the Lyapunov exponent (LE) spectrum of the 2D CML is first derived. Using the LEs, one can configure system parameters to ensure the 2D CML only exhibits complex dynamic behavior, and then collect pseudorandom numbers from the system orbits. Moreover, based on the observation that least significant bit distributes more evenly in the (pseudo) random distribution, an extraction algorithm E is developed with the property that when applied to the orbits of the 2D CML, it can squeeze uniform bits. In implementation, if fixed-point arithmetic is used in binary format with a precision of z bits after the radix point, E can ensure that the deviation of the squeezed bits is bounded by 2(-z) . Further simulation results demonstrate that the new method not only guides the 2D CML model to exhibit complex dynamic behavior but also generates uniformly distributed independent bits with good efficiency. In particular, the squeezed pseudorandom bits can pass both NIST 800-22 and TestU01 test suites in various settings. This study thereby provides a theoretical basis for effectively applying the 2D CML to secure communications

    A Novel Diffusion-Permutation Image Encryption Scheme Based on Spatiotemporal Chaos

    Get PDF
    The spatiotemporal chaos possesses better properties than simple chaotic system, which has attracted more and more attention by the researchers in the image encryption field. This paper presents a novel image encryption scheme based on spatiotemporal chaos. The algorithm uses the spatiotemporal chaos to diffuse plain image and an Arnold map shuffle the positions of pixels. Test results and security analysis not only show that the scheme is characteristic of excellent sensitivity to the original image and keys, large secret key space and high expansibility, but also has excellent effective encryption and strong anti-attacking performance

    Predictability: a way to characterize Complexity

    Full text link
    Different aspects of the predictability problem in dynamical systems are reviewed. The deep relation among Lyapunov exponents, Kolmogorov-Sinai entropy, Shannon entropy and algorithmic complexity is discussed. In particular, we emphasize how a characterization of the unpredictability of a system gives a measure of its complexity. Adopting this point of view, we review some developments in the characterization of the predictability of systems showing different kind of complexity: from low-dimensional systems to high-dimensional ones with spatio-temporal chaos and to fully developed turbulence. A special attention is devoted to finite-time and finite-resolution effects on predictability, which can be accounted with suitable generalization of the standard indicators. The problems involved in systems with intrinsic randomness is discussed, with emphasis on the important problems of distinguishing chaos from noise and of modeling the system. The characterization of irregular behavior in systems with discrete phase space is also considered.Comment: 142 Latex pgs. 41 included eps figures, submitted to Physics Reports. Related information at this http://axtnt2.phys.uniroma1.i

    Lyapunov Exponents for Temporal Networks

    Get PDF
    By interpreting a temporal network as a trajectory of a latent graph dynamical system, we introduce the concept of dynamical instability of a temporal network, and construct a measure to estimate the network Maximum Lyapunov Exponent (nMLE) of a temporal network trajectory. Extending conventional algorithmic methods from nonlinear time-series analysis to networks, we show how to quantify sensitive dependence on initial conditions, and estimate the nMLE directly from a single network trajectory. We validate our method for a range of synthetic generative network models displaying low and high dimensional chaos, and finally discuss potential applications

    An Adaptive Image Encryption Scheme Guided by Fuzzy Models

    Full text link
    A new image encryption scheme using the advanced encryption standard (AES), a chaotic map, a genetic operator, and a fuzzy inference system is proposed in this paper. In this work, plain images were used as input, and the required security level was achieved. Security criteria were computed after running a proposed encryption process. Then an adaptive fuzzy system decided whether to repeat the encryption process, terminate it, or run the next stage based on the achieved results and user demand. The SHA-512 hash function was employed to increase key sensitivity. Security analysis was conducted to evaluate the security of the proposed scheme, which showed it had high security and all the criteria necessary for a good and efficient encryption algorithm were met. Simulation results and the comparison of similar works showed the proposed encryptor had a pseudo-noise output and was strongly dependent upon the changing key and plain image.Comment: Iranian Journal of Fuzzy Systems (2023

    Discovering Functional Communities in Dynamical Networks

    Full text link
    Many networks are important because they are substrates for dynamical systems, and their pattern of functional connectivity can itself be dynamic -- they can functionally reorganize, even if their underlying anatomical structure remains fixed. However, the recent rapid progress in discovering the community structure of networks has overwhelmingly focused on that constant anatomical connectivity. In this paper, we lay out the problem of discovering_functional communities_, and describe an approach to doing so. This method combines recent work on measuring information sharing across stochastic networks with an existing and successful community-discovery algorithm for weighted networks. We illustrate it with an application to a large biophysical model of the transition from beta to gamma rhythms in the hippocampus.Comment: 18 pages, 4 figures, Springer "Lecture Notes in Computer Science" style. Forthcoming in the proceedings of the workshop "Statistical Network Analysis: Models, Issues and New Directions", at ICML 2006. Version 2: small clarifications, typo corrections, added referenc

    Complexity Measures from Interaction Structures

    Full text link
    We evaluate new complexity measures on the symbolic dynamics of coupled tent maps and cellular automata. These measures quantify complexity in terms of kk-th order statistical dependencies that cannot be reduced to interactions between k−1k-1 units. We demonstrate that these measures are able to identify complex dynamical regimes.Comment: 11 pages, figures improved, minor changes to the tex

    Probabilistic and thermodynamic aspects of dynamical systems

    Full text link
    The probabilistic approach to dynamical systems giving rise to irreversible behavior at the macroscopic, mesoscopic, and microscopic levels of description is outlined. Signatures of the complexity of the underlying dynamics on the spectral properties of the Liouville, Frobenius-Perron, and Fokker-Planck operators are identified. Entropy and entropy production-like quantities are introduced and the connection between their properties in nonequilibrium steady states and the characteristics of the dynamics in phase space are explored.info:eu-repo/semantics/publishe
    • 

    corecore