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Abstract

Sound waves propagate through space and time by transference of energy between the parti-
cles in the medium, which vibrate according to the oscillation patterns of the waves. These
vibrations can be captured by a microphone and translated into a digital signal, represent-
ing the amplitude of the sound pressure as a function of time. The signal obtained by the
microphone characterizes the time-domain behavior of the acoustic wave field, but has no
information related to the spatial domain. The spatial information can be obtained by mea-
suring the vibrations with an array of microphones distributed at multiple locations in space.
This allows the amplitude of the sound pressure to be represented not only as a function of
time but also as a function of space.

The use of microphone arrays creates a new class of signals that is somewhat unfamiliar
to Fourier analysis. Current paradigms try to circumvent the problem by treating the micro-
phone signals as multiple “cooperating” signals, and applying the Fourier analysis to each
signal individually. Conceptually, however, this is not faithful to the mathematics of the wave
equation, which expresses the acoustic wave field as a single function of space and time, and
not as multiple functions of time.

The goal of this thesis is to provide a formulation of Fourier theory that treats the wave
field as a single function of space and time, and allows it to be processed as a multidimen-
sional signal using the theory of digital signal processing (DSP). We base this on a physical
principle known as the Huygens principle, which essentially says that the wave field can be
sampled at the surface of a given region in space and subsequently reconstructed in the same
region, using only the samples obtained at the surface. To translate this into DSP language,
we show that the Huygens principle can be expressed as a linear system that is both space- and
time-invariant, and can be formulated as a convolution operation. If the input signal is trans-
formed into the spatio-temporal Fourier domain, the system can also be analyzed according
to its frequency response.

In the first half of the thesis, we derive theoretical results that express the 4-D Fourier
transform of the wave field as a function of the parameters of the scene, such as the number of
sources and their locations, the source signals, and the geometry of the microphone array. We
also show that the wave field can be effectively analyzed on a small scale using what we call
the space/time–frequency representation space, consisting of a Gabor representation across
the spatio-temporal manifold defined by the microphone array. These results are obtained by
treating the signals as continuous functions of space and time.

The second half of the thesis is dedicated to processing the wave field in discrete space
and time, using Nyquist sampling theory and multidimensional filter banks theory. In par-
ticular, we show examples of orthogonal filter banks that effectively represent the wave field
in terms of its elementary components while satisfying the requirements of critical sampling
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and perfect reconstruction of the input. We discuss the architecture of such filter banks, and
demonstrate their applicability in the context of real applications, such as spatial filtering and
wave field coding.

Keywords: Acoustic wave fields, array signal processing, multidimensional Fourier analysis,
space/time–frequency analysis, multidimensional filter banks, directional filter banks, spatial
filtering, wave field coding.



Résumé

Les ondes sonores se propagent sur l’espace et le temps à travers de transfert d’énergie
entre les particules du milieu, qui vibrent selon les caractéristiques des ondes. Ces vibra-
tions peuvent être captées par un microphone et traduites dans un signal numérique, ce qui
représente l’amplitude de la pression acoustique en fonction du temps. Le signal obtenu par
le microphone décrit la variation temporelle du champ d’ondes acoustiques, mais il n’a pas
d’informations liées au domaine spatial. L’information spatiale peut être obtenue en mesurant
les vibrations avec un réseau de microphones distribués par divers endroits dans l’espace.
Cela permet à l’amplitude de la pression acoustique de se faire représenter non seulement en
fonction du temps mais aussi en fonction de l’espace.

L’utilisation des réseaux de microphones crée une nouvelle classe de signaux qui sont
peu familiers à l’analyse de Fourier. Les paradigmes actuels essayent de contourner le prob-
lème en interprétant les signaux des microphones ainsi que les signaux “coopérants”, et en
appliquant l’analyse de Fourier à chaque signal individuel. Théoriquement, toutefois, ce n’est
pas fidèle aux mathématiques de l’équation des ondes, qui exprime le champ d’ondes acous-
tiques en utilisant une fonction unique de l’espace et du temps, et pas comme des multiples
fonctions du temps.

L’objectif de cette thèse est présenter une formulation de la théorie de Fourier qui manip-
ule le champ d’ondes en utilisant une fonction unique de l’espace et du temps, et lui permet
d’être manipulé comme un signal multidimensionnel à l’aide de la théorie du traitement des
signaux numériques (TSN). Nous nous basons sur un principe physique appelé le principe de
Huygens, qui dit essentiellement que le champ d’ondes peut être mesuré à la surface d’une
région dans l’espace, et puis reconstruit dans la même région, en utilisant seulement des
mesurages obtenus à la surface. Pour traduire en langage TSN, nous montrons que le principe
de Huygens peut être exprimé dans un système linéaire qui est invariant dans l’espace et dans
le temps, et peut être formulé comme une opération de convolution. Si le signal est trans-
formé dans le domaine spatio-temporel de Fourier, le système peut également être analysé en
fonction de sa réponse en fréquence.

Dans la première moitié de la thèse, nous obtenons des résultats théoriques qui expri-
ment la transformée de Fourier 4-D du champ d’ondes en fonction des paramètres de la
scène, tels que le nombre de sources et de leur emplacement, les signaux des sources, et le
géométrie du réseau de microphones. Nous montrons aussi que le champ d’ondes peut être
analysé efficacement sur une petite échelle en utilisant ce que nous appelons la représentation
espace/temps-fréquence, composé d’une représentation de Gabor au cours de la “manifold”
spatio-temporelle définie par le réseau de microphones. Ces résultats sont obtenus en inter-
prétant les signaux comme des fonctions continues de l’espace et du temps.

La seconde moitié de la thèse est consacrée au traitement du champ d’ondes dans l’espace
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et dans le temps discrets, en utilisant la théorie de mesurage de Nyquist et la théorie des bancs
de filtres multidimensionnels. En particulier, nous montrons des exemples de bancs de filtres
orthogonaux qui représentent effectivement le champ d’ondes en fonction de ses composants
élémentaires, tout en satisfaisant aux exigences de mesurage critique et reconstruction par-
faite de l’entrée. Nous discutons l’architecture de ces bancs de filtres, et nous démontrons
leur applicabilité dans le contexte d’applications réelles, telles que le filtrage spatial et la
codification du champ d’ondes.

Mots-clés: Champs d’ondes acoustiques, traitement des signaux réseaux, analyse de Fourier
multidimensionnelle, analyse espace/temps–fréquence, bancs de filtres multidimensionnels,
bancs de filtres directionnels, filtrage spatial, codification du champ d’ondes.
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Glossary

Continuous variables
x, y, z Spatial positions

t Time

r Coordinate vector on a 3-D Euclidean space: r = (x, y, z)

Φx, Φy, Φz Spatial frequencies in rad/m

Ω Temporal frequency in rad/s

Φ Spatial frequency vector: Φ = (Φx,Φy,Φz)

Discrete variables
nx, ny, nz Spatial sample indexes

nt Time sample index

n Sample index vector: n = (nx, ny, nz, nt)

bx, by, bz Spatial transform coefficient indexes

bt Temporal transform coefficient index

b Transform coefficient index vector: b = (bx, by, bz, bt)

Nx, Ny, Nz Number of samples in space

Nt Number of samples in time

N Diagonal matrix with number of samples Nx, Ny , Nz , and Nt
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Spaces and regions
R Space of real numbers

Z Space of integer numbers

A Space of angles between 0 and π

I Space of transform block indexes

K Space of coset vectors

`1 Hilbert space of integrable functions

`2 Hilbert space of square-integrable functions

V Volume in the 3-D Euclidean space

S Surface in the 3-D Euclidean space

A Area in the 3-D Euclidean space

L Contour in the 3-D Euclidean space

Va, Vs Analysis and synthesis volumes

Sa, Ss Analysis and synthesis surfaces

La, Ls Analysis and synthesis contours

U Low-energy region of the spatio-temporal spectrum

Wave field analysis

Variables
α Angle of arrival of a far-field wave front to the x-axis, with α ∈ [0, π]

β Angle of arrival of a far-field wave front to the y-axis, with β ∈ [0, π]

α Vector of far-field arrival angles: α = (α, β)

r Radius

rp Source position: rp = (xp, yp, zp)

rwall Position where the wave front first hits a wall

rS Position at surface region S: rS = (xS , yS , zS)

rL Position at contour region L: rL = (xL, yL, zL)

nS Normal vector at surface region S

nL Normal vector at contour region L



9

v Coordinate vector on a 2-D Euclidean space: v = (v0, v1)

u Wave front propagation vector: u = (ux, uy, uz), where, in polar coordinates,
ux = cosα sinβ, uy = cosβ, and uz = sinα sinβ

αnf(x) Angle of incidence of a near-/intermediate-field wave front at point x: αnf(x) =
∠
(
xp − x+ jzp

)
Functions
p(r, t) Radial sound pressure

g(x, t) 2-D spatio-temporal Green’s function

g(r, t) 4-D spatio-temporal Green’s function

g(r,Ω) Temporal Fourier transform of radial Green’s function

G(r,Ω) Wave field synthesis operator

Surface convolution
ϕ(v) Map of 2-D vector v = (v0, v1) to the 3-D coordinates of a surface S

ϕa(v) Map of 2-D vector v = (v0, v1) to the 3-D coordinates of the analysis surface
Sa

ϕs(v) Map of 2-D vector v = (v0, v1) to the 3-D coordinates of the synthesis surface
Sa

fa(r,Ω) Analysis function in the surface convolution

fs(r,Ω) Synthesis function in the surface convolution

f(r,Ω) Output of the surface convolution

δS(r) Sampling kernel on a surface S in the 3-D Euclidean space

h(v, t) Spatio-temporal filter on a flat surface

Various parameters
c Speed of sound: c = 340m/s

m Number of spatial dimensions

ΦS,x, ΦS,y, ΦS,z Spatial sampling frequencies in rad/m

ΩS Temporal sampling frequency in rad/s

ΦS Vector of spatial sampling frequencies: ΦS = (ΦS,x,ΦS,y,ΦS,z)

ΩM Maximum temporal frequency
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fS Temporal sampling frequency in Hz

Tx, Ty, Tz Spatial sampling periods

Tt Temporal sampling period

αmin
nf Minimum angle of incidence of near-/intermediate-field wave front with the mi-

crophone array (or observation contour)

αmax
nf Maximum angle of incidence of near-/intermediate-field wave front with the mi-

crophone array (or observation contour)

Φmin
x Minimum spatial frequency of high-energy spectral region

Φmax
x Maximum spatial frequency of high-energy spectral region

bmin
x Minimum transform coefficient index of high-energy spectral region

bmax
x Maximum transform coefficient index of high-energy spectral region

Signals and Sequences

Continuous
s(t) Source signal

p(x, t) Sound pressure on the x-axis

p(x, y, t) Sound pressure on the xy-plane

p(r, t) Sound pressure in the xyz-space

p(r,Ω) Temporal Fourier transform of sound pressure

p(rS , t) Sound pressure on a surface S

p(rL, t) Sound pressure on a contour L

S(Ω) Source spectrum

P (Φx,Ω) Spatio-temporal spectrum on the x-axis

P (Φx,Φy,Ω) Spatio-temporal spectrum on the xy-plane

P (Φ,Ω) Spatio-temporal spectrum in the xyz-space

P (α,Ω) Directional spectrum on the α-axis

P (β,Ω) Directional spectrum on the β-axis

P (α,Ω) Directional spectrum on the αβ-plane

P (r0, t0,Φ,Ω) Short space/time Fourier transform
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Discrete
s[nt] Source sequence

p[nx, nt] Sound pressure on the x-axis

p[nx, ny, nt] Sound pressure on the xy-plane

p[n] Sound pressure in the xyzt-space

p[nx, ny, nz, bt] Temporal DFT of sound pressure

S[bt] Source transform

P [bx, bt] Spatio-temporal transform on the x-axis

P [bx, by, bt] Spatio-temporal transform on the xy-plane

P [b] Spatio-temporal transform in the xyzt-space

P [n0,b] Short space/time Fourier transform

Window functions

Continuous
wx(x), wy(y), wz(z) Window functions in space

wt(t) Window function in time

wr(r) Spatial window function

w(r, t) Spatio-temporal window function

Wx(Φx), Wy(Φy), Wz(Φz) Window spectra in space

Wt(Ω) Window spectrum in time

Wr(Φ) Spatial window spectrum

W (Φ,Ω) Spatio-temporal window spectrum

M(Φx,Ω) Near-/intermediate-field spectral mask

Discrete
wx[nx], wy[ny], wz[nz] Window sequences in space

wt[nt] Window sequence in time

w[n] Spatio-temporal window sequence

Wx[bx], Wy[by], Wz[bz] Window transforms in space

Wt[bt] Window transform in time
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W [b] Spatio-temporal window transform

Lx, Ly, Lz Number of non-zero samples in space

Lt Number of non-zero samples in time

L Diagonal matrix with number of non-zero samples Lx, Ly , Lz , and Lt

Filtering

Continuous
hx(x), hy(y), hz(z) Impulse responses in space

ht(t) Impulse response in time

hr(r) Spatial impulse response

h(r, t) Spatio-temporal impulse response

Hx(Φx), Hy(Φy), Hz(Φz) Frequency responses in space

Ht(Ω) Frequency response in time

Hr(Φ) Spatial frequency response

H(Φ,Ω) Spatio-temporal frequency response

Discrete
hx[nx], hy[ny], hz[nz] Impulse responses in space

ht[nt] Impulse response in time

h[n] Spatio-temporal impulse response

Hx[bx], Hy[by], Hz[bz] Frequency responses in space

Ht[bt] Frequency response in time

H[b] Spatio-temporal frequency response

Filter design
hideal[n] Ideal impulse response

Hideal[b] Ideal frequency response

αPass Cut-off angle of pass-band region

αStop Cut-off angle of stop-band region

APass Maximum approximation error in pass-band region

AStop Stop-band attenuation
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Beamforming
αS Beam-steering angle

∆Signal
FF [b] Spectral sampling kernel for extracting a far-field target source

∆Noise
FF [b] Spectral sampling kernel for extracting a far-field interferer

∆Signal
NF [b] Spectral sampling kernel for extracting a near-field target source

∆Noise
NF [b] Spectral sampling kernel for extracting a near-field interferer

Bases and matrices
υbx,nx Spatial orthogonal basis

ψbt,nt Temporal orthogonal basis

ϕ[b,n] Separable spatio-temporal orthogonal basis: ϕ[b,n] = υbx,nxψbt,nt

P Matrix expansion of p[n]

Y Matrix expansion of P [b]

Υ Matrix expansion of υbx,nx

Ψ Matrix expansion of ψbt,nt

ΥL, ΥR Left and right halves of Υ

ΨL, ΨR Left and right halves of Ψ

Filter banks
zx, zt z-transform variables in space and time

z Vector with z-transform variables: z = (zx, zt)

H(z) 1-D analysis filter

F (z) 1-D synthesis filter

H(z) Multidimensional analysis filter

F (z) Multidimensional synthesis filter

H 1-D analysis polyphase matrix

F 1-D synthesis polyphase matrix∏
m Hm Separable product of analysis polyphase matrices∏
m Fm Separable product of synthesis polyphase matrices
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Ox, Ot Number of overlapping samples in space and time

O Diagonal matrix with number of overlapping samples in space and time, Ox and
Ot

R Parallelogram resampling matrix (non-diagonal)

Q Quincunx resampling matrix (non-diagonal)

k Spatio-temporal coset vector: k =
[
kx
kt

]
z−k Spatio-temporal delay factor: z−k = z−kxx z−ktt

i Spatio-temporal block index: i =
[
ix
it

]
0, 1, . . . Vector integers: 0 =

[
0
0

]
, 1 =

[
1
1

]
, ...

Wave field coding
Nbit Number of bits of amplitude quantizer

p[n] Input signal

p̂[n] Decoded signal

P [b] Input transform

P̂ [b] Decoded transform

PQ[b] Quantized transform coefficients

SF[b] Scale factors

Q[b] Maximum quantization noise power

R[b] Bit rate for each transform coefficient

R Total bit rate

D Total distortion

D(R) Rate-distortion curve

Operators
∗ Spatial convolution

∗ Temporal convolution

~ Surface convolution

L(r0,t0) Delay operator
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E Expectation

((·))N Circular referencing: ((·))N = ·modN

det Matrix determinant

max Maximum operator

sign Sign operator

mean Empirical mean

var Empirical variance

probability Empirical probability

Huffman Map of amplitude value to Huffman code word
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Chapter 1

Introduction

Signal processing is a vibrant field of engineering and mathematics that attracts a lot of atten-
tion from both the industrial and the academic world, causing the field to be in a permanent
state of evolution, critical analysis, and rediscovery. In the last century, we have seen the
emergence of revolutionary technologies and exciting new inventions that strongly influenced
the course of technology. Inventions such as voice recording and reproduction, photography
and motion picture, radio transmission, among others, have used the power of signal process-
ing and changed the way we store and communicate information across the planet. The theory
of signal processing has followed suit, and new algorithms and methods were developed by
taking advantage of the technological advances.

In the literature, signal processing is loosely defined as the science that studies the rep-
resentation, analysis, and manipulation of signals representing physical phenomena [68]. A
signal is not a physical phenomenon in itself but rather a representation of the phenomenon
provided by the measuring instruments. It is the printed record of physical events, and the
instruments define what is the printing language.

1.1 Sound and audio signals
A signal may represent a multiplicity of physical measures, such as sound pressure, temper-
ature, particle velocity, light intensity, among others. Audio signals, in particular, were one
of the great catalysts in the development of signal processing. Since ancient times, we have
depended on different forms of sound for communication, entertainment, and welfare. By
mastering the art of audio signal processing, we have boosted our capability of using sounds
to communicate at ever greater distances, to create innumerable forms of entertainment, and
to bring societies closer together.

Modern audio signal processing came to life as a fusion between three major break-
throughs: (i) the advances in the study of harmonic analysis, (ii) the development of sound
recording technology, and (iii) the advances in digital computing. The first two occurred al-
most independently, until the increase in computational power made it possible to apply the
principles of harmonic analysis to the recorded signals.

21
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1.1.1 The birth of harmonic analysis
In the late 18th century, and throughout the entire 19th century, a brilliant generation of
physicists and mathematicians was working on the concepts that became the theoretical foun-
dation of signal processing. One of the first important contributions was provided by the
French mathematician Jean d’Alembert (1717–1783), who not only introduced the concept
of “field” (in the context of fluid dynamics) but also derived the first known form of the
wave equation, together with its solution [23]. Immediately after, the Swiss mathematician
Leonhard Euler (1707–1783) expanded d’Alembert’s results to a general framework that ex-
plained a multitude of wave-like phenomena, including acoustic wave propagation [31]. This
work sparked a famous debate between d’Alembert and Euler about the nature of functions
[44; 52]; d’Alembert argued that only analytical functions could be a solution to the wave
equation, whereas Euler argued that any “hand drawn” function, including discontinuous
functions, could be a solution to the wave equation in the physical sense. He also derived an
important solution for a particular type of analytic functions, given by

f(x) = a0 sin
πx

l
+ a1 sin

2πx
l

+ a2 sin
3πx
l

+ · · · . (1.1)

The debate went on for half a century, until the French mathematician Joseph Fourier (1768–
1830) partially proved that any arbitrary function could be developed into a trigonometric
series of the form given by (1.1). In essence, Fourier showed that the “hand drawn” functions
that Euler believed had a physical significance could be decomposed into elementary analyt-
ical components (sinusoids), and therefore be a plausible solution to the wave equation. This
marked the birth of harmonic analysis.

1.1.2 The invention of sound recording
While mathematicians kept on discovering and perfecting the theoretical concepts of har-
monic analysis, another great discovery was about to take place. Before the 19th century,
writing and painting were the only instruments available for keeping records of the world
events; there was no instrument available for recording sounds such as voice and music. The
sound of Mozart playing at the royal court, or of Alexander giving a speech to his people, are
essentially lost in time.

Curiously, the first record ever found of human voice was of an amplitude wave form
scribbled on a piece of paper [79], obtained by the French bookseller Édouard de Martinville
(1817–1879) with a device he called phonautograph (shown in Figure 1.1-(a)). It was later
discovered that the wave form represented an anonymous voice singing the French song Au
Clair de la Lune1.

The real invention, however, came 20 years later, when the American scientist Thomas
Edison (1847–1931) introduced the phonograph [28]—a device capable not only of recording
sound but also of reproducing it with an impressive quality. The phonograph (shown in
Figure 1.1-(b)) used a tinfoil sheet cylinder to imprint the amplitude wave form such that it
could be read by a copper needle.

This concept was later improved by other inventors, such as Oberlin Smith, who pio-
neered the concept of magnetic recording [29], and Emile Berliner, who initiated a 50-year

1The sound file can be downloaded from: http://en.wikipedia.org/wiki/Phonautograph/
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(a)
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(b)

Figure 1.1: First sound recording devices. (a) The phonautograph, invented by Édouard de
Martinville in 1857, was capable of translating sound into an amplitude wave form printed
on paper. (b) The phonograph, invented by Thomas Edison in 1877, recorded the amplitude
wave form on a dedicated cylinder, and was capable of reproducing the recorded sound.

long transition from cylinders to discs as a recording medium [12]. These contributions cul-
minated in the development of the Compact Cassette and the Long Playing (LP) recording
media, which together dominated the market until the rise in popularity of the Compact Disc
(CD) [66].

1.1.3 Digital computers and the DSP boom
Audio signal processing became well established as a scientific field when digital computers
became fast enough to apply Fourier’s principles to the recorded sound. The crown jewel of
this period was the development of the Fast Fourier Transform (FFT), which made it possible
to compute the Fourier transform with relatively low complexity using a digital computer.
This allowed engineers to experiment with a variety of signal processing techniques, such as
digital filters and spectral estimation, while manipulating the recorded audio signals. Digital
signal processing (DSP) has since become an essential component of any electronic device
that operates with audio signals, including cellphones, televisions, radios, and portable music
players.

1.2 From mono to spatial audio
Almost as soon as Thomas Edison invented the technology for sound recording, people
started to think of ways of recording (and communicating) spatial sound—i.e., sound with
preserved spatial impression. A curious comment made by an anonymous person to a British
magazine goes as follows [83]

«When I sit in an acoustically perfect hall (full of people), in the
best seat for hearing, and listen to an orchestra, I hear such and
such sounds. I want to hear precisely this effect from a record-
ing, if that be possible.»—An anonymous music critic ("K. K.")
writing in the 1928 July issue of The Gramophone.
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Image source: Nature, Oct. 20 Issue, 1881

Figure 1.2: First experience of a stereo audio transmission, at the Paris Opera in 1881.
The transmission of the two channels was made with two telephones. The listener would
experience a spatial impression by placing one speaker in each ear.

In his own words, “I want to hear precisely this effect”, “K. K.” was alluding to the listeners
desire for a more realistic and immersive auditory experience. In fact, it was only four years
after Edison filed his gramophone patent that the first demonstration of a stereo transmission
was shown at the Paris Grand Opera, in 1881 [83]. The two audio channels were transmitted
by two telephones, which together generated a spatial impression when the listener held one
of the speakers to each ear (see Figure 1.2). The technique eventually evolved to the modern
form of stereo that is still used today.

Many other techniques were experimented and introduced in the market, mostly with
no success. The one that achieved the most popularity was the 5.1 surround format used
in movie theaters, but it was not widely adopted by home users. Other recent techniques
include the 7.1 surround format (and the variants 9.1, 10.2, and 22.2) [80], stereo based on
HRTF (head-related transfer functions) [36], ambisonics [37], and wave field synthesis [9].

Regardless of all the technological differences between spatial audio techniques, the gen-
eral trend is to increase the number of channels. In fact, there is a theoretical motivation for
this increase: a physical principle known as the Huygens principle—discussed later in this
thesis—suggests that the ideal playback setup is a continuous surface of loudspeakers (or a
line, under certain conditions). In other words, the more channels are used, the better and
more accurate is the spatial impression.

Yet, more than 80 years after “K. K.” expressed his desire for “an orchestra in one record-
ing”, there is still a lot of uncertainty about which spatial audio format is going to succeed
in replacing the well established stereo format. This creates uncertainty about the costs of
implementation and compatibility issues, which makes the industry reluctant to adopt new
formats. As a result, sound records are still mostly recorded using two channels, which is
hardly enough to “store an orchestra”.
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1.3 Back to the origins
One of the questions that we raise in this thesis is: why not record the entire wave field
first, and decide later on how to reproduce it? By getting too caught up in the discussion of
how to reproduce spatial audio, one overlooks the implications that increasing the number of
channels has on the recording side.

Throughout most of its history, digital signal processing has evolved as a technique for
manipulating one-dimensional (1-D) signals, with only one independent variable. Typically,
signals are characterized by an amplitude wave form expressed as a function of time. Music
and speech signals, for example, are represented as the amplitude of the sound pressure as
a function of time. Yet, there is no theoretical reason why time should be the independent
variable of choice (or at least the only one).

Consider, for example, the equation derived by d’Alembert that describes the propagation
of a wave front on a string, given by

∂2p(x, t)
∂x2

=
1
c2
∂2p(x, t)
∂t2

. (1.2)

From (1.2) alone, there is no particular reason why the wave front is better characterized as
a function of time, compared to, say, a function of space. The information given by p(x0, t)
for a fixed x0 can be equally given by p(x, t0) for a fixed t0. In fact, in both cases, a huge
amount of information is lost. The duality is illustrated in Figure 1.3.

Of course, there are practical reasons for using a function of time rather than a function
of space. Audio sensors such as microphones are built to capture variations of the sound
pressure as a function of time. To obtain an equivalent signal as a function of space would
require an enormous number of pressure sensors placed along a line directed towards the
source, with the microphones very tightly spaced. But this idea is not so far-fetched as it
would seem a few years ago. While the processing power of digital computers is increasing,
the size of the microphones is decreasing (as well as their cost). The only thing that has
somewhat stagnated is the theory and application of multichannel Fourier analysis.

One of the consequences of focusing the development of signal processing on 1-D time-
varying signals was that the theory of Fourier analysis became increasingly detached from
its origins, which was the study of field equations. The temporal dimension became the only
independent variable characterizing the acoustic wave field, while the three dimensions of
space were mostly left in the background. This statement might sound contradictory, since
the name “spatial audio” implies that the spatial dimensions are implicitly considered. But
the fact is: in traditional spatial audio techniques, the multiple channels are treated as multiple
functions of time, which is not justified in terms of the wave equation. This is particularly
noticeable in coding formats for spatial audio, such as MPEG surround [48].

1.4 Arrays as spatial axes
The increasing use of microphone arrays in audio recording technology and consumer de-
vices, as illustrated in the examples of Figure 1.4, has created an exciting new opportunity
for taking the theory of audio DSP to a new level. An opportunity for applying Fourier anal-
ysis to the study of acoustic wave fields, and extending a breadth of existing DSP techniques
to a four-dimensional (4-D) domain representing the three dimensions of space and the di-
mension of time.
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Figure 1.3: Duality between a time-varying signal and a space-varying signal. The signal ob-
tained with the isolated microphone represents the amplitude of the sound pressure generated
by the source as a function of discrete instances of time—sampled with the frequency fS. The
same signal can be obtained by placing multiple microphones on a straight line, uniformly
spaced by c/fS, where c = 340m/s is the speed of sound.

The main premise of this thesis can be summarized as follows: (i) microphone arrays,
as they increase in size and number of microphones, approximate the spatial dimensions that
define the wave equation; (ii) the wave equation has harmonic behavior along the spatial
dimensions, the same way it has along the temporal dimension; (iii) therefore, it makes sense
to extend the theory of Fourier analysis to the spatial dimensions.

In a recent work by Ajdler et al. [2], it was shown that, if the multiple channels are
interpreted as spatial samples obtained with a certain “sampling frequency” (determined by
the spacing between microphones) the spatio-temporal representation of the wave field is
essentially band-limited and can be reduced to a closed-form solution. This means that,
using Nyquist sampling theory, the acoustic wave field can be sampled across space with a
finite sampling frequency, and yet be reconstructed with virtually no spatial aliasing. Thus,
it is possible to record the acoustic wave field within a given area using a limited number of
spatial samples (channels), and still retain all the information.

Reconstructing the acoustic wave field means, in physical terms, that an artificial wave
front can be generated such that it is physically equivalent to the original wave front, us-
ing loudspeakers as a materialization of the spatial samples. This technique, introduced by
Berkhout et al. [10; 14], is known as wave field synthesis (WFS), and it will be discussed in
more detail later in the thesis.

In the context of DSP, Ajdler and Berkhout have essentially addressed the conversion of
“analog wave fronts” into “discrete wave fronts”—a procedure known as sampling—as well
as the reconstruction of the original “analog wave fronts” from the “discrete wave fronts”—a
procedure known as interpolation. It has since become an open question how to process the
wave field in discrete space and time—in particular, using multidimensional Fourier theory.
That is the central question addressed in this thesis.

1.5 Contributions and thesis outline
The main contribution of this thesis is that we provide a framework of signal processing in
space and time, formulated as a multidimensional extension of traditional 1-D signal process-
ing. We address concepts such as linear time-invariant (LTI) systems, the Fourier transform,
time–frequency analysis, and filter bank theory in the context of acoustic wave fields, and
show how these concepts lead to powerful applications such as spatial filtering and sound
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(a) (b) (c) (d)

Figure 1.4: Examples of the use of microphone arrays in consumer products and scientific
experiments. (a) A typical Phonak hearing aid is equipped with two microphones for sound
acquisition. (b) Recent Dell laptops have an integrated array with four microphones on the
upper part of the screen. (c) High-end Sony camcorders have a square shaped array with four
microphones for recording the entire sound field. (d) An enormous microphone array at the
Denver International Airport was built by NASA in 2003 to study the wake vortex effects
caused by the wing tip of airplanes.

field compression, all this based on simple DSP operations.
The structure of the thesis is inspired by the classic texts Signals and Systems by Op-

penheim and Willsky [69] and Discrete-Time Signal Processing by Oppenheim and Schafer
[68], going from the physics, to the Fourier analysis, the algorithms, the design of solutions
and selected applications. Therefore, the thesis can also be used by graduate students with
good knowledge of DSP but little knowledge of theoretical physics, or allow practitioners in
array signal processing to broaden their perspective on acoustic wave fields using the tools
we provide.

The outline consists of nine chapters separated by both scientific fields (physics and signal
processing) and classes of signals (continuous and discrete), as listed in Table 1.1.

Table 1.1: List of chapters and topics.
Chapter Scientific Field Class of Signals
2 Fundamentals of Acoustics Theory Physics Continuous
3 Linear Space/Time Invariant Systems Physics / Signal Processing Continuous
4 The Spatio-Temporal Fourier Transform Signal Processing Continuous
5 Space/Time–Frequency Representation Signal Processing Continuous
6 Directional Representations Signal Processing Continuous
7 Filter-Bank Realizations of Transforms Signal Processing Discrete
8 Spatio-Temporal Filter Design Signal Processing Discrete
9 Acoustic Wave Field Coding Signal Processing Discrete

In Chapter 2, we review the basic theoretical concepts of acoustics theory that are necessary
to understand the dynamics of wave propagation. These include the solution for spherical
waves generated by point sources in space, the modes of wave propagation, and the Huygens
principle, which explains why the wave field can be sampled and reconstructed like a regular
signal. In Chapter 3, we introduce the concept of surface convolution, and prove that spatio-
temporal systems based on the Huygens principle are both linear and space/time invariant.
We also discuss different ways of representing the acoustic wave field as a signal. This chap-
ter establishes the connection between the physical interpretation of acoustic wave fields and
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the signal processing interpretation. In Chapter 4, we introduce the spatio-temporal Fourier
transform, and derive the results for the most common type of acoustic scenes, such as point
sources in the far-field, which are sparse in the Fourier domain, and point sources in the near-
field. We also discuss the effects of sampling the acoustic wave field in space and time. In
Chapter 5, we propose a generalization of Gabor’s time–frequency representation such that it
represents not only the frequency variations of sound along time but also the variations of the
acoustic wave field across space. This consists of extending the local Fourier analysis to the
three spatial dimensions, in addition to the temporal dimension, resulting in what we call the
space/time–frequency representation space. In Chapter 6, we introduce an alternative to the
spatio-temporal Fourier transform that we call directional Fourier transform, where the spec-
trum is represented as a function of the direction of propagation of the wave fronts. We prove
that the acoustic wave field is equally sparse in this domain. In Chapter 7, we show how
spatio-temporal transforms can be implemented in discrete space and time, and discuss filter
bank structures that implement the desired transforms while satisfying the strict requirements
of critical sampling and perfect reconstruction of the input. In Chapter 8, we show how point
sources can be enhanced or eliminated from the acoustic scene by applying a non-separable
filter in the spatio-temporal Fourier domain, and how such filters can be designed in a far
more simple and intuitive way compared to existing spatial filtering techniques. We also in-
troduce the concept of adaptive filtering in the spatio-temporal Fourier domain. In Chapter 9,
we discuss the compression of acoustic wave fields based on plane-wave encoding, and prove
that the spatio-temporal Fourier representation becomes increasingly efficient as the number
of channels increases. We also propose a method for compressing acoustic wave fields using
spatio-temporal perceptual criteria—a method we call perceptual wave field coding.



Chapter 2

Fundamentals of Acoustics Theory

2.1 Introduction
As mentioned in the introduction, one important aspect of this thesis is that we quickly step
away from the world of theoretical physics and enter the world of DSP, where we avoid all
the physics-related terminology and focus only on the relevant results—such as spherical
radiation and modes of wave propagation. These results have a strong intuition behind all
the mathematical formalism, and can be easily understood with the support of some basic
theoretical background.

Many fundamental results of acoustics theory are derived from what is known as the wave
equation—a partial differential equation that governs all the patterns of wave propagation.
The wave equation, given in its simplest form by

∂2p(x, t)
∂x2

=
1
c2
∂2p(x, t)
∂t2

,

determines how the sound pressure p(x, t) at different points in space x (in this case, the
1-D x-axis) relates to the sound pressure at different points in time t, weighted by the speed
of wave propagation c. We assume that the medium is homogeneous, continuous, adiabatic,
isotropic, and perfectly elastic, as is the case with air [65]. The differential equation has an
infinite number of solutions that can be expressed as p(x, t) = s1(t− x

c ) + s2(t+ x
c ), where

s1(t) and s2(t) are two arbitrary functions that propagate in the form of two waves with
constant velocity c, moving in opposite directions along the x-axis. This solution is known as
the d’Alembert solution, and is illustrated in Figure 2.1. It can be easily verified that p(x, t)
satisfies the wave equation, since

∂2p(x, t)
∂t2

= s′′1(t− x

c
) + s′′2(t+

x

c
)

and

∂2p(x, t)
∂x2

=
1
c2
s′′1(t− x

c
) +

1
c2
s′′2(t+

x

c
)

=
1
c2
∂2p(x, t)
∂t2

.
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Figure 2.1: The d’Alembert solution to the wave equation consists of two waves traveling in
opposite directions along the x-axis, with amplitudes given by s1(t− x

c ) and s2(t+ x
c ). The

two waves have a constant speed given by c.

To obtain a unique solution, we have to specify the initial values relative to t and the boundary
conditions relative to x (the boundary conditions are the “initial values” in space). These
conditions depend on both the characteristics of the excitation function and the physical setup
where the wave propagates.

One important solution to the wave equation is the solution for spherical radiation caused
by a point source in free space. This case is particularly important for two reasons: (i) in
acoustic scenes, most types of sound sources can be approximated by point sources, and (ii)
reflections and reverberation in a closed space can be modeled as virtual point sources (image
sources) in free space [3; 63]. The solution for spherical radiation requires the use of the wave
equation in spherical coordinates, given in its simplest form by

1
r2

∂

∂r

(
r2 ∂p(r, t)

∂r

)
=

1
c2
∂2

∂t2
p(r, t) (2.1)

where r is the distance from the point source to the point of observation. The solution in this
case is of the form

p(r, t) =
1
r
s1(t− r

c
) +

1
r
s2(t+

r

c
) (2.2)

which, similarly to the d’Alembert solution, represents two waves with constant speed c
moving in opposite directions along r (away from, and towards the point source); we will
see that only the first wave is physically possible, and hence the solution is simply p(r, t) =
1
r s(t −

r
c ). It can also be verified that this solution satisfies the wave equation for any s1(t)

and s2(t). In Sections 2.2 and 2.3 of this chapter, we provide a detailed derivation of p(r, t)
from the wave equation, for both the general case and the far-field case, i.e., when the sound
pressure is observed far away from the source.

Spherical waves radiate throughout the medium in a concentric pattern, meaning that the
advancing wave fronts are equally valued along circular profiles with a common center. A
well known example of concentric waves is the result of dropping an object over still water,
as shown in the picture of Figure 2.2. To an outside observer, the falling object generates
a concentric wave that smoothly moves away from the origin until it fades out into infinity.
This macroscopic view of the phenomenon is predicted by the wave equation, as in the case
of spherical waves, except that on the water’s surface the wave equation is expressed as
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Image by D. Jovic

Figure 2.2: Example of a radial wave caused by the impact of a falling object over still water.
The wave propagates on the surface in the form of concentric rings, moving away from the
point of impact and decaying in amplitude until it fades out completely. In this case, since
the surface is a 2-D plane, the wave is characterized by the 2-D wave equation.

∂2p(x, z, t)
∂x2

+
∂2p(x, z, t)

∂z2
=

1
c2
∂2p(x, z, t)

∂t2

A closer view of the phenomenon, however, will reveal mathematical details in the equations,
as well as physical subtleties at the microscopic level, that paint a different picture of how
and why the wave front propagates throughout the medium until it fades out completely. Two
concepts in particular, discussed in Sections 2.4 and 2.5, are known as the modes of wave
propagation and the Huygens principle.

The modes of wave propagation [65] are related to how the wave behaves at different
distances from the source. If the sound pressure is observed at a great distance, the wave
front looks flat and harmonic; if the sound pressure is observed at a close distance, the wave
front looks curved and damped. Such behavior is governed by the energy ratio between the
two modes of wave propagation, known as the propagating mode and the evanescent mode.
The propagating energy is responsible for the harmonic behavior of the wave front, whereas
the evanescent energy is responsible for the amplitude decay.

The Huygens principle [50; 7] is a concept named after the Dutch physicist Christiaan
Huygens (1629–1695), and it states that, at a microscopic level, each particle in the medium
being excited by the advancing wave front acts itself as a source of excitation to the sub-
sequent particles. This means that, at every point r0 along the r-axis, the entire concentric
wave front is a continuum of secondary point sources that generate the wave front at r0 + dr,
where dr is of the order of distance between particles. In other words, the particle vibrations
observed at r0 completely describe the wave field at r > r0. We will see that this principle
forms the basis of sampling and reconstruction of the acoustic wave field, and consequently
the ability to analyze and process the wave field through DSP techniques.

2.2 Spherical radiation

2.2.1 Free space solution
Point sources are singularities in space that radiate sound equally in all directions, causing
what is called a spherical wave front. Some examples are shown in Figure 2.3-(a). Given
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(a) (b)

Figure 2.3: Point sources in a 3-dimensional space. (a) Many types of sound sources, such as
people, machines, and musical instruments, are well approximated by point sources. (b) Each
point source radiates a spherical wave front where the sound pressure p(r, t) is a function of
the source signal s(t) and the distance between the point of observation r and the point of
origin rp, given by the `2-norm ‖r− rp‖.

a point source with source signal s(t), the sound pressure at a distance r, denoted p(r, t), is
governed by the wave equation [65](

∇2 − 1
c2
∂2

∂t2

)
p(r, t) = −f(r, t), (2.3)

where ∇2 is the Laplacian operator (∇2 = 1
r2

∂
∂r

(
r2 ∂
∂r

)
in spherical coordinates), c is the

speed of sound, and f(r, t) is a function with compact support around r = 0. The precise
definition of compact support belongs to the field of measure theory, but it essentially means
that the source occupies a compact region in space. In the case of a point source, f(r, t) =
δ(r)s(t).

Taking the Fourier transform of (2.3) with respect to time, yields the Helmholtz equation
[65] (

∇2 +
(Ω
c

)2
)
p(r,Ω) = −f(r,Ω), (2.4)

where Ω is the angular frequency in rad/s. The solution for (2.4) can be found using the
Green’s function method [39; 65], which consists of finding a solution g(r,Ω) to the Helmholtz
equation when f(r, t) = δ(r)δ(t), such that(

∇2 +
(Ω
c

)2
)
g(r,Ω) = −δ(r). (2.5)

The solution g(r,Ω) is called the Green’s function, and is given by
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g(r,Ω) = A
e−j

Ω
c r

r
+B

ej
Ω
c r

r
, (2.6)

where A and B are arbitrary constants. The general solution for f(r, t) = δ(r)s(t) is then
given by the convolution p(r,Ω) =

´
R f(ρ,Ω)g(r − ρ,Ω)dρ, which equals

p(r,Ω) = S(Ω)

(
A
e−j

Ω
c r

r
+B

ej
Ω
c r

r

)
. (2.7)

The result in (2.7) can be interpreted as an input signal s(t) filtered by a synthesis filter g(r, t)
that translates the input signal into a spherical radiation pattern.

Solving the Helmholtz equation uniquely requires a boundary condition at infinity. In
physical terms, (2.7) represents two spherical waves: one radiating from the source to infinity,
the other radiating from infinity into the source. The Sommerfeld radiation condition [82]
states that no source can be a sink of energy. This implies that B = 0 and A = 1

4π , and thus

p(r,Ω) =
S(Ω)e−j

Ω
c r

4πr
. (2.8)

Taking the inverse Fourier transform, the sound pressure is given by

p(r, t) =
s(t− r

c )
4πr

, (2.9)

which is simply a delayed and attenuated version of the source signal s(t). The result can be
rewritten in Cartesian coordinates, such that

p(r, t) =
s
(
t− ‖r−rp‖

c

)
4π ‖r− rp‖

, (2.10)

where r = (x, y, z) is the point of observation, rp = (xp, yp, zp) is the point of origin, and
‖.‖ is the regular vector `2-norm. An illustration is shown in Figure 2.3-(b).

2.2.2 Image source model
In the case where the point source is not in free space but instead in a closed space, the result
in (2.10) is only valid until the wave front hits a wall—then, the incident wave gets reflected
and adds up to the original spherical wave. After the first reflection occurs, the sound pressure
at any given location r is given by

p(r, t) =
s
(
t− ‖r−rp‖

c

)
4π ‖r− rp‖︸ ︷︷ ︸

Direct wave

+
s
(
t− ‖r−(2rwall−rp)‖

c

)
4π ‖r− (2rwall − rp)‖︸ ︷︷ ︸

Reflected wave

(2.11)

where rwall are the coordinates of where the incident wave hits the wall. The first and sec-
ond terms in (2.11) are called the direct wave (or direct sound) and the reflected wave (or
reflection). As the direct and reflected waves start hitting the other walls, the reflections start
adding up until they fade out to zero due to the 1

r attenuation and the attenuation caused by
the walls.
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(a) (b)

Figure 2.4: Reflections and reverberation using the mirror source model. (a) Reflections are
virtual point sources at every possible symmetric location, and driven by the same source
signal s(t). (b) Reverberation is caused by the accumulation of spherical waves originating
from the virtual sources. The fading color represents the amplitude contribution of each
source given the attenuation factor of the walls.

The reflected waves are equivalent to spherical waves generated by point sources centered
at the mirror positions relative to the walls. Such interpretation is known as the image model
[3] and can be generalized for rectangular spaces:

p(r, t) =
s
(
t− ‖r−rp‖

c

)
4π ‖r− rp‖

+
∞∑
i=1

s
(
t− ‖r−ri‖

c

)
4π ‖r− ri‖

, (2.12)

where ri are the coordinates of the image sources. Similar models exist for non-rectangular
spaces (e.g., Martin et al. [63]), but they are not central in the context of this thesis. The
important thing to retain is that a point source in a closed space can be modeled as an infinite
number of point sources in free space, all with the same source signal but different delays and
attenuations. The image model for rectangular spaces is illustrated in Figure 2.4.

2.3 Far-field radiation
A special case of spherical radiation is when the point source, located at rp, is very distant
from the region of observation V—a condition known as far-field. In practice, this means
that the wave front reaching V from rp has negligible curvature (i.e., is nearly plane). The
classification of a far-field source is always relative to the region of observation V , and the
condition is given by ‖rp‖ � ‖r‖. The opposite of far-field is known as near-field, and the
condition is given by ‖r− rp‖ � λ [65], where λ = c

Ω is the wave length. Everything else in
between will be referred to as intermediate-field. The three cases are illustrated in Figure 2.5.

Under the far-field assumption, ‖r− rp‖ = ‖rp‖ − ε(r) where ε(r) is a residual term
dependent on the point of observation r. Replacing ‖r− rp‖ in (2.10) yields
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(a) (b) (c)

Figure 2.5: Distance of the point source to region of observation. (a) In the far-field, where
‖rp‖ � ‖r‖, the wave front radiated by the distant point source is nearly plane. (b) In the
intermediate-field, the general solution for spherical radiation applies. (c) In the near-field,
where ‖r− rp‖ � λ, the curvature of the wave front becomes more pronounced in the
vicinity of V .

p(r, t) =
s
(
t− ‖rp‖c + ε(r)

c

)
4π ‖rp‖ − 4πε(r)

(2.13)

≈
s
(
t− ‖rp‖c + φ(r)

)
4π ‖rp‖

, (2.14)

where φ(r) = ε(r)
c is the residual phase that depends on r. This term can not be discarded,

since it appears in the argument of s(t) and it is generally unknown how sensitive the signal
amplitude is to small differences in time, as opposed to the residual amplitude term 4πε(r)
which is negligible regardless of r. In addition, the terms 1

4π‖rp‖ and ‖rp‖c are fixed amplitude
and phase values that we discard for simplicity, such that

p(r, t) = s (t+ φ(r)) . (2.15)

To determine how φ(r) is expressed as a function of r, recall that the wave front reaching V
is plane, and therefore has a fixed direction of propagation (see Figure 2.6). This direction is
given by the wave front normal, ~u = u · ~r, where u = (ux, uy, uz) contains the directional
components in each axis and~r = (~x, ~y, ~z) are the standard basis vectors ~x, ~y, and ~z. Without
loss of generality, consider that ‖u‖ = 1. Since the wave front is plane, the expression
uxx+uyy+uzz = cφ(r) defines a profile of constant phase in the three-dimensional space.
Thus,

p(r, t) = s
(
t+

u · r
c

)
. (2.16)

The propagation vector u can also be expressed in polar coordinates, with ux = cosα sinβ,
uy = cosβ, and uz = sinα sinβ, where α, β ∈ [0, π] are the angles of arrival as defined in
Figure 2.6.
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(a) (b)

Figure 2.6: Wave front radiated by a wide-band point source located in the far-field: (a) in
3-D view and (b) in 2-D view. The wave front hits the x and y axes with angles α, β ∈ [0, π],
and, in both cases, the wave front leaves a trail of constant-phase profiles (not to confuse with
a sinusoidal wave front).

The most distinct aspect of this result is that the sound pressure is dependent only on the
direction of propagation of the wave front given by u. In the case where s(t) = ejΩ0t, the
function p(r, t) is called a plane wave with frequency Ω0 rad/s. We will see that the plane
wave is the elementary component in the spatio-temporal Fourier analysis of the wave field,
the same way complex frequencies are the elementary components in the traditional Fourier
analysis.

2.4 Modes of wave propagation
Another distinct aspect of far-field radiation is that the amplitude of the sound pressure does
not decay with the distance. In the strict sense, this is not possible under the Sommerfeld
radiation condition [82], and it can be easily verified that (2.16) does not satisfy the wave
equation. In fact, the far-field solution represents an idealized wave front.

The reason why a far-field acoustical wave front is not physically possible is because
it contains only one mode of wave propagation, called the propagating mode. To satisfy
the wave equation, the wave front must contain two modes of wave propagation: (i) the
propagating mode, where the wave is perpetually harmonic, and (ii) the evanescent mode,
where the wave decays exponentially. These two modes compete with each other at different
directions and distances from the point source, starting with equal energy at the point of origin
and tipping towards the propagating mode as the distance increases. The energy contribution
of the evanescent mode becomes zero only asymptotically, when ‖r− rp‖ → ∞. This
behavior is illustrated in Figure 2.7.

To understand the mathematics behind this concept, consider the Fourier transform of
(2.16) with respect to time,

p(r,Ω) = S(Ω)ej
Ω
c u·r. (2.17)

The transition between modes can be observed when looking into a particular direction of
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Figure 2.7: Modes of wave propagation in the vicinity of a point source. The total energy
contribution of the propagating and evanescent modes in the spherical wave front is measured
on the infinite xy-plane with respect to the z direction. The measurement starts with the xy-
plane very close to the source in (a), and it moves away from the source in (b). The ratio
between the two modes as a function of distance is shown in (c), where it is clear that the
propagating mode becomes increasingly dominant over the evanescent mode as the distance
increases, and the evanescent mode is asymptotically zero in the far-field. The method for
obtaining the plot in (c) is explained in Chapter 4.
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propagation (i.e., any linear combination of the vectors ux, uy , and uz). As an example, we
consider the direction uz only. For this purpose, let us separate the component in z, so that

p(r,Ω) = S(Ω)ej
Ω
c uzzej

Ω
c (uxx+uyy). (2.18)

Given the `2-norm ‖u‖2 = u2
x + u2

y + u2
z , the component in z can be expressed as uz =

±
√
‖u‖2 − (u2

x + u2
y). Note that a transition occurs at (u2

x+u2
y) = ‖u‖2, since (u2

x+u2
y) <

‖u‖2 makes uz real and (u2
x + u2

y) > ‖u‖2 makes uz complex. Accordingly, (2.18) can be
written as

p(r,Ω) =

{
S(Ω)ej

Ω
c uzzej

Ω
c (uxx+uyy) , (u2

x + u2
y) < ‖u‖2

S(Ω)e±
Ω
c |uz|zej

Ω
c (uxx+uyy) , (u2

x + u2
y) > ‖u‖2

. (2.19)

where the sign ± is chosen such that ±Ωz is negative, thus providing a physical (non-
divergent) solution [88]. In the first case, the wave propagates harmonically towards all
directions, since all three exponential terms are complex. In the second case, the wave prop-
agates harmonically towards x and y, and decays exponentially towards z.

At a first look, it may seem strange that a projection of the vector u onto the xy-plane
can have a larger norm than u itself. And indeed, this never happens in the far-field case. In
the near- and intermediate-field cases, however, the wave front is curved; to define a direction
of propagation of a curved wave front requires a non-Euclidean space. In such a space, the
projection of u onto a lower-dimensional subspace can in fact have a larger norm than u [61].
Thus, the more curved the wave front is in the region of observation, the more likely it is that
(u2
x + u2

y) > ‖u‖2 occurs.

2.5 Huygens principle
The propagation of acoustic waves throughout the medium is a process of transfer of energy
between adjacent particles, that excite each other as the wave passes by. At a microscopic
level, every time a particle is “pushed” by its immediate neighbor, it starts oscillating back
and forth with decaying amplitude until it stops completely in its original position. This
movement triggers the oscillation of subsequent particles—this time with less strength—and
the process continues until the initial “push” is not strong enough to sustain the transfer of
energy. This process is illustrated in Figure 2.8.

An important consequence of the decaying oscillation of particles is that, since they end
up in the same position, there is no net displacement of mass in the medium. So, even
though the waves travel in the medium, the medium itself does not follow the waves. This
effectively turns every particle in the medium into a point source, driven by the same source
signal of the original source. The particles are thus referred to as secondary point sources.
At a macroscopic level, the combination of all the secondary point sources, and the spherical
waves they generate, jointly build up the entire wave front generated by the original source.
This is known as the Huygens principle [7], and is illustrated in Figure 2.9.

2.5.1 Mathematical formulation
The Huygens principle is formally described by the Kirchhoff-Helmholtz’s equation [7],
which expresses the sound pressure inside an arbitrary volume V as a function of the sound
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Figure 2.8: Energy transfer between particles in the medium. The traveling wave triggers an
oscillating movement in the local particles, causing them to bump into their immediate neigh-
bors and spread the oscillating movement. As the wave goes away, the oscillation decays and
the particles go back to their original positions.

Figure 2.9: Illustration of the Huygens principle. At every “step” of the advancing wave
front, the edge of the wave front is a continuum of secondary point sources that together
build up the “next step” of the advancing wave front.



2.5 Huygens principle 40

pressure on the boundary surface S (see Figure 2.10-(a)). The equation is given by

p(r,Ω) =
˛
S

 ∂p(rS ,Ω)
∂nS︸ ︷︷ ︸

Pressure gradient

g(r− rS ,Ω)︸ ︷︷ ︸
Monopole

− p(rS ,Ω)︸ ︷︷ ︸
Pressure

∂g(r− rS ,Ω)
∂nS︸ ︷︷ ︸
Dipole

 dS, (2.20)

for every r ∈ R3 ∩ V , where p(rS ,Ω) is the sound pressure on S , nS is the surface normal
pointing inwards, and g(r−rS ,Ω) is the 3-D Green’s solution for spherical radiation centered
at rS ,

g(r− rS ,Ω) =
ej

Ω
c ‖r−rS‖

4π ‖r− rS‖
. (2.21)

The Kirchhoff-Helmholtz’s equation in (2.20) represents a continuum of point sources g
weighted by the pressure gradient ∂p

∂nS
and dipole sources ∂g

∂nS
weighted by the sound pres-

sure p, covering the entire surface S.
A simplified version of (2.20) is obtained by considering an area A enclosed by a bound-

ary contour L (see Figure 2.10-(b)). The equation is then given by

p(r,Ω) =
˛
L

 ∂p(rL,Ω)
∂nL︸ ︷︷ ︸

Pressure gradient

g(r− rL,Ω)︸ ︷︷ ︸
Monopole

− p(rL,Ω)︸ ︷︷ ︸
Pressure

∂g(r− rL,Ω)
∂nL︸ ︷︷ ︸
Dipole

 dL, (2.22)

for every r ∈ R3 ∩ A, where g(r− rL,Ω) is the 2-D Green’s function given by [88]

g(r− rL,Ω) =
j

4
H

(1)
0

(
Ω
c
‖r− rL‖

)
, (2.23)

where H(1)
0 is the zeroth-order Hankel function of the first kind. The results in (2.20) and

(2.22) can be further simplified [8], when V “encloses” an entire source-free 3-D half-space
(see Figure 2.10-(c)),

p(r,Ω) = −
ˆ ∞
−∞

ˆ ∞
−∞

p(rS ,Ω)︸ ︷︷ ︸
Pressure

∂g(r− rS ,Ω)
∂z︸ ︷︷ ︸

Dipole

dxdy, z < 0, (2.24)

and when A “encloses” an entire source-free 2-D half-space (see Figure 2.10-(d)),

p(r,Ω) = −
ˆ ∞
−∞

p(rL,Ω)︸ ︷︷ ︸
Pressure

∂g(r− rL,Ω)
∂z︸ ︷︷ ︸

Dipole

dx, y = 0 and z < 0. (2.25)

The results in (2.24) and (2.25) are known as the Rayleigh equations. Note that, without loss
of generality, we consider S to be the xy-plane and L the x-axis.
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(a) (b)

(c) (d)

Figure 2.10: Illustration of the Kirchhoff-Helmholtz and Rayleigh equations. (a) General
3-D case, where p(r, t) for r ∈ V is a function of p(r, t) for r ∈ S; (b) General 2-D case,
where p(r, t) for r ∈ A is a function of p(r, t) for r ∈ L; (c) 3-D half-space case, where
p(r, t) for z < 0 is a function of p(r, t) for z = 0; (d) 2-D half-space case, where p(r, t) for
y = 0 and z < 0 is a function of p(r, t) for y = 0 and z = 0.
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Figure 2.11: Expressing a surface integral as an integral in R2. The function ϕ(v) maps a
vector v ∈ R2 to a vector r ∈ R3 ∩ S , where S is a curved surface in R3. The normalizing
factor is the `2-norm of the normal vector, ‖nS‖.

2.5.2 Convolution notation
An important consequence of the Huygens principle and its mathematical formulation is that
any wave field can be observed on the surface of a given region in space and be resynthesized
inside that same region, or potentially at a different region in space or at a different moment
in time. These are the basic ingredients of a DSP system.

To make this relationship more apparent, it is convenient to express the surface integral
in (2.20) as an integral in R2. This can be done using the following equality [59]

˛
S
f(rS)dS =

ˆ
R2
f(ϕ(v))

∥∥∥∥∂ϕ(v)
∂v0

× ∂ϕ(v)
∂v1

∥∥∥∥ dv, (2.26)

where ϕ(v) : R2 7→ R3 ∩ S is a function that maps a vector v = (v0, v1) on a plane to a
vector rS = (xS , yS , zS) on the surface S. The factor

∥∥∥∂ϕ(v)
∂v0

× ∂ϕ(v)
∂v1

∥∥∥ is a normalization
element, in this case given by the `2-norm of the normal vector, ‖nS‖. This transformation
is illustrated in Figure 2.11.

The Kirchhoff-Helmholtz integral is then given by

p(r,Ω) =
ˆ

R2

(
g(r− ϕ(v),Ω)

∂p(ϕ(v),Ω)
∂nS

− p(ϕ(v),Ω)
∂g(r− ϕ(v),Ω)

∂nS

)
‖nS‖ dv,

(2.27)
for every r ∈ R3 ∩ V . To further simplify the result, define an operator G(r,Ω) such that

G(r,Ω) = g(r,Ω) ‖nS‖
∂

∂nS
− ‖nS‖

∂g(r,Ω)
∂nS

. (2.28)

Then, (2.27) is given by

p(r,Ω) =
ˆ

R2
p(ϕ(v),Ω)G(r− ϕ(v),Ω)dv (2.29)
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for every r ∈ R3 ∩ V . We call the result in (2.29) the surface convolution of the sound
pressure p(r,Ω) with the synthesis operator G(r,Ω), and denote it with the symbol ~. The
compact expression is given by

p(r,Ω) =

{
p(r,Ω) ~ G(r,Ω) , r ∈ R3 ∩ V
undefined , r /∈ R3 ∩ V.

(2.30)

In accordance with the Huygens principle, the surface convolution of the sound pressure with
the synthesis operator is the sound pressure itself inside the volume V—by convention, it is
undefined on the outside. In the next chapter, we will see that the surface convolution satisfies
some of the properties of a regular convolution integral.

2.5.3 Wave field synthesis
The surface convolution expressed in (2.30) can be implemented in practice through a tech-
nique known as wave field synthesis (WFS), developed by Berkhout et al. [11] in the early
1990’s. The method has been a subject of intense research among the audio engineering com-
munity, and it consists of using a large number of loudspeakers as secondary point sources
representing the Green’s solution g(r,Ω) at various locations along S—or, more commonly,
along L.

The Kirchhoff-Helmholtz equations present several challenges on a practical level—
namely: (i) the number of secondary sources must infinite; (ii) the secondary sources have
to cover the entire surface that encloses the listening region, which itself is infinitely large in
the case of (2.24); (iii) both (2.20) and (2.24) require the use of dipoles as secondary sources,
which are not easily implemented in hardware (loudspeakers typically act as monopoles).
Some techniques for relaxing these theoretical requirements include: (i) discretizing the ar-
ray of secondary sources, at the expense of adding spatial aliasing; (ii) limiting the listening
region to a plane, using the 2-D solutions in (2.22) and (2.25), and performing segmented
WFS; (iii) measuring the pressure gradient ∂p

∂nS
instead of the regular pressure p, so that the

secondary sources can be implemented through monopoles instead of dipoles. Some real-
world examples of WFS systems are shown in Figure 2.12.

Concepts such as spatial aliasing and local spatial analysis will become more clear as we
turn into the discussion of spatio-temporal DSP systems.
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Image source: dancetracksdigital.com

(a)

Image source: eaw.com

(b)

Image source: gizmag.com

(c)

Image source: soundbar.com

(d)

Figure 2.12: Real-world examples of WFS systems. (a) The Tresor Club is a popular dancing
club in Berlin, Germany, and the first one to be equipped with a WFS sound system of 200
loudspeakers. (b) The Philadelphia Eagles Stadium is equipped with a gigantic loudspeaker
array with over 700 loudspeakers surrounding the entire stadium. (c) The new Audi Q7
prototype has a WFS sound system with 62 loudspeakers surrounding the interior of the car.
(d) An increasing number of home theater sound systems utilize linear arrays of loudspeakers
instead of 5.1 setups, due to their ability to project sound into the walls.
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2.6 Summary notes

• Acoustic wave fields are governed by a partial differential equation known as the wave
equation;

• Point sources are the building blocks of every acoustic scene, whether the scene is in a
free space or a reverberant room;

• Each point source radiates sound across space and time in a spherical wave pattern
according to p(r, t) = 1

4π‖r−rp‖s
(
t − ‖r−rp‖

c

)
or p(r, t) = s

(
t + u·r

c

)
, depending on

the distance at which the sound pressure is observed;

• Spherical waves carry two types of energy—propagating and evanescent—which tend
to manifest equally in the vicinity of the source, and converge to propagating energy at
greater distances;

• The Huygens principle states that vibrating air particles are equivalent to secondary
point sources, jointly sustaining the advancing wave front;

• The mathematical formulation of the Huygens principle—the Kirchhoff-Helmholtz
equation—states that the wave field in any given source-free region in space is com-
pletely defined by the wave field at the boundary surface, and can be resynthesized
using a technique known as wave field synthesis (WFS);

• The Kirchhoff-Helmholtz equation can be conveniently expressed in a convolution no-
tation that we call surface convolution.



2.6 Summary notes 46



Chapter 3

Linear Space/Time Invariant
Systems

3.1 Introduction
The widespread adoption of digital signal processing (DSP) techniques in modern devices is
possible thanks to two main technological pillars: the analog-to-digital (A/D) converter and
the digital-to-analog (D/A) converter. The A/D converter is a device that collects samples of
the input signal’s amplitude at periodic instants in time; it translates physical signals—which
are analog (or continuous-time) by nature—into a sequence of samples that can be processed
by a computer. The D/A converter performs the opposite operation: it translates the sequence
of samples into an analog signal that can be sent back to the physical world. It is essentially
a low-pass interpolation filter that removes all the spectral images created by the sampling
operation. In every DSP system, the A/D and D/A converters are the two building blocks
that make it possible to process signals in the discrete domain, and without which most DSP
theory would be useless. This is particularly true in applications related to sound processing.

When Christiaan Huygens developed his theory in the late 17th century [50], he could
have hardly imagined the extent to which his ideas would affect today’s technology. The
Huygens principle was, in fact, the first comprehensive step in the creation of a D/A con-
verter for acoustic wave fields—ultimately made possible by Berkhout’s work on wave field
synthesis (WFS) [9]. The main idea of a WFS algorithm is to pre-filter the signals that go into
the loudspeakers such that the superposition of the wave fronts generated by each loudspeaker
interpolate naturally in the air (or some general medium), resulting in the desired analog wave
front. This is illustrated in Figure 3.1. Note, however, that this is not a “post-filter” in the
traditional sense, since analog filters can not be implemented in space.

An A/D converter for acoustic wave fields can also be implemented with an array of
microphones, where each microphone represents one spatial sample. The array can be seen
as a device that collects samples of the input sound pressure at periodic locations in space
(more specifically, on the boundary surface S), thus translating the physical wave fronts into
a sequence of samples that can be processed by a computer. Similarly, an analog “pre-filter”
can not be implemented in space.

The availability of A/D and D/A technologies for sampling and reconstructing acoustic

47
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(a) (b)

Figure 3.1: Digital-to-analog (D/A) conversion based on interpolation of elementary sig-
nals. (a) In traditional signal processing, the analog signal is reconstructed from its discrete
counterpart through a sum of sinc functions centered at and wighted by each sample of the
signal. (b) With the Huygens principle, the analog wave front is reconstructed from its sam-
ples through a sum of spherical waves centered at and weighted by each field value observed
at the same position.

wave fields raises the following question: how can the samples be processed before being
transmitted to a WFS system for playback? The development of DSP theory was mainly built
upon a concept known as linear time-invariant (LTI) systems. According to the theory (see,
e.g., Oppenheim et al. [69]), an LTI system is one that responds to a linear combination (or
superposition) of inputs with a linear combination of the individual outputs, and responds
to a time shift on the input with an identical time shift on the output. For instance, if the
response of the system to the inputs s1(t) and s2(t) is given by y1(t) and y2(t) respectively,
then, due to linearity, the response to a1s1(t) + a2s2(t) is given by a1y1(t) + a2y2(t), where
ak is any constant such that ak ∈ C. Similarly, if the response of the system to the input
s(t) is given by y(t), then, due to time invariance, the response to s(t − t0) is given by
y(t − t0). In this chapter, we will show that the same properties are valid for a system of
the type following the Huygens principle, i.e., that the Huygens principle can be expressed
as a system that is not only linear and time-invariant but also space-invariant. In the same
line of thought, if the response of the system to the inputs p1(r, t) and p2(r, t) is given by
y1(r, t) and y2(r, t) respectively, then, due to linearity, the response to a1p1(r, t)+a2p2(r, t)
is given by a1y1(r, t) + a2y2(r, t), where ak is any constant such that ak ∈ C. Similarly,
if the response of the system to the input p(r, t) is given by y(r, t), then, due to space- and
time-invariance, the response to p(r + r0, t+ t0) is given by y(r + r0, t+ t0). We call such
a system linear space/time invariant (LSTI).

Expressing the Huygens principle as an LSTI system is a powerful conceptual tool that
allows us to think of acoustic wave fields as input signals and physical principles as impulse
responses. The bridge between the physical world and the DSP world is established by the
surface convolution. For this reason, we dedicate most of this chapter to the discussion of
the surface convolution and its properties, and to the particular cases that are relevant to the
development of a comprehensive DSP theory for analyzing and processing acoustic wave
fields.
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3.2 Surface convolution
The surface convolution was introduced in the previous chapter as a compact formulation of
the Kirchhoff-Helmholtz equation, which is the mathematical basis of the Huygens principle.
The expression was defined as p(r,Ω) = p(r,Ω) ~ G(r,Ω) for every r ∈ R3 ∩ V , where
V is a source-free enclosed volume, and it states that the sound pressure inside V can be
obtained by a convolution operation at the surface S between the sound pressure p(r,Ω) and
the synthesis operator G(r,Ω).

The result implies that the sound pressure inside V is completely defined by the sound
pressure at the boundary surface S—in agreement with the Huygens principle—meaning
that any values of p(r,Ω) outside S are completely irrelevant to the outcome of the surface
convolution. Thus, the expression can be written in the non-redundant form

p(r,Ω) = (δS(r)p(r,Ω)) ~ G(r,Ω)

where δS(r) equals one for r ∈ R3 ∩ S and zero otherwise.
In this section, we discuss the definition and properties of the surface convolution in more

detail, with special emphasis on the properties that are relevant to defining and constructing
LSTI systems based on the Huygens principle.

3.2.1 General definition
The surface convolution is always between two functions: the analysis function fa(r,Ω) and
the synthesis function fs(r,Ω). The analysis function represents the observed wave fronts
that we intend to re-synthesize in the enclosed volume V , whereas the synthesis function is
the one that actually generates the wave fronts within V based on the observed values given
by the analysis function.

The surface convolution between the two functions can be expressed as

f(r,Ω) = fa(r,Ω) ~ fs(r,Ω), (3.1)

where

fa(r,Ω) ~ fs(r,Ω) =
ˆ

R2
fa(ϕa(v),Ω)fs(r− ϕs(v),Ω)dv (3.2)

for every r ∈ R3 ∩ Vs. The functions ϕa(v) : R2 7→ R3 ∩ Sa and ϕs(v) : R2 7→ R3 ∩ Ss

are the functions that map a 2-D vector v = (v0, v1) to the 3-D coordinates of the analysis
and synthesis surfaces, Sa and Ss, which enclose the respective volumes Va,Vs ⊂ R3. The
geometrical shape of the analysis and synthesis surfaces is characterized by the functions
ϕa(v) and ϕs(v), which are not necessarily equal. An illustration of the generalized surface
convolution is given in Figure 3.2.

Note that the arguments in (3.1) are always the spatial coordinates r and the frequency Ω.
Thus, for simplicity, we will additionally use the compact notation where the arguments are
hidden:

f = fa ~ fs. (3.3)

This notation is particularly useful in the discussion of the properties of the surface convolu-
tion.
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Figure 3.2: Generalized surface convolution. The analysis function observed at the analysis
surface Sa is convolved with the synthesis function defined at the synthesis surface Ss, gen-
erating the output function defined inside the source-free synthesis volume Vs, and undefined
on the outside. The convolution integral is performed over a plane that maps its values to the
analysis and synthesis surfaces through the functions ϕa(v) and ϕs(v), respectively.

3.2.2 Properties
3.2.2.1 Multiplicative identities

The surface convolution has two multiplicative identities, with direct implications on the
physical and practical levels: the analysis identity and the synthesis identity. The analysis
identity can be expressed as

(δSafa) ~ fs = fa ~ fs, (3.4)

for any Va,Vs ⊂ R3, where δSa is a delta function that samples the analysis surface Sa,
defined as

δSa(r) =

{
1 , r ∈ R3 ∩ Sa

0 , r /∈ R3 ∩ Sa.
(3.5)

This property states that only the information at the analysis surface Sa is relevant for the
outcome of the surface convolution. We will see that, in practice, this reduces the number of
spatial dimensions necessary for representing fa.

The synthesis identity is given by

fa ~ G = fa, (3.6)

provided that Va = Vs, where G is the synthesis operator introduced in the previous chapter
as

G = g ‖nS‖
∂

∂nS
− ‖nS‖

∂g

∂nS
. (3.7)

This property states that fa is unaffected by the surface convolution when fs = G. The proof
of the analysis and synthesis identity properties is given in Theorem 4 and 5 in Section 3.6.
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The two properties can also be combined such that

(δSfa) ~ G = fa, (3.8)

where, due to the synthesis identity, Sa = Ss = S. The result becomes more familiar when
the analysis function is given by the sound pressure p(r,Ω), such that

(δSp) ~ G = p. (3.9)

The result is the Kirchhoff-Helmholtz equation, introduced in the previous chapter.

3.2.2.2 Linearity

One of the basic properties of the surface convolution is that it satisfies the superposition
principle, i.e., if the analysis function is a linear combination of individual functions fa,k

such that fa =
∑
k akfa,k, where ak ∈ C, then

(∑
k

akfa,k

)
~ fs =

∑
k

ak (fa,k ~ fs) (3.10)

=
∑
k

akfk. (3.11)

In other words, the response to a linear combination of individual inputs fa,k is a linear com-
bination of individual outputs fk. The proof of the linearity property is given in Theorem 6
in Section 3.6.

A direct consequence of the linearity property is that a null input always results in a null
output for all r and t. In a physical context, this means that the air particles have to be excited
by an advancing wave front in order to act as secondary sources. The following example
shows how the linearity property applies to a real-world scenario.

Example 1. Consider a free space with two sound sources—one in the near-field and one in
the far-field. The near-field source is located at rp and, according to (2.10), has a radiation

pattern given by fa,0(r,Ω) = e−j
Ω
c ‖r−rp‖

4π‖r−rp‖ . The far-field source has a radiation pattern given

by fa,1(r,Ω) = ej
Ω
c u·r, in accordance with (2.17), where u is the direction of propagation.

Suppose the sources are driven by the signals s0(t) and s1(t), respectively. The resulting
wave front is a linear combination of the two individual radiation patterns weighted by the
respective source signals,

fa = a0fa,0 + a1fa,1

= S0(Ω)
e−j

Ω
c ‖r−rp‖

4π ‖r− rp‖
+ S1(Ω)ej

Ω
c u·r.

The goal is to use the Huygens principle to re-synthesize the two wave fronts in an enclosed
volume V , by using the synthesis operator fs = G. Due to the linearity property of the surface
convolution, as well as the multiplicative identity, it follows that
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(a) (b)

Figure 3.3: Examples of the linearity and shift invariance properties of the surface con-
volution. (a) The two radiation patterns generated on the outside of the enclosed volume
V—one in the near-field, other in the far-field—are re-synthesized and superposed inside V ,
in accordance with the linearity property. (b) The near-field radiation pattern is observed at
the analysis surface Sa and re-synthesized t0 seconds later at a remote synthesis surface Ss,
shifted by r0 with respect to Sa. The result is an unaltered output, affected only by the spatial
shift and the temporal delay.

f = fa ~ G

=

(
S0(Ω)

e−j
Ω
c ‖r−rp‖

4π ‖r− rp‖
+ S1(Ω)ej

Ω
c u·r

)
~ G(r,Ω)

= S0(Ω)

(
e−j

Ω
c ‖r−rp‖

4π ‖r− rp‖
~ G(r,Ω)

)
+ S1(Ω)

(
ej

Ω
c u·r ~ G(r,Ω)

)
= S0(Ω)

e−j
Ω
c ‖r−rp‖

4π ‖r− rp‖
+ S1(Ω)ej

Ω
c u·r

= a0f0 + a1f1

This example is illustrated in Figure 3.3-(a).

3.2.2.3 Shift invariance

Another important property of the surface convolution is that, under certain conditions, it is
invariant to both spatial and temporal shifts of the analysis and synthesis functions. In the
case of the synthesis function, if the output to a given fs is given by f = fa ~ fs, then a
shifted version of fs yields

fa ~ L(r0,t0)fs = L(−r0,t0)f, (3.12)

for any Va,Vs ⊂ R3, where L(r0,t0) is a delay operator such that L(r0,t0)f(r,Ω) = f(r −
r0,Ω)e−jΩt0 . The same is true if the analysis function is shifted:

L(r0,t0)fa ~ fs = L(r0,t0)f, (3.13)
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provided that the analysis and synthesis volumes are equally shaped, i.e., Va = Vs. Under
this condition, the two cases combined yield

L(r0,t0)fa ~ L(r1,t1)fs = L(r0−r1,t0+t1)f. (3.14)

In other words, the response to a shifted analysis or synthesis function, fa and fs, is a shifted
output f , regardless of which variable is shifted. The proof of the shift invariance property is
given in Theorem 7 in Section 3.6.

Note that the concept of causality does not exist in the spatial dimension as it exists in
the temporal dimension. The difference between a plus and a minus sign in the components
of the shift vectors r0 and r1 only determines the direction to which the surfaces Sa and Ss

move in space. The following example shows an application of the shift invariance property.

Example 2. Consider an acoustic scene with one point source in the near-field located at rp
and driven by s(t). From (2.10), it follows that

fa(r,Ω) = S(Ω)
e−j

Ω
c ‖r−rp‖

4π ‖r− rp‖
.

The goal is to use the Huygens principle to re-synthesize the wave field after t0 seconds in
an enclosed volume Vs that is shifted in space by r0 with respect to the original observation
region. Using the synthesis operator fs = G and the shift invariance property, it follows that

fa ~ L(r0,t0)G = S(Ω)

(
e−j

Ω
c ‖r−rp‖

4π ‖r− rp‖
~ G(r− r0,Ω)

)
e−j

Ω
c t0

= S(Ω)
e−j

Ω
c ‖(r+r0)−rp‖

4π ‖(r + r0)− rp‖
e−j

Ω
c t0

= fa(r + r0,Ω)e−j
Ω
c t0

= L(−r0,t0)fa

This example is illustrated in Figure 3.3-(b).

3.2.2.4 Half-space property

The difference between a surface convolution between two functions fa and fs and a regular
2-D convolution integral is that in the surface convolution only the values within the range
of ϕa(v) and ϕs(v) are used in the calculation (recall that these two functions map a plane
region in R2 to a curved region in R3). This means that, even though the surface convolution
is linear and shift-invariant, it does not satisfy other properties such as commutativity and
associativity, i.e., fa ~ fs 6= fs ~ fa and (f0 ~ f1) ~ f2 6= f0 ~ (f1 ~ f2).

The scenario changes when the functions ϕa(v) and ϕs(v) are of the type ϕ(v) = a·v+b,
where a = (a0, a1) and b are real-valued constants. This is when the functions map a plane
region in R2 to another plane region in R3; the two cases are compared in Figure 3.4. In
this particular case, the surface convolution reduces to a regular 2-D convolution, where the
relation is given by

fa ~ fs =
1

a0a1
fa ∗ fs. (3.15)
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(a) (b)

Figure 3.4: Comparison between mapping functions. The function ϕ(v) maps a vector
v ∈ R2 to a vector r ∈ R3 ∩ S, where S is: (a) a curved surface, or (b) a plane surface. In
the case of (b), the plane surface has infinite size, and the volume it “encloses” is the entire
half-space.

The proof of this property is given in Theorem 8 in Section 3.6. The expression can be further
simplified if v represents the xy-plane, in which case a = (1, 1) and b = 0, and thus

fa ~ fs = fa ∗ fs. (3.16)

By transforming the surface convolution into a regular 2-D convolution, the commutative and
associative properties become valid, and thus fa∗fs = fs∗fa and (f0∗f1)∗f2 = f0∗(f1∗f2).
This also simplifies the analysis of acoustic wave fields in various ways, some of which we
discuss later in the thesis.

3.3 LSTI systems based on the Huygens principle
The motivation for expressing and generalizing the Kirchhoff-Helmholtz equation into what
we call the surface convolution is that it allows the use of the Huygens principle as a signal
processing system. Looking at the properties of the surface convolution, summarized in
Table 3.1, the Kirchhoff-Helmholtz equation is a particular case where the wave field is re-
synthesized in the same region where it is observed, and at exactly the same time. The general
definition, however, is much more flexible, in the sense that: (i) it allows the wave field to be
re-synthesized at a remote region in space, at a later moment in time, and (ii) to be analyzed,
processed, and stored before being re-synthesized.

The surface convolution has two properties that define a typical signal processing system:
linearity and shift invariance. Since the Kirchhoff-Helmholtz equation is a particular case of
the surface convolution, this means that any spatio-temporal system based on the Huygens
principle is LSTI, as long as the filtering operations performed in between are also LSTI.
Consider the following example.

Example 3. A famous orchestra is playing at the Montreux Jazz Festival in Switzerland,
with the first test transmission in wave field synthesis (WFS) audio format. The recording
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Table 3.1: List of properties of the surface convolution.

General definition f(r,Ω) = fa(r,Ω) ~ fs(r,Ω) , r ∈ Vs

Analysis identity (δSafa) ~ fs = fa ~ fs

Synthesis identity fa ~ G = fa , Va = Vs

Kirchhoff-Helmholtz (δSp) ~ G = p , Va = Vs

Linearity (
∑
k akfa,k) ~ fs =

∑
k akfk.

Shift invariance fa ~ L(r0,t0)fs = L(−r0,t0)f

L(r0,t0)fa ~ L(r1,t1)fs = L(r0−r1,t0+t1)f , Va = Vs

Half-space property fa ~ fs = fa ∗ fs , Va = Vs = R3
z<0

is made at the stage with a large array of microphones, which faithfully captures the entire
sound field generated by the orchestra. The signal is then streamed to a research institute
in Germany, where the sound field is reproduced in a listening room endowed with a WFS
playback system. Our goal is to model this scenario as an LSTI system based on the Huygens
principle.

From Table 3.1, the Kirchhoff-Helmholtz equation is given by

(δSp) ~ G = p. (3.17)

In this case, we can consider that the scene is 2-dimensional, and both the microphone and
loudspeaker arrays are placed on a contour L that borders the listeners areaA. Now, suppose
the spatial shift between the concert hall in Switzerland and the listening room in Germany
is r0 and the streaming delay is t0. Then,

(δLp) ~ L(r0,t0)G = L(−r0,t0)p. (3.18)

In addition, the recorded sound field is pre-processed in Switzerland before being streamed
to Germany. This can be modeled as a filter ha applied to the analysis surface, such that1

(δLp) ~ (δLha) ~ L(r0,t0)G = L(−r0,t0)y. (3.19)

Note that the output is not p anymore, but some processed version y. Finally, we can assume
that the listeners in Germany also have the means of processing the sound field before it is
reproduced by the WFS playback system. This can be modeled as a filter hs applied to the
synthesis surface, such that

(δLp) ~ (δLha) ~ (δLhs) ~ L(r0,t0)G = L(−r0,t0)y. (3.20)

The example is illustrated in Figure 3.5.

This type of modeling, however, has a number of disadvantages: (i) it requires the use of
a fixed Euclidean referential to account for the separation between the analysis and synthesis

1Here we assume a left-to-right convention, f0 ~ f1 ~ · · ·~ fn−1 = (((f0 ~ f1) ~ · · · ) ~ fn−1.
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Figure 3.5: Example of a sound field streaming experiment modeled as an LSTI system
based on the Huygens principle. The sound field generated by the orchestra in Switzerland
is captured by a microphone array in the concert hall. The signal is then pre-processed and
streamed to Germany, where the listening room is located. The received signal is processed
again, and then fed to a loudspeaker array that re-synthesizes the sound field through WFS
techniques. The equivalent LSTI system is given by a series of surface filtering operations
on the input sound pressure p(r, t) and subsequent reconstruction by the synthesis operator
G(r, t), properly shifted to account for the distance between countries.

regions, and, most of all, (ii) it is highly redundant, since it uses a 3-dimensional space
to describe operations that are essentially 2-dimensional, such as the surface integral. It is
reasonable to say that there exists a more optimal, lower-dimensional representation of the
analysis and synthesis regions that does the same job in terms of modeling.

In the next section, we will show how such a lower-dimensional representation can be
constructed through the use of non-Euclidean spaces.

3.4 Signals and sequences
In digital signal processing (DSP), we tend to think of signals as unit-less representations of
a given quantity, with no special regard for absolute measurements. A signal representing
the sound pressure, for example, should ideally have its amplitude scaled in units of Pascal
(Pa), which is the SI unit for pressure. In practice, however, the pressure measurements
are performed by a transducer (e.g., a microphone) that has its own output scale—typically
voltage. It may also happen that the electrical signal goes through an A/D converter, which
itself adjusts the amplitude scale to the dynamic range of the quantizer. Thus, by the time the
signal is available for processing, all the absolute measurements related to the original metric
are essentially lost. The differential measurements are the only information preserved.

Something similar happens with respect to the independent variables of the signal, such
as time. When a continuous signal is discretized by an A/D converter, the result is always
a timeless sequence of samples, regardless of the sampling frequency that is used. For this
reason, discrete samples are represented as s[0], s[1], s[2], etc, instead of s(0), s(T ), s(2T ),



3.4 Signals and sequences 57

Figure 3.6: Example of a spherical manifold. (a) On a large scale, the topological space
is curved and therefore non-Euclidean. (b) On a small scale, the space becomes Euclidean
and the distance between vectors is given by the regular `2-norm. (c) If the local space is 3-
dimensional—by considering the z variable—then the xy-plane separates the R3 space into
two half-spaces, R3

z<0 and R3
z≥0.

etc. Another example is when pictures are captured by a digital camera: the result is always
a matrix of amplitude values, regardless of the distance between pixel sensors.

This reasoning suggests that, if the sound pressure is measured at different points in space,
the Cartesian coordinates with respect to an absolute referential will not be preserved in a
practical application that involves some form of DSP. The only information preserved is the
differential amplitude of the sound pressure from one point in space to the other. Therefore,
it makes sense that the surface S delimiting the enclosed volume V is considered itself to be
the main referential, because that is where all the information is obtained. The question is:
how do we build such a referential, and how can a unit-less signal be obtained out of it?

3.4.1 Geometry of space/time
To transform the surface S into a referential for the representation of input signals, we use a
concept known as a manifold. By definition, a manifold is a general topological space that is
locally Euclidean [59], as the one illustrated in Figure 3.6. A classical example is the planet
Earth, which is spherical when seen from space (global view) but flat when seen from the
surface (local view). At the Earth’s surface, it is reasonable to say that people move on a 2-D
plane, and not on the tip of a vector connecting the center of Earth to them. Thus, for any
person standing at a random place on Earth, the referential is always local and Euclidean. If
the space is 3-dimensional (R3), then the sky above is one half-space (R3

z≥0) and the Earth
bellow is the other half-space (R3

z<0).
In the context of LSTI systems, the conditions above invoke the half-space property of the
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Figure 3.7: Local analysis of the surface manifold. The xy-plane moves tangentially along
the surface, depending on the region where the sound pressure is observed. Due to the half-
space property of the surface convolution, the Kirchhoff-Helmholtz equation is locally given
by a regular 2-D convolution.

surface convolution, fa~fs = fa∗fs, which reduces the surface convolution to a regular 2-D
convolution. For any surface S that is a smooth manifold, the Kirchhoff-Helmholtz equation
is locally given by

p(r, t) = p(r, t) ∗ G(r, t) =
ˆ

R2
p(v,Ω)G(r− v,Ω)dv, (3.21)

where r = (x, y, z) ∈ R3
z<0 and v = (x, y) ∈ R2. This means that, when observing the

different regions of S, the xy-plane moves along the surface like a tangent sliding window, as
illustrated in Figure 3.7. The process is analogous to the short-time analysis of signals, where
a window function slides along the t-axis, and will be described in more detail in Chapter 5.

3.4.2 Continuous and discrete space/time signals
The series of mathematical simplifications and re-interpretation of the equations discussed
until now places the entire problem of observing, processing, and re-synthesizing the acoustic
wave field into a signal processing framework. All the physics-related terminology, such as
Green’s function and Kirchhoff-Helmholtz equation, as well as the involved calculations,
such as line and surface integrals, can be replaced by a simple LSTI system endowed with a
convolution operation:

p(r, t) −→ LSTI system
h(v, t) −→ y(r, t)

where p(r, t) is the input signal, y(r, t) is the output signal, and h(v, t) is the impulse re-
sponse. We call these signals the continuous space/time signals.

If the system is discrete, the A/D and D/A converters guarantee that the space/time signals
are also discretized at the input and output of the system:
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p(r, t) −→ A/D
p[n]−→ LSTI system

h[n]
y[n]−→ D/A −→ y(r, t)

where p[n] is the input signal, y[n] is the output signal, and h[n] is the impulse response.
We call these signals the discrete space/time signals (or sequences). The argument n =
(nx, ny, nt) contains the integer indexes of the spatial samples, nx and ny , and the temporal
samples, nt.

It is important to notice that, even though the input and output signals are 4-dimensional
(i.e., 3 spatial dimensions plus time), the LSTI system operates in a 3-dimensional space (2
spatial dimensions plus time); the z variable is not processed by the system. One intuitive
way of looking at the problem is that the space/time signal is a projection of the wave field
“image” onto the “screen” defined by the surface S. Therefore, in practice, processing the
acoustic wave field can be compared to processing gray-scale images. In the next chapter,
we will show how such wave field “images” can be efficiently represented and processed in
a Fourier-based domain.

3.5 Summary notes

• The microphone array acts as an A/D converter of acoustic wave fields, and the loud-
speaker array acts as a D/A converter. Wave field synthesis (WFS) is one example of a
D/A interpolation algorithm;

• The surface convolution expresses acoustic wave fields as input signals and physical
principles (such as the Huygens principle) as impulse responses;

• The surface convolution is linear and space/time invariant (LSTI), and it yields the
Kirchhoff-Helmholtz equation as a particular case. Therefore, the Huygens principle
can be translated into an LSTI system;

• A long-range transmission of an entire acoustic wave field can be modeled by an LSTI
system based on the Huygens principle, and thus conveniently expressed as a surface
convolution;

• The pressure signal can be described by two spatial dimensions instead of three by
treating the analysis surface as a manifold, locally approximated by a plane. In this
case, the surface convolution becomes a regular 2-D convolution;

• Space/time signals are unit-less measurements of the sound pressure in space and time.

3.6 Theorems and proofs
Theorem 4 (Analysis identity). Given two arbitrary volumes Va,Vs ⊂ R3 and a delta func-
tion δSa(r) that equals one for r ∈ R3 ∩ Sa and zero otherwise, for any analysis function
fa(r,Ω) and synthesis function fs(r,Ω), it follows that
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(δSa(r)fa(r,Ω)) ~ fs(r,Ω) = fa(r,Ω) ~ fs(r,Ω).

Proof. From the definition of the surface integral,

(δSa(r)fa(r,Ω)) ~ fs(r,Ω) =
ˆ

R2
δSa(ϕa(v))fa(ϕa(v),Ω)fs(r− ϕs(v),Ω)dv

(a)
=
ˆ

R2
fa(ϕa(v),Ω)fs(r− ϕs(v),Ω)dv

def= fa(r,Ω) ~ fs(r,Ω)

where (a) comes from the fact that ϕa(v) : R2 7→ R3 ∩ Sa and thus δSa(ϕa(v)) = 1. Since
there is no change in the synthesis function, this proof also holds for fs(r,Ω) = G(r,Ω).

Theorem 5 (Synthesis identity). Given an arbitrary volume V = Va = Vs ⊂ R3 and a
synthesis operator

G(r,Ω) = g(r,Ω) ‖nS‖
∂

∂nS
− ‖nS‖

∂g(r,Ω)
∂nS

for any analysis function fa(r,Ω), it follows that fa(r,Ω) ~ G(r,Ω) = fa(r,Ω).

Proof. From the definition of surface integral,

fa(r,Ω) ~ G(r,Ω) =
ˆ

R2
fa(ϕa(v),Ω)G(r− ϕs(v),Ω)dv

(a)
=
ˆ

R2
fa(ϕ(v),Ω)G(r− ϕ(v),Ω)dv

def= fa(r,Ω)

where (a) comes from the fact that Va = Vs = V and thus ϕa(v) = ϕs(v) = ϕ(v), where
ϕ(v) : R2 7→ R3 ∩ S . The result, by definition, is the Kirchhoff-Helmholtz equation.

Theorem 6 (Distributivity and linearity). Given two arbitrary volumes Va,Vs ⊂ R3, an arbi-
trary number of analysis functions fa,k(r,Ω), a synthesis function fs(r,Ω), and a frequency
dependent factor ak(Ω) ∈ C, if fa,k(r,Ω) ~ fs(r,Ω) = fk(r,Ω), then it follows that(∑

k

ak(Ω)fa,k(r,Ω)

)
~ fs(r,Ω) =

∑
k

ak(Ω) (fa,k(r,Ω) ~ fs(r,Ω))

and thus (∑
k

ak(Ω)fa,k(r,Ω)

)
~ fs(r,Ω) =

∑
k

ak(Ω)fk(r,Ω).
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Proof. From the definition of the surface integral,

(∑
k

ak(Ω)fa,k(r,Ω)

)
~ fs(r,Ω)

=
ˆ

R2

(∑
k

ak(Ω)fa,k(ϕ(v),Ω)

)
fs(r− ϕ(v),Ω)dv

(a)
=
ˆ

R2

∑
k

ak(Ω) (fa,k(ϕ(v),Ω)fs(r− ϕ(v),Ω)) dv

(b)
=

∑
k

ak(Ω)
ˆ

R2
fa,k(ϕ(v),Ω)fs(r− ϕ(v),Ω)dv

(c)
=

∑
k

ak(Ω) (fa,k(r,Ω) ~ fs(r,Ω))

(d)
=

∑
k

ak(Ω)fk(r,Ω)

In the case of step (a), where fs(r − ϕ(v),Ω) goes into the sum, the modification requires
special care if fs(r,Ω) = G(r,Ω). The definition of G(r,Ω) yields

(∑
k

ak(Ω)pk(ϕ(v),Ω)

)
G(r− ϕ(v),Ω)

=g(r− ϕ(v),Ω) ‖nS‖
∂

∂nS

∑
k

ak(Ω)pk(ϕ(v),Ω)− ‖nS‖
∂g(r− ϕ(v),Ω)

∂nS

∑
k

ak(Ω)pk(ϕ(v),Ω)

=
∑
k

ak(Ω)g(r− ϕ(v),Ω) ‖nS‖
∂pk(ϕ(v),Ω)

∂nS
−
∑
k

ak(Ω) ‖nS‖
∂g(r− ϕ(v),Ω)

∂nS
pk(ϕ(v),Ω)

=
∑
k

ak(Ω)

(
g(r− ϕ(v),Ω) ‖nS‖

∂pk(ϕ(v),Ω)

∂nS
− ‖nS‖

∂g(r− ϕ(v),Ω)

∂nS
pk(ϕ(v),Ω)

)
=
∑
k

ak(Ω) (pk(ϕ(v),Ω)G(r− ϕ(v),Ω))

Thus, the properties are also valid if fs(r,Ω) = G(r,Ω). Step (b) comes from the linearity of
the integral. If the sum is infinite, then (b) requires that the Fubini theorem [16] is satisfied:´

R2

∑
k |ak(Ω)fa,k(ϕ(v),Ω)| dv < ∞. The step (c) comes by definition of the surface

convolution, and proves the distributive property. The step (d) proves the linearity property.

Theorem 7 (Shift-invariance). Given two arbitrary volumes Va,Vs ⊂ R3, if L(r0,t0) is a
delay operator such that

L(r0,t0)f(r,Ω) = f(r− r0,Ω)e−jΩt0

then, given any r0, r1 ∈ R3 and t0, t1 ∈ R, for any analysis function fa(r,Ω) and synthesis
function fs(r,Ω), it follows that

fa(r,Ω) ~ L(r0,t0)fs(r,Ω) = L(−r0,t0)f(r,Ω).



3.6 Theorems and proofs 62

In particular, if Va = Vs = V , then

L(r0,t0)fa(r,Ω) ~ L(r1,t1)fs(r,Ω) = L(r0−r1,t0+t1)f(r,Ω).

Proof. From the definition of the surface integral,

fa(r,Ω) ~ L(r0,t0)fs(r,Ω)

=
ˆ

R2
fa(ϕa(v),Ω)fs(r− (ϕs(v)− r0),Ω)e−jΩt0dv

= f(r + r0,Ω)e−jΩt0

= L(−r0,t0)f(r,Ω)

L(r0,t0)fa(r,Ω) ~ L(r1,t1)fs(r,Ω)

=
ˆ

R2
fa(ϕ(v)− r0,Ω)e−jΩt0fs(r− (ϕ(v)− r1),Ω)e−jΩt1dv

(a)
=
ˆ

R2
fa(ϕa(v),Ω)fs(r− (ϕa(v) + r0 − r1),Ω)dve−jΩ(t0+t1)

= f(r− (r0 − r1),Ω)e−jΩ(t0+t1)

= L(r0−r1,t0+t1)f(r,Ω)

where (a) comes from the change of variables ϕa(v) = ϕ(v)− r0. Both cases are valid also
for fs(r,Ω) = G(r,Ω), since the proof only involves a change of variables.

Theorem 8 (Half-space property). Given an arbitrary volume V = Va = Vs ⊂ R3 with
a surface mapped by a function of the type ϕ(v) = a · v + b, where a = (a0, a1) ∈ R2

and b ∈ R, for any analysis function fa(r,Ω) and synthesis function fs(r,Ω), it follows that
fa ~ fs = 1

a0a1
fa ∗ fs.

Proof. From the definition of the surface integral,

fa(r,Ω) ~ fs(r,Ω) =
ˆ

R2
fa(ϕ(v),Ω)fs(r− ϕ(v),Ω)dv

=
ˆ

R2
fa(a · v + b,Ω)fs(r− a · v − b,Ω)dv

(a)
=

1
a0a1

ˆ
R2
fa(σ,Ω)fs(r− σ,Ω)dσ

=
1

a0a1
fa(r,Ω) ∗ fs(r,Ω)

where (a) comes from the change of variables σ = a · v+ b and dσ = a0a1dv. This is valid
also for fs(r,Ω) = G(r,Ω), since the proof only involves a change of variables.



Chapter 4

The Spatio-Temporal Fourier
Transform

4.1 Introduction
The Fourier transform is arguably one of the most important discoveries in the history of
physical sciences. It was first developed in the early 19th century by the French mathemati-
cian Joseph Fourier (1768–1830). In his famous paper [33], Fourier shows how to solve
the heat equation in a solid medium for a general class of periodic excitation functions (at
the time, only the solution for a few analytical functions was known). Fourier’s ingenious
approach, instead of trying to find a solution for each particular function, was to represent
each function as a linear combination of sinusoids with different frequencies, and obtain the
solution for each sinusoidal component. The result was then a linear combination of the si-
nusoidal solutions. The expression derived by Fourier is similar to what is known today as
the Fourier series, and has progressed to its modern form due to the contribution of several
mathematicians, such as Bernhard Riemann (1826–1866) and Johann Dirichlet (1805–1859)
[24].

The Fourier transform had a deep impact in many fields of science. It has redefined fields
such as classical mechanics, optics, and acoustics, and created or contributed to new ones
such as harmonic analysis, quantum mechanics, and, of course, signal processing. Such a
revolution was due to the fact that many physical phenomena occurring in nature have an
inherent harmonic behavior that is efficiently represented by the Fourier transform. Phys-
ical forces and wave fields tend to manifest themselves in harmonic patterns, or to induce
harmonic behavior in the surrounding medium. Such behavior can not always be directly
observed through instrumentation, mostly due to technological limitations, and is therefore
restricted to theoretical analysis. Notable examples include the harmonic behavior of grav-
ity (see, e.g., Ciufolini et al. on gravitational waves [20]) and the harmonic behavior of
subatomic particles (see, e.g., Becker et al. on string theory [5]). However, in many other
cases—e.g., sound waves and light waves—there are several measuring instruments that al-
low not only the phenomena to be directly observed but also to be manipulated—for example,
through the use of filters and amplifiers. This is where harmonic analysis has proved to be
a valuable tool in the development of applications and devices that have become part of our

63
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(a) (b)

Figure 4.1: Silicon microphones based on MEMS (micro-electromechanical systems) tech-
nology. (a) The microphones can get as small as 3mm [21]—about 10% the diameter of a
US quarter dollar coin. The maximum distance between microphones required to sample the
acoustic wave field within the listening range without introducing spatial aliasing is given
by 340m/s

44100Hz = 7.7mm, which can be easily satisfied with MEMS microphones. (b) The mi-
crophone operates through a pressure-sensitive diaphragm carved directly in the silicon chip,
and it may contain other built-in components such as a pre-amplifier and an A/D converter.

everyday lives.
The recent progress in microphone technology poses an interesting scenario: as the num-

ber of microphones increases and the microphones themselves become smaller (see Fig-
ure 4.1), the sampling frequency in space becomes comparable to the sampling frequency
in time, to the point where spatial aliasing can be virtually eliminated. The microphone array
becomes a dimension in itself (the spatial dimension) and the signals observed at the array
start manifesting harmonic behavior (recall that wave fields are characterized by functions of
both space and time). Under these conditions, it makes sense to perform harmonic analysis
not only on the temporal dimension but also on the spatial dimension.

As usual, the first step in performing harmonic analysis on a given signal is to calculate
the Fourier transform of the signal, in order to obtain a spectral representation that expresses
the amplitude and phase of each harmonic component as a function of frequency. The Fourier
transform is taken over all the dimensions of the signal that exhibit harmonic behavior. In
the case of the spatio-temporal signal p(r, t), which represents the sound pressure at a given
point in space and time, this implies taking the Fourier transform over the three spatial dimen-
sions as well as the temporal dimension. The purpose of calculating the Fourier transform of
p(r, t) is to decompose the entire wave field into its elementary harmonic components, so that
the wave field can be efficiently analyzed and manipulated for later reconstruction through
wave field synthesis (WFS). We will see that the harmonic components of the wave field are
generalizations of the traditional sinusoid, known as plane waves—these are sinusoids that
propagate as a plane wave front. The plane waves are eigen-functions of the linear space/time
invariant (LSTI) systems.

In this chapter, we derive and illustrate the Fourier transform of the most common types
of wave fronts, and show how the spectral patterns change with the parameters of the scene.
We address both the continuous version of the Fourier transform and the discrete version, as
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well as the method through which one is obtained from the other—i.e., through sampling and
interpolation. We focus mostly on the theoretical aspects of Fourier analysis and its efficiency
in the representation of acoustic wave fields. Spectral manipulation of acoustic wave fields is
addressed in subsequent chapters.

4.2 Continuous Fourier transform

4.2.1 Definition
The spatio-temporal Fourier transform of the 4-D signal p(r, t) can be obtained from the
multi-dimensional formulation of the Fourier integral [27], and is given by

P (Φ,Ω) =
ˆ

R3

ˆ
R
p(r, t)e−j(Φ·r+Ωt)dtdr (4.1)

where Φ = (Φx,Φy,Φz) are the spatial frequencies in rad/m and Ω is the temporal frequency
in rad/s, and where

´
R3dr =

´
R
´

R
´

R dxdydz. The inverse transform is given by

p(r, t) =
1

(2π)4

ˆ
R3

ˆ
R
P (Φ,Ω)ej(Φ·r+Ωt)dΩdΦ (4.2)

where
´

R3dΦ =
´

R
´

R
´

R dΦxdΦydΦz . The Fourier integral can be interpreted as the pro-
jection of p(r, t) onto the “orthogonal basis” ej(Φ·r+Ωt), which is the basic element of the
continuous Fourier transform.

We will show several examples to help understand the spectral patterns generated by (4.1)
given the most common inputs, and illustrate the results in the 3-D and 2-D spaces (which
are the cases of interest in LSTI systems based on the Huygens principle). We focus only on
the far-field and near-field cases, and leave the intermediate-field to the next chapter.

Example 9 (Far-field spectrum). Consider a point source located in the far-field with source
signal s(t) and propagation vector u, such that p(r, t) = s

(
t + u·r

c

)
. Plugging p(r, t) into

(4.1), yields

P (Φ,Ω) =
ˆ

Rm

(ˆ
R
s
(
t+

u · r
c

)
e−jΩtdt

)
e−jΦ·rdr

= S(Ω)
ˆ

Rm
e−j
(
Φ−u Ω

c

)
·rdr,

and thus

P (Φ,Ω) = S(Ω)(2π)mδ
(
Φ− u

Ω
c

)
(4.3)

where Φ,u ∈ Rm and m = 0, 1, 2, 3. The multi-dimensional Dirac function δ
(
Φ − uΩ

c

)
is non-zero for Φ = uΩ

c , and can be expressed as δ
(
Φ − uΩ

c

)
= δ

(
Φx − uxΩ

c

)
δ
(

Φy −

uy
Ω
c

)
δ
(

Φz − uz Ω
c

)
for m = 3. In the 3-D space of spatial frequencies, this corresponds to

a point on a spherical surface defined by ||Φ||2 =
(

Ω
c

)2
, as illustrated in Figure 4.2-(a).
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(a) (b)

(c) (d)

Figure 4.2: Spatio-temporal Fourier transform of a far-field source for different values of m
(number of spatial dimensions). (a) For m = 3, and for each Ω, the spectrum is given by
a Dirac point on the surface of a sphere of radius Ω

c (never inside the sphere), weighted by
S(Ω). (b) For m = 2, the spectrum is given by a Dirac function defined on a line within a
cone-shaped region, and weighted by S(Ω). The line always crosses the origin, and its slope
across Φx and Φy is determined by the angle of arrival of the wave front with respect to the x
and y-axes. (c) For m = 1, the spectrum is given by a Dirac function defined on a line within
a triangular region, with slope determined by the angle of arrival, and weighted by S(Ω). (d)
For m = 0, the spectrum has no spatial information, and therefore is equal to S(Ω).
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According to (4.3), the spectral pattern generated by a far-field source is simply a Dirac
function weighted by the Fourier transform of the source signal. The orientation of the Dirac
function is given by the partial derivatives ∂Φ

∂Ω = u
c , and, therefore, depends only on the

direction and speed of wave propagation. In simple terms, the result in (4.3) is a product
between the spatial behavior of the wave front and the temporal behavior.

The spectral pattern becomes more comprehensible by looking at the lower-dimensional
cases, where m = 2 and m = 1. Consider also that u is expressed in polar coordinates in
accordance to Figure 2.6, such that ux = cosα sinβ, uy = cosβ, and uz = sinα sinβ,
where α, β ∈ [0, π] are the angles with the x- and y-axes respectively.

Taking p(r, t) on the xy-plane, yields

P (Φx,Φy,Ω) = S(Ω)(2π)2δ
(

Φx − cosα sinβ
Ω
c

)
δ
(

Φy − cosβ
Ω
c

)
, (4.4)

which corresponds to a Dirac function defined along a line with partial derivatives ∂Φx
∂Ω =

cosα sin β
c and ∂Φy

∂Ω = cos β
c , and weighted by S(Ω). Given that α, β ∈ [0, π], the Dirac

function is always within a cone-shaped region defined by Φ2
x + Φ2

y ≤
(

Ω
c

)2
. The result is

illustrated in Figure 4.2-(b).
Taking p(r, t) on the x-axis, yields

P (Φx,Ω) = S(Ω)(2π)δ
(

Φx − cosα
Ω
c

)
, (4.5)

which corresponds to a Dirac function that is non-zero along a line with slope ∂Φx
∂Ω = cosα

c ,
and weighted by S(Ω). Given that α ∈ [0, π], the Dirac function is always within a triangular
region defined by Φ2

x ≤
(

Ω
c

)2
. The result is illustrated in Figure 4.2-(c).

If m = 0, the result reduces to the regular 1-D Fourier transform of s(t), as shown in
Figure 4.2-(d).

Example 10. Consider the case of Example 9 for s(t) = ejΩ0t, where Ω0 is a fixed frequency.
The Fourier transform of the complex exponential is given by S(Ω) = 2πδ(Ω − Ω0), and
thus

P (Φ,Ω) = (2π)m+1δ(Ω− Ω0)δ
(
Φ− u

Ω
c

)
. (4.6)

This is illustrated in Figure 4.3-(a). The result is a single point in the 4-D spectrum located
at (Φ,Ω) =

(
uΩ0

c ,Ω0

)
, and is known as a plane wave1. The plane wave is the elementary

component in the spatio-temporal Fourier analysis of the wave field, and it can be seen as
a generalization of the 1-D complex frequency in the traditional context of Fourier analysis.
The 1-D complex frequency is obtained as a particular case of (4.6) when m = 0, which
means that the sound pressure is observed at one point in space.

1Note that any wide-band signal s(t) generates a flat wave-front as long as ‖rp‖ � ‖r‖, though historically a
plane wave refers to a single complex frequency [88].



4.2 Continuous Fourier transform 68

(a) (b) (c)

Figure 4.3: Examples of the spatio-temporal Fourier transform for m = 1 (one spatial
dimension) and different source signals. (a) For s(t) = ejΩ0t, the spectrum is a single Dirac
point located at (Φx,Ω) =

(
cosαΩ0

c ,Ω0

)
. (b) For s(t) = 2 cos(Ω0t), the result is the same

as in (a) plus the symmetric Dirac point at negative frequencies. (c) For s(t) = δ(t), the
spectrum is a “flat” Dirac function defined on a line with slope ∂Φx

∂Ω = cosα
c .

Example 11. Consider a variation of the previous example, where s(t) = 2 cos(Ω0t). Since
2 cos(Ω0t) = e−jΩ0t + ejΩ0t, the Fourier transform is given by S(Ω) = 2πδ(Ω + Ω0) +
2πδ(Ω− Ω0), and thus

P (Φ,Ω) = (2π)m+1
(
δ(Ω + Ω0) + δ(Ω− Ω0)

)
δ
(
Φ− u

Ω
c

)
. (4.7)

This is illustrated in Figure 4.3-(b). The result is the same as in the previous example, except
for an additional point at the symmetric position (Φ,Ω) =

(
−uΩ0

c ,−Ω0

)
. Similarly to the

1-D case, whenever p(r, t) is real, P (Φ,Ω) is symmetric with respect to the origin.

Example 12. If the source signal is a Dirac pulse, s(t) = δ(t), the Fourier transform is
maximally flat and given by S(Ω) = 1. The spatio-temporal Fourier transform is then given
by

P (Φ,Ω) = (2π)mδ
(
Φ− u

Ω
c

)
. (4.8)

This is illustrated in Figure 4.3-(c).

The examples above show that when the source is in the far-field the spectral energy is
always maximally concentrated in a Dirac function, regardless of the signal s(t) that drives
the source. This is not the case when the source is in the near-field. In the next examples, we
will see that the proximity of the source to the observation region causes the spectral energy
to spread across Φ.
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(a) (b)

Figure 4.4: Spatio-temporal Fourier transform of a near-field source for m = 1 (one spatial
dimension), S(Ω) = 1, and different distances zp. (a) For zp = 1m, virtually all the energy
is concentrated in the triangular region defined by Φ2

x ≤
(

Ω
c

)2
. (b) For zp = 1cm, the

source is close to the x-axis, causing the energy to spread across Φx and intensifying the
evanescent-wave content.

Example 13 (Near-field spectrum). Consider a point source located in the near-field with
source signal s(t) and located at r = rp, such that p(r, t) = 1

4π‖r−rp‖s
(
t− ‖r−rp‖

c

)
. Plug-

ging p(r, t) into (4.1) for different values of m, yields

P (Φ,Ω) = S(Ω)
e−jΦ·rp

‖Φ‖2 −
(

Ω
c

)2
∣∣∣∣∣
Φ=(Φx,Φy,Φz)

(4.9)

for m = 3,

P (Φ,Ω) = S(Ω)
1
2
e−|zp|

√
‖Φ‖2−( Ω

c )2

e−jΦ·(xp,yp)√
‖Φ‖2 −

(
Ω
c

)2
∣∣∣∣∣∣
Φ=(Φx,Φy)

(4.10)

for m = 2, and

P (Φ,Ω) = S(Ω)
1
4j
H

(1)∗
0

(√
y2
p + z2

p

√
‖Φ‖2 −

(Ω
c

)2
)
e−jΦ·xp

∣∣∣∣∣
Φ=Φx

(4.11)

for m = 1. The proof of these results is given in Ajdler et al [1], and the case for m = 1
is illustrated in Figure 4.4. The figure shows that the near-field spectrum contains most of
the energy inside the triangular region Φ2

x ≤
(

Ω
c

)2
, but it also contains some energy in the

evanescent region, depending on the proximity of the source. For Φ2
x >

(
Ω
c

)2
, assuming for

simplicity that yp = 0, the Hankel function is upper-bounded by e−zpΦx√
zpΦx

, and converges to the

upper-bound for Φ2
x �

(
Ω
c

)2
[88; 2]. Thus, the farther away the source is from the x-axis,

the faster is the amplitude decay and the less evanescent waves emerge. On the contrary,
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(a) (b)

Figure 4.5: Equivalence between a spherical wave observed on a plane and a radial wave ob-
served on a line. (a) The spherical wave caused by a point source located at rp = (xp, yp, zp)
satisfies the 3-D wave equation. In this scenario, the sound pressure is observed on the xy-
plane. (b) The radial wave caused by a point source located at rp = (xp, zp) satisfies the
2-D wave equation. By observing the sound pressure on the x-axis, the respective Fourier
transform is equivalent to the Fourier transform of (a) for Φy = 0. The scenario in (b) is
common in applications that make use of the propagation of sound on flat surfaces, such as
tables and walls.

as the source moves closer to the x-axis, the balance between propagating and evanescent
waves tips towards the evanescent waves, until the two modes become equally weighted (see
Figure 2.7-(c)).

Note that the result for m = 2 is used to obtain the plot of Figure 2.7-(c), by computing
the ratio

´∞
Ω
c

∣∣P (Φ,Ω)
∣∣2dΦ/´ Ω

c

0

∣∣P (Φ,Ω)
∣∣2dΦ for a random Ω.

Example 14. Another interesting case to consider is the spectral representation on the x-axis
of the radial wave on the water surface, shown in the picture of Figure 2.2. The solution (see
proof in Section 4.6) is given by

P (Φx,Ω) = S(Ω)
1
2
e−|zp|

√
Φ2
x−( Ω

c )2

e−jΦxxp√
Φ2
x −

(
Ω
c

)2 . (4.12)

Surprisingly, this expression is equivalent to one given by (4.10) for Φy = 0. This suggests
that the projection of a spherical wave on a flat plane is related to the projection of the respec-
tive spatio-temporal Fourier transform on the Φy = 0 plane. The two situations are illustrated
in Figure 4.5.
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4.2.2 Properties
4.2.2.1 Convergence

The convergence of the Fourier transform has been a topic of intense debate since the very
first paper that Joseph Fourier published on the topic [33]. The problem concerns whether
the Fourier transform of a given class of signals is well defined, and, if so, whether the
inverse transform of its spectrum returns the exact same signal. Eventually, mathematicians
reached the conclusion that the Fourier transform can converge on many different levels—
e.g., uniformly, point-wise, or in norm [18].

Although some types of convergence are stronger than the others, the essential condition
is that the Fourier integral is well defined in the region of integration. This typically means
that the signal belongs to the `1 or `2 spaces, either locally or globally. If the region of
integration in space is the volume V and the region of integration in time is the interval T , the
condition for existence of the spatio-temporal Fourier transform is given by p(r, t) ∈ `1(V, T )
or p(r, t) ∈ `2(V, T ), and can be expressed respectively as

P (Φ,Ω) =
ˆ
V

ˆ
T

∣∣p(r, t)∣∣dtdr <∞ (4.13)

and

P (Φ,Ω) =
ˆ
V

ˆ
T

∣∣p(r, t)∣∣2dtdr <∞. (4.14)

The region of integration can be, for example, a period of the signal if the signal is periodic,
or the entire R space if the signal is non-periodic. This condition, however, is not fail-proof,
since in some cases p(r, t) is not absolutely nor quadratically integrable in the strict sense
and still has a Fourier transform—e.g., (4.6) and (4.9). We will not analyze the topic of
convergence in this thesis, given that in practice the input signals always have finite energy.

4.2.2.2 Convolution property

The convolution property of the Fourier transform is one of the most important consequences
of the spatio-temporal Fourier analysis of acoustic wave fields, and it has fundamental impli-
cations on the way spatial audio applications may be addressed in the future. The importance
of this property is comparable to the one the 1-D Fourier transform has in DSP applications
that make use of filtering, as well as the filter design techniques developed in the context of
Fourier theory. The impact of the convolution property will become clearer when we address
the topic of spatio-temporal filter design in Chapter 8.

The definition of linear convolution between two functions p(r, t) and h(r, t) is given by

p(r, t) ∗ ∗h(r, t) =
ˆ

R3

ˆ
R
p(ρ, τ)h(r− ρ, t− τ)dτdρ, (4.15)

where ∗ and ∗ denote convolution in space and time, respectively. A particular case of (4.15)
is when the function h(r, t) is separable, i.e., h(r, t) = h(r)h(t), which implies that

p(r, t) ∗ ∗h(r, t) = p(r, t) ∗ h(r) ∗ h(t). (4.16)
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The convolution property states that the spatio-temporal Fourier transform maps the convo-
lution of two functions into the product of their spatio-temporal Fourier transforms. This can
be expressed as

p(r, t) ∗ ∗h(r, t) F←→ P (Φ,Ω)H(Φ,Ω), (4.17)

where F denotes Fourier transform. If the function h(r, t) is separable, the property is sim-
plified to

p(r, t) ∗ h(r) ∗ h(t) F←→ P (Φ,Ω)H(Φ)H(Ω). (4.18)

The proof of the continuous convolution property is given in Section 4.6.

4.2.2.3 Multiplication property

The frequency-domain counterpart of the convolution property is called the multiplication
property. It states that the spatio-temporal Fourier transform maps the product of two func-
tions into the convolution of their spatio-temporal Fourier transforms, and it can be expressed
as

p(r, t)h(r, t) F←→ P (Φ,Ω) ∗ ∗H(Φ,Ω), (4.19)

where ∗ and ∗ denote convolution in Φ and Ω, respectively. If the function h(r, t) is separa-
ble, the property is simplified to

p(r, t)h(r)h(t) F←→ P (Φ,Ω) ∗H(Φ) ∗H(Ω). (4.20)

The proof of the continuous multiplication property is given in Section 4.6. This property
will be useful in the next chapter, when we discuss the use of spatial windows in the Fourier
analysis of the acoustic wave field.

4.3 Discrete Fourier transform

4.3.1 Definition
The discrete version of the spatio-temporal Fourier transform can be obtained from the uni-
formly sampled version of p(r, t), denoted p[n]. The index vector n is defined as n =
(nx, ny, nz, nt), where nx, ny , and nz are the integer indexes of the spatial samples and nt
is the integer index of the temporal samples. Denote the transform coefficients P [b] and the
respective index vector b = (bx, by, bz, bt), where bx, by , and bz are the integer indexes of
the spatial transform coefficients and bt is the integer index of the temporal transform coef-
ficients2. The discrete Fourier transform of the 4-D sequence p[n] can be obtained from the
multi-dimensional formulation of the Fourier sum [27], and is given by

P [b] =
∑
n∈Z4

p[n]e−j2πb·N−1n, b ∈ Z4, (4.21)

where N is a diagonal matrix with the number of samples in each dimension:

2The letter b stands for frequency “band”.
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N =


Nx

Ny
Nz

Nt

 . (4.22)

The inverse transform is given by

p[n] =
1

|det N|
∑
b∈Z4

P [b]ej2πb·N−1n, n ∈ Z4. (4.23)

Similarly to the continuous case, the Fourier sum represents the projection of p[n] onto the
orthogonal basis ej2πb·N−1n, which is the basic element of the discrete Fourier transform.

4.3.2 Properties
4.3.2.1 Convergence

The essential condition for convergence of the discrete Fourier transform is that the Fourier
sum is well defined within the summation bounds. Again, this typically means that the signal
belongs to the `1 or `2 spaces, and thus

P [b] =
∑
n

∣∣p[n]
∣∣ <∞ (4.24)

and

P [b] =
∑
n

∣∣p[n]
∣∣2 <∞. (4.25)

This condition is guaranteed in any practical scenario, where the number of samples and their
respective amplitudes are always finite. To obtain an infinite number of samples in p[n], we
would require either an infinite number of microphones or an infinite period of observation.

4.3.2.2 Convolution property

The convolution property in the discrete case is the same as in the continuous case, except
that the discrete case is the one we actually use in a practical DSP application. We will often
make use of the discrete convolution property in the discussion of spatio-temporal filtering in
Chapter 8.

The definition of linear convolution between two sequences p[n] and h[n] is given by

p[n] ∗ ∗h[n] =
∑
ρ∈Z3

∑
τ∈Z

p[ρ, τ ]h
[
(nx, ny, nz)− ρ, nt − τ

]
, (4.26)

where ∗ and ∗ denote convolution in space and time, respectively. The sequence h[n] can
also be separable, in which case h[n] = h[nx, ny, nz]h[nt], and thus

p[n] ∗ ∗h[n] = p[n] ∗ h[nx, ny, nz] ∗ h[nt]. (4.27)

The convolution property of the discrete Fourier transform can be expressed as
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p[n] ∗ ∗h[n] F←→ P [b]H[b], (4.28)

or, if h[n] is separable,

p[n] ∗ h[nx, ny, nz] ∗ h[nt]
F←→ P [b]H[bx, by, bz]H[bt]. (4.29)

The proof of the discrete convolution property is given in Section 4.6.

4.3.2.3 Multiplication property

The multiplication property of the discrete Fourier transform can be expressed as

p[n]h[n] F←→ P [b] ∗ ∗H[b], (4.30)

where ∗ and ∗ denote convolution in (bx, by, bz) and bt, respectively. If the function h[n] is
separable, the property is simplified to

p[n]h[nx, ny, nz]h[nt]
F←→ P [b] ∗H[bx, by, bz] ∗H[bt]. (4.31)

The proof of the discrete multiplication property is given in Section 4.6. This property is
most relevant in the context of block-wise processing of sequences, and will be analyzed in
more detail in the discussion of spatio-temporal filter banks in Chapter 7.

4.4 Sampling and interpolation
In the previous two sections, the spatio-temporal Fourier transform was presented in two
different worlds: the continuous and the discrete. The continuous Fourier transform deals
with signals that are a function of continuous variables representing every possible coordinate
in space and instant in time, whereas the discrete Fourier transform deals with signals that are
a function of discrete variables representing a discrete selection of points in space and time.
The two sides of the Fourier transform are connected by a theory known as Nyquist sampling
(and interpolation) theory. In this section, we provide an overview of how this theory extends
to the spatio-temporal domain.

In traditional signal processing, it is known that continuous-time systems are imple-
mented through the use of analog circuits (e.g., electronic, hydraulic, and pneumatic) that
instantaneously modify the input and transmit it to the output. Discrete-time systems use a
very different strategy: they first translate the input signal into a discrete set of samples, by ob-
taining periodical measurements of the signal amplitude—an operation known as sampling.
The samples are then processed algebraically by a digital computer, and finally translated
back into an analog output signal—an operation known as interpolation.

To the present day, there is no available technology for processing the acoustic wave field
instantaneously in space and time in a systematic and separable way. An example of a non-
separable spatio-temporal filter would be to place a wall in the path of the wave front, which
could act both as a low-pass filter and as a curvature modifier, due to the building materials
and density distribution across the wall. If the objective, however, is to amplify the sound
pressure without modifying the wave front, or to flip the direction of propagation without
changing the temporal behavior of the wave front, this is not possible with analog technology.
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Therefore, in order to effectively apply DSP theory—and Fourier theory in particular—to
acoustic wave fields, the sound pressure must be sampled in space.

In order to process the wave field in discrete space, we have to address the problem of
aliasing. When the sampling is uniform, spatial aliasing occurs when the distance between
adjacent samples is larger than the Nyquist threshold, given by πc

ΩM
meters, where ΩM is the

maximum temporal frequency in rad/s. To understand how this value is obtained, consider
the Fourier transform P (Φ,Ω) of the pressure signal p(r, t). According to Nyquist sampling
theory [68], the sampling operation generates repetitions of P (Φ,Ω) centered in multiples of
2π, resulting in

∑
l∈Z3

∑
l∈Z P (Φ− 2πl,Ω− 2πl). This means that the aliasing effects can

occur in either of the four dimensions, if the respective Nyquist conditions are not satisfied.
Conversely, if the four conditions are met, the signal can be perfectly reconstructed in all four
dimensions. To determine these conditions, consider the case where the sources are in the
far-field. We know from (4.3) that the spectral energy is contained at (or delimited by) the
region ||Φ||2 =

(
Ω
c

)2
. Assuming the source signals are band-limited, the energy is either

zero or negligible for
∣∣Ω∣∣ ≥ ΩM . Therefore, the Nyquist conditions for alias-free sampling

are given by ΦS ≥ 2ΩM
c and ΩS ≥ 2ΩM , where ΦS and ΩS are the spatial and temporal

sampling frequencies. Examples of the different types of aliasing are illustrated in Figure 4.6.

In the near-field case, there is no condition that completely eliminates spatial aliasing,
since P (Φ,Ω) is never band-limited across Φ (see Figure 4.4). In the lower-dimensional
cases, however, P (Φx,Φy,Ω) and P (Φx,Ω) are approximately band-limited if the sources
are not too close to the xy-plane and x-axis, respectively. In such cases, the Nyquist condition
guarantees the reconstruction of the wave field with arbitrarily low spatial aliasing.

The Nyquist conditions demonstrate the remarkable fact that the acoustic wave field is
essentially band-limited, and can be reconstructed from a few samples with minimum or no
spatial aliasing. The reader may refer to the work of Ajdler et al. [2] on the plenacoustic
function for a more detailed analysis on spatio-temporal sampling.
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(a)

(b) (c)

Figure 4.6: Effects of sampling the wave field in space and time. (a) When p(r, t) is sampled
along x, y, and t with sampling frequencies ΦS,x, ΦS,y , and ΩS respectively, the base spec-
trum is repeated at every combination of multiples of ΦS,x, ΦS,y , and ΩS . For one spatial
dimension, illustrated in the shaded region, the base spectrum is repeated at every combina-
tion of multiples of ΦS,x and ΩS . (b) If ΦS,x is lower than the Nyquist threshold, the spectral
images overlap and spatial aliasing occurs. (c) If ΩS is lower than the Nyquist threshold, then
temporal aliasing occurs.
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4.5 Summary notes

• Microphone arrays with a large number of microphones reveal the harmonic behavior
of the acoustic wave field across space. This behavior is efficiently represented by the
Fourier transform;

• The acoustic wave field is composed of elementary wave fronts called plane waves,
which are sparsely represented in the spatio-temporal Fourier domain in the form of
Dirac points;

• A wide-band source in the far-field is represented in the spatio-temporal Fourier do-
main as a Dirac function defined on a line crossing the origin;

• If the source is in the near-field, the Fourier transform has a characteristic triangular
shape, covering the entire propagating region of the spectrum. A percentage of the
energy leaks into the evanescent region, but in most cases is negligible;

• Spherical wave fronts in the 3-D space and radial wave fronts in the 2-D space are
related by the spatio-temporal Fourier transform;

• The convolution and multiplication properties of the regular Fourier transform can be
extended to the spatio-temporal Fourier transform;

• Sampling the acoustic wave field in space generates an infinite number of spectral
images, which overlap if the Nyquist sampling conditions are not satisfied;

• If all sources are band-limited in time and located in the far-field, then the acoustic
wave field is band-limited in both space and time. If one or more sources are located in
the near-field, then the acoustic wave field is approximately band-limited, and can be
reconstructed from its samples with arbitrarily low spatial aliasing.

4.6 Theorems and proofs
Theorem 15 (Near-field spectrum on a line of 2-D radial wave). Consider a point source
located on the xz-plane at rp = (xp, 0, zp), driven with the source signal s(t), and generating
a radial wave front satisfying the 2-D wave equation. Consider also a point source located
in space at rp = (xp, yp, zp), driven with the source signal s(t), and generating a spherical
wave front satisfying the 3-D wave equation. The Fourier transform of p(r, t) observed on the
x-axis in the first case is equal to the Fourier transform of p(r, t) observed on the xy-plane
in the second case for Φy = 0, and it is given by

P (Φx,Ω) = S(Ω)
1
2

(
Φ2
x −

(Ω
c

)2)− 1
2
e
−
∣∣zp∣∣√Φ2

x−
(

Ω
c

)2

e−jΦxxp .

Proof. From (2.23), the solution to the 2-D wave equation in the first case is given by

p(x,Ω) = S(Ω)
j

4
H

(1)
0

(
Ω
c

√
(x− xp)2 + z2

p

)
.

The Fourier transform of p(x,Ω) with respect to x yields
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P (Φ,Ω) =
ˆ

R
p(x,Ω)e−jΦxdx

= S(Ω)
j

4

ˆ
R
H

(1)
0

(
Ω
c

√
(x− xp)2 + z2

p

)
e−jΦxdx

(a)
= S(Ω)

j

4
e−jΦxp

ˆ
R
H

(1)
0

(
Ω
c

√
l2 + z2

p

)
e−jΦldl

= S(Ω)
j

2
e−jΦxp

ˆ ∞
0

H
(1)
0

(
Ω
c

√
l2 + z2

p

)
cos(Φl)dl

(b)
= S(Ω)

j

2
e
jzp

√(
Ω
c

)2
−Φ2

e−jΦxp√(
Ω
c

)2 − Φ2

= S(Ω)
1
2
e
−
∣∣zp∣∣√Φ2−

(
Ω
c

)2

e−jΦxp√
Φ2 −

(
Ω
c

)2 ,

where (a) comes from the change of variable l = x − xp and (b) comes from a known
integration result [38],

ˆ ∞
0

H
(1)
0

(
Ω
c

√
l2 + z2

p

)
cos(Φl)dl =

e
jzp

√(
Ω
c

)2
−Φ2√(

Ω
c

)2 − Φ2

.

The result is therefore equal to (4.10) for Φy = 0.

Theorem 16 (Convolution property). Given two spatio-temporal functions p(r, t) and h(r, t)
with Fourier transforms P (Φ,Ω) and H(Φ,Ω) respectively, the Fourier transform of their
convolution p(r, t)∗∗h(r, t) equals the product of the individual Fourier transforms, P (Φ,Ω)H(Φ,Ω).
The same is valid for the discrete Fourier transform case.

Proof. Plugging (4.15) into (4.1), yields
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ˆ
R3

ˆ
R
p(r, t) ∗ ∗h(r, t)e−j(Φ·r+Ωt)dtdr

=
ˆ

R3

ˆ
R

ˆ
R3

ˆ
R
p(ρ, τ)h(ρ− r, τ − t)dτdρe−j(Φ·r+Ωt)dtdr

=
ˆ

R3

ˆ
R

ˆ
R3

ˆ
R
p(ρ, τ)h(ρ− r, τ − t)e−j(Φ·r+Ωt)dτdρdtdr

=
ˆ

R3

ˆ
R

ˆ
R3

ˆ
R
p(ρ, τ)e−j(Φ·r+Ωt)h(ρ− r, τ − t)e−j(Φ·(ρ−r)+Ω(τ−t))dτdρdtdr

(a)
=
ˆ

R3

ˆ
R

ˆ
R3

ˆ
R
p(ρ, τ)e−j(Φ·r+Ωt)h(ρ− r, τ − t)e−j(Φ·(ρ−r)+Ω(τ−t))dtdrdτdρ

(b)
=
ˆ

R3

ˆ
R

ˆ
R3

ˆ
R
p(ρ, τ)e−j(Φ·r+Ωt)h(σ, %)e−j(Φ·σ+Ω%)dtdrd%dσ

(c)
=
ˆ

R3

ˆ
R
p(ρ, τ)e−j(Φ·r+Ωt)dtdr

ˆ
R3

ˆ
R
h(σ, %)e−j(Φ·σ+Ω%)d%dσ

= P (Φ,Ω)H(Φ,Ω),

where (a) is valid as long as the Fubini theorem [16] is satisfied, i.e.,
ˆ

R3

ˆ
R

ˆ
R3

ˆ
R

∣∣p(ρ, τ)h(ρ− r, τ − t)
∣∣dτdρdtdr <∞

and (b) comes from the change of variables σ = ρ− r and % = τ − t. Note that if p(r, t) or
h(r, t) are Diracs functions, the Fubini theorem is still valid in the context of measure theory,
since the Dirac functions can be translated into Dirac measures [16]. The same is true with
the sums in the discrete Fourier transform case, since, according to measure theory, the sum
can be translated into an integration with respect to the counting measure.

Corollary 17 (Separability). If h(r, t) is a separable product of a spatial function h(r) and
a temporal function h(t) with Fourier transforms H(Φ) and H(Ω) respectively, such that
h(r, t) = h(r)h(t), the Fourier transform of the convolution p(r, t) ∗ h(r) ∗ h(t) equals the
product of the individual Fourier transforms, P (Φ,Ω)H(Φ)H(Ω). The same is valid for the
discrete Fourier transform case.

Proof. Directly from the equality (c) in Theorem 16, it follows that

ˆ
R3

ˆ
R
p(ρ, τ)e−j(Φ·r+Ωt)dtdr

ˆ
R3

ˆ
R
h(σ, %)e−j(Φ·σ+Ω%)d%dσ

=
ˆ

R3

ˆ
R
p(ρ, τ)e−j(Φ·r+Ωt)dtdr

ˆ
R3
h(σ)e−jΦ·σdσ

ˆ
R
h(%)e−jΩ%d%

= P (Φ,Ω)H(Φ)H(Ω).

Theorem 18 (Multiplication property). Given two spatio-temporal functions p(r, t) and h(r, t)
with Fourier transforms P (Φ,Ω) and H(Φ,Ω) respectively, the Fourier transform of their
product p(r, t)h(r, t) equals the convolution of the individual Fourier transforms, P (Φ,Ω)∗
∗H(Φ,Ω). The same is valid for the discrete Fourier transform case.
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Proof. The proof is the same as in Theorem 16, requiring that, is accordance with the Fubini
theorem [16],

ˆ
R3

ˆ
R

ˆ
R3

ˆ
R

∣∣P (ρ, τ)H(ρ−Φ, τ − Ω)
∣∣dτdρdΩdΦ <∞

Again, if P (Φ,Ω) or H(Φ,Ω) are Diracs functions, the Fubini theorem is still valid in the
context of measure theory. Also due to the representation of sums as integrals allowed by
measure theory, the theorem is valid in the discrete Fourier transform case.

Corollary 19 (Separability). If h(r, t) is a separable product of a spatial function h(r) and
a temporal function h(t) with Fourier transforms H(Φ) and H(Ω) respectively, such that
h(r, t) = h(r)h(t), the Fourier transform of the product p(r, t)h(r)h(t) equals the convolu-
tion of the individual Fourier transforms, P (Φ,Ω)∗H(Φ)∗H(Ω). The same is valid for the
discrete Fourier transform case.

Proof. The proof is the same as in Corollary 17.



Chapter 5

Space/Time–Frequency
Representation

5.1 Introduction
The modern definition of the Fourier transform consists of a projection of the signal s(t)
onto the orthogonal basis ejΩt, with the direct and inverse transforms given by S(Ω) =´

R s(t)e
−jΩtdt and s(t) =

´
R S(Ω)ejΩtdΩ, respectively. This elegant formalism was de-

veloped on top of Fourier’s original ideas during the 19th century, and perfected through
the combined work of various mathematicians. The essential paradigm, however, as it was
conceptualized by Fourier, remained unchanged. This is hardly surprising, since many of
these mathematicians lived in a period when analytical rigour was of utmost importance to
the community, and hence the main focus was on perfecting the mathematical formalism of
the Fourier transform and providing a deeper understanding of the mathematical principles
of the theory [52]. It was only later, in 1946, with the work of the Hungarian engineer Dennis
Gabor (1900–1979), that a major theoretical breakthrough was observed. While trying to
solve a concrete problem—how to optimally utilize the frequency bands in the transmission
of audio signals—Gabor realized that the Fourier transform was not suited for representing
the frequency variations that characterize non-stationary signals such as speech and music.
He pointed out [35] that our everyday perception of sound is conditioned by the idea of
“changing frequencies” (think, for example, of the sound of a police siren), which contra-
dicts the strict definition of sinusoid as an infinitely long function with a fixed frequency. To
circumvent this limitation, Gabor redefined the basic element of the Fourier transform as a
time-limited harmonic function given byw(t−t0)ejΩt, wherew(t−t0) is a window function
with unit integral and decaying amplitude away from t = t0. With Gabor’s generalized basis,
the Fourier transform becomes

S(t0,Ω) =
ˆ

R
s(t)w(t− t0)e−jΩtdt

where S(t0,Ω) is defined on what is commonly known as the time–frequency representation
space. The regular Fourier transform S(Ω) is obtained as a particular case of S(t0,Ω), when
w(t − t0) = 1. This new concept of time–frequency representation led to the development

81
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of filter banks theory, and the widely used signal analysis techniques such as the short-time
Fourier transform, the wavelet transform [42], and the modulated lapped transform [77],
along with the many practical applications in the areas of audio, speech, and image process-
ing.

In the spatio-temporal analysis of acoustic wave fields, the 4-D Fourier transform has
a similar limitation to the one described by Gabor: it is unable to represent the frequency
variations across space that characterize non-stationary wave fields. The wave field is non-
stationary when the 4-D frequency content varies between different regions in space. This
poses the problem of “changing plane waves”, which contradicts the strict definition of plane
wave as an infinitely long function in both space and time. In the same line of thought, we
redefine the basic element of the Fourier transform as a space- and time-limited harmonic
function given by wr(r − r0)wt(t − t0)ej(Φ·r+Ωt), where wr(r − r0) and wt(t − t0) are
window functions with decaying amplitude away from r = r0 and t = t0, respectively. This
generalizes the Fourier transform to

P (r0, t0,Φ,Ω) =
ˆ

R3

ˆ
R
p(r, t)wr(r− r0)wt(t− t0)e−j(Φ·r+Ωt)dtdr

whereP (r0, t0,Φ,Ω) belongs to what we call the space/time–frequency representation space—
an 8-dimensional space that spans all the variables related to space, time, and frequency. Sim-
ilarly to what happens in Gabor’s generalized definition, the regular 4-D Fourier transform
P (Φ,Ω) is obtained as a particular case of P (r0, t0,Φ,Ω), when wr(r− r0)wt(t− t0) = 1.

The space/time–frequency representation has fundamental implications in the Fourier
analysis of the acoustic wave field. The limited length of the analysis window introduces
uncertainty in the frequency domain, by spreading the support function across Φ and Ω. In a
practical scenario, this means that two sources that are close to each other in space may not
be resolved in the frequency domain, due to the overlapping of their respective support func-
tions. This uncertainty reflects the trade-off between spatial resolution and spatial-frequency
resolution.

In this chapter, we analyze how the various parameters of the window functions and the
acoustic scene affect the spectral patterns generated as a result. We will consider the same
cases as in the examples of the previous chapter, such as point sources in the far-field and
the near-field, driven by complex exponentials and Dirac pulses, and show how each spectral
pattern transforms into the others by gradually changing the parameters. This analysis leads
to the formulation of what we call the short space/time Fourier transform—a generalization
of the short time Fourier transform that we discuss in detail in this chapter. An important
foundation is also built for the discussion of spatio-temporal filter banks in Chapter 7.

5.2 Short space/time Fourier transform

5.2.1 Continuous case
The short space/time Fourier transform of the 4-D continuous signal p(r, t) is given by an
8-D function P (r0, t0,Φ,Ω) defined as

P (r0, t0,Φ,Ω) =
ˆ

R3

ˆ
R
p(r, t)wr(r− r0)wt(t− t0)e−j(Φ·r+Ωt)︸ ︷︷ ︸

Generalized element

dtdr, (5.1)
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Figure 5.1: Space/time–frequency tiling that characterizes the short space/time Fourier trans-
form, illustrated here as four separate 2-D tilings. The three spatial dimensions are mapped
onto the three spatial frequency dimensions, and the temporal dimension is mapped onto the
temporal frequency dimension. The resolution in each dimension can be arbitrarily chosen
by varying the parameters of the four window functions.

where wr(r) and wt(t) are the spatial and temporal window functions, and r0 and t0 are the
respective spatial and temporal shifts. The spatial window is a product between the window
functions in x, y, and z, such that wr(r) = wx(x)wy(y)wz(z).

The inverse transform is given by

p(r, t) =
1

(2π)4

ˆ
R3

ˆ
R

ˆ
R3

ˆ
R
P (r0, t0,Φ,Ω)ej(Φ·r+Ωt)dΩdΦdt0dr0. (5.2)

The inverse formula can be interpreted as the continuous sum of all the “signal blocks” in-
dexed by (r0, t0), and it requires that wr(r) and wt(t) have unit area. This guarantees that
the distortion caused by the window functions is canceled by the inverse transform. A proof
of the inversion formula is given in Section 5.5.

The definition in (5.1) is characterized by a partitioning of the space/time–frequency do-
main into uniform hypercubic regions spanning the variables r, t, Φ, and Ω, which we call
space/time–frequency tiling. A pseudo-illustration of the 8-D tiling is shown in Figure 5.1.

We will show several examples that help to understand the spectral patterns generated by
(5.1) given the most common inputs, and illustrate the results in the 2-D space (one spatial
dimension plus time). We cover the three cases of sources in the far-field, the near-field, and
the intermediate-field.

Example 20 (Far-field spectrum). Consider a point source located in the far-field with source
signal s(t) and propagation vector u, such that p(r, t) = s

(
t + u·r

c

)
. Plugging p(r, t) into

(5.1), yields

P (r0, t0,Φ,Ω) = S(Ω)Wr

(
Φ− u

Ω
c

)
∗Wt(Ω)e−j(Φ·r0+Ωt0) (5.3)
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Space/time–frequency resolution trade-off for m = 1 (one spatial dimension)
caused by a rectangular window. The spatio-temporal window in (a) has half of its size equal
to one and the other half equal to zero, which is wide enough to generate a narrow sinc support
function, as shown in (d). This corresponds to a low resolution in space and time, and a high
resolution in frequency. In the case of (b), the window is narrow in space and wide in time,
generating a sinc support function that is wide in Φx and narrow in Ω, as shown in (e). In the
case of (c), the window is narrow in both space and time, generating a sinc support function
that is wide in both Φx and Ω, as shown in (f). This corresponds to a high resolution in space
and time, and a low resolution in frequency.

where r0,Φ,u ∈ Rm for m = 0, 1, 2, 3. The functions Wr(Φ) and Wt(Ω) are the Fourier
transforms of wr(r) and wt(t), and Wr

(
Φ − uΩ

c

)
is defined such that Wr

(
Φ − uΩ

c

)
=

Wx

(
Φx − uxΩ

c

)
Wy

(
Φy − uy Ω

c

)
Wz

(
Φz − uz Ω

c

)
for m = 3, where Wx(Φx), Wy(Φy), and

Wz(Φz) are the Fourier transforms of wx(x), wy(y), and wz(z). The proof of this result is
given in Section 5.5.

Comparing the result in (6.3) to the regular Fourier transform obtained in the previous
chapter, given by P (Φ,Ω) = S(Ω)(2π)mδ

(
Φ − uΩ

c

)
, the effects of windowing can be

interpreted as the Dirac function “opening up” into a smooth support function with the same
orientation, ∂Φ

∂Ω = u
c , and an additional smoothing effect caused by the temporal window.

This support function has a variable resolution, governed by the parameters of the window
functions, such as length and shape. Any variation of these parameters aimed at increasing
the resolution in space and time necessarily decreases the resolution in frequency, and vice
versa. This is a fundamental trade-off in the local Fourier analysis of signals. An illustration
of the resolution trade-off is shown in Figure 5.2.
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Example 21. Consider the case of Example 20 for s(t) = ejΩ0t, where Ω0 is a fixed fre-
quency. The Fourier transform of the complex exponential is given by S(Ω) = 2πδ(Ω−Ω0),
and thus

P (r0, t0,Φ,Ω) = 2πWr

(
Φ− u

Ω0

c

)
Wt(Ω− Ω0)e−j

(
Φ·r0+(Ω−Ω0)t0

)
. (5.4)

The result is proved in Section 5.5 and illustrated in Figure 5.3-(a). Comparing to the regular
Fourier transform obtained in the previous chapter, given by P (Φ,Ω) = (2π)m+1δ

(
Φ −

uΩ0
c

)
δ(Ω − Ω0), we observe that the Dirac point centered at (Φ,Ω) =

(
uΩ0

c ,Ω0

)
“opens

up” into a smooth support function centered at the same point. This implies that, by limiting
the size of the analysis window, the plane waves become less concentrated in small regions
of the spectrum, affecting the overall sparsity of the spatio-temporal Fourier transform.

Example 22. Consider a variation of the previous example, where s(t) = 2 cos(Ω0t). Since
2 cos(Ω0t) = e−jΩ0t + ejΩ0t, the Fourier transform is given by S(Ω) = 2πδ(Ω + Ω0) +
2πδ(Ω− Ω0), and thus

P (r0, t0,Φ,Ω) = 2πWr

(
Φ + u

Ω0

c

)
Wt(Ω + Ω0)e−j

(
Φ·r0+(Ω+Ω0)t0

)
+

2πWr

(
Φ− u

Ω0

c

)
Wt(Ω− Ω0)e−j

(
Φ·r0+(Ω−Ω0)t0

)
. (5.5)

This result is illustrated in Figure 5.3-(b). Comparing to the previous example, the result is the
same except for an additional support function centered at the symmetric position (Φ,Ω) =(
−uΩ0

c ,−Ω0

)
.

Example 23. If the source signal is a Dirac pulse, s(t) = δ(t), the Fourier transform is
maximally flat and given by S(Ω) = 1. The short space/time Fourier transform is then given
by

P (r0, t0,Φ,Ω) = Wr

(
Φ− u

Ω
c

)
∗Wt(Ω)e−j(Φ·r0+Ωt0). (5.6)

The result can be simplified ifWt(Ω) is a nascent Dirac function, i.e., if lima→∞ aWt (aΩ) =
δ (Ω), in which case

P (r0, t0,Φ,Ω) = Wr

(
Φ− u

Ω
c

)
e−jΦ·r0 . (5.7)

Most window functions used in practice are nascent Dirac functions. Thus, for wide-band
source signals and a long enough temporal window, the effects caused by wr(r) tend to be
dominant over the effects caused by wt(t).

The result in (5.7) is proved in Section 5.5 and illustrated in Figure 5.3-(c).
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Effects of spatio-temporal windowing on the spectrum of a far-field source for
m = 1 (one spatial dimension) and different source signals. For s(t) = ejΩ0t, the ideal
(non-windowed) spectrum shown in (a) is a Dirac point located at (Φx,Ω) =

(
cosαΩ0

c ,Ω0

)
.

By applying a rectangular window function, the Dirac point “opens up” into a product of
sinc functions with their main lobes centered at the same point, (Φx,Ω) =

(
cosαΩ0

c ,Ω0

)
, as

shown in (d). The extent to which the sinc functions spread the across Φx and Ω depends on
the size of the spatio-temporal window. For s(t) = 2 cos(Ω0t), the ideal spectrum shown in
(b) is a pair of symmetric Dirac points located at (Φx,Ω) = ±

(
cosαΩ0

c ,Ω0

)
. The rectangu-

lar window generates two support functions accordingly, as shown in (e). For s(t) = δ(t), the
ideal spectrum shown in (c) is a Dirac function covering the entire line of slope ∂Φx

∂Ω = cosα
c .

Similarly, the rectangular window “opens up” the Dirac into a sinc function with its main
lobe defined along the same line of slope ∂Φx

∂Ω = cosα
c , as shown in (f). In this case, the sinc

function is regulated by the spatial window alone, which suppresses the effect of the temporal
window.
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Example 24 (Intermediate-field spectrum). Consider a point source located at r = rp with

source signal s(t), such that p(r, t) = 1
4π‖r−rp‖s

(
t − ‖r−rp‖

c

)
. In this case, the spectral

pattern generated as a result of windowing is difficult to express mathematically, since it is
given by a convolution between one of the results in Example 13 and the Fourier transform
of a shifted window function. Therefore, for simplicity, we will consider only the case for
m = 1 (one spatial dimension) and take r0 = 0 and t0 = 0. Under these conditions, the
result can be approximated by the parametric expression

P (Φx,Ω) = S(Ω) max
{
Wx

(
Φx − cosα

Ω
c

)
,M(Φx,Ω)

}
, (5.8)

where M(Φx,Ω) is a triangular mask given by

M(Φx,Ω) =

{
Wx(0) , (Φx,Ω) /∈ U
0 , (Φx,Ω) ∈ U

, (5.9)

with U = R2\
{

(Φx,Ω) : Φmin
x ≤ Φx ≤ Φmax

x , Ω ≥ 0
}

, and point-symmetric for Ω < 0.
The parameters α, Φmin

x , and Φmax
x can be optimized for any given source.

Consider a spatial window of size L, and define αnf(x) = ∠
(
xp − x+ jzp

)
as the angle

of incidence at point x, where αmin
nf = αnf(0) is the smallest angle and αmax

nf = αnf(L) is
the largest angle, such that αmin

nf ≤ αnf(x) ≤ αmax
nf , in accordance to Figure 5.4-(a). The

parameters are then given by cosα = Ex [cosαnf(x)], where Ex denotes expectation over x,
Φmin
x = cosαmax

nf
Ω
c , and Φmax

x = cosαmin
nf

Ω
c , in accordance to Figure 5.4-(b). The result is

proved in Section 5.5.
An illustration of the windowed Fourier transform resulting from a near-field source and

the respective approximation by (5.8) are shown in Figure 5.4-(c) and (d). Note that the
triangular mask M(Φx,Ω) opens and closes according to the distance of the source to the
x-axis. If the distance is very small, the model approximates the Fourier transform of a near-
field source, and the parameters converge to Φmin

x = −Ω
c and Φmax

x = Ω
c . On the contrary, if

the distance is very large, the model approximates the Fourier transform of a far-field source,
and the parameters converge to αnf(x) = α and Φmin

x = Φmax
x = cosαΩ

c . For any other
scenario, we say that the source is in the intermediate-field. The convergence of (5.8) to the
near-field and far-field cases is illustrated in Figure 5.5.

Example 25 (Co-linear sources). In this example, we demonstrate the potential of the spatio-
temporal Fourier representation to resolve multiple sources in the acoustic scene. For this
purpose, we consider a worst case scenario that consists of having two co-linear sources,
s1(t) and s2(t), with respect to the observation region, such that

P (Φx,Ω) = S1(Ω) max
{
Wx

(
Φx − cosα1

Ω
c

)
,M1(Φx,Ω)

}
+

aS2(Ω) max
{
Wx

(
Φx − cosα2

Ω
c

)
,M2(Φx,Ω)

}
, (5.10)
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(a) (b)

(c) (d)

Figure 5.4: Effects of spatio-temporal windowing on the spectrum of an intermediate-field
source for m = 1 (one spatial dimension) and S(Ω) = 1. (a) The source is located at
rp = (xp, zp), and the resulting wave front arrives to the x-axis with an angle given by
αnf(x). This angle is minimum for x = 0 and maximum for x = L, where L is the width
of the rectangular spatial window. (b) The characteristic features of the resulting spectrum
are mainly defined by the parameters cosα = Ex [cosαnf(x)], Φmin

x = cosαmax
nf

Ω
c , and

Φmax
x = cosαmin

nf
Ω
c . The amplitude is maximum within the region Φmin

x ≤ Φx ≤ Φmax
x ,

which can be interpreted as the main lobe of the support function, and the outside region (the
region U) consists of side-lobe ripples. The ripples are oriented towards ∂Φx

∂Ω = cosα
c . The

figure in (c) shows a Matlab simulation of an intermediate-field source, and the figure in (d)
shows the respective approximation by the parametric model.
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Figure 5.5: Convergence of the intermediate-field spectrum to the near-field and the far-
field. The near-field scenario is obtained by either reducing the source distance or increasing
the window size. The far-field scenario is obtained by increasing the source distance or
decreasing the window size. Recall that a source is in the near-field when its distance to the
observation region is small compared to the size of the region itself, and in the far-field when
the opposite is true. Note also that the parameters cosα, Φmin

x , and Φmax
x of the spectral

pattern are preserved by increasing the source distance and the window size by the same
factor.
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(a) (b) (c)

Figure 5.6: Spatio-temporal spectrum generated by two co-linear sources at α = π
3 with

source signal s(t) = δ(t) and different distances. The spectrum of each source is shown in
(a) and (b) respectively, and their sum in (c).

where a is the distance ratio between the two sources such that the signals have the same am-
plitude at the x-axis, and α1 = α2 due to co-linearity. An example is illustrated in Figure 5.6.

As the figure shows, the two sources can be easily distinguished in the Fourier spectrum,
where the second source is clearly emphasized even though it is located behind the first source
with respect to the observer.

5.2.2 Discrete case
The short space/time Fourier transform of the 4-D discrete signal p[n] is given by an 8-D
function P [n0,b] defined as

P [n0,b] =
∑
n∈Z4

p[n]w[n− n0]e−j2πb·N−1n︸ ︷︷ ︸
Generalized element

, n0 ∈ Z4 and b ∈ Z4 (5.11)

where N is a diagonal matrix with the number of samples in each dimension,

N =


Nx

Ny
Nz

Nt

 , (5.12)

and w[n− n0] is the spatio-temporal window function, shifted by n0. The window function
is a product between the three spatial windows and the temporal window.

The inverse transform is given by

p[n] =
1

|det N|
∑

n0∈Z4

∑
b∈Z4

P [n0,b]ej2πb·N−1n, n ∈ Z4. (5.13)

The inverse formula represents the discrete sum of all the signal blocks indexed by n0, and it
requires that w[n] has unit sum. The proof is given in Section 5.5.

The discrete version of the short space/time Fourier transform is the simplest example of
a block transform for acoustic wave fields, and it will serve as introduction to the topic of
spatio-temporal filter banks discussed in Chapter 7.
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Figure 5.7: Local analysis of the wave field on a manifold. (a) In the spatio-temporal mani-
fold generated by the smooth contour L, the signal p(rL, t) is locally approximated by multi-
ple spatio-temporal blocks p(x, t). (b) The resulting spectral blocks P (Φx,Ω) have different
plane-wave content depending on the local properties of the wave field. In this example, the
blocks on the left have more near-field characteristics than the blocks on the right, where the
energy is more concentrated around the dominant direction.

5.3 Local analysis on a manifold
In Chapter 3, we introduced the concept of manifolds as a tool for reducing the number of
spatial dimensions required to analyze the wave field on a surface S or a contour L, such that
only two or less spatial dimensions are needed. So, for instance, if the observation region
is a curved contour L, the analysis can be focused on small segments in space by sliding
a tangential window along L. Applying the same principle to the temporal dimension, the
result is a spatio-temporal manifold along L similar to the one shown in Figure 5.7-(a). In the
figure, each block is characterized by a straight spatial axis—for simplicity, the x-axis—in
addition to the temporal axis.

As mentioned in the introduction, the use of local spatial analysis is motivated by the
fact that the frequency content of the acoustic wave field varies between different regions in
space. For instance, if the analysis window is closer to the source, the Fourier spectrum has
near-field characteristics, whereas if the analysis window is further away from the source the
Fourier spectrum turns into a far-field pattern. This is illustrated in Figure 5.7-(b).

Thus, by using local spatial analysis, we can take advantage of the stationary regions of
the wave field, where the spectrum has mostly far-field characteristics and is therefore sparser
and easier to analyze and manipulate. This advantage becomes apparent in operations such
as filtering and coding, which we address in the last two chapters of this thesis.

The use of windowing on a curved manifold, however, comes with a cost: it reduces the
sharpness of the spectrum. The effects of bending the spatial axis are somehow equivalent to
increasing the curvature of the wave front, which happens when the source gets closer to the
observation region. Thus, the more bended the spatial axis is at a certain region, the less sharp
the spectrum will be, and vice versa. This can be compensated, for example, by varying the
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window size according to the local smoothness of L. The trade-off is illustrated in Figure 5.8.

5.4 Summary notes

• Non-stationary wave fields have different characteristics at different regions in space,
which are not efficiently represented by a global Fourier analysis;

• A local analysis of the acoustic wave field requires a redefinition of the basic element
of the Fourier transform, as a plane wave limited in space and time by a spatio-temporal
window;

• A plane wave with finite size is represented in the spatio-temporal Fourier domain as
a smooth support function, which converges to a Dirac as the size of the plane wave
grows to infinity;

• A wide-band source in the far-field is represented in the spatio-temporal Fourier do-
main as a smooth support function with its main lobe defined on a line crossing the
origin;

• If the source is in the intermediate-field, the spatio-temporal Fourier transform can be
described by a parametric model that consists of a “max” operation between the Fourier
transform of the spatial window and a triangular mask that opens and closes according
to the source distance;

• The local Fourier analysis can be applied on a curved contour, at the expense of lower
spectral sharpness.

5.5 Theorems and proofs
Theorem 26 (Continuous inversion formula). Given the continuous short space/time Fourier
transform P (r0, t0,Φ,Ω) of a signal p(r, t), the signal p(r, t) can be recovered through the
inversion formula given by

p(r, t) =
1

(2π)4

ˆ
R3

ˆ
R

ˆ
R3

ˆ
R
P (r0, t0,Φ,Ω)ej(Φ·r+Ωt)dΩdΦdt0dr0.

Proof. Plugging (5.1) into the inversion formula, yields
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.8: Resolution trade-off between the local curvature of L and the spatial frequency
Φx, for the case of a rectangular window and a far-field source with source signal s(t) = δ(t).
In (a), (b), and (c), the x-axis is progressively bent, causing the curvature of the wave front
to increase accordingly, as shown in (d), (e), and (f). The resulting spectrum, shown in (g),
(h), and (i) respectively, becomes increasingly blurred, reducing the sparsity of the Fourier
representation.
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1

(2π)4

ˆ
R3

ˆ
R

ˆ
R3

ˆ
R

(ˆ
R3

ˆ
R
p(ρ, τ)wr(ρ− r0)wt(τ − t0)e−j(Φ·ρ+Ωτ)dτdρ

)
ej(Φ·r+Ωt)dΩdΦdt0dr0

(a)
=

1

(2π)4

ˆ
R3

ˆ
R

ˆ
R3

ˆ
R
p(ρ, τ)

(ˆ
R3
wr(ρ− r0)dr0

)(ˆ
R
wt(τ − t0)dt0

)
ej(Φ·(r−ρ)+Ω(t−τ))dτdρdΩdΦ

(b)
=

1

(2π)4

ˆ
R3

ˆ
R

ˆ
R3

ˆ
R
p(ρ, τ)e−j(Φ·ρ+Ωτ)dτdρej(Φ·r+Ωt)dΩdΦ

=
1

(2π)4

ˆ
R3

ˆ
R
P (Φ,Ω)ej(Φ·r+Ωt)dΩdΦ

= p(r, t),

where (a) is valid as long as the Fubini theorem [16] is satisfied, i.e., if the integral is well
defined, and (b) comes from

´
R3wr(r)dr = 1 and

´
R wt(t)dt = 1.

Theorem 27 (Far-field spectrum). Given a far-field source with source signal s(t) and prop-
agation vector u, and the spatial and temporal window functions wr(r) and wt(t), with
Fourier transforms Wr(Φ) and Wt(Ω), the short space/time Fourier transform is given by

P (r0, t0,Φ,Ω) = S(Ω)Wr

(
Φ− u

Ω
c

)
∗Wt(Ω)e−j(Φ·r0+Ωt0). (5.14)

Proof. Plugging p(r, t) = s
(
t+ u·r

c

)
into (5.1), yields

P (r0, t0,Φ,Ω)

=

ˆ
R3

ˆ
R
s
(
t+

u · r
c

)
wr(r− r0)wt(t− t0)e−j(Φ·r+Ωt)dtdr

=

ˆ
R3

ˆ
R

ˆ
R
s(τ)δ

(
t− τ +

u · r
c

)
dτwt(t− t0)e−jΩtdtwr(r− r0)e−jΦ·rdr

=

ˆ
R
s(τ)

ˆ
R3

(
e−jΩ

(
τ−u·r

c

)
∗Ω Wt(Ω)e−jΩt0

)
dτwr(r− r0)e−jΦ·rdr

=

ˆ
R
s(τ)

ˆ
R3

(ˆ
R
e−jΓ

(
τ−u·r

c

)
Wt(Ω − Γ)e−j(Ω−Γ)t0dΓ

)
dτwr(r− r0)e−jΦ·rdr

(a)
=

ˆ
R

(ˆ
R
s(τ)e−jΓτdτ

)(ˆ
R3
ejΓ

u·r
c wr(r− r0)e−jΦ·rdr

)
Wt(Ω − Γ)e−j(Ω−Γ)t0dΓ

=

ˆ
R
S(Γ)Wr

(
Φ− u

Γ

c

)
e−jΦ·r0Wt(Ω − Γ)e−j(Ω−Γ)t0dΓ

= S(Ω)Wr

(
Φ− u

Ω

c

)
e−jΦ·r0 ∗Wt(Ω)e−jΩt0

= S(Ω)Wr

(
Φ− u

Ω

c

)
∗Wt(Ω)e−j(Φ·r0+Ωt0),

where (a) is valid as long as the Fubini theorem [16] is satisfied, i.e., if the integral is well
defined.

Corollary 28 (Complex-exponential source). The result of Theorem 27 for s(t) = ejΩ0t,
where Ω0 is a fixed frequency, is given by
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P (r0, t0,Φ,Ω) = 2πWr

(
Φ− u

Ω0

c

)
Wt(Ω− Ω0)e−j

(
Φ·r0+(Ω−Ω0)t0

)
.

Proof. The Fourier transform of s(t) = ejΩ0t is given by S(Ω) = 2πδ(Ω − Ω0). Plugging
this into (5.14), yields

P (r0, t0,Φ,Ω)

= 2πδ(Ω− Ω0)Wr

(
Φ− u

Ω
c

)
∗Wt(Ω)e−j(Φ·r0+Ωt0)

= 2π
ˆ

R
δ(τ − Ω0)Wr

(
Φ− u

τ

c

)
Wt(Ω− τ)e−j

(
Φ·r0+(Ω−τ)t0

)
dτ

= 2πWr

(
Φ− u

Ω0

c

)
Wt(Ω− Ω0)e−j

(
Φ·r0+(Ω−Ω0)t0

)
.

Corollary 29 (Dirac source). The result of Theorem 27 for s(t) = δ(t), with Wt (Ω) defined
as a nascent Dirac function such that lima→∞ aWt (aΩ) = δ (Ω), is given by

P (r0, t0,Φ,Ω) = Wr

(
Φ− u

Ω
c

)
e−jΦ·r0 .

Proof. The Fourier transform of s(t) = δ(t) is given by S(Ω) = 1. Plugging this into (5.14),
yields

P (r0, t0,Φ,Ω)

= Wr

(
Φ− u

Ω
c

)
∗Wt(Ω)e−j(Φ·r0+Ωt0)

=
ˆ

R
Wr

(
Φ− u

τ

c

)
Wt(Ω− τ)e−j

(
Φ·r0+(Ω−τ)t0

)
dτ

=

∥∥u∥∥
c

ˆ
R
Wr

(
Φ− u

τ

c

) c∥∥u∥∥Wt

(
c∥∥u∥∥
(∥∥Φ∥∥− ∥∥u∥∥

c
τ

))
e−j
(
Φ·r0+(Ω−τ)t0

)
dτ

(a)
=

∥∥u∥∥
c

ˆ
R
Wr

(
Φ− u

τ

c

)
δ

(∥∥Φ∥∥− ∥∥u∥∥
c
τ

)
e−j
(
Φ·r0+(Ω−τ)t0

)
dτ

=

∥∥u∥∥
c

ˆ
R
Wr

(
Φ− u

τ

c

) c∥∥u∥∥δ
(

c∥∥u∥∥∥∥Φ∥∥− τ
)
e−j
(
Φ·r0+(Ω−τ)t0

)
dτ

=
ˆ

R
Wr

(
Φ− u

τ

c

)
δ (Ω− τ) e−j

(
Φ·r0+(Ω−τ)t0

)
dτ

= Wr

(
Φ− u

Ω
c

)
e−jΦ·r0 ,

where (a) comes from lima→∞ aWt (aΩ) = δ (Ω) and from the fact that c∥∥u
∥∥ ≥ c, where c

is typically a large value (c = 340m/s in the case of sound).
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Theorem 30. [Intermediate-field spectrum] Consider a point source with source signal s(t)
and position rp = (xp, zp), and the approximation of P (Φx,Ω) by the parametric model
P (Φx,Ω) = S(Ω) max

{
Wx

(
Φx − cosαΩ

c

)
,M(Φx,Ω)

}
, where M(Φx,Ω) is given by

(5.9) with parameters Φmin
x and Φmax

x . Define αnf(x) = ∠
(
xp − x + jzp

)
as the angle

of incidence at point x, where αmin
nf = αnf(0) is the smallest angle and αmax

nf = αnf(L) is
the largest angle, such that αmin

nf ≤ αnf(x) ≤ αmax
nf . The ripples within the region U are

oriented towards cosα = Ex
[
cosαnf(x)

]
, where Ex denotes expectation over x, and the

triangular mask is delimited by Φmin
x = cosαmax

nf
Ω
c and Φmax

x = cosαmin
nf

Ω
c .

Proof. Divide the window function wx(x) of length L into M segments w(m)
x (x) of length

L
M , such that wx(x) =

∑M−1
m=0 w

(m)
x

(
x −m L

M

)
. For M large enough, the near-field wave

fronts become increasingly far-field in the range of each segment (by definition, ‖rp‖ � ‖r‖).
Thus,

P (Φx,Ω) =
M−1∑
m=0

2π
r(m)

S(Ω)δ
(

Φx − cosα(m) Ω
c

)
∗Φx

(
W (m)
x (Φx)e−jm

L
M Φx

)
,

where α(m) = αnf

(
m L
M

)
and r(m) =

∥∥(m L
M , 0)− rp

∥∥. Note also that, as M increases,
W

(m)
x (Φx) becomes increasingly flat with magnitude L

Mwx
(
m L
M

)
. This simplifies the result

to

P (Φx,Ω) = S(Ω)
2π
M

M−1∑
m=0

Lwx
(
m L
M

)
r(m)

e−jm
L
M

(
Φx−cosα(m) Ω

c

)
. (5.15)

The notches in U occur when the sum in (5.15) is minimized, i.e., when the exponential
vectors are in maximum phase opposition. This requires a minimization of E

[
L
(
Φx −

cosα(m) Ω
c

)
− k2π

]
for k ∈ Z\0, which occurs at Φx = E

[
cosα(m)

]
Ω
c + k2π

L ; hence
the orientation towards E

[
cosα(m)

]
. When Φx = cosα(m) Ω

c , ∀m, at least one exponential
vector in the sum equals 1. Since αnf(x) is a smooth function, the other M − 2 vectors are
also concentrated in the vicinity of 1. On the contrary, as

∣∣Φx − cosα(m) Ω
c

∣∣ increases, the
vectors become more dispersed in the complex plane, and the sum decreases in magnitude.
This places the optimal limits at Φmin

x = cosαmax
nf

Ω
c and Φmax

x = cosαmin
nf

Ω
c .

Theorem 31 (Discrete inversion formula). Given the discrete short space/time Fourier trans-
form P [n0,b] of a signal p[n], the signal p[n] can be recovered through the inversion formula
given by

p[n] =
1

|det N|
∑

n0∈N4

∑
b∈N4

P [n0,b]ej2πb·N−1n.

Proof. The proof is the same as in Theorem 26, considering the fact that sums can be repre-
sented as integrals in the context of measure theory [16].



Chapter 6

Directional Representations

6.1 Introduction
The spatio-temporal Fourier transform was introduced as an efficient and sparse representa-
tion of the acoustic wave field that expresses the harmonic behavior across space as a function
of the spatial frequency. The concept of spatial frequency can be understood as the frequency
Φ0 of a sinusoidal excitation pattern induced by the wave front on the microphones of the
array axis. If the excitation pattern is characterized by a single frequency, it can either mean
that there is only one source at the scene or there are multiple sources that coincidentally
generate the same spatial frequency. Similarly, if the excitation pattern is characterized by
more than one spatial frequency, it may be an indication that there is more than one source
at the scene, or it may be that the same source is generating multiple temporal frequencies.
The exact causes are not easy to determine unless we relate the spatial frequency to the angle
of arrival of the wave front α0, through the expression Φ0 = cosα0

Ω
c . Only then, by tracing

a line from the origin to each spectral point, it becomes clear how many sources are present
at the scene and what their individual directions are. Figure 6.1 illustrates a few examples of
naturally occurring acoustic scenes, and shows how much information can be obtained from
the spectrum by looking at the spatial frequency and the angle of arrival.

From a perceptual point of view, we, as human beings, are trained to abstract from the
excitation patterns generated in our ears, focusing only on the subjective idea of direction
induced by these patterns in our brains. If, for instance, we ask a friend “where is the sound
coming from?”, he will almost certainly point his arm in the direction of the source, indicating
the angular nature of his spatial awareness. Indeed, the concept of direction has a much higher
perceptual significance than the concept of spatial frequency.

The same is true from a mathematical point of view. In most of the results obtained
in the previous two chapters, there is at least one parameter involved that is dependent on
the angle of arrival of the wave front. In some cases (e.g., far-field sources) it is the only
parameter describing the spatial behavior of the wave front; in other cases (e.g., intermediate-
field sources) the spatial behavior can be expressed as a function of angle and distance (also
a parameter with perceptual significance). Therefore, there is a strong motivation to express
the spatio-temporal Fourier transform as a function of the angles of arrival α and β instead of
the spatial frequencies Φx and Φy .

Defining a directional Fourier transform requires that the basic element of the Fourier

97



6.1 Introduction 98

(a)

(b)

(c)

Figure 6.1: Is it possible to guess the content of the acoustic scene by looking at the spatial
frequency? The figure shows three cases where the microphone array is excited in three
different ways. The two spectral representations on the left are exactly the same, except that
in the first we measure the spatial frequency of each point and in the second we measure
the angle of arrival. On the right, the respective acoustic scene is shown together with the
temporal excitation of the far-field sources and the spatial excitation of the microphone array
(shown under the array). In (a), it is easy to guess that there is only one sinusoidal source at
the scene. Yet, the spatial frequency Φ0 does not intuitively tell where the source is located
in space, as opposed to angle of arrival α0. In (b), we can guess that there two sinusoidal
sources at the scene, but again the respective spatial frequencies Φ0 and Φ1 do not intuitively
tell where the sources are located in space, as opposed to angles of arrival α0 and α1. In
(c), by looking at the spatial frequencies, one would be tempted to say that there are two
sinusoidal sources at the scene. However, by looking at the angles of arrival, we realize that
the two points in the spectrum actually belong to the same source, even though the spatial
excitation of the microphone array is exactly the same as in (b). The true scene, in fact,
contains only one source driven by a temporal signal with two frequencies.
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integral, ej(Φ·r+Ωt), be represented as a function of α and β. For this purpose, we can use
the relation Φ = uΩ

c to redefine the spatio-temporal Fourier transform as

P

(
u

Ω
c
,Ω
)

=
ˆ

R2

ˆ
R
p(r, t)e−jΩ

(
t+u·r

c

)
dtdr,

where r = (x, y) and u = (ux, uy). This way, the basic element of the Fourier transform,

ejΩ
(
t+u·r

c

)
, is characterized by a directional parameter u that replaces the spatial frequency

Φ. The only question left is how to express P (uΩ
c ,Ω) as a function of α and β. Note that

the concept of “angle of arrival” is defined as the angle between the normal vectors of a wave
front and a flat surface in space. Therefore, it makes little sense to include the variable z in
the Fourier integral.

The representation of the acoustic wave field in the directional Fourier domain has several
effects in the type of spectral patterns obtained and the structure of the spectrum as a whole.
The most important implication is that the spectrum becomes separable with respect to the
defining parameters of the plane wave—angle and frequency. This means that changing the
angle of the plane wave only shifts the spectral support function along the α or β axes,
whereas changing the frequency of oscillation only shifts the support function along the Ω
axis. This is an optimal representation in the directional sense, since, for every fixed direction
α0 and β0, the spatio-temporal spectrum is completely described by the 1-D information
along the Ω axis, plus the two parameters α0 and β0. We will see in Chapter 9 that, given the
directional nature of acoustic wave fields, as well as of human auditory perception, this type
of directional representation can result in higher coding gains.

The purpose of this chapter is to define a directional representation of the Fourier trans-
form, and show how the spectral patterns obtained with the spatio-temporal Fourier transform
translate into this new domain. The directional representation will give an alternative inter-
pretation of the elementary components of the wave field, beyond that given by plane waves.
We will introduce a new element called far-field component, which allows the spectrum of a
near-field source to be expressed as a function of far-field patterns. This chapter will take us
one step further into understanding what the basic elements of the acoustic wave field are.

6.2 Directional Fourier transform
The directional Fourier transform of the 3-D signal p(r, t), with r = (x, y), is a 3-D function
P (α,Ω) given by

P (α,Ω) =
du
dα

(
Ω
c

)2 ˆ
R2

ˆ
R
p(r, t)e−jΩ

(
t+u·r

c

)
dtdr (6.1)

where α = (α, β) are the angles of arrival of the wave fronts with respect to the x and y axes
respectively, in accordance to Figure 2.6-(a), and u = (ux, uy) is the propagation vector—
recall that, in polar coordinates, ux = cosα sinβ and uy = cosβ. The normalization factor
du
dα is defined such that dudα = dux

dα
duy
dβ .

The inverse transform is given by

p(r, t) =
1

(2π)3

ˆ
A2

ˆ
R
P (α,Ω)ejΩ

(
t+u·r

c

)
dΩdα (6.2)
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where A is the space of angles between 0 and π, and
´

A2dα =
´ π

0

´ π
0
dαdβ. The direc-

tional Fourier integral represents the projection of p(r, t) onto the basis ejΩ
(
t+u·r

c

)
, which

is the basic element of the directional Fourier transform. This basis is notably similar to the
sound pressure generated by a complex exponential in the far-field—also known as a plane
wave—where p(r, t) = s

(
t + u·r

c

)
given s(t) = ejΩ0t. The directional Fourier transform

can, therefore, be interpreted as a decomposition of the acoustic wave field into plane waves
characterized by a direction of propagation u—itself a function of α. The vector α can take
complex values as well, in case one or more components of u are complex. This is the case
when p(r, t) contains evanescent-wave energy (i.e., when the wave front is curved). A proof
of the inversion formula is given in Section 6.5.

In line with the previous chapters, we will show examples that help to understand the
spectral patterns generated by (6.1) given the most common inputs, and illustrate the results
in the 3-D and 2-D spaces. The usual “test signals” are the complex exponential, the sinusoid,
and the Dirac impulse, driving a point source in the far-field.

Example 32 (Far-field spectrum). Consider a point source located in the far-field with source
signal s(t) and propagation vector u0 associated to a vector of arrival angles α0 = (α0, β0),
such that p(r, t) = s

(
t+ u0·r

c

)
. Plugging p(r, t) into (6.1), yields

P (α,Ω) = S(Ω)(2π)mδ(α−α0) (6.3)

where α,α0 ∈ Rm for m = 0, 1, 2. The multi-dimensional Dirac function δ(α − α0) is
non-zero for α = α0, and can be expressed as δ(α − α0) = δ(α − α0)δ(β − β0) for
m = 2. Given that α, β ∈ [0, π], the Dirac function is always within a square prism defined
by 0 ≤ α ≤ π and 0 ≤ β ≤ π, as illustrated in Figure 6.2. The proof of this result is given in
Section 6.5.

Comparing the result in (6.3) to the regular Fourier transform obtained in the previous
chapter, given by P (Φ,Ω) = S(Ω)(2π)mδ

(
Φ − uΩ

c

)
, the only change is the argument of

the Dirac support function, which was translated to the new angular coordinate system.

Example 33. Consider the case of Example 32 for s(t) = ejΩ0t, where Ω0 is a fixed fre-
quency. The Fourier transform of the complex exponential is given by S(Ω) = 2πδ(Ω−Ω0),
and thus

P (α,Ω) = (2π)m+1δ(Ω− Ω0)δ(α−α0). (6.4)

This is illustrated in Figure 6.3-(a). The result is a single point in the directional spectrum
located at (α,Ω) = (α0,Ω0), and, similarly to what happens in the regular Fourier transform,
it is the elementary component in the directional Fourier analysis of the wave field, also
known as plane wave.

Comparing to the regular Fourier transform obtained in the previous chapter, given by
P (Φ,Ω) = (2π)m+1δ(Ω − Ω0)δ

(
Φ − uΩ0

c

)
, we observe that, in the directional Fourier

representation, the Dirac point located at (Φ,Ω) =
(
uΩ0

c ,Ω0

)
is translated to a point located

at (α,Ω) = (α0,Ω0).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Directional Fourier transform of a far-field source for different values of m
(number of spatial dimensions). (a) and (b) show the wave front generated by the far-field
source for m = 2 and m = 1 respectively. (c) and (d) show the respective spatio-temporal
Fourier transforms. (e) and (f) show the respective directional Fourier transforms. The result
of translating the wave front a far-field source into a directional Fourier representation is that
the Dirac function becomes a vertical line crossing the αβ-plane at the point α = (α0, β0),
instead of a diagonal line crossing the origin. Similarly to the case of the spatio-temporal
Fourier transform, the Dirac function in the directional representation is weighted by S(Ω).
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: Examples of the directional Fourier transform form = 1 (one spatial dimension)
and different source signals. For s(t) = ejΩ0t, the spatio-temporal spectrum shown in (a) is
a single Dirac point located at (Φx,Ω) =

(
cosα0

Ω0
c ,Ω0

)
; the directional spectrum shown in

(d) is a single Dirac point located at (α,Ω) = (α0,Ω0). The results for s(t) = 2 cos(Ω0t),
shown in (b) and (e), are the same as in (a) and (d) except for the added symmetric point at
negative frequencies. For s(t) = δ(t), the spatio-temporal spectrum shown in (c) is a Dirac
function defined on a line with slope ∂Φx

∂Ω = cosα0
c ; the directional spectrum shown in (f) is a

Dirac function defined on a vertical line crossing α = α0.
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Example 34. Consider a variation of the previous example, where s(t) = 2 cos(Ω0t). Since
2 cos(Ω0t) = e−jΩ0t + ejΩ0t, the Fourier transform is given by S(Ω) = 2πδ(Ω + Ω0) +
2πδ(Ω− Ω0), and thus

P (α,Ω) = (2π)m+1
(
δ(Ω + Ω0) + δ(Ω− Ω0)

)
δ(α−α0). (6.5)

This is illustrated in Figure 6.3-(b). The result is the same as in the previous example, except
for an additional point at the symmetric position (α,Ω) = (α0,−Ω0). Note however that,
as opposed to what happens in the regular Fourier transform P (Φ,Ω), the directional Fourier
transform P (α,Ω) is not symmetric with respect to the origin, but with respect to the α-
plane.

Example 35. If the source signal is a Dirac pulse, s(t) = δ(t), the Fourier transform is
maximally flat and given by S(Ω) = 1. The directional Fourier transform is then given by

P (α,Ω) = (2π)mδ(α−α0). (6.6)

This is illustrated in Figure 6.3-(c).

The examples given above show that the directional representation of the wave field rep-
resents the diagonal lines of the Fourier spectrum as vertical lines with the same amplitude,
given by S(Ω). In the near-field and intermediate-field cases, for which we do not derive
theoretical results, it can be expected that the triangular region containing the majority of the
energy will be represented in the directional domain as a rectangular region, defined between
α = αmin

nf and α = αmax
nf . This result is demonstrated in the next section using a different

interpretation of the directional Fourier transform.

6.3 Decomposition into far-field components
The directional Fourier transform defined in (6.1) and (6.2) represents p(r, t) as a function
of its plane wave components, where each plane wave is characterized by a vector of angles
α = (α, β) and a frequency of oscillation Ω. Such a transform can be seen as an alternative
to the regular Fourier transform, better adapted to the directional nature of the acoustic wave
field. It is possible, however, to obtain the directional Fourier transform P (α,Ω) from the
regular Fourier transform P (Φ,Ω). For instance, if P (Φ,Ω) is already available at some
point in the system, we may want to obtain P (α,Ω) directly without going back to computing
p(r, t). This relation is defined as

P (α,Ω) =
du
dα

(
Ω
c

)2 ˆ
R2
P (Φ,Ω)δ

(
Φ− u

Ω
c

)
dΦ, (6.7)

and, conversely,

P (Φ,Ω) =
ˆ

A2
P (α,Ω)δ

(
Φ− u

Ω
c

)
dα. (6.8)

The results are proved in Section 6.5. This formulation of the directional Fourier transform
represents the projection of P (Φ,Ω) onto the “space” formed by Dirac support functions
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δ
(
Φ − uΩ

c

)
. The result in (6.8) in particular can be interpreted as the continuous coun-

terpart of a discrete superposition of far-field sources, with arrival angles ranging from 0
to π—recall from Section 4 that the spectrum of a far-field source is given by P (Φ,Ω) =
S(Ω)(2π)mδ

(
Φ− uΩ

c

)
, and thus P (α0,Ω) can be interpreted as the 1-D spectrum of a vir-

tual source in the far-field with direction α0. Therefore, we call (6.7) the decomposition of
the wave field into far-field components. The concept is illustrated in Figure 6.4.

Note that we call the term P (α,Ω)δ
(
Φ−uΩ

c

)
far-field “component” instead of a far-field

“source”. This is because P (α,Ω), for some given α = α0, does not necessarily represent
a true source with direction α0, but may represent for instance the energy contribution of
a near-field source to that given direction, or the energy contribution of reverberation in the
direction of α = α0. The important idea is that any acoustic scene can be expressed as
a function of far-field components, whether in open space or closed space, or whether it
contains sources in the far-field or in the near-field.

It is also important to notice that, in the strict mathematical sense, the actual energy
contribution of any given direction α is zero. This can be easily understood by looking
at δ
(
Φ − uΩ

c

)
as a probability density function, in which case any fixed α yields a zero

probability. To obtain a non-zero value, we have to consider a range of directions. For this
purpose, it can be shown that, for any given αA,αB ∈ A2 such that 0 ≤ αA < αB ≤ π
and 0 ≤ βA < βB ≤ π, the accumulated spectral content within the interval α ∈ [αA,αB]
satisfies

ˆ αB

αA

P (α,Ω)dα =
ˆ uA

Ω
c

uB
Ω
c

P (Φ,Ω)dΦ. (6.9)

The proof is given in Section 6.5. In particular, if αA = (0, 0) and αB = (π, π),
ˆ

A2
P (α,Ω)dα =

ˆ
R2
P (Φ,Ω)dΦ. (6.10)

The result in (6.10) simply states that the total accumulated spectrum across α in the di-
rectional domain (another way of saying: “the temporal information of the wave field”) is
equivalent to the total accumulated spectrum across Φ in the spatio-temporal Fourier domain.
The result in (6.9), however, has deeper implications, as it actually relates the spectral tiling
of P (α,Ω) to a subband partitioning of P (Φ,Ω), as illustrated in Figure 6.5. Essentially,
the result tells us how the spatio-temporal spectrum P (Φ,Ω) can be partitioned in order to
obtain a discrete version of P (α,Ω), with a discrete number of “angular subbands”. We will
discuss the construction of a discrete directional transform in the next chapter.
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(a)

(b) (c)

Figure 6.4: Decomposition of the wave field into far-field components. (a) In this example,
the acoustic scene consists of two sources: one in the far-field with angle of arrival α0 and
one in the intermediate-field at position (x, z) = (xp, zp). (b) In the spatio-temporal Fourier
transform, the far-field source shows up as a Dirac function defined along a line crossing
the origin with slope ∂Φx

∂Ω = cosα0
c , whereas the intermediate-field source shows up as a

triangular region delimited by two lines of slope cosαmin
nf /c and cosαmax

nf /c (for simplicity,
we discard the side-lobes outside the triangular region). This region can be interpreted as a
continuum of zero-crossing lines with slopes ranging from cosαmin

nf /c to cosαmax
nf /c, called

far-field components. (c) In the directional Fourier transform, the far-field source shows up
as a Dirac function defined along a vertical line crossing the α-axis at α = α0, whereas the
intermediate-field source shows up as a square region delimited by two vertical lines crossing
the α-axis at α = αmin

nf and α = αmax
nf . Similarly, the square region can be interpreted as a

continuum of vertical lines crossing the α-axis at multiple points ranging from αmin
nf to αmax

nf .
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(a) (b)

Figure 6.5: Relation between the spectral tiling of P (α,Ω) and the subband partitioning of
P (Φx,Ω). A rectangular-shaped region (a tile) in P (α,Ω) ranging from α = αA to αB,
as shown in (a), has the same spectral content of a triangular-shaped region in P (Φx,Ω)
delimited by two lines with slope uA

x /c and uB
x /c, where ux = cosα, as shown in (b).

6.4 Summary notes

• The spatial frequency is not the best intuitive measure of the spatial characteristics of
the acoustic wave field;

• The spatial awareness of human beings is based on an angular localization of sources
at the scene;

• A directional representation of the spatio-temporal Fourier transform can be obtained

by expressing the Fourier basis as ejΩ
(
t+u·r

c

)
;

• The directional Fourier transform provides an equally sparse spectral representation
where each far-field source is expressed as a vertical line perpendicular to the αβ-plane
and weighted by the respective source spectrum S(Ω);

• In the directional Fourier domain, the spectral triangle generated by near-field and
intermediate-field sources is expressed as a rectangular region defined between the
minimum and maximum angles of incidence of the wave front;

• The directional Fourier transform can be redefined to express the wave field as a con-
tinuum of virtual sources in the far-field with different angles of arrival, called far-field
components.
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6.5 Theorems and proofs
Theorem 36 (Inversion formula). Given the directional Fourier transform P (α,Ω) of a sig-
nal p(r, t), the signal p(r, t) can be recovered through the inversion formula given by

p(r, t) =
1

(2π)3

ˆ
A2

ˆ
R
P (α,Ω)ejΩ

(
t+u·r

c

)
dΩdα.

Proof. Plugging (5.1) into the inversion formula, yields

1
(2π)3

ˆ
A2

ˆ
R
P (α,Ω)ejΩ

(
u·r
c +t

)
dΩdα

=
1

(2π)3

ˆ
A2

ˆ
R

ˆ
R2

ˆ
R
p(ρ, τ)

du
dα

(
Ω
c

)m
e−jΩ

(
u·ρ
c +τ

)
dτdρejΩ

(
u·r
c +t

)
dΩdα

(a)
=

1
(2π)3

ˆ
R2

ˆ
R

ˆ
A2

ˆ
R
p(ρ, τ)

du
dα

(
Ω
c

)m
ejΩ

u
c ·(r−ρ)ejΩ(t−τ)dΩdαdτdρ

=
1

(2π)3

ˆ
R2

ˆ
R
p(ρ, τ)

ˆ
A2
ej

Ω
c u·(r−ρ)d

(
Ω
c

u
)ˆ

R
ejΩ(t−τ)dΩdτdρ

=
ˆ

R2

ˆ
R
p(ρ, τ)δ(r− ρ)δ(t− τ)dτdρ

= p(r, t)

where (a) is valid as long as the Fubini theorem [16] is satisfied, i.e., if the integral is well
defined (in the `1 sense).

Theorem 37 (Far-field spectrum). Given a far-field source with source signal s(t) and prop-
agation vector u0 associated to an angle vector α0 = (α0, β0), the directional Fourier
transform is given by

P (α,Ω) = S(Ω)(2π)mδ(α−α0).

Proof. Plugging p(r, t) = s
(
t+ u0·r

c

)
into (6.1), yields
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P (α,Ω) =
du
dα

(
Ω
c

)m ˆ
Rm

ˆ
R
s
(
t+

u0 · r
c

)
e−jΩ

(
u·r
c +t

)
dtdr

=
du
dα

(
Ω
c

)m ˆ
Rm
S(Ω)ejΩ

u0·r
c e−jΩ

u·r
c dr

=
du
dα

(
Ω
c

)m
S(Ω)

ˆ
Rm
ejΩ

(u0−u)·r
c dr

=
du
dα

(
Ω
c

)m
S(Ω)(2π)mδ

(
Ω

u0 − u
c

)
=

du
dα

S(Ω)(2π)mδ
(
u− u0

)
(a)
=

du
dα

S(Ω)(2π)m
δ(α−α0)∣∣ du
dα

∣∣
α=α0

(b)
=

∣∣∣∣ dudα
∣∣∣∣
α=α0

S(Ω)(2π)m
δ(α−α0)∣∣ du
dα

∣∣
α=α0

= S(Ω)(2π)mδ(α−α0)

where (a) comes from the equality δ(f(x)) = δ(x − x0)/
∣∣∣df(x)
dx

∣∣∣
x=x0

[41], and (b) comes

from the fact that dux
dα

duy
dβ = sinα sin2 β ≥ 0, ∀α, β ∈ [0, π], and

∣∣ du
dα

∣∣ δ(α − α0) =∣∣ du
dα

∣∣
α=α0

δ(α−α0).

Theorem 38 (Decomposition into far-field components). Given the spatio-temporal Fourier
transform P (Φ,Ω) of a signal p(r, t), the directional Fourier transform P (α,Ω) is given by

P (α,Ω) =
du
dα

(
Ω
c

)2 ˆ
R2
P (Φ,Ω)δ

(
Φ− u

Ω
c

)
dΦ.

Conversely,

P (Φ,Ω) =
ˆ

A2
P (α,Ω)δ

(
Φ− u

Ω
c

)
dα.

Proof. The first result can be obtained as follows:

P (α,Ω) =
du
dα

(
Ω
c

)2 ˆ
R2

ˆ
R
p(r, t)e−jΩ

(
t+u·r

c

)
dtdr

=
du
dα

(
Ω
c

)2

P
(u · r

c
,Ω
)

=
du
dα

(
Ω
c

)2 ˆ
R2
P (Φ,Ω)δ

(
Φ− u

Ω
c

)
dΦ.

The second result is obtained by plugging p(r,Ω) = 1
(2π)2

´
A2P (α,Ω)ejΩ

u·r
c dα into (4.1),

such that
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P (Φ,Ω) =
ˆ

R3
p(r,Ω)e−jΦ·rdr

=
ˆ

R3

1
(2π)2

ˆ
A2
P (α,Ω)ejΩ

u·r
c dαe−jΦ·rdr

(a)
=

1
(2π)2

ˆ
A2
P (α,Ω)

ˆ
R3
ejΩ

u·r
c e−jΦ·rdrdα

=
1

(2π)2

ˆ
A2
P (α,Ω)

ˆ
R3
e−j
(
Φ−u Ω

c

)
·rdrdα

=
ˆ

A2
P (α,Ω)δ

(
Φ− u

Ω
c

)
dα

where (a) is valid as long as the Fubini theorem [16] is satisfied, i.e., if the integral is well
defined. Note that the result of Theorem 37 can be obtained through a decomposition into
far-field components. By plugging (4.3) into (6.7),

P (α,Ω) =
du
dα

(
Ω
c

)m ˆ
Rm
P (Φ,Ω)δ

(
Φ− u

Ω
c

)
dΦ

=
du
dα

(
Ω
c

)m ˆ
Rm
S(Ω)(2π)mδ

(
Φ− u0

Ω
c

)
δ
(
Φ− u

Ω
c

)
dΦ

=
du
dα

(
Ω
c

)m
S(Ω)(2π)mδ

(
u

Ω
c
− u0

Ω
c

)
=

du
dα

S(Ω)(2π)mδ
(
u− u0

)
= S(Ω)(2π)mδ(α−α0).

Theorem 39. Given αA,αB ∈ A2 such that 0 ≤ αA < αB ≤ π and 0 ≤ βA < βB ≤ π, the
accumulated spectral content within the interval α ∈ [αA,αB] satisfies

ˆ αB

αA

P (α,Ω)dα =
ˆ uA

Ω
c

uB
Ω
c

P (Φ,Ω)dΦ.

Proof. Plugging (6.8) yields

ˆ uA
Ω
c

uB
Ω
c

ˆ
A2
P (α,Ω)δ

(
Φ− u

Ω
c

)
dαdΦ =

ˆ
A2
P (α,Ω)

ˆ uA
Ω
c

uB
Ω
c

δ
(
Φ− u

Ω
c

)
dΦdα

=
ˆ αB

αA

P (α,Ω)dα,

The order of integration with respect to Φ and α can be exchanged under the Fubini theorem
[16] if P (α,Ω) is absolutely integrable. The last equality is due to
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ˆ uA
Ω
c

uB
Ω
c

δ
(
Φ− u

Ω
c

)
dΦ =

{
1 , α ∈ [αA,αB]
0 , otherwise.



Chapter 7

Filter-Bank Realizations of
Spatio-Temporal Transforms

7.1 Introduction
The work carried out by Dennis Gabor in 1946 on the time–frequency representation of non-
stationary signals [35] had an impact in the area of Fourier analysis well beyond that of the
development of the short-time Fourier transform. The work essentially led to a generalized
view of orthogonal transforms, based on the concept that different types of signals require
a different partitioning of the time–frequency plane. Music signals, for instance, are better
represented by a uniform partitioning of the spectrum, due to their harmonic nature. Elec-
trocardiographic signals, on the contrary, are mostly characterized by low-frequency com-
ponents generated by the heart beat plus the wide band noise generated by the surrounding
muscles. For this type of signals, a dyadic partitioning of the spectrum—with higher resolu-
tion for lower frequencies—is a more appropriate representation. Such representations can
be obtained through a class of discrete-time structures known as filter banks, which consist of
a sequence of filters and rate converters organized in a tree structure (see, e.g., Vaidyanathan
[84] and Vetterli et al. [86]).

A typical filter bank structure, illustrated in Figure 7.1, consists of a signal decomposition
stage, known as the analysis stage, and a signal reconstruction stage known as the synthesis
stage. At every branch of the analysis stage, a given frequency band is filtered out and
“stretched” by the rate converter in order to fully utilize the frequency range assigned by the
initial sampling rate. The rate converters guarantee that the combination of all the filtered
versions of the input has the desired number of samples in the end, which can be either: (i)
less than the input (subsampling); (ii) more than the input (oversampling); (iii) or the same
as the input (critically sampled). At the synthesis stage, the spectrum of the filtered signals
is “squeezed” by the rate converters in order to occupy the original frequency range, and the
branches are summed up. If the filters are properly designed, the aliasing caused by the rate
converters is completely eliminated, due to aliasing compensation [84; 86].

Filter banks are a powerful tool used for modeling systems and obtaining efficient repre-
sentations of a given class of signals through linear transforms that are invertible and critically
sampled, and, in many cases, computationally efficient. In particular, filter banks can be used

111



7.2 Realization of orthogonal transforms 112

Table 7.1: Summary of continuous spatio-temporal transforms.

Spatio-temporal Fourier transform

P (Φ,Ω) =
´

R3

´
R p(r, t)e

−j(Φ·r+Ωt)dtdr

p(r, t) = 1
(2π)4

´
R3

´
R P (Φ,Ω)ej(Φ·r+Ωt)dΩdΦ

Short space/time Fourier transform

P (r0, t0,Φ,Ω) =
´

R3

´
R p(r, t)wr(r− r0)wt(t− t0)e−j(Φ·r+Ωt)dtdr

p(r, t) = 1
(2π)4

´
R3

´
R
´

R3

´
R P (r0, t0,Φ,Ω)ej(Φ·r+Ωt)dΩdΦdt0dr0

Directional Fourier transform

P (α,Ω) = du
dα

(
Ω
c

)2 ´
R2

´
R p(r, t)e

−jΩ
(
t+ u·r

c

)
dtdr

p(r, t) = 1
(2π)3

´
A2

´
R P (α,Ω)ejΩ

(
t+ u·r

c

)
dΩdα

P (α,Ω) = du
dα

(
Ω
c

)2 ´
R2P (Φ,Ω)δ

(
Φ− uΩ

c

)
dΦ

P (Φ,Ω) =
´

A2P (α,Ω)δ
(
Φ− uΩ

c

)
dα

to implement the discrete version of orthogonal transforms, such as the Fourier transform. For
example, the frequency coefficients provided by the discrete Fourier transform (DFT) can be
interpreted as the output of a uniform filter bank with as many bandpass filters as the number
of coefficients. If the signal being transformed is multidimensional—say, a spatio-temporal
signal—then the theory of multidimensional filter banks can be used instead, resulting in the
typical filter bank structure shown in Figure 7.2. The generalization of filter banks theory
(see, e.g., Vaidyanathan [84]) consists of using multidimensional filters to obtain the different
frequency bands from the input spectrum and using sampling lattices to regulate the spec-
tral shaping prior to and after the filtering operations. Similarly to the one-dimensional case,
the synthesis stage of the filter bank can be designed such that the output signal is a perfect
reconstruction of the input.

In this chapter, we show how the theory of multidimensional filter banks can be used to
translate the spatio-temporal transforms discussed in the previous chapters (summarized in
Table 7.1) into realizable and computationally efficient discrete transforms that satisfy the
strict requirements of perfect reconstruction and critical sampling. For simplicity, we discuss
only the case where the spatio-temporal signals are two-dimensional, with the x-axis fully
describing the observation region. We also show examples of different acoustic scenes and
the respective signal representations they generate.

7.2 Realization of orthogonal transforms
Spatio-temporal orthogonal transforms can be obtained through any combination of orthog-
onal bases applied separately to the spatial and temporal dimensions of the input signal.
Examples of transforms that can be used to exploit the temporal evolution of the sound field
include the discrete Fourier transform (DFT), the discrete cosine transform (DCT), and the
discrete wavelet transform (DWT). The DFT and the DCT are better suited for audio and
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(a)

(b)

Figure 7.1: Typical structure of a one-dimensional filter bank. (a) The filter bank is composed
of an analysis stage and a synthesis stage. The analysis stage splits up the input signal into
N bandpass filtered versions, and downsamples each version by N in order to maintain the
same sampling rate of the input. The synthesis stage then upsamples each bandpass signal by
N and eliminates the aliasing components by filtering and summing up all the branches. If
the filters H(z) and F (z) are properly designed, the output signal is a perfect reconstruction
of the input. (b) The polyphase representation is an equivalent structure that expresses the
filter bank as a computationally efficient block transform. The combination of delay factors
and rate converters is known as “delay chain”, and it basically generates a block of samples
with size N from the input signal (in the analysis stage) or vice versa (in the synthesis stage).
The filtering operations are then performed as a matrix product. Note that the delay chain on
the right can be made causal by introducing a delay factor of z−(N−1).
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(a)

(b)

Figure 7.2: Typical structure of a multidimensional filter bank. (a) The filter bank structure
is similar to the one-dimensional case, except that the filters and rate converters are multidi-
mensional. The z-transform vector is defined such that, in the 2-D spatio-temporal domain,
z = (zx, zt), and N is a diagonal resampling matrix given by N =

[
Nx 0
0 Nt

]
. The number of

filters is determined by the size of the space of coset vectors K2 ⊂ Z2 (assumingm = 2 from
the figure), which is essentially the space of all combinations of integer vectors k =

[
kx
kt

]
from k =

[
0
0

]
to k =

[
Nx−1
Nt−1

]
. (b) The equivalent polyphase representation is characterized

by a delay chain composed of vector delay factors z−k = z−kxx z−ktt and the resampling ma-
trix N, which generate 2-D sample blocks of size Nx × Nt from the input signal and vice
versa. If the filter bank is separable, the filtering operations can be expressed as a product
between transform matrices associated to each dimension.
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speech sources, due to their harmonic nature, whereas the DWT is better suited for impulsive
and transient-like sources (e.g., shot events).

In the spatial domain, the choice of basis takes into account different factors, such as
the position of the sources and the geometry of the acoustic environment (which influence
the diffuseness of sound and the curvature of the wave field), as well as the geometry of the
observation region. The Fourier transform, as we have shown, provides an efficient repre-
sentation of the wave field on a straight line or a smoothly curved contour. However, under
some particular conditions, a different choice of basis may prove to be more efficient. For in-
stance, if the observation contour L is perfectly circular [2], a Fourier transform for circularly
symmetric functions, such as the Hankel transform, can be used instead. In contrast, if L is
sharply curved, the wavelet transform is more able to represent the sharp transitions across
space in the wave field representation. In this chapter, however, we limit our analysis to the
realization of traditional Fourier-based transforms.

The general formulation of a 2-D spatio-temporal orthogonal transform is given by

P [b] =
∑
n∈Z2

p[n]υ∗bx,nxψ
∗
bt,nt , b ∈ Z2 (7.1)

and

p[n] =
∑
b∈Z2

P [b]υbx,nxψbt,nt , n ∈ Z2. (7.2)

where υbx,nx and ψbt,nt are the spatial and temporal orthogonal bases, respectively. In matrix
notation, (7.1) and (7.2) can be written as

Y = ΥPΨH (7.3)

and

P = ΥHYΨ, (7.4)

where P, Y, Υ, and Ψ are the matrix expansions of p[n], P [b], υbx,nx , and ψbt,nt , respec-
tively. The results in (7.3) and (7.4) show that a spatio-temporal orthogonal transform is
simply a matrix product between the input samples and the transformation matrices Υ and
Ψ. The transform can thus be expressed as a multidimensional filter bank structure similar to
the one shown in Figure 7.2, where the block

∏
m Hm represents a left product by Υ and a

right product by ΨH , and
∏
m Fm represents a left product by ΥH and a right product by Ψ.

The input signal p[n] of size Nx ×Nt is decomposed by the analysis stage of the filter bank
into a transform matrix P [b] of equal size, and reconstructed back to p[n] by the synthesis
stage.

7.2.1 Discrete Fourier transform
To perform a spatio-temporal discrete Fourier transform (DFT), the basis functions are de-
fined as

υbx,nx =
1√
Nx

ej
2π
Nx

bxnx , bx = 0, . . . , Nx − 1 andnx = 0, . . . , Nx − 1 (7.5)



7.3 Realization of lapped orthogonal transforms 116

ψbt,nt =
1√
Nt
ej

2π
Nt
btnt , bt = 0, . . . , Nt − 1 andnt = 0, . . . , Nt − 1. (7.6)

This implies that Υ and Ψ are DFT matrices of size Nx ×Nx and Nt ×Nt respectively. An
example of the output of the DFT filter bank is shown in Figure 7.3-(c).

7.2.2 Discrete cosine transform
To perform a spatio-temporal discrete cosine transform (DCT), the basis functions are defined
as

υbx,nx =

√
2

Nx
cos

(
π

Nx

(
nx +

1

2

)(
bx +

1

2

))
,

bx = 0, . . . , Nx − 1 andnx = 0, . . . , Nx − 1

υbt,nt =

√
2

Nt
cos

(
π

Nt

(
nt +

1

2

)(
bt +

1

2

))
,

bt = 0, . . . , Nt − 1 andnt = 0, . . . , Nt − 1

Similarly, this implies that Υ and Ψ are DCT matrices of size Nx×Nx and Nt×Nt respec-
tively. An example of the output of the DCT filter bank is shown in Figure 7.3-(d).

7.3 Realization of lapped orthogonal transforms
A lapped orthogonal transform (LOT) is a class of linear transforms where the input signal is
split up into smaller overlapped blocks before each block is projected onto a given basis (and
typically processed individually). A perfect reconstruction of the input signal is obtained by
inverting the individual blocks and adding them through a technique known as overlap-and-
add [62]. An example of a spatio-temporal LOT is the short space/time Fourier transform,
introduced in Chapter 5.

The multidimensional filter bank structure of Figure 7.2 can be converted into a lapped
transform simply by applying the resampling matrix N − O instead of N, where O =[
Ox 0
0 Ot

]
contains the number of overlapping samples Ox and Ot in each dimension. Since

the resulting number of samples is greater than the number samples of the input signal, the
filter bank becomes oversampled. Without loss of generality, we assume that O = 1

2N,
representing 50% of overlapping in both dimensions.

The decomposition of p[n] into overlapped blocks pi[n] can be written as

pi[n] = p[n] , n =
N
2

i, . . . ,
N
2

(i + 2)− 1 , i ∈ I2, (7.7)

where i =
[
ix
it

]
is the block index and I2 ⊂ Z2 is the respective set of block indexes.

The notation n = N
2 i, . . . , N

2 (i + 2) − 1 means that nx = Nx
2 ix, . . . ,

Nx
2 (ix + 2) − 1 and

nt = Nt
2 it, . . . ,

Nt
2 (it + 2) − 1. The vector integers are defined as 0 =

[
0
0

]
, 1 =

[
1
1

]
, and

so on. Note also that, in order to handle the blocks that go outside the boundaries of n, we
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Figure 7.3: Example of discrete orthogonal transforms. (a) The acoustic scene consists of an
intermediate-field source driven by white noise and a microphone array of size 128. (b) The
spatio-temporal signal shows the curvature of the wave front in the region where the source
is closer to the array. (c) The discrete Fourier transform (DFT) of the input signal shows a
spectral pattern similar to the one predicted by the theory. (d) The discrete cosine transform
(DCT) shows a similar spectral pattern to the DFT except that it only contains real-valued
coefficients and is only defined for positive frequencies.
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consider the signal to be circular (or periodic) in both dimensions. This presents an advantage
over zero-padding, in particular, when L is closed.

Denoting ϕ[b,n] = υbx,nxψbt,nt , the direct and inverse transforms for each block are
given by

Pi[b] =
N1−1∑
n=0

pi[n]ϕ[b,n] , b = 0, . . . ,N1− 1 (7.8)

and

p̂i[n] =
N1−1∑
b=0

Pi[b]ϕ[b,n] , n = 0, . . . ,N1− 1. (7.9)

Finally, the reconstruction of p[n] through overlap-and-add is given by

p[n] =
∑
i∈I2

p̂i

[
n− 1

2
Ni
]
, n ∈ Z2. (7.10)

In matrix notation, the complete mechanism of the spatio-temporal LOT can be expressed as


· · ·

...
... · · ·

Yi Y
i+
[

0
1

]
Y

i+
[

1
0

] Yi+1

· · ·
...

... · · ·

 =


. . .
Υ
L

Υ
R

Υ
L

Υ
R

. . .




· · ·

...
... · · ·

Pi P
i+
[

0
1

]
P

i+
[

1
0

] Pi+1

· · ·
...

... · · ·




. . .
Ψ
L

Ψ
R

Ψ
L

Ψ
R

. . .



H

and


· · ·

...
... · · ·

Pi P
i+
[

0
1

]
P

i+
[

1
0

] Pi+1

· · ·
...

... · · ·

 =


. . .
Υ
L

Υ
R

Υ
L

Υ
R

. . .



H

· · ·

...
... · · ·

Yi Y
i+
[

0
1

]
Y

i+
[

1
0

] Yi+1

· · ·
...

... · · ·




. . .
Ψ
L

Ψ
R

Ψ
L

Ψ
R

. . .


where Υ =

[
ΥL ΥR

]
and Ψ =

[
ΨL ΨR

]
are split into left and right halves in order to

enforce overlapping directly in the transformation matrix. The resulting block-bidiagonal
matrices are orthogonal.

7.3.1 Short space/time Fourier transform
The short space/time Fourier transform is obtained by defining the basis functions as

υbx,nx = wx[nx]
1√
Nx

ej
2π
Nx

bxnx , bx = 0, . . . , Nx − 1 andnx = 0, . . . , Nx − 1 (7.11)
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ψbt,nt = wt[nt]
1√
Nt
ej

2π
Nt
btnt , bt = 0, . . . , Nt − 1 andnt = 0, . . . , Nt − 1. (7.12)

where wx[nx] and wt[nt] are the window functions in space and time, satisfying the condi-
tions w[n] = w[N − 1−n] and w2[n] +w2[n+ N

2 ] = 1 [77]. An example of the space/time
Fourier transform is shown in Figure 7.4-(c).

7.3.2 Modified discrete cosine transform
The modified discrete cosine transform (MDCT) is an adaptation of the LOT introduced by
Princen et al. [76], and used today as the base filter bank of most state-of-art audio coders
(see, e.g., Bosi et al. [15]). The main attribute of the MDCT is that it converts the LOT
into a critically sampled filter bank while preserving the perfect reconstruction of the input.
This is achieved through a technique known as time-domain aliasing cancelation (TDAC),
which depends on a proper choice of the basis functions and can be extended to the 2-D case
[60; 53]. An example of basis functions that satisfy the TDAC principle is given by

υbx,nx = wx[nx]
√

4
Nx

cos
(

2π
Nx

(
nx +

Nx
4

+
1
2

)(
bx +

1
2

))
,

bx = 0, . . . ,
Nx
2
− 1 andnx = 0, . . . , Nx − 1, (7.13)

and

ψbt,nt = wt[nt]
√

4
Nt

cos
(

2π
Nt

(
nt +

Nt
4

+
1
2

)(
bt +

1
2

))
,

bt = 0, . . . ,
Nt
2
− 1 andnt = 0, . . . , Nt − 1. (7.14)

where wx[nx] and wt[nt] are the window functions in space and time, satisfying the condi-
tions w[n] = w[N − 1− n] and w2[n] + w2[n+ N

2 ] = 1 [77]. Note that the basis functions
generate only half the number of coefficients, and hence result in a subsampled transform.
This requires that we change the range of b in (7.8) and (7.9) from b = 0, . . . ,N1 − 1 to
b = 0, . . . , N

2 1− 1. The TDAC principle guarantees that the aliasing component of a given
block—caused by the subsampled transform—is canceled by the aliasing components of the
adjacent blocks [76; 62].

An example of the spatio-temporal MDCT is shown in Figure 7.4-(d).

7.4 Realization of directional transforms
As discussed in the previous chapter, the directional Fourier transform can be obtained from
the regular spatio-temporal Fourier transform by partitioning the spectrum into a discrete
number of “angular subbands”, such that each subband captures the far-field components ar-
riving to the region of observation with a given range of angles. To obtain a discrete version
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Figure 7.4: Example of lapped orthogonal transforms. (a) The acoustic scene consists of
an intermediate-field source driven by a Dirac pulse and a microphone array of size 128.
(b) Again, the spatio-temporal signal shows the curvature of the wave front in the region
where the source is closer to the array. (c) The DFT of the signal is a triangular pattern
as predicted by the theory, but with no local spatial information. (d) The short space/time
Fourier transform (or Gabor decomposition) splits up the Fourier transform into blocks of
size 32 × 64, resulting in a representation that discriminates the local curvature of the wave
front. Notice how the blocks on the left have more far-field characteristics than the blocks
on the right. (e) The modified discrete cosine transform (MDCT) is similar to the result in
(d) except that, besides containing only real-valued coefficients at positive frequencies, it is
critically sampled. Note that the number of samples in each axis of (e) is half the number of
samples seen in the oversampled transform in (d).
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Figure 7.5: Three-level directional filter bank (DFB). This non-separable filter bank consists
of an iterated tree-structure of quincunx filter banks (QFB), in this case performing a uniform
decomposition of the input spectra into directional subbands. The matrices R and Q represent
a parallelogram resampler followed by a quincunx resampler, and the filtersH0(z) andH1(z)
represent two diamond-shaped half-band filters.

of the directional Fourier transform, one can think of a filter bank that decomposes the spec-
trum into directional subbands defined in the range cos

(
α + ∆

2

)
Ω
c ≤ Φx ≤ cos

(
α − ∆

2

)
Ω
c ,

for Ω ≥ 0 (and point-symmetric for Ω < 0), where α is the central direction and ∆ is the
directional bandwidth. Such a filter bank is necessarily non-separable, since the subband
partitioning of the spectrum does not correspond to a rectangular tiling.

A directional filter bank (DFB) capable of achieving the desired subband partitioning can
be obtained through an iterated tree-structure of 2-channel quincunx filter banks (QFB), illus-
trated in Figure 7.5. The QFB is a non-separable, critically sampled, perfect reconstruction
filter bank defined by two diamond-shaped half-band filters, H0(z) and H1(z), preceded by
a parallelogram resampler R and followed by a quincunx resampler Q [4; 70; 26; 19]. The
number of levels of the DFB and the configuration of its tree branches determine the angu-
lar resolution of the filter bank, as well as the angular selectivity between 0 and π. Some
examples of subband partitionings are illustrated in Figure 7.6.

There are seven variants of R and Q, given by

Q0 =
[

1 −1
1 1

]
, Q1 =

[
1 1
−1 1

]
, R0 =

[
1 1
0 1

]
,

R1 =
[

1 −1
0 1

]
, R2 =

[
1 0
1 1

]
, R3 =

[
1 0
−1 1

]
,

(7.15)

plus the identity matrix R = I, which have resampling densities given by |det(R)| = 1 and
|det(Q)| = 2. The selection among these matrices depends on the tree level and the branch
considered [26; 25]. The output of both channels is maximally decimated due to a global
resampling density of |det(RQ)| = 2.

The intuition behind the iterated QFB structure is that, instead of using different filters to
obtain different subbands, we use the resampling matrices to rotate and skew the subbands
before slicing them with a fixed filter. The design of the half-band filters H0(z) and H1(z),
and the respective synthesis filters F0(z) and F1(z), can be done using two-dimensional filter
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(a) (b)

Figure 7.6: Decomposition of the spatio-temporal spectrum into directional subbands using
a tree-structured directional filter bank (DFB). The subband partitioning can be either: (a)
uniform or (b) non-uniform. A partitioning similar to (b) is particularly suitable for spectral
patterns generated by acoustic wave fields, since it gathers all the evanescent waves into a
single subband and has variable directional resolution in the propagating-waves region.

design techniques. Notably, an efficient structure by Phoong et al [70] reduces the procedure
to the design of an FIR all-pass filter A(z) = z−

1
2 (2K−1) of order K, such that

H0(z) =
1
2
z−2K
x +

1
2
z−1
x A(zxz−1

t )A(zxzt) (7.16a)

H1(z) = −A(zxz−1
t )A(zxzt)H0(z) + z−4K+1

x (7.16b)
F0(z) = −H1(−z) (7.16c)
F1(z) = H0(−z), (7.16d)

where z = (zx, zt) represents the z-transform variables. The design of the all-pass filterA(z)
controls the frequency selectivity of the half-band filters, which has an influence in the final
amount of cross-band artifacts.

An example of the DFB decomposition of an input wave field is shown in Figure 7.7.

7.5 Matlab examples
The figures shown in the previous sections were generated using a graphical user interface
(GUI) programmed in Matlab v7.3. The development of this GUI was inspired by the concept
of reproducible research [85], which states that the processes used for obtaining the results
should be made available for verification, and the results should be reproducible by other
researchers. The package is available in the repository of the Ecole Polytechnique Fédérale
de Lausanne at http://rr.epfl.ch/31/. A snapshot of the GUI is shown in Figure 7.8.

The GUI is essentially a tool for simulating, analyzing, and processing acoustic wave
fields using the theory of spatio-temporal Fourier analysis. The user can customize an acous-
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Figure 7.7: Example of a discrete directional transform. (a) The acoustic scene consists of a
far-field source driven by a Dirac pulse and a microphone array of size 128. (b) The spatio-
temporal signal shows that the wave front is completely plane. (c) The DFT of the signal
shows that the spectral energy is concentrated on a single diagonal line crossing the origin, as
predicted by the theory. (d) The directional filter bank (DFB) performs an iterated 2-channel
quincunx decomposition until the number of samples of each subband in the directional axis
is equal to 1. (e) The output of the DFB, after a proper rearrangement of the subbands, is the
discrete directional transform. The result shows the spectral energy concentrated on a vertical
line crossing the direction axis at the corresponding angle, as predicted by the theory. Note,
however, that the directional transform is less sharp than the regular Fourier transform. This
is a result of cross-band artifacts caused by the finite resolution of the half-band filters.
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Figure 7.8: Snapshot of the Matlab graphical user interface (GUI).

tic scene with point sources and a sensor array, and observe the resulting wave field repre-
sentations. Simple DSP operations can also be performed on the wave field, such as spatial
filtering, localization, and wave field coding. These applications are discussed in the next two
chapters.

Some examples of filter bank decompositions obtained using the GUI of Figure 7.8 are
shown in Figure 7.9 and 7.10.
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Figure 7.9: Far-field and intermediate-field sources driven by a Dirac pulse, observed on a
linear microphone array. (a) Acoustic scene; (b) spatio-temporal signal; (c) DFT; (d) short
space/time Fourier transform; (e) spatio-temporal MDCT; (f) discrete directional transform.
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Figure 7.10: Intermediate-field source driven by a Dirac pulse and observed on a curved mi-
crophone array. (a) Acoustic scene; (b) spatio-temporal signal; (c) DFT; (d) short space/time
Fourier transform; (e) spatio-temporal MDCT; (f) discrete directional transform.
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7.6 Summary notes

• Filter banks are efficient discrete-domain structures that can be used for implementing
the discrete version of orthogonal transforms;

• Spatio-temporal transforms can be implemented through the use of multidimensional
filter banks theory;

• The realization of the discrete Fourier and cosine transforms can be obtained with a
separable, critically sampled, and perfect reconstruction filter bank that performs a
uniform partitioning of the spectrum;

• The realization of lapped orthogonal transforms such as the short space/time Fourier
transform can be obtained with the same filter bank with a lower resampling ratio
(oversampled). In the case of the modified discrete cosine transform, the filter bank is
critically sampled;

• The discrete version of the directional Fourier transform requires the use of non-
separable filter banks, and can be obtained with an iterated tree-structure of quincunx
filter banks;

• A Matlab graphical user interface for the purpose of reproducing the results in this
chapter is available in our repository at http://rr.epfl.ch/31/.
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Chapter 8

Spatio-Temporal Filter Design

8.1 Introduction
In digital signal processing (DSP), filtering is the cornerstone operation when it comes to ma-
nipulating signals, images, and other types of data. It is arguably the most used DSP technique
in modern technology and electronic devices, as well as in the domain of Fourier analysis in
general. The outstanding variety of applications of filtering go beyond the simple elimination
of undesired frequencies in signals: it allows, for example, the elimination of several types
of interferences, the cancelation of echoes in two-way communications, and the frequency
multiplexing of radio signals. Moreover, the theory led to the invention of filter banks, and
hence the development of new types of linear transforms and signal representations.

A linear filtering operation is defined as a convolution between the input signal s[nt] and
the impulse response of the filter h[nt], given by y[nt] =

∑
k∈Z s[k]h[k − nt]. The filter

can have a finite impulse response (FIR), in which case it is non-recursive, always stable, and
can easily be designed to have linear phase, or it can have an infinite impulse response (IIR),
in which case it is recursive, can be either stable or unstable, and the linear phase property
has to be approximated for a given range of frequencies. IIR filters typically require less
computational power than FIR filters. Alternatively, the filtering operation can be performed
in the Fourier domain. If S(ω) andH(ω) are the Fourier transforms of s[nt] and h[nt], where
ω is the temporal frequency in rad, then, using the convolution property, Y (ω) = S(ω)H(ω).

In the field of study known as array signal processing (see, e.g., Johnson et al. [54]),
there exists a similar concept called spatial filtering (or beamforming). A spatial filter is a
filter that favors a given range of directions in space, implemented directly through the array
of sensors. The sensors are synchronized such that there is phase alignment for a desired
angle of arrival and phase opposition for the other angles. Spatial filters have been used in
many contexts throughout history with enormous success—most notably during warfare with
the use of radars, and during the era of wireless communications with the use of antennas (see,
e.g., Brown et al. [17] for a history of radar development during world war II, and Sarkar et
al. [81] for a history of wireless communications). Other applications include sonar, seismic
wave monitoring, spatial audio, noise cancelation, and hearing aids technology. As long as
more than one sensor is available, it is always possible to implement a spatial filter. The
human auditory system, for example, uses an array of two sensors (the ears) to localize the
sound sources in space.

129
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Figure 8.1: Typical implementation of a delay-and-add beamformer. (a) A linear array of
8 microphones, separated by the Nyquist distance Tx = 340/44100 m, captures the sound
from the upper half-space. The signals received in each microphone at nx are delayed by an
appropriate factor, such that the signals are phase-aligned with respect to the steering angle
αS (in this case αS = π

3 ), and then added up to generate the output signal y[nt]. (b) The
directivity plot shows the normalized gain of the beamformer with respect to the arrival angle
of Dirac sources in the far-field. The gain is clearly higher for the selected steering angle, and
decreases as the angle moves away from αS. The symmetry of the directivity plot is due to
front-back ambiguity.

The problem with most beamforming techniques (e.g., Frost [34], Widrow et al. [87]
and Griffiths et al. [40]) is that they provide little flexibility in terms of the design of spatial
filters. The basic technique consists of assigning different gains and delays to each sensor,
and adding the results in order to obtain a higher acquisition gain (or reproduction gain)
for a specific direction of arrival, as illustrated in Figure 8.1. This means that the spatial
filtering operation is not performed on the signal samples directly but rather on the temporal
DFT coefficients of each sensor, which is hardly an intuitive interpretation of convolutional
filtering. One of the consequences is that we can not easily design the beamformer such
that it has a flat response for a given range of directions, while rejecting all the others. The
angular response of the beamformer is typically dependent of the spectral characteristics
of the spatial window that regulates the gain of each sensor. We will show in this chapter
that, in the spatio-temporal Fourier domain, the delay-and-add technique implemented by
beamformers is equivalent to a 2-D sampling operation.

One of the greatest attributes of the Fourier transform is that it allows the interpretation of
convolutional filtering in terms of intuitive parameters such as the cut-off frequencies, stop-
band attenuation, and phase response. For instance, a filter can be sketched in the Fourier
domain such that it has a unitary response for a given range of frequencies (pass-band) and
a high attenuation for the remaining frequencies (stop-bands), plus an equiripple magnitude
response and a linear phase. Using existing algorithms [68], the ideal filter can be translated
into a realizable filter that optimally obtains the desired response. In the context of spatio-
temporal Fourier analysis, the same reasoning can be used: we can sketch a spatial filter in the
Fourier domain such that it has a unitary response for every plane wave within a given range
of directions (pass-band) and a high attenuation for the remaining plane waves (stop-bands),
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plus any additional magnitude and phase constraints. The ideal filter can be translated into a
realizable filter by using two-dimensional filter design techniques. Once the spatio-temporal
filter coefficients h[n] are obtained, the filtering operation can be performed either in the
spatio-temporal domain, using the convolution formula

y[n] =
∑
ρ∈Z

∑
τ∈Z

p[ρ, τ ]h[nx − ρ, nt − τ ],

or in the Fourier domain, using the convolution property Y (φ, ω) = P (φ, ω)H(φ, ω), where
H(φ, ω) is the Fourier transform of the spatio-temporal filter h[n] and φ is the spatial fre-
quency in rad.

The purpose of this chapter is to show how the ideal spatio-temporal filter can be designed
as a function of the most relevant parameters, and how it can be translated into a realizable
and well behaved filter with arbitrary order. We also show how the filter can be applied to
a curved observation contour through the use of space/time–frequency analysis. Finally, we
provide a brief study on adaptive filtering in the spatio-temporal Fourier domain.

8.2 Spatial filtering in the Fourier domain
The spatio-temporal Fourier transform is more than an efficient representation of acoustic
wave fields: it is tool that generalizes several concepts of acoustics theory and array signal
processing into a single framework. Concepts such as plane waves, near-field and far-field
radiation, propagating and evanescent modes, spatial sampling, spatial windowing, etc., all
come together in the spatio-temporal Fourier domain. In this section, we show that beam-
forming techniques are no exception, and can be easily translated into operations in the
spatio-temporal Fourier domain. More importantly, we show that beamforming is a very
limiting type of spatial filtering, which can be characterized in a more generally way through
2-D convolutional filtering.

8.2.1 Beamforming
A standard beamforming algorithm operates by delaying the multiple signals obtained by
each microphone in the array such that they are in phase alignment with respect to a given
angle of arrival, as illustrated in Figure 8.1. This operation can be expressed as

y[bt] =
Nx−1∑
nx=0

e−j
2π
Nt
bt cosαS

nxTx
c p[nx, bt] (8.1)

where p[nx, bt] is the temporal DFT of p[n], given by p[nx, bt] =
∑Nt−1
nt=0 p[nx, nt]e

−j2π btntNt ,
Tx is the sampling period in space, and αS is the beam-steering angle (i.e., the center of the
angular filter). Note that the output of the beamformer is a one-dimensional signal y[bt] with
no spatial information.

The expression in (8.1) can be rewritten as

y[bt] =
Nx−1∑
nx=0

e−j
2π
Nx

(
cosαS

bt
c
TxNx
Nt

)
nxp[nx, bt]. (8.2)
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By identification, the result is equivalent to the spatial DFT of p[nx, bt], where bx is given by
bx = cosαS

Tx
c
Nx
Nt
bt. Hence,

y[bt] = P

[
cosαS

bt
c

(
TxNx
Nt

)
, bt

]
. (8.3)

Finally, using the discrete Dirac formalism,

y[bt] =
Nx−1∑
bx=0

P [b]δ
[
bx − cosαS

bt
c

(
TxNx
Nt

)]
, (8.4)

where δ[b] is a Kronecker delta, defined as δ[b] = 1 for b = 0 and δ[b] = 0 otherwise.
The result in (8.4) essentially states that beamforming algorithms based on delay-and-add

can be translated into a sampling operation in the spatio-temporal DFT domain, where the
sampling kernel is given by the Kronecker delta δ

[
bx − cosαS

bt
c

(
TxNx
Nt

)]
. This operation is

illustrated in Figure 8.2.

8.2.2 Convolutional filtering
A more general approach compared to sampling the Fourier spectrum along a diagonal line
(beamforming) is to apply a properly designed 2-D filter in order to eliminate undesired plane
waves. The pass-band region of the filter can be specified such that the plane waves within a
given range of temporal frequencies, spatial frequencies, arrival angles, or any combination
thereof, are preserved. The bandwidth of such a filter depends on which parameter is being
measured—e.g., we can measure the temporal frequency bandwidth, the spatial frequency
bandwidth, or the angular bandwidth. Other important parameters include the cut-off and
center frequencies (or angles), the ripple behavior of the pass-band region, the attenuation of
the stop-band regions, and the phase response of the filter. An optimal and realizable filter
satisfying the specifications of the ideal filter can be obtained through the use of 2-D filter
design techniques, that we discuss later in the chapter. Some examples of spatio-temporal
filters are shown in Figure 8.3.

A spatio-temporal filter is a 2-D discrete sequence defined as h[n] = h[nx, nt] with DFT
coefficients H[b] = H[bx, bt]. If the input signal is p[n], then that spatio-temporal filtering
operation is given by a 2-D circular convolution [68],

y[n] =
Nx−1∑
ρ=0

Nt−1∑
τ=0

p[ρ, τ ]h[((nx − ρ))Nx , ((nt − τ))Nt ], (8.5)

where ((·))N = ·modN . Unlike beamforming, the output of (8.5) is the 2-D signal y[n]
representing the entire wave field (i.e., with spatial information).

Using the convolution property of the DFT, it follows that

Y [b] = P [b]H[b]. (8.6)

To specify the parameters of the ideal filter, we first need to decide what is the purpose of
the filter. A reasonable goal is to focus on the wave fronts originating from a particular point
in space—perhaps the location of a target source—while suppressing every other wave front
with a different origin. For this purpose, the expression of the spatio-temporal spectrum of
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Figure 8.2: Delay-and-add beamformer as a 2-D sampling operation. In (a), (b), and (c), the
directivity plot shows the normalized gain of the beamformer of Figure 8.1 with respect to
the arrival angle of Dirac sources in the far-field. A black circle indicates the arrival angle
of an actual Dirac source present at the scene, and the respective normalized gain. In (d),
(e), and (f), the same beamforming operations are performed in the spatio-temporal Fourier
domain. The spatio-temporal Fourier transform of the Dirac wave front on a linear array
with 8 microphones is a sinc support function oriented towards the angle of arrival α0. The
dashed line represents the sampling kernel that directly obtains the output spectrum y[bt], and
therefore the output signal y[nt]. The slope of the line is determined by the steering angle
αS = π

3 .
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(a) (b) (c) (d)

Figure 8.3: Examples of spatio-temporal filters. (a) A temporal filter h[nt] with symmetric
1-D Fourier transform. (b) A spatial filter h[nx] with symmetric 1-D Fourier transform.
(c) A non-separable directional filter h[n] = h[nx, nt] with point-symmetric 2-D Fourier
transform. (d) A separable spatio-temporal filter h[n] = hx[nx]ht[nt] with non-symmetric
2-D Fourier transform. The filters in (a), (b), and (c) have real-valued coefficients due to
their symmetry, as opposed to the non-symmetric filter in (d), which has complex-valued
coefficients.

an intermediate-field source can be used to specify the parameters of the ideal filter. Recall
the expression from Chapter 5 in continuous space and time, given by

P (Φx,Ω) = S(Ω) max
{
Wx

(
Φx − cosα

Ω
c

)
,M(Φx,Ω)

}
, (8.7)

where M(Φx,Ω) is a triangular mask given by

M(Φx,Ω) =

{
Wx(0) , (Φx,Ω) /∈ U
0 , (Φx,Ω) ∈ U ,

(8.8)

with U = R2\
{

(Φx,Ω) : Φmin
x ≤ Φx ≤ Φmax

x , Ω ≥ 0
}

, and point-symmetric for Ω < 0.
The parameters α, Φmin

x , and Φmax
x define the orientation and aperture of the triangular mask,

and are given by cosα = Ex [cosαnf(x)], Φmin
x = cosαmax

nf
Ω
c , and Φmax

x = cosαmin
nf

Ω
c .

According to (8.7) and (8.8), the maximum concentration of energy is contained within
the region defined by the triangular mask (i.e., for (Φx,Ω) /∈ U). Thus, the ideal filter can be
defined in discrete space and time as

H[b] =

{
1 , b /∈ U
0 , b ∈ U ,

(8.9)

where U = Z2\
{
b : bmin

x ≤ bx ≤ bmax
x , bt ≥ 0

}
, and point-symmetric for bt < 0. The

parameters bmin
x and bmax

x are the discrete counterparts of Φmin
x and Φmax

x , and are given
by bmin

x = cosαmax
nf

bt
c

(
TxNx
Nt

)
and bmax

x = cosαmin
nf

bt
c

(
TxNx
Nt

)
. The relation between the

focus point and the filter specifications is illustrated in Figure 8.4.
The Matlab graphical user interface (GUI) used for obtaining the results in the previ-

ous chapter—available for download at the EPFL Reproducible Research repository [49]—
contains a tool for filtering sources in a simulated acoustic scene. The filtering operation can
be easily performed by selecting the type of filter (band-pass or band-stop) and clicking on
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(a) (b)

Figure 8.4: Filter specifications for a given target source. (a) The spatio-temporal filtering
operation consists of a 2-D convolution between the input signal p[n] and the filter h[n],
generating the output signal y[n]. The target source is positioned in the intermediate-field
such that the minimum and maximum angles of incidence are given by αmin

nf and αmax
nf . (b)

The ideal filter that retains most of the spectral content belonging to the source has a triangular
shape that matches the shape of the spectral mask given by (8.8). Since the position of the
source is completely defined by αmin

nf and αmax
nf , as well as the respective spectral mask, the

filter that targets the source is also completely defined by αmin
nf and αmax

nf .

the target source. The algorithm takes care of designing the best filter for the selected source.
A few simulation examples are shown at the end of this chapter.

8.2.3 Filtering in the short space/time Fourier domain
One of the limitations of filtering sources in the spatio-temporal Fourier domain is related to
something we call the shadow region of the point source. To visualize this region, imagine
that a beam of light is emitted from each point in the array axis, and directed towards the
source. If the beam of light dies upon hitting the source, this causes the array to cast a
shadow over an infinite triangular region behind the source. This region becomes larger
the closer the source is to the array. As a consequence, any other source that falls within
the shadow region can not be separated by applying a spatial filter (we will see that other
techniques may be used instead), since their spectral content will be mixed with the spectral
content of the source casting the shadow. This phenomenon is illustrated in Figure 8.5-(a).

In a less extreme scenario, the second source is not located in the shadow region of the
first source, but their two individual shadows intersect at some point in space. In this case,
a portion of their respective spectra will necessarily intersect in the Fourier domain, while
the other portion will not. The parts of the spectrum that do not intersect can be extracted
through spatial filtering, although the filtering operation only preserves a limited amount of
spatial information related to the sources. This scenario is illustrated in Figure 8.5-(b).

An easy solution for reducing the influence of the shadow region on the spatial filtering
operation is to use local Fourier analysis. Recall from Chapter 5 that the aperture of the spec-
tral mask M(Φx,Ω) given by (8.8) can be reduced either by moving the source away from
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(a) (b)

(c) (d)

Figure 8.5: Shadow region of an intermediate-field source. (a) The array axis “casts a
shadow” behind the source with a triangular shape defined by the minimum and maximum
angles of incidence αmin

nf and αmax
nf . Any other source that falls within the shadow region will

have all its spectral content inside the shaded region of the Fourier transform, and therefore
can not be recovered by a spatial filter alone. (b) If the second source is outside the shadow
region of the first source, there are two possibilities: (i) the two shadows intersect at some
point in space (as shown in the figure), in which case only a portion of their respective spectra
will intersect; (ii) the two shadows never intersect, and consequently the “spectral triangles”
never intersect in the Fourier domain (although the side lobes of Wx(Φx) do). The spectrum
of the second source is represented by the hatched region in the figure. In (c) and (d), the array
axis is divided into two blocks of equal size. This reduces the aperture of the shadow regions,
and hence the aperture of the “spectral triangles”. The axis can be divided into an arbitrary
number of blocks, to the point where little or no intersection occurs between shadows.
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the array axis or by reducing the spatial window length. By applying the short space/time
Fourier transform to the input signal p[n], the window length can be arbitrarily reduced until
the shadow regions of each source are not intersecting anymore, as illustrated in Figure 8.5-
(c) and (d). On the downside, reducing the window length also results in a degradation of the
spatial frequency resolution, due to the widening of the spectral support function Wx(Φx)—
the left argument of the max operation in (8.7).

Another situation where it is convenient to filter p[n] in the short space/time Fourier
domain is when the array axis is curved. Going back to Figure 5.8, we see that the increased
curvature of the axis causes the spectral mask to open up, even when the source is in the far-
field. Reducing the length of the spatial window counters this effect, by reducing the aperture
of the spectral mask. A few examples are shown in the end of this chapter.

8.3 2-D filter design techniques
The design of digital filters is typically performed in two steps: (i) the specification of the
ideal filter, and (ii) the approximation by a realizable filter. The specifications include the
cut-off frequencies of the pass-bands and stop-bands, as well as the transition bands, the
maximum gain error in the pass-bands and stop-bands, and the order of the filter. Some of
these parameters may be interdependent, and consequently the number of design parameters
may be actually smaller. The approximation step in the design consists of deriving a realiz-
able filter of arbitrary order that minimizes the error between its own impulse or frequency
response and the impulse or frequency response of the ideal filter, with respect to a given
error measure. Some examples of filter design techniques include the bilinear transformation
method [68], the window method [68], and the widely used Parks-McClellan method [78].

Directional spatio-temporal filters of the type shown in Figure 8.4-(b) can be derived,
under certain limitations, through the use of 2-D filter design techniques (see, e.g., Dudgeon
et al. [27] and Vaidyanathan et al. [84]). The main difficulty is that these filters are non-
separable, and therefore can not be separately designed in space and time with 1-D filter
design techniques. A technique known as the McClellan transformation, however, can be
used to map an optimally designed 1-D filter to an equally optimal 2-D filter, using a suitable
mapping function [64]. Generalizations of the Parks-McClellan method to the 2-D case also
exist [57; 45], although these tend to be computationally expensive.

In this section, we show two simple techniques for designing 2-D FIR filters based on
the window method and the Parks-McClellan method. These techniques are easy to imple-
ment, although they do not provide optimal results. The optimal spatio-temporal filter can be
obtained through the generalized Parks-McClellan method.

8.3.1 Window method
The design of 2-D FIR filters with zero phase is straightforward, and can be obtained directly
from the ideal specification of the filter,

Hideal[b] =

{
1 , b /∈ U
0 , b ∈ U ,

(8.10)

where U is the stop-band region of the spectrum. The impulse response of the ideal filter is
infinite, due to the discontinuous transition between the pass and stop bands, and is given by
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Figure 8.6: Spatio-temporal FIR filter design by the profiling method. The ideal filter is
specified according to the desired pass-band and stop-band parameters, such as the cut-off
angles αmin and αmax and the limits of the transition bands αPass and αStop. Additionally,
we may want to specify the maximum approximation error in the pass-band, APass, and the
stop-band attenuation, AStop. Then, the ideal 2-D filter is profiled horizontally (or vertically)
in order to obtain 1-D specifications. For each profile, the optimal 1-D filter is obtained by
the Parks-McClellan algorithm, resulting in a filter profile with equiripple response.

hideal[n] =
1

|det N|
∑
b∈Z2

Hideal[b]ej2πb·N−1n, n ∈ Z2. (8.11)

A finite approximation of the ideal filter can be obtained by multiplying hideal[n] by a window
function w[n] of size Lx × Lt, such that

H[b] =

1
2 L1−1∑

n=− 1
2 L1

w[n]hideal[n]e−j2πb·N−1n, b = 0, . . . ,L1− 1, (8.12)

where L =
[
Lx 0
0 Lt

]
and 1 =

[
1
1

]
. Using the convolution property of the spatio-temporal

Fourier transform, it follows that

H[b] = W [b] ∗Hideal[b]. (8.13)

The disadvantage of using the window method is that the frequency response of the approx-
imated filter is constrained by the Fourier transform of the window function, and therefore
does not allow an individual control over the approximation errors in different bands. Never-
theless, the method is fast, general, and capable of approximating complicated filter specifi-
cations.
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Figure 8.7: Comparison between filter design methods. (a) The ideal filter is a directional
filter with zero phase and size 32 × 64. (b) The window method (using a Kaiser window)
provides a good approximation of the desired magnitude response. (c) The profiling method
results in a filter with better stop-band attenuation at higher temporal frequencies, but worse
at lower temporal frequencies.

8.3.2 Profiling method
Another method for designing a 2-D FIR filter with zero phase is the profiling method—a
somewhat crude approximation of the 2-D Parks-McClellan method. The strategy consists
of tracing profiles across the ideal filter Hideal[b] defined in (8.10) along horizontal lines
of constant bt and obtaining the optimal 1-D filter hbt [bx] for each profile, as illustrated in
Figure 8.6. The approximation filter of size Lx × Lt is then given by

H[b] = hbt [bx], b = 0, . . . ,L1− 1.

The filter can alternatively be obtained by tracing vertical lines of constant bx and obtaining
the optimal 1-D filter hbx [bt] for each profile, such that

H[b] = hbx [bt], b = 0, . . . ,L1− 1.

This method is considerably slower compared to the window method, but allows more control
over the various parameters of the ideal filter. A comparison between the two methods is
shown in Figure 8.7.

8.4 Adaptive filtering in the Fourier domain
In the previous sections, we saw that when two sources are present at the scene—say, the
target and the interferer—and their shadow regions intersect, it is impossible to fully recover
the wave front generated by the target source through the use of spatial filtering. It is possible,
however, to recover the target with a higher signal-to-noise ratio (SNR) by using adaptive
filtering. The idea consists of steering the zeros of the directivity pattern towards the target
direction, such that only the interferer noise is captured. This noise is then canceled out in the
beamformer output by an adaptive filter, in order to maximize the output SNR. The technique
was introduced by Griffiths et al [40], and is known as sidelobe canceling beamformer.

In this section, we show that the same operation can be performed in the spatio-temporal
Fourier domain, and, similarly to the case of linear filtering, can be generalized in order to
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account for sources in the near- and intermediate-field, and preserve the spatial information
of the target source (i.e., the entire wave front).

8.4.1 Adaptive beamforming
The result in (8.4) shows that the output signal of the beamformer can be obtained in the
Fourier domain by sampling the center of the main lobe generated by a Dirac source in the
far-field on the windowed array. The same strategy can be followed in order to obtain the
output signal of the beamformer when the zeros of the directivity pattern are steered towards
the target source [74]: in the spatio-temporal Fourier domain, zero-steering is equivalent to a
2-D sampling operation.

We have seen in Chapter 5 that a Dirac source in the far-field observed at a linear array of
length Lx results in a spectrum with periodic notches at

Φx = cosα
Ω
c

+
k2π
Lx

, (Φx,Ω) ∈ R2 and k ∈ Z\0. (8.14)

If the Dirac source is in the near- or intermediate-field, then, according to Theorem 30, the
spectral notches are located at

Φx = Ex
[
cosαnf(x)

]Ω
c

+
k2π
Lx

, (Φx,Ω) ∈ U and k ∈ Z\0. (8.15)

In both cases, the center of the main lobe is obtained by taking k = 0. By defining the discrete
sampling kernels as

∆Signal
FF [b] = δ

[
bx − cosαS

bt
c

(
TxNx
Nt

)]
(8.16)

∆Noise
FF [b] = δ

[
bx −

(
cosαS

bt
c

+
k

Lx

Nt
c

)(
TxNx
Nt

)]
(8.17)

in the far-field case, and

∆Signal
NF [b] = δ

[
bx − Ex

[
cosαnf,S(x)

]bt
c

(
TxNx
Nt

)]
(8.18)

∆Noise
NF [b] = δ

[
bx −

(
Ex
[
cosαnf,S(x)

]bt
c

+
k

Lx

Nt
c

)(
TxNx
Nt

)]
(8.19)

in the near-field case, then the desired output can be obtained through the 2-D sampling
operation

y[bt] =
Nx−1∑
bx=0

P [b]∆[b], (8.20)

by selecting the respective kernel ∆[b]. The sampling kernels given by (8.16)-(8.19) are
illustrated in Figure 8.8.

The target signal obtained by sampling P [b] with the sampling kernel ∆Signal
FF [b] is not a

clean version of the signal, but a noisy version due to the influence of the interferer. On the
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(a) (b)

Figure 8.8: Implementation of a sidelobe canceling beamformer as a 2-D sampling operation
in the spatio-temporal Fourier domain. (a) For sources in the far-field, the target signal is
obtained by applying the sampling kernel ∆Signal

FF [b] (in dashed black), whereas the noise
signal is obtained with the sampling kernel ∆Noise

FF [b] (in dashed white). (b) For sources in
the near-field or intermediate-field, the target signal is obtained by applying the sampling
kernel ∆Signal

NF [b] (in dashed black), whereas the noise signal is obtained with the sampling
kernel ∆Noise

NF [b] (in dashed white). In the near-field case, special care must be taken not to
sample the spectrum outside the region U , where the high-amplitude area does not contain
well defined notches. This also means that, for certain cases, there may be frequencies at
which it is not possible to obtain an estimation of the background noise - typically at higher
frequencies.

contrary, the output obtained by sampling P [b] with the sampling kernel ∆Noise
FF [b] is a clean

version of the interferer, with no influence from the target signal. This results in a Wiener
filtering problem, where the goal is to reduce the amount of noise in the target signal using
an estimation of the noise signal. A possible solution is shown in Figure 8.9.

8.4.2 Spatio-temporal LMS
Another way of obtaining an estimation of the interferer is by applying a spatio-temporal
filter to the input p[n], designed such that the pass bands contain little energy from the target
source. This filter can be simply the complementary of the filter that obtains the target source,
although any other suitable design is possible. Once the noisy target source is filtered out and
the noise is estimated, a spatio-temporal adaptive filter can be used to obtain a clean version
of the target source. The method is illustrated in Figure 8.10.

The advantage of using this strategy over the one based on 2-D sampling is that it is more
general in the sense of spatio-temporal Fourier analysis. Since we are directly filtering in the
spatio-temporal Fourier domain, the output of the adaptive filter is the entire filtered wave
front, rather than a 1-D time-varying signal. Furthermore, the noise caused by the interferer
can be easily estimated from any region of the spectrum, instead of only from diagonal lines.
This implies that a larger amount of spatial information can be preserved from the interferer,
as well as from the target source. If the upper filter in Figure 8.10 captures the entire triangular
region where most of the target energy is contained, then the entire wave front generated by
the target source is preserved. This attribute may be critical in audio applications, particularly
those dependent on spatial perception (e.g., surround sound, hearing aids, etc.). The spatio-



8.4 Adaptive filtering in the Fourier domain 142

Figure 8.9: Implementation of a 1-D adaptive beamformer in the spatio-temporal Fourier
domain. The noisy target signal is obtained by sampling the spectrum at the main lobe, while
the noise estimation is obtained by sampling the spectrum at the notches. The noise is then
filtered out from the target signal using an adaptive filtering algorithm, such as the least mean
squares (LMS) filter [46].

Figure 8.10: Implementation of a 2-D adaptive beamformer in the spatio-temporal Fourier
domain. The noisy target signal is obtained by filtering the spectrum with a directional filter
that captures its high-amplitude triangular region. The noise is estimated with the comple-
mentary filter, which captures the low-amplitude region U of the target source. This region
is expected to contain far more energy from the interferer, specially if a non-rectangular win-
dow function is used in space. The 2-D noise wave front is then filtered out from 2-D target
wave front using a 2-D version of the LMS adaptive filtering algorithm. The output 2-D
signal represents the entire wave front generated by the target source, with no loss of spatial
information.
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temporal adaptive filtering algorithm can be implemented in the spatio-temporal domain or
directly in the Fourier domain, using a 2-D version of the LMS algorithm (see, e.g., Hadhoud
et al. [43]).

It is important to mention that this section is not meant to be a critical analysis of Wiener
filtering itself, or the optimality of our method compared to traditional methods, but rather
to show that there is an intuitive motivation for performing adaptive filtering in the spatio-
temporal Fourier domain, and that it makes sense to think in terms spatio-temporal Fourier
analysis when the goal is to obtain the entire filtered wave front at the output.

8.5 Summary notes

• Beamforming is a spatial filtering technique that allows the wave field to be captured
by favoring a given direction;

• The traditional delay-and-add beamformer can be translated into a 2-D sampling oper-
ation in the spatio-temporal Fourier domain;

• Spatial filtering can be performed through a 2-D convolution between the array inputs
and a spatio-temporal filter, which may be separable or non-separable;

• The ideal spatio-temporal filter is one where the pass-band captures the triangular re-
gion of the spectrum where most of the energy of the target source is contained;

• The filtering can be performed in the short space/time Fourier domain in order to deal
with the cases where the spectral support of multiple sources overlap;

• Ideal filters can be approximated by realizable filters with limited order, for example
by using the window method or the profiling method;

• In adaptive beamforming, steering the zeros of the directivity pattern towards the target
source can be translated into a 2-D sampling operation in the spatio-temporal Fourier
domain;

• Adaptive beamforming can be performed directly in the Fourier domain through the
use of spatio-temporal filtering and 2-D adaptive filtering.
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Figure 8.11: Example of filtering directly in the spatio-temporal Fourier domain (with no
lapped transform). (a) The acoustic scene consists of two Dirac sources in the intermediate-
field. The goal is to suppress the dashed source. (b) DFT along the entire spatial axis. (c)
Filter input. (d) Filter output.
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Figure 8.12: Example of filtering directly in the spatio-temporal Fourier domain (with no
lapped transform). (a) The acoustic scene consists of two Dirac sources, where one is in the
intermediate-field and the other in the far-field. The goal is to suppress the dashed source. (b)
DFT along the entire spatial axis. (c) Filter input. (d) Filter output.
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Figure 8.13: Example of filtering in the short space/time Fourier domain. (a) The acoustic
scene consists of two Dirac sources in the intermediate-field. The goal is to suppress the
dashed source. (b) DFT along the entire spatial axis. (c) Filter input. (d) Filter output. (e)
Short space/time Fourier transform.
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Figure 8.14: Example of filtering in the short space/time Fourier domain. (a) The acoustic
scene consists of three Dirac sources in the intermediate-field, and a curved microphone array.
The goal is to suppress the dashed sources. (b) DFT along the entire spatial axis. (c) Filter
input. (d) Filter output. (e) Short space/time Fourier transform.
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Chapter 9

Acoustic Wave Field Coding

9.1 Introduction
Since the early days of digital signal processing (DSP), the question of how to represent
signals efficiently in a suitable mathematical framework has been paired with the question of
how to efficiently store them in a digital medium. The storage of digital audio, in particular,
has been marked by two major breakthroughs: (i) the development of pulse-code modulation
(PCM) [67], and (ii) the development of perceptual audio coding [55]. These techniques were
popularized, respectively, by their use in Compact Disc technology and MP3 compression;
both had a deep impact on the entire industry of audio storage.

The development of PCM is a by-product of the invention of the A/D converter. When
the analog signal is converted into a digital signal, the discretization occurs not only in the
temporal axis but also in the amplitude of each sample. The amplitude discretization of
the analog signal is known as quantization, and is performed by a component of the A/D
converter called the quantizer. The quantizer is a non-linear system that approximates an
analog function by a “staircase function”, where each “stair” is an N -bit approximation of
the analog amplitude. If Nbit is the maximum number bits supported by the quantizer, than
the output signal has a maximum of 2Nbit approximation levels.

In Compact Disc technology, the audio data is stored directly in PCM format, with some
additional error correcting information, whereas in MP3 the audio data is stored in the trans-
form domain [15; 51]. More precisely, MP3 operates by transforming the PCM signal to a
Fourier-based domain through the use of a uniform filter bank, where the amplitude of the fre-
quency coefficients is again quantized. The key breakthrough is that the number of bits used
for quantizing each coefficient is variable, and, most importantly, dependent on their percep-
tual significance. Psychoacoustic studies show that a great portion of the signal is actually
redundant on a perceptual level. This is related to the way the inner ear processes mechan-
ical waves: the wave is decomposed into frequencies by the cochlea, where each frequency
stimulates a local group of sensory cells. If a given frequency is close to another frequency
with higher amplitude, it will not be strong enough to overcome the stimulation caused by the
stronger frequency, and therefore will not be perceived. For this reason, the use of perceptual
criteria in the quantization process yields an average compression ratio of 1/10, over the use
of PCM.

In the spatio-temporal analysis of acoustic wave fields, the question arises of how much

149
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relevant information is contained in the wave field, and what is the best way of storing it.
When the sound pressure is captured by the multiple microphones to be processed by a com-
puter, there is an implicit amplitude quantization of the pressure values in p[n]. The spatio-
temporal signal obtained by a linear array, for instance, is in fact a 2-D PCM signal. With
modern optical media such as Double Layer DVD (approximately 8.55GB of storage capac-
ity), we can store about 24 audio channels with 80 minutes of raw (uncompressed) PCM data.
However, if the goal is to store in the order of 100 channels, it is imperative that the data be
compressed as efficiently as possible.

The most relevant work on joint compression of audio channels dates back to the devel-
opment of perceptual audio coding in the early 90’s. When it was realized that mono PCM
audio could be efficiently compressed using filter banks theory and perceptual models, the
techniques were immediately extended to stereo PCM audio (see, e.g., Johnston et al. [56]
and Herre et al. [47]), and later to an unlimited number of PCM audio channels (see, e.g.,
Faller et al. [32] and Herre et al. [48]). The basic premise of these techniques is that the au-
dio channels are highly correlated and therefore can be jointly encoded with high efficiency,
using a parametric approach. The correlation criteria can be both mathematically based—
for example, using the theory of dimensionality reduction of data sets [89]; or perceptually
motivated—for example, based on the ability of humans to localize sound sources in space
[13]. However, what all these techniques have in common is that they treat the multichannel
audio data (i.e., the acoustic wave field) as multiple functions of time, and not as a function
of space and time as the wave equation demands.

The theory of spatio-temporal signal processing presented in this thesis allows us to fol-
low a radically different approach to compressing the acoustic wave field. Instead of treating
the multichannel audio data as multiple functions of time, as is the current paradigm, we can
treat the entire wave field as a single multidimensional function of space and time, and per-
form the actual coding in the multidimensional Fourier domain. When the spatio-temporal
signal p[n] is transformed into the spatio-temporal Fourier domain, there is an implicit decor-
relation of the multichannel audio data. This decorrelation is optimal for harmonic sources
in the far-field, as these are the basic elements of the spatio-temporal Fourier transform. As
a consequence, by quantizing the transform coefficients in P [b] instead of jointly coding the
multichannel signals p[0, nt], p[1, nt], ..., p[Nx−1, nt], we are directly coding the elementary
components of the wave field, which are the plane wave coefficients.

In this chapter, we show how the acoustic wave field can be encoded (and decoded) non-
parametrically in the spatio-temporal Fourier domain by using an intuitively simple extension
of the traditional mono coder. We show what are the practical bounds for encoding plane
waves, and how P [b] can be quantized using spatio-temporal perceptual criteria. In particu-
lar, we propose a method for combining the perceptual models used in MP3 with models of
spatial perception. Finally, we briefly discuss a possible bit-packing format for streaming the
compressed wave field data.

9.2 Encoding plane waves
In the previous chapters, we saw that a plane wave is characterized by a frequency of os-
cillation Ω0 and a propagation vector u0 indicating its direction. If the wave field is ob-
served on a straight line—typically the x-axis—and the propagation vector forms an an-
gle α0 with the line, then the sound pressure generated by the plane wave is given by
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p(x, t) = A0e
jΩ0(t+cosα0

x
c ), where A0 is the plane wave amplitude. The respective spatio-

temporal Fourier transform is given by

P (Φx,Ω) = A0(2π)2δ(Ω− Ω0)δ
(

Φx − cosα0
Ω
c

)
.

In the 2-D spatio-temporal Fourier domain, this represents a single point located at (Φx,Ω) =(
cosα0

Ω0
c ,Ω0

)
with amplitude A0(2π)2. Since the plane wave is completely defined by

its amplitude, frequency, and angle, the entire wave front can be encoded by storing the
parameters A0, Ω0, and α0. If two plane waves were being generated at the scene, the coding
overhead would be an additional set of the same parameters (recall that, in continuous space
and time, the spectral representation of a given number of plane waves consists of an equal
number of Diracs points). In the general case, a given number of plane waves requires three
times as many parameters in order to be encoded. In practice, however, we will show that
there is an upper-bound to the number of required bits.

The spatio-temporal Fourier domain reduces plane waves to their defining parameters,
A0, Ω0, and α0, and is therefore the optimal domain for encoding plane waves. As discussed
in previous chapters, plane waves are the elementary components in the spatio-temporal anal-
ysis of the wave field, the same way frequencies are the elementary components in the tem-
poral analysis of signals. The same is true in the directional representation of the wave field,
as P (α,Ω) is simply a scaled version of P (Φx,Ω) in polar coordinates. Thus, intuitively, we
can state that the spatio-temporal Fourier domain is the optimal domain for encoding acoustic
wave fields that are essentially composed of plane waves. If the sources are in the near-field,
however, or the space is reverberant, the statement is debatable.

It is important to notice that, in continuous space and time, having a spatial dimension
in the signal does not increase the amount of information other than by the position of the
Diracs across the Φx or α-axis, compared to not having a spatial dimension where only A0

and Ω0 are required. In discrete space and time, however, if the number of spatial samples is
finite, the plane waves are not based on ideal Diracs but on smooth support functions. As a
consequence, to fully encode a single plane wave the entire spectral support must be encoded.
This is not a big issue if we consider that typical window functions have most of their spectral
energy concentrated in the main lobe. If a fair amount of distortion is allowed, the main lobe
of the spectral support can be encoded with high efficiency.

The trade-off between the bit rate used for encoding the plane waves and the resulting
distortion is discussed in the next section.

9.3 Rate-distortion analysis
Rate-distortion analysis is a branch of information theory that addresses the problem of en-
coding a random sequence of samples with a limited number of bits, and measuring the re-
sulting distortion [6; 22]. The goal is to obtain a curve that expresses the output distortion as
a function of the coding rate, typically using the mean squared error (MSE) distortion metric.
The rate-distortion curve can be obtained analytically as a closed form expression or as a pair
of parametric equations [6].

Analytical expressions are known to be difficult to derive, and only a few particular cases
are manageable in purely analytical terms. This is particularly troublesome in a multidimen-
sional space such as the spatio-temporal domain. It is much easier, in this case, to estimate
the rate-distortion function directly from numerical simulations. For this purpose, we use a



9.3 Rate-distortion analysis 152

simple Matlab implementation of a spectral coding algorithm that operates with a given rate,
and directly calculate the distortion on the decoded output. This way, we obtain a sufficient
number of points to construct a rate-distortion curve.

Suppose we want to compress the wave field observed on a straight line with Nx spatial
points, by encoding the coefficients of P [b] in the transform domain. The first step is to
quantize the amplitude of P [b], so that a limited number of bits is needed to encode the
amplitudes of each coefficient. One way to quantize P [b] is by defining PQ[b] such that

PQ[b] = sign {P [b]}
⌊
SF[b] |P [b]|

⌋
, (9.1)

where SF[b] contains the scale factors of each coefficient, and b·c denotes rounding to the
closest lower integer. The purpose of the scale factors is to scale the coefficients of P [b] such
that the rounding operation yields the desired quantization noise.

Conversely, the noisy reconstruction of P [b] can be obtained as

P̂ [b] = sign {PQ[b]}
(

1
SF[b]

|PQ[b]|
)
. (9.2)

To determine the number of bits required to encode the quantized coefficients, we need to
associate the amplitude values to a binary code book—preferably one that achieves the en-
tropy. In this experiment, we use a Huffman code book similar to the one used in the MPEG
standard [51], where code words are organized such that less bits are used to describe lower
amplitude values.

Defining Huffman {A} as an operator that maps the amplitude valueA to the correspond-
ing set of bits (or code word) in the Huffman code book, the number of bits R[b] required for
each coefficient is given by

R[b] = |Huffman {PQ[b]}| (9.3)

where |·| denotes the size of the set. Note that (9.3) is a deterministic expression, representing
the number of bits used in one iteration of the experiment.

Using the MSE between the input signal p[n] and the output signal p̂[n] as a measure of
distortion, the rate-distortion function D(R) is given by the parametric pair

R =
∑N1−1

b=0 R[b]
D = 1

det N

∑N1−1
n=0 (p[n]− p̂[n])2 (9.4)

where R and D are functions of SF[b], with 0 ≤ SF[b] < ∞. In the limiting cases, where
SF[b]→ 0 and SF[b]→∞ for all b, (9.4) yields respectively

lim
SF[b]→0

R = 0

lim
SF[b]→0

D = var {p[n]}

and



9.4 Perceptual wave field coding 153

lim
SF[b]→∞

R =∞

lim
SF[b]→∞

D = 0

where var {·} denotes the signal variance (or power), and the last equality comes from the
limiting case limSF[b]→∞ P̂ [b] = P [b].

Figure 9.1 shows examples of rate-distortion curves that result of encoding the acoustic
wave field observed on a straight line, using some of the spatio-temporal transforms discussed
in this thesis—namely, the short space/time Fourier transform, the MDCT, and the directional
Fourier transform. In these examples, the acoustic scene is composed of white-noise sources,
in order to reduce the influence of the temporal behavior of the wave field in the bit rate R.
Also, since we are evaluating the influence of the number of spatial points Nx in the final
number of bits required, the bit rate is expressed in units of “bits per time sample”.

The rate-distortion curves obtained for the three spatio-temporal transforms do not differ
much from each other. The most striking result (but somehow expected) is that, in all cases,
the increase in the number of spatial points Nx does not increase the bit rate proportionally,
but it actually converges to an upper-bound. The reason is that, even though doubling Nx
also duplicates the number of transform coefficients, the support functions are narrowed to
half the width, and the trade-off tends to balance itself out. Thus, increasing Nx past a
certain limit does not increase the spectral information, since all it adds are zero values (i.e.,
amplitude values that are quantized to zero). The directional Fourier domain is characterized
by a slightly higher upper-bound, mostly due to the smoothing effect of the half-band filters
in the directional filter bank.

It can also be observed in Figure 9.1 that for lower bit-rates—in the order of those used
by perceptual audio coders [15]—the difference between one channel and a large number of
channels is low in terms of MSE. For example, in Figure 9.1-(a), the number of bits required
to encode 256 channels is 11.3 bits/time-sample, as opposed to the 2.6 bits/time-sample re-
quired for encoding 1 channel. To have a fair comparison, we can consider that a practical
codec would require about 20% of bit-rate overhead with decoding information [51], and thus
increase the average rate to 13.6 bits/time-sample. Still, compared to encoding 1 channel, the
total bit rate required to support the additional 255 channels is only 5 times higher.

Another interesting result is that, similarly to what happens when Nx is increased, the
increase in the number of sources does not increase the bit rate proportionally; again, it
converges to an upper-bound. Equally interesting is that the upper-bound is the same for all
domains. This is because the bit rate only increases until the entire domain is filled up with
information. Once this happens, the spectral support generated by additional sources will
simply overlap with the existing ones.

9.4 Perceptual wave field coding
The coding paradigm introduced in this chapter is conceptually similar to that of a traditional
transform domain coder, except that the spectral coefficients represent plane waves instead of
regular sinusoids. The plane waves can be encoded with a limited number of bits and, yet, be
reconstructed with an arbitrarily low mean squared error (MSE). It is a known fact, however,
that the MSE is not a suitable measure of distortion for audio signals—particularly music
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Figure 9.1: Experimental rate-distortion curves for white-noise sources in the far-field ob-
served on a straight line. On the left, the D(R) curves are shown for one source encoded in:
(a) the short space/time Fourier domain (Gabor domain) with no overlapping, (b) the MDCT
domain with 50% overlapping, and (c) the directional domain with no overlapping. In (a), (b),
and (c), the source is fixed at α = π

3 and the number of spatial points Nx is variable. On the
right, the D(R) curves are shown for multiple sources encoded in: (d) the short space/time
Fourier domain, (e) the MDCT domain, and (f) the directional domain. In (d), (e), and (f),
the number of spatial points is fixed, Nx = 64, and the sources are placed at random angles.
The black circle shown in each plot indicates R = 2.6 bits/time-sample, which is the average
rate of state-of-art perceptual coders.
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signals—since it is tangentially related to the way humans perceive sound. For example,
delaying a signal by a fraction of a sample results in a high MSE, but it is unperceivable to
the human ear.

Perceptual audio coders such as MP3 use a distortion measure based on actual listening
tests, where the listener classifies the quality of the decoded sound compared to the original
one. The amount of perceivable noise as a result of quantization is predicted by an empirical
model known as the psychoacoustic model, which provides an estimation of the quantization
noise power for each frequency based on the amplitude of the neighboring frequencies. The
model is based on an anatomical phenomenon known as frequency masking, which charac-
terizes the frequency selectivity of the cochlea in the sensory analysis of sound.

In this section, we show how a perceptual wave field coder (WFC) can be implemented
non-parametrically using the same concepts that represent the foundation of state-of-art per-
ceptual audio coders. We discuss in particular: (i) the basic structure of the WFC, and how
it is inspired by traditional mono coders; (ii) what is right spatio-temporal filter bank for a
WFC application; (iii) how to derive a spatio-temporal psychoacoustic model from existing
models; (iv) how to construct a bit-stream format that includes the quantized data and side
information necessary for decoding.

It is important to mention, however, that the proposed method represents an entirely new
paradigm of spatial audio coding, published for the first time in 2008 [72]. A considerable
amount future research is still needed to fully determine the potential of this method.

9.4.1 From MP3 to WFC: A simple step
The basic structure of a perceptual audio coder consists of a filter bank that translates the
input signal into the frequency domain, an amplitude quantizer regulated by a psychoacoustic
model, and a lossless entropy coder. This is illustrated in Figure 9.2-(a).

A perceptual wave field coder is simply a multidimensional generalization of this structure—
for simplicity, we consider only one spatial dimension. The 2-D filter bank translates the input
wave field into the plane wave domain, and the amplitude of each plane wave is quantized ac-
cording to its perceptual significance. Then, an entropy coder maps the amplitude values into
a sequence of bits that can be packed into a bit-stream. This is illustrated in Figure 9.2-(b).

9.4.2 Choosing the right filter bank
The use of different spatio-temporal transforms in the context of a coding application has
different advantages. On the one hand, the MDCT is a critically sampled lapped orthogonal
transform (LOT) that allows overlapping between blocks in both space and time, as opposed
to the directional transform which does not preserve critical sampling (in the strict mathemat-
ical sense) if overlapping is used. This gives the MDCT an advantage in terms of coding gain.
On the other hand, in a perceptual coding application, the directional transform provides a
more suitable representation of the wave field in terms of directional sound, which, as we will
see, simplifies the use of psychoacoustic models. A cascade of the two filter banks is also an
interesting case to consider [73; 30].

When the directional transform is used with overlapping, it is possible in practice to obtain
an approximation of a critically sampled output—particularly when the number of spatial
points is high and the Nyquist sampling conditions are satisfied. Under these conditions, we
have seen that at least half of the entire spectrum has very low energy values (see Figure 4.4),
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(a)

(b)

Figure 9.2: Wave field encoder as a generalization of a perceptual mono encoder. (a) In a
typical mono encoder, the input signal is transformed into the frequency domain by a filter
bank (FB) implementing a lapped orthogonal transform (LOT). The resulting transform co-
efficients (frequencies) are quantized with the aid of a perceptual model, which regulates the
amount of quantization noise. The quantized coefficients are then encoded into a bit-stream
by a Huffman encoder. The perceptual model typically requires a DFT input [15]. (b) In
a wave field encoder, the input spatio-temporal signal is transformed into the plane wave
domain by a 2-D lapped orthogonal transform. The resulting transform coefficients (plane
waves) are quantized with the aid of a spatio-temporal perceptual model, obtained by com-
bining a frequency masking model with a directional masking model. Finally, the quantized
coefficients are encoded into a bit-stream by a Huffman encoder.
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which results in an effective low-MSE coding gain of 2 when encoding the wave field in the
Fourier domain. This inherent gain can be exchanged for a 50% overlapping in one of the
domains, resulting in a critically sampled directional transform with overlapping.

9.4.3 Spatio-temporal perception
The psychoacoustic model is the component that defines a perceptual audio coder. The
knowledge of how the inner ear operates, and the model’s ability to emulate the frequency
selectivity of the cochlea, is the major reason why a compression ratio of 1/10 is achieved by
MP3 with a near perceptual transparency.

The mathematical description of the frequency masking phenomenon was obtained through-
out the years by means of perceptual studies conducted on human volunteers (see, e.g., Katz
et al. [58] and Plack et al. [75]). Similar studies were performed on the directional perception
of sound (see, e.g., Blauert et al. [13]). The directional masking effect (or spatial masking)
occurs when two sources are close to each other, but one has a high enough amplitude to
“silence” the other. Such models are very important in a WFC application, since localized
sound tends to be dominant over diffuse sound.

The two types of models can be combined in order to construct a spatio-temporal psychoa-
coustic model that describes the perception of plane waves by human listeners, as illustrated
in Figure 9.3. The goal of a spatio-temporal psychoacoustic model is to estimate, for each
transform block P [n] of size Nx×Nt, a block Q[b] of equal size that contains the maximum
quantization noise power that each plane wave can sustain without causing perceivable arti-
facts. If a directional transform is used, the estimation of Q[b] as a combination of frequency
and directional masking effects is simplified, since the two dimensions are orthogonal: fre-
quency masking occurs along the Ω-axis, while directional masking occurs along the α-axis.

As our previous experiments have shown [72; 71], the use of a spatio-temporal psychoa-
coustic model to regulate the quantization of plane waves allows the wave field to be encoded
and decoded without causing perceivable artifacts.

9.4.4 Quantization using perceptual criteria
The main purpose ofQ[b] is to provide a means of deriving the scale factors SF[b], necessary
for the quantization formulas defined in (9.1) and (9.2). In uniform quantization, the quan-
tization noise power is given by ∆2

Q/12, where ∆Q is the quantization step. In (9.1), SF[b]
must be defined such that ∆Q = 1. Therefore, to have a quantization free of perceivable
artifacts, the scale factors must satisfy the condition

SF[b] ≥
√

12Q[b]. (9.5)

A typical difficulty with this method is that, in order for the quantized coefficients to be
re-scaled using (9.2), the scale factors have to be transmitted to the decoder. In a practical
implementation, it is not possible to have one scale factor per coefficient, otherwise no com-
pression would be achieved. Instead, a scale factor is assigned to one critical band [15], such
that all coefficients within the same critical band are quantized with the same scale factor. In
WFC, the critical bands are 2-D and the scale factors SF[b] are approximated by a piecewise
constant surface. The critical bands can be organized, for example, as shown in Figure 9.4.
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Figure 9.3: Derivation of a spatio-temporal psychoacoustic model from two separate models.
The masking threshold generated by the frequency of a given plane wave is combined with the
masking threshold generated by its direction. In the frequency axis, the masking effect caused
by the center frequency is enough to mask the lower SPL (sound pressure level) frequency
on the right, but not enough to mask the frequency of the left. In the directional axis, the
center source masks the source on the right but not the one on the left. In the spatio-temporal
Fourier domain, the combined masking effect forms a dome-shaped masking threshold.

(a) (b)

Figure 9.4: Spatio-temporal distribution of critical bands. (a) In the spatio-temporal Fourier
domain, the critical bands can have a non-uniform partitioning along the temporal frequency
axis, such that it emulates the frequency selectivity of the cochlea (higher resolution at lower
frequencies). In the spatial axis, the boundary of the critical bands can be defined as diagonal
lines with uniformly distributed slopes, such that different directions are separated with the
same resolution. The entire evanescent wave region can be characterized by a single coding
band. If the MDCT is used, only the bx ≥ 0 plane is needed. (b) In the directional Fourier
domain, the critical bands can be more easily defined as rectangular tiles, with a non-uniform
partitioning along the temporal frequency axis and a uniform partitioning along the direc-
tional axis. Similarly, the evanescent wave region can be characterized by a single coding
band.
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9.4.5 Huffman coding
After quantization, the spectral coefficients can be converted into the binary base through the
use of entropy coding. A Huffman code book with a certain range can be assigned to each
critical band, and all the coefficients belonging to a given band are encoded with the same
code book.

The use of entropy coding is possible because the values generated by the MDCT for
various types of music has a fairly stable probability distribution. An MDCT occurrence
histogram, for different signal samples, clearly shows that small absolute values are more
likely than large absolute values, and that most of the values fall within the range of −20 to
20. For this reason, state-of-art audio coders use a predefined set of Huffman code books
that cover all the ranges up to a certain value r. If any coefficient is bigger than r or smaller
than −r, it is encoded with a fixed number of bits using PCM. In addition, adjacent values
(P [b], P [b + 1]) are coded in pairs, instead of individually. Each Huffman code book covers
all combinations of values from (P [b], P [b+1]) = (−r,−r) up to (P [b], P [b+1]) = (r, r).

A Huffman code book of this type can be derived by using a probabilistic model for the
spatio-temporal MDCT coefficients, defined for example by [71]

probability {A0, A1} =
(mean {A0, A1}+ var {A0, A1}+ 1)−1

r∑
A0=−r

r∑
A1=−r

(mean {A0, A1}+ var {A0, A1}+ 1)−1
.

This comes from the assumption that (A0, A1) is more likely to have both values A0 and A1

within a small amplitude range, and that (A0, A1) has no sharp variations between A0 and
A1.

9.4.6 Bit-stream format
The final step in WFC is to organize all binary data into a time series of bits called the
bit-stream, in such a way that the decoder can parse the data and use it reconstruct the spatio-
temporal signal p[n]. The basic components of the bit-stream are the main header and the
frames that contain the encoded transform coefficients from each block, as illustrated in Fig-
ure 9.5. The frames themselves have a small header with side information necessary to decode
the spectral data.

The main header is located at the beginning of the bit-stream, and contains information
about the sampling frequencies in space and time, the window type, the MDCT block size,
and any additional parameters that remain fixed for the whole duration of the spatio-temporal
signal.

The frame format is repeated for each spectral block Yg,l, and organized in the following
order:

Y0,0 . . .Y0,Nl−1YNg−1,0 . . .YNg−1,Nl−1

such that, for each time instance, all spatial blocks are consecutive. Each block Yg,l is
encapsulated in a frame, with a header that contains the scale factors used by Yg,l and the
Huffman code book identifiers.
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Figure 9.5: Bit-stream format of a perceptual wave field coder. Each frame contains the
quantized and encoded plane waves, plus a header with side information including the Huff-
man codebook selection and the scale factors.

9.4.7 Decoding
The decoding stage of WFC, illustrated in Figure 9.6 consists of three steps: Huffman de-
coding, re-scaling, and the inverse filter bank. The decoding is controlled by a state machine
representing the Huffman code book assigned to each critical band [71]. Since Huffman cod-
ing generates prefix-free binary sequences, the decoder knows immediately how to parse the
encoded transform coefficients. Once the coefficients are decoded, the amplitudes are re-
scaled using (9.2) and the scale factor is associated to each critical band. Finally, the inverse
LOT is applied to the transform blocks, and the output signal is obtained through spatio-
temporal overlap-and-add. The decoded multichannel signal p[n] can be interpolated into
p(x, t) without loss of information as long as the anti-aliasing conditions are satisfied.

9.4.8 Experimental method
A possible way of determining the compression ratio achieved by the proposed method, using
a Matlab implementation, is to perform the following 6 steps:

1. Generate the acoustic wave field from a music sound file;

2. Generate the input signal p[n] by computing the sound pressure on the Nx micro-
phones;

3. Run the WFC algorithm using the input p[n], in order to obtain the decoded signal
p̂[n];

4. Listen to each channel p̂[0, nt], p̂[1, nt], . . . , p̂[Nx, nt] individually, in order to check
for artifacts;

5. Repeat 3 and 4 for lower bit rates until a threshold is obtained, under which the artifacts
start being audible;

6. Plot the input and output signals, and visually verify that the curvature of the wave
front is preserved.

To this moment, we have solely verified that the coding process is, in fact, transparent—i.e.,
it does not generate audible artifacts, and the curvature of the wave front is preserved—for
Nx = 4 and a constant bit rate of R = 2.6 bits per time-sample and per channel, which is
equivalent to encoding each channel independently using MP3. This means that we have not
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(a)

(b)

Figure 9.6: Wave field decoder as a generalization of a perceptual mono decoder. (a) In a typ-
ical mono decoder, the input bit-stream is decoded by the corresponding Huffman codebook,
and the quantized frequencies are re-scaled with the aid of the scale factors transmitted as side
information. Then, the recovered transform blocks are transformed back into a time-domain
signal. (b) In a wave field decoder, the input bit-stream is decoded by the corresponding
Huffman codebook, and, similarly, the quantized plane waves are re-scaled with the aid of
the scale factors transmitted as side information. Finally, the recovered transform blocks are
transformed back into a spatio-temporal signal.



9.5 Summary notes 162

yet tested the algorithm for compression, but only for transparency. A systematic study of the
compression ratio achieved by this method for a different number of channels is part of our
future work.

9.5 Summary notes

• Perceptual audio coders operate by quantizing and encoding the frequency coefficients
based on a model of human auditory perception;

• The acoustic wave field can be compressed by quantizing and encoding the plane waves
in the spatio-temporal Fourier domain;

• The rate-distortion curves generated by encoding plane waves in the spatio-temporal
Fourier domain converge to an upper-bound, either by increasing the number of chan-
nels or the number of sources;

• A perceptual wave field coder can be easily constructed as a generalization of a per-
ceptual mono coder;

• A spatio-temporal psychoacoustic model that characterizes the human perception of
plane waves can be derived through a combination of a frequency masking model and
a directional masking model;

• The quantized and encoded plane waves can be packed into a bit-stream with side
information necessary for the decoding process.



Conclusions and Future Work

We presented a signal processing framework for manipulating acoustic wave fields that are
sampled with arrays of microphones, based on a multidimensional Fourier representation of
the wave equation. The thesis builds on the idea that arrays of uniformly spaced sensors
organized on a grid are, from a signal processing perspective, equivalent to sampling the
sound pressure along the three dimensions of space. The output of this sampling operation
is a 4-D discrete spatio-temporal signal, representing the entire acoustic wave field in space
and time. Given the dynamics of the wave equation, it can be verified that the wave field
generated by a harmonic source has necessarily the same harmonic behavior along the three
dimensions of space. This gives a clear indication that the oscillation patterns of the wave
field across space are potentially sparse in the spatial Fourier domain. Using existing tools of
multidimensional Fourier analysis, the 4-D signal can be represented and analyzed efficiently
in both continuous and discrete space and time. In addition, using the Huygens principle
and a technique known as wave field synthesis, the sampled spatio-temporal signal can be
reconstructed back into an “analog” wave front after being manipulated by a digital computer,
or stored in a digital medium. Based on this premise, we dedicated five chapters of this thesis
to extending some of the most important concepts of 1-D signal processing to the 4-D spatio-
temporal domain. In particular, we extended the theory of linear time-invariant (LTI) systems
to a theory of linear space- and time-invariant (LSTI) systems based on the Huygens principle,
by proving the properties of linearity and shift-invariance of spatio-temporal systems that
take wave fronts as input and generate wave fronts as output. We revisited the main results
of spatio-temporal Fourier analysis of the wave field, gradually obtained by other authors in
the study of field equations, and we generalized these results to account for a local windowed
analysis in space and time, resulting in what we call space/time–frequency representation
of the acoustic wave field. We also proposed an alternative representation of the spatio-
temporal spectra as a function of the direction of wave propagation, rather than the non-
intuitive notion of spatial frequency or wave number. The last three chapters of the thesis
were dedicated to processing the acoustic wave field in discrete space and time. We showed
how various types of spatio-temporal transforms, discussed in the context of continuous space
and time, can be implemented by a digital computer in the discrete domain through the use of
multidimensional filter bank theory. Using these discrete representations, we again extended
to the spatio-temporal domain two important concepts of 1-D signal processing: filtering
and coding. We showed that spatio-temporal filters can be easily designed in the spatio-
temporal Fourier domain in order to enhance or suppress sources in the acoustic scene, both
by direct application of a linear filter or through spatio-temporal adaptive filtering. Finally,
we proposed an entirely new paradigm of spatial audio coding, based on the encoding of
the wave field elements in the spatio-temporal Fourier domain (known as plane waves), both
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using a mean squared error distortion measure and using criteria based on the human auditory
perception.

Future work
This thesis started as study on transparent coding of acoustic wave fields, based on a de-
composition of the wave field into elementary components—a considerable shift from the
traditional parametric multichannel coding methods, such as MPEG surround. Eventually,
however, we realized that there were no satisfying tools for processing the wave field in dis-
crete space and time. Tools that are critical for the efficient implementation of state-of-art
mono and stereo audio coders, such as time–frequency analysis, were poorly understood in
the context of acoustic wave fields. Once we developed the concept of space/time–frequency
analysis, only then we were able to determine the bit rate requirements and trade-offs of a
practical wave field coder. As mentioned in the introduction, the theory of signal processing
was mainly developed and optimized for 1-D time-varying signals. The use of microphone
arrays for recording spatio-temporal audio data is a new trend, and therefore many of these 1-
D signal processing concepts will have to be extended to the spatial domain. Some examples
include spatio-temporal linear prediction for encoding speech wave fronts, spatio-temporal
sparse sampling for the localization of shot events, and spatio-temporal wavelet analysis for
handling sharply curved microphone arrays. With these additional tools, as well as the ones
presented in this thesis, many other applications can be envisioned. Microphone arrays could
potentially be used, for example, to turn any flat surface into a computer touchpad, to track
moving sources across rooms by analyzing the wall vibrations, and to perform acoustical
“auto-focus” on target sources when recording sound. In summary, the more sensor array
technology grows in popularity and decreases in cost, the more will grow the need for a solid
theoretical framework and for efficient computational tools that are capable of translating
creative ideas into practical implementations.
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