141 research outputs found

    Extracting and Re-rendering Structured Auditory Scenes from Field Recordings

    Get PDF
    International audienceWe present an approach to automatically extract and re-render a structured auditory scene from field recordings obtained with a small set of microphones, freely positioned in the environment. From the recordings and the calibrated position of the microphones, the 3D location of various auditory events can be estimated together with their corresponding content. This structured description is reproduction-setup independent. We propose solutions to classify foreground, well-localized sounds and more diffuse background ambiance and adapt our rendering strategy accordingly. Warping the original recordings during playback allows for simulating smooth changes in the listening point or position of sources. Comparisons to reference binaural and B-format recordings show that our approach achieves good spatial rendering while remaining independent of the reproduction setup and offering extended authoring capabilities

    Array signal processing algorithms for localization and equalization in complex acoustic channels

    No full text
    The reproduction of realistic soundscapes in consumer electronic applications has been a driving force behind the development of spatial audio signal processing techniques. In order to accurately reproduce or decompose a particular spatial sound field, being able to exploit or estimate the effects of the acoustic environment becomes essential. This requires both an understanding of the source of the complexity in the acoustic channel (the acoustic path between a source and a receiver) and the ability to characterize its spatial attributes. In this thesis, we explore how to exploit or overcome the effects of the acoustic channel for sound source localization and sound field reproduction. The behaviour of a typical acoustic channel can be visualized as a transformation of its free field behaviour, due to scattering and reflections off the measurement apparatus and the surfaces in a room. These spatial effects can be modelled using the solutions to the acoustic wave equation, yet the physical nature of these scatterers typically results in complex behaviour with frequency. The first half of this thesis explores how to exploit this diversity in the frequency-domain for sound source localization, a concept that has not been considered previously. We first extract down-converted subband signals from the broadband audio signal, and collate these signals, such that the spatial diversity is retained. A signal model is then developed to exploit the channel's spatial information using a signal subspace approach. We show that this concept can be applied to multi-sensor arrays on complex-shaped rigid bodies as well as the special case of binaural localization. In both c! ases, an improvement in the closely spaced source resolution is demonstrated over traditional techniques, through simulations and experiments using a KEMAR manikin. The binaural analysis further indicates that the human localization performance in certain spatial regions is limited by the lack of spatial diversity, as suggested in perceptual experiments in the literature. Finally, the possibility of exploiting known inter-subband correlated sources (e.g., speech) for localization in under-determined systems is demonstrated. The second half of this thesis considers reverberation control, where reverberation is modelled as a superposition of sound fields created by a number of spatially distributed sources. We consider the mode/wave-domain description of the sound field, and propose modelling the reverberant modes as linear transformations of the desired sound field modes. This is a novel concept, as we consider each mode transformation to be independent of other modes. This model is then extended to sound field control, and used to derive the compensation signals required at the loudspeakers to equalize the reverberation. We show that estimating the reverberant channel and controlling the sound field now becomes a single adaptive filtering problem in the mode-domain, where the modes can be adapted independently. The performance of the proposed method is compared with existing adaptive and non-adaptive sound field control techniques through simulations. Finally, it is shown that an order of magnitude reduction in the computational complexity can be achieved, while maintaining comparable performance to existing adaptive control techniques

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Theory and Design of Spatial Active Noise Control Systems

    No full text
    The concept of spatial active noise control is to use a number of loudspeakers to generate anti-noise sound waves, which would cancel the undesired acoustic noise over a spatial region. The acoustic noise hazards that exist in a variety of situations provide many potential applications for spatial ANC. However, using existing ANC techniques, it is difficult to achieve satisfying noise reduction for a spatial area, especially using a practical hardware setup. Therefore, this thesis explores various aspects of spatial ANC, and seeks to develop algorithms and techniques to promote the performance and feasibility of spatial ANC in real-life applications. We use the spherical harmonic analysis technique as the basis for our research in this work. This technique provides an accurate representation of the spatial noise field, and enables in-depth analysis of the characteristics of the noise field. Incorporating this technique into the design of spatial ANC systems, we developed a series of algorithms and methods that optimizes the spatial ANC systems, towards both improving noise reduction performance and reducing system complexity. Several contributions of this work are: (i) design of compact planar microphone array structures capable of recording 3D spatial sound fields, so that the noise field can be monitored with minimum physical intrusion to the quiet zone, (ii) derivation of a Direct-to-Reverberant Energy Ratio (DRR) estimation algorithm which can be used for evaluating reverberant characteristics of a noisy environment, (iii) propose a few methods to estimate and optimize spatial noise reduction of an ANC system, including a new metric for measuring spatial noise energy level, and (iv) design of an adaptive spatial ANC algorithm incorporating the spherical harmonic analysis technique. The combination of these contributions enables the design of compact, high performing spatial ANC systems for various applications

    Signal Processing in Space and Time:A Multidimensional Fourier Approach

    Get PDF
    Sound waves propagate through space and time by transference of energy between the particles in the medium, which vibrate according to the oscillation patterns of the waves. These vibrations can be captured by a microphone and translated into a digital signal, representing the amplitude of the sound pressure as a function of time. The signal obtained by the microphone characterizes the time-domain behavior of the acoustic wave field, but has no information related to the spatial domain. The spatial information can be obtained by measuring the vibrations with an array of microphones distributed at multiple locations in space. This allows the amplitude of the sound pressure to be represented not only as a function of time but also as a function of space. The use of microphone arrays creates a new class of signals that is somewhat unfamiliar to Fourier analysis. Current paradigms try to circumvent the problem by treating the microphone signals as multiple "cooperating" signals, and applying the Fourier analysis to each signal individually. Conceptually, however, this is not faithful to the mathematics of the wave equation, which expresses the acoustic wave field as a single function of space and time, and not as multiple functions of time. The goal of this thesis is to provide a formulation of Fourier theory that treats the wave field as a single function of space and time, and allows it to be processed as a multidimensional signal using the theory of digital signal processing (DSP). We base this on a physical principle known as the Huygens principle, which essentially says that the wave field can be sampled at the surface of a given region in space and subsequently reconstructed in the same region, using only the samples obtained at the surface. To translate this into DSP language, we show that the Huygens principle can be expressed as a linear system that is both space- and time-invariant, and can be formulated as a convolution operation. If the input signal is transformed into the spatio-temporal Fourier domain, the system can also be analyzed according to its frequency response. In the first half of the thesis, we derive theoretical results that express the 4-D Fourier transform of the wave field as a function of the parameters of the scene, such as the number of sources and their locations, the source signals, and the geometry of the microphone array. We also show that the wave field can be effectively analyzed on a small scale using what we call the space/time-frequency representation space, consisting of a Gabor representation across the spatio-temporal manifold defined by the microphone array. These results are obtained by treating the signals as continuous functions of space and time. The second half of the thesis is dedicated to processing the wave field in discrete space and time, using Nyquist sampling theory and multidimensional filter banks theory. In particular, we show examples of orthogonal filter banks that effectively represent the wave field in terms of its elementary components while satisfying the requirements of critical sampling and perfect reconstruction of the input. We discuss the architecture of such filter banks, and demonstrate their applicability in the context of real applications, such as spatial filtering and wave field coding

    Surface reflectance recognition and real-world illumination statistics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2003.Includes bibliographical references (p. 141-150).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Humans distinguish materials such as metal, plastic, and paper effortlessly at a glance. Traditional computer vision systems cannot solve this problem at all. Recognizing surface reflectance properties from a single photograph is difficult because the observed image depends heavily on the amount of light incident from every direction. A mirrored sphere, for example, produces a different image in every environment. To make matters worse, two surfaces with different reflectance properties could produce identical images. The mirrored sphere simply reflects its surroundings, so in the right artificial setting, it could mimic the appearance of a matte ping-pong ball. Yet, humans possess an intuitive sense of what materials typically "look like" in the real world. This thesis develops computational algorithms with a similar ability to recognize reflectance properties from photographs under unknown, real-world illumination conditions. Real-world illumination is complex, with light typically incident on a surface from every direction. We find, however, that real-world illumination patterns are not arbitrary. They exhibit highly predictable spatial structure, which we describe largely in the wavelet domain. Although they differ in several respects from the typical photographs, illumination patterns share much of the regularity described in the natural image statistics literature. These properties of real-world illumination lead to predictable image statistics for a surface with given reflectance properties. We construct a system that classifies a surface according to its reflectance from a single photograph under unknown illumination. Our algorithm learns relationships between surface reflectance and certain statistics computed from the observed image.(cont.) Like the human visual system, we solve the otherwise underconstrained inverse problem of reflectance estimation by taking advantage of the statistical regularity of illumination. For surfaces with homogeneous reflectance properties and known geometry, our system rivals human performance.by Ron O. Dror.Ph.D

    Surface Reflectance Recognition and Real-World Illumination Statistics

    Get PDF
    Humans distinguish materials such as metal, plastic, and paper effortlessly at a glance. Traditional computer vision systems cannot solve this problem at all. Recognizing surface reflectance properties from a single photograph is difficult because the observed image depends heavily on the amount of light incident from every direction. A mirrored sphere, for example, produces a different image in every environment. To make matters worse, two surfaces with different reflectance properties could produce identical images. The mirrored sphere simply reflects its surroundings, so in the right artificial setting, it could mimic the appearance of a matte ping-pong ball. Yet, humans possess an intuitive sense of what materials typically "look like" in the real world. This thesis develops computational algorithms with a similar ability to recognize reflectance properties from photographs under unknown, real-world illumination conditions. Real-world illumination is complex, with light typically incident on a surface from every direction. We find, however, that real-world illumination patterns are not arbitrary. They exhibit highly predictable spatial structure, which we describe largely in the wavelet domain. Although they differ in several respects from the typical photographs, illumination patterns share much of the regularity described in the natural image statistics literature. These properties of real-world illumination lead to predictable image statistics for a surface with given reflectance properties. We construct a system that classifies a surface according to its reflectance from a single photograph under unknown illuminination. Our algorithm learns relationships between surface reflectance and certain statistics computed from the observed image. Like the human visual system, we solve the otherwise underconstrained inverse problem of reflectance estimation by taking advantage of the statistical regularity of illumination. For surfaces with homogeneous reflectance properties and known geometry, our system rivals human performance
    corecore