352 research outputs found

    An Abstract Tableau Calculus for the Description Logic SHOI Using UnrestrictedBlocking and Rewriting

    Get PDF
    Abstract This paper presents an abstract tableau calculus for the description logic SHOI. SHOI is the extension of ALC with singleton concepts, role inverse, transitive roles and role inclusion axioms. The presented tableau calculus is inspired by a recently introduced tableau synthesis framework. Termination is achieved by a variation of the unrestricted blocking mechanism that immediately rewrites terms with respect to the conjectured equalities. This approach leads to reduced search space for decision procedures based on the calculus. We also discuss restrictions of the application of the blocking rule by means of additional side conditions and/or additional premises.

    Optimization techniques for propositional intuitionistic logic and their implementation

    Get PDF
    AbstractThis paper presents some techniques which bound the proof search space in propositional intuitionistic logic. These techniques are justified by Kripke semantics and are the backbone of a tableau based theorem prover (PITP) implemented in C++. PITP and some known theorem provers are compared using the formulas of ILTP benchmark library. It turns out that PITP is, at the moment, the propositional prover that solves most formulas of the library

    Counterexample Guided Abstraction Refinement Algorithm for Propositional Circumscription

    Full text link
    Circumscription is a representative example of a nonmonotonic reasoning inference technique. Circumscription has often been studied for first order theories, but its propositional version has also been the subject of extensive research, having been shown equivalent to extended closed world assumption (ECWA). Moreover, entailment in propositional circumscription is a well-known example of a decision problem in the second level of the polynomial hierarchy. This paper proposes a new Boolean Satisfiability (SAT)-based algorithm for entailment in propositional circumscription that explores the relationship of propositional circumscription to minimal models. The new algorithm is inspired by ideas commonly used in SAT-based model checking, namely counterexample guided abstraction refinement. In addition, the new algorithm is refined to compute the theory closure for generalized close world assumption (GCWA). Experimental results show that the new algorithm can solve problem instances that other solutions are unable to solve

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Verified Decision Procedures for Modal Logics

    Get PDF
    We describe a formalization of modal tableaux with histories for the modal logics K, KT and S4 in Lean. We describe how we formalized the static and transitional rules, the non-trivial termination and the correctness of loop-checks. The formalized tableaux are essentially executable decision procedures with soundness and completeness proved. Termination is also proved in order to define them as functions in Lean. All of these decision procedures return a concrete Kripke model in cases where the input set of formulas is satisfiable, and a proof constructed via the tableau rules witnessing unsatisfiability otherwise. We also describe an extensible formalization of backjumping and its verified implementation for the modal logic K. As far as we know, these are the first verified decision procedures for these modal logics

    Formal techniques for verification of complex real-time systems

    Get PDF

    Intuitionisitic Tableau Extracted

    Full text link
    • …
    corecore