EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Formal techniques for verification of complex real-time
systems

Citation for published version (APA):

Geilen, M. C. W. (2002). Formal techniques for verification of complex real-time systems. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR557598

DOI:
10.6100/IR557598

Document status and date:
Published: 01/01/2002

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR557598
https://doi.org/10.6100/IR557598
https://research.tue.nl/en/publications/1be5d74f-3652-4734-83a6-f4b340ccb80e

Formal Techniques for Verification

of Complex Real-Time Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Tech-
nische Universiteit Eindhoven, op gezag van de Rec-
tor Magnificus, prof.dr. R.A. van Santen, voor een com-
missie aangewezen door het College voor Promoties in

het openbaar te verdedigen op dinsdag 8 oktober 2002
om 16.00 uur

door
Marc Constantijn Willem Geilen

geboren te Sittard

Dit proefschrift is goedgekeurd door de promotoren:

prof.ir. M.P.J. Stevens
en
prof.dr. J.C.M. Baeten

Copromotor:
dr.ir. J.P.M. Voeten

©Copyright 2002, M.C.W. Geilen

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission from the copyright holder.

Druk: Universiteitsdrukkerij Technische Universiteit Eindhoven

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Geilen, Marc C.W.

Formal techniques for verification of complex real-time systems / by
Marc C.W. Geilen. - Eindhoven: Technische Universiteit Eindhoven,
2002.

Proefschrift. - ISBN 90-386-1930-8

NUR 992

Trefw.: formele talen / real-time computers / temporele logica / discrete
simulatie / modelcontrole / toestandsruimte-analyse.

Subject headings: formal verification / formal specification / real-time-
systems / temporal logic / discrete event simulation / state-space meth-
ods.

Summary

Increasing complexity in real-time distributed systems calls for techniques to auto-
mate and support their design. In particular concurrent and communicating systems
are hard to design correctly. This is especially important for embedded and safety-
critical systems. Formal techniques are important aids for the construction of tools
that support and automate parts of design and verification and reduce the amount
of resources spent on it. Problems detected early in the design process can be elim-
inated without the excessive costs associated with faults that are dealt with at the
end of a design. Although formal verification methods are designed to attack these
types of problems, they often exhibit characteristics that clash with the nature of the
initial design process. In practice in the early stages of the design, a popular and ef-
fective tool to study a design is simulation. It is flexible, easy to use and interactive.
Its lack of formality however inhibits many automated design and verification steps.
As a design evolves, the need for more thorough analyses emerges. The design and
its requirements are more stable and in this phase the investments required for the
application of (more) exhaustive formal verification techniques can be justified. To
smoothen the design process it is necessary to allow a formal design specification
and formal requirements to evolve together from initial specifications to the refined
specifications they become later and to allow formal verification of the design to
evolve simultaneously from lightweight, non-exhaustive techniques to thorough ex-
haustive analyses of the more mature design. The research in this thesis aims to
provide formal techniques that apply in particular to the early stages of the design
trajectory of complex concurrent real-time systems.

This thesis contributes a number of formal techniques that can be effectively used
to study the behaviour and in particular the correct operation of distributed real-
time systems. An abstract semantic model is fixed on which executable specification
languages can be (and are) based, languages that can be characterised as concurrent,
real-time, expressing structure and architecture as well as behaviour. The semantic
model is adapted to expose a system’s internal behaviour. For simulations one often
models closed systems, meaning that both the actual system under design and the
behaviour of its environment are modelled together. Traditional semantics in terms
of externally observable behaviour alone is inadequate for such models. This model
allows one to formally reason about the behaviour of individual components within
a larger context.

A technique to execute (e.g. simulate) such executable specification languages is
introduced, based directly on the formal semantics. This technique has been applied
to the formal specification language PoosL, resulting in a tool called SHESim. It

supports interactive modelling and simulation of PoosL models and the graphical
specification and visualisation of the system’s architecture.

Furthermore, techniques are studied for the automatic verification of requirements
formalised in linear temporal logic of these system models. A key element of the
standard technique is the construction of finite state automata that can monitor cor-
rectness requirements specified by formulas in linear temporal logic. These automata
are called tableau automata. A framework is introduced for describing different
types of tableaux in a uniform manner. The use of these automata under verifica-
tion or simulation conditions is studied resulting in techniques to recognise if finite
executions satisfy or violate the properties. Interesting classes of properties are in-
vestigated that result in particularly efficient automata. Subsequently, the method
is extended to real-time temporal logic, allowing for the expression of quantita-
tive temporal requirements as well as qualitative ones. In particular, an on-the-
fly tableau construction is presented for real-time temporal logic, enabling practical
model-checking of real-time systems.

Samenvatting

De almaar toenemende complexiteit van gedistribueerde en tijdkritische systemen
vraagt om technieken die het ontwerpen ervan ondersteunen en automatiseren. Pa-
rallelle en communicerende systemen zijn in het bijzonder moeilijk foutvrij te ont-
werpen, terwijl dit vooral voor ingebedde systemen en systemen die de veiligheid
moeten waarborgen, van groot belang is. Formele technieken zijn belangrijke hulp-
middelen voor het maken van gereedschappen die het ontwerp en de verificatie er-
van ondersteunen en automatiseren en zo de daarvoor benodigde tijd verminderen.
Fouten die vroegtijdig in het ontwerptraject ontdekt worden kunnen verholpen wor-
den zonder de buitensporige kosten die gepaard gaan met fouten die aan het eind
van het ontwerptraject gecorrigeerd moeten worden. Hoewel formele methoden
ontwikkeld zijn om dit soort problemen aan te pakken, hebben ze vaak kenmerken
die niet goed stroken met de initiéle fase van het ontwerp. In de praktijk wordt
in deze fase vaak gebruik gemaakt van simulaties om het systeem te bestuderen.
Simulaties zijn erg flexibel, eenvoudig toe te passen en interactief. Gebrek aan exact-
heid van de gebruikte modellen maakt het echter vaak onmogelijk om ontwerp- of
verificatiestappen te automatiseren. Naarmate een ontwerp evolueert, ontstaat er
behoefte aan meer diepgaande analyses. Zowel het ontwerp als de collectie ont-
werpeisen zijn stabieler geworden en in deze fase is het investeren van tijd in (meer)
uitputtende verificatietechnieken te rechtvaardigen. Om het ontwerpproces geleide-
lijker te laten verlopen, is het nodig om een formele beschrijving van het ontwerp en
van de ontwerpeisen tegelijkertijd te laten evolueren van initiéle specificaties tot de
gedetailleerde specificaties die ze later worden en om formele verificatietechnieken
mee te laten ontwikkelen van lichtgewicht, niet uitputtende technieken tot grondige
en eventueel uitputtende analyse van het uiteindelijke ontwerp. Het onderzoek in
dit proefschrift is erop gericht om formele technieken te ontwikkelen die met name
toepasbaar zijn in de vroege stadia van het ontwerpen van complexe parallelle en
reactieve systemen.

Dit proefschrift introduceert enkele formele technieken die effectief gebruikt kun-
nen worden om het gedrag en in het bijzonder de foutvrije werking van dergelijke
systemen te bestuderen. Een abstract semantisch model wordt beschreven, waar-
op executeerbare specificatietalen gebaseerd kunnen worden (en zijn) die gedrag,
inclusief parallellisme en tijdsafhankelijk gedrag, structuur en architectuur kunnen
uitdrukken. Dit semantische model is op een zodanige wijze uitgebreid, dat het in-
terne gedrag van het systeem zichtbaar wordt gemaakt. Voor simulaties gebruikt
men vaak een gesloten model. Dit betekent dat zowel het systeem dat ontworpen
moet worden, als ook de omgeving waarbinnen het systeem moet gaan functioneren,

Vi

gemodelleerd worden. Traditionele semantieken die alleen extern observeerbaar ge-
drag beschrijven zijn daarvoor niet adequaat. Deze beschrijving maakt het mogelijk
om te redeneren over het gedrag van een systeem in een specifieke context. Verder
wordt er een techniek geintroduceerd om dergelijke talen te executeren (bijv. om
simulaties uit te voeren). Deze techniek is rechtstreeks gebaseerd op de semantiek
van de taal en is toegepast op de formele specificatietaal PoosL in de vorm van een
tool, die SHESIim heet, waarmee PoosL modellen gemaakt en gesimuleerd kunnen
worden en model en gedrag en architectuur grafisch gevisualiseerd kunnen worden.
Daarnaast worden technieken bestudeerd voor de automatische verificatie van ei-
genschappen uitgedrukt in lineaire temporele logica. Een cruciaal onderdeel van
een standaardtechniek voor verificatie is de constructie van eindige toestandsauto-
maten die corresponderen met formules van de logica en gebruikt kunnen worden
om te controleren of gedragingen van het systeem aan deze eigenschap voldoen. De-
ze automaten worden wel tableau automaten genoemd. Dit proefschrift introduceert
een kader waarbinnen verschillende soorten van tableaux op uniforme wijze behan-
deld kunnen worden. Er wordt bestudeerd hoe ze gebruikt kunnen worden tijdens
simulaties. Dit resulteert in technieken om van eindige executies te bepalen of ze al
dan niet aan de eigenschap voldoen. Ook worden bijzondere klassen van formules
bekeken die leiden tot efficiénte automaten. Vervolgens worden deze technieken uit-
gebreid naar een temporele logica waarmee ook kwantitatieve tijdsaspecten van het
gedrag uitgedrukt kunnen worden. In het bijzonder wordt er een tableau construc-
tie gepresenteerd, die efficiént genoeg is om praktische verificatie van deze logica
mogelijk te maken.

Acknowledgements

The work described in this thesis was not and could not have been performed in
isolation. It involved the help and support of many, to whom | am largely indebted.
First of all | want to thank prof. Stevens for creating the opportunity for me to per-
form this work in his group together with an enthusiastic team of researchers, with-
out too much interference from other duties and allowing me to continue to work in
this environment after the end of my Ph.D contract.

Thanks also go out to prof. Baeten, prof. Feijs and prof. Larsen for reviewing a
preliminary version of this thesis and all other members of the promotion committee
for their valuable time and effort.

I am especially grateful to Jeroen Voeten for his guidance and inspirational support
throughout the entire project, for interesting discussions and support in many other
ways. Dennis Dams has taught me most of what | know about formal verification
and supported me during a long period of research that at times seemed to fail to
produce results, but eventually became chapter 8 of this thesis. Piet van der Put-
ten has always been a driving force and inspiration within the Software/Hardware
Engineering team and good at fuelling interesting discussions from a different per-
spective.

During these years, many roommates have been good company. Thanks for that,
Ton, Maarten, Inder, Emil, Robin, Terry, Lucia, Daniel, Ron, Natalia, Zhangqin, Leo
(thank you for proof reading and for providing the IATEX macros for the arrows in
this thesis), Frank for your work on and with the SHESim tool and finding many of
its bugs (so they could be resolved) and Bart for extensive testing of the tool as well
and also for keeping me company on many a train to or from Sittard.

| also owe gratitude to a number of students that have contributed directly or indi-
rectly to this work: Maurice de Leijer, Nils van Tetrode, Georgina Lopez and Pieter
Cuijpers.

Last but not least, | should thank my family for having faith during these years, that
I was doing something useful, even though they did not have a clue what purpose
this work could possibly have. I'm also grateful to the other members of the ICS
group and many more people that are not mentioned explicitly.

Contents

Summary

Samenvatting

Acknowledgements

11

1.2
1.3

21

2.2

2.3

24

25

Introduction

Designing Distributed Systems

1.1.1 Design Problems and Issues

1.1.2 Current Practice, Techniques and Technologies
1.1.3 Example

Obijectives of this Thesis

Overview of the Thesis

1.3.1 Structure of the thesis

Preliminaries

General mathematical concepts

2.1.1 Sets, Relations and Functions

2.1.2 Induction

2.1.3 Infinite words and languages

2.1.4 Time

2.1.5 Timed Words

Labelled Transition Systems

2.2.1 Untimed Labelled Transition Systems
2.2.2 Timed Labelled Transition Systems
Behaviour and Equivalences

2.3.1 Bisimulations

2.3.2 Timed Bisimulations

Process Calculi

2.4.1 Syntax

2.4.2 Semantics

2.4.3 Structural Operational Semantics
2.4.4 Real-time Process Calculi

Modal and Temporal Logic

2.5.1 Branching Time Temporal Logic and Linear Temporal Logic

2.5.2 Untimed Temporal Logic

15
15
15
17
19
19
20
21
21
22
24
25
26
27
27
28
28
30
32
32
33

Contents

2.5.3 Real-time Temporal Logic 35
2.6 Finite State Automata 36
2.6.1 w-Automata 36
2.6.2 Timed Automata 38
2.7 Automatic Protection Switching Protocol 41
A Calculus for Real-Time Concurrent Systems 45
3.1 Syntax of the Calculus 46
3.1.1 Dynamic Processes 46
3.1.2 Static Structure of Processes 47
3.2 Semantics of the Calculus 48
3.2.1 Maximal Progress 53
3.3 Termination rules 53
3.4 Example 56
3.5 Data 56
3.5.1 The Value Passing Calculus 57
3.5.2 Data Environments 58
3.5.3 Operational Framework for Data Communication 58
3.5.4 Data Semantics 59
3.6 Automatic Protection Switching Protocol (2) 59
3.7 POOSL models 61
3.8 Related Work 62
3.9 Conclusions 64
Executing Real-Time Concurrent Models 65
4.1 Requests 66
4.1.1 Properties of the requests of a process 70
4.2 Computing the new process 72
4.3 Implementation 73
4.3.1 Trees representing process expressions 73
4.3.2 Generating requests 74
4.3.3 Granting requests 75
4.3.4 Schedulers 77
4.3.5 Open and closed systems 77
4.4 Equivalences 78
4.4.1 Time-Closure 78
4.4.2 Abstract bisimulations 79
4.5 Correctness of the Execution Method 79
4.6 Software Tools 83
4.6.1 The Tools 83
4.6.2 Tool Implementation 85
4.7 Related Work 89

4.8 Conclusions and Future Work 90

Contents Xi
5 Structure and Behaviour of Components 93
5.1 A Component Calculus 94
5.2 Semantics of the Component Calculus 95
5.3 Reduction through hierarchy 100
5.3.1 Reduction of process expressions 100

5.3.2 Reduction of execution traces 100

5.4 Automatic Protection Switching Protocol (3) 103
5.5 Components in POOSL and SHESIim 105
5.6 Temporal Logic for Components 106
5.6.1 States and Transitions in Temporal Logics 106

5.6.2 Extension of Linear Temporal Logic 107

5.6.3 Example 108

5.7 Related Work 109
5.7.1 Calculi with Locations and Components 109

5.7.2 Logics for Objects and Distribution 110

5.8 Conclusions 111
6 Automata Theoretic Verification 113
6.1 Automata Theoretic Verification 113
6.1.1 LTL Model Checking 114

6.1.2 Model-Checking Algorithms 114

6.2 Non-Exhaustive Model Checking 115
6.2.1 The Limits of Model Checking 115

6.2.2 Non-Exhaustive Verification 116

6.2.3 Simulation 117

6.2.4 A Comparison of Verification Methods 117

6.3 Checking Properties in Simulations 119
6.3.1 Automata for Bad Prefixes 120

6.3.2 Observer Automata in the SHESim Tool 123

6.4 Related Work 123
6.5 Conclusions 125
7 The Tableau Method for Linear Temporal Logic 127
7.1 Complete Tableaux 127
7.1.1 Intuitive description of the construction 128

7.1.2 Definition of the Tableau Automaton 130

7.1.3 Example 134

7.1.4 Correctness 135

7.2 Other Tableaux 138
7.2.1 Non-Complete Tableaux 138

7.2.2 On-the-fly Tableaux 139

7.3 Efficient Fragments of LTL 147
7.3.1 Modified Syntax and Semantics of LTL 147

7.3.2 A Deterministic Fragment of LTL 148

7.3.3 Quadratic / Linear Fragment 150

7.4 Automata for Prefixes 151
7.5 Related Work 155
7.6 Conclusions and Future Work 157

xii Contents

8 Tableaux for a Real-Time Temporal Logic 159
8.1 Restricted Real-Time Tableaux 159
8.1.1 Preliminaries 160

8.1.2 Real-Time Temporal Logic 160

8.1.3 Tableaux for Real-time Temporal Logic 161

8.1.4 Example 169

8.1.5 Correctness 170

8.1.6 Other Tableaux 175

8.2 Unrestricted Real-Time Tableaux 183
8.2.1 Preliminaries 183

8.2.2 Tableaux for Real-time Logic 185

8.2.3 Example 192

8.2.4 Correctness 193

8.2.5 Other Tableaux 198

8.3 Timed Automata for Prefixes 203
8.4 Deterministic Timed Automata 205
8.5 Related Work 209
8.6 Conclusions and Future Work 210
9 Conclusion 213
9.1 Contributions of this thesis 214
9.2 Future Work 215
A POOSL Description of the APS Protocol 217
A.1 Process Classes 217
A.2 Cluster Classes 222
B Proofs 223
B.1 Proofs of chapter 7 223
B.1.1 Proof of lemma7.2.7 223

B.1.2 Proof of lemma7.2.9 224

B.1.3 Proof of lemma7.4.4 225

B.1.4 Proof of lemma 7.4.6 227

B.1.5 Proof of lemma 7.4.8 227

B.2 Proofs of chapter 8 228
B.2.1 Proof of lemma 8.1.26 228

B.2.2 Proof of lemma 8.1.28 229

B.2.3 Proofs for the Unrestricted Case 231
B.2.4 Proof of lemma 8.2.26 231

B.2.5 Proof of the lemmas 8.2.28, 8.2.29 and 8.2.30 232

B.2.6 Proof of the Lemmas on Informative Prefixes 236
Bibliography 241
List of Publications 257
Curriculum Vitae 259

Index 261

Chapter 1

Introduction

As technological possibilities increase in a continually rapid pace, products that are
being designed become more and more complex. Information technology permeates
a wide variety of systems. The amount of software in consumer electronics increases
with every new generation. Information technology is applied in transportation,
commerce, industrial control systems, often in the form of embedded systems. In
contrast with systems like a desktop PC, faulty behaviour in such systems can be
very costly (for example if all products in the field have to be replaced) or can be a
threat to the safety of people (for instance systems controlling a railway system or
air traffic).

Such designs of increasing complexity have to be done by the same or a smaller
number of designers in a shorter time to market. To be able to achieve this, one has
to work at higher levels of abstraction and automate larger parts of the development
process. Systems of concurrent and communicating components tend to exhibit un-
predictable interactions that may lead to incorrect behaviours. If such errors stay un-
detected until late stages of the design trajectory or even until delivery of the actual
products, the costs of solving such errors can be very large. The assessment of the
correctness of a design is an inherently difficult problem, because of the complexity
of the system and the vast number of possible scenarios that have to be explored.
This thesis deals with formal techniques that can be used to automate the analysis
of complex distributed systems and in particular the analysis of the correctness of
the system’s behaviour. It is well known that distributed concurrent and reactive
systems are error prone. A design has to be verified and tested to get rid of (as
many as possible of) these errors before it is actually realised. The errors are often
caused by the fact that the inherent non-determinism (originating from concurrency,
the distributed nature or user interaction) makes the behaviour complex and hard to
predict. The effect is that the number of ways the system can behave becomes very
large and thus hard to validate that it will in any situation be as intended.

In the following section an introduction is given to the problem domain of this the-
sis; hierarchical, distributed, concurrent real-time hardware/software systems. The
design issues and problems that play a role in these systems will be discussed as
well as the particular design issues on which this thesis focusses. Section 1.1.2 dis-
cusses the existing approaches towards these design issues, their respective strong
and weak points and the existing gap between formal/exhaustive and informal/ad-

2 Introduction

50% + — — - € 12500
40% + 1 - € 10000
30% + € 7500

20% + / I € 5000
10% + / € 2500

—

L]

0% — 1 1 1 1 €0
Analysis Design Coding Designer Test ~ System Test Field

iIntroduced Errors (%) C—IDetected Errors (%) —®=—Costs of Fixing an Error in €

Figure 1.1: Introduction, detection and costs of errors in the design trajectory [130]

hoc methods. Section 1.2 states the objectives of this thesis and the issues that are
addressed. Finally, section 1.3 explains the structure of the thesis.

1.1 Designing Distributed Systems

In the course of designing a system, errors are made and corrected as they are de-
tected. Generally, the later an error is detected, the more costly it will be to solve it
[130]. Figure 1.1 shows the results of a study of errors in software systems. It shows
the percentages of errors introduced and detected in different phases of the design as
well as the corresponding costs of fixing an error in that particular phase. The graph
clearly shows that it is imperative to try to detect mistakes as early as possible. A
well known illustration is the bug in the floating point division units of the Inte[®
Pentium® chip, which cost the company $500 million, as there were already a large
guantity of products in the field that had to be replaced. Apart from the economical
necessity to find errors, there are systems that are mission-critical or safety-critical
in which the consequences of a system failure could be disastrous; for instance, a
problem with the flight control system in the Ariane 5 rocket in June 1996 abruptly
ended a $5 billion mission.

This thesis concentrates on the kind of systems that can be characterised as fol-
lows: real-time systems, distributed systems, embedded systems, multimedia sys-
tems or telecommunication networks; systems, performing many concurrent tasks
in a real-time environment. Such systems often consist of multiple distributed con-
current components that frequently communicate with each other. They are often
reactive, meaning that during operation they perpetually communicate with the en-

1.1 Designing Distributed Systems 3

Requirements -4—— Solutions

Informal .
. Conceptual Solution
Requirements validation/ verification
\
Informal interpretation .Sj’??l,/ interpretation
N
.__ff[ol)
Formal formalisation modelling
.
Formal verification
. Executable Models
Requirements

Figure 1.2: Requirements and designs

vironment, responding to stimuli from the environment or producing them. Many
such systems combine both hardware and software components. As they interact
with the physical world, timeliness and other timing aspects are very important.
For dealing with complex heterogeneous systems, architecture and structure of the
composite system are important.

Stimulated by technological advances, the complexity of these systems is growing
rapidly. Yet, these complex systems must be designed in the same or even smaller
amount of time with the same groups of developers. To achieve this, higher levels
of abstraction are required and larger parts of the development process have to be
automated.

1.1.1 Design Problems and Issues

To effectively design the aforementioned systems, many issues are important. Such
issues include functional correctness, performance, testability, maintainability, do-
main analysis, requirements capturing, design space exploration, design for test and
debug, project management, and so forth. There are many aspects that need consid-
eration to constitute a good design methodology. This thesis concentrates in particu-
lar on the validation and verification of the qualitative or functional aspects, correct-
ness of the system and in particular on the requirements regarding communication
and concurrency and real-time aspects thereof.

The investigation of the functional correctness of a design is often designated as ‘ver-
ification’ or ‘validation’. The terms are occasionally used to differentiate between
different forms of this activity. However, they are not used consistently. Verifica-
tion is frequently defined as an activity to answer the question “Are we making the

4 Introduction

system right?”, whereas validation answers the question “Are we making the right
system?”. Another use is to reserve the term verification for formal analysis and use
validation in contrast for informal analysis. At other times they are used as syn-
onyms. We shall use the terms in the following manner. By verification we mean the
investigation of the truth of a statement about (a model of) a system under design.
Validation is used to denote the more general investigation of the suitability of the
conceptual solution for its purpose and goals. Furthermore we call a method formal
if it is based on rigorous well-defined (mathematically defined) concepts. Formal
verification thus means the investigation of a formally defined relationship between
formalised representations of the system and its requirements. This also means that a
formal verification does not directly apply to the system that is being designed, but
only applies if the requirements have been captured correctly and the formalised
model is an accurate representation of the actual system. Consequently, a statement
that a system has been formally verified requires an explanation of what was for-
malised and what properties where verified [117].

A (somewhat simplified) overview of the validation/verification is shown in figure
1.2. A design typically starts with an informal description in some natural language
of what the system is for and what criteria it is supposed to meet. Often, at the be-
ginning there are already some ideas about the implementation of the system. The
system might be an evolution, improvement or extension of an existing design. It
may be known to use certain components. The collection of requirements will be in-
complete. As the design progresses, the collection of requirements will be extended
and the conceptual solution will obtain shape. Design decisions that are taken in
this process have to be validated and the design has to be verified to satisfy all of its
requirements.

To automate certain analyses of the design, a formal model of the design is made,
for instance in the form of an executable specification. Such a formal model captures
some part of the design that is to be analysed. The model may be very abstract, cap-
turing precisely those aspects that are to be analysed, or may be very detailed, trying
to capture as many of the design’s aspects as possible. To automatically verify certain
aspects of the design, next to the formal model of the design, a formalised statement
of the requirements is necessary. Such requirement statements can be the absence of
global deadlock or more complicated behavioural constraints. Examples of such for-
malised requirements are an executable model at a higher level of abstraction and a
specification in temporal logic. Once it has been analysed whether the formal model
satisfies the formalised requirements or not, the result can be interpreted for the ac-
tual design. If the model is accurate and the requirements are captured adequately,
then the result should have a meaningful interpretation for the verification of the
actual design. Sometimes the verification is partially automated. For example when
an executable model is simulated and the produced simulation results are inspected
manually to determine the interesting properties.

1.1.2 Current Practice, Techniques and Technologies

Many techniques exist for the verification of distributed and real-time systems, rang-
ing from manual inspection of a design to formal verification methods. Different
methods have their strong and weak points. Together however, they might comple-

1.1 Designing Distributed Systems 5

ment each other and strong points of one method might compensate weaknesses of
another.

Modelling behaviour of real-time concurrent systems

The description of a design may occur in the form of a (partially) textual or graph-
ical description, a description using pseudo code, some sort of formal specification
or anything in between. Textual specifications are readable (if well structured) and
flexible. On the other hand they are often ambiguous and incomplete or inconsis-
tent. Programming languages and in particular C/C++ [167] are often employed
to describe a system’s behaviour. Such specifications are executable and C is well
known and understood among designers. It allows simulation of the design and the
popularity of the language makes that integration with existing (commercial) tools is
often feasible. Regretfully, C does not have support for aspects such as concurrency,
communication, timing and hierarchy; these are often introduced via (proprietary)
libraries. Another disadvantage is the lack of semantics. There is no formalised se-
mantics and the existing standards describing the language leave the meaning of
certain language constructs undefined.

Formalisms to construct mathematical models of systems include such things as
Petri nets, process algebra, labelled transitions systems, finite state automata and
Markov chains. All have their particular views on a system and focus on partic-
ular aspects. For instance, there are different abstractions to formalise concurrency,
such as synchronous concurrency, asynchronous concurrency (interleaving) and par-
tial orders (event structures). There are different abstractions of physical time and
probabilistic aspects. Formalisms may capture structural and architectural aspects
of a design or focus strictly on behavioural aspects. Most formal methods strive for
simplicity, to allow for efficient analysis. They do not try to capture all aspects in a
unified formalism, for such a formalism would not be easy to analyse.

State-space explosion problem

The major problem in the verification of distributed systems is the enormous num-
ber of their potential behaviours. Suppose we have a system consisting of M com-
ponents, each having N different internal states. The state of the entire system can
be represented by giving the local state of every component individually. The num-
ber of possible system states is NM. Although the components are not completely
independent and not all of these global states may be reachable, the actual number
of reachable states does tend to show the same trend; the number of states grows ex-
ponentially with the number of system components and the size of its specification.
This effect is called the state-space explosion. This means that complex systems may
exhibit very large numbers of possible behaviours. Since verification entails check-
ing that certain requirements hold under all possible circumstances, all behaviours
should be explored. Although in specific cases the number of states to be explored
can be reduced significantly or certain classes of behaviours can be examined all at
once, the global trend is unavoidable.

The state-space explosion is the central problem in the verification of distributed sys-
tems. A designer is unable to foresee all potential interactions. Simulations do not
cover the entire state-space and formal methods that do (try to) cover the entire space

6 Introduction

battle with resource constraints such as computer memory or time required for the
verification. Even though the formal methods are helped by Moore’s Law, bring-
ing exponentially increasing performance of computers used for verification, this is
cancelled out by increase of the complexity of the systems that are being designed.

Analysis Techniques

There exist a number of techniques to analyse a given (model of a) design for certain
correctness properties; such techniques include peer reviewing, simulation, testing
of realisations or prototypes and formal verification techniques. In peer review-
ing an (experienced) colleague who is not involved in the same design inspects the
designed code and checks it manually for mistakes. Although this is an effective
method to remove a number of mistakes, it needs to be followed by automated
analysis to further examine the design. An (automated) analysis technique that is
being used extensively and effectively in industry, is simulation. Both simulation
and testing are usually non-exhaustive in the sense that not all possible behaviour
is exercised and checked for conformance with the requirements. Exhaustive formal
verification techniques have been and are being applied successfully in industrial
projects in a number of cases (for example [17, 42, 50, 52]) and are being applied as
an integral part of the design trajectory more often. They do intend to cover all be-
haviour of the system, but their application is not always easy. We will discuss some
of the important tools for automated analysis.

Simulation Simulations are easy to use and can be largely automated. Validation
of the simulation results however is often ad hoc and manual. It generally does not
provide definite (positive) answers to the posed verification questions. It can expose
erroneous behaviour, but the absence of bad behaviour cannot be guaranteed. An-
other problem with the simulation method is that in practice it is often not based on
well-defined semantics. Interpretations of concurrency, communication primitives
and real-time are often not made explicit, but are affected by the simulation model
or the construction of the simulator; for instance the mechanism used by the sched-
uler of a discrete-event simulator to fire scheduled events.

A big advantage of the simulation method is that it is very scalable. It doesn’t suffer
from the state-space explosion problem in the sense that large models can still be
simulated. Obviously if does suffer in terms of coverage and error-detecting capa-
bilities. This makes it possible to use a single model (or a small set of models) for all
simulation-type analyses. As the design or requirements change, it is easy to reeval-
uate the new model with respect to the new requirements. As errors often occur in
unexpected ways, it is important to use detailed models and continue to monitor
all of the requirements. Errors are often found while focussing on completely dif-
ferent properties [116]. The error finding capabilities are improved by automating
the evaluation of simulation results with respect to (formalised) requirements. Mod-
els for simulation can be made more detailed and adequate and moreover they can
be used, with appropriate visualisation, to communicate among designers or with
customers.

1.1 Designing Distributed Systems 7

Testing and prototyping Prototypes are often used for verification. A prototype
is close to the actual realisation and is thus a highly adequate model. A prototype
can be executed in real-life speed, which is often impossible for simulation models.
However, the design must be almost ready before a prototype can be built and the
process is time consuming and expensive. Models can be built and analysed quicker.

Formal methods Formal methods originate from a more ambitious and more fun-
damental than practical approach to system specification and design. It provides
the vehicle to reason mathematically about the correctness of a design. This allows
a mathematical proof of its correctness. As a side effect, the use of formal methods
forces designers to make their ideas about a design or its requirements very precise
and this uncovers many errors already.

Although formal methods to reason about and prove the correctness of designs have
been around for a number of years, integration into industrial practice remains lim-
ited. This is caused by a number of issues that hinder their practical application.
Some of these issues are the following.

e The state-space-explosion, the intrinsic hardness of the verification problem
and the desire of most formal verification methods to produce a definite an-
swer, make it a big effort to keep the state space within reasonable size.

e Formal methods have a reputation to be hard to use and to require the user
to be knowledgeable both in advanced mathematics and also in the internal
operation of particular tools.

e There is a lack of industrial strength tools. In particular there is a lack of tools
that integrate in the entire design flow and tools that are used.

The two major types of verification techniques based on formal methods are the
following.

e Model-checking is a procedure to check the correctness of a system by travers-
ing the entire state space whilst looking for erroneous behaviour (expressed
as the reachability of particular states or by formulas in temporal logic). A
big advantage of model checking is that it is completely automatic. Model-
checking has been applied successfully in the field of communication protocols
and hardware verification; it is particularly suited for control intensive and less
for data-intensive systems. If the check of a particular requirement fails, the
model-checker tool provides a counter example which demonstrates this. The
state-space explosion and the struggle against it often do require that a new
(abstract) model of the system is made targeted towards the requirement that
is being checked; such models are thus not optimised for readability but only
to reduce state space. This might call for an in-depth study of the model and
knowledge of the internal operation of the tools to achieve a successful verifi-
cation [117]. When the design changes, the abstract model has to be adapted
accordingly and the verification has to be repeated. Examples of (academic)
model-checking tools are Spin[107], SMV[137], Mocha[14], UPPAAL[25] and
Kronos[63]. Commercial tools are beginning to arise and tool vendors are start-
ing to integrate model-checking techniques in their tool sets.

8 Introduction

e In deductive methods such as theorem proving, correctness requirements are for-
malised as theorems in a mathematical theory which describes the system’s
behaviour. A requirement can be shown to hold by proving its corresponding
theorem in this theory. Deductive methods are able to deal with infinite state
and parameterised systems using inductive proofs. This makes them better
suited for data-intensive systems. Theorem proving tools assist in the con-
struction of such a proof or try to construct the proof autonomously. Generally
however, such tools are not (yet) powerful enough to produce (large parts of)
such proofs entirely autonomously. Usually the crucial steps of the proof have
to be invented by the user and the theorem prover might be able to fill in the
smaller steps. Another class of tools are proof checkers, tools that do not gener-
ate proofs, but rather check that a manually generated proof is correct. This re-
quires formally trained people and a lot of manual effort to construct the proof
in minuscule steps that can be checked by the tool. Thus, deductive meth-
ods are not automatic, require user interaction and mathematical expertise of
the user as well as a deep understanding of the design itself [117]. Theorem
provers are less suitable as debugging tools than model checkers; they do not
provide much insight if a particular theorem cannot be proved. Also here the
chances of success increase if one is experienced with the tools and familiar
with their internal operation. This is illustrated by the fact that successful case
studies in formal verification often involve the original tool builders or inven-
tors of the underlying theory. Some popular theorem provers are HOL[94],
Ngthm[39], PVS[152] and Isabelle[150].

The fight against the state-space explosion and the preciseness required for the for-
mal methods make their application typically relatively time-consuming. This makes
it hard to deal with aspects of a real-world design process, where specifications
change and requirements are trade-offs. As timing or probability issues come into
play the formal techniques become harder to use. The computational effort increases
as well as the technical and mathematical complexity.

Current Status

Automated analysis of models of the design of a system is required to obtain insight
into the correct operation of the design as early as possible in the design trajectory.
In particular distributed reactive systems are difficult to design since unexpected
interactions often cause subtle problems. Existing techniques are insufficient to deal
with the verification problem in an effective and satisfactory way.

Existing simulation practices are flexible, easy to use and capable of dealing with
large systems at a small level of detail. However, they are often too ad hoc and infor-
mal to support extensive automation. Formal methods are precise and give definite
answers to the verification question. They are good at exposing subtle errors that
tend to escape verification by means of simulation and testing. Yet, they are limited
by the state-space explosion problem and expensive to use; in particular early in a
design this is hard when design and requirements change frequently and reevalua-
tion of all the requirements is required after such changes.

It follows that no one of them can replace the other and they should be glued together
in a consistent framework. From the complementary nature of non-exhaustive and

1.1 Designing Distributed Systems 9

exhaustive (formal) methods it follows that they can be used effectively together.
Non-exhaustive methods are cheap, easy to use and flexible. This makes them very
suitable in the initial stages of the design, to quickly evaluate design alternatives and
obtain a quick impression about the correct behaviour of the system. As the design
becomes more stable at a particular level of abstraction or a particular subsystem,
and if some solid insight into the correct behaviour is desired to continue with a
particular alternative, it is possible to exploit exhaustive formal methods to detect
more subtle errors that are only exposed by very particular interactions and are likely
to go undetected by simulations.

One area that needs to be addressed to alleviate the problems is a better integra-
tion of non-exhaustive and exhaustive formal methods and a formal basis for non-
exhaustive analysis methods and simulation in particular. Especially the automated
evaluation of simulation results, with respect to formalised requirements is required.
It is important to establish the connection between the two by using (abstractions of)
the same requirements in both worlds, and making the transition from one type of
analysis to the other smaller.

Real-time Verification

Many embedded systems operate in an environment where providing a timely re-
sponse is equally important as providing the correct type of response. For instance
consumer electronics applications or an airplane’s flight-control system. Formal
methods that deal with timing aspects of a system have to take this into account.
Many formal methods and tools abstract from the quantitative aspects of time to
yield a simpler theory and more efficient tools. Model-checkers for timed systems
are UppAAL [25] and Kronos [63] (among others) and also Spin has its timed exten-
sions [35]. Real-time model checking (in particular in a dense time domain) is com-
putationally more expensive and therefore suffers even more from the state-space
explosion problem, although the gap between untimed and timed verification algo-
rithms is getting smaller with the advent of more clever techniques and improved
data structures. Theorem provers can also be used, but the theories and proofs be-
come more complicated.

In simulation, semantics for time is a problem. Many simulation tools do not have
solid semantics for real-time built in and often a model of time is built by the de-
signers on top of the simulator language. This is necessary for example if C is used.
In particular in combination with concurrency, a practical real-time semantics is not
trivial to make. From a computational point of view (simulation speed) the addition
of time and other concepts such as probabilities are not that expensive.

To apply the temporal logic model-checking approach which is very popular and
successful in the untimed case, practical methods for temporal logic model-checking
in dense real-time still have to be developed.

1.1.3 Example

The kind of errors that may occur are illustrated by the events which occurred during
NASA Jet Propulsion Laboratory’s Mars Pathfinder mission in July 1997. Although
the mission was successful and resulted in unique images of he surface of the planet
Mars, there were some flaws in the operation. The mission delivered a small vehicle

10 Introduction

called the Sojourner Rover to the surface of the planet. Controlled from earth the
vehicle would drive around, collect data and images and transmit them to earth.
The activities of the rover were controlled by a number of software tasks running
on a real-time operating system. The software processes ran at different priority
levels. A time-critical task was used to schedule the use of the system bus and a
watchdog monitored the timely execution of this task. The software tasks shared
certain resources and used a mutual exclusion mechanism to control access to this
resource. The scenario which occurred was actually a known problem in this sort of
systems and is called priority inversion. The shared resource was in possession of a
low-priority task. Whilst occupying the shared resource, the task is interrupted by
a medium-priority task used for the processing of the data that is being collected.
As scheduled, the highest-priority time-critical task is started and requires the use of
the shared resource. It cannot access the resource however, since it is in use by the
low-priority task. The low-priority task, in turn, cannot be activated to complete its
business with the shared resource because it is suspended by the medium-priority
task. As aresult this medium-priority task preempts the high-priority task (inverting
their priorities) which is now unable to complete its duties in time. The watchdog
notices this and initiates a total reset of the vehicle’s software. The scientific activities
of the rover are stopped until it is fed with new instructions the following day.

Errors often turn up in unexpected ways. Glenn Reeves of the Jet Propulsion Lab
commented on the problem: “Our before-launch testing was limited to the ‘best case’ high
data rates and science activities. The fact that data rates from the surface were higher than
anticipated .. .served to aggravate the problem. We did not expect nor test the ‘better than
we could have ever imagined’ case”. It shows one of the difficulties of verification. The
problems often occur in unanticipated ways. The model of the environment used
during testing contained some implicit assumptions that turned out to be incorrect.

It is hard to say afterwards whether such a problem would have been discovered
using exhaustive formal methods; the interactions regarding the mutual exclusion
on the shared resource and the prioritised scheduling of the concurrent tasks on
a single microprocessor must still be present in the model. It is easy to construct
an abstract model that exposes this error very quickly, both by simulation and by
model-checking. However, to come up with such a model, one first has to expect
problems in this part of the system. It is important to (have the tools) be always alert
to pick up the signals pointing to errors. The priority-inversion problem and the
resulting system reset were actually observed during testing, but the problem was
ignored and explained as a hardware glitch.

In this particular case the consequences of the error were not that drastic. The design
of the system allowed uploading improved control software to the vehicle once the
error was discovered and corrected. It was able to carry on its tasks without the
system resets. The mission was overall successful and is mentioned by Wind River
Systems, Inc®. as one of the success-stories of their VxWorks® real-time operating
system (including the priority-inversion problem and their solutions that deal with
such issues).

1.2 Objectives of this Thesis 11

1.2 Objectives of this Thesis

Informal and ad hoc verification activities are insufficient to find hard bugs in dis-
tributed systems. Exhaustive formal methods are important tools for verification,
but are (as yet) maladapted for certain parts of the design trajectory and expensive
to use. It is worthwhile to introduce formal methods in simulation techniques and
in evaluation of simulation results. In particular there is a lack of practical formal
methods for the temporal logic approach to model-checking of real-time systems.
This thesis introduces (formal) techniques for validation and verification of system-
level models of complex reactive real-time hardware/software systems. These tech-
nigues attempt to decrease the gap between formal system-level modelling and anal-
ysis, simulations of such systems and their formal verification. There are many kinds
of systems, and equally many kinds of formalisms; some better suited for one type
of systems and others better for another. In this thesis we will focus in particular
on systems that match the following criteria: statically structured, hierarchical, com-
plex, possibly data intensive, component based or object oriented. Examples of these
are such systems as telecommunication protocols, networks and switches, industrial
control systems and work-flow models as well as systems-on-a-chip.

Although an effective design framework requires attention for a lot of different as-
pects such as requirements capturing, analysis, tool support, project management
and so forth, we limit the scope of this thesis to only a few of these aspects and in
particular to techniques that form ingredients to the verification part of a coherent
methodological framework for the design of real-time distributed systems. Since
real-time is an important aspect of many systems, we focus on real-time systems and
formal methods for real-time systems.

Although the techniques described in this thesis are generally applicable to the type
of systems and methods described, their development has been centred around a
language called PoosL (Parallel Object-Oriented Specification Language, [156]), de-
signed to express formal executable specifications of real-time distributed commu-
nicating systems and the encompassing methodological framework SHE (Software/
Hardware Engineering, [156]).

The main objectives of this thesis are the following.

e To obtain an execution model for expressive executable specification languages
for complex real-time systems based on its formal semantics and an implemen-
tation in the form of a simulator for a particular instance of such formalisms:
PoosL.

e A formal model for structured architectures of communicating components.
To manage the complexity of large systems, many such systems are built from
components that interact through precisely defined abstract interfaces to hide
internal aspects from other components. Architecture design becomes crucial
when dealing with large and complex systems.

¢ A framework for requirements specification for such systems. A way to write
down requirements in a formalism such as temporal logic, respecting concepts
like architecture and encapsulation of components. Such a framework enables
the use of (real-time) temporal logic requirements specification and automatic
verification.

12 Introduction

(\
1. Introduction
\ J
2. Preliminaries
_ J
)\ 4
4 N 4 N\
3. A Calculus for Real-Time 6. Automata Theoretic
Concurrent Systems Verification
/
4 ' ~
4. Executing Real-Time 7. The Tableau Method for
Concurrent Models Linear Temporal Logic
\ . J
N\
5. Structure and Behaviour of 8. Tableaux for a Real-Time
Components Temporal Logic
\ J/ \ J
_ J _ J
(\
9. Conclusions

Figure 1.3: Overview of the thesis

¢ A methodology for the automatic verification of the designated systems. Deal-
ing with the verification of formalised requirements during simulations as well
as in model checking.

e A practical extension of these methods for automatic verification of (timed)
systems using (real-time) temporal logic also both for simulations and model-
checking.

1.3 Overview of the Thesis

This section gives an overview of the thesis. It explains the structure and gives a
short description of the individual chapters.

1.3.1 Structure of the thesis

The overall structure of this thesis is depicted in figure 1.3. The thesis consists of two
main parts. The parts are preceded by the introduction in chapter 1 (this chapter)
and chapter 2 introducing the required mathematical preliminaries on which the
results in this thesis are built. The first part consists of the chapters 3, 4 and 5 and

1.3 Overview of the Thesis 13

introduces a formal model for statically structured, concurrent, communicating real-
time systems (chapter 3) and an execution mechanism for system descriptions based
on that model (chapter 4). Chapter 5 deals with semantics and formal (temporal
logic) requirements for statically structured and component-based systems.

The topic of the second part is the automatic verification of such models. Applica-
tion of formal verification techniques in simulations will be discussed in chapter 6.
Tableau constructions, an important ingredient of temporal logic verification, are the
topic of chapter 7 and the tableau method is extended to real-time temporal logic
properties in chapter 8. Preliminaries on temporal logic and the automata theoretic
approach to model-checking are in chapter 2. At several places in this thesis, the
developments are illustrated by an example protocol. The example protocol is intro-
duced in chapter 2. Both parts mentioned above can be read independently.

1. Introduction This chapter introduces the problems addressed in this thesis,
states its objectives and gives an overview of its structure.

2. Preliminaries The developments in this thesis build on existing mathematical
constructs, such as labelled transitions systems, finite state automata, process calculi
and temporal logic. Chapter 2 is a quick introduction to the ones used in this thesis.
It also introduces the Automatic Protection Switching protocol that is used as an
example throughout the thesis.

3. A Calculus for Real-Time Concurrent Systems The techniques introduced in
this thesis are aimed at methods and languages that are expressive and mature and
able to deal with complex designs, yet are based on a precise semantics describing
its behaviour. It would be beyond the scope of this thesis to introduce a language of
such complexity and its formal semantics. Instead, we shall introduce in chapter 3
the syntax and semantics of a calculus that will serve as an abstract model of such a
language. We have to keep in mind in the remainder of the thesis that the methods
are aimed at complex languages based on such a model. The calculus explicitly
describes structure and architecture of a system, as well as (timed) behaviour.

4. Executing Real-time Concurrent Models Many kinds of automated analysis of
models will require the execution of the model or the generation of its state-space.
It should be possible to build the transition system that is defined by the semantics
of the model. Chapter 4 describes a method for the execution of models described
in the calculus. The methods employ execution trees to represent processes and to
compute the possible transitions. In complex systems, these trees can be ‘heavy’ and
the method allows for incremental updates of these data structures. The correctness
of this execution method is demonstrated and an implementation in the form of a
graphical tool set for modelling and simulation for the language PoosL [156] illus-
trates its use.

5. Structure and Behaviour of Components This chapter deals in a formal way
with structure, hierarchy and encapsulation. For automatic verification of system

14 Introduction

models, we need both a description of the system and a description of the require-
ments in a precise form. To allow the formalisation of properties of a system and
the interpretation of these properties, the semantical model is extended to expose
internal states and events. It is shown that the extended semantics does not change
the behaviour. The extension allows the expression of static and dynamic proper-
ties of a system, both of external and of internal behaviour. A framework for an
extended form of linear temporal logic is introduced to express properties of sys-
tems defined by the calculus, respecting structure and hierarchy of a system and the
component/object-base philosophy of encapsulation and well-defined interfaces.

6. Automata Theoretic Verification A popular approach towards the automatic
verification of linear temporal logic is discussed, the so-called automata theoretic ap-
proach. The application of these methods to non-exhaustive verification techniques
and random state space exploration/simulation in particular are discussed. It is
shown how the technique can be adapted for monitoring requirements during sim-
ulations and the class of properties for which this is possible is determined.

7. The Tableau Method for Linear Temporal Logic An important part of the au-
tomata theoretic verification is the conversion of formulas in linear temporal logic to
finite state automata that recognise the behaviours that do not satisfy the formulas.
This conversion is called the tableau method. An overview of the tableau method
for the generation of finite state automata from temporal logic formulas is given.
Such automata can be used to observe the conformance of a system to safety prop-
erties. The theoretical complexity of the conversion is high and practical approaches
try to minimise the size of the automata resulting from the conversion. Different
known tableau methods and optimisations are discussed. Classes of formulas are
recognised for which efficient automata can be constructed.

8. The Tableau Method for a Real-time Temporal Logic Traditional linear tempo-
ral logic describes qualitative temporal properties of a system’s behaviour. It relates
only the order of events. Extensions of the logic exist that can also refer to qualitative
temporal behaviour, allowing the distance in time between events to be measured.
The practical tableau methods are extended to a class of real-time temporal logic for-
mulas, allowing the verification of real-time temporal logic properties using timed
automata. Special care has to be taken if these automata are to be used as observers
during simulations, since the automata must be deterministic. Practical tableau con-
structions are given and the use of real-time tableaux as observers for simulations is
discussed.

9. Conclusions The conclusions and possible future work are summarised in chap-
ter 9.

Chapter 2

Preliminaries

Mathematical structures are employed to formalise and reason about the behaviour
of concurrent systems. We use a number of such structures and possibly slight devi-
ations of them that better fit our needs. This chapter serves as a quick introduction
in the mathematical objects used in this thesis and the particular notations that are
used. Section 2.1 starts with some general mathematical concepts and subsequently a
number of structures are introduced that are frequently used to formalise concurrent
and communicating systems. Labelled transition systems are introduced in section
2.2 as a formal abstraction of reactive systems. The notion of behaviour of a labelled
transition system and corresponding concepts of equivalence between systems are
discussed in section 2.3. Labelled transition systems are often specified by process
calculi. An introduction is given in section 2.4. To analyse properties of reactive sys-
tems, these properties must be formalised. A particular framework to express such
properties is temporal logic; it is the topic of section 2.5. Algorithms for the analy-
sis of systems using temporal logic often build on finite state automata. These are
introduced in section 2.6.

2.1 General mathematical concepts

We will first go through some basic mathematical concepts and introduce the nota-
tions we use for them in this thesis. More elaborate treatments can be found in many
textbooks. This introduction was inspired by similar ones in [183] and [156].

2.1.1 Sets, Relations and Functions
Sets and their typical elements

A set X is a (finite or infinite) unordered collection of mathematical entities called
elements of the set. x € X (x ¢ X) is used to denote that the object x is (not) an element
of X. The set without any elements is denoted as @. The number of elements of a set
X is referred to as |X| (we write | X| = oo if X has infinitely many elements).

A set can be denoted by enumerating its elements, such as {0,1} or {a,b,c,...} (an
ellipsis is often used to indicate that the enumeration should be completed in a way

16 Preliminaries

that is evident from the listed elements). Another way to specify a set is by a property
P. The set {x € X | P(x)} (or just {x | P(x)}) denotes the set of all elements of
X for which the property P holds. The set of odd natural numbers, for instance, is
denoted by {n € IN | nmod 2 = 1}. Yet another way is to define a set by some
explicit construction from the elements of another set; {e(x) | x € X} is the set of
all elements obtained by substituting the elements of X in the expression e(x), for
example the set {2n | n € IN}. A set X is said to be a subset of Y (denoted as X C Y)
if every element of X is also an element of Y (X € Y denotes that X is not a subset
of Y). The set containing precisely the subsets of a set X is called the powerset of
X: 2X = {Y | Y C X}. The union of the sets X and Y is denoted as X UY = {x |
X € Xorx € Y} and their intersection as XNY = {x | x € Xandx € Y}. The
difference between sets X and Y is the set of all elements of X that are not elements of
Y: X\Y ={xeX|x¢Y}

Some familiar sets are the set N = {0,1,2,3,...} of natural numbers, the set R of
real numbers (R=9, the set of positive real numbers including 0), and the set Q of all
rational numbers (Q=9, the set of positive rational numbers and 0).

In this thesis, sets of all sorts are used frequently. One often needs to refer to elements
of such sets. To avoid the necessity to specify the particular set whenever such an el-
ement is required, we make use of typical elements of sets. If we introduce a collection
X and variable x as a typical element of X, then whenever x is used, it is implicitly
understood that x € X. Another way to say that x is a typical element of the set X is
to say that x ranges over X. Moreover we implicitly assume that whenever it is stated
that x ranges over X, then also the variables xg, X1, x' and so forth range over X. If X
is a set of sets, then we denote their union by |JX = {a | a € x for some x € X} and
if X is non-empty, their intersection by N1 X = {a | a € x for all x € X}.

For sets X and Y the product X x Y is the set of all ordered pairs of elements from X
and Y respectively, {(x,y) | x € X and y € Y}. In general one can define the set of
ordered n-tuples (X1, X2, ..., Xn) from a product of n sets X; x X, x ... x Xp. If all X;
are identical and equal to say X, one can also write X". The element number i of the
ordered n-tuple x is denoted by x(i).

Relations and Functions

A binary relation between two sets X and Y is a subset of X x Y. If R is such a relation,
we often write XRy instead of (x,y) € R. If R C X x X we say that R is a binary
relation on X. If R is a binary relation between X and Y and S is a binary relation
between Y and Z then RS is a binary relation between X and Z, such that xRSz if and
only if there is some y € Y such that xRy and ySz. In the remainder we abbreviate
the cumbersome phrase ‘if and only if’ as ‘iff’.

If X is a set then the identity relation Idx on X is the binary relation {(x, x) | x € X}. If
R is a binary relation on a set X then R(M s the relation obtained from composing R
with itself n times, taking R(9) = 1dy and R("1) = RR(M for all n > 0. The reflexive
transitive closure R* of a relation R on X is J{R(" | n € IN}.

A partial function f from X to Y is a binary relation between X and Y such that for

1This is a simple but naive introduction to sets. The famous paradox by Bertrand Russel shows that a
property does not always define a set; {x | x ¢ x} does not define a set. A detailed treatment of set theory
is beyond the scope of this thesis; references can be found in [183].

2.1 General mathematical concepts 17

every x € X there is at most one y € Y such that (x,y) € f. If there is such a y, then
f(x) is said to be defined and we write y = f(x). If there is no such y, then we say
that f(x) is undefined. To denote that f is a partial function from X to Y, we write
f : X — Y. Apartial function f from X to Y is called a total function if it is defined for
every X € X. To express that f is a total function from X to Y, we write f : X — Y.
All functions we introduce are assumed to be total unless explicitly stated otherwise.
dom(f) is used to denote the domain of f : X — Y,ie. {x € X | (x,y) € f}. YX
denotes the set of all total functions from X to Y.

If f : X <= Yandg: X < Y then we use g[f] to denote the function f modified by g,
i.e. (g[f])(x) = g(x) if g(x) is defined and (g[f])(x) = f(x) otherwise. If f : X < Y
and g : Y — Z then we use the (customary) notation g o f to denote the (relation)
composition fg; thus g o f(x) = g(f(x)). Furthermore, we use the ‘variant notation’
for functions, f{y/x}. If f : X — Y, x € Xandy € Y then f{y/x}(x) = y and
for all X' € X, x" # x, f{y/x}(x") = f(x'). When xy, Xy, ...are distinct, we use
f{y1/x1,y2/X2, ...} as shorthand for f{y;/x1}{y2/%2} ...

2.1.2 Induction

An important technique to apply in proofs or definitions over infinite sets is induc-
tion.

Inductive Definitions

Many sets, functions, and other mathematical objects are defined inductively. The
underlying principle of an inductive definition is a set of inference rules of the follow-
ing form:
Premises
Conclusions

A rule prescribes the derivation of larger facts or objects from smaller ones. Rules
without premises are called axioms. The set of rules inductively defines all conclu-
sions that can be derived by a finite number of applications of the rules. Inductive
definitions will be used frequently and in many forms.

Syntactic Sets and Grammars

We often employ sets of syntactic objects do denote mathematical structures. These
syntactic sets are defined inductively by a set of rules indicating how to construct
their elements. Such a set of rules is often called a grammar. The following rules for
instance, define a set E of arithmetic expressions.

nelN e, €E ep€E e €E ep€eE e €E ep€E
nekE e1+e €E e —e €E e xXe €E

Instead of using inference rules, a grammar is usually written in Backus-Naur Form
(BNF). In BNF, the rules for E are written as follows.

ex=nle +ey|ep1—ex|egxe; (NEN)

18 Preliminaries

This definition states that an arithmetic expression (e) can be a number (n), the sum
of two arithmetic expressions (e; + e;), the difference of two arithmetic expressions
(e1 — e2), or the product of two arithmetic expressions (e; x e,). €, e1, e and n are
variables that range over syntactic sets and are called (syntactic) metavariables. In the
example, n ranges over a (given) set of (syntactic representations of) numbers. e, e
and e, range over arithmetic expressions in E. Thus the grammar gives an inductive
definition of the set E as the least set satisfying the formation rules. To show that a
particular expression is in E, we can use a derivation tree in which rule instances are
placed on top of each other, using the conclusion of one rule as one of the premises
of another. For instance, the derivation tree

2elN 3eN

1eIN 2¢cE 3€E
l1cE 2x3€eE
1+2x3€¢E

shows that 1 +2 x 3 € E (from the factsthat 1 € IN, 2 € INand 3 € IN).

Two elements e; and e, of a syntactic set are called syntactically equivalent (denoted
g1 = ep) if they have been constructed in the same way from the syntactic rules.
(e1 # e, denotes that e; and e, are not syntactically equivalent.) The presented
grammar for E is called an abstract grammar, because it allows for the same expression
(for instance 1 + 2 x 3) to be constructed in differentways ((1+2) x 3or 1+ (2 x 3)).
Such a grammar would not be suitable for a practical implementation. The grammar
would have to be extended to resolve such ambiguities; such an extended grammar
is called a concrete grammar. For a theoretical description, abstract grammars suffice.
If necessary, we use parentheses to express the intended parsing of an expression
(as we did to express the different ways to parse 1 4+ 2 x 3). The parentheses are
not part of the syntactic expressions themselves. If the expression e is an element of
some syntactic set, we use e[f /x] to denote the syntactic element obtained from e by
replacing all occurrences of the subexpression x with f.

Inductive Proofs

In order to prove properties of objects that are defined inductively, one proceeds
along the lines of the inference rules. Assuming that the desired property holds for
the premises of a rule, it is shown to hold for the conclusions of the rule as well. If
this can be shown for every inference rule, then the property holds for every object
derivable.

Mathematical Induction

The elementary form of induction is called mathematical induction or natural induction.
It is based upon the inductive definition of the natural numbers. An inductive proof
of a property P(n) parameterised by a natural number n € IN, proceeds by proving
the particular property P(0) and proving that for every n > 0, P(n + 1) holds if P(n)
does.

2.1 General mathematical concepts 19

Structural Induction

A particular instance of the concept of induction is called structural induction. The
grammars introduced in this section define a syntactic set by structural induction.
It consists of a number of formation rules describing how to build larger syntactic
constructs out of smaller ones. If we want to prove a property of all elements of such
a syntactic set, we can proceed by induction on the syntactical structure. Suppose
that we want to prove that for every arithmetic expression that can be derived in the
grammar of this section, the quantity of numbers n is one more than the number of
operators (4, — and x). Then we can show that it is true for the basic formation
rule (n, having one number and no operators) and that it is true for e; + e, (e; — e,
g1 x ep) if we know it is true for e; and e,. From these observations it follows that the
property holds for every arithmetic expression in the syntactic set E.

2.1.3 Infinite words and languages

Objects that play an important role in the formalisation of reactive systems and their
behaviour, are finite or infinite sequences of elements (symbols) of some collection
we refer to as an alphabet. Here we introduce some notation to be used with such
sequences. An alphabet X is a set {01, 02, 03, ...} of symbols. A (countable) infinite
sequence of symbols in X is considered to be an ordered tuple having an infinite (w)
number of elements. Hence the set of all such sequences is denoted as X¢. Such a
sequence is called an (w-)word. A set of such (w-)words is called an (w-)language.
Let W = 0p0107 ... € . We use W(k) to denote oy. Moreover, we use WX if we refer
to the suffix of w from position k € IN, i.e. to the sequence ooy 10k;2.... If U € Z*is
a finite word over X, then u - w denotes the concatenation of u and w. inf(w) is used
to denote the set of symbols in X that occur infinitely often in an w-word w:

inf(W) = {0 € £ | YizoImaW(m) = o},

2.1.4 Time

Our aim is to describe real-time systems. Therefore it is important to be able to
describe time formally. Time can be measured discretely, such as the ticks of a digital
clock (possibly represented by the natural numbers IN), or continuous such as time
in the physical world (or at least the abstraction of physical time that we generally
use); represented for instance by the positive real numbers, R=0.

Time Domain

Without worrying about physical or philosophical questions, we naively assume that
time is linear, it has a beginning t = 0, but extends infinitely into the future; a prac-
tical assumption about the nature of time when studying reactive systems.
Formally, a time domain is a commutative monoid (T, +, 0) (+ is a commutative and
associative operator on T and 0 is the identity of +) with the following properties
[147]:

et+t =ttt =0;

20 Preliminaries

e the relation < defined ast < t' & Jygt+t" = t' is a total order; for every
tteT,t<tort <t

Then the following properties follow from the previous ones:
e 0is the least element of T;

e forany t, t/, if t < t’ then the element t” such that t +t" = t’ is unique; it is
denoted by t' —t.

IN, Q=% and R>° with their usual 0-elements, ordering and addition are proper time
domains. We use T+ to denote T\{0}. Furthermore, a time domain is called dis-
crete if every instant in time has one particular successor instant; Viet3pet(t < t'A
Virett <t = t' < t). Itis called dense if time has a more continuous nature,
namely if for any two instants one can always find an instant in time in between;
Vivert < t' = Jpert < t" < t'. Thus, N is a discrete time domain and both Q=°
and R>? are dense.

Intervals

To define properties of real-time systems, one needs the concept of an interval of
time. If the time domain is dense, one can discriminate between open and closed
boundaries. An interval | is a convex subset of the time domain T. A finite interval
with lower bound a and upper bound b is denoted as

e [a,b] = {te T |a<t<b}ifitisboth left-closed and right-closed and a < b;

a,b) ={teT|a<t<b}ifitisleft-closed and right-open and a < b;

[
(a,b] = {te T|a<t<b}ifitis left-open and right-closed and a < b;
(

a,b) ={t € T |a<t<b}ifitisboth left-open and right-open and a < b.

If 1 is such an interval, then I(1) denotes the lower bound a of | and u(1) denotes the
upper bound b. The length of interval | is b — a and is referred to as |I|. An infinite
interval with lower bound a and no upper bound is denoted as

e [a,00) = {te T|a<t}ifitis left-closed;
e (a,00) ={teT|ac< t}ifitis left-open.

If 1 is such an infinite interval, then I (1) denotes the lower bound a of I. | — t denotes
theinterval {t' —t|t' € land t’ > t}.

2.1.5 Timed Words

The w-words introduced earlier can only express discrete sequences of symbols. We
can now extend words with (dense) timing information. An interval sequence | =
lglil> ..., is a diverging sequence of consecutive finite intervals, such that 1y is left-
closed and I(lp) = 0. The interval sequence | is diverging if for any t > 0 there is
an interval 1(k) such that t € 1(k). Consecutive means that for any two successive

2.2 Labelled Transition Systems 21

intervals 1(k) and I(k+ 1), u(1(k)) = I(1(k + 1)) and either 1(k) is right-closed and
1(k + 1) is left-open or 1(k) is right-open and 1(k + 1) is left-closed.

A timed word v over an alphabet %, is a pair (w, 1) consisting of an w-word w over £
and an interval sequence I. For any t € T, we use v(t) to denote the symbol present
at time t, this is w(k) if t € 1(k). Two timed words v; and v, are called equivalent
(vy = vy)ifforallt > 0, vy(t) = vy(t). Fort €T,

e the suffix ' of interval sequence | is the following sequence of intervals:

(k) —t) (I(k+1)—t) (I(k+2)—t) ...

where k is such that t € 1(k);

o the suffix ' of a timed word © is the timed word (WX, T') (k such that t € T(k)).

2.2 Labelled Transition Systems

To automatically analyse systems, we need an abstract (mathematical) model of
them. A possible abstract view on the behaviour of a system is to regard it as an
entity having some internal state and, depending on that state, is able to engage in
transitions leading to other states. Such a transition might be autonomous or stimu-
lated by the environment. It is assumed that the relevant behaviour of the system is
exposed during such a state change. A mathematical structure that tries to capture
this abstract view on a system is a labelled transition system.

2.2.1 Untimed Labelled Transition Systems

A labelled transition system (LTS) is a graph consisting of nodes (states) and labelled
edges (transitions). The label represents the observable behaviour associated with
the transition. The number of nodes of such a structure can be (uncountably) infinite.
Formally, a labelled transition system is a triple (S, L,—) consisting of a set S of
states, a set L of labels and a labelled transition relation — C S x L x S. A transition
(s,A,s") € — denotes a possible transition from state s to state s’ decorated with the

label A. For A € L, we write —2> to denote the binary relation on S defined as

2> = {(s1,52) | (51, A,52) € —>}.

Thus the transition from state s; to s, labelled A is alternatively denoted as s; A So.
Moreover we introduce the following notation. We write s —> if s —> s’ for some

s' € Sand s /2> if nots 2>

At times it is convenient to discriminate certain transitions that are considered un-
observable. Then, the LTS has a special label (or a special set of labels) that denotes
(denote) internal unobservable transitions. This special label is usually denoted as 7.
Figure 2.1 shows a graphical representation of an example of a labelled transition
system. The states are represented as circles and the transitions as arrows between
states. The labels a, b, ¢, d and 7 are the actions the system engages in during its
transitions.

22 Preliminaries

Figure 2.1: Example of a labelled transition system

A possible generalisation of the labelled transitions system is to assume that the
system not only exposes some of its behaviour while making a transition from one
state to another, but also whilst the system resides in a particular state. This would
entail the extension of the LTS with a set of state labels and a mapping labelling every
state with a particular label from that set.

The following properties of labelled transition systems are important.

e DEADLOCK. Astate s € S in a labelled transition system (S, L,—>) is called a
deadlock state if it has no outgoing transitions, i.e. if thereis no A € L such that
s —A>. After reaching such a state, the system will never again engage in any
transition.

e DIVERGENCE. A state sy € S in a labelled transition system (S, L, —) is di-
verging if it may execute an infinite sequence of internal transitions. Formally,
it diverges if there exists a sequence of states sy, Sy, S3,...such that for all k > 0,

T

Atrace 6 = (5, A) describes an (infinite) path through an LTS. Formally, it consists of
an infinite sequence s of states and an infinite sequence A of labels, such that

A(0)

§(0)

Sometimes it is convenient to represent a trace as a sequence of pairs (s, A) rather
than a pair of sequences (for instance to write 0¥ to denote a particular suffix of a
trace). We will freely use (and mix) both notations.

2.2.2 Timed Labelled Transition Systems

The labelled transition system yields a very abstract representation of a system. Par-
ticularly it does not explicitly capture timing of the system’s behaviour. Since we are
especially interested in real-time systems, we make use of an extension of the LTS

2.2 Labelled Transition Systems 23

that does incorporate timing information. A timed labelled transition system (TLTS)
is a 5-tuple (S, T, L,T>, ?) . Here, S, L and —>areas in untimed LTSs. T is a
time domain and the time transition relation - C Sx TT x Sis used to represent

passage of time.
In this model of a timed system, action transitions (T>) are assumed to be instanta-

neous (taking no time) and the passage of an amount t of time is represented by a
transition T—t+>
When reasoning about timed transition systems, the following properties of the tran-
sition relations are frequently used (see also [129, 147, 186]).
e TiME DETERMINISM. Time transitions are deterministic; no choices are made
as time progresses; for every s, s',s” € Sandt € T, if s T—t+> s’ and s T—t+> 5"
thens’ =s".
e TIME ADDITIVITY. (Called time continuity in [186].) Time transitions can be

split into smaller transitions, or combined to larger ones; for every s, s’ € S,

t+t . . t t
andty,t, € Tt,s 1T4+2> s’ iff there is some s’ € S such that s T—1+> s/ T—i> g

e MAXIMAL PROGRESS. (Called action urgency in [147].) Maximal progress
with respect to a set L’ C L of labels requires that transitions labelled with

elements of L’ are not postponed; if s —ﬁ> forsomes € Sand A € L/, then

thereisno t € T such that s T—t+> . Moreover if time is deterministic, then it

is often also required that s T+t if s Tt; s’ —> forsome 0 < t' < tand

A € L'. Note that in case of time additivity, this is automatically implied by the
first requirement.

e PERSISTENCY. A TLTS is called persistent if the progress of time does not dis-
able other transitions; forall s;,s, € S,A € Landt € T, ifs; %and Sy T—t+> S,

then s, —i>

In the remainder we often leave out the subscript identifying the transition relation
as being the action transition relation or the time transition relation. It will be clear

from the label (being from L or T*+) which relations is intended. Hence, we shall
write s; A Sp and s LN S, to indicate s; —ﬁ> s, and s; T—t+> S, respectively.
Moreover we use y as a typical elementof LU T™.

A timed trace ¢ = (5,7%) describes an (infinite) path through an LTS. It consists of an
infinite sequence s of states and an infinite sequence 7 of labels or elements of the
time domain, such that

5(0) 7(0) 5(1) 7(1)

A timed trace (5,7) is called Zeno 2 if Sien T(yi) < oo (T(y) equals y ify € Tand 0
otherwise). If this is the case, the total amount of time elapsed during the trace does

23uch a trace is called Zeno after the famous paradox by the greek philosopher Zeno of Elea about
Achilles and the Tortoise in which he defends the belief that motion and change cannot exist.

24 Preliminaries

Figure 2.2: Two systems with similar behaviour

not progress beyond some pointt € T. If the time domain is discrete, then this can
only occur if after some point, no more time transitions are taken. If the time domain
is dense, then it might be the case that although infinitely often time transitions are
made, the trace does still not progress beyond some point in time. Under certain
circumstances, one would like to ignore Zeno traces as they represent ‘unrealistic’
behaviour.

2.3 Behaviour and Equivalences

Reactive systems operate in continuous interaction with their environment. Their
behaviour cannot be described transformationally, such as in the case of traditional
software systems which, when fed with some input data, compute for a while and
then terminate delivering output results. Therefore, the behaviour of reactive sys-
tems is typically modelled as an infinitely long (never ending) interaction with the
environment. There are many different models to formalise what the behaviour of a
system is. What the best model is depends on the intended use.

Adopting the labelled transition system as the model of a reactive system, one might
take as its behaviour, the set of all sequences of labels observed along any possible
path through the transition system. For both systems in figure 2.2, this behaviour
when started from the topmost state, is represented by the set {ab,ac}. Taking a
slightly different point of view, one might argue that these systems should not be
considered equivalent. If we imagine an observer interacting with the system, af-
ter observing a transition ’a’, one of the systems is willing to engage in both a ’'b’
transition and a ’c¢’ transition, whereas the other system is only willing to engage in
either a ’b’ transition or a ’c’ transition. From this point of view, behaviour can be
formalised as an infinite tree of possible transitions, starting from some initial state
of the LTS and branching via its transitions to new states and so forth.

Sometimes one would like to consider certain transitions of a system to be internal
to the system and unobservable from the outside. Systems that only differ in terms
of internal transitions may then still be considered equivalent from the point of view
of an external observer.

2.3 Behaviour and Equivalences 25

Since behaviours are generally infinite, there are some other questions about be-
haviours that can be raised. For example, assume that on an infinite path through a
labelled transition system, a particular state is visited infinitely often and although
this state has several outgoing transitions, the execution always follows the same
transition to leave this state. Under certain circumstances, this behaviour can be re-
garded as ‘unfair’ with respect to the other outgoing transitions and therefore this
behaviour is not a realistic one and should be neglected. Such extra conditions are
called fairness conditions [79].

As there are multiple definitions of what a system’s behaviour is, there are also many
definitions of when to call two different systems equivalent. Taking the former, linear
view, an obvious definition of equivalence is to call two systems equivalent when
the sets of all sequences of observations along execution paths are identical. This is
generally called trace equivalence.

An equivalence relation which pays more attention to the branching structure and
which is based on the idea of an external observer interacting with the system, is
called observation equivalence. Two systems are found equivalent if the observer can-
not distinguish them by interacting with them. When we discuss the execution
of specifications in chapter 4, we show that the executed behaviour is observation
equivalent to the specification. It is discussed in more detail in the next section.
Besides equivalence relations on transition systems, one can also define pre-orders
that express when a transition system is a good implementation of another, or more
general or precise than the other.

2.3.1 Bisimulations

The formalisation of observation equivalence is established by means of a relation
on states of the labelled transition system called a bisimulation relation [153, 140].
The idea behind bisimulation is to regard two states as equivalent if they can en-
gage in the same observable transitions (transitions with identical labels) and after
performing similar transitions end up in equivalent states again. If one chooses to
think of every transition as observable, the relation is called a strong bisimulation.
If one abstracts from internal transitions, it is called weak bisimulation or branching
bisimulation if one abstracts from internal transitions but retains some of the internal
branching structure.

Formally, a strong bisimulation relation on a labelled transition system is defined as
follows.

2.3.1 DEFINITION A symmetrical relation S C S x S is a strong bisimulation rela-
tion on an LTS (S, L,—>) if for every (s1,5;) € S and A in L, ifs; —2> s} then there
is some s, such that s, —> s, and (s}, s}) € S. o

Two states s; and s, are said to be (strong bisimulation) equivalent (s; ~ sy) if there
is a strong bisimulation S such that (s1,s;) € S.

Instead of defining a bisimulation relation as a relation on some LTS, it can also be
defined as a relation between different LTSs. Let LTS; = (Sq, L1,T>) and LTS, =
(S,, Lz,?) be two LTSsthen S C S; x S, is a bisimulation between LTS; and LTS,

if for every (s1,s52) € Sand A € Ly U Ly,

26 Preliminaries

e ifs; 2> 5] then there is some s} such that s, —2> s, and (s}, s}) € S;

e if s, 2> s} then there is some s} such that s; —2> s and (s},s}) € S.

Bisimulation captures a notion of equivalence that equates two systems if they can-
not be distinguished by interacting with them. Thinking of internal, unobservable
transitions, strong bisimulation can be regarded as too strong. To overcome this
problem one can define equivalence in terms of a transition relation which abstracts
from internal transitions. Define a T-abstracted transition relation —> as the smallest
relation on S such that

o 5, ==> 5, if 51 (—>)*sy;

o 51 =255, if A # Tand s;(—>)* 2> (—T>)*s,.

Weak bisimulation can now be defined in terms of the abstracted transition relation.

2.3.2 DEFINITION A symmetrical relation S C S x S is a weak bisimulation relation
onan LTS (S,L,—) if for every (s1,52) € Sand AinL, ifs; SEEN sy then there is
some s}, such that s; SN s, and (s}, s)) € S. O

Alternatively, weak bisimulation can be defined with the abstracted LTS, (S, L,=>).
Then (see [140]) S is a weak bisimulation on (S, L,—>) iff S is a strong bisimulation
on (S,L,=>). Two states s; and s are called (weak bisimulation) equivalent (s; =
sp) if there is a weak bisimulation S such that (s;,s;) € S.

2.3.2 Timed Bisimulations

The notion of bisimulation can be extended to timed transition systems (see e.g. [186,
103, 21]). Guided by the same underlying ideas, two states are (strongly) equivalent
if they possess the same time and action transitions, leading to equivalent states.
Formally this is expressed as follows.

2.3.3 DEFINITION A symmetrical relation S C S x S is a strong timed bisimulation
relation if for every (s;,s;) € S,AinLandte T,

o ifsy —2>s| then there is some s}, such thats, —* s}, and (s},s}) € S;

o ifs; —'>s! then there is some s} such thats, —> s, and (s}, s}) € S. O

States s; and s, are (strong) timed bisimulation equivalent (written s; ~1 s, or just
s1 ~ sy if it is obvious that the intended relation is a timed one) if there is some
strong timed bisimulation relation S such that (s1,s;) € S.

Correspondingly one can define a weak bisimulation relation, by abstracting from
internal actions [186]. A transition relation that abstracts from internal transitions
should consider a sequence of time transitions and internal action transitions as one
large time transition. The time that passes in this transition should equal the total
amount of time passed in the sequence. Let the abstracted time transition relation

? be defined as follows. ? is the smallest relation on S such that s; T:t+> Sy

2.4 Process Calculi 27

. t t
if s1(——)* T1+ () . () T”+ (—=>)*sy, wheret = t; +...+tq > 0.
Note that time determinism is not necessarily preserved in the weak timed transition
relation due to the possible non-determinism caused by the T transitions.

Using the new transition relations, we can define weak timed bisimulation relations.

2.3.4 DEFINITION A symmetrical relation S C S x S is a weak timed bisimulation
relation if for every (s;,s;) € S,AinLandte T,

o ifs; =2 s then there is some s, such that s, SN s, and (s},s5) € S;

. ifs; = s then there is some s, such that s, — s, and (s},s5) € S. 0
T+ Tt

The relation :A> is defined as in the untimed case. s; and s, are weak timed bisimu-
lation equivalent (s; ~T Sy, Or just s; = s,) if there is some weak timed bisimulation
relation S such that (s1,s;) € S.

2.4 Process Calculi

Behaviour of reactive systems can be formalised in terms of labelled transition sys-
tems. The specification of reactive systems by directly writing down their labelled
transition systems however is impractical. Such an explicit description could be-
come large and even infinite. The behaviour of the composition of two subsystems
operating concurrently would have to be described as one monolithic transition sys-
tem. There is a need for a more compositional approach to specify the behaviour of
reactive systems. Such an approach is offered by process calculi such as CCS [140],
CSP [104] and ACP [27] among others. Process calculi allow one to composition-
ally specify labelled transition systems. For instance, given two systems specified
as process calculus expressions, one can easily express the behaviour resulting from
taking both systems executing concurrently and possibly communicating together.
Several flavours of process calculi exist. In this section we describe CCS ([140]) as a
representant that resembles the calculus we use in the following chapters.
Concurrency is an important aspect of distributed systems which often consist of
components operating concurrently and relatively independently. As the composed
system is described as an LTS again, the independent individual transitions have to
be combined to transitions of the total system. An abstraction that is often used is
interleaving concurrency. It models independent concurrent actions by considering
the occurrence of individual action in arbitrary order, but not at the same time. Only
explicitly synchronising actions between components occur together.

2.4.1 Syntax

The set of process expressions is parameterised with a set .4 of names (ranged over
by a, b,...)and aset A = {a|a € A} of conames of A. Let * be an operator which
yields for every name a its coname a and for every coname a the corresponding
name (a = a). The names denote individual actions; names and their corresponding
conames are compatible actions that can be executed together. The set £ of labels

28 Preliminaries

(ranged over by ¢) is the set A U A of all names and conames. The silent or internal
action is denoted as t. Together they form the set of all actions Act = £ U {t} (ranged
over by «). Moreover, there exists a set K of process constants (sometimes called agent
constants) ranged over by A. The set P of process expressions, ranged over by P, is
produced by the following grammar (f : Act - Actand L C A).

P == 0 | aP | P4+P | PP | PIf] | P\L | A

0 has no interesting behaviour by itself. It is unable to perform any action and is
used as a basic building block to construct more complex processes. « - P is the pro-
cess that is able to perform an action «, after doing so it will behave like process P.
P1 + P, is the process that behaves like process P; or as P,. P1||P; is called the parallel
composition of the processes P; and P,. It represents the process whose behaviour is
given by the concurrent operation of both processes. P[f] is a process which behaves
like the process P, but with the names of its actions relabelled according to the rela-

belling function f; f must be such that f(¢) = f(¢) forevery ¢ € £ and f(1) = 7.
P\L is the process that behaves just like P, but its actions are restricted to actions that
are not included in the set L; this is called hiding. Finally, we have the behaviour of
the process constant A; every A € K is defined as a process expression P (in which

A may occur again): A & Pa3. Then the behaviour of A equals the behaviour of

Pa. The process constants allow the expression of infinite behaviour. For instance

the process constant defined by A “'a- Acan engage in an arbitrary number of ‘a’

actions. The interpretation of process expressions as labelled transitions systems is
formalised in the next section.

2.4.2 Semantics

The semantics of a process expression is given in the form of a labelled transition
system. In this transition system, the process expressions act as states and the transi-
tions are labelled with actions from Act. Thus the semantics of the calculus is given
by the LTS (P, Act,—) . To complete the semantics of the calculus we need to define
the labelled transition relation — C P x Act x P.

2.4.3 Structural Operational Semantics

The labelled transition relation is defined using a structural operational semantics
(SOS) as introduced by Plotkin [154]. The transitions of a particular process ex-
pression are defined inductively along the structure of the process expression. The
premises of the SOS rules consist of one or more statements about the presence of
transitions of —-and/or other conditions. The conclusions state transitions that can
be concluded from the premise. The statements contain syntactic metavariables. The
actual rule instances are obtained from the rules by instantiation of the variables with

3 Another interpretation of process constants is to view the behaviour of A as the solution to the set of
equations {A ~ Pa | A € K}. Under certain conditions ([140]) the solution is unique or under different
conditions, one can show the equations to have a unique ‘smallest’ solution that can be taken as the
behaviour of A.

2.4 Process Calculi 29

_ P1L>P:Il

——F—FF Act Sum

a-P—2>P P+ P,—%> P, P, + P, %> P;

o / ¢ / 7 '

. Fl e Pl . l Comy P]_ —_— Pl; P2 l—>IP2 Comy
P1[|P2 = P1[|P2, P2||P1 — P2[|P; P1||P2 — P1[|P;
p—%sp/ P2sP.a¢lL@¢lL P>p ALP

: Rel = ; Res . ; Con
pl1] ' prp P\L —%> P/\L A—%sp

Table 2.1: Semantics of CCS

processes and actions over which they range. For instance the rule

P1L>P:Il

P1+P2L>P]l_

states that whenever P; — P] is a valid transition of some process expression of

the form P; for some action «, then P; + P, —%> P{ is a transition of any process
expression of the form P; + P,. The axiom

a-P-—2%>P

states that the process « - P can perform the action « and after that behave as P.
Given such a collection of axioms and rules, the transition relation is defined as the
smallest relation satisfying all the axioms and rules. The complete collection of se-
mantical rules of CCS are displayed in table 2.1.

Figure 2.3 shows the semantics of the process expression (a-b-0 || c¢-b-0)\{b}.
The actions ‘a’ and ‘c’ of the concurrent subprocesses are executed in any order and
after that the subprocesses can only synchronise on their ‘b’ and ‘b’ actions (individ-
ual ‘b’ or ‘b’ actions are not possible because of the hiding of {b}.

The transition labelled ‘a’ from the initial expression can be derived from the rules
as demonstrated by the following derivation tree.

Act
a-b-0-%>b-0

(a-b-0 || ¢-b-0)-2>(b-0 || c-b-0) .
(a-b-0 || ¢-b-0)\{b}-2>(b-0 || c-b-0)\{b}

Comy

es

30 Preliminaries

N

(b-0 || ¢-b-0)\{b} (a-b-0 || b-0)\{b}

A

(b-0 || b-0)\{b}

/

T

(011 0)\{b}

Figure 2.3: LTS induced by the process expression (a-b-0 || c¢-b-0)\{b}

2.4.4 Real-time Process Calculi

Real-time extensions of the process calculi have been made to describe real-time sys-
tems in terms of timed labelled transition systems [18, 19, 49, 62, 96, 139, 147, 159,
186]. Thus the semantics of a real-time process calculus is a TLTS

(T’P T, Act, ——, —>>

Act T+

Real-time process calculi include all operators that are used in the untimed calculi
and give them a timed interpretation. Furthermore, new operators are introduced
that quantitatively control a system’s timed behaviour. An overview and compar-
ison of possible timed operators can be found in [147]. What new operators are
needed depends on the existing operators and the required expressiveness. We in-
troduce here only a delay operator (t) P, yielding a calculus similar to the one in
[186], with the syntax

P = 0 | a-P | ()P | PL+P, | PPy |
P[f] | P\L | A

The semantics of the real-time calculus (TCCS) is time-deterministic and exhibits
maximal progress with respect to internal transitions. A process P is called urgent
with respect to some set U C Act of urgent actions (denoted as UrgentV (P))if P >
for some u € U. A process is urgent within time t (denoted as UrgentU(P, t))ifitis

urgent (now) or if there exist t' < t and P’ such that P U pland P'is urgent, i.e.
UrgentY (P"). This urgency predicate is comparable to similar ones in [3, 96, 186].

The urgency of actions and deterministic time give rise to a two-phase execution
model. The definitions of the action and time transition relations is such that internal
action transitions have precedence over time transitions. An execution of a system
will take internal action transitions for as long as there are such transitions avail-
able. Only when there are no more internal transitions available, time transitions

2.4 Process Calculi 31

phase 1 phase 2 phase 1
actions time actions

Figure 2.4: Two phases of the execution of timed systems (from [147])

become possible. Every time transition will be available up to the point where new
internal transition become available. The effect is that the execution occurs in alter-
nating ‘phases’ (this is illustrated in figure 2.4, [147]) starting with a phase in which
internal actions are performed asynchronously and in which time does not progress.
This phase is followed by a phase in which time passes synchronously for all pro-
cesses. After new internal actions have become available, a new asynchronous phase
starts, and so forth. In the asynchronous phase, possibly non-deterministic choices
are made between available transitions. The synchronous phase on the other hand
is entirely deterministic.

The timed interpretation of the existing and new operators is given by the rules in
table 2.2. Together with the rules of the untimed calculus in table 2.1, they define the
semantics of the calculus. Note that the rules represent just one timed interpretation,
others are possible as well.

The first and third rule of the delay operator guarantee the time continuity of the
transition system. The time behaviour of the + operator is defined in such a way
that the passage of time does not enforce a choice. Care has to be taken with the
time transition rules of the parallel composition. The idea behind the rule is that if
both subprocesses can let some amount of time pass, then their parallel composition
is allowed to let the amount of time pass and the time passes synchronously in both
subprocesses. To ensure that urgent actions take place as soon as possible, an extra
requirement is added. The subprocesses of the parallel composite may become ready
to synchronise only after some delay. This situation is dealt with by the urgency
condition*. The hiding and relabelling operators operate on actions and have no
influence on time.

4The parallel composition rule exploits a negative premise. There might be some concern regarding the
existence of a (unique) solution of the transition relation defined by the rules [30]. That such a transition
relation does indeed exist can be shown as in [174, 175] by the fact that the negative premise occurs in
a rule of the time transition relation, but refers only negatively to action transitions whereas the action
transitions are defined without referring to the timed transition relations. The existence of a transition
system can be shown by a stratification separating action and time transition rules.

32 Preliminaries

/
T — = At 'f <t Del,
0-1>0 (-PLtsy.p P (t-t)P
P—ts>p P, > P!, P, 1> P}
— — Del ——————— Delg Sum
tp-Lsp (typ s pf P+ P, > P] + P}

P, —t> P}, P, —1> P}, =UrgentV (P;||P,, t)

Comy
P1||P, = Py ||P;
p—t>p pt>p ALP
Rel,Res Con
P[f] -t P'[f], P\L —> P/\L A-Lsp

Table 2.2: Semantics of TCCS

2.5 Modal and Temporal Logic

We have seen formal models for distributed reactive systems, discussed their be-
haviour and equivalence relations and we have introduced process calculi as a for-
malism for the specification of reactive systems. Extensions of the introduced con-
cepts into the real-time domain have been discussed. In order to verify these systems
for properties they may possess, we need a way to effectively (formally) capture the
desired or undesired behaviour. During transitions one can observe the labels of
the executed transition. It is also conceivable that one would like to monitor cer-
tain properties that are observable while the system resides in a particular state. A
formalism to express properties of a system’s behaviour should not only be able to
express statements about such observable features, but should also be able to relate
them over time. For instance if an observation is allowed to occur, but only after
certain other property was observed earlier.

Temporal logic is a popular framework to express such aspects of a system’s be-
haviour. Several variants exist, depending on, for example, the view taken on the
description of a system’s behaviour.

2.5.1 Branching Time Temporal Logic and Linear Temporal Logic

One particular division among temporal logics is between the view of behaviour
as a set of possible (linear) traces (linear time temporal logics) and considering the
branching structure of an LTS an integral part of its behaviour (branching time tem-
poral logics).

A distinction is often made between open and closed systems. An open system is
a system whose behaviour is influenced by interaction with the outside world. In
a closed system the exposed behaviour is determined entirely by the system itself

2.5 Modal and Temporal Logic 33

and is not influenced by the outside world. Although reactive systems are by their
very nature open systems, formal models often include a model of the environment
in which they are supposed to operate. Such a model of a reactive system together
with its environment can be considered a closed system.

Temporal logics are interpreted over structures of observations (called Kripke struc-
tures®). In linear temporal logic (for instance, LTL[134]) a formula is interpreted
over a sequence of observations. For a labelled transition system, this could be the
sequence of observed labels along a path through the LTS. Branching time temporal
logic formulas (such as CTL[72]) are interpreted over trees of observable events. At
every point in the execution, all possible transitions are taken into account.

The observations used in temporal logic are usually boolean observations. Individ-
ual components of an observation are called atomic propositions and take a boolean
value in every observation. Propositional connectives such as not, and, or and im-
plies can typically be used to combine atomic propositions into larger propositional
formulas. Several variants of operators can be added to relate propositions on obser-
vations over time.

2.5.2 Untimed Temporal Logic

In this section we will define (untimed) propositional linear temporal logic (LTL,
[134]). This logic is interpreted over (linear) sequences of observations, called state
sequences. A state sequence o over a set Prop of atomic propositions, is an w-word
(see section 2.1.3 for notation) & = 0p0107... € (2°)“ over the alphabet 2P
of states. We let p range over Prop. A state is an individual observation and the
interpretation of a state o as a subset of Prop is that the proposition p holds (is true)
instate o iff p € 0.

The syntax of LTL (ranged over by ¢, 1) is defined by the following grammar.

pu=true|p|-¢ o1V | Q¢ | p1Up;.

Prop(¢) is used to refer to the set of atomic propositions occurring in formula ¢. The
semantics of LTL formulas is formally defined for a model (state sequence) & and a
formula ¢ by means of the satisfaction relation =, as follows.

e T |= true for every state sequence o;

o |= piff p € 5(0);

o —¢'iffnotc = ¢;

GV iff T = @1ora = @)

o= Q¢ iffo! = ¢;

G = @1Uq, iff there is some k > 0, such that 3¢ |= @, and forall 0 < m < k,
" E 1.

SKripke structures are themselves similar to labelled transition systems, although states are labelled
rather than transitions.

34 Preliminaries

o E ¢ denotes that the formula ¢ holds for the state sequence @. p evaluates to
the value of the atomic proposition p in the first state. true, —, V are traditional
propositional connectives. The last two operators relate states over time. () states
that the formula ¢ holds for the state sequence obtained by removing the first state
from ©. The operator is pronounced ‘next’. ¢1Ug, holds if there is some moment n
(now or in the future) at which ¢; is true (holds for ") and for all moments before
that ¢, holds, i.e. forall 0 < k < n, 3 |= ¢;.

Other operators can be defined in terms of these.

def
o false: false £ —true;

conjunction: @1 A @7 L (=1 V —2);

the ‘eventually’ operator: <@ &f trueU¢, stating that ¢ will at some point

become true (sometimes written as F);

the *always’ operator, O¢ & =, stating that ¢ is true at every moment
(sometimes written as Gg).

the dual oV, &' - (—@1U—@,) of the Until operator (called Unless or Re-
lease).

The language £(¢) associated with the LTL formula ¢ (w.r.t. a set Prop of proposi-
tions) is the set of all state sequences over Prop that satisfy ¢,

t(g)={ze (2")" |5l 0}

The O operator allows the expression of properties that are sensitive to the number
of states visited between two particular states. This is sometimes undesirable, since
unobservable transitions and interleaving concurrency introduce repetitions of iden-
tical observations. This phenomenon is often referred to as stuttering [124]. If one
leaves out the () operator, only properties can be expressed that are insensitive to (fi-
nite) stuttering. Moreover in the dense real-time extension of temporal logic, the O
operator (in contrast with the other operators) does not have a natural interpretation.

2.5.1 EXAMPLE A state sequence over the set {p, q} of propositions is for instance

{pHp}{p a}z{a}....

It satisfies the formula pUq (q holds at the third instant, and p for the first and sec-
ond), but not the formula Cp (p fails to hold at the fourth and fifth instant).

When dealing with LTL formulas it is often convenient to have negations occurring
only in front of atomic propositions. This is achieved by introducing duals for all
operators (false for true, A for v and V for U, () is its own dual) and removing the
negation (except in front of atomic propositions). Such formulas are said to be in
positive normal form or negation normal form.

The syntax of positive LTL is defined by the following grammar.

pu=true|false |p|-plo1 Vo2 | o1 Ap2]| O@ | p1Ups | @1Ve,.

2.5 Modal and Temporal Logic 35

[-p N r X p

Figure 2.5: Example timed state sequence

2.5.3 Real-time Temporal Logic

Temporal logic can be used to express temporally related properties about the be-
haviour of a system. Such properties are only qualitative, it is not possible to express
guantitative timing bounds on temporally related events. This is however crucial to
express properties of real-time systems. The following section deals with the exten-
sion of linear temporal logic with quantitative timing constraints.

Real-time Models

Temporal logic formulas are interpreted over state sequences. For real-time temporal
logic, the observations have to be extended with information about their timing. This
is done by representing a sequence as a timed word over state observations, a timed
state sequence.

A timed state sequence p over a set Prop of propositions is a timed word (see section
2.1.5) over the alphabet 2P™P. Thus, it is a pair (@, T) consisting of a state sequence &
and an interval sequence I.

A timed state sequence describes the observable propositions during an execution
including timing information. The propositions can only change a finite number of
times in any finite time-interval due to the divergence property of the timed state
sequence. A graphical representation of the timed state sequence (@{p}2...,[0,4)
[4,6](6...) over Prop = {p} is shown in figure 2.5.

Syntax and Semantics

We continue with the definition of the syntax and semantics of a particular real-time
temporal logic, MITL([5]). The syntax of MITL is defined by the following grammar
(where | is an interval).

pu=true|p|—¢ | o1V 2| @1Ui02

Note that the (O operator of LTL has no intuitive meaning in timed state sequences
and has been removed. The Until operator is parameterised with an interval I, con-
straining the time of occurrence of ¢, quantitatively to a moment in the interval.
Formally, the semantics of MITL formulas is defined as follows for a model (timed
state sequence) p.

e 7 = true for every timed state sequence p;
* = piffp e p(0);
L I) |:) iff notp |: @,

* D=1V iff p = @rorp = @2

36 Preliminaries

e 0 |= @1U, ¢, iff there is some t € |, such that p* = ¢, and forall 0 < t' < t,
¢!
P\ E o1V o2

The semantics of true, p, =¢’ and @1 V @ are straightforward (note that p(0) denotes
the observed state at time 0). The formula ¢, U, @, states that there is some instant in
the interval | where @, holds and up to the point where ¢, holds, it is the case that
@1 holds.

Note that in the semantics of ¢1U, >, we use ﬁt' E @1V @y in the latter part instead
of ﬁt' = @1. This is used to avoid the anomaly that the formula is not true for the
situation where @1 is true and ¢, is false during a right-closed interval and ¢ is false
and ¢, true in the next (and thus left-open) interval (see [9]). This solution however
also has its drawback if the lower bound of | is greater than 0. This interpretation
then allows that @, temporarily does not hold before the lower bound of | is reached,
as long as ¢, holds in such periods. These problems do not occur in the logic we use
in this thesis (we shall restrict the lower bound to 0).

Similar to the untimed case, other operators can be defined, indexed with an interval

I, such as < &f trueU, ¢ meaning there is some moment in | where ¢ holds and
Oy & =(©1=¢) (@ holds at every moment in 1).

2.5.2 EXAMPLE The formula < s 10)p holds for the timed state sequence of figure 2.5
(p holds for instance att = 6). The formula Djq 4)—p does not.

From the way timed state sequences are defined, it follows that on any finite interval
of time, the valuation of atomic propositions can change only a finite number of
times. It can be shown [5] that also the valuation of any MITL formula can change
only a finite number of times on any finite interval, MITL is just one of many kinds
of timed temporal logic, an overview can be found in [101].

2.6 Finite State Automata

Finite state automata are well known. The behaviour of reactive systems is viewed
upon as a continuous interaction with the environment and is best captured as non-
terminating behaviour. The classical finite state automaton that accepts finite words
is adapted to accept infinite words. Such automata are called w-automata ([43, 171]).
These automata also move from state to state while accepting symbols of the input
word. Since the input word never terminates, the notion of acceptance is modified.
Several notions of acceptance exist. The most common one, called Buichi acceptance,
states that a run of the automaton is accepting if it passes infinitely often through a
state that is marked as accepting. Finite state automata are very similar to labelled
transition systems. Although in automata often the edges are labelled instead of
states, this difference is not significant. Acceptance conditions of automata can be
compared to fairness constraints placed upon labelled transition systems.

2.6.1 w-Automata

We define a fairly standard notion of w-automaton. To avoid confusion with other
entities, we call the states of the automata locations from now on. We label locations

2.6 Finite State Automata 37

rather than transitions and we label them with sets of symbols instead of with single
symbols. An automaton having only single symbols in its locations can be easily ob-
tained by splitting these locations into a single location for every symbol in the set.
Similarly, it is easy to move the labelling to the transitions. Furthermore the accep-
tance conditions are slightly different and referred to in [89] as ‘generalised Buchi’
acceptance. This is a generalisation of Blchi acceptance, but equally expressive in the
sense that an automaton with generalised Blchi acceptance can be converted into a
normal Buchi automaton (at the cost of an increase in the number of locations by a
factor of the number of acceptance sets) [51]. Formally, an w-automaton is defined
as follows.

2.6.1 DEFINITION An w-automaton A = (L, £, Lo, Q, E, F) consists of

e afinite set L of locations;

a finite alphabet X,

a finite set Lo C L of initial locations;

a mapping Q : L — 2% labelling every location with a set of symbols from the

alphabet;

e asetE C L x L ofedges. (¢,{') € E denotes an edge from location ¢ to location
gl,.

e asetF C 2\ of acceptance sets. O

As an automaton accepts a word w, it traverses the locations of the automaton while
consuming symbols of w. The sequence of locations that are visited is called a run.
Next, we formally define what sequences of locations constitute a valid run and
when a run matches a particular word.

2.6.2 DEFINITION A run / € L® of an w-automaton A = (L,Z,Lo, Q,E,F) is a
sequence of locations, such that:

e (CoNSECUTION) for allk > 0, there is an edge (¢(k), {(k+ 1)) € E;

e (ACCEPTANCE) for every set f € F, inf(¢) N f # & (see section 2.1.3 for the
definition of inf(+)).

Given awordw € ¢, { is a run forw on A if

e (MATCHING) for allk > 0, w(k) € Q(£(k)). i
Arun ¢ of A is called initial if £(0) € Lo. One says that A accepts the word w if there
is an initial run ¢ of A for w. The following holds for every run ¢.
2.6.3 LEMMA ifZ is arun for w of w-automaton A, then for any k > 0, Zk is arun for
=k
wX of A.

The language £(A) associated with the automaton A is the set of all w-words that are
accepted by A.

38 Preliminaries

sofijos

Figure 2.6: Example of a Biichi automaton

Drawing Conventions When drawing w-automata, locations of an automaton are
indicated by circles possibly containing a name or number for reference. Edges are
represented by arrows between locations. The initial locations are indicated by a
small arrow leading to the location, not starting from any location. The accepting
locations are indicated by an extra line around it if there is only a single acceptance
set. In the cases we need to visualise multiple acceptance sets, we use other means to
visually discriminate locations in an ad hoc fashion. The labelling of locations with
symbols is also written inside of the locations.

2.6.4 EXAMPLE Figure 2.6 shows an example of a Blichi automaton that accepts all
infinite words of {a, b} that contain an infinite number ofb’s. Because of the accep-
tance condition, any run on the automaton must visit infinitely often, the location ¢;.
Thus, any matching word has infinitely many b’s.

An automaton is called deterministic, if for every symbol o € X, there is at most one
initial location | that matches it and for every location £ € L and symbol o € X, there
is at most one edge (¢, ¢') € E such that ¢’ matches o. The analysis of systems us-
ing finite state automata often involves operations on automata (see chapter 6) such
as determination, the construction of a deterministic automaton accepting the same
language, and complementation, the construction of an automaton accepting those
words the original automaton does not accept. Determination of Buchi automata is
not possible (w-automata with certain other acceptance conditions can be made de-
terministic). Complementation is possible, but at the cost of an exponential blowup
in size. Checking Blchi automata for emptiness of the associated language can be
done in linear time [171].

2.6.2 Timed Automata

w-Automata accept w-words over some alphabet X. Such words do not contain in-
formation about time, other than the discrete order of occurrence of symbols. In sec-
tion 2.1.5, we have seen the extension of w-words to timed words. Timed automata
([7]) are finite state automata that accept timed words. To do this, the automata ex-
ploit timers that can be set to a particular value and whose values decrease as time
passes. Conditions on timers can be used to enforce timing constraints.

We simplify and adapt our timed automata a little (from the standard automata of
[7], in fact, from the interval automata of [5]) to suit the use in this thesis (in particular

2.6 Finite State Automata 39

in chapter 8)6. We start with some definitions. A timer valuation (timer assignment)
v over a set © of timers is a (total) mapping ® — R. We call the set of all timer
valuations over ©, TVal(©). For any t € R, we let v — t denote the timer valuation
that assigns the value v(x) — t to any timer x in the domain © of v. Note that timers
may become negative. 0€ denotes the timer valuation that maps all timers in © to
the value 0.

The values of particular timers can be changed by means of a timer setting operation.
A timer setting TS over a set © of timers is a (partial) mapping ® — IN. The set of
timer settings over © is denoted by TSet(®). Forany v € TVal(®) and TS € TSet(0),
with TS[v] we will refer to the timer valuation that maps a timer x € © to TS(x) if
defined and to v(x) otherwise.

A timer condition on a timer x is an expression of one the following forms x > 0,
X > 0,x < 0or x < 0. The collection of timer conditions on a set © of timers,
{x >0,x>0,x < 0,x < 0] x € 6} is called TCond(®). The satisfaction of a
timer condition in TCond(®) by a timer valuation v € TVal(©) is (straightforwardly)
defined as follows.

e vEXx>0iffv(x) > 0; o vEX<O0Iiffv(x) <0;
e vEX>0iffv(x) >0; o viEXx<O0iffv(x) <0.

The state of a timed automaton during the acceptance of a word now consists not
only of the location it currently resides in, but also of the values of its timers. Such
a state is called an extended location [8]. An extended location s of a timed automaton
with locations L and timers O, is a pair (¢,v) consisting of a location ¢ € L and a
timer valuation v € TVal(0).

2.6.5 DEFINITION A timed automaton A = (L, %, ©, Lo, Q, TC, E) consists of

e afinite set L of locations;

a finite alphabet %,

a set © of timers;

a finite set Ly of initial extended locations ({y,vg) € L x TVal(®), where the
timers are assigned by vq integer values only;

a mapping Q : L — 2% labelling every location with a set of symbols from the
alphabet;

a mapping TC : L — 27¢nd(®) japelling every location with a set of timer
constraints over timers in ©;

asetE C L x TSet(©) x L of edges. (¢,TS,¢') € E denotes an edge from
location ¢ to location ¢, labelled with a timer set operation TS. m|

Swithout proof, we conjecture that this restriction does not decrease the expressiveness of the automata
other than the lack of acceptance conditions, i.e. our automata are equally expressive as interval automata
of [5] without acceptance conditions. The main restriction lies in the fact that we can only compare timers
to 0, though we can set it to an arbitrary (integer) value. The effect of comparing a single clock with differ-
ent bounds can be mimicked by setting different timers to the corresponding initial values simultaneously
and comparing the right timer with 0.

40 Preliminaries

As a run describes the subsequent states of the automaton while accepting the input
word, a run as used for w-automata has to be extended with information about the
timer values. It should describe at any moment what the location of the automaton
is and what its timer values are. This can be fully described by the sequences of
locations, the intervals during which the automaton resides in each location, and the
timer values at the beginning of each such interval.

2.6.6 DEFINITION A (timed) run r of a timed automaton A = (L, X, 0, Lo, Q, TC,E)
is a triple (¢,1,%) consisting of a sequence of locations, an interval sequence, and a
sequence of timer valuations, such that:

e (CoNsecuTIoN) for all k > 0, there is an edge (£(k), TSy, £(k + 1)) € E such
thatv(k + 1) = TS¢[v(k) — [1(k)]];

e (TiMING) for all k > 0, t € I(k) and x € TC(f(k)), we have ¥(k) — (t —
1(1(k))) = x-

We write r(t) to denote £(k) ift € 1(k). A run of A is initial if (r(0),%(0)) € L.
Given a timed word v, r is a run for v of A if

e (MATCHING) forallt > 0, v(t) € Q(r(t)). O

The requirement on the timer valuation v ; reflects the operational interpretation
of a run. If v, captures the timer values at the beginning of the k’th interval, then
v — |1(k)| represents their values at the end of the interval (if the interval is right-
open, then this time valuation is not actually reached). After the timer setting TSy,
we obtain the timer values at the beginning of the next interval. Similarly, ¥(k) —
(t—1(1(k))) represents the timer values at instant t.

The timed automaton A accepts the timed word v iff there is an initial run r of A for
v. Note that in our timed automata, timers decrease rather than increase and they
are set to a positive value instead of reset to 0 as in [7]. Timers are only compared
to zero. We have furthermore left out the acceptance conditions for simplicity. They
can be added in the standard way. It follows from 2.6.6 that timed automata cannot
discriminate between equivalent timed words.

2.6.7 DEFINITION The suffixes of sequences of timer valuations and timed runs are
defined as follows.

e Foranyk € IN and d € R=2%, the suffix V9 of a sequence v = vgviv; ... of
timer valuations is defined as the sequence (v — d) Vg, 1Viio - - -

e Foratimed runt = ({,1,¥) and any t € R0, the suffix r* is defined as

(7, 1", 7%9) wherek is such that t € T(k) and d = t — 1(T(K)). i

If r is a run for the timed state sequence p on A, then for every t > 0, it is a run for
pton A. The language £(A) associated with the timed automaton A is the set of all
timed words that are accepted by A.

2.7 Automatic Protection Switching Protocol 41

90 63

Figure 2.7: Example of a timed automaton

Drawing Conventions The locations, edges and symbol labelling are visualised as
it is done for w-automata. Initial extended locations are represented by small arrows
with assignments to the timers of the automaton. The timer conditions are written
inside locations and timer settings associated with edges are written in the form of
assignments along the arrow representing the edge. Our timed automata will not
have acceptance conditions.

2.6.8 EXAMPLE Figure 2.7 shows a timed automaton that accepts timed words over
{a, b} such that a symbol a is never observed for more than 5 units of time uninter-
ruptedly. The use of timer x guarantees that a run of the automaton does not reside
for more than 5 units of time in location ¢, without visiting ¢, in between. X is set to
5 upon entering ¢, and is required to remain at least 0 for as long as the run remains
in ¢,. Thus a matching run cannot show the symbol a for more than 5 units of time
without showing symbol b in between.

As with untimed automata, the use of timed automata for analysing systems in-
volves checking some of its properties. Checking the emptiness of the language it
accepts is very important (see chapter 6) and is PSPACE complete. Universality of
the language, language inclusion and language equivalence between automata are
undecidable and timed automata are not closed under complement [8].

2.7 Automatic Protection Switching Protocol

As a practical case study for the techniques described in this thesis, we have mod-
elled and analysed a protocol designed to provide automatic protection against fail-
ure of communication lines between high-level telecommunication nodes. The pro-
ject was performed in cooperation with Lucent Technologies in Huizen, the Nether-
lands, part of Bell Laboratories [132]. The protocol is named APS (Automatic Protec-
tion Switching). SDH (Synchronous Digital Hierarchy), is a protocol used to trans-
port large quantities of traffic between high-level switches in a telecommunication
network through optical fibres. APS is used to protect linear (point to point) SDH
network sections against the failure or degradation of one of the communication
lines by automatically rerouting the traffic onto an extra, redundant line (see figure
2.8). This happens automatically, without the intervention of the network manage-
ment system, governed by APS. As there are two sides of the communication line, a

42 Preliminaries

Bridge Selector
signal 1 _f \ 4 \ signall_
signal 2 signal 2
signal n /| signaln
protection
node 1 node 2

Figure 2.8: Rerouting through protection line

(\ signal 1 (\
signal 2
signal n
node 1 node 2
protection
APS
—/ —

Figure 2.9: APS Nodes

protocol is necessary to coordinate the use of the protection line. The APS protocol
is specified in ITU-T Recommendation G.841[110] and (at that time) a formalisation
of the protocol was under study within the context of ETSI specification ETS 300 417
[75]’.

On one side of the connection, there is a bridge that determines which signal is
placed on the protection line and on the other side there is a selector that connects
the redundant line to the appropriate channel if necessary. The two nodes exchange
messages Via a (reliable) APS channel, informing each other about their status (see
figure 2.9). The decision what channel to be switched onto the protection line is based
upon information received about the quality of the lines (signals may be normal, de-
graded, or failing completely). Moreover external configuration commands can be
given by the network management. The highest priority request is granted (signal
failure has priority over signal degradation, signals with a lower number have prior-
ity over signal with a higher number). Network management commands have even
higher priority and can be used (among other things) to force a switch of a particular
signal to the protection channel or to forbid a particular signal to be switched to the
protection channel.

Nodes on both sides generate requests based upon this information and communi-
cate the request to the other node. The node with the highest request keeps trans-
mitting the request and the other node starts transmitting an acknowledgement that

"Recommendation G.841 is a description of the protocol in plain english text. The ETSI specification is
an attempt to make this more precise by giving a reference model in terms of a structure of communicating
processes and pseudo-code; not a model with a mathematically defined semantics.

2.7 Automatic Protection Switching Protocol 43

(~\
Signal (\ Ssignal [\ APS Node
_Conditions Local Request
- Process
——
External (\ External
Commands External Request Global Setting Bridge/
Process Process Selector
s | f) Request
Messages Remote q
Process lobal
—/ Request N/
\. J

Figure 2.10: Structure of an APS node

it operated in accordance with the request of the opposite node.

There are several modes and architectures in which the APS protocol may operate.
The protocol can be unidirectional or bidirectional, there may be one protection line
for one signal line or one protection line for several signal lines. The protocol may
automatically revert to the original situation after a signal condition returns to nor-
mal or it may leave the signal on the protection line until some other signal requires
it. The protection line, if unused for protection, may be used to carry extra traffic.

A node is specified as a number of concurrent processes whose behaviour is given in
pseudo-code in the ETSI specification. The important processes in the specification
are the local process, the remote process, the external process, the global process
and bridge and selector control (see figure 2.10). The local process determines the
local request with highest priority. The remote process monitors the APS messages
of the other node to determine the request and bridge/selector settings of the other
node. The external process takes commands from the network management and
turns them into corresponding requests. The global request combines local, remote
and external request to determine the appropriate local settings of bridge/selector
and request to send back to the opposite node.

The following scenario describes the possible behaviour. Assume that at the begin-
ning, no signal is switched to the protection line and signal conditions are normal.
Both nodes issue the lowest priority request NR, indicating that the situation is nor-
mal. Now assume node 1 detects that signal 1 is failing. Then it issues a request
SF-1 (Signal Failure on line 1). This is detected by the opposite node, which issues
a request RR (Reverse Request) indicating that it acknowledges that the request of
the other node is of higher priority than its own (still NR) and sets its selector ac-
cordingly. Some time later, the signal quality may return to normal and the request
SF-1returns to NR. The numbers behind the request in the scenario indicate the local
bridge and selector setting.

44 Preliminaries

{ Node 1 ’ ‘ Node 2 ’

NR,0
NR,0
NR,0
NR,0
SE-1,0

RR,1
SF-11

SF-1,1
RR,1
NR,0

Figure 2.11: Scenario of APS messages

The model presented in this thesis is a simplified model of the protocol and only
supports the following requests (in order of priority, low to high): RR, NR, SD-n
(degradation of signal n), SF-n (failure of signal n), FSw-n (forced switch of signal n
to the protection line). Only the following commands from the network management
to the protocol are modelled: FSw-n, CLR (clear current command), LOP-n (lockout
of protection of signal n, deny switch of signal n to the protection line) CLRLOP-n
(clear the lockout of signal n).

Chapter 3

A Calculus for Real-Time
Concurrent Systems

In this chapter a formal model for real-time concurrent systems is introduced in the
form of a process calculus. Although many of the techniques that are introduced
are aimed at (and have been applied to, [87, 156]) complex systems, including com-
munication and concurrency, real-time and complex data, the calculus we present
here will abstract from data; it would be impossible and unnecessary for the pur-
poses of this thesis to introduce a calculus of this complexity. Since we focus our
attention on static structures of collaborating entities, the calculus describes a fixed
structure of interconnected components. The semantics of the calculus is given in
the form of a structured operational semantics, including a notion of time. More-
over, the semantics is cast in a more direct, operational form that is better suited for
the implementation described in the next chapter.

This work started in the context of the formal modelling and specification language
PoosL ([156]). The basic concepts of PoosL for communication and concurrency
are inspired by CCS. The CCS-like calculus introduced here is in fact an abstract
version of the language PoosL. The results obtained in this thesis have been applied
to Poost itself and are applicable to other languages or calculi in this style as well.
The focus on static structure and architecture originates also from PoosL and the
accompanying analysis and design framework SHE([156]).

Section 3.1 introduces the syntax of the calculus and section 3.2 its semantics. We
focus the notion of termination in the semantics in section 3.3. A small example
illustrates the calculus in section 3.4. Since the calculus does not include data, but
PoosL does, we pay some attention to an operational framework for data semantics
in section 3.5. A model of the automatic protection switching protocol in the calculus
is presented in section 3.6. Section 3.7 gives an example of a part of the actual PoosL
model of the APS protocol and discusses its relation with the presented calculus.
Sections 3.8 and 3.9 end the chapter with related work and conclusions respectively.

46 A Calculus for Real-Time Concurrent Systems

3.1 Syntax of the Calculus

A process of the calculus will describe a static structure of interacting components.
The syntax of process expressions is split into two parts, the dynamic processes and
the static composition of such dynamic processes. In [140], Milner distinguishes
between static and dynamic combinators. The static combinators are the ones that
remain in the process expression after a transition. The dynamic combinators may
disappear after the transition. In CCS, static and dynamic operators can be mingled
freely. We separate static and dynamic combinators into two layers (similar to the
‘networks of regular processes’ in [129] and the ‘simple agents’ of [149]). This way,
the static operators are truly static in the sense that they cannot be removed because
they occur in a subprocess of a dynamic operator.

3.1.1 Dynamic Processes

The set DP of dynamic processes, ranged over by S, is the set produced by the
following grammar, (« € Actandt € T™):

Si=« | <t> | S1; Sy | S1+ S, | S1 | Sy | A

together with the process /.

« is the process which can perform the action « after which it terminates (sometimes
it is written as («) to be able to distinguish between the action « and the process («)).
(t) is the process that can delay for an amount t of time and after that terminate. It
cannot perform any actions. Sq; S, is the sequential composition of S; and S,. Its
behaviour is similar to that of S; until it terminates. After that its behaviour is that
of S,. The choice process S; + S, behaves as either S; or S, depending on a (hon-
deterministic) choice, made at the time at which either of the processes performs
some action. S; | S, represents the concurrent execution of S; and S,. Concur-
rency is modelled as the arbitrary interleaving of their respective actions. It is a
pure interleaving, i.e. the processes do not synchronise. This is in contrast with the
parallel composition operator that is introduced in the following section. A is a pro-

cess constant. The process constants are defined by a set of (recursive) definitions

{A L sy | Aec KD}, where Sy # / and KD is a set of process constants. It is

furthermore assumed that all recursion in the constant definitions is guarded, i.e. if
a constant A is directly or indirectly defined in terms of itself, then there must be

an action « or delay (t) in between; the definition A &' A + a for instance, is not
allowed?.

The / process is used as an aid for representing a terminated process. The only
(dynamic) process expression in which it occurs is the terminated process 4/ itself. It
cannot engage in any action, but can let arbitrary amounts of time pass.

3.1.1 EXAMPLE We give a definition of a variant of Milner’s jobshop ([140]). The
dynamic components of the jobshop (making use of sequential composition rather

1When interpreted as equations, unguarded definitions may have multiple solutions. Moreover, to-
gether with sequential composition and the use of data expression to parameterise a process constant,
this leads to processes that are very hard to implement.

3.1 Syntax of the Calculus 47

than CCS'’s prefix operator) are the following constants.

Hammer = geth; puth; Hammer
Mallet %' getm; putm; Mallet
UseHammer &' geth; (2); puth
UseMallet £ getm; (1); putm
UseTool &' UseHammer + UseMallet
inEasy; outEasy
+
Jobber &' inNormal; UseTool; outNormal | ; Jobber
+

inHard; UseHammer; outHard

The Hammer and Mallet processes model the behaviour of tools that are used in the
shop. The geth and getm action represent the event that a tool is picked up by
someone to be used. Before it can be used again, it must be put back, represented
by the puth and putm actions. The process constants UseHammer, UseMallet and
UseTool are used to define the behaviour of a jobber. UseHammer models the use of
the hammer (picking it up, using it for 2 units of time and putting it back). Similarly,
UseMallet models the use of the mallet and UseTool models the use of either of the
tools. Finally, Jobber models the behaviour of a jobber. It may take any of three kinds
of jobs, easy ones, normal ones or hard ones. Easy jobs can be done without a tool,
normal jobs with any of the tools and hard jobs only with the hammer. The finishing
of a job is represented by the outEasy, outNormal and outHard actions.

3.1.2 Static Structure of Processes

The static part of the syntax describes the static structure in which a collection of
dynamic processes are connected. This structure remains intact as the processes exe-
cute. Static processes are not created dynamically and the structure does not change.
The syntax defining the set SP of static processes (ranged over by R) is as follows.
The static operators are identical to the corresponding operators of CCS [140].

R == S | RyRz | R[f] | R\L | AS

A static process can be the instantiation of a dynamic process S. Static processes can
be composed in parallel as Ry ||R;. This operator lets Ry and R, operate interleaved
concurrent and lets the processes synchronise on complementary actions. R[f] is the
process R, but with its actions relabelled according to the relabelling function f. The
hiding operator restricts the actions of a process, R\L behaves as R, but the hiding
operator prevents actions in L from occurring. Furthermore, there is a set £S of

static process constants AS, defined by a set of non-recursive definitions {AS & Ras |
AS € KS}, where KS is a set of process constants. This guarantees that any static
process has a finite static structure built from dynamic processes.

3.1.2 EXAMPLE The jobshop can be described by the static process expression

Jobshop ' (Jobber| [Jobber ||Hammer||Mallet) \ {geth, puth, getm, putm}.

48 A Calculus for Real-Time Concurrent Systems
rJobshop A
inEasy Jobber outEasy
inNormal outNormal
inHard outHard
getm putm puth geth
inEasy O—e T T »—(O) OutEasy
getm O +—O geth
inNormal O Mallet Hammer © outNormal
putm O Q puth
inHard O O outHard
é A4 A4 é
getm putm puth geth
inEasy outEasy
inNormal outNormal
inHard Jobber outHard
_ J

Figure 3.1: Example of a statically structured system: Milner’s jobshop

The structure of this static process is graphically illustrated in figure 3.1. A com-
ponent’s sort of actions is indicated by ‘ports’ at its border. Lines between the ports
(‘channels’) indicate the possible synchronisations between components; actions that
have not been restricted are available for synchronisation at the ports of the jobshop
itself. The geth, puth, getm and putm actions are restricted to prevent entities from
outside the jobshop to use the tools. Due to the static nature of the static processes,
this picture is appropriate for any derivative expression of Jobshop.

3.2 Semantics of the Calculus

This section defines the semantics of processes in terms of a timed labelled transition
system. The labelled transition system will have transitions with two different kinds
of labels. On the one hand there are action transitions, describing the change in a
process which is the result of performing some action, and on the other hand there
are time transitions describing the effect the passage of time has on a process.

The semantics of the calculus is given as the quintuple

StatCalc := (SP, Act, T, =, ?>

consisting of the set of static processes SP that will serve as the states of the labelled
transition system; the set of actions Act, the time domain T and two labelled transi-
tion relations: e C SP x Act x SP, a set of action transitions labelled with the

actions of Act and a time-labelled transition relation - CSPxTT xSP.

3.2 Semantics of the Calculus 49

— Sy %> 8 Sy %>
ACT, ! L # \/ SEQ; 17\/ SEQ;
OCL>\/ 51;52L>S’;52 51;52L>52
S, %5 5
+1

51+52L>Sl, 52+51L>S’1

S1—>81 #V

S1]1S2—%>S1[S2, S2|S1—%>S,|8]

|1

S; %> A¥s s 25 g
! v |2 RECy

S1]S,—%>S, S| S1-%>S, A-%s g

Table 3.1: Semantics of the action transitions of dynamic processes

The semantical axioms and rules that define the action transition relations of dy-
namic processes are given in table 3.1. Each rule is given a name for reference that
is written beside it. The axiom ACT states that the process « can perform the action
« and after that terminate (o« cannot perform any other actions). Sequential com-
position is defined by rules SEQ; and SEQ, stating that the possible actions of the
composite are ‘inherited’ from the possible actions of the first process, correspond-
ing to the idea that the sequential composition starts with executing the first part. In
case the result of the action is the termination of the first process (SEQ,), the subse-
guent behaviour of the composite is identical to the behaviour of the second process.
If S; did not terminate (S; # +/, SEQ,), its execution is continued. The choice op-
erator + can perform any action that can be performed by one of its subprocesses.
Once such an action has been performed, a choice has been made and the subprocess
from which the action originates is further executed. This is expressed by rule +;.
The interleaving of two processes (rules |, and |,) can also perform any action that
can be performed by one of its subprocesses. In contrast with the choice operator
however, both subprocesses remain active and continue to interleave their actions.
Upon termination of one of the processes (|,), the terminating process is removed
and the other process continues its execution. Finally the rule REC; claims that the
agent A defined as R can perform the same actions as R and has the same remaining
behaviour.

The rules for the time transition relations of dynamic processes are shown in table
3.2. The axiom ACT, says that synchronisation actions (all actions other than)
are allowed to let an arbitrary amount of time pass, waiting for a synchronisation
to become available. If an internal action T can be performed, one would like it to
be performed immediately. The delay rules DEL; and DEL, describe the time be-
haviour of the delay process. Note that the delay process (t) is not mentioned in the

50 A Calculus for Real-Time Concurrent Systems
- o<t <t -
ACT, ——————————— DEL, —— DEL,
!
Ny () > (t—t') () —>/
S, -ts¢ Syt
! 172V g, 2TV,
S1:S, > 5!:S, S1:S; 4> S
S; >8£S > Sh £/ Sy >/, S > S,
+2 +3
81+Sg—t>8'1+8’2 Sl+SZL>\/, Sz+sl—t>\/
sl—‘>s'17é\/,szﬁ>s'27é\/| Sy >/, S > S, |
3 4
Sy]S, >8] |Sh S1]S, S, Sy |S—>8h
A¥ss tyg sty s 2yg
—————— REG, CNT
A tﬁ SI S ﬁ) S”

Table 3.2: Semantics of the time transitions of dynamic processes

3.2 Semantics of the Calculus 51

action rules and thus it cannot perform any actions. (t) can make time transitions up
to t. The resulting process corresponds to the remaining delay (DEL;) or terminates
after precisely t units of time (DEL,). The sequential composition rules SEQ; and
SEQ, are identical to rules for the action transitions and state that the composite in-
herits its behaviour from the first component. The choice operator can let time pass
only if both of the subprocesses can?. Termination of one of the subprocesses (this
must have been without ever performing an action) makes the choice terminate?®.
The interleaving rules (|3 and |4) state that time passes synchronously in concurrent
processes. Rule |3 applies if neither of the subprocesses terminates after the delay;
otherwise, rule |4 applies and the terminated subprocess is removed from the in-
terleaving. When the subprocesses terminate together, both conclusions of |4 apply
and state that the interleaving process terminates. The rule REC, is again the same
as the corresponding rule for the action transitions. The final rule CNT makes (to-
gether with ACT and DEL,) that the time transitions are closed in the sense that time
transitions can be arbitrarily combined or refined into larger or smaller time steps®.

The remaining part of the semantics, the action and time rules for the static processes,
are given in table 3.3. The axiom TRM states that once a local process has terminated,
it can delay indefinitely. To be able to combine time and action transitions in the rule
CMP, we introduce y as a typical element of ActU T™. In the parallel composition,
the subprocesses interleave their actions or synchronise on complementary actions
as described by rules PAR; and PAR; respectively. Time passes synchronously in the
static parallel processes (PAR3, the urgency condition will be discussed in section
3.2.1). The rules for the relabelling and hiding operators are straightforward. One
can derive for example using the rules ACT; and SEQ, that a;b —2> b, as demon-
strated by the following derivation tree:

ACT;
a
a—2>
v SEQ,
ab—23>b

From rules ACT,, DEL;, SEQ,, +3 and |4 it follows that a | (b + (2)) —2> a (assum-
ing that 2 € T), as demonstrated by the following derivation:

ACT, —— DEL,

- b—2>b 2) 2
ACT2 — <>_>\/ +3

a—2>a b+ (2) 2>/

al (b+(2)2%>a

2Thus it is a strong choice operator [147], like the one in TCCS [186], as opposed to the weak choice of
ACP,, [21], where the inability to idle of one of the constituents may lead to discarding of that alternative.

3 An alternative would have been to allow the other constituent to continue its behaviour. This interpre-
tation was chosen because it enabled the expression of time-out and watchdog behaviour in combination
with other primitives in the language PoosL.

4Time-closure could have been achieved by introducing a rule particularly for the sequential composi-
tion as it is the only operator that does not preserve time-closure by its standard rules.

52

A Calculus for Real-Time Concurrent Systems

_ Ry %>R}
——F——— TRM PAR;
Vv RillRz <> RillRz, RellRy = Rel Ry
Ry —> R}, R, —L> R,
PAR,
R1]|R2 == R{||R;
t. o topl {7} R—4%>R
Ry >R}, R, >R : Urgent™ (Ry||Ra, t) PARs REL,
R1/|R2 —> R1||R; R[f] — s RI[f]
R_Ls R R4>R,a¢La¢l R—>R
——— REL, HID; —— HID;
R[f] —L> R'[f] R\L %> R\L R\L —>R'\L
ASER R-L>R
CMP

AS Y5> R/

Table 3.3: Semantics of the static processes

3.3 Termination rules 53

3.2.1 Maximal Progress

The rules of the semantics do not allow a process that can perform a T action to delay.
Itis desirable to force processes to advance as soon as possible, to guarantee maximal
progress ([186, 147]). The semantical rules do not allow the process T to delay and
thus neither any process containing 7 as a subprocess that is ready to execute. How-
ever, an internal action in the form of a synchronisation may be available (or become
available after a time transition). The individual synchronising actions are allowed
to delay arbitrary amounts of time waiting for a synchronisation partner to become
available. It is the rule PAR3 that allows concurrent entities to wait synchronously,
but only if and as long as they cannot synchronise. Note that time transitions in the
calculus are deterministic and therefore if R ——> R’ then R’ is uniquely determined
by R and t (this can be proved by structural induction on R). Thus it is completely
determined by R and t, whether or not R will be urgent after time t.

To achieve maximal progress in the calculus, the rule PAR3 has an urgency condition
similar to corresponding rules of the timed extension of CCS discussed in chapter
2 taking T as the only urgent actionS. Thus the predicate Urgent{™ (R, 1) holds iff

R s or R —%s R’ —Z> for some static process R’ and t' < t. The condition is
modelled after a similar condition introduced in TCCS[186].

3.3 Termination rules

The semantics of the sequential composition operator requires the notion of success-
fully terminated behaviour. We have modelled this by introducing the special pro-
cess named /, denoting the successfully terminated process (as in the calculi of [21],
[96], [103] and [156]). (Another way to model termination is the use of a unary pred-
icate that tells us if a process expression has terminated[100].) Consequently, many
rules have to make a distinction between the case of a (successfully) terminating
component and a non-terminating one. Examples are the rules |; and |,. Essentially
they describe the same behaviour, but they differ in the resulting process depending
on the termination of the subprocess.

Working towards a version of the semantics that is more straightforward to imple-
ment, we can give an alternative and clearer definition of the semantics of the dy-
namic processes.

We define an extended set DP¢ of dynamic processes with some additional pro-
cesses. DP* contains all processes of DP, allowing also t = 0 in the process (t)
and allowing the process / as a subprocess. Thus DP°® (ranged over by S) is the
syntactic set generated by the following grammar (o« € Actand t € T):

Su=a | () | SHSy | Si+sy | siIss | A |V

Moreover, we define an extended set SP°® of static processes, ranged over by R®,
which is identical to SP, except for the fact that processes S¢ from DP¢ are used

5As discussed in chapter 2, the presence of the (negative) urgency condition does not hinder the defi-
nition of the transition relation. By the absence of recursion in the static part, the existence of a transition
relation satisfying the rules can be shown using a stratification on the size of the static process expressions
([30, 174)).

54 A Calculus for Real-Time Concurrent Systems

R® V(R®)
[0 4 [0 4 .
o |y oo
cw | VOIS iT/(S]) 7
r2 1 s if V(S =V
cigw| V it /(S;) = Vor /(S5) = v
12 V(S8%) +(S5) otherwise
V(SE) /(5 =/
se1sy | V(S it /(S3) =
V(S8%) | V(S5) otherwise
A A
v 1V
RIIRS | V(RDIIV(RS)
R[] | V(RO)[f]
R\L | V(R9)\L

Table 3.4: The termination function

rather than from DP. Now we can deal with terminated subprocesses by using
a function \/ : SP® — SP that ‘cleans up’ these terminated subprocesses. This
function is defined in table 3.4. For example if the first statement of a sequential
composition has terminated, it is discarded (1/(+/; S) yields S), or if a subprocess in
an interleaving has terminated it is discarded. Note that terminated processes are
not removed in the static process operators, in order to retain the static structure of
the process, even if a subprocess has terminated.

Using the function 4/, we can combine for example rules SEQ; and SEQ; into the
single rule:

The same is true for the + rules, the interleaving rules and corresponding rules of the
time transition relations.

The alternative definition of the semantics of dynamic processes using the termina-
tion function is given in table 3.5. Identical rules for action and time transitions have
also been combined into a single rule. The semantical rules of the static processes
remain unchanged. Notice that although the termination function is only applied in
the conclusion of those rules where it is necessary, its definition ensures that it can be
applied to the conclusion of every rule of both the dynamic and the static processes,
without changing the semantics. If R € SP then \/(R) = R, in other words, |/ is
a projection onto SP. This fact will be used later when the execution of processes
is discussed. Notice how this definition of the rules makes them more operational
in the sense that application of the rules does require one to predict or determine a
priori if the process terminates or not. It demonstrates more clearly that the effect of
termination of a subprocess can be applied independently after the transition itself
has taken place.

3.3 Termination rules

55

_ - o<t <t
ACT, ACT, DEL
(04
V4 ¢ Ltsy (t)t—>\/(<t t'))
S, I>¢
1 1 SEQ
S1; Sy > V/(81:S2)
S, %59 S; —>5}, 5, -5 S)
+1 +2
S1+S;—%>S], S;+S5;-%>8] S1+S; —> /(S)+ Sh)

S; %> S}

S1]S —>/(S1]S2), S2|S1—>/(S2]S})

l1

S; 8, S, >, A¥s s V. ¢d
|2 REC

Si |82 —> /(S 8)) A—>8

S t s’ g t g/

CNT
L+t
- ‘s

S SII

Table 3.5: Semantics of the action and time transitions of dynamic processes

56 A Calculus for Real-Time Concurrent Systems

A'(G) IB A% aBOA

a B¥3aB

A'(t) = GOA

EQ .

AMIB

Figure 3.2: Example of a labelled transition system defined by the semantics

3.4 Example

As an example we will look at the timed labelled transition system defined by the

process A||B, where A £’ a; (5): A and B &' a; B. The corresponding labelled tran-
sition system is shown in figure 3.2. From the initial process (indicated by the extra
circle inside the state) there are three possible transitions, one labelled a, one labelled
a and their synchronisation 7. The transition labelled a leads back to the initial pro-
cess (after performing the action @, the process B equals B again). Both transitions
labelled a and 7 (originating from a synchronisation between A and B) lead to the
process ((5); A)||B. From this process there is a time transition to any process of the
form ((t); A)||Bforanyt € Tand 0 < t < 5. Moreover from any state ((t;); A)||B
there is a transition to any other state ({t,); A)||Bif 0 < t; < tp < 5. If T is dense,
then this is a continuum of processes and transitions. After a number of time transi-
tions, totalling an amount of 5 units of time, the process returns to the state A||B.
The semantics of the jobber process is shown in figure 3.3. The thick circles denote
states that are not urgent; i.e. for any t € T™, there is a transition from the state to
itself labelled t; these transitions have been left out of the drawing for clarity. The
Jobber process for instance is allowed to let any amount of time pass, waiting for
a job to arrive. Moreover, the thick transitions are time transitions and represent a
continuum of states and transitions as in the previous example.

3.5 Data

A formal language that is used to model complex distributed systems should not
only be able to express system structure, communication and concurrency (as can
be done using the calculus as it was introduced), but it should also be capable of
expressing data values.

As it would be beyond the scope of this thesis to introduce a calculus for such a
language, we limit ourselves here to an indication of how this can be incorporated.

3.5 Data 57

outNormal

Jobber

outEasy

outHard

Figure 3.3: Labelled transition system of a jobber

Instead of writing (in the jobshop example),

inEasy;. ..
+
inNormal;. ..

+
inHard; ...

one would prefer to write: in(job); Process(job); out(job). Allowing to write down
the sequence of receiving a job, processing it and delivering it only once, using the
type of job as a parameter.

3.5.1 The Value Passing Calculus

In [140], Milner introduces the value-passing calculus in which in addition to the
basic CCS processes as described in section 2.4, synchronisation primitives and pro-
cess constants can be parameterised. For instance, the process expression a?(x); P(x)
denotes the process that can synchronise on port ‘a’ with an action of the form alv
carrying some value v from some value domain. Upon receiving a value, it is substi-
tuted in every free occurrence of x in the parameterised process expression P(x).

It can be shown (see [140, 109]) that this calculus can be reduced to basic CCS. The
input action a?x can be split into individual actions a?v for every possible value v €
VAL to be received in x. Every parameterised process P(x) can be split into separate
processes P(v) for every v € VAL. Theoretically, this reduction is attractive, since
it allows one to reason about a more complex model (the value passing calculus) in
terms of a much simpler one (basic CCS). This advantage comes at the cost of the
fact that the number of possible transitions of a process may become as large as the

58 A Calculus for Real-Time Concurrent Systems

number of distinct values in the domain VAL, which will often be infinite. This is a
big disadvantage if we try to implement such a calculus.

Another disadvantage of the value passing calculus is that the scope of the ‘variable’
x is limited to the subexpression P(x). This prohibits the modelling of data that is
shared between concurrent entities.

3.5.2 Data Environments

In order to be able to deal with shared data environments, one can introduce a vari-
able environment in which a process executes (see e.g., POOsL[156] or MTCCS[172]).

If we have a set Id of variable identifiers and a value domain VAL, then a variable
environment is a partial mapping Id — VAL. The state of a process is then described
by a pair (P, &), consisting of a process expression (parameterised with variables
x € Id and a variable environment £ which provides the values of these variables.

Now the semantical rule for interleaving for instance, may take the following shape.

(P, &) == (P1,E")
(P1| P2, &) —%> (P | P2, &)

When process P; makes a transition to P; (possibly) modifying the data environment
from £ to £', then it is easy to see how this also effects the data environment of P,.

The notion of a variable environment can and should be refined for modelling of
complex systems to allow for variables to have different scopes. In PoosL for in-
stance, the static processes cannot share data, so they have no need for a common
variable environment. Within dynamic processes, however, data can be shared. They
do have a global data environment (the variables of which are called instance vari-
ables) and moreover it is possible to employ local variable environments, the scope
of which is limited to some subexpression of the process.

3.5.3 Operational Framework for Data Communication

The traditional way to give semantics to processes including data is by reduction to
a basic calculus without data. We have seen that this may quickly lead to an infi-
nite number of transitions. To arrive at an implementation for such a calculus, this
is unacceptable. In [54] and [109], alternative semantics for Milner’s value passing
calculus are introduced, which overcome this problem. The problem is in the receiv-
ing party. The sending party knows what element(s) of the value domain it wants
to send as thus produces only a finite number of actions. The receiving party on
the other hand does not known what value will be received and it must therefore
offer a synchronisation action for every v € VAL. The solution proposed in both [54]
and [109] is simply to let the receiving party produce an action indicating only the
name of the port and the parameter which is to be substituted by the value that is
passed when the synchronisation takes place. The semantical rules for action prefix

3.6 Automatic Protection Switching Protocol (2) 59

and synchronisation are then as follows:

a2(x) - P(x) =25 p(x)
al(v)-p 2, p
P, a?(x) Piypz al(v) Pé

P1[[P2 == P[] (P3[v/X])

Some technicalities are involved to prevent the situation that multiple subprocesses
have an unbound variable x although only one of them actually performed the com-
munication and should have its variable replaced by the value v. In [109], this is
achieved by renaming of variables to guarantee that the same variable is used only
once. In [54] an alternative approach is taken, together with the action, the ‘address’
of the receiving subprocess is recorded. ‘a(x)@ e [1’, for instance, is an action label,
denoting a synchronisation on port ‘a’ receiving a value to variable ‘x’ of the right
() subprocess of the left (]) subprocess of the process performing this action. We
will use a similar approach (for a different purpose) in the next chapter. So, at the
cost of a slightly more complicated semantics, one achieves an interpretation which
is implementable.

3.5.4 Data Semantics

We have seen how data operations can be connected to the processes of the calcu-
lus. To arrive at a complete calculus, one has to define what data objects or values
can be used, what operations they support, etcetera. In PoosL for instance, this is re-
alised in a computation semantics which supports data in an object-oriented fashion,
similar to objects in Smalltalk[93] or Java[95].

3.6 Automatic Protection Switching Protocol (2)

We now give a model of the protection switching protocol of section 2.7 in the calcu-
lus introduced in this chapter. It consists of two APS nodes modelling the protocol
behaviour at the ends of the connection lines. The protocol nodes are influenced by
an environment model that changes the conditions of the signal lines and the net-
work management that provides the protocol with external commands.

We have a fixed architecture consisting of the environment, network management
and two APS nodes. The APS nodes themselves are built from smaller components.
The APS node is composed of a local process, dealing with signal conditions and so-
called ‘lock-out of protection’ of signals, an external process, dealing with commands
from the network management, a process dealing with sending and receiving APS
messages, and a global process that coordinates the node’s status.

The behaviour of the dynamic processes of the APS model can be defined by the

60 A Calculus for Real-Time Concurrent Systems

following set of definitions of dynamic process constants.
{LP £’ (sgnCond + Top); LPCompReg,
LPCompReq £ (1) ; (7 + (; locReq)); LP,

def

EP = extComm; ((T; lop) + (T; extReq)); EP,

def

GP = (locReq + extReq + rmtReq); GPCompReq,
GPCompReq £' (3 ; (7 + (7; glbReq)); GP,

def

APS = APSGetGIbReq | (APSSend + APSReceive),
APSGetGIbReq &' glbReq; (2) ; T; APSGetGlbReq,

def

APSSend = sndAPS; (5) ; APSReceive,
APSReceive &' recAPS; APSCompReq,
APSCompReq &' (1); (T + (T;rmtReq)); APSSend,

def

NM = ((t;extComm1) + (T;extComm2) + 7); (1) ; NM,

def

EV = ((7;s9nCondl) + (7;sgnCond2) + 7); (2) ; EV}.

The local process (LP) can receive messages indicating a change in signal conditions
(sgnCond) or ‘lock-out of protection’ settings (lop). After such a message, a new lo-
cal request is determined, possibly resulting in a message locReq after some delay,
signalling a change in local request to the global process. The external process (EP)
awaits messages extComm from the network management. When an external com-
mand is received, action is taken in the form of a lock-out of protection message
to the local process or a message to the global process conveying a new external
request. The global process (GP) responds to changes in local, external or remote
requests and possibly communicates a new global request to the APS messages pro-
cess. This process (APS) perpetually exchanges APS control messages with a similar
process at the opposite side of the connection. The reception of a control message
may result in an update of the remote request being sent to the global process. Con-
currently, the process executes the behaviour defined by the constant APSGetGIbReq,
which receives updates of the global request that determine the outgoing APS con-
trol messages. The NM and EV processes define the context in which the protocol
operates. NM provides the protocol nodes with external commands. At the same
time, EV influences the signal conditions, triggering the protocol to take appropriate
actions.

The model includes static processes incorporating these dynamic behaviours which
form the basic building blocks of the system’s architecture.

LocalProcess &' LP, ExternalProcess £ EP,
GlobalProcess &' GP, APSMessages &' APS,
NetworkManagement &f NM, Environment EEV.

3.7 POOSL models 61

From these static processes, one can create larger static structures, such as an entire
APS node.

def

APSNode = (LocalProcess||ExternalProcess||GlobalProcess||APSMessages)\
{lop, locReq, extReq, glbReq, rmtReq}.

This specifies that the static APSNode consists of the parallel composition of the four
mentioned static processes synchronously communicating with each other on com-
plementary messages (such as locReq and locReg). Communication with entities out-
side of the process is restricted to messages other than lop, locReq, extReq, rmtReq,
glbReq, and their complementary messages.

The behaviours of the two APS nodes are identical; they are connected with each
other and the rest of the model by an appropriate relabelling:

def

APSNodel = APSNode[extComm1/extComm, apsl/sndAPS,
aps2/recAPS, sgnCond1/sgnCond]

def

APSNode2 = APSNode[extComm2/extComm, aps2/sndAPS,
apsl/recAPS, sgnCond2/sgnCond]

The entire protocol model is defined by the two nodes in their environment.
de

APSProtocol £ (NetworkManagement|| APSNode1||APSNode2||Environment)\
{extComm1, extCommz2, aps1, aps2, sgnCond1, sgnCond2}.

3.7 POOSL models

It has been stated before that the calculus introduced in this chapter is an abstract
representation of the language PoosL. The form of calculus expressions is obviously
not suitable for the specification of large and complex systems. The architecture of a
system is more conveniently represented graphically, as demonstrated in figure 3.4,
showing the static architecture of a PoosL model of the APS protocol, consisting of
the two APS nodes, a network manager and an environment model, influencing the
condition of the signal lines. The dynamic processes that define the behaviour of the
individual building blocks are defined by a textual specification language similar to
traditional imperative programming languages. The PoosL specification of the pro-
cesses of the APS protocol can be found in appendix A. An excerpt of the behaviour
of the local process is shown in figure 3.5.

Line 1 defines a method called i ni t without parameters (empty braces). Methods
correspond to dynamic process constants of the calculus. Line 2 declares local vari-
ables for this method, stating their name and type. We recognise on lines 3-12 a
sel...or...or...|esstatement. Thisisthe + operator of our calculus (although
not binary). The first alternative (lines 4 and 5) starts with a synchronisation action
sgnCond?changeCondi ti on(n, condi ti on),amessage reception (indicated by
?) on channel sgnCond with a message hamed changeCondi ti on and two ar-
guments that are to be stored in the variables n and condi ti on. After that (line
5), an internal action is performed that stores the received information about the

62 A Calculus for Real-Time Concurrent Systems

Environment
toAPS1 toAPS2
EnvtoAPS1 EnvtoAPS2
I I
signalConditions signalConditions
apsin i fapsout
APS2toAPS1
APSNodel APSNode2
APS1toAPS2
apsOut i napsin
extComm extComm
NMtoAPS1 NMtoAPS2
I I
toNode2 toNodel
NetworkManager

Figure 3.4: Architecture specification in PoosL

condi t i on of signal number n in a table si gnal Condi ti ons. The second alter-
native (lines 7 and 8) is selected when a synchronisation takes place on channel | op
receiving a message | ockout with one argument stored in n. This indicates that
signal number n is to be locked out of protection and this information is stored in
the table | ockedout . The third alternative on lines 10 and 11 is similar to the sec-
ond, dealing with a message that clears the lockout of a signal. After the selection
statement, another method (updat eLocal Request) is called, i.e. the behaviour as-
sociated with the dynamic constant is invoked. Finally, on line 14, the method itself
is invoked again, resulting in the infinite execution of the behaviour.

The formal semantics of the complete PoosL language is given in [156, 80] (the orig-
inal (untimed) language in [156] and the extension with time in [80]). Other, more
complex examples of the application of PoosL to model real-life systems are found
in [156, 88, 66, 132, 170, 182].

3.8 Related Work

Process Calculi

Process calculi are widely used for the formal study of concurrent systems and their
behaviour. They are also used to give formal semantics to concurrent models and
specification or programming languages, such as LOTOS [71] or POOL[16]. Among
the most popular ones are CCS [140], CSP [104] and ACP [22]. Their semantics is
usually given by transition rules in a structural operational semantics and/or alge-
braically by means of a set of axioms. An overview of process calculi and process
algebra can be found in many textbooks, such as [28].

3.8 Related Work 63

nor mal Qper ation() () 1
| n: Integer; condition: Signal Condition | 2
sel 3

sgnCond?changeCondi ti on(n, condi tion); 4
si gnal Condi ti ons put(n, condition); 5
or 6
| op?l ockout (n); 7
| ockedout put(n, true); 8
or 9
| op?cl ear | ockout (n); 10
| ockedout put(n, false); 11
| es; 12
updat eLocal Request () (); 13
nor mal Operation() (). 14

Figure 3.5: Dynamic process specification in PoosL

Our calculus serves as an abstract place holder for the formal specification language
PoosL. An important aspect of PoosL is the ability to deal with complex data.
PoosL incorporates dynamic data objects like the objects of Smalltalk or Java. Data
is incorporated in the semantics in a style similar to POOL[16] or MTCCS[172], al-
lowing data to be shared between concurrent processes. Other efforts to obtain an
operational characterisation of processes with data are found in [140, 54, 109]. These
do not allow the description of processes that share data, but they can be reduced to
a basic calculus without data.

Another aspect of PoosL is timing, using a dense time domain. PoosL’s timing
model is included in the calculus used in this thesis. Many extensions to process cal-
culi have been designed to add quantitative (discrete or dense) timing to processes,
[18, 20, 64, 31, 49, 62, 96, 98, 139, 147, 159, 161, 186] to name some. An overview of
decisions to be made when designing a timed process calculus can be found in [147].
In our calculus, time is additive, deterministic and our processes display maximal
progress. Maximal progress is desirable if we want to interpret the system as an exe-
cutable model. The model should not be allowed to let arbitrary amounts of time go
by when progress can be made. Maximal progress is usually not achieved without
some extra trouble in the form of negative premises or extra transition relations. In
TPCCS of [98] for instance, a discrete time model is used, first a ‘virtual’ time transi-
tion relation (not taking urgent actions into account) is defined and then based upon
that the ‘real’ time transitions are defined allowing a process to ‘tick* (let a discrete
amount of time go by) only if it cannot perform an action. Similarly, but without
the extra relation, directly using a condition on the parallel composition (so also in
a discrete time domain using individual tick actions), RtCCS[161] achieves maximal
progress. In other calculi such as [143], actions cannot be made urgent. Normal pre-
fixed actions cannot wait. Actions can be made delayable with an explicit operator,
but then they are never urgent. Another option is to add urgency as a separate op-
erator. This is done in U-LOTOS [32]. Its definition also requires the use of negative
premises. Although it is mathematically attractive to separate the notions of com-
munication and urgency into different operators, it is not practical in a specification
language, since it requires the use of more language primitives.

64 A Calculus for Real-Time Concurrent Systems

Specification Languages for Complex Concurrent Systems

Formal models are good to specify behaviour precisely and unambiguously and for
studying the very nature of concurrent systems. To be used for the actual speci-
fication of large and complex systems, a lot more is necessary, such as a practical
syntax, methodological guidance and tool support. Languages such as UML[176],
Statecharts[99], SDL[151], and also PoosL are designed to be able to deal with prac-
tical specifications and designs. To this end, they provide for instance suitable struc-
turing concepts that are purely syntactical and uninteresting from a formal point of
view, but make life easier for a practical designer.

3.9 Conclusions

We have presented the syntax and semantics of a calculus to model distributed con-
current systems. The calculus particularly focusses on a static structure of communi-
cating components. The calculus is similar to (real-time extensions of) Milner’s CCS.
In particular it is used for its resemblance to the (more complex) formal specification
language PoosL. Attention has been paid to the concept of maximal progress and
the way it is achieved by the calculus.

The concept of termination plays an important role in the calculus and we have given
an alternative presentation of the transition rules, using the function / which re-
moves the necessity to discriminate between terminating and non-terminating tran-
sitions in many of the semantical rules. Moreover, it gives the rules a more opera-
tional flavour, which is useful for the execution of processes, described in the next
chapter. An example of a process and its corresponding transition system have been
given to clarify the material of this chapter. We have also briefly discussed some
aspects of adding data to a calculus like this one and given an example of a PoosL
model. Although interesting and valuable in its own right, we have not included
an equational or axiomatic treatment of our calculus, since it is beyond the scope
and focus of this thesis. In the following chapter we turn toward the effective execu-
tion of processes of the calculus. This provides a basis for the formal simulation and
verification of its models.

Chapter 4

Executing Real-Time Concurrent
Models

For many types of automatic analyses on the models described in the calculus of the
previous chapter, it is required to generate the transition system that is induced by
the process description and the semantics of the calculus. For instance, to perform a
random simulation through the transition system one can generate all possible tran-
sitions from a given state, pick one of these transitions and move to the destination
state of the transition. Model-checking and reachability analysis of processes also re-
quire the construction of the transition system. In this chapter a method is described
to generate the available transitions of processes of the calculus and to effectively
compute the destination process of a chosen transition.

In section 4.1, ‘requests’ are introduced. They are used to identify the available tran-
sitions of a process. Section 4.2 shows how, given a process expression and such a
request, the destination of the transition corresponding to this request is constructed.
The ingredients for an effective implementation of such a scheme are discussed in
section 4.3. The suggested implementation can be characterised by a new labelled
transition system, built upon requests. The fact that this transition system is in some
sense a faithful implementation of the calculus is made precise and is demonstrated
in section 4.5. Some preliminary definitions are given in section 4.4 to characterise
this implementation relationship.

The techniques introduced in this chapter have been applied to construct simulation
tools for the formal specification language PoosL. PoosL is an industrial strength
specification language of a much higher complexity than the abstract calculus of this
thesis. The constructed tools are not merely a prototype implementation, they are
efficient and user-friendly enough to have been applied to a number of practical
projects involving PoosL specifications. Section 4.6 briefly describes these tools as
well as some additional issues arising in an implementation of the full language
PoosL as opposed to the abstract calculus. Related work is discussed in section 4.7
and section 4.8 summarises conclusions.

66 Executing Real-Time Concurrent Models

4.1 Requests

The calculus defined in the previous chapter can be executed by collecting the pos-
sible transitions of the process compositionally from its syntactic structure. These
possible transitions are further decorated to make them uniquely identifiable. Such
labelled transitions will be referred to as ‘requests’. From a process and a request,
the process that is related to it by this request, can be computed.

We first define the set AR of action requests as decorated labels of the transition rela-
tions and a corresponding function ACT that removes the decoration and yields the
original action. Normally the labels of the transitions of a process expose the exter-
nally visible behaviour only. The decoration adds to this information about which
subprocess actually produced the action. Comparable approaches are taken in [54],
[37] and [180] for different purposes.

4.1.1 DEFINITION The set AR of action requests and the reduction function ACT
which yields a request’s corresponding action, are simultaneously defined induc-
tively by the following rules.

e Undecorated actions are also requests. Act C AR and ifr € Act then ACT(r) =
r:
a € Act a € Act
a € AR ACT(a) =

e Ifr is an action request, then so are L - r and R - r. They are used for binary
combinators such as choice () and parallel composition to designate the ori-
gin of the request as either its left or as its right subprocess. ACT(L-r) =
ACT(R-r) = ACT(r).

r e AR ACT(r) =«
L-re AR R-re AR ACT(L r) =, ACT(R 1) =a’

e Ifry and r, are complementary action requests, then their synchronisation is
represented by the action request T - (ry,r3), the synchronisation yields a -
request and the individual requests from which it originates, are remembered.
ACT(t-(r1,rp)) = .

r € AR,r; € AR,ACT(ry) = ACT(ry) -
T'(I’l,rz) € AR ACT(T-(rl,rz)) =1

e If¢{ € L andr is an action request then { - r is an action requestand ACT(¢-r) =
£. This type of action request is used when an action is renamed by a relabelling
operator. The new label is placed in front of the request and the name before
the relabelling can be deduced from the rest of the request.

teL,re AR -
¢-re AR ACT(L-r)=1¢"

4.1 Requests 67

S AReq TReq
[/ {¢} T+
T {t} %]
(t) Z (0, 1]
S1;S2 AReq(Sy) TReq(Sy)

S1+S, | L-AReq(S;) UR-AReq(S2)? | TReq(S1) NTReq(S;)
S1|S L-AReq(S1) UR-AReq(S;) | TReq(S;) N TReq(S)

def

AA=YS) AReq(S) TReq(S)
N @ L

4 -AReq={L-r|r € AReq},R-AReq = {R-r |r € AReq}

Table 4.1: Computing the requests of a dynamic process

R AReq TReq
S AReq(S) TReq(S)
L-AReq(R;) UR - AReq(R2)U b
R1]|R2 Comm(Ry, Ry)? TReq(R1) N TReq(R2) NUrg(R1, Ry)
R[f] Relabel (R, f)° TReq(R)
R\L {r € AReq(R) | ACT(r) ¢ L} TReq(R)

aComm(Ry, Ry) = {7-(ry,r2) | r1 € AReq(R1),r2 € AReq(R;), ACT(r1) = ACT(rz)}
T+ ifComm(Ry,Ry) =&

@ otherwise

°Relabel(R, f) = {f(ACT(r))-r | r € AReq(R)}

bUI’g(Rl, Rz) =

Table 4.2: Computing the requests of a static process

Time requests are used to represent the ability of a process to perform a time transi-
tion. As time requests we use labels of the time transition relation and they need no
further decoration. Thus time requests are positive elements of the time domain T.
Let the set Req of all (action and time) requests equal AR U T+ and let r be a typical
element of Req.

The action and time requests of a process are given by the functions AReq : SP — AR
and TReq : SP — T as defined in tables 4.1 and 4.2 for dynamic and static processes
respectively. The process ¢ for instance produces a single request, £. Conform to the
semantical rule +1, the process S; + S, draws its requests from both the requests
of S; and S,, adding the appropriate decoration to be able to distinguish between
them. The process (t) has in accordance with the rule DEL all time requests in (0, t].
The time requests of S; | S, are precisely the time requests occurring in both S; and
S,, corresponding to the rule |,. Note that the sequential composite S;; S, derives
its time requests from its first composite S; only. Therefore, there will not always be
a time request corresponding to every possible time transition of the process. Note
also that the restriction to guarded recursion in the process constants ensures that
the functions are well-defined.

The requests associated with synchronisation process ¢ are the action request of the
possible synchronisation transition ¢ itself, and every possible time request, since
the synchronisation is not urgent by itself. There is only one request of the T pro-

68 Executing Real-Time Concurrent Models

cess, since it represents an urgent internal action. The delaying process (t) has no
action requests but is willing to delay for any amount of time up to and including
t. The binary operators + and | have a request for every request of any of their sub-
processes. These requests are decorated to indicate the origin of the request. The
terminated process does not engage in any actions, but allows arbitrary amounts of
time to pass.

For the parallel composition of two static processes, the set of action requests corre-
sponds to the actions originating from both subprocesses and all possible synchro-
nisations between complementary actions of the subprocesses. Looking at the time
requests of the parallel composition we observe that there are only time requests
if both subprocesses allow time to pass and the parallel composition is not urgent.
One only needs to check whether the combined processes are urgent now. If they are
not urgent now, and TReq(R;) N TReq(Rz) = (0, t] then there is no t' < t such that

R1|IR2 AN R}||R5 and R}||R} is urgent. It can be proved (by structural induction)
that the action requests do not change after such a delay. To do this we first show
that no process may terminate by this kind of time transition.

4.1.2 LEMMA LetR € SP,R # /,t€ TReq(R) and0 < t' < t, then for allR' € SP
such that R —> R’ R # /.

PROOF Straightforward, by transition induction. m|

This fact is now used to show that a delay smaller than the maximum time request
does not change the action requests of a process.

4.1.3 LEMMA LetR € SP,t € TReq(R) and 0 < t' < t, then for all R" € SP such
that R —U> R, AReq(R') = AReq(R).

PROOF By transition induction. We show only the cases R = S;;S, and R = S; + S5, the
other cases are similar. (Remember that a dynamic process S is also a static process.)

e IfR = S;1;S,, thent € TReq(Sy). IfR U5 R’ then (by lemma 4.1.2 and the rules

SEQj3 and SEQy) there is some S/ such that S; LN S} and R' = Si; S, by induction,
AReq(R’) = AReq(S]) = AReq(S1) = AReq(R).

o IfR = S; +S,, then t € TReq(S;) N TReq(S). If R ——> R’ then (by lemma 4.1.2
and the rules 4+, and -+3) there exist S| and S}, such that S; LN S, S, LN S}, and
R’ = S} + S}, by induction, AReq(S) = AReq(S1) and AReq(S)) = AReq(S,) from this
it follows immediately that AReq(R') = AReq(R). O

This property allows one to determine the length of a time transition during which
no processes will become urgent. Figure 4.1 shows an example where the transitions
corresponding to the requests are shown. (In the following sections it is made precise
how one can interpret a process and its requests as a labelled transition system.) The
right hatched area represents a continuum of time transitions in the usual way and
transitions labelled ‘LRb’, all leading to the process ((3); A)||B. The left hatched
area is a continuum of time transitions only.

Figure 4.2 shows a labelled transition system defined by the semantics of some pro-
cess S; and a corresponding labelled transition system defined by the requests. Note

4.1 Requests 69

A|B
where

A = a;(3GEb);BOA

BZaB
Figure 4.1: Time transitions without the CNT rule
S,=(a;5,+a;5,)+(b;S,+b;S,)

e r,=LLa
a

OS=O
b

r,=RLb

r,=RRb

Figure 4.2: Processes, transitions and action requests

70 Executing Real-Time Concurrent Models

S,=(&S,+b;S,)+(3):S, S,'=(a;S,+b;S,)+S,

S,"=(a;S,+b;S;)+S

rlzLLa

r,=LRb

(0.3]

Figure 4.3: Processes, transitions and requests with time

how every transition starting from a process has a unique label. Moreover, even
though there is only one transition labelled ‘b’ in the labelled transition system on
the left, there are two requests, r3 and ry4, such that ACT(r3) = ACT(r4) = b, corre-
sponding to the two ways to derive the existence of the transition.

Figure 4.3 shows the labelled transitions system and the corresponding transition
system of requests, of a process with a delay operator. The process S, can delay
for 3 units of time. This makes that process S; has time transitions for every t with
0 < t < 6. The corresponding transition system of requests on the right, however,
has only requests for time transitions up to 3, i.e. up to the termination of the delay
operator. Hence, for the generation of the requests of S;, one does not need to inspect
Ss.

4.1.1 Properties of the requests of a process

We now list a few properties of the requests that illustrate the correspondence with

the transitions of a process.

Every action request of R corresponds to some transition of R.

4.1.4 LEMMA For every R € SP, r € AReq(R) there is some R’ € SP such that
ACT(r) _,

R————R'.

A more general lemma is proved in section 4.5 (lemma 4.5.2). The converse of this

lemma states that for every action transition of R, there is a corresponding request.

4.1.5 LEMMA IfR —%> R’ then there is somer € AReq(R) such that ACT(r) = a.

Similar properties can be stated about time transitions and requests. The following
lemmas are also made more precise in section 4.5, in the form of lemmas 4.5.4 and
45.7.

4.1 Requests 71

4.1.6 LEMMA For every R € SP, t € TReq(R) there is some R' € SP such that
R—1>R.

W.r.t. the converse of the previous property, note that it is not true that every time
transition of R can be matched by a time request of R. But if the process has some
time transition, then there is at least some time request.

4.1.7 LEMMA ForeveryR € SP, ifR —> R’ for somet € T+ then TReq(R) # @.

We repeat the lemma of the previous section, stating that any time transition made
by the process smaller than the maximum time request of the process cannot change
the set of its action requests.

413 LEMMA LetR € SP,t € TReq(R) and 0 < t’ < t, then for all R' € R such that
R > R’, AReq(R') = AReq(R).

As a consequence of this lemma, the urgency status of the process cannot change.

4.1.8 COROLLARY LetR € SP,t e TReq(R) and0 < t' < t, then Urgent{™ (R, t') iff
Urgenti™ (R).

This is important, because it allows one to move forward for any amount of time
in TReq(R) and still guarantee maximal progress, knowing that no t-transition has
become available in the mean time.

One can also easily show (by structural induction on R) that the set of time requests
is always of a particular shape.

4.1.9 LEMMA Forevery R € SP, either TReq(R) = T+ or there is somet € T such
that TReq(R) = (0, t].

PROOF Shown by structural induction. The basic processes ¢, T and (t) produce sets of time
requests of such shape and the shape is preserved by finite unions and intersections of such
intervals, as performed by TReg. a

The time requests respect urgency, the set of time requests of a process is empty if
and only if it can perform a T action.

4.1.10 LEMMA Forevery R € SP, TReq(R) = & iff there is somer € AReq(R) such
that ACT(r) = 1.

PROOF This is also proved by structural induction, where the most interesting rule is the one
for parallel composition R;||R2, which intersects the requests of R; and R, with Urg(Ry, R»)
which disallows all time transitions if R; and R, can communicate. O

Finally, we state a fact about the action requests that is important if we want to use
them for an implementation of a process specified in the calculus: the number of
action requests of a process is always finite.

4.1.11 LEMMA ForeveryR € SP,

AReq(R)| < 0.

PrROOF This is shown by structural induction. The basic processes produce a finite number of
action requests. These finite sets of action requests are combined by the operators in different
ways to form new finite sets of requests. In particular, the fact that recursion is guarded
makes that this combination is performed only a finite number of times, resulting in a finite
total number of action requests. |

72 Executing Real-Time Concurrent Models

R r Grant(R,)
o o N
t o
(t) t/ (t—t)
S1;S, r Grant(Sy,r); S
S1+S; L-r Grant(Sy, r')
R-r Grant(S,, r')

t Grant(Sy, t) + Grant(S,, t)

ST L-r Grant(Sy,r') | Sz
R-r S; | Grant(Sa, ')
t Grant(Sy, t) | Grant(S;, t)
AAZESs) r Grant(S,r)
t
R1||R2 L-r Grant(Ry, I")[|R;
R-r R1||Grant(Ra, 1)
T(ry,r2) | Grant(Ry,ry)||Grant(Ry,r2)
t Grant(Ry, t)||Grant(Ry, t)
R[f] a-r Grant(R, r')[f]
R\L r Grant(R,r)\L

Table 4.3: Computing the process after executing a request

4.2 Computing the new process

Every request of a process uniquely determines a derivation of one of the possible
transitions of a process expression. In this section it is shown how the resulting
process of a particular transition can be determined from the process and a request.

The function Grant : SP x Req < SP*® shown in table 4.3 defines the effect of ex-
ecuting a particular request. Grant is a partial function, but it is defined for every
(R,r) such thatr € AReq(R) U TReq(R). If the granted request is an action request, it
is being passed down to the subprocess from which it originates. This is possible due
to the decoration that was added to the request. When a delay request is granted, it
is distributed over the tree corresponding to the synchronous nature of time passage.
If an action request is granted to the action process «, then it can only be the action
request o and the effect is the termination of the process. The granting of a time
request, corresponding to a time transition has no effect on the process «. Action
requests will never be granted to the process (t). If a time request t’ is granted, then
0 < t' < tand the result is (t —t’). Note that if t' = t then the result is (0), which
is not in SP, but in SP°®. In case of sequential composition Sy; S, any request origi-
nates from S; and consequently the effect of granting the request to S; is computed
to determine the effect of granting the request to the sequential composite. Choice
and interleaving operators direct action requests to the correct subprocess, retrieved
from the decoration, and distribute time requests along both subprocesses. Granting
a request to A, defined as S, is identical to granting the request to S. / will never
have an action request granted and time requests do not have any effect on it. The
static processes deal with granting requests in a similar way.

The result of the grant function is a process in SP¢; i.e. it might contain / or (0)

4.3 Implementation 73

as a subprocess. After granting a request, we have to take care of these terminated
subprocesses. This is exactly what the ,/ function of the previous chapter does. A
function Step : SP x Req — SP can now be defined as the composition of the Grant
and the / function.

Step = |/ o Grant

The application of this function represents a particular transition of the process for
any of its requests and computes the resulting process expression. In section 4.5 it
will be shown that requests and the Step function correspond to the original seman-
tics.

4.3 Implementation

In the previous sections, requests have been defined, based upon the semantics of the
calculus. Their relationship to the semantics has been shown and they will serve as a
good basis for the implementation that is discussed in this section. In the new transi-
tion system based upon requests, every available transition is uniquely identified by
a request. The function Step introduced in the previous section demonstrates how,
given a process and a request, the resulting process can be effectively constructed.
In order to arrive at an implementation of processes expressed in the calculus, there
are a few issues that remain to be addressed. We shall describe how one can effec-
tively (finitely) represent processes and their requests and perform the Step function
when a request has been selected. Finally, the semantics of the calculus specifies in-
trinsic non-deterministic behaviour. An implementation should define a way to re-
solve all non-deterministic choice in the model. Such a mechanism is usually called
a scheduler. This topic is discussed in section 4.3.4.

4.3.1 Trees representing process expressions

To execute the behaviour of a process we need to have a (finite) representation of the
process. Since the semantics of processes as well as requests and other functions are
naturally defined along the lines of the syntactic structure of the process, a suitable
representation is a tree which corresponds to the syntactic structure of the process
expression.

Requests are generated by the leaves of the tree (synchronisations, delays and in-
ternal actions) and collected or manipulated by the different operators to form their
own requests. To compute their requests, process constants occurring in the expres-
sion are replaced by their defining process expressions. This yields a finite tree since
recursion is always guarded with a sequential composition operator and the sequen-
tial composition draws its requests from its first process only. When a transition is
made the Step function is performed on the tree to obtain a new tree correspond-
ing to the destination of the transition. In practice this can be a new data structure
representing the tree that corresponds to the destination of the transition. It might
also be a modification of the data structure of the source of the transition, transform-
ing it into a representation of the target of the transition. The former is useful, for
instance, for explicitly constructing the labelled transition system corresponding to
the process. If the trees are large and in particular if they contain large amounts of

74 Executing Real-Time Concurrent Models

(1) (iii)

Figure 4.4: Compositionally generating the requests of the processes. (i) (a;b) | *

(ii) (c||(blc/b]))\{c} and (iii) ((2) + (5)) | a.

data as well, then it is far more efficient to modify the tree than to create a new one
by replicating its (modified) structure as well as all of its data. This is possible for
instance in forward simulations, where the history of the path through the transition
system is not important. In particular, we know that the static operators remain the
same after any transition.

4.3.2 Generating requests

The requests of a process are computed in the tree from bottom to top. First, the
leaves compute their sets of requests and the different operators generate their re-
guests based upon the requests of their subprocesses according to the definitions of
AReg and TReq in tables 4.1 and 4.2. In figure 4.4 a few examples are shown. The pro-
cess expression is represented as a tree and at every node, the sets of action requests
and time requests are displayed. In example (i), the synchronisation node labelled
‘a’ is willing to engage in a synchronisation ‘a’ and is prepared to let an arbitrary
amount of time pass while waiting for a synchronisation partner. The sequential
composition node above it inherits all requests from its first subprocess (according
to the semantical rules SEQ; and SEQ;). As all requests are known to originate from
the first subprocess, no further decoration is required. The leaf node labelled 7 is
requesting an internal action transition and urgency requires that there are no time
requests. Finally, the interleaving operator inherits all action requests, adding in-
formation to remember which subprocess they belong to. The time requests of the
interleaving are only those time requests that occur in every subprocess and in this
case there are none, since its right subprocess cannot let any time pass before per-
forming the T action.

In example (ii) the same is shown for the process (c||(b[c/b]))\{c}. Here we see how
the relabelling operator modifies the name of the request and remembers the old
name for the moment when the request is granted. The parallel composition oper-
ator combines requests like the interleaving operator, but additionally combines re-
guests into pairwise synchronisations (remembering the original requests that have

4.3 Implementation 75

been used to build it). Furthermore, time requests are not generated because of the
available synchronisation, which is urgent. Finally, the node corresponding to the
hiding operator only passes the T request, all requests corresponding to actions ‘c’
or ‘T’ are restricted. The third example shows how the delay operator generates a
bounded set of time requests. The + and | operators combine the time requests by
collecting those that are present in both of their subprocesses, reflecting the syn-
chronous nature of the passing of time.

The correspondence between the sets of requests and the rules for generating the
transition relations, can be illustrated by the derivation of the time transition labelled
2 corresponding to the request ‘2" in figure 4.4 (iii).

0<2<2 0<2<5
—— DEL —— DEL

(2) %>/ (5) %> (3) . = act,
(2) + (5) 2> / a—2sa

((2) +(5)) la—*>a

In the derivation, one can recognise an upside-down version of the tree. The rules
correspond to the operator nodes of the tree and the requests are generated according
to the rules of the operator.

Representing time requests

The time domain is usually infinite and possibly even uncountable. This makes it
impossible to represent every possible time request individually. Fortunately, the set
of time requests is always a subset of the time domain of the form (0, t] for some
t € T,oritis TT. Therefore it is possible to represent the set of time requests us-
ing the maximum of the requests, or oo if there is no maximum. This form is also
maintained when the time transitions of a composite process are determined from its
subprocesses. As seen in the previous chapter, the set of action requests of a process
is always finite since recursion is restricted to guarded processes.

4.3.3 Granting requests

Once all the requests of a process expression have been generated, it is possible to
perform a step in the computation by selecting a request and applying the function
Grant. Again, the compositional nature of the grant function suggests how grant-
ing a request of a process is achieved by granting the corresponding request to the
subprocess or subprocesses from which it originated.

Granting an action request

In figure 4.5, it is shown how the request L - a is granted to the process (a;b) | T
(example (i) of section 4.3.2). The interleaving operator recognises it as a request of
its left subprocess and computes the Grant of the request ‘a’ of the left process. The
sequential composition grants the request to its first subprocess. The synchronisation
‘a’ terminates as a result of the granted request.

76 Executing Real-Time Concurrent Models

Step(LE)

\

{Lla, RO, O Grant(L[3) O {LB, R0, O

—aned
()
0,0

{b}, T'
ON©

Figure 4.5: Granting a request of a process and computing the resulting process

Step(2)

[
-

Grant(2) 0 .

\/

{al, T'

Figure 4.6: Granting a delay request of a process and computing the resulting process

To complete the transition, the y/ function is applied. This can be viewed as a bottom-
up procedure starting from the leaves of the tree. It can be started from the leaves
that were affected by the granting of the request only. In the example, the now termi-
nated synchronisation makes that the sequential composition is replaced by its right
subprocess. After this update, the transition is complete. The new requests can be
computed in preparation of the next step. Note that not all of the requests need to
be recomputed. Subprocesses that were not affected by the transition, do not change
their requests.

Granting a time request

When a time request is granted to a process, a similar thing happens. By the syn-
chronous nature of the time transitions however, the time requests are distributed
along all subprocesses except for the sequential composition operator, where it is
passed only to the first subprocess. In figure 4.6, a time request is granted to the
process of figure 4.4 (iii). The time request is distributed over the process and both
delay operators decrease their remaining delay by 2, the amount of time that has
been granted. The left of the delay operators has decreased to 0. In the termination

4.3 Implementation 77

phase, the expired delay leads to the termination of the + operator and finally to
the removal of the interleaving operator leaving only the synchronisation ‘a’ to be
executed.

4.3.4 Schedulers

Once we can generate the transition system by computing the sets of requests and
are able to determine the process resulting from the transition corresponding to a
request, it is possible to ‘execute’ the behaviour described by a process. In order to
execute a process, a scheduler has to be attached. At every state, the process may have
a number of available transitions. A scheduler is an entity which resolves the non-
deterministic choice between the available transitions according to some predefined
mechanism.

Although the semantics does not make any explicit assumptions about what con-
straints a scheduler should satisfy, it is often assumed that a scheduler is at least in
some sense fair (see [79]) with respect to all actions, transitions or (sub)processes.
What is considered to be an unfair treatment can be defined in many different ways.
It is often required that a transition that is infinitely often available during an exe-
cution must at some point be taken (‘strong fairness’). A weaker version of fairness
states that a transition that is continually enabled must at some point be taken. In the
latter case one refers to local transitions of one of the system’s components, rather
than the global transitions of the transition system. Such definitions only pertain
to infinitely long traces. In case of a simulation, a simple way to guarantee strong
fairness is to apply a random selection at every step, attributing a positive probabil-
ity to all enabled requests. This results in a zero probability of generating an unfair
execution.

The combination of the system and an appropriate scheduler produces a (timed)
trace, a sequence of processes and transitions.

Rl V1 Rg V2 R3 V3

Recall that the y; are either actions or delays.

4.3.5 Open and closed systems

Processes can be executed as a closed system, assuming that there are no external
processes they can synchronise with. This makes that only internal transitions are
enabled. In this interpretation, only requests corresponding to internal actions can
be executed. Alternatively one can interpret the process as an open system, assuming
the possibility of external processes synchronising on externally visible actions. In
that case, any request of a process can be selected. In case of abstract actions this
can easily be done. If messages contain data, however, it is often hard to use this
interpretation because not every possible data value corresponds to a meaningful
message. As a consequence it iscommon in the analysis of complex systems to model
not only the system that is being designed, but also the environment in which it
operates. Then, the system together with its environment is interpreted as a closed
system.

78 Executing Real-Time Concurrent Models

T
AlB
©} 0 where
A £ a;(3Fb);BOA
® B¥aB

Figure 4.7: Closed interpretation of a labelled transition system

If the labelled transition system of figure 4.1 is interpreted as a closed system, only
the internal transitions and time transitions remain, giving rise to the transition sys-
tem displayed in figure 4.7. The processes A and B synchronise once every 6 units of
time. The thick arrow indicates the continuum of states that are passed during the
time transitions. Because of the determinism of time transitions, this continuum can
in the closed interpretation be replaced by a single transition without considering
any of the intermediate states.

4.4 Equivalences

To compare processes in the calculus with the implementation described in this chap-
ter, we use bisimulation equivalence as introduced in section 2.3. We show that the
implementation is ‘almost bisimilar’ to the calculus. In order to make this relation
precise, we need some extra definitions that are introduced here.

441 Time-Closure

The calculus has an explicit rule CNT which makes the transition system closed with
respect to time transitions in the sense stated by this rule, namely if Ry LN R, and

t s t1+t . s .
R, —25 Rj are transitions, then Ry —25 Rj is also a transition. If a transition
system is not closed with respect to time transitions, we can define its corresponding
time-closure as follows. The time-closure of the timed transition relation Eg of a

TLTS (S, T, L,T>, ?), denoted ?', is the smallest relation ? CSxTt xS
such that

e —> C —>and
T — T+

. 1y ty i+t
e ifs; —= s, and s —= s3 then s, ——>s3.
T+ T T

If (S, T, L, ?) is a TLTS, then we use (S, T,L, >, ?). to denote the TLTS
with the time closure of its timed transition relation, (S, L, T, - ?.)_

We shall see in the next section that although the implementation of the calculus is
not timed bisimilar to the calculus, its time-closure is.

4.5 Correctness of the Execution Method 79

4.4.2 Abstract bisimulations

In chapter 2 we discussed weak bisimulation as an equivalence which is similar to
strong bisimulation, but abstracts from internal actions. In this chapter we have dec-
orated actions of a transition system with extra information to form requests. To
reason about the relationship between the decorated transition system (the imple-
mentation) and the original one, we need a notion of equivalence that abstracts from
such decorations[81].

An abstraction function on a set of labels L is some function f with dom(f) = L. We
define a notion of strong bisimulation equivalence with respect to abstracted actions
produced by f.

4.4.1 DEFINITION Let f be an abstraction function on L. A symmetric relation S C
S x S is a strong timed bisimulation w.r.t. observability f if for any (s1,s2) € S,
A€lLandte Tt

o ifsy —2>s), then for somes) and X', f(A) = f(A'), s, SN s, and (s},sh) € S;

o ifsy —> s}, there is some's) such that s, —> s} and (s, s},) € S. O

States s; and s, are called strongly equivalent w.r.t. observability f (denoted ass; ~
sy) if and only if there is a strong bisimulation S w.r.t. observability f, such that
(s1,52) € S. s1 and s, are strongly equivalent if and only if s; and s; are strongly
equivalent without abstracting information from the actions, i.e. if they are strongly
equivalent w.r.t. the identity function Id_. Naturally, greater abstraction leads to
weaker equivalences.

4.4.2 DEFINITION Let f and g be abstraction functions, we say that f is less abstract
thang (f < g)ifforall A, A; € L, f(A1) = f(A2) = g(A1) = g(Az). O

Then the following is easy to verify.

4.4.3 LEMMA Let f and g be abstraction functionson L, then f < g = ~¢ C ~g.

4.5 Correctness of the Execution Method

In this section, it is shown that one can execute a process of the calculus using the
requests and Step functions, in accordance with its semantics. First, we define a la-
belled transition system induced by the requests and the Step function introduced.
Then, a relationship is established between this implementation LTS and the seman-
tics of the calculus.

4.5.1 DEFINITION Define a new labelled transition system called Impl as follows.
Impl := (SP,AR,T,—>AR Impls 5> Impl)-

The transition relations are defined in terms of AReq, TReq and Step.

80 Executing Real-Time Concurrent Models

o R—=> inpiR’ iffr € AReq(R) and R’ = Step(R, r);
e R T—t+> mpiR’ ifft € TReq(R) and R’ = Step(R, t).

Then Impl is almost bisimilar to the original calculus with respect to the abstraction
ACT. In particular the time-closure is bisimilar to the original calculus. This shows
that an implementation according to the modified transition system Impl is correct.
Every transition of the implementation corresponds to a transition of the calculus
end every transition of the calculus can be mimicked by the implementation. Only
certain time transitions are made in a (finite) number of smaller steps. Note that
it follows from the definition, that the implementation Impl is deterministic, every
request corresponds to at most one transition of a process R.

4.5.2 LEMMA ForeveryR € SP,r € AReq(R),

R _ACT()

Step(R,).
PROOF By transition induction. Let R = Ry||Rz (the other cases follow similarly). Then r is
of one of the following forms: L -r’, R -1’ or T - (ry, r2).
, , . . ACT(r') ,
e Ifr=1L-r',thenr’ € AReq(R;y), thus by induction, R ———— Step(Ry,r’). ACT(r) =

. ACT
ACT(r’") and by semantic rule PAR;, R LU Step(R1, I')||R2. Further,

Step(Ry,)[Rz
V/(Grant(Ry,1"))[|Ry
V(Grant(Ry. r')[|R,)
= V/(Grant(Ry|[Rz, 1))
Step(R,r).

e Ifr = R -1, then the proof is symmetrical to the previous case.

e Ifr = 7-(ry,r2), thenr; € AReq(R1), r2 € AReq(R2) and ACT(r;) = ACT(rz). By

ACT ACT
induction, Ry % Step(Ry,r1) and R; % Step(Rz,r2). It follows by se-
ACT
mantical rule PAR; that R i> Step(Ry,r1)||Step(R2, r2) (Notice that ACT(r) = 7).

Further,
Step(R1,r1)||Step(R2,12)
= /(Grant(Ry,r1))|[v/(Grant(Ry, r2))
V/(Grant(Rq, r1)||Grant(R2, 7))
V/(Grant(Ry[|R2,1))
= Step(R,r).

453 LEMMA LetR{,Ry € SP and « € Act such that Ry —%> R,. Then there is
somer € AReq(R;) such that « = ACT(r) and R, = Step(Ry,).

PROOF By transition induction. We shall only prove the case where R; = R} [f]. Then there is

some o’ € Act, suchthat o = f(«'), R} SN R} and Ry = R}[f]. By induction, there is some

4.5 Correctness of the Execution Method 81

r' € AReq(R}) such that ACT(r') = &’ and R/, = Step(R,r’). By definition of AReq, there is a
requestr = f(ACT(r")) - r' = f(&/) - r' = a - r’ in AReq(R1). Now ACT(r) = « and

Step(Ry,T)
V(Grant(Ry, 1))
V/(Grant(Ry[f], & - "))
V/(Grant(RY, r')[f])
V/(Grant(RY, r"))[f]
Step(RY, r')[f]

Ry[f]

R,.

O

We now state similar lemmas for time requests. First, we show that every time step
in the implementation is a valid time step in the calculus.

4.5.4 LEMMA ForeveryR € SP andt € TReq(R),

R —> Step(R, t).

PrROOF By transition induction. Let R = S; + S, (the other cases follow similarly). Then
t € TReq(S;) and t € TReq(S,). Thus by induction, S; —— Step(S1, t) and S, —— Step(Sy, t).
Then, according to semantical rule 45, R —> /(Step(S1, t) + Step(Sy, t)). However,

\/(Step(slr t) + Step(321 t))
V(V/(Grant(Sy, 1)) + /(Grant(S, 1))
V/(Grant(Sy, t) + Grant(Sz, t))
V/(Grant(S; + Sy, 1))

Step(R, t).

O

The final part we need to prove is that the implementation can mimic the time tran-
sitions of the calculus. We have seen however that there are time transitions in the
calculus, that are not present in the implementation, since the implementation does
not have the equivalent of the CNT rule. We will show, however, that any time tran-
sition of the process can be matched by one or more time transitions in the imple-
mentation. To show this we need the following lemma which states that time steps
in the implementation can be broken up into smaller ones.

4.55LEMMA LetR € SP andt € TReq(R). Then for any t;,t, € T* such that
t1+t,=t,
Step(Step(R, t1), t2) = Step(R, t)

PROOF Again, by transition induction. We illustrate the proof using the basic case that R =
(). Thent; < t < t'. Step(R,t;) = (t' —t1) and Step({t' —t1),t2) = V(' —t; —tp)) =
V(' = 1)) = Step(R. t). o

Thus if R —> mpiR” and t; + t; = t then there is some R” such that R by imptR”

LN Impl R’. Next, we define what it means for a sequence of delays to be an appro-

priate sequence for the implementation to match a time transition in the calculus.

82 Executing Real-Time Concurrent Models

4.5.6 DEFINITION LetR,R’ € SP andt € T+ such that R —> R’. Then the se-
quence ty, ty, ...tn, such that 37 _, ty = t, is called an implementation sequence

for the transition R —> R’ if there exist Ry, Ry, ...Rpy1 € 8P such that R = Ry,
R' = Rpy1 and

t; t tn
R1 Impl Rz Impl - -+ Rn —— ImpIRn+l-

457 LEMMA LetR,R' € SP andt € Tt such that R ty R/, then there exists an
implementation sequence tq, ty, ...ty forR 1SR,

PROOF By induction on the derivation of R —15 R’. With every application of a derivation

taking two processes with the same time transition, a new sequence can be constructed from

the ‘interleaving’ of both corresponding sequences (using lemma 4.5.5). If the rule uses only

a single subprocess, the same sequence applies. If the CNT rule is applied, the corresponding

sequences can be composed one after another. As these sequences remain finite, the lemma
follows. We show the cases concerning the rules 4+,, CNT and SEQ.

e If the applied rule is +;, then there exist S1, S}, S; and S}, such that R = S; + Sy,

R' =S} +8},S; —>S] and S, —> S,. By induction, there are two implementation

sequences, both totalling a delay t, for S; s Sjand S, s S, respectively. By lemma

4.5.5, every delay in such a sequence can (if necessary) be split into two arbitrary parts,

in order to obtain a (finite) implementation sequence for both S; s S} and S, —ts S5
at the same time. Now it is easy to show that this sequence is an implementation se-

t
quence for R —> R’ as well.

e If the applied rule is CNT then R %5 R” and R" —2> R’ for some R". By the in-

duction hypothesis there exist two implementation sequences, the first ty 1,t;5,...,t1 x
totalling a delay of t; and the second, tp 1,122, ..., t , totalling a delay of t;. Then the
sequence tyq,t1p,..., 11, 121,00, ..., Iy y totalling a delay of t; + t; is an implemen-

tation sequence for R SR

e If the applied rule is SEQ then there exist S;, S} and S, such that R = S;;S,, R’ =
V/(S};S2) and S; LN S!. By the induction hypothesis, there exists an implementation
sequence tq,to, ..., ty for S; _ts S|. Foreveryk < n, t' = ZE<=1 tj and S/ such that
S1 g9 S{ # /. Thus, it can be shown that this is also an implementation sequence
for R —> R’ by using the SEQ rule n times. O

The proof shows that the transitions in the TLTS Impl correspond exactly to the tran-
sitions which can be derived by the semantical rules without using the rule CNT.
The lemmas 4.5.2, 4.5.3, 4.5.4 and 4.5.7 together show that Impl is a faithful imple-
mentation of StatCalc in the following sense. If we take the time-closure of Impl and
abstract from request decorations using ACT then Impl is equivalent to StatCalc.

4.5.8 THEOREM Impl®~ pctStatCalc

PROOF The appropriate bisimulation relation is ldsp = {(R,R) | R € SP}.

ACT(r)
o IfR > mpiR’ then R’ = Step(R, 1) and by lemma 452, R — +—>R'.

4.6 Software Tools 83

e IfR ALct> R’ then by lemma 4.5.3, there is some r € Req(R) such that ACT(r) = « and
Step(R,r) = R. Thus R —=> mpiR" and ACT(r) = a,

e IfR T—t+> R’ then by lemma 4.5.7, there exists a finite sequence of transitions

t t th

R T—1+> Impi R2 T—i> impiR3 .- — > mpIR’ such that t +t; +... + 1t = t. Hence
t L]

R(T+> Impl) R

. : t t t,

o If R(T—t+> impt) R’ then there is a sequence R T—i> impI R2 T—i> mpIR3 -+ > 1mpiR’
" t t

of transitions such that t; +t, +... + tn = t. By lemma 4.5.4, R T—1+> R, T—i> Rs...

th .
—"> R’ and by time closure of StatCalc, R N O
T+ T+

4.6 Software Tools

The execution framework of this chapter has been used in a simulation tool for the
object-oriented modelling language PoosL (Parallel Object-Oriented Specification
Language) [87, 88]. PoosL is a language for describing concurrent real-time systems.
It combines concurrent processes in the style of the calculus as presented in chapter
3 and on data objects similar to objects in traditional object-oriented programming
languages such as Smalltalk[93] or Java[95] (for more information on PoosL and the
specification and design methodology SHE in which it is embedded, see [156, 80]).
This section briefly describes the tools and some issues that arise in the application
of the method to PoOoOsL.

4.6.1 The Tools

The implementation method developed in this chapter has been applied to the for-
mal modelling language PoosL. A tool-set called SHESim [85, 88, 65] was built
which supports entry of PoosL models allowing for a graphical specification of their
static structure and hierarchy. It is furthermore capable of (interactively) simulating
the execution of PoosL models. It has been successfully applied in several cases
for specification, modelling and validation of industrial control systems, protocols,
telecommunication networks and so forth [156, 88, 160, 66, 132, 170, 182]. Besides the
SHESIm tools, tools translating PoosL models to C++ have also been built, based
upon the same principles [169, 29].

PoosL models are made up of three kinds of entities. Clusters represent the static
structure of the communicating components and are used for hierarchical decom-
position and refinement. Processes are the basic autonomous elements of a PoosL
model and data objects are passive entities used to represent the data of a process.
These types of entities are briefly discussed in the following paragraph. A concrete
example of a PoosL model (of the APS protocol) can be found in appendix A.

Clusters

The calculus of this thesis and the language PoosL focus on systems with a static
structure of collaborating components. In the calculus (and in the formal syntax of

84 Executing Real-Time Concurrent Models

[Clustes Closs Browser o Localbs SIS
APSmode: Boolean =
EXTRAtraffic: Boolean
linkMb: Integer _
OPERtype: String =
& B
B LocalPS
L ExtTolLocal h ! LocalToGlobal J
FExt fromExt toGlobal Toz 1
msy of

== meg of
_ ExiToLacal LocalToGlobal

L SgToLaocal 0 GlobalToLaocal

H S fromSy fromGlobal FramG! 1

msyg of
4 msg of
. GlobalToLocal
SgTolocal toTimer frormTimer
LocalTaTimer TimerToLacal
msg of LocalToTirmer meg of TimerToLocal
=
in out
Timer
4 I

Figure 4.8: Specifying clusters in the SHESIm tools

PoosL) this structure is specified using particular operators (e.g. parallel composi-
tion, relabelling and hiding). In practice it is easier to specify structure graphically,
using a graphical syntax which can be translated into processes of PoosL. A struc-
ture in terms of clusters and processes connected by channels is translated into a
process expression using appropriate hiding and relabelling operators. In PoosL,
clusters are entities which are used as an abstraction of a structure of other clusters
and processes. Figure 4.8 shows a window of the tool in which a cluster is being
edited. Definitions of clusters are called cluster classes and correspond to our defini-
tions of static process constants.

Process Objects

PoosL process objects are the basic components from which clusters are built. They
correspond to the dynamic processes of the calculus in this thesis. Apart from opera-
tors corresponding to the ones of our calculus, POOSL supports some extra operators
such as interrupts and aborts, which have been left out of the calculus for simplicity.
Moreover, POosL processes have access to data objects. They are specified in a tex-
tual language. In figure 4.9 it is shown how such a definition is entered in the tools.
Such a definition is called a process class, since a single definition can be used for
multiple instances of similar processes. The process class definitions correspond to
definitions of dynamic process constants.

Data Objects

Next to clusters and the active process objects, the PoosL language also has passive
data objects. These objects follow the concept of data objects found in many object-
orientated programming languages such as C++[167], Smalltalk, [93] and Java[95].

4.6 Software Tools 85

Process Class Browser on: APSRequestP5S [_[O]=]

Instance Yariables Instantiation Parameters | Instance Methods
LON: ArrayBased = | [linkMb: Integer = | [APSMsgReceive -
SWWype: String

- - -

Initial Method Call I initf)(} Superclass: None

Edit Method
init() =t

Initialise the working, the protection and the extratraffic signals to false ™7
LON = new (ArrayBase0) size(linkNb+2) putAll(*false");
par
updateConf)();
and
APSMsgReceive());
rap —

Compile Method | Cancel |

Figure 4.9: Specifying processes in the SHESIm tools

Process objects employ data objects, communicate data objects to each other, but
process objects do not share references to the same data object.

Simulation

Once a model has been specified completely, it can be simulated (see figure 4.10).
As the scheduler traverses the transition system corresponding to the model, the
behaviour can be observed in many ways, allowing the designer to interactively val-
idate the behaviour of the system. Channels light up whenever a communication
takes place. A process object can be inspected during simulation, exposing the val-
ues of its instance variables, the point(s) in the source code where it is currently
executing or delaying. An interaction diagram (message sequence chart) can be dis-
played showing the communications that have taken place, the times at which they
took place and the data that was passed. In the model of the APS protocol for in-
stance, one can monitor, the messages that are exchanged between the APS nodes
using an interaction diagram in order to validate the protocol’s functional and tim-
ing requirements. It is also possible to have processes write data to files that can be
used for off-line analysis.

4.6.2 Tool Implementation

In this section some issues are discussed that arise in a practical implementation of
the entire language PoosL, but cannot be tied directly to the calculus.

Adding Data

PoosL incorporates data as well as communication and concurrency. The formal
semantics of PoosL [156, 86] is defined in two layers. The interpretation of data

86 Executing Real-Time Concurrent Models

SHESim System Level E ditor [0 x]
File Class Definitions Scenarios Options Interaction Diagrams About
|
I3 ® Inspector on Spstem. ProtectionSwitching. ExtemnalPS M= B
& Instance Yariables Viakie
= ICrd LinkConditi LinkConf

xtemaltm ‘nit-ondtions ntom Array('false”, "false”, "false”, “false") =
fromExt fromLink
= =

ExiToPs LinkToP's
= = = =
& Ext Link Conf ‘ = 2
IT 2 Interaction Diagram [1O x] Selected Action

ExtemalCmd Pratection Suitching Selector setPriorityTol1) setRSNTo(D): |
#P5Request P toLocall Request);

TTERTORS ST =

ProtectionSwitching

@ “tny

Initialise the state of the signals : no lock
out (working, protection and extratraffic) =

Fromfode ToMod ADPSTPSaps(SF-H: | 010 LON :=new(ArrayBagel) size(linkMb +2)
4 k]

putAl(false");
APEToPS f 45:P5Toshi:select0)
i 45 TP S aps(3F-H: | 01

= = par
fromASE 10AP 5.0:4P Ta 53ps(NR: Ol 1)

5.0:P5To s i:salecteD) g
APSRequest APSResp(5.0PS TP Siaps(5F-Hi| 01y an

40:P$To SH:select(D)

getExtRequest()();

updateConf(j();
rap.

5 "y

4 5 5:PET3APSapstMSw; {051)

K1

Time: .0 = | — | - 5 5psTos|satect)
["ty Single Step
6.0-EaToRS 5wt

6.0:P5Ta 5l select(0)

6.0:PSTYAP Siaps(sy; 1:0:°T:n)

Figure 4.10: Simulating process behaviour in the SHESIim tools

elements is defined by a computational semantics. The semantics is given as a tran-
sition system and the semantics M (E, £) of a data expression E in environment &,
is the set of all successfully terminated computations starting from E in the data en-
vironment £. The process part of PoosL is similar to the calculus in this thesis, but
employs conditions on data expressions in the premises of the semantic rules. There
exists for instance a guarded command, [E|S, having the same transitions as process
S, but only if the data expression E evaluates to the object true. The semantical rule
of the guarded command looks like the following rule.

true € M(E,€), (S, &) = (§,&)
([E]S, &) == (8. &")

GRD

Since the data part of PoosL is Turing-complete, such data-dependent conditions
render the transition relation undecidable. When trying to determine the possible
transitions, such data expressions are evaluated. By the definition, the semantics
of a data expression contains only the successfully terminated data computations,
although there might also be non-terminating executions. Once an implementation
decides to evaluate a data expression, it might end up on an infinite computation, re-
sulting in diverging behaviour which is not present in the semantics. As this problem
is related to the desired level of expressiveness of the language, reducing it to guar-
antee termination of data statements and data expression is impossible. To maintain
the correspondence between the implementation and the formal semantics of the
language, the possibility of divergence should be made a part of the semantics of
data expressions and of the entire language. In fact, the same need to deal explic-

4.6 Software Tools 87

itly with non-terminating behaviour has been observed in ongoing efforts to create
a probabilistic semantics for PoOosL.

Another issue related to the implementation of data structures is storage reclama-
tion. Data objects are created during execution and in PoosL there is no explicit
way to destroy data when it is no longer needed. In a practical implementation, this
means that a garbage collector is required to reclaim memory occupied by objects
that are no longer used by the model. The SHESim tool is implemented in Smalltalk
and inherits its garbage collection ability from the Smalltalk environment. An im-
plementation in C++ requires garbage collection to be built-in explicitly [29].

Requests and Data

If the language includes data, it is not enough to consider a data transformation asso-
ciated with the execution of a transition. The actual form or presence of a transition
might depend on data in the process, such as in the case of the guarded command we
have seen earlier. Other examples include message-send operations with data and
message-receive operations in which the opportunity for synchronisation depends
on the data being communicated.

In the case of shared data (see section 3.5), the data makes the transition relation non-
compositional in the sense that if a process (sub) expression has a data-dependent
request, then a transition which does not affect this expression, might still affect the
request. In case of the guarded command for instance, a transition might modify the
data environment such that the value of the guarding expression changes and thus
the presence of one of its requests.

To execute such behaviour, the static (compositional) part of the semantics is sepa-
rated from the data dependent (non-compositional) part. For the guarded command
[E]S for instance, a request is produced for every request of S. These request are
labelled as being dependent on the data expression E. Then it can be globally deter-
mined (by valuating the expression) whether the request actually represents a tran-
sition or not. This way, granting a request outside of the subprocess [E]S does not
have an impact on the presence of the request itself, only possibly on the presence of
an actual transition.

Binary Operators

For reasons of simplicity, the calculus employs associative binary operators for choice
(+), interleaving (|), sequential (;) and parallel composition (||). These can be gener-
alised to operators having an arbitrary number of subprocesses, resulting in a repre-
sentation of smaller depth. This requires a straightforward adaptation to the mecha-
nism of decorating requests.

R as a Time Domain

For theoretical reasons, the positive real numbers often form an attractive time-
domain[23, 5]. In a physical implementation, such as the SHESim tool, concrete real
numbers need to be replaced by finite approximations. This may introduce round-
ing errors which, depending on the model, may quickly produce large differences

88 Executing Real-Time Concurrent Models

in behaviour. If [r] denotes the finite representation of the real r, and & the corre-
sponding realisation of the + operator, then it is not true that [x] @ [y] = [x +Y].
Therefore, if two process synchronise and subsequently execute a number of delays
that amount to the same total, then according to the semantics, they should end up
in the same instant in time. In a realisation this may not be the case. If the two
processes are in a race for a synchronisation with a third process, then the outcome
may be determined by the rounding errors. PoosL allows processes to delay for an
amount of time specified by an arbitrary real-valued expression, including the use
of common mathematical operations on numbers. The current implementations of
PoosL employ a straightforward replacement of real numbers with standard 64-bit
IEEE floating point representations. As explained above, these can lead to small de-
viations in value from what is prescribed by the semantics. These deviations can be
exploited to introduce deviations in the control flow as well.

Incremental Generation of Requests

Many requests are independent in the sense that granting one of them has no in-
fluence on the presence of the other. For instance two requests originating from
different sides of a parallel composition are independent. Such transitions are called
concurrent in [37] and may satisfy the ‘diamond property’ (after the diamond shape
of agraphical representation of this fact), meaning that they can be taken in any order
and the resulting process is the same (although in the presence of shared data, the or-
der of execution can be of influence). If many requests in a system are independent it
may be more efficient to produce requests incrementally, i.e. instead of recomputing
all requests at every step, one only computes the new requests and removes requests
that were dependent on the granted request.

Additional Operators

The PoosL language includes more operators than we have included in the calculus
in this thesis. Powerful (dynamic) operators are the interrupt and abort operators.
S; interrupt S, is a process which behaves as S; until an action of S, is performed.
Then, the behaviour of S; is interrupted and the process continues to execute the
remaining behaviour of S,. Once this is finished, the behaviour of S; is resumed
and can be interrupted again by S,. The process terminates when the behaviour
S; terminates. The S; abort S, operator behaves similarly, but once S, starts its
behaviour, the behaviour of S; is aborted (and will thus never resumed). The process
finishes when the behaviour of S; finishes or the behaviour of S, finishes. Both
operators fit very well in the calculus and the implementation framework that is
introduced.

Decoration of Requests

The use of decorated actions as requests is used to be able to trace the requests back
to the subprocess from which it originated. In an actual implementation there are
often easier ways to achieve this. First, rather than having every operator create
new requests corresponding to requests of its subprocess, it might also pass on ref-
erences to the same data structures. If subprocesses are represented using particular

4.7 Related Work 89

data structures of the implementation language, a reference to the data structure is
enough to replace the decorations.

4.7 Related Work

In this chapter we have introduced a method for the generation of the transition
system corresponding to a model described in the calculus. This method can be
used for automatic analysis of such models.

Execution of formal languages

Requests are introduced as decorated version of the labels of the calculus, to uniquely
identify individual (derivations of) transitions. Such labelling of transitions occurs in
different forms for different purposes. For instance, in [54], a transition is decorated
with the ‘address’ from which the particular transition originates, in order to find the
right parameter to be substituted for the data that is passed with a message. In [37],
transitions are decorated with their derivation from the rules, in order to establish
what transitions are dependent on each other and what transitions are truly ‘concur-
rent’. In probabilistic calculi it is useful to be able to distinguish different derivations
of the same transition in order to be able to add up probabilities [180]. Moreover we
decorate our transitions even further in the next chapter to accommodate structural
information in the transitions.

There exist several approaches to the execution of formal specifications such as CCS
[140], LOTOS [71], SPADES [61] or uCRL [96]. Work on executing LOTOS/CCS
specifications by van Eijk [69, 70] is most closely related to the work in this thesis.
A simulator tool called Hippo is designed for the simulation of LOTOS specifica-
tions. The implementation is derived from the inference rules and provides a ‘menu’
function that gives all the available transitions and a function called ‘next’ that com-
pletes the move to a subsequent state when it is provided with the process and the
selected transition. The data part of LOTOS consists of abstract data types (ADT’s).
The simulator uses a rewriting system for ADT’s to implement this. [70] introduces a
number of transformations on the semantics that make it more constructive, such as
a labelling of the available transitions that makes them uniquely identifiable (similar
to our requests) and the introduction of data environments instead of the traditional
parameter substitution. [70] also suggests to reuse parts of the parse tree of a pro-
cess for the representation of the process resulting from the transition. The approach
taken in our simulator is to modify the original parse tree to represent the new pro-
cess, rather than produce a new one. [41] shows another interpreter for LOTOS,
based on a translation to CCS* (following the semantics of LOTOS, being defined in
terms of CCS*, an extension of CCS), a CCS* interpreter and a rewriting rule inter-
preter for ADT’s (both implemented in PROLOG). The LOTOS interpreters do not
deal with time and the use of ADT’s in LOTOS requires a non-constructive imple-
mentation of the data part. In PoosL, data is defined in an imperative style and
therefore straightforwardly constructively implemented in e.g. C++.

The need for more constructive approaches towards data in process calculi is also
answered by [54] which gives a redefinition of Milner’s value passing calculus pre-
venting the use of individual messages for every data value that could be received,

90 Executing Real-Time Concurrent Models

and [172] which introduces a calculus built from a timed version of CCS, operating
in data environments, thus allowing shared data to be modelled. In [172], data is
specified in VDM-SL. The calculus has provisions for backtracking changes in data
environment. In a non-deterministic choice, alternatives may evolve into different
data environments before a choice for one alternative has been made. Thus, the data
environment must be split and if large, this may give a severe penalty in efficiency
when implemented. An algebraic treatment of value-passing processes and equiva-
lence relations can be found in [109].

In [97], the verification of specifications in uCRL is described. The construction of
the system’s state space is described from so-called linear process expressions, uCRL
processes of a particular restricted form. Other uCRL processes are first transformed
into linear process expressions. In our setting it is imperative to maintain the struc-
ture of the system in order to give appropriate feedback to the user about the sys-
tem’s state.

In [131] a “virtual machine’ implementation is described for TyCO (Typed Concur-
rent Objects) a variant of the 7z-calculus with objects built-in. The calculus does not
describe timed systems. Tools exist that can automatically generate prototype im-
plementations from transition-rule specifications of a language or calculus, such as
ASF+SDF [26, 119]. Such systems are typically based on rewriting expressions. Al-
though very efficient term rewriting engines have been implemented (such as ARM
[77]), this approach is often not very efficient for languages that are not especially
suited for this approach. Another example is [61], for a discrete event simulation
generated from stochastic process algebraic specification (SPADES), implemented in
Haskell. The model is based on (stochastic) timed automata. Timing is based on
expiration of timers that are set according to some distribution. The model does not
include data. yx is a language with accompanying tools for modelling production
systems. For a part of the language, a formal semantics has been defined [33].

Simulation/execution of concurrent distributed models

There is a wide variety of languages and corresponding simulators for distributed
concurrent systems. Some are informal, some have a formal definition of the un-
derlying language, but not for the simulator implementation. Some are aimed at
real-time systems, others at probabilistic systems and performance analysis. Some
are designed for structured specification and dealing with complexity, others give
precedence to efficiency and simulation speed. PoosL is designed for systematic
modelling and specification of complex systems including time and complex data
structures, based upon a mathematically defined model, allowing for the construc-
tion of tools that respect its formal interpretation.

4.8 Conclusions and Future Work

In this chapter a framework is introduced for the implementation of CCS-like formal
languages, based on a Plotkin-style structural operational semantics. It is based upon
the collection of so-called requests to represent the transitions available to a process.
Every request uniquely determines a derivation of a transition. After the selection of
such a request, the construction of the target process of the corresponding transition

4.8 Conclusions and Future Work 91

can be performed along the lines of the Step function. It has been shown that this
format leads to practically feasible and correct implementations. The approach has
been applied to the industrial-strength modelling and specification language PoosL
to develop an simulation tool that is in accordance with the formal semantics of the
language. Implementation aspects are discussed as well as aspects relating to the
language PoosL that are not reflected in the calculus of this thesis.

Future work includes the design of execution methods that enable more profound
analyses of the model, for instance the generation of the model’s entire transition
system or an abstract version thereof. Another issue is the efficiency of the imple-
mentation. Analysis often requires extensive simulations if an exhaustive verifica-
tion is infeasible. In particular, simulations for performance analysis can be very
extensive. Therefore, efficiency of an implementation is of great importance. A sim-
ulator program might in certain circumstances serve as an (automatically generated)
implementation. However, more insight is needed in the relationship between such
an implementation and the formal model. In particular timeless execution of ac-
tions in the model cannot be physically realised. Another issue for further study is
the construction of distributed simulators from PoosL models. Such a distributed
implementation might allow for faster analysis, and the automatic generation of dis-
tributed implementations.

92

Executing Real-Time Concurrent Models

Chapter 5

Structure and Behaviour of
Components

Models of complex distributed systems can be specified and can be executed accord-
ing to their formal semantics by construction of the corresponding labelled transition
system. Possibly, this construction is done only partially and/or on-the-fly. This can
be used to validate that the specification captures the intended behaviour or to ver-
ify that certain forms of behaviour will be exhibited by the specification under all
circumstances. Validation is effectively performed by simulation of the behaviour in
a tool which gives the user a maximum of assistance in observing all of the system’s
aspects and managing its complexity. Verification on the other hand can be largely
automated. Verification tools analyse a system for properties explicitly stated in a
form that can be understood by the program. This analysis is done with little or no
aid from the user.

The type of semantics in terms of labelled transition systems as used in the previ-
ous chapters focusses on behaviour exposed in transitions of the system. This is also
reflected in the equivalence relations such as different forms of bisimulation. This
approach is particularly useful when studying open systems and their interactions
with possible environments. We have already seen that as system specifications be-
come less abstract, closed specifications including the system that is being designed
as well as the environment in which it must operate become more useful.

In a closed system all external interactions are prohibited. The only actions that
can be performed are internal or silent () actions. Although the presence of the T
action can be attributed to a particular subexpression or to the synchronisation of
two subexpressions, this information is lost in the derivation of the transition. Yet,
in tools such as the simulation tools for PoosL, communications within components
are visualised. This is also desirable, since it is precisely this behaviour that is being
studied. In fact, the transition system introduced in the previous chapter to model
the implementation already employs requests that carry information about the origin
of the transition they represent.

Moreover, if we take a closed system and make certain statements about its be-
haviour, then we have to refer to the internals of the system. We have to pinpoint a
particular subexpression which represents a particular component of the entire sys-

94 Structure and Behaviour of Components

tem. The calculus allows the composition of subsystems, but it is not obvious how
to refer to subcomponents to state their properties.

In this chapter we try to remedy this deficiency by decorating subcomponents with
identifier. By decorating actions of the calculus, similarly to the requests, we are able
to reconstruct the behaviour of any subcomponent from the behaviour of the total.
In order to deal with the inherit complexity of systems, one often employs hierarchi-
cal decomposition techniques and modularity. Components interact through simple
and well defined interfaces and their behaviour should not depend on the internal
structure of components they interact with or of their subcomponents. In order to
scale up formal description techniques to larger systems, a need arises for the same
concepts such as hierarchy, modularity and encapsulation. This becomes necessary
in particular when using techniques that permit the analysis of large models. Such
techniques include for instance non-exhaustive analysis such as verifying temporal
logic properties during simulations (see e.g. [84]), powerful automatic abstraction
techniques, or estimation of performance figures from random state-space traver-
sals ([180]). Note that the calculus is not in the first place used as an algebraic tool,
but instead to describe the semantics of modelling constructs for complex concurrent
systems. Therefore, we neglect a number of questions that would be interesting from
an algebraic point of view. Such issues are addressed in other work on related issues
(e.g. [46, 38, 145, 136, 109]).

Sections 5.1 and 5.2 introduce syntax and semantics respectively of an extension to
the calculus to solve the problems described above. How individual contributions of
subcomponents can be deduced from the behaviour of the total is shown in section
5.3. In section 5.4 we turn to the APS protocol example. Section 5.5 discusses the use
of the issues addressed in this chapter in the context of PoosL and illustrate the use
of the component semantics in the simulation tool SHESim with the APS protocol.
In section 5.6 we will investigate how we can adapt linear temporal logic to be used
effectively in combination with identified components. Finally, related work and
conclusions are given in sections 5.7 and 5.8 respectively.

5.1 A Component Calculus

We start by extending the calculus with the option of assigning identification to sub-
processes. In fact we will only allow names to be assigned to static subprocesses,
because we would like the identified components to persist during the execution
of the system. First, we introduce a set CZD of component identifiers and let X, Y
range over CZD. Then, the syntax of the static process expressions, extended with
identification of subcomponents, CP (ranged over by Q), is defined by:

Q == S | QlQ | QIf] | Q\L [X [[Q]x.

Recall that S is a dynamic process as defined in section 3.1.1. The processes are the
same as the static processes of section 3.1.2 with the exception of the processes X and
[Q]x. X is acomponent identifier and replaces the static process constants of section

3.1.2. Thus, it is assumed to be defined in a set of (non-recursive) identifier equations

{X der Qx | X € CID}. The equations describe a finite hierarchy of components. It

is assumed that the component names are unique (unless they occur within different

5.2 Semantics of the Component Calculus 95

~

5O—0 B
o

wn

Figure 5.1: Process expression with identified components

components, allowing a process like [Y]y ||Y). In terms of the function Components
which returns the components mentioned in a process expression Q (to be defined
next), Components(Q;) N Components(Q,) = & in the construct Q1| Q2.

Note that one could have separated the concepts of static process constants and iden-
tifiers, as it is done in PoosL. There, process constants are called process classes and
cluster classes and the instances of these classes are referred to by an identifier. For
simplicity, we unify both concepts in our calculus. The process expression [Q]y rep-
resents a process identified as X with behaviour Q. A process X, defined by the

equation X £ Q will be instantiated to [Q],. Derivatives of [Q] retain the identi-
fier.

For example the system depicted in figure 5.1 can be defined by the process expres-
sion Z with the following definitions

Z = (X[a/m][[Y[a/n])\{a}

X ER

Y&'s
R and S are assumed to be process expressions without further component iden-
tifiers. Components are depicted by rectangles having rounded corners and the
identifiers are written in the upper-left corner. The process consists of a component
Z, and within Z, the components X and Y. These subcomponents will be referred to
as Z.X and Z.Y respectively. In general, FCZD is the set of fully qualified compo-
nent names and the smallest set such that CZD C FCZD and for every X € CZID
and xy € FCID, X.x € FCID. If Q is a process expression, we can determine the
set Components(Q) of components of Q. The function Components is defined in table
5.1. For the example process expression, Components yields {Z,Z.X, Z.Y}.

5.2 Semantics of the Component Calculus

We have extended the syntax of processes to include identifiers for components. In
this section we extend the semantics accordingly, with the objective to be able to
deduce from any transition, what components were involved and what actions they
contributed. In order to achieve this we first extend the set £ of labels as follows.

96 Structure and Behaviour of Components

Q Components(Q)
S @
Q1]]Q2 Components(Q;) U Components(Q5)
X {X} U X.Components(Q’)? where X £ Q'
[Q'lx {X} U X.Components(Q")
Q'[f] Components(Q’)
Q"\L Components(Q’)

aX.C={Xx|xecC}

Table 5.1: Determining the components of process Q

5.2.1 DEFINITION Let L& be the smallest set such that:
o L C Lt
o Ixr€eLPifAe L%l e Land X € CID. O

We let A range over L. An extended label ¢x , is used to represent a label that is
externally visible as ¢ and produced by component X in which it was characterised
by the extended label A.

Similarly, the silent transition T of the calculus is also extended such that one can
reconstruct the way the internal action was produced (for example as a synchronisa-
tion between two components). This gives rise to a set Silent of silent actions.

5.2.2 DEFINITION The set Silent of silent actions, ranged over by 0, is the smallest
set such that:

e T € Silent;
(] T(/\]_,)\z) € Silent if Ay, Ay € LE;
e Tx g € Silent if8 € Silent and X € CID. |

Let furthermore the set Act® of extended actions be defined as Act® = L& U Silent
and let 3 range over Act®. We furthermore use ¢ to range over Act® U T™. (A, A;)
denotes an internal synchronisation between the (complementary) actions A; and Ay;
similar to the requests of the previous chapter, the individual actions constituting
the synchronisation are remembered. Finally, Tx ¢ is a silent action originating from
a component named X in which itwas 0 .

Sometimes one would like to remove all decorations from an action and only con-
sider its external form. The function ACT abstracts all decorations from an extended
action.

5.2.3 DEFINITION The function ACT : Act® — Act is defined as follows

B ifpB € Act
ACT(B)=14 ¢ ifB=1{x,
T iff3 € Silent

5.2 Semantics of the Component Calculus 97

QILQll
Q1/|Qz2 i>Q'1||Qz, Q2/|Q1 i>Qz||Q'1

PAR;

N -
Q1 —> Q}, Q2 —2> Q4, ACT(A1) = ACT(A;) PAR,
Q1/|Q2 e

)o@y

Q">Q .. Q>Q.ACTRI¢LACTBI¢L,

Q[f] —— s '] Q\L -5 oL

Bif B € Silent
fe(B) = { f(B)ifB € Act
f(€)x A 0f B = lx 2

Table 5.2: Modified rules of the static processes with component identifiers

The semantics of the calculus extended with component identifiers is now defined
by the tuple

— €
CompCalc := (CP, ACt, T, ——> ?) .

The semantic rules of dynamic processes are left unchanged, as well as the time
transition rules of the static processes. The modified action transition rules for the
existing static processes are displayed in table 5.2. When two processes synchronise,
the individual actions are remembered. The relabelling is straightforwardly adapted
to all extended actions. It relabels the action in front of the extended actions and
leaves the rest unchanged. The semantics of the new syntactic constructs are shown
in table 5.3. The first rule describes how an action produced by a component is
decorated with the name of the component and the action itself to be remembered.
The second rule states that time transitions remain unchanged and undecorated and
the third is the appropriate replacement of the process constant rule of section 3.2,
stating that a process X is equivalent to its defining expression Q enclosed by the
brackets and name, identifying it as component X.

One can now easily verify that the component structure of a process Q is indeed
static, it remains the same for any derivative process expression.

5.2.4 LEMMA IfQ LN Q’ then Components(Q) = Components(Q').

Similar to the transition system of requests, it can be shown that the added decora-
tion does not change the behaviour in the following sense. We can abstract away
the component identification from a process expression. In the sequel we show that
if R is the process expression Q with all identification removed, then the transition
system of R is strongly timed bisimilar to the transition system of Q with respect to

98 Structure and Behaviour of Components

Q-4 ¢ s, Q@
[QIx —2E> (@1 Qlx = [

[Qly —<>Q' X %¥Q
X > Q'

CMP;

Table 5.3: Semantics of the new component operators

Q Pure(Q)
S S
Q1]|Q2 | Pure(Qy)||Pure(Qz)
QIf] Pure(Q)[f]
Q\L Pure(Q)\L
X Pure(Q’) where X Lo
Qlx Pure(Q)

Table 5.4: The abstraction Pure

observability ACT, i.e. R~ac7Q. Along the lines of [38], one can define a function
Pure : CP — SP that removes all identification from a component process and thus
returns a pure process of the calculus of chapter 3 (in fact a process of this calculus,
StatCalc, without any process constants).

5.2.5 DEFINITION Let Q € CP then Pure(Q) is the pure StatCalc expression ob-
tained by abstracting from component information. The precise definition of Pure
is straightforward and given in table 5.4. m|

Now the following lemmas state the similarity between a process Q and Pure(Q) as
depicted in figure 5.2.

5.2.6 LEMMA If Pure(Q) —* R’ then there exist Q' and B, such that Q LN Q'
R’ = Pure(Q’) and o« = ACT(p).

PROOF By structural induction on Q. We only consider the case that Q = [Q1]yx. Then

QL

Pure lACT
«

R —

Q

Pure

-

~

Figure 5.2: Relationship between CompCalc processes and their Pure counterparts

5.2 Semantics of the Component Calculus 99

Pure(Q) = Pure(Q;) —— R’. By induction, there exist Q} and g’ such that Q; — Q/,
Pure(Q}]) = R’ and a = ACT(B'). But then, Q LN [Q1]y. R = Pure([Q}]y) and
o = ACT((XX'[;/). O

The similarity in the other direction is stated by the following lemma.

5.2.7 LEMMA IFQ —2> Q' then Pure(Q) "), pure(Q).

ProOF Straightforward by transition induction. For instance, if Q = Q1]|Q>, then either of
the following is the case.

e 3 stems from one of the subprocesses, say Q1, Q; LN Qj and Q' = Q}]|Q2. Then

by induction, Pure(Q;) % Pure(Q) and thus Pure(Q) = Pure(Q1)||Pure(Qz)

ACTE) 5 pure(Q))|[Pure(Q2) = Pure(Q').

A A —

B =1(M ,A2), Q1 —=> Q}, Q2 —> Q) ACT(A1) = ACT(},) and Q" = Q[|Q).
. . ACT(A) ACT(X2)

By induction, Pure(Q;) ———— Pure(Q}) and Pure(Qz) ———— Pure(Q}). Thus

Pure(Q) = Pure(Q1)||Pure(Qz) —— Pure(Q})||Pure(Q}) = Pure(Q’).
m

Similar lemmas for time transitions follow straightforwardly from the semantics; the
component constructs do not add, remove or modify time transitions.

5.2.8 LEMMA For any CompCalc process Q, Q~ actPure(Q).

PROOF It can be shown using lemmas 5.2.6 and 5.2.7 (and the timed versions thereof) that
S = {(Q',Pure(Q")) | Q' € CP} is a bisimulation with observability ACT.]

This means that if we abstract from the decorations, both on the process expressions
and the actions, we have the same interpretation as the calculus of chapter 3.

Other evidence that the additions in the calculus are just decorations stems from the
fact that equivalence with respect to observability ACT is still a congruence for all
operators of the calculus, since all semantical rules ‘ignore’ the decorations when
determining their possible transitions.

5.2.9 THEOREM For any two CompCalc processes Q1 and Q,,

Q1~acTQ2 & Pure(Q1) ~ Pure(Q2)

PrROOF Follows from the previous lemma and the fact that for pure processes, ~ and ~act
coincide. =]

The equivalences between component processes and their abstractions are repre-
sented in the following diagram.

Q1 ~ACT Q>
~ACT ~ACT

Pure(Q1) ~ Pure(Q>)

100 Structure and Behaviour of Components

Q Q Ix
S v
Q1 Jx if X ¢ Components(Q;)
Qu[|Q2 Q. |x if X ¢ Components(Q;)
v QifY =Xand X £ Q
JIEXAY
QifX =Y
[Qly { JIEX Y
Qfl | Qix
Q\L | Qix

Table 5.5: Component reduction

We have added decoration in both the syntax of process expression and the actions
they perform, to be able to interpret processes and their transitions not just by their
externally visible behaviour, but at the level of internal components as well. In the
next section this decoration will be exploited to deduce information about internal
components of a process.

5.3 Reduction through hierarchy

The extensions to syntax and semantics introduced in the previous section, allow
the internal behaviour to be observed for all identified components. A trace now
describes the behaviour of all identified components of the system together. We shall
see in this section how the contributing trace of a subcomponent can be effectively
regained from the execution trace of the entire system. A similar purpose serves the
localisation operator in process algebra [22].

5.3.1 Reduction of process expressions

We first take a look at process expressions decorated with component identifiers.
In a CompCalc process, one can ‘find’ a particular component, guided by the added
decoration. A component X of a process expression Q is denoted by Q |x. For
instance in the example of section 5.1 (figure 5.1),

Zlzx=R.

The definition of the reduction operation is given in table 5.5. Note that reduction to a
non-existing component will (a bit arbitrarily) result in the process /. The operation
is extended to full component names by letting Q x ,= (Q Ix) {x-

5.3.2 Reduction of execution traces

We have seen how one can reduce a process expression to any of its constituting
components. We shall now see how the same can be done for extended actions and
for execution traces. The decorated actions of the component calculus record the

5.3 Reduction through hierarchy 101

origin of the action. Reversely one can extract any component’s contribution to the
action. The reduction of an action to acomponent’s contribution (- J.: Act®* x CZD —
ActU {_L}) is done as follows. (A result L is added to indicate that the component
did not contribute to the action.)

5.3.1 DEFINITION Let 3 € Act®, X € CZID then

/3, lfﬁ = (XX,B’
L ifB=oayp, Y#X
Blx=4 L ifB € Act
A dx ifB=1(A1,A2) and Ay [x= L
A lx ifB = T()\l,)\g) and A1 lx= L.

O

For convenience, we also define reduction on time transitions. Since time transitions
are made synchronously by all components and are not decorated, t |x= t. The
reduction of actions and time transitions is also extended to full component names,
4 J/X.x: (C J/X) J/x-

Being able to determine components in a process expression and every component’s
contribution to an action, we are now able to define the reduction of a trace, s |x.
In chapter 2, we introduced a (timed) trace as an infinite sequence of transitions
through some (timed) labelled transition system. For simplicity we ignored the pos-
sibility of finite paths through the LTS. If we take an timed trace that has infinitely
many time transitions and look at the contribution to this trace of one of its compo-
nents, then this will also be an infinite trace. It is possible that after some period of
time, the component will execute no more action transitions, but it will still continue
to make time transitions. In contrast, if we look at untimed traces, then the reduced
version of an infinite trace may no longer be infinite.

The contributing trace of a component X can be determined by reducing all process
expressions of the trace to X and skipping those transitions in which X did not take
any part.

5.3.2 DEFINITION Lets be a timed trace, X € CZD and's = (Q, {) then the operator
- |. is such that

5| :{ slx if(0) Ix= L
X (Q(0) Ix,¢(0) Ix)(st Ix) otherwise.
O

The transitions that do not involve X can be removed, since the component X cannot
have changed if the transition did not involve X. One can show thatif 3 |x= L, then
component X cannot have changed by any transition labelled 3. This is expressed
by the following lemma.

5.3.3 LEMMA IfQ —2> Q' and B |x= L thenQ |x= Q' |x.

PROOF This can be proved by induction on the derivation of the transition Q i> Q. We

will only consider Q = Q1||Q2. Then either of the following is the case:

102 Structure and Behaviour of Components

e 3 =aypand Y # X. Assume (without loss of generality) that Q i> Q’1 and
Q' = Q}]|Q2. By induction, Q1 Ix= Q] Ix. Thus Q |x= (Q1]|Q2) Ix= (Q}]|Q2) Ix=
Q Ix.

e B € Act. Then Q {x= Q' |x=+/.

e 3 =1(A1,A2) and both A; {x= 1 and A; |x= L. There are again two possibilities,

- IfQ LN Q. Q2 BN Q5 and Q' = Q}||Q) for some Q} and Q) then, by

induction, Q} |x= Q1 I{x and Q, |x= Q2 Ix. Thus, Q" {x= Q Ix.

— Otherwise, assume without loss of generality that Q; i> Q’l and Q' = Q’1||Q2.
By induction, Q) Jx= Qi lx and thus, Q' |x= Q |x. o

If however, 3 |x# L then the transition is maintained and reduced to X. The fact
that this yields a valid transition is shown next.

5.3.4 LEMMA IfQ 25 Q' and B |x# L then Q |x—" 5 Q' Ix.

PrROOF By induction on the derivation of Q i> Q’. One of the following cases applies.
e B3 = ax . Component X is some subprocess of Q. If for instance, Q = Qq[f] then

o ’ !
Q =5 Q/ for some «’ and Q). By induction, Qq ¢XL> Q] Ix and thus Q |x
BLESN Q' Ix.
e 3 = 1(A1,A2) and A, |x= L. Component X contributed to the communication in
action A; and the result follows by the previous case.
e 3 =1(A1,A2) and Ay |x= L. Similar to the previous case.
a

The previous lemmas (5.3.3 and 5.3.4) together demonstrate that the reduction is
sound, and results in a trace.

5.3.5 THEOREM Ifs is a timed trace with infinitely many time transitions and X &€
CID, thens |x is atrace (with infinitely many time transitions).

PROOF The key is that one can show that if s = (Q,¢) Q(n) LN Q(n+1) is a step of the

trace s, then
e if (n) lx= 1, then by lemma5.3.3, Q(n + 1) Jx= Q(n) lx and the transition can be
safely removed;
e if(n) Ix# L, then according to lemma 5.3.4 (and the timed version thereof), Q(n) {x

b B +1) Ix.

Moreover, the resulting trace is still infinite, since at least for all time transitions ¢(k), ¢(k) | x#
1. O

The reduction operator on traces is again extended to full component names, letting
s Ix.x= (s Ix) L. Figure 5.3 shows two steps of a trace of the example system of
figure 5.1. The execution at the bottom shows the trace of the entire system perform-
ing two silent (internal) actions. The bottom execution in the box named Z shows
the same execution as performed by component Z. Similarly the execution in the
boxes X and Y display to contributing executions of the components Z.X and Z.Y
respectively.

5.4 Automatic Protection Switching Protocol (3) 103

e 7 N
§ J[7 s]
R >R S >8I
Rl ™2 (R, (Sl 22> [, >
[Rlfa/m] 22 [R] [a/m] [S],[a/n] X5 [S'] [a/n] 2t
[R]fa/m] || [S],la/n] "= ™k [R] [a/m]| S, a/n] X

TZ, t(a, ,a,-) TZ, T
[[R]y[a/m]||[S]y[a/n]l, ———=—5[[R] [a/m]| [S],[a/n]], ——

Figure 5.3: Reducing a trace to its components

5.4 Automatic Protection Switching Protocol (3)

As an example of the use of components and the added decorations, we revisit the
model of the protection switching protocol of sections 2.7 and 3.6. The architecture
of the APS model is depicted graphically in figures 5.4 and 5.5.

The static processes (LocalProcess, ExternalProcess, GlobalProcess, APSMessages, Net-
workManagement and Environment) of the model of 3.6 are now viewed upon as com-
ponents. From these components, one creates larger components, such as the generic
APS node

APSNode £ (LocalProcess| |[ExternalProcess||GlobalProcess||APSMessages)

{lop, locReq, extReq, glbReq, rmtReq}.
the individual APS nodes

APSNodel £’ APSNode[extComm1/extComm, aps1/sndAPS,
aps2/recAPS, sgnCond1/sgnCond]
APSNode2 =’ APSNode[extComm2/extComm, aps2/sndAPS,

aps1/recAPS, sgnCond2/sgnCond]
and the entire protocol by placing the two nodes in their environment.

ef

APSProtocol £ (NetworkManagement||APSNode1||APSNode2| |Environment)\
{extComm1, extComm2, aps1, aps2, sgnCond1l, sgnCond2}.

While we had modelled the same APSProtocol process as a closed system in the ex-
ample of chapter 3, its semantics was a labelled transition system that could only
perform internal () actions and time steps. It would not reveal anything about the
correct operation of the protocol. In terms of the semantics given in this chapter
however, the contributing behaviour of all components can be observed.

104

Structure and Behaviour of Components

, 7 7 \

s —O— — A
sgnCond extComm
LocalProcess ~ Top lop External Process
L locReq extReq)
(i i N\
locReq extReq
GlobalProcess

8lbReq rmtReq)

8lbReq rmtReq

APSMessages
sndAPS recAPS

| APSNode

Figure 5.4: The architecture of an APS node

NetworkManagement
extComm1 extComm?2

extComm

extComm

sndAPS recAPS
APSNodel APSNode?2
recAPS sndAPS

sgnCond sgnCond

sgnCond1 sgnCond2
Environment

Figure 5.5: The architecture of the APS protocol

5.5 Components in POOSL and SHESIim 105

B |nteraction Diagram [H[=] E3

ExtemalProcess LoealProcess GlabalPracess APSMessages

0:aps 1 rehuestinil)
]l

[Inspectar on System APSNode2 M= B3
= -allfReq :change GlobalRequest (N, D) —

sgnCond extComm 1:aps2requbst(CNR, DJ)
2apstrequbst(NR, 0)
-]

= =) 2immiefrequchange Remete RequasteNR, 09)
sgnCond lop extCamm FapsirequEstNR, 09

il
LocalPracess 2P 1P £ temalPraces 4pslrequest(HR, 0
locReq extReg

Saps2requEstNR, 0))

locReq extReq 880 CondZichangb Condtiontl . SCifail)

5 ealReq:)]

= =
locReg extReq)
GlabalProcess

6.0d:aps T reuest((S0. 1))
glbReq rmitReq B 0dtReq questi}0, 1)

7.0d:aps2reduest (SF, 1))

glbReq rmtReq

dcext Comm cofmandg lockout”, 13

o et 7 fdlop lockou(1)

glbRes rmtReq 7 8d-extReq:change Bfemal Request((NR, 0))
APSMessages 7
sndAPS recAPS

oy
7 i b Req:change Global Request(RR. 1)

8.08:3p5 1reUest(RR, 1)
-
ARShnde shdAPS recAPS 8 q m

8.04:lb Req:change Global Request(N. 1))

"l

4

5003057 redbestins, o2

Figure 5.6: Inspecting components of an APS node and behaviour of the node in SHESIim

5.5 Components in POOSL and SHESIim

In PoosL the static part of process expressions is defined in terms of structural en-
tities called clusters and behavioural entities called processes or process objects, con-
nected through ports and channels. Process objects and clusters are instances of
process classes and cluster classes that define their behaviour and structure respec-
tively. As already mentioned in section 5.1, the concepts of identifiers and the process
constants are separated in POOsL. The process constants correspond to PoosL class
names and the component identifiers correspond to the names of the actual instances
of such classes. Thus, instead of using two layers of components for the APS nodes,
both APSNodel and APSNode2 consisting of a component APSNode, we have two
instances called APSNodel and APSNode2 of cluster class APSNode (see the (textual)
PoosL specification of the APS protocol in appendix A).

In the APSNode cluster depicted in figure 5.6, there are four process objects of classes
LocalProcess, ExternalProcess, GlobalProcess and APSMessages, which are in this case
also named LocalProcess, ExternalProcess, GlobalProcess and APSMessages. In the APS-
protocol model depicted in figure 5.7, one can see the instances APSNodel and AP-
SNode? of cluster class APSNode.

If we visualise the behaviour of a particular cluster during a simulation of a PoosL
model, we are observing the local trace of this component. We observe its behaviour,
but only behaviour that it displays in the environment in which it is embedded.
Figure 5.6 shows a window viewing one of the APS nodes (embedded in the protocol
and environment) and a window that displays the behaviour of the component in the
form of an interaction diagram. The latter shows messages exchanged between its
subcomponents and between the node and its environment. The SHESim simulation
tool thus allows one to navigate the model’s architecture and observe behaviour of
an arbitrary selection of the model’s components. Moreover, interaction diagrams on
a component allow the choice to abstract from internal behaviour of subcomponents,

106 Structure and Behaviour of Components

= SHESim System Level Editor [_ O] x]
File Class Definitions Scenarios Options Interaction Diagrams — About
I =
=]
extComm? Networkanagement extComm2
= =
extComrmi extCormm2
= =
= extCamm extCamm
& sndAPS | apst) recAPS
[4
APSNodel APSHode?
aps2
recaAPS [1 sndAPS
sgnCond sgnCond
sqnCond] sgnCond2
= =
sgnCond1 Environtrent sgnCond2

Time: 0 Eciit | Reset | Run | Stop | Comm Step

Time-Step |¢

Figure 5.7: Components of the APS protocol in SHESIm

or exposing it as well.

5.6 Temporal Logic for Components

Now that we can identify components and know how their local behaviour con-
tributes to the entire system, we can express and evaluate properties of components.
We shall show how properties expressed in linear temporal logic can be used to for-
mulate properties of a component’s behaviour.

5.6.1 States and Transitions in Temporal Logics

Linear temporal logic is usually interpreted over transition systems that have prop-
erties that can be observed in the states of the system. Other logics such as the modal
p-calculus([121]) are more tailored to labelled transition systems which expose their
observable behaviour in transitions. The difference is not significant and one inter-
pretation can be cast in the form of the other quite easily. In fact, in more complex
modelling formalisms one would like to be able to refer to both communications
(exposed in transitions) and state properties (for instance conditions on variables).
One possibility is to encode this into pure state-based observations by letting states
be pairs of process expressions and actions which represent the action observed in
the transition to the new state. This is comparable to our traces which are sequences
of such pairs. We will not further elaborate on this; more on this can be found in
[146, 40]. We will not give a precise definition of a temporal logic to be interpreted
on traces of both transitions and states. In the remainder we focus on temporal logics
which traditionally use atomic propositions interpreted in states, but this restriction
is not significant.

5.6 Temporal Logic for Components 107

5.6.2 Extension of Linear Temporal Logic

To fit to the component structure one can extend linear temporal logic ([134]) with
constructs that support such needs. We add a construct to target a formula to a par-
ticular component (X.¢) as well as property constants (ranged over by P). Although
property constants do not add any expressive power, they are added here since they
are required for a practical property specification formalism to allow encapsulation
of a component’s internals. The syntax of such an extension of linear temporal logic
is given by the following grammar.

pu=true|p|=¢ |e1Ver| Q¢ | piUg, | X.@'|P.
The formulas are interpreted over traces of the system as follows.
e s |= true for every trace s;
s = piffs(0) = p
s =g iffnots = ¢;

Sk @1V eiffs = @pors = @y
sk Qg iffst E ¢,

s = @1Uq, iff there is some k > 0, such that s* = ¢, and for all 0 < m < Kk,
s™ = o1

e s|=X.¢iffs [xF ¢';

o s Piffs|= pwhere P £ o

p is an atomic proposition and is assumed to state some boolean property about the
current state or about the current transition. We assume that p can be evaluated
from s(0). The operators true, negation (=), disjunction (V), next (O) and until (U)
are unchanged from LTL. The interpretation of the formula X.¢ is as follows. The
formula ¢ is interpreted over the local trace of component X. Just as components
can be defined using component constants, a property constant P ranging over the
set PZD of property constants can be used to define logical properties. We will

use property constants to define properties by a set of (non-recursive) definitions
def

{P = @p |P EPID}.

The Next Operator

The ‘next’ operator () is often considered to be problematic in the context of in-
terleaving concurrency. The interleaving semantics may lead to a number of extra
transitions which correspond to local transitions in other components. Since for-
mulas using the () operator are sensitive to such transitions, formulas employing
them may evaluate differently when a system is composed with other systems, even
if these systems do not influence each other. Such external steps are said to cause
‘stuttering’, a repetition of (locally) identical states (see figure 5.8). The () operator
is sensitive to stuttering transitions. To remedy this problem the next operator is

108 Structure and Behaviour of Components

Figure 5.8: Two sequences of states, the second is obtained from the first by ‘stuttering’ of s ;

often removed (see [124]) and the remaining properties are then insensitive to (fi-
nite) stuttering. Others prefer to give the operator a different interpretation, such
as letting it refer to the first subsequent state where any of its observable properties
have changed [142, 56]. The disadvantage of the latter approach is that if the transi-
tion originates from the component itself but does not change any of the observable
properties, it is skipped as well.

We can express temporal logic formulas over local traces, thus the next operator does
not suffer from the stuttering problem?. If we specify a property X. O ¢, then the O
operator refers to the local next state, all transitions external to X are removed by the
reduction of the trace.

5.6.3 Example

Some examples of properties one might want to express about the components of
the APS protocol are discussed in this section (none of which are claimed to actually
hold for the APS model). The following property of an APS node can for instance be
expressed:

LocalProcess. (Oact(sigCond(SF-1)) = (O (request.priority > priority_SF-1))

(assuming the possibility to convey that a signal condition message indicating a sig-
nal failure on line 1 has just been received by the expression act(sigCond(SF-1)) and
that the priority of the currently dominating local request is at least equal to that of
a signal failure on line 1 by the expression request.priority > priority_SF-1. The prop-
erty then says that immediately after a new signal condition is received, the local
request is updated to reflect the new situation.

The following property (partly) states the fact that the APS protocol messages alter-
nate. Whenever APS node 1 communicates a sSndAPS message, then after that it will
not send any sndAPS messages until the other node does.

O(APSNodel.act(sndAPS) =
O((—~APSNodel.act(sndAPS))U(APSNode2.act(sndAPS))))

Again, using act(«) to express that a communication « has just occurred.

1There are other objections to the use of the O) operator that are not remedied in our approach. It refers
to the state reached after the execution of some atomic action and thus does not support the refinement of
actions [124].

5.7 Related Work 109

The following formula states that at any time, at least one of the APS nodes’ global
request is RR (indicating an acknowledgement that the request of the other node is
of higher priority than its own).

O(APSNodel.globRequestRR V APSNode2.globRequestRR)

The property makes use of the following definitions of property constants.

def

globRequestRR = GlobalProcess.requestRR

requestRR &f request.type==RR.

Note that properties globRequestRR and requestRR of the APS node and global process
are being used without having to know how these conditions can be expressed in
terms of their internal implementation or structure.

To effectively apply such a logic in the context of PoosL, it should have certain first-
order capabilities, that can be based on the data part of the language. Atomic propo-
sitions can be expressed in terms of data expressions yielding a boolean result; such
expressions may refer to variables, call (side-effect free) data methods, and so forth.
Moreover, if property constants are extended to express not only boolean properties
or temporal formulas, but also data objects, then the property above can more easily
be expressed as follows:

O(APSNodel.request = RR V APSNode2.request = RR).

5.7 Related Work

5.7.1 Calculi with Locations and Components

Process calculi focus on the behaviour of concurrent systems, rather than on their
structure and architecture. There have been several approaches to make structure
and distribution more explicit in process calculi. This is supported by the idea that
it can be convenient to say that communicating with a process reveals its internal
distributed structure. Most calculi assume that it is the distributed nature that is ob-
served and not the actual (hames of) components or their locations. Communication
with the system may reveal that certain actions originate from different locations, but
not from what particular location. To achieve this type of observational power, lo-
cation names are assigned dynamically while interacting with the system (e.g., [38]).
Other approaches statically assign locations giving them names that are exposed in
interactions (e.g., [47, 145]).

A corresponding notion of distributed bisimulation was introduced by Castellani in
[46]. A good overview on distributed process algebra and distributed bisimulations
can be found in [47]. In [38] a distributed semantics for CCS was given using dy-
namic locations. A corresponding equivalence relation called location equivalence was
given that equates two processes only if they have the same distribution structure.
In [47], based on [1], Castellani proposes an extension of CCS allowing static allo-
cation of locations, although the equivalence is still insensitive to the actual names

110 Structure and Behaviour of Components

that were given, as long as the topology of the locations is the same. A similar ap-
proach is taken in [144]. Furthermore every || operator in a process has to specify
two location names for its two subprocesses. In our calculus operands can be left
unidentified. Murphy proposes in [145] a different extension to CCS in which loca-
tions with names are given statically and considered to be observable by his notion
of distributed bisimulation. Murphy has a layered approach in which local processes
are given locations and composed in parallel. Nesting of locations, however, is not
supported. Furthermore, communication between different locations is restricted.
Equivalences are considered that are parameterised by a topology on the locations,
that describes which locations are distinguishable by the observer and which loca-
tions are not. Murphy furthermore extends the communication with the ability to
explicitly request a communication with a certain location. We did not use such an
extension for the reason that it is not present in PoosL (although the same result
can easily be obtained in PoosL by using data and a concept called conditional mes-
sage reception). Such additions no longer extend only the observability, but also the
behaviour of a model.

Concepts of structure architecture and components are of course prevalent in (object-
oriented) modelling and specification methods and languages and programming
languages for complex distributed systems. They are also applied to algebraic speci-
fication formalisms such as PSF [136]. They are an essential key to mastering the size
and complexity of such systems.

5.7.2 Logics for Objects and Distribution

Integration of temporal logic properties in object-orientated methods is practiced for
instance in the field of temporal constraints on object-oriented databases in [163].
The focus is on expressing temporal preconditions for database transactions using
a past-time variant of LTL, in the context of the modelling language TROLL. A dis-
tributed temporal logic and proof system for objects in TROLL is introduced in [68],
focussing on locality and encapsulation of objects, but not on structure and archi-
tecture. A similar approach is taken in [115] which also incorporates both state and
action properties and focusses on theories for objects for encapsulation and reuse.
A temporal logic with locations was given in [38] in the form of a logical charac-
terisation in Hennessy-Milner style for their location equivalence. It uses formulas
such as (a), ¢ to express that a process can perform an action labelled a at location |
and after that satisfy ¢. It furthermore uses quantification over location variables to
achieve the insensitivity to specific location names.

Modular reasoning and compositional object specification are addressed in [142] and
[56], focussing in particular on remedying the defects of the Next operator for com-
positional reasoning. The sensitivity to finite stuttering introduced by interleaving
semantics is countered by removing duplicate states from a state sequence or modi-
fying the logic’s interpretation to skip (locally) identical states.

Works that employs a decomposition of execution traces in the way we have done
in this thesis, have not been found. This is probably due to the fact that CCS-like
processes typically express externally observable behaviour, rather than the internal
states of a system. In the context of the language PoosL, this is more natural how-
ever, since in POOSL a process expression explicitly defines the hierarchical struc-

5.8 Conclusions 111

ture and states of the system components, besides their behaviour. In particular the
SHESim tool simulates closed PoosL specifications in which external behaviour is
absent.

5.8 Conclusions

We have decorated our systems with identification of components. Moreover, the
semantics of the calculus has been decorated such that it does not just define the ex-
ternal behaviour of a system, but exposes the internal actions at the borders of com-
ponents as well. It has been shown that the decoration and corresponding changes
to the semantics have not changed the behaviour; if all decorations are removed, the
external behaviour is still the same. The decorated semantics provide a formal basic
reasoning about the internals of a system.

The added decorations in both the process expressions and in the actions they per-
form allows the contributions of individual components to be regained from the be-
haviour of the entire system. For any component of the system, its local trace, states
and transitions can be determined. It has been demonstrated how this can be used
to interpret temporal logic formulas expressing properties of individual components
or relating properties of multiple components. The interpretation of logical proper-
ties of components is insensitive to transitions of parts of the system outside of the
component itself. This gives a compositional interpretation of the Next operator and
allows one to ignore such external transitions during the verification of logical prop-
erties associate with a component.

Future work includes the precise definition of a full language to express properties of
PoosL models, which can then be used for automatic verification of such properties.
Linear temporal logic by itself may not be powerful enough to express all desired
properties, it will sometimes be necessary to add behaviour to the model to allow
the expression of the desired property. If for instance, one would like to relate the
data content of different communications referred to in a property, one may need to
add a variable containing the message last received.

Another problem that needs to be addressed is the fact that designers are not ac-
customed to using formalisms like temporal logic directly and it does not seem to
be accepted very well in industrial practice. There exist however different kinds of
notations to express temporal properties that are more user friendly, such as scenar-
ios, timing diagrams and message sequence charts. Such notations could be used
directly or be automatically translated to temporal logic formulas. Another option is
to use certain predefined properties, captured using structured natural language as
practiced in [113].

112 Structure and Behaviour of Components

Chapter 6

Automata Theoretic Verification

In the previous chapters we have seen how it is possible to model complex dis-
tributed reactive and interactive systems and execute these models according to the
formal semantics of the modelling formalism. The remainder of this thesis will fo-
cus on the automatic (formal) verification of properties of these systems. The formal
techniques of the previous chapters are aimed at the description and execution of
complex structured systems. Such complex systems suffer in particular from the
state-space explosion problem. In this chapter we discuss the automata theoretic ap-
proach to verification [178] and its applicability to these systems. In particular we
discuss the use of non-exhaustive verification techniques that increase the range of
systems to which it can be applied, and simulation as one of the most frequently
used means of verification in practice.

In section 6.1 we discuss the automata theoretic approach to verification and in par-
ticular to temporal logic model checking. Section 6.2 discusses the use of verification
approaches that are non-exhaustive. In these approaches, the guarantee of finding
a definite answer to the verification question is traded for the applicability to larger
systems. Automatic verification of simulation results is discussed in section 6.3. Re-
lated work and conclusions are presented in sections 6.4 and 6.5.

6.1 Automata Theoretic Verification

Concurrent systems have been modelled by labelled transition systems. If the tran-
sition system is finite, it can be effectively analysed. If the original model is not
finite, finiteness is often achieved after abstraction of irrelevant details. Timed sys-
tems often have infinitely many states, (densely timed systems inherently have (un-
countably) infinitely many states), but analysis may still be possible by considering a
finite quotient of the system with respect to suitable equivalence relations. This tech-
nigue can be used for instance, to effectively test the emptiness of timed automata
[7]. Finite labelled transition systems are finite state automata without acceptance
conditions (often called safety automata). If required, fairness constraints can be im-
posed on such systems using acceptance conditions on the automata. Algorithms for
analysing w-automata (finite-state automata on infinite words) can then be used for
the analysis of such systems.

114 Automata Theoretic Verification

sojlios

q

Figure 6.1: Tableau automaton of the formula O (p = (pUq))

In order to automatically verify properties of a model using w-automata, the prop-
erties must also be expressed in terms of automata, or be expressed in some other
formalism and automatically be translated into automata. In the remainder we con-
sider in particular the verification of properties expressed in (timed) linear temporal
logic [155, 134, 12, 9]. Temporal logic is a popular formalism to express properties
of concurrent and reactive systems and can be used to formalise specifications such
as timing diagrams ([162]), message sequence charts ([111, 15]) or natural language
patterns ([113]), that are more accessible to designers. This approach requires a con-
nection between temporal logic formulas and automata. This connection is realised
by a translation, called a tableau construction [184] that transforms a temporal logic
formula into an w-automaton that captures the same property. Besides the verifica-
tion of LTL properties, it is possible to use other formalisms to specify properties,
such as process algebraic specifications, or to use state-machines and automata di-
rectly.

6.1.1 LTL Model Checking

It is well known ([184, 89, 60]) that it is possible to effectively translate an LTL for-
mula ¢ into an w-automaton A, (called the tableau automaton of) that accepts pre-
cisely the state sequences that satisfy o, i.e.

L(A) =T |7 E o).

The automaton in figure 6.1, for example, accepts precisely all state sequences that
satisfy the LTL formula O (p = (pUq)). How such an automaton is constructed from
an LTL formula is discussed in chapter 7. It allows one to check whether every
execution of a system S, described by automaton Ag, satisfies the LTL property ¢.
This can be achieved by taking the formula ¢ and constructing the corresponding
tableau automaton A,. Now the model-checking problem can be stated entirely in
terms of automata, namely the system S satisfies the LTL property ¢ if and only if
L(As) C 'C(Arp)-

6.1.2 Model-Checking Algorithms

LTL model-checkers are algorithms that produce an answer to the question whether
the system S satisfies the property ¢ by determining if L(As) C L(Ay). The typical
procedure to get this answer is the following (see figure 6.2). Instead of trying to

6.2 Non-Exhaustive Model Checking 115
a N\ { \
System LTL Property S satisfies ¢
S 0]
§ J . J
iff
e N e N
Biichi Automaton Biichi Automaton LAINLA =0
AS Aﬁ‘p S -
& J
\ / iff
Product Automaton £ Agx A(P)=D

AgxA_

Figure 6.2: LTL model checking

check the language inclusion directly, another approach is taken for reasons of com-
plexity. In principle, the inclusion can be checked by computing the complement
A_(,, (the automaton accepting precisely all state sequences that are not accepted by
A,) and checking if £(As) N L(A,) = 2. The complexity of complementation of
an automaton however, is exponential in the size of the automaton ([171]). Instead,
the complement is computed directly from the negation of the formula, by observing
that £L(Ay) = L(A-y).

Subsequently, the synchronous product, Ag x A, of both automata is computed
(knowing that £L(As x A~y,) = L(As) N L(—¢)) and for S to satisfy ¢, this new
automaton should not accept any state sequences at all. This can be checked by per-
forming a nested depth-first search on the state space of the product automaton to
search for a reachable accepting cycle through the states of the automaton space[179].
If a corresponding accepted state sequence is found, there is an execution that satis-
fies = and that hence does not satisfy ¢. This state sequence and the corresponding
path through the automaton serve as a counterexample which demonstrates this fact.
The ability to complete a negative result with a counterexample is considered to be
one of the biggest advantages of the model-checking approach to verification.

6.2 Non-Exhaustive Model Checking

6.2.1 The Limits of Model Checking

The model-checking procedure described in the previous section results in an answer
to the question whether a system is correct with respect to a particular LTL property.
The practical problem to this approach however is that the size of the Biichi automa-
ton Ag is for most systems exponentially related to the size of the description of the
system S. This problem is called the state-space explosion problem and makes exhaus-
tive verification very hard and limitations in memory and/or time resources make
it practical for small or medium-sized systems only. Although methods have been

116 Automata Theoretic Verification

and are being developed, such as symbolic verification [44], partial order reduction
[90, 34], compositional verification [53] and abstraction techniques [58, 114], that try
to alleviate the problem, it is a fundamental one and remains the limiting factor in
the application of model-checking techniques.

Models must be kept small and abstractions are required to achieve this. Some-
times it can be shown that the abstraction preserves the properties that are being
checked or that it preserves positive or negative results of the verification only. Of-
ten however, these abstractions are made by the designer who believes them to be
valid or reasonable, without demonstrating this explicitly. There is a risk that the ab-
stract system no longer adequately describes the actual behaviour, or that erroneous
behaviour is introduced or removed from the model by the abstraction. The risk
becomes bigger if the designer is forced into making more or bigger abstractions,
fighting the limitations in memory and time resources.

6.2.2 Non-Exhaustive Verification

To address these problems, one can try giving up the conclusive answer to the verifi-
cation question and consider non-exhaustive verification. This means that a verifica-
tion program will search for an answer to the question as far as the resource limita-
tions allow; giving an answer if it finds one, but possibly no answer at all. A model-
checking tool for example may have a mode in which the state-space search starts
back-tracking the depth-first search when a certain fixed search depth is reached,
thus excluding a part of the state space from the search. If no erroneous behaviour is
found this way, the result is inconclusive, since there might have been an error in the
parts of the state space that were skipped. If an error is found however, the conclu-
sion that the system does not satisfy the property is valid. Such a mode of operation
is for example available in the model checker Spin [107].

Besides the complexity and efficiency of the algorithm, for non-exhaustive methods
it is important to improve the likelihood of finding problems, by adjusting the pa-
rameters that govern the direction of the search. Time or memory-resource-intensive
analyses are often run until one runs out of either memory or patience. Thus, im-
provements in the error-finding capabilities can in this case be achieved by manip-
ulating the search algorithm to search in ‘interesting’ parts of the state space first
[185, 78].

An example of a technique that saves memory at the cost of knowing for certain if
a particular location was visited before, is the following. Instead of storing all the
locations that have been visited, one could store only an abstract representation of
the state, for instance, control locations only without data, or a hash value ([57]).
This information can be used to detect that a state has not been visited before (the
converse can no longer be established with certainty). If a state is found that has
possibly been visited before, the search in that direction is aborted. To establish the
faulty execution trace, it is still necessary to remember all states visited on the path
that is currently being investigated (the depth-first-search stack)?.

LA full state space search is even possible with storing the DFS stack of states only, using a technique
called state space caching [92].

6.2 Non-Exhaustive Model Checking 117

6.2.3 Simulation

If state representations become extremely large and hard to manipulate efficiently,
one may have to refrain from storing any states, even those on the path leading to the
current state. Unfortunately, a systematic search of the state space is then virtually
impossible? and infinite paths (in the form of reachable cycles in the state space) can
no longer be detected. Such a technique, that that does not require states to be stored,
is random simulation and the errors that it allows to detect are those which can be
expressed as the reachability of some ‘bad’ location (this is elaborated in section 6.3).
Also in simulation, the odds of finding particular locations can be improved by guid-
ing the simulation instead of selecting transitions at random. This can be achieved
for instance by modifying the conditions to steer the model towards exceptional be-
haviour, such as deliberately increasing the probabilities of the occurrence of events
to levels higher than in the actual realisation.

Simulations are used frequently and are a valuable tool in practical design. The
evaluation of the simulation results however is often done manually or in an ad
hoc and informal fashion. The addition of verification of formal properties could
improve the quality of the design and reduce the gap to (more) exhaustive, dedicated
verification tools.

6.2.4 A Comparison of Verification Methods

The different methods in the spectrum from exhaustive verification to simulation
techniques have different characteristics that make them complementary and suit-
able for different stages of the design trajectory. We summarise some advantages
and disadvantages, beginning with those of exhaustive verification methods [84].

e The state-space explosion problem limits the applicability of exhaustive verifi-
cation methods to relatively small models.

e As a consequence, considerable abstractions are necessary requiring a signifi-
cant investment in the construction of abstract models. Correctness and ade-
guacy of the abstraction may be questionable.

e Although formal verification methods are slowly finding their way into com-
mercial tool sets and industrial practice, they are still frequently immature and
hard to use and understand. Many require in-depth knowledge of formal
methods in order to be used effectively as illustrated by the fact that success
stories of applied formal verification often include the original makers of the
tools or the theory [117].

o If resources allow, exhaustive verification methods are guaranteed to find all
errors that are present in the model if covered by the formalised correctness
requirements.

2In the Verisoft tool [91], backtracking is achieved by storing the sequence of events leading to the
current state, not the states themselves and replaying the sequence from the initial state. This can be
extremely time consuming and cycles cannot be detected. Aggressive partial order reduction techniques
are applied to prevent backtracking as much as possible.

118 Automata Theoretic Verification

e The methods are particularly good at examining parts of the state space that
are hard to reach by simulations, such as very particular orders of occurring
events. The probability of reaching these parts by a random walk through the
state space can be very low.

e There are also some positive ‘side-effects’ of using such precise and formal
methods. It requires designers to look at their designs and requirements very
precisely. This activity alone tends to reveal many problems already.

In contrast, properties of non-exhaustive verification methods and simulation in par-
ticular are listed below.

e The search of the state space is not complete in non-exhaustive methods. It
is difficult to quantify the coverage obtained by such an analysis and careful
tuning of an algorithm’s parameters can have a large impact on the obtained
results [78].

e Many non-exhaustive verification methods provide a trade-off between the
quality of the analysis and the amount of resources or effort put into it. This
makes that one is not left empty-handed if the problems turn out to be too hard
to be tackled completely.

e A similar trade-off exists between the level of detail and adequacy of the model
and the quality of the analysis. A more detailed model may better reflect the
characteristics of the physical artifact that is being designed. A more abstract
model allows for a more thorough analysis.

As a particular case of non-exhaustive methods, simulation possesses the following
characteristics.

e The coverage (defined as either the fraction of the state space that has been ex-
amined or as the fraction of errors that is found) is lower than in an exhaustive
analysis. If one relies on probability to eventually visit a representative fraction
of the state space, the odds of finding an error depend heavily on the kind of
scenario that evokes it [181]. If it requires a very specific order of events and
subtle interactions of many different subsystems, it might be extremely hard to
find.

e Simulation is a technique that is generally easy to use. Modelling is typically
done using languages that resemble traditional imperative programming lan-
guages. This makes that simulation tools are often much easier to use than
many of the verification tools.

¢ In a simulation, storage of states is not required. The operation of a typical
(automata theoretic) exhaustive verification tool involves the frequent manip-
ulation of system states. In order to perform such an analysis on a large state
space in a limited amount of memory, it must be possible to efficiently produce
and manipulate compact state representations. In more complex models, this
may quickly become a problem. In particular this is very hard in the context
of an object-oriented language where data structures can be quite complex and
which allows for data objects to be created dynamically [74, 156]. Simulation is

6.3 Checking Properties in Simulations 119

thus easier applicable to such models and languages as it avoids dealing with
states in this manner.

e A simulation run explores a single execution of the model. This makes it suit-
able for the verification of linear temporal logic properties (expressing aspects
of individual executions) only. To be valid, a property should hold for all exe-
cutions of the system. Since this number can be large (it is often infinite), this
seems to lead to extremely low coverage. If however the system has recurrent
behaviour, then a single execution will engage in the same behaviour over and
over again, having the same effect as performing multiple execution runs. If
the behaviour of the system does not exhibit such recurrent behaviour it could
be necessary to perform a large number of individual simulation runs.

An executable specification is (or should be) one of the first tangible results in the
design trajectory. Then a simulation of such a specification can be first applied for
initial validation and verification of the system. The number of errors in the design
is likely to be large and many of these will be caught during these initial simulations.
As the design matures, some errors may remain that have escaped detection during
simulations. If required, deeper analyses can be performed on (parts of) the system,
giving better confidence in the correct operations of the system at the expense of
more involved analysis and the use of larger amounts of resources.

6.3 Checking Properties in Simulations

Although simulation has some strong limitations, its biggest advantages are that it is
applicable to large size systems and that it is (relatively) easy to use. A first validation
and verification can be performed using simulations of the initial executable models.
Many errors can be found and corrected this way before starting more laborious
efforts of verification using dedicated methods and tools. In this section, the practical
approach towards checking LTL properties in simulations is set out.

The temporal logic discussed in section 2.5 expresses properties of infinite sequences
of states. In an exhaustive verification, the tool infers properties of infinite compu-
tations from cycles through the (finite) state space. During a simulation, it is not
possible to detect that one has reached a state that was visited before and thus cy-
cles cannot be discovered. One must infer properties of infinite executions without
witnessing such an infinite path. One way to deal with this problem is to consider
the set of all possible extensions of the finite prefix of the execution that has been ob-
served so far. Now there are three possible situations which can be discriminated. If
the set of all extensions includes both traces that do and traces that do not satisfy the
property, than we cannot draw any conclusions about the validity of the property
and we have to continue simulation. If the set contains only executions that violate
the property then one does not need to simulate any further and it can be concluded
that the system violates the property. Such a prefix is called a bad prefix in [123]. For
example, suppose that it is specified for a particular system that between any two in-
stances that a message m is received, there must be an instant where some condition
¢ holds. If asimulation produces a prefix of a trace of this system that shows that two
such messages m are received, but no instant when ¢ was true, then this prefix is bad
with respect to the property. The remainder of the trace cannot restore the property.

120 Automata Theoretic Verification

The third possibility is that all extensions of the trace do satisfy the property, then
the prefix is called a good prefix. However, in contrast with the bad prefix we cannot
conclude that the property is valid for the system. We can only conclude that the
property is valid for the particular execution that we have witnessed. The difference
is that the existence of a single trace violating the property makes that the system
violates the property, but a single trace satisfying it does not prove that the system
satisfies it. It only shows that the system may satisfy the property.

6.3.1 Automata for Bad Prefixes

Two types of temporal logic properties can be distinguished, safety properties and live-
ness properties (sometimes called eventuality property) [4, 164]. Informally, a safety
property states that “something bad will never happen”, whereas a liveness prop-
erty states that “something good will eventually happen”. Since a simulation reveals
only finite prefixes of an infinite execution trace, only the violation of safety prop-
erties can be detected by a simulation (and the satisfaction of liveness properties on
some trace). One may detect that something bad has happened, but it is impossible
to conclude after a finite amount of time that ‘something good’ is never going to hap-
pen. Several different formal definitions of safety properties exist ([125, 134, 4, 164]).
The following definition of safety originates from [4]. Let a property be a set of state
sequences. We define safety properties as precisely those properties for which every
state sequence that violates the property has a bad prefix. This holds for instance for
the property described above; any trace that fails it, displays some point where two
messages are received without witnessing the condition. The property fails to hold,
irrespective of the remainder of the trace.

A prefix of a state sequence is a bad prefix for a safety property P, if it cannot be
extended into an infinite state sequence that satisfies P. For instance, suppose we
have the following prefix of a state sequence: a number of states where p holds and
q does not hold, followed by a state where neither p nor g holds. This prefix forms
a bad prefix of the property expressed by the LTL formula pUg. No extension of the
prefix can satisfy the formula. More about safety properties and model checking of
safety properties can be found in [123] and in chapter 7 on tableau automata, were
the construction is discussed of finite state automata that recognise bad prefixes.

A modification of the tableau algorithm produces an automaton on finite words that
recognises bad prefixes ([84, 123]). In model checking during forward simulations,
one essentially builds a deterministic automaton that incrementally monitors the
prefix of the infinite execution that has been simulated so far. If the prefix is such that
the execution can no longer lead to satisfaction of the property ¢ (it is a bad prefix),
then the simulation can be stopped and the witnessed execution demonstrates that
the property does not hold for the system. [123] discusses complexity results of con-
structing automata that recognise bad prefixes and a slightly weaker (but smaller)
automaton that recognises the so-called ‘informative bad prefixes’. The construction
of a tableau automaton (on infinite state sequences) A, is exponential in the length
of the formula ¢ [179]. Constructing an automaton which recognises the bad prefixes
of L(A,) yields an automaton (on finite prefixes of state sequences) exponential in
the size of A, and thus doubly exponential in the length of the formula. An alterna-
tive construction which recognises just the informative bad prefixes (see figure 6.4)

6.3 Checking Properties in Simulations 121

'3 N (N
System S LTL P:‘poperty S satisfies @
_ J _ J
N2
{ X N\ 4 N\
Executable Observer
Specification Automaton L(A S)ﬂL(A’jf;):[l
Ac Abp
_ S J _ @ J
\ / Il
Product b
AsxAzﬁ” C(ASXA([’J’):D

Figure 6.3: Model checking in simulations

Prefixes

Bad Prefixes

Informative
Bad Prefixes

Figure 6.4: Prefixes of state sequences

is only singly exponential in the length of the formula (yielding a non-deterministic
automaton). In practice this automaton is adequate, because the informative bad
prefixes are precisely those prefixes that ‘tell the whole story’ about why the formula
is violated (see [123] and chapter 7). The formula (Op) A &—p for instance, is not
satisfiable and therefore any prefix of some state sequence is a bad prefix. Not every
prefix however contributes anything to the explanation why the formula does not
hold. Informative bad prefixes for the property do exist, a prefix showing a state
where p does not hold is informative. It tells us that Op does not hold and thus
neither does (Op) A O=p.

Another issue that arises if we use the automata theoretic approach to model check-
ing for simulations, is non-determinism. We know that the system automata are
inherently non-deterministic and the simulation explores only a single of all possi-
ble executions. In general however, tableau automata may also be non-deterministic.
Non-determinism in the system automaton originates for an important part from in-
herent non-determinism in the model and as such the modeler may exercise some

122 Automata Theoretic Verification

PA—q

Figure 6.5: Determinised tableau automaton for bad prefixes, of the formula T (p = (pUq))

influence on such choices if required. Non-determinism in the property automaton
however is not under control of the designer and also unnecessary. It is therefore de-
sirable that the observer automaton is deterministic [84]. The automaton that recog-
nises bad prefixes is an automaton on finite words rather than a Blchi automaton.
This makes that the automaton can be determinised by a subset construction at the
cost of (another) exponential blowup in size. The explicit construction of the deter-
ministic automaton can in practice be avoided by implicitly doing the subset con-
struction while traversing the automaton during a simulation. Figure 6.5 shows a
determinised version of the tableau automaton of figure 6.1. It can be shown that no
informative bad prefix of the formula O (p = (pUq)) has a path through the automa-
ton (and in this case no bad prefix at all). The precise definition of an informative
bad prefix is postponed until the next chapter.

Constructing Observer Automata

Observing multiple properties during a simulation can be done by observing the
property formed by taking the conjunction of the individual properties. If a bad
prefix is found however, it may not be clear which of the properties was violated.
Alternatively, one can produce an automaton for every property individually and
use the synchronous product of these automata, with a state of the product being
marked as final (indicating a bad prefix) if any of the constituting states is accepting.
This acceptance marking then reveals which of the properties was violated. Again,
this product need not be constructed explicitly.

If an observer is insensitive to (arbitrary, finite) repetitions of states in a state se-
quence (called stuttering)® and its propositions refer only to a particular component
of the system, then the synchronous product with the observer can be formed at the
level of the component, rather than at the level of the entire systems. This could save
unnecessary updating of the observer’s state.

3Properties expressed in LTL without using the O operator for instance, are insensitive to stuttering.

6.4 Related Work 123

6.3.2 Observer Automata in the SHESIim Tool

For every property that is used in the model, an observer automaton can be con-
structed. The atomic propositions to which the property refers, are associated with
the appropriate expressions defining them in terms of the model. The tableau au-
tomaton can be built as described in section 6.3.1 for every property that is thus
observed.

The simulator is built as a discrete-event simulator that continually selects a possi-
ble transition of the system and executes it. Instead of explicitly constructing a new
system which represents the synchronous product of the PoosL specification and
the observer automata, steps of the system and steps of the observers are alternated.
Since the observers are deterministic, their new states will be uniquely determined
once the system has changed its state. The only remaining non-determinism origi-
nates from the system. The scheduler selects one of the available transitions accord-
ing to some scheduling mechanism (possibly at random), executes the transition,
computes the new values of the atomic propositions and makes the corresponding
moves in all the observers. If a bad prefix and thus a violation of the property is
detected, the user is able to determine the cause by inspection of the current state
of the system and whatever is remembered about the history of the execution, such
as the sequence of communicated messages in an interaction diagram [87]. If this is
not enough the same simulation can be run again and observed more closely, since
one now knows what property will be violated. For example, suppose that a sys-
tem is simulated and produces the following state sequence {p,q}{p}{p}@. It can
easily be verified that the observer automaton of figure 6.5 moves along the path
1—2—3—3—4to the final location 4. This implies that the state sequence ob-
served violates the property O (p = (pUq)), and the trace executed by the scheduler
witnesses this fact (informatively).

6.4 Related Work

Automatic verification activities necessarily take place at the border of what is com-
putationally feasible (some accounts of formal verification efforts can be found, for
instance, in [117]). Therefore, methods are needed that extend this border, such as
improved techniques, combining different techniques, automating abstractions, or
more efficient data structures and implementations. At the same time, methods are
needed that cross that border in the sense that certain aspects of the results sacrificed
in exchange for application to a larger class of problems, such as non-exhaustive
verification methods.

One such method is simulation. The effectiveness of simulation for the verification of
protocols is the topic of [181] and [138]. [116] is an account of a practical case-study.
It stresses the benefits of having (temporal) assertions in simulation models that are
monitored whenever the model of a component is used in a simulation. It was found
that errors were frequently uncovered by the observers during simulations that did
not target the verification of that component in particular.

124 Automata Theoretic Verification

Non-Exhaustive Verification

As non-exhaustive verification techniques do not establish the correctness of a sys-
tem, they are targeted at bug-hunting in particular. It becomes important to tune
algorithms to find as many errors as possible and to find them as quickly as pos-
sible. Guiding the search towards suspicious parts of the state space [185, 108, 24]
or combining depth-first searching and breadth-first searching techniques to find
shorter traces leading to the error [78] are examples of such strategies.

Verification in Simulations

Simulation can be seen as a non-exhaustive search through a system’s state space
without back-tracking. Verification techniques can be applied albeit with some adap-
tations and limitations. Checking LTL properties during simulations is discussed in
[45]. Although the basic unfolding principle of the construction of a tableau automa-
ton is used, the main disadvantage is that formulas are manipulated directly during
simulation, which may not be very efficient. Besides the basic LTL formulas, also
(discrete-) timed formulas of the form ¢,U<"¢p, for example, are supported in [45].
p1US"p, states that ¢, is to happen before n units of time have passed and until
then, ¢4 should hold. Also in [105], the observation of LTL properties in simulations
of System-C descriptions is discussed. Formulas are interpreted over finite state se-
guences and given a three-valued interpretation. There are many others that put
forward the use of observers of different kinds, to run along simulations models, e.g.
[76].

Safety Properties and Bad Prefixes

So-called safety properties can be monitored during simulations by recognising bad
prefixes. Kupferman and Vardi suggest a similar approach, but in the context of
symbolic state space exploration in [123]. Their main goal is to simplify the tradi-
tional model-checking procedure to a simple reachability problem using a depth-first
search as opposed to a nested depth-first search which is required when looking for
reachable cycles in the state space required for the verification of liveness properties.
[123] does not focus in particular on the aspects of simulations. More on safety and
liveness can be found in [4, 164].

Verification of Complex Systems

Modern modelling formalisms, such as object-oriented systems and systems with
complex data structures, do not blend naturally with efficient verification tools and
their modelling formalisms. Verification of complex and object-oriented systems
specified in a formalisation of the Fusion methodology ([55]), called FUS++, is dis-
cussed in [74]. The focus is on translating FUS++ models to Promela, the input lan-
guage of the model-checking tool Spin. A distinguishing feature is the translation
of dynamically created and destroyed objects into the static vector-based data of
Promela, although this does not come without efficiency problems.

6.5 Conclusions 125

Property formalisms

The issue of formally specifying the properties to which a system should adhere, in a
designer-friendly way is also important. Scenarios, timing diagrams and message se-
guence charts are notations that are popular among designers and describe wanted,
required or forbidden behaviours. Using structured natural language could also be
a way to simplify the collection of correctness properties. Deriving formalised prop-
erties, ready to be used in verification tools is discussed in [165]. Other work on
formal requirements includes [15] on analysis using message sequence charts, [135]
on formalising the semantics of message sequence charts, [162] about converting
timing diagrams into formal specifications and [113] about the use of structured nat-
ural language patterns to derive requirements. The conversion of process algebraic
specifications to equivalent timed automata is the topic of [148].

6.5 Conclusions

The maturity and capabilities of formal verification tools increase with performance
of computing machinery and new and better techniques. Yet, it is to be expected that
such verification methods will not be able to deal with arbitrarily large and complex
systems, such as are often used for initial validation and simulations. Dedicated
adaptations and abstractions of the models are required, some of which can be auto-
mated.

To reduce the time involved in a thorough and detailed analysis of a system’s correct-
ness, it is essential to reduce the number of errors in the design as much as possible
before starting such an investigation. To achieve this we would like to improve the
error-finding capabilities of simulation tools.

Non-exhaustive verification techniques are introduced to stretch the applicability of
verification methods to larger systems, in return for giving up the exact answer to the
verification question. This enables a trade-off between scalability and quality of the
verification results. Simulation augmented with the automatic verification of (safety)
linear temporal logic properties is such a technique. To do this, some adaptations
to the automata theoretic verification method are required and in particular to the
construction of observer automata. The observers have to (incrementally) analyse
finite prefixes of executions of the system rather than infinite state sequences and
they have to be deterministic. The construction of such observers is the topic of the
following chapters. Tableaux constructions for untimed linear temporal logic and for
simulations are discussed in chapter 7. Tableau constructions for real-time temporal
logic are the topic of chapter 8.

126 Automata Theoretic Verification

Chapter 7

The Tableau Method for Linear
Temporal Logic

In this chapter we describe the translation from linear temporal logic to automata, for
describing properties of infinite (linear) executions of untimed systems. This chapter
will review the tableau method for linear temporal logic. It introduces a general
framework for defining ‘complete’ as well as ‘on-the-fly’ tableau constructions. It
also introduces an approach to temporal logic verification during simulations. In
the following chapter these results are extended to a tableau method for real-time
temporal logic, allowing model checking of real-time properties and the construction
of real-time temporal logic observers for simulations.

Section 7.1 introduces some preliminary concepts to describe the tableau automata
and tableau automata themselves, similar to the ones of [184] and [122]. Then we
make a generalisation to accommodate the so-called ‘on-the-fly tableaux’ [89, 60,
163, 67, 118] in section 7.2. Subsequently, in section 7.3, we discuss some interesting
subsets of LTL and the corresponding tableaux, and in section 7.4, automata on fi-
nite prefixes to use the techniques in simulations. We finish with related work and
conclusions in section 7.5.

7.1 Complete Tableaux

In this section we review the construction of an w-automaton A from an LTL formula
@ that accepts precisely all models of ¢.
Recall the following definition of LTL formulas from section 2.5.2.

pu=true|p| -9 |1V | O | e1Up;.

We assume that we build tableau automata only for LTL formulas that do not contain
the (O operator. Inclusion of the () operator is straightforward, but it has no place
in the timed extensions we investigate in the next chapter.

The semantics is as defined in section 2.5.2. Remember that LTL formulas are in-
terpreted over sequences of states, with states being sets of atomic propositions that

128 The Tableau Method for Linear Temporal Logic

OO 0O

Figure 7.1: Example tableau of pUq

indicate which propositions are true. Recall also that the nodes of the automata are
called locations (rather than states) to avoid confusion.

7.1.1 Intuitive description of the construction

To build an automaton that accepts precisely those state sequences satisfying a for-
mula ¢, we associate with the locations of the automaton, sets of LTL formulas (sub-
formulas of ¢) in such a way that runs starting from some location match those state
sequences that satisfy all these formulas. Moreover, locations are labelled with states,
consistent with those formulas.

The formulas in a location determine the states that are allowed as the first state
of the sequence. They thus determine the labelling of the locations with states. If
there are several ways to satisfy a formula (@1 V @, can be satisfied by satisfying
@1 or by satisfying ¢,), non-deterministic choice allows the automaton to ‘guess’
the right choices for the future. Thus a disjunction of formulas is captured by non-
deterministic choice in the automaton. As there is no corresponding concept for
conjunctionst, conjunctions of formulas are represented explicitly by sets of formulas
in the locations of the automaton. Depending on the Until and Release formulas in
a particular location, restrictions must be imposed on the rest of the state sequence;
this defines the edges leaving the location.

Figure 7.1 shows a tableau automaton for the formula pUq. Any run starting from
the left-most location satisfies the formulas pUg and p. If we consider states over
the propositions pand q ({2, {p}, {a}, {p,a}}) then this location is labelled with the
states {p} (p holds and g does not hold) and {p,q} (p and q both hold). Since the
occurrence of p alone does not guarantee that pUq is satisfied, the outgoing edges
only lead to locations labelled with pUq as well (if p holds in the first state and pUq
holds for the state sequence starting with the next state, then pUq holds for the en-
tire state sequence). Similarly, the second location, also an initial location, contains
the formulas pUq and g; thus it is labelled with the states {q} and {p, q}. Therefore
a run from this location enforces that the first state satisfies g. From this it follows
immediately that the entire run satisfies pUqg. This is why the outgoing edge leads to
a location containing no formulas at all; the remainder of the state sequence is irrele-
vant. From this location, anything is allowed and no more constraints are placed on
the following states. It is therefore labelled with all states of 21P.d},

1 Automata with universal choice do exist, they are called alternating automata [48, 141]. Tableau con-
structions using alternating automata can be found in [177]. However, analysis of alternating automata is
more complicated.

7.1 Complete Tableaux 129

Consider the following state sequence

{p.a}{p.qH{a}z...

This state sequence satisfies the formula pUg. In fact, there are three different initial
runs for the state sequence. Firstly, there is a run starting from the middle location,
continuing to the right location and remaining there. This run corresponds to the
observation that the first state satisfies q and thus the entire state sequence satisfies
pUg, no matter what the rest of the states are. Another run starts from the left location
and goes via the middle location to the right location. This run demonstrates that p
holds in the first state and that the remainder of the sequence satisfies pUg. Together
this demonstrates that the entire state sequence satisfies pUqg. Similarly there is a run
for this state sequence that starts in the left location, remains there for another state,
and then moves to the middle and the right locations. Note that only the middle
and the right location are marked as accepting locations. This prevents a run from
staying at the left location forever. From the labelling of the location we see that it
requires state sequences that pass through the location to satisfy pUg, by having the
current state satisfy p and the remainder of the sequence satisfy pUg. Although it
may take arbitrarily long for a state sequence to produce a state satisfying g, it may
not refuse forever to satisfy q. This is enforced by the acceptance conditions.

We discuss the different concepts that are used to build tableau automata in more
detail.

Local Consistency Only sets of formulas can be considered that are consistent in
themselves. A location can, for example, not require that ¥, V 5 is true, without re-
quiring also either 11 or 1, to hold. This is covered by the notion of local consistency
that will be introduced.

Temporal Consistency Constraints are also imposed on the formulas at subse-
guent moments. This is illustrated in figure 7.2, the (large) circles in this figure
(and in figures 7.4, 7.5 and 7.6 to follow) denote certain classes of locations (instead
of individual locations), characterised by the formulas they are labelled with. The
presence of an arrow between such classes of locations denotes the consistency of
an edge between any two locations in the respective classes w.r.t. the constraints im-
posed by the particular Until formula under consideration. It does not mean that
there actually is an edge between any two such locations. Conversely however, it
is true that if there is no arrow between classes in the figure, then there is no edge
between any two locations in those classes. A double circle denotes that all locations
in that class are accepting w.r.t. the acceptance conditions imposed by that Until for-
mula, as explained below (‘liveness’).

If the automaton requires that Uy, be true at some moment k, but does not re-
quire 9, then it must require at moment k + 1 that)1 U, is still true. A location
that contains the formula 11U, and v, as well is called trivial for 1»; U, (locations
represented at the bottom of figure 7.2), since Uy, follows immediately and the
remainder of the state sequence is irrelevant (as far as the formula ;U is con-
cerned). If it does not contain 1y, then the location is called non-trivial for ;U
(right of figure 7.2); local consistency requires that such a location is labelled with 1,
and a transition to another location is only allowed if it contains 11Uy, again.

130 The Tableau Method for Linear Temporal Logic

A similar thing holds for the dual formula —(i1U): if a location requires it to hold
then local consistency demands that the location contains —i,. If it also contains
-1, it is called trivial, the remainder of the state sequence is irrelevant and any kind
of transition is permitted. If the location does not contain —1p; it is non-trivial and
every following location must still require —(y1Uy,). These constraints on the edges
of the automaton are covered by a notion called ‘temporally consistent successor’. A
location ¢, is a temporally consistent successor of location ¢; (w.r.t. the Until formula
under consideration) precisely if there is an arrow between the class of locations to
which /1 belongs and the class of locations of ¢, in figure 7.2.

Completeness Initially, we will look at tableaux in which every location contains
for every subformula v of the original formula ¢ either 1) or =1 (such a location is
said to be complete w.r.t.). W.r.t. every Until subformula i = ¢1Uy, of ¢, we
can then partition the locations of the tableau into four kinds. Locations can either
require Y or —1p and in either case they can be trivial or non-trivial. A location con-
taining Y (—) is trivial for ¢ (—1) if the satisfaction of ¢ (—) follows immediately
from the other requirements of that location without posing any restrictions on the
remainder of the state sequence. It is called non-trivial otherwise.

Liveness Acceptance conditions are used to capture the ‘liveness aspects’ of the
consistency. If the automaton requires at some time that 11U, holds, then it must
see to it that at some later time, 1, is required to hold (see figure 7.2). Temporal
consistency alone is not enough, since the moment that v, is true may be postponed
forever. To prevent this, an acceptance set is added for every Until formula occurring
in @, using generalised Buichi acceptance (see section 2.6). In this acceptance set, all
locations requiring — (1U,) and all locations requiring Y, are marked as accept-
ing. This guarantees that along any run, whenever a location that requires i, U,
and —1, is entered, at some later moment, a location requiring 1, is entered.

7.1.2 Definition of the Tableau Automaton

In this section we make the definition of the tableau according to the ideas of the
previous section precise. Sometimes it will be convenient to use formulas in positive
form (replacing the negation with duals of all operators, see section 2.5.2) and at
other times the use of the negation will be convenient. We will identify a negated
formula with the same formula in positive form. For example, = (pU—q) and (—p)Vq
denote the same formula and the same holds for ——1) and 1p. The formal definitions
and proofs are all based on formulas in positive form and assume that -1 denotes
the corresponding formula in positive form.

If is an LTL formula, then we use sub(¢) to denote the set of syntactic subformulas
of .

7.1.1 DEFINITION The setsub(¢) of subformulas of an LTL formula ¢ is the smallest
set @ of formulas such that

* ped;
e ify Vi, € ® theny, € ® and P, € ©;

7.1 Complete Tableaux 131

D(%llflpzm trivial O, U,)
1 locations

W,

non-trivial O, Uy,) non-trivial \ U,
locations locations

Ci
by, O,

trivial 1, Ui,
locations

Figure 7.2: General pattern of temporal consistency with respect to the formula ¢y = ¢ ;Uy,

132 The Tableau Method for Linear Temporal Logic

e ify APy € ® theny, € ® and P, € ©;

e ifOY' € ® theny' € ®;

o ify Uy, € ® theny, € ® and P, € O;

o ifP VY, € ® then, € ® and i, € O. O

We will frequently need the set of some formula’s syntactic subformulas and their
negations; such a set is called the Fischer-Ladner closure.

7.1.2 DEFINITION The (Fischer-Ladner) closure of an LTL formula ¢ is the set

cl(p) = sub(p) U{=1 | i € sub(e)}.
O

The following definition formulates when a set of formulas is considered to be locally
consistent. A set is said to be locally consistent if it is ‘informative’ in the sense that
the requirement of every compound formula in the set is supported by simpler re-
qguirements. Together the formulas explain why a requirement will hold. If a location
requires Y1 A Y, to hold, then it must also require both iy, and ,. Similarly if a
location requires Y, U1, then it must require 1 or 1y, as well.

7.1.3 DEFINITION A set ® of formulas is called locally consistent if,
1. false ¢ @;
ifi1 VY, € ® theny, € © ory, € O,

2.

3. ifpy APy € @ theny € ® and Y, € ©;
4. ifyY, Uy, € @ thenyy € © ory, € ©;

5.

ifiVi, € © then, € @. O

Moreover, a set @ of formulas is called complete w.r.t. the formula ¢ if for every
P € cl(), exactly one of ¢ and — is in @. If we use only those sets of formulas that
are complete w.r.t ¢ for the tableau automaton of the formula ¢, then it has a unique
run for every state sequence. Note that this does not mean that the automaton is
deterministic, the automaton is able to follow different paths, but only one of these
will ultimately be accepting.

Completeness and local consistency constrain the sets of formulas that will be used
as locations of the tableau automaton. Besides local constraints, there are also con-
straints on the sets of formulas that are required at subsequent moments of a state
sequence. These constraints relate to the temporal operators U and V. To define these
constraints we need the notion of non-trivial (and trivial) sets.

7.1.4 DEFINITION a set @ containing an Until or Release formula 1 is called non-
trivial for ¢

e ify ¢ ®© incasey = P1Uy, and

7.1 Complete Tableaux 133

e ify ¢ © incasey = P1Vi,. O

As shorthand notation, we say that ® C cl(¢) isa 1 setif ¢ € ®©. We call a i set
trivial for ¢ if it is not non-trivial for . Sets of formulas are non-trivial for some
Until or Release formula if the truth value of the Until formula cannot be locally
determined from the truth values of its subformulas. Non-trivial sets will play an
important role in the tableau constructions, because they pose constraints on the
remainder of the state sequence.

7.1.5 DEFINITION A set ®' of formulas is a temporally consistent successor of the set
@ of formulas if for every Until formulay = 11Uy, and every Release formula) =
PV, @ is non-trivial for 1 implies that 1p € ®'. The fact that ®' is a temporally
consistent successor of @ is denoted as ® — @', |

Another way to look at temporal consistency, is to say that for @’ to be a temporally
consistent successor of @, it must contain at least certain formulas that are deter-
mined by ©. This is captured by the following definition.

7.1.6 DEFINITION Let @ be a set of formulas, then the set Next(®) of temporal con-
sistency constraints is the smallest set such that for any Until or Release formula 1,
if ® is non-trivial for { then Next(®) contains . O

An alternative definition for temporal consistency is then (®, ®' C LTL):
® — @' iff Next(®) C @'
Now the complete tableau automaton can be defined.

7.1.7 DEFINITION The complete tableau automaton A, of an LTL formula ¢ is the
w-automaton (L, I, Lo, Q, E, F) where

e L C 2°(%) consists of all sets of formulas that are locally consistent, and com-
plete w.r.t. @;

o 5 — 2Prop(¢)

3

Lo is the set ofall ® € L such that ¢ € ©;

Q is the mapping that assigns to the location @, the set of all states o € 2P™P
such that for all p € Prop

- peoifpe @,
-pgoif-pe ®;

E is the set of all edges (®, ®') such that ® — @';

F is the set which contains for every Until formula i = U, in cl(¢p), the
setfy, = {® €L |y e d® =1, € ®} and nothing else, i.e. precisely those
locations that are not non-trivial for 1, either because they are not 1 sets at all
or because they are trivial for 1. m|

134 The Tableau Method for Linear Temporal Logic

Notice that in the definition of the mapping Q, we use p € o if p € ® (rather than
if and only if which would have been equivalent) in order to reuse the definition in
the case that locations are not necessarily complete in section 7.2.1. Notice moreover
that for every location £ in the complete tableau automaton, Q(¥) contains a single
state (over Prop(¢), the atomic propositions occurring in ¢). The trouble of labelling
locations with sets of formulas will pay off however when we consider locations that
are not complete. A construction of complete and consistent sets is given in [122].

7.1.3 Example

As an example, we construct the complete tableau automaton of the formula ¢ =
pUg, the result of which is depicted in figure 7.3. The subformulas of ¢ are the
following: {pUq, p, q}. The closure set cl(¢) including also their negations is

{pUa,~ (pUq), p, ~p,q, =q}.

Inspecting all the subsets of cl(¢), we obtain the following locally consistent and
complete subsets which will form the locations of the automaton:

[EN

- {p. g, pUa},

2. {p.—q, pUa},

3. {p,—a,~ (pUa)},
4. {-p,q, pUa},

- {=p.—q,~ (pUg) }.

We observe that set number 2 is non-trivial for pUug and set number 3 is non-trivial
for = (pUg). We can now determine the temporally consistent pairs of sets (e.g.
{p.a,pUa} — {p,~a,~(pUq)} but not {p, =q, pUa} — {-p,—q,—~(pUq)}). The
initial locations are the sets 1, 2 and 4 since they contain pUg.

With respect to the only Until formula in the closure, the locations 1, 3, 4 and 5 are
accepting, only location 2 being non-accepting since it requires that pUq is true but
it does not yet fulfil g. In figure 7.3 the locations of the only acceptance set are des-
ignated by a double circle. Initial locations are indicated by a small arrow leading
to the location and not originating from another location (locations 1, 2 and 4). Note
that since the locations are complete sets with respect to the propositions p and g, the
locations are labelled with exactly one state over these propositions. Location 1 for
instance, is labelled with state {p,q} and location 5 with state @. Figure 7.4 shows
how the locations, edges and acceptance conditions of the automaton match the gen-
eral pattern of figure 7.2. Here the pattern is depicted with dashed lines. Remember
that a dashed arrow between two classes of sets indicates that a transition between
two such sets exists, unless prohibited by other temporal consistency constraints (if
there are multiple Until formulas in the original formula). If there is no dashed ar-
row between them, such a transition cannot exist. Had there been (unlike in this
example) multiple Until formulas in the original formula, then the locations of the
tableau could be arranged in the corresponding pattern for every Until subformula
separately.

ol

7.1 Complete Tableaux 135

Figure 7.3: Tableau automaton of the formula pUq

7.1.4 Correctness

In this section we prove that the complete tableau automaton A, for the LTL formula
@ accepts precisely all the state sequences that satisfy .

7.1.8 THEOREM For any LTL formula ¢ and its tableau automaton A,, L(Ay) =
L(g).

This theorem follows immediately from the lemmas 7.1.12 and 7.1.14, which will
prove soundness (L(A,) C L(¢)) and completeness (L£(¢@) C L(Ay)) respectively.

Soundness

Here we show that every state sequence accepted by the tableau automaton of the
formula ¢ satisfies the formula. We show that a run starting from a location labelled
with a formula 1) matches only state sequences that satisfy 1p.

The following lemmas show that Until and Release formulas are dealt with correctly
by the automaton.

7.1.9 LEMMA Let the sequence Y of locations be a runon A, and letp = YU, €
Y(0). Then there is some k > 0, such that ¥, € ¥(k) and for all0 < m < k,

Y1 € ¥(m).

PROOF Forany i > 0 such that i € ¥(i), either of the following is true
o W(i) is trivial for . In this case 1, € ¥(i).

136 The Tableau Method for Linear Temporal Logic

Figure 7.4: Tableau automaton of the formula » = pUq and the general pattern

7.1 Complete Tableaux 137

e W(i) is non-trivial for v. Then v € W(i) by local consistency and ¥ € ¥(i 4+ 1) by
temporal consistency.

Thus if 1 € ¥(i) then either ¢, € ¥(i) or iy € ¥(i) and ¢ € ¥(i + 1). Moreover, since ¥ is
accepting, there must be some k > 0 such that ¢ ¢ W(k) or ¢, € ¥(k). Together this shows
that there is some k > 0, such that ¢, € ¥(k) and forall 0 < m < k, ¢, € ¥(m). O

The next lemma states a similar result for Release formulas.

7.1.10 LEMMA Let W be a runon Ay, let = 1V, and yp € ¥(0). Then for all
k> 0, ¢, € ¥Y(k) or there is some 0 < m < k, such that ; € ¥(m).

PROOF For any i > 0 such that i € (i), by local consistency, 1, € ¥(i) and either of the
following is true.

e (i) is trivial for . In this case ¥, € ¥(i) and ¥y € ¥(i).
e (i) is non-trivial for 1. Then vy, € ¥(i) and by temporal consistency, 1 € ¥(i + 1).

Thus if ¢ € ¥(i) then either ¢y € ¥(i) and y, € ¥(i) or i, € ¥(i) and ¢ € ¥(i + 1). One can
therefore show that either for all k > 0, ¢, € ¥(k) or there is some k > 0, such that y; € ¥(k)
and for all 0 < m <k, ¢, € ¥(m). From this the lemma follows straightforwardly. ad

We are now ready to show that whenever a state sequence is accepted, starting from
some location @, then the state sequence satisfies all the formulas in ©.

7.1.11 LEMMA Let¥ be arun of A, fora and let € ¥(0). Thena = .

PrROOF By induction on the structure of :

e if i = true then @ |= 1P holds vacuously;

e 1) = false cannot be in a consistent set;

e if i € Prop(¢) and i € ¥(0), then 1 € &(0) since i € o for all o € Q(¥(0)), and thus
=Y

e if) = —p for some p € Prop(¢) and ¢ € ¥(0), then p ¢ o for all ¢ € Q(¥(0)), so
p ¢ &(0) and thus @ |= ¢;

e if ¥ is of the form 1 V 1, and 1 € ¥(0) then by local consistency, 1y or ¥, is in ¥(0)
and by the induction hypothesis & |= ;

e if isof the form i1 A, and 1 € W(0) then vy, and 1 are in W(0) by local consistency
and by the induction hypothesis & = v;

e if Y = YUy, then by lemma 7.1.9, there is some m > 0 such that i, € ¥(m) and
P € ¥(n) for all 0 < n < m. By the induction hypothesis (by lemma 2.6.3, for any

i >0, ¥ isarunon A, for g starting from ¥(1))) it follows that & |= 1;

e if1p = 11 V1P, then by lemma 7.1.10, for every m > 0 either y», € W(m) or there is some
0 < n < msuch that ¢; € ¥(n). By the induction hypothesis it follows that o |= 1. O

Soundness of the tableau automaton is a direct result of this lemma.

7.1.12 LEMMA If A, accepts the state sequence @ then@ = .

PROOF Follows from lemma 7.1.11 and the fact that there is some initial run Y (and thus
@ €¥(0)),on A, for . O

138 The Tableau Method for Linear Temporal Logic

Completeness

In order to show that the tableau automaton A, accepts all state sequences that sat-
isfy @, we will point out the (unique) run which demonstrates this. The construction
of this run is given in the following definition.

7.1.13 DEFINITION Let @ beanLTL formulaandg a state sequence. Then the ¢-fine
run ¥ for @, is the sequence of sets such that W (k) C cl(¢) and for all ¢ € cl(¢) and
k>0, e ¥(k)iffc" = 1. O

The ¢-fine run for G is an accepting run on A, and if & = ¢, then it is an initial run
as well.

7.1.14 LEMMA IfG |= ¢ then A, acceptsG.

PROOF Let ¥ be the @-fine run for o. Then ¥ is an initial run for & on A,. This follows from
the facts that:

e ¥ is a sequence of locations of A, since W(k) C cl(¢) and ¥(K) is locally consistent
and complete w.r.t. @, by the semantics of LTL and the definition of the Fischer-Ladner
closure;

[Symbol match] for every k > 0, 5(k) € Q(¥(k)). This is obvious since ¥(k) contains
precisely the propositions that are true at moment k;

[Consecution] for every k > 0 there is an edge (¥(k), W(k + 1)), since ¥(k) — W(k + 1)
by the semantics of the logic;

[Acceptance] from the semantics it follows that whenever for some k, Y(k) contains an
Until formula ip = 11U, then there is some m > k, such that W(m) contains 1, and
thus, for every Until formula v in sub(g), inf(W) N f, # &,

[Initiality] since @ |= ¢, ¢ € ¥(0). Thus ¥(0) € Lo. |

7.2 Other Tableaux

In this section we will look at other tableau methods such as on-the-fly methods and
their relationship with the complete tableaux method.

7.2.1 Non-Complete Tableaux

The complete tableau is not always the best to be used for model checking. The
number of locations may become very large as the formula gets larger. There have
been many improvements to the construction in order to obtain smaller automata.
One of the key elements is the observation that a location of the automaton does not
need to commit itself to either 1y or —1 for every subformula of ¢, i.e. it need not be
complete. Moreover, it is not always necessary to add all locations to the automaton.
If we drop the requirement that locations of the tableau automaton are complete
sets of formulas, we arrive at an automaton requiring neither ¢ nor = in certain
locations. It is shown that such a tableau still accepts precisely the models of ¢ as
long as it still adheres to the consistency constraints. Although the non-complete
tableau automaton will generally be much larger than the complete automaton, it is

7.2 Other Tableaux 139

used as an intermediate step towards the on-the-fly generation of a sufficient part of
this automaton that will often be much smaller than the complete tableau.

7.2.1 DEFINITION The non-complete tableau automaton B, of LTL formula ¢ is the
w-automaton (L, Z, Lo, Q,E, F) where L consists of all (also non-complete) locally
consistent sets ® C 2°(®) of formulas and the rest is defined exactly the same as the
complete tableau automaton in definition 7.1.7. m|

Note that now Q(®) may contain more than one state or even no state at all. For
example, Q(@) = 2P™P (the location is not labelled with any formulas and thus any
state is allowed) and Q({p, —=p}) = @ (the location is labelled with contradicting
propositional constraints; note that local consistency does not prohibit this).

Using these new definitions we can prove lemma 7.1.11 for non-complete automata,
showing that they are sound as well.

7.2.2 LEMMA LetV¥ bearunonB, foro and let € ¥(0) thenc |= 1.

The proof of lemma 7.1.11 is valid for non-complete automata as well, since com-
pleteness of the locations of A, is never used in this proof.

Now we can show that the non-complete tableau automaton accepts exactly the
same state sequences as the complete tableau automaton and thus also precisely
those that satisfy the corresponding formula ¢.

7.2.3 THEOREM Let B, be the non-complete tableau automaton of ¢ and A, the
complete tableau automaton, then L(B,) = L(Ay).

PROOF The two inclusions are shown separately. Let A, = (La,Z, Lo, Qa,Ea, Fa) and
B(p = (LB, Z, LO,B! QB! EB! FB)
e L(Ay) C L(By). It can be shown that any run on A, isstillarunon B, since La C Lg,
Lo,a € Log: Ea C Eg, Qa(f) = Qg(¥) forall £ € L, and for every f, € Fg there is
some f;, € Fa such that f, C fy.

e L(By) C L(Ay). Let o be a state sequence for which @ € £(B,,), then it follows from
lemma7.2.2that ¢ = ¢ and thus that o € L(Ay). O

The entire non-complete tableau automaton of the formula pUq used in the example
of section 7.1.3, has 42 locations and is too large to be shown here.

7.2.2 On-the-fly Tableaux

The purpose of the introduction of non-complete tableaux was to come to smaller
tableau automata to be used for model checking. The non-complete tableaux as in-
troduced are larger than the complete tableaux. As a second step however, one can
construct a sufficient part of this non-complete automaton ‘on-the-fly’ [89, 163, 60,
67, 112, 133]. This part will generally be much smaller than the complete automa-
ton. From any location @, one can generate ‘just enough’ successor locations. These
successor locations are generated by starting with the minimum set of formulas nec-
essary to be temporally consistent with @, i.e. by starting with Next(®). Next(®)
contains ¢ for every Until or Release formula ¢ € cl(¢), if @ is non-trivial for .

140 The Tableau Method for Linear Temporal Logic

non-trivial

b, U, sets

¥,

Figure 7.5: General pattern of the on-the-fly tableau for ¢ 1 Uy,

Subsequently, formulas are added and the locations are split until a set of locally
consistent locations is obtained that is large enough to guarantee the existence of
a run. This leads to automata that are approximately the ones as produced by the
algorithm of [89]°.

The reduction of the size of the automaton is achieved since only those formulas
that arise from the local consistency constraints of ¢ and the temporal consistency
constraints are propagated; the rest does not matter and need not be present in the
locations. This gives fewer combinations of subformulas and thus (often) gives fewer
locations.

Checking a formula of the form 1y = y1U, for instance proceeds along the lines
displayed in figure 7.5. One starts in a 1 set (trivial or non-trivial). The edges of the
non-trivial sets lead only to locations containing 1 again. Once the trivial i set has
been visited, one can forget about 1. The non-trivial 1 sets are not accepting, the rest
are. For Release formulas 1 = 1V, a similar structure as in figure 7.6 arises. One
starts in a Y set and remains in 1 sets until a trivial 1 set has been visited, after that
one can forget about 1. Release formulas do not introduce acceptance conditions.

Normal Form Formulas

Another way to look at the construction of the on-the-fly tableau automaton is the
following. One can interpret the location as a formula that every state sequence ac-
cepted from that location should satisfy. Then the generation of successor locations
is guided by rewriting this formula in a specific form that separates constraints on
the current state from constraints on the remainder of the state sequence. The con-
straints on the current states determine the labelling of the location with states and
the constraints on the remainder of the sequence determine the outgoing edges. The
fact that the formula in this form is equivalent to the original formula essentially
guarantees soundness® and completeness of the construction.

2In contrast with [89], the temporal consistency constraints are collected when a location is finished.
This might lead to fewer constraints.
3Except for dealing with eventualities of Until formulas.

7.2 Other Tableaux 141

non-trivial

P, Vap, sets

¥,

trivial

P, Vb, sets
P, b,

)

Figure 7.6: General pattern of the on-the-fly tableau for ¢ 1V,

7.2.4 DEFINITION AnLTL formula is said to be in disjunctive temporal normal form
(DTNF) if it is of the form

o = (maiAmaA.. . Ama, AO (@11 AP12A ... AP1m,))

vV
(M Ao A Ao, NO (P21 A P22 Ao A@am,)) V

(i Ao A AT AO (@i A@k2 Ao Akm,))

where all 7 ; are atomic propositions or negated atomic propositions and ¢; j are
LTL formulas of the form U, or 1 Vips. |

Any LTL formula can be rewritten into an equivalent formula in DTNF using the
following equivalences as rewriting rules from left to right (here, 1)1 = 1, denotes
that for any state sequence &, we have @ |= ¢ iff & =).

e False

-y Vfalse =y
- 1 A false = false

We say that true and false are in DTNF, identifying true with an empty con-
junction and false with an empty disjunction.

e Distribution
= Y1 A (P2 Vp3) = (Y1 AY2) V (Y1 Aa)
= (Y1 V) APz = (Y1 Aps) V (P2 A)

- OY1 AQY2 = O (Y1 A o)
- O W1VY2) =0y VOY2

142 The Tableau Method for Linear Temporal Logic

e Unfolding

= Y1U = o V (P1 A OY1Uyp)
- 1V = Yo A (P V OYP1Vo)

Using these rules one can rewrite any LTL formula into disjunctive normal form
[163].

Constructing the Automaton

The automaton is created on-the-fly. This means that from a location of the automa-
ton already constructed, we can incrementally produce the reachable successor lo-
cations. To generate the successor locations of a location @, we start with the set
of formulas needed for any set to be a temporally consistent successor, i.e. the set
Next(®), and use this set to compute (mimicking the normal-form rewrite rules and
local consistency rules) a sufficiently large set of temporally consistent successor lo-
cations that are locally consistent and all include the formulas Next(®).

Figure 7.7 shows an example of the operation of the procedure to obtain a set of
locally consistent successor locations and the correspondence between this proce-
dure, the normal form and local consistency. The procedure is started from the set
{(pUq) V r} (graphically represented as a location, being split by the procedure into
a collection of locations). In the first step of the procedure, it is recognised that the
formula (pUq) V r already consists of a disjunction of two terms, and the set is split
in two sets representing those terms respectively (conform local consistency rule 2).
The formula is marked with an asterisk (*) to denote that it has already been pro-
cessed and need not be dealt with again. In a second step, the formula pUq in the
left of the two sets is processed and the location is split into two new locations, one
containing p and the other containing q following local consistency rule 4. This cor-
responds to the rewriting rule pUg = q Vv (p A OpUq); note that the part OpUgq is not
explicitly represented in the corresponding location. It is however implicitly repre-
sented since the location is non-trivial for pUq and thus any of its successor locations
must contain pUq again in order to be temporally consistent. In the subsequent steps
in the procedure, the atomic propositions in the locations are marked and nothing
else changes. Note that the formulas in a location contain the formulas in the corre-
sponding term of the normal form as well as the formulas that have been rewritten
to obtain that term.

During the procedure, a set of formulas represents (intuitively, this is not used in
the construction) the conjunction of these formulas and the consistency constraints
arising from the formulas already marked ({pUq, p} represents (pUq) A p, whereas
{pUqg*, p} represents (pUq) A p A OpUg). OpUq arises from the fact that { pUg*, p} is
non-trivial for pUg. A set of such sets represents the disjunction of the corresponding
conjunctive formulas ({{p}, {q, —r}} represents the formula p vV (q A —r)).

We also say (again informally) that the set {{pUq, q}, { pUq, p}} represents the DTNF
formula q v (p A OpUq) without the pUq formulas that are present in the set, since
these are in fact redundant, which can be seen from the reduction to normal form. In
the remainder we let ¥ range over sets of (partially) marked formulas and ® range
over ordinary sets of formulas without markings. The actual procedure is given in
the following definition.

7.2 Other Tableaux 143

(pUg)Or
@ 0
(p%?*, (PUqr)Dr*, pUgq (IR
@ 0
(pUg)Lr* pUO(pUgq) [IGIIIITH

P

Figure 7.7: Normal form procedure for (pUq) vV r

Case PU{WYU{1}} reduces to:

P = false P

Yp=true | PU{YU{yY*}}

p=p | PU{YU{y}}

p=-p |PU{YU{y}}
Y= Vipo | PU{YU{YP* Yr}, YU {P* Py} }
Y= Ay | PU{YU{Y*, 1, ¥}
Y =yUyy | PU{YU{P* P}, YU {9*)}
Y =11V | PU{YU{Y*, Py, o}, YU {Y*, o} }

Table 7.1: Local consistency procedure. If an unmarked formula is added to a set already
containing that formula, the formula will be unmarked in the new set. We assume that ¢ ¢ ¥
andYuU{y} ¢P

O~NO O WN PR

7.2.5 DEFINITION The local consistency procedure that generates a set of locally
consistent sets from a set ¥ of formulas is defined as follows.

e Initially, let Py = {¥}.

e Then, as long as P, contains a set with an unmarked formula, use one of the
reduction rules of table 7.1 to generate a new set Py 1. O

Note that the result of the procedure may depend on the order in which the formulas
are selected. Although results may differ, they are all in normal form and represent
equivalent formulas*. We assume in the remainder that NF is some fixed determin-
istic procedure operating in accordance with the given procedure. We use NF(®) to
denote a result of the normalisation procedure performed on the set ® and NF(g)
to denote a result of the procedure performed on the set {¢}.

41t makes sense to carefully pick the formula to unfold. In particular to deal with largest formulas first,
to avoid handling the same formula twice.

144 The Tableau Method for Linear Temporal Logic

New := NF(gp), L := &, Lo := New, Edges := &
while New # @ do
Let ® € New
New : = New\{®}
L:=L U {0}
for every ® € NF(Next(®)) do
Edges : = Edges U {(®,®')}
if ®¢ L then New := New U {®'}
od
od

Figure 7.8: Algorithm for constructing locations and edges of the on-the-fly tableau automaton

The edges and locations of the on-the-fly tableau are constructed by the algorithm
presented in figure 7.8. After that, the labelling of the locations and the acceptance
sets are determined in the same way as for complete tableau automata.

Example

As a small example we construct the on-the-fly tableau of the formula pUq, the re-
sult of which is displayed in figure 7.1. The initial locations are generated by starting
the normal form procedure from {{pUq}}. The resultis {{pUq*, p*}, {pUg*, q*}},
which corresponds to the DTNF representation pUg = (p A OpUq) V g. This leads to
two initial locations {pUq, p} and {pUqg, q}. The temporal consistency constraints of
the first initial location are {pUq}, thus the outgoing edges of the first initial location
lead to the same two locations {pUg, p} and {pUq, q}. The temporal consistency con-
straints of the second initial location are @. Therefore that location has an outgoing
edge to a new location & (NF({@}) = {@}). This new location also has the temporal
consistency constraints @ and thus has an edge to itself.

The symbol labelling is such that the first location matches all states that satisfy p,
the second location matches the states that satisfy q and the third location matches
all states. Finally, the acceptance conditions have to be determined. There is one
Until formula pUqg and thus one acceptance set. Only the first location is non-trivial
for pUq and is thus not accepting.

Correctness of the On-the-Fly Tableau

Correctness of the on-the-fly algorithm is stated in the following theorem.

7.2.6 THEOREM Let A, be the on-the-fly tableau automaton of ¢, then L(A,) =
L(g).

Soundness and completeness of the on-the-fly tableau are demonstrated in the lem-
mas 7.2.8 and 7.2.11 that follow. Since the on-the-fly automaton is a subset of the
entire non-complete automaton it is obviously still sound (i.e. any accepted state se-
guence satisfies ¢). Completeness follows from the way the successor locations have

7.2 Other Tableaux 145

been created. Whenever a state sequence satisfies all formulas in a location, then
there is an appropriate successor location, labelled with formulas that are true for
the tail of the sequence. Furthermore this successor location can be chosen such that
all acceptance conditions are met. We use some shorthand notation. If @ is a set of
formulas, we write @ = @ instead of ‘for all ¢ € ®, @ |= ¢". This allows us to write
things like: @ = Next(®).

Soundness

Demonstrating soundness of the automaton amounts to showing that the gener-
ated locations and edges satisfy the local and temporal consistency constraints. This
demonstrates that the on-the-fly tableau is a sub-automaton of the non-complete
tableau and as such it must also be sound.

7.2.7 LEMMA Let @ be a set of formulas and let ®' € NF(®). Then @' is locally
consistent. Moreover, ® — @' for any ®' € NF(Next(®)).

For the proof, see appendix B.1.1. The initial locations of the automaton are created
by computing the normal form of ¢, i.e. NF(¢p).

7.2.8 LEMMA Let A, be the on-the-fly tableau automaton of ¢, then L(A,) C L(¢).

PROOF Let B, be the non-complete tableau of ¢, and let be a state sequence that satisfies
@. It follows from lemma 7.2.7 and the construction of the automaton that an initial run on
A, matching o is also an initial run on B, and thus from the soundness of B, it follows that
o |: @. O

Completeness

We demonstrate that the procedure generates enough successor locations, by show-
ing that if we have a set @ of formulas and a state sequence T that satisfies these
formulas, then there is at least one set in NF(®) of which all formulas are satisfied
by . In terms of the DTNF this corresponds to the claim that if & satisfies a formula
@ then there is a disjunctive term in the DTNF of ¢ that is satisfied by .

If a state sequence satisfies the temporal consistency constraints Next(®) of a loca-
tion @ of the on-the-fly tableau, then a suitable edge exists to show the acceptance of
the state sequence. This is expressed in the next two lemmas.

7.2.9 LEMMA Let @ be a set of formulas. Leta |= for all p € ®. Then there is
some ®' € NF(®) such that (i) = for allp € @', (i) 71 |= Next(®') and (iii) for
every Until formula y1 U1, in ®' such thata |= 1,, we have ¢, € @',

The proof is given in appendix B.1.2. The following lemma shows how to incremen-
tally construct an accepting run for a state sequence that satisfies the formulas in a
location using the previous lemma.

7.2.10 LEMMA Let ® be a location in the on-the-fly tableau automaton A, letc = 1
forally € Next(®). Then there is some edge (@, @') of A, such that (i) |= 1 for all
P € @, (ii) & |= Next(®') and (iii) for every Until formulay = 11U, € sub(p),
o' e Fll) ifo |: Py.

146 The Tableau Method for Linear Temporal Logic

PrROOF It follows from lemma 7.2.9 and the construction of the automaton that there is an
edge to such a location @’. (i) and (ii) follow immediately and if & = 1, and ¥ € @', then
Y € @' and hence, @’ € Fy, O

Together, this shows that the on-the-fly tableau automaton is complete.

7.2.11 LEMMA Let A, be the on-the-fly tableau automaton of ¢. Then L(¢) C
L(Ay).

PROOF Let @ be a state sequence and & = ¢. It follows from lemmas 7.2.9 and 7.2.10 that
there is an accepting run for o on A,. Lemma 7.2.9 guarantees the existence of a suitable
initial location and lemma 7.2.10 can be repeatedly applied to construct the accepting run. O

Concluding Remarks

Some improvements (in size) on this on-the-fly automaton are still possible. For ex-
ample (as it is mentioned in [89] and [60]) not all labels in the generated locations are
relevant after the construction of the new locations is finished. For instance, if in a lo-
cation p is required to hold, then the formula p Vv q holds as well, and therefore there
is no need to discriminate the locations {p} and {p, pV q}. If these irrelevant require-
ments are removed, some locations might turn out to be identical. The only relevant
labels are propositional labels, Until or Release formulas and formulas that occur as
right-hand sides of Until formulas (since they are needed to define the acceptance
conditions). Another observation is that it is best to pick maximal unmarked for-
mulas during the normal form procedure, i.e. formulas that are not a subformula of
another unmarked formula. This prevents one from processing the same formula
twice, possibly resulting in more terms in the normal form.

It might also be useful to prevent the splitting of entirely propositional formulas.
For example if the formula p vV g A r occurs, it is not necessary to split it into two
terms leading to two locations. Only the ‘temporal part’ of the formula needs to be
changed to normal form. Whether this would lead to smaller automata remains to
be seen. This strategy will be used in section 7.3 for the construction of deterministic
tableaux. Other strategies to obtain smaller automata include preprocessing of the
original formula according to some set of rewriting rules in order to obtain simpler
formulas [112, 166, 73] and postprocessing of the obtained automaton in order to re-
duce the number of locations or acceptance sets [166, 73]. Table 7.2 displays a few
example formulas and the sizes of the corresponding tableaux for different construc-
tion methods.

If the number of locations is the paramount criterium, we can also construct a tableau
automaton in which edges rather than locations are labelled with symbols. We ob-
serve from the use of temporal consistency requirements that the only ‘memory’
required by the automaton resides in the Until and Release formulas that need to be
propagated. Thus, locations only need to be labelled with Until and Release formu-
las. We do not give the construction of such an automaton. It is relatively straight-
forward to obtain it from our on-the-fly automata, letting the transitions take the role
of our locations and use locations to represent the temporal consistency constraints.
For example, the edge-labelled automaton of figure 7.9 is obtained in this way from
the tableau of figure 7.1. Along the edges we have written the entire labelling of

7.3 Efficient Fragments of LTL 147

® Non-complete | Complete | On-the-fly | | 2<(¢) |
pUq 42/1440 5/20 3/4 64
(pUq) U (qUp) 264/41664 7/28 12/24 1024
pU (qUr) 384/98176 12/96 6/10 1024
(pUq) Ur 4327118560 137104 8715 1024
pU(qVvrVvs) 10407941248 17/272 5/8 4096
pU(qATAS) | 1232/1104640 23/368 3/4 4096
O(p = (qUr)) | 1496/1174848 | 18/144 5/17 16384
(pUq) U (rUs) | 3936/8256000 | 31/496 | 17/38 | 16384

Table 7.2: Numbers of states / transitions of different tableaux

P pUq

N

Figure 7.9: On-the-fly tableau automaton of the formula pUq with labels on edges

the corresponding locations in the original automaton. In order to accept a state
sequence, the states must satisfy the propositional formulas along the edges.

7.3 Efficient Fragments of LTL

In this section we will discuss a fragment of LTL that can be translated into a deter-
ministic automaton and the dual fragment which also has an efficient tableau con-
struction. With a deterministic tableau automaton, the tableau automaton’s transi-
tion is completely determined from the corresponding transition of the system and
thus the number of transitions of the combined location of the product automaton
depends only on the number of outgoing edges of the location of the system. This
leads to less backtracking and possibly fewer locations during model-checking. The
dual fragment is also interesting. It can be translated into an automaton the size of
which grows only quadratically with the length of the formula (and linearly if one
constructs edge-labelled automata).

7.3.1 Modified Syntax and Semantics of LTL

To be able to define the fragments of LTL we are interested in, we redefine the syntax
of LTL in terms of two layers, propositional logic and temporal operators. Neither
the syntax nor the semantics of LTL formulas essentially changes. Propositional logic
is interpreted on states o over a set Prop of atomic propositions.

148 The Tableau Method for Linear Temporal Logic

7.3.1 DEFINITION The syntax of PL is defined by the following grammar, where
p € Prop
mi=true|p| | mVm

Formulas of PL will be ranged over by 7.

The semantics of PL is standard and is not repeated here. We also use false and A
to write PL formulas in positive form. In the syntax of LTL, atomic propositions are
replaced by propositional formulas.

7.3.2 DEFINITION The syntax of LTL is defined by the following grammar

pi=ml-9|eiVer| O | piUep;

The semantics of LTL formulas remains the same. Propositional formulas are inter-
preted in the first state of the sequence:

o Eniffo(0) = .

Note that the presented grammar is ambiguous (more so than the original syntax
was already). The semantics is invariant under the different interpretations of a for-
mula, we will assume that the common operators — and V are interpreted as oper-
ators of PL whenever possible. We adjust the definition of the normal form accord-

ingly.

7.3.3 DEFINITION AnLTL formula is said to be in disjunctive temporal normal form
if it is of the form

(mAOe1) V (m AQ@2) V... (mc A Opx)
where all 7rj are PL formulas and ¢; are LTL formulas.

Note that in contrast with traditional definitions this normal form does not require
disjunctions to be removed from PL formulas and therefore computes the tableau
“modulo PL”. For application to LTL model checking this is good enough since
the PL formulas can be evaluated in the current system state to determine the next
locations and it allows the proper definition of the acceptance conditions as well.

7.3.2 A Deterministic Fragment of LTL

We now define a fragment of LTL and a way to rewrite formulas in this fragment
into a form that will lead to deterministic tableau automata. Certain types of LTL
formulas allow an adaptation to the normal form procedure that results in tableau
automata having deterministic transitions. This means that for any location of the
automaton and any state, there is at most one outgoing edge leading to a location
labelled with that state. In terms of the labelling of locations with propositional
formulas, this means that those formulas are mutually exclusive, if one outgoing
edge leads to a location labelled with 7r; and another to a location labelled with 7,
then 71 A 71, is not satisfiable. This gives us deterministic tableau automata without
an extra exponential blowup in size that would be the result of a determinisation
afterwards, if possible at all.

7.3 Efficient Fragments of LTL 149

Case PU{WU{y}} reduces to:
Y= PU{YU{y*}}
Yp=nvy | PU{YU{Y* 7}, YU{Y* ~m,¢'}}
Y=vy1 Apy | PU{YU{Y", Y1, Yo }}
Y=9'Ur | PU{YU{Y* n},YU{Y*, -7, '}}
Y =nVy | PU{YU{P* '}, YU {y* —~m,y'}}

Table 7.3: Deterministic local consistency procedure

abr wWwN -

7.3.4 DEFINITION The syntax of deterministic LTL is defined by the following gram-
mar

pi=n|nVe|leiAes| Qe eUr| aVe.

Note that the syntax is given in positive form. The Until and Release operators are
restricted to have only propositional formulas on one side. Multiple transitions from
a location of the tableau automaton arise from the Vv operator in the normal form.
The transitions can be non-deterministic if the propositional formulas in the terms
of the normal form are not mutually exclusive. We use rewriting rules for the pre-
sented fragment that will lead to mutually exclusive terms and thus to deterministic
automata.

The normal form procedure to determine the next locations is modified such that the
choice for the next location is deterministic. This is achieved by using the following
equivalences as rewrite rules from left to right.

e TV =nV("TAp)
e pUn=nV (=t Ao AQepUn)
e Vo =N (nV (~rAQnVe))

The corresponding reductions to be used in the algorithm of definition 7.2.5 are given
in table 7.3.
For example, the formula ¢ = (pUq) Ur can be rewritten as follows.

(pUqg) Ur

rv-=rA((pUg) AQe)

rv=rA((qv-gApAQ (pua)) AQe)
rv(=rAgAQe)V (-rA-qgApAQ (pUgA@)).

The propositional parts of the terms of this formula are mutually exclusive. The
entire deterministic tableau of this formula is shown in figure 7.10. The three terms
in the normal form above manifest themselves in the three initial locations of the
automaton. In this example there are two acceptance sets, one for the entire formula
and one for the pUg subformula. The location belonging to the former are indicated
using bold lines and the locations belonging to the latter are represented using a
double circle.

It is straightforward to demonstrate that the terms of the normal form are mutually
exclusive, by induction on the procedure of construction. Whenever a set is split, the
new sets are mutually exclusive (and still mutually exclusive to the rest of the sets as
well).

150 The Tableau Method for Linear Temporal Logic

Figure 7.10: Deterministic tableau of the formula (pUq)Ur

7.3.3 Quadratic / Linear Fragment

Another interesting fragment of LTL arises if one changes the restrictions in the fol-
lowing ways. It allows only conjunction with propositional formulas (compared to
disjunctions in the previous fragment). It allows on the left side of Until and the
right side of Release formulas only propositional formulas (as opposed to right and
left respectively in the previous fragment).

7.3.5 DEFINITION The syntax of linear LTL is defined by the following grammar

pi=nloVer|[nAhe| Q¢ |nUe|eVr.

Note that this fragment is not determinisable, since it includes the formula <Op,
which is known to have no corresponding deterministic Bichi automaton [171]. If
we apply the normal form rewriting rules, we observe that there will be at most one
Until or Release operator behind the Next operator of any term. For example after
the rewriting of

Up =@V (m A OQnlUe)

the Next operator arising in the right term has only one Until operator and it is
already in normal form. The same is true for the unfolding of the Release operator.

pVr=(mAe)V (T AQeVmr)

Here, the right term is immediately in normal form.

The corresponding reductions to be used in the algorithm of definition 7.2.5 are given
in table 7.4. In fact they are exactly the same as in the original algorithm, except
for the use of propositional formulas rather than atomic propositions. Note that a
partially marked set ¥ contains, at any point during the construction of the normal
form, at most one unmarked formula. It is started with only a single formula and at
every reduction case in table 7.4, the unmarked formula ¢ is marked and in every

7.4 Automata for Prefixes 151

Case PU{W¥ U {y}} reduces to:

Y= PU{YU{y*}}
Y=11Vip | PU{YU{Y" Y1}, YU {Y", ¥o}}
Yp=nAy | PU{VYU{P* 7" ¢'}}
Pp=nUy" | PU{YU{P* ¢}, YU{Y*, n*}}
Y=y'Va | PU{YU{Y*, 7 '} YU {7t ')}

Table 7.4: Quadratic local consistency procedure

abr wWwN -

set added to P, there is at most one unmarked formula. Furthermore the size of the
unmarked formula decreases with every step. The number of terms increases by at
most one in every step and if a term is split in two, then so is the size of the respective
unmarked formulas.

To derive a bound on the number of generated locations, we define a measure of the

size of the set P. Let
A= 3 1v]
€Py

| = 1 if ¥ has no unmarked formula
| |¢| if the unmarked formulain ¥ is 1.

where

Then it follows from the rules of the rewriting procedure that [P, 1| < |Pg|. After the
procedure is finished, |Py| is the number of terms in the normal form and |Py| = |¢|,
thus the number of terms in P(1) is at most |¢|.

It is easy to show that for every term ¥ in P(1), there is at most one subformula
of 1 in Next(¥) and thus there are at most || different invocations of the normal
form procedure during a construction of an on-the-fly tableau. Thus, the number of
locations of the tableau automaton of the formula ¢ is bounded by |¢|2. In fact, the
number of locations is linear in the size of ¢ if we label edges rather than locations.
The locations then only store consistency constraints and every location contains at
most one of those.

7.4 Automata for Prefixes

In chapter 6 a methodology for the verification of safety properties during simula-
tions was discussed. To this end, we needed so-called automata for bad prefixes,
i.e. automata on finite words that recognise prefixes of state sequences that cannot
be extended into state sequences that satisfy the property. In this section we discuss
how the tableau method can be adapted to this purpose. First, we define the notions
of good prefix and bad prefix.

7.4.1 DEFINITION [123] A finite wordu € L* is called a good prefix for the language
L C X% iff for every infinite wordw € X%, u-w € L.

Similarly, a bad prefix for £ is a prefix of which no extension is a member of the lan-
guage L. Thus there are also prefixes that are neither good not bad.

152 The Tableau Method for Linear Temporal Logic

For prefixes of state sequences and properties expressed in LTL, we use the notion
of an informative good (bad) prefix from [123]. Informative refers to the fact that it is
possible to demonstrate, by means of the semantics of LTL, why this prefix must be
a good (bad) prefix for the property defined by the formula. We use & to range over
finite state sequences.

7.4.2 DEFINITION [123] Let & be a prefix of a state sequence. Eis informative for ¢
iff there exists a finite sequence 1S € (2-T4)*, say of length n + 1 < |&| + 1, such that
5

e ¢ €15(0);

. IS(n) =J,
e forall0 <i<nandiy €1S(i),

— if1 is a propositional formula, then (i) |= ¥,
- 1S(i) is locally consistent;
— IS(i + 1) is a temporally consistent successor of 1S(i). O

We call such a sequence IS an informative sequence. If such an informative sequence
exists, it tells us why ¢ holds for any extension of the prefix £. It indicates what
formulas hold at what moment of the prefix and why. Since IS(i) is at some point
empty, this reasoning is complete and thus applies to any extension of the prefix. For
instance, if Y1 A 1, € IS(i), then by the consistency requirements, both 1; € 1S(i)

and ¥, € 1S(i), which tells us that y»; Ay, holds for any extension of Z' (the part

of £ from state i to the end) since both 1; and 1, hold for any extension of ' f
P1Uy, € 1S(i), 1 € 1S(i), and 1, ¢ 1S(i), then according to temporal consistency,
P1Uy, € IS(i + 1). This signifies that 1, U, must hold for any extension of z
because 11 holds for any extension of E' and Uy, holds for any extension of E'H.
Since IS(n) = @, such a reasoning is complete and “tells the whole story”[123].

It is possible to effectively construct an automaton on finite words that accepts all
bad prefixes for a given formula. We concentrate, however, on automata that recog-
nise informative prefixes only, for two reasons. Firstly, the construction of automata
for all bad prefixes is doubly exponential in the length of the formula, whereas the
construction of automata for informative prefixes is only singly exponential [123].
Secondly, the informative bad prefixes can be considered as the only proper coun-
terexamples, since they demonstrate why the formula does not hold. Other bad
prefixes depend on some peculiarity of the formula. For example, if i is a formula
that is not satisfiable, then every finite state sequence is a bad prefix of the formula
&), but this tells us nothing about that finite state sequence itself.

The idea behind the construction is very simple. One creates the on-the-fly tableau
automaton of the formula ¢, but interprets it as an automaton on finite words. The
original acceptance conditions can be forgotten, since they refer to infinite state se-
quences. If a finite state sequence £ is an informative bad prefix, then there is no
finite run on the automaton that matches it. If it is an informative good prefix, then

SWe rephrase the definition of [123] in terms of our notions of consistency.

7.4 Automata for Prefixes 153

D—C0
pq

Figure 7.11: Automaton for prefixes of the formula pVq

there is a run to the location @. To be precise, for any extension of the prefix, longer
than the prefix itself, there is a matching run, the last location of which is @. Thus,
if an automaton does not have a location & then the formula does not have any
informative good prefixes.

7.4.3 DEFINITION Let A = (L, X, Lo, Q,E, F) be an w-automaton, then [A,] is the
automaton (L, I, Lo, Q, E, L) on finite words, i.e. the same automaton interpreted as
a safety automaton (all locations are final) on finite words.

Example

Figure 7.11 shows the automaton on prefixes of the formula pVg. {q}{q}{p.q} is
an (informative) good prefix of pVg. The corresponding run to the location @ (the
right location) is {pVaq, q}{pVa,q}{pVa, p, q} 2. The run itself forms the informative
sequence that establishes this. An informative bad prefix is {q}{p}. It can be veri-
fied that this sequence has no matching finite run on the automaton. A correspond-
ing informative sequence demonstrating that the prefix is informative for —(pVq)
is {—=(pVq), =p}{—(pVa), ~q} 2. The informative sequence can be interpreted as fol-
lows. It claims (= (pVq) € 1S(0)) that there is no matching run starting from any loca-
tion containing the formula pVq (and all initial locations of the automaton contain it).
The reason for this is that the first state of the prefix does not satisfy p (=p € 1S(0))
and the remainder does not satisfy pVq (=(pVq) € 1S(1)). There is no matching run
starting from the middle location, since it contains p. Any successor location of the
left location contains pVq again. According to the informative sequence, a run from
such a successor location (left and middle) for the remainder {p} does not exist since
the second state of the prefix does not satisfy q (—q € IS(1). This immediately rules
out both locations as possible locations for a matching run and thus a matching run
does not exist.

Automata for good and bad prefixes

Similarly to the automaton rejecting bad prefixes, we can also define an automaton
on finite words accepting the good prefixes of ¢. This is achieved by making only the
location @ (if it exists) accepting. An automaton accepting bad prefixes is obtained
by constructing such an automaton for —=¢. Thus we can use the same automaton
(the same locations and edges, but different acceptance conditions) to detect both the
good and the bad prefixes of a formula ¢.

154 The Tableau Method for Linear Temporal Logic

Correctness

The above example illustrated that for an informative bad prefix, there is no match-
ing run on the tableau automaton. Vice versa, if there is no matching run for a prefix
on an automaton [A,], then the prefix is informative for —¢. This relationship be-
tween a finite state sequence being an informative bad prefix and the existence of a
matching run is formalised in this section, in theorem 7.4.7.

The example also showed the relationship between good prefixes and finite runs
on the tableau automaton ending in the location &. Every finite run on [A,] end-
ing in @ constitutes an informative sequence matching informative good prefixes.
Conversely, for any informative good prefix such a run can be found, this is demon-
strated with theorem 7.4.9.

Remember that the formula associated with a set of formulas is the conjunction of
the formulas in the set and the implicit constraints (O formulas) on the remainder
of a state sequence. The normal form procedure preserves informative bad prefixes.
If a prefix is informatively bad for a normal form of some formula, then it is also
informatively bad for the formula itself.

7.4.4 LEMMA If & is an informative bad prefix for NF(®), then & is an informative
bad prefix for @.

For the proof, see appendix B.1.3. Next follows the main lemma showing that pre-
fixes for which there is no matching run on the tableau automaton starting from some
location @, are informatively bad for the formula corresponding to the location ©.

7.4.5 LEMMA Let A, be a tableau automaton, let ® be a location of A, and let & be
a prefix of a state sequence for which there is no (accepting) run on A, starting from
®. Then ¢ is an informative bad prefix for ® A ONext(®).

PROOF By induction on the length of the prefix .

e If |£] = 1 then there is some 1 € @, either an atomic proposition or the negation of an
atomic proposition, such that £(0) = ¢ and thus {-y, =@, ~(® A ONext(®))} is an
informative sequence for —=(® A ONext(®)) on é.

e If [£] > 1 then either

— the first symbol does not match, which is similar to the first case, or
— there is no successor location for which there is a run. By induction we have

that El is an informative bad prefix for every successor location @;, and thus for
V NF(Next(®)), and by lemma 7.4.4 it is an informative bad prefix for Next(®).
From this it follows that £ is an informative bad prefix for ® A ONext(®). O

The following lemma is the main ingredient to show the converse, i.e. that informa-
tive bad prefixes have no matching run on the tableau automaton.

7.4.6 LEMMA Lety € @ and let IS be an informative sequence demonstrating —1p
for &. Then there is no run for & on [A,] starting from ®.

This lemma is proved by induction on the length of £ and the structure of y. The
proof is given in appendix B.1.4.

7.5 Related Work 155

Now we can show that our tableau automata accept all finite sequences except the
ones that are informative for ~¢ (Kupferman and Vardi show a similar result for
alternating automata in [123]).

7.4.7 THEOREM Let ¢ be an LTL formula and let A, be a tableau automaton for ¢.
Then [A,] accepts finite state sequence ¢ iff & is not an informative bad prefix of ¢.

PROOF (=) Assume towards a contradiction that & is an informative bad prefix for ¢. Any
initial run starts from a location @ such that ¢ € ®. But by lemma 7.4.6 such a run cannot
exist.

(<) Again by contradiction. Assume that & is not accepted by [Ay]. Then by lemma 7.4.5, for
every ® € NF({¢}) (the initial locations of the automaton), & is an informative bad prefix for
® A O A Next(®). Thus by lemma 7.4.4, & is an informative bad prefix for ¢. |

Next, we show that informative good prefixes can be recognised by the existence of a
run to the location &.

7.4.8 LEMMA Let @ be a set of formulas and let IS be an informative sequence with
® C 1S(0). Then there is some ®' € NF(®) such that ®' C 1S(0) and Next(®') C
1S(1).

The proof is given in appendix B.1.5. As a consequence, a finite state sequence is an
informative good prefix iff there is a matching run leading to the location @.

7.4.9 THEOREM Let A, be the on-the-fly tableau automaton of the formula ¢. A
finite state sequence & is an informative good prefix of ¢ iff there is a finite initial run
on [Ay] matching & ending in the location &.

PROOF (=) Let IS be an informative sequence with ¢ € 1S(0). By lemma 7.4.8, there is some
® € NF(¢p) such that ® C 1S(0) and Next(®) C 1S(1). Repeating the argument, we can show
that there is a run @ such that @ (k) C 1S(k) forall 0 < k < |IS|. Thus ®(|IS]) = @.

(<) Let @ be such a run. Then @ itself is an informative sequence for ¢. O

7.5 Related Work

Tableau algorithms

Tableau algorithms are essential parts of automata-based temporal-logic verification
programs (see chapter 6). They translate temporal-logic properties into the realm
of automata and allow the use of procedures on automata for model-checking. As
automated verification techniques are limited by the size of the state space of the
automata they have to deal with, there is a strong pressure to find tableau algorithms
that yield smaller automata.

The connection between LTL formulas and Biichi automata was first established by
Wolper, Vardi and Sistla [184]. It was done by constructing two automata, one to
check state-to-state consistency (safety) and one to check that all eventualities (live-
ness requirements) are satisfied. The tableau automaton was then created by taking
the product of these two automata. The size of tableau automata is in worst case

156 The Tableau Method for Linear Temporal Logic

exponential in the length of the formula and their construction always realised au-
tomata of that size. The more efficient ‘on-the-fly’ constructions were introduced in
[89]. Now many formulas in practice could be translated to moderately sized au-
tomata and this has made LTL model checking practical. Further optimisations have
been made by others, [60, 166, 73]. Other work on tableau constructions for LTL
includes, [67] with an improved proof of correctness of the algorithm in [89], [118]
with a tableau for a logic that comprises both future-time and past-time temporal
logic operators and [112] describing an efficient satisfiability checker.

Although tableau algorithms are usually presented with a proof of their correctness,
the use of optimisations and efficient implementation techniques make that their
correct operation in practice is sometimes doubtful. This is observed for instance in
[168], which describes a testing methodology for tableau implementations and its
application.

Fragments of linear temporal logic

Tableau constructions and model-checking algorithms are complex and computa-
tionally intensive. Sometimes things can be simplified for particular subclasses of
problems. Liveness properties and fairness constraints, for instance, require the use
of acceptance sets of the underlying automata. If properties are restricted to safety
properties (and fairness constraints are not applied) then the model-checking prob-
lem can be simplified to a reachability analysis [123]. In such a reachability analysis,
one can reason about finite executions of a system rather than infinite ones. We have
seen in chapter 6 that this is essential to using the technique in the context of simu-
lations.

In [3, 2] a fragment of a modal p-calculus-like timed temporal logic is used, that is
similar to the deterministic fragment presented in this chapter. It allows for the use
of a (timed) automaton construction and reachability analysis for model-checking of
this logic.

In [133], Maidl defines a ‘deterministic’ fragment of ACTL, and shows that this frag-
ment captures exactly those properties expressible in ACTL that are also expressible
in LTL. This is achieved by requiring all choices to be resolved locally by making
them deterministic. It has for instance the following restriction on the disjunction:
only disjunctive formulas of the form (7 A 1) V (=7 A ;) are allowed. It is also
observed that an automaton can be constructed that recognises the negation of such
a property, the size of which is linear in the size of the formula. This observation
corresponds to our dual (quadratic) fragment.

Another similar fragment of a temporal logic is the flat logic flatCTL(*) discussed in
[58, 59]. It is called flat, since the use of the Until operator is restricted to have on
its left side only propositional formulas. The equivalence relations induced by such
logics are investigated for the use of partition-refinement methods. In comparison
with our fragment, it can be noted that only the Until operator is restricted, not the
disjunction. Also the negation is used normally, giving a dual of the Until operator
that is also restricted to propositional formulas on the left side, in contrast with our
fragment, where the Release is restricted on the right side. It is observed that the
distinguishing power of flatCTL* differs from that of flatCTL, this in contrast with
other fragments for which there was no such difference. It would be interesting
to see what would happen in the case of a fragment like in this chapter or in case

7.6 Conclusions and Future Work 157

of Maidl’s fragment, since the deterministic choice leaves no room to exploit path
guantification.

7.6 Conclusions and Future Work

In this chapter an overview was given of the tableau method for linear temporal logic
that comprises both the complete and on-the-fly approaches and a description of the
algorithms for producing tableau automata was given. We have also discussed two
particular fragments of LTL that lead to particularly efficient tableaux. One fragment
allowing the construction of deterministic tableaux and one leading to tableaux that
are at most quadratic in size compared to the size of the formula instead of exponen-
tial. Moreover, these fragments were introduced since similar fragments will turn
out to be useful for the effective analysis of timed temporal logic in the next chapter.
It has also been shown how automata for informative prefixes can be constructed.
These can be used to simplify the model checking of particular safety formulas [123]
and to apply model-checking techniques in the context of simulations as described
in chapter 6 and [82]. It has been described how in practice informative good and
bad prefixes can be detected using a single automaton.

For simplicity, we have described our methods for LTL, even without the () opera-
tor. It is possible and useful to include other operators as well. Past-time operators
for instance, reasoning backwards in time instead of forward, would be valuable for
the specification of temporal properties. They can be included as it is done in [163]
or [118].

In our automata for prefixes, the acceptance sets of the original tableau automata
were discarded, as they were formally only meaningful for infinite computations.
In practice however, it might be possible to extract valuable information from it. It
could be interesting to observe the difference between a run that does not pass any
accepting locations and one that does pass accepting locations every now and then.
Our notion of informative good and bad prefixes is closely related to the notions
of local and temporal consistency that define the tableau automata. It would be
interesting to see how this relates to different kinds of optimisations proposed by
various authors, [89, 60, 166, 73]. In a sense, the informative sequences are proofs
that the state sequence does or does not satisfy the property. The steps of these
proofs are given by the local and temporal consistency rules that guide the on-the-fly
construction. It may be so that more sophisticated rules for constructing the on-the-
fly tableau give rise to informative proofs that use more sophisticated proof rules.

158 The Tableau Method for Linear Temporal Logic

Chapter 8

Tableaux for a Real-Time
Temporal Logic

In the previous chapter, tableau constructions for linear temporal logic have been
described. Formulas in LTL allow the specification of particular orders of events.
In the analysis of real-time systems, we are often interested in quantitative timing
properties. Extensions of LTL exist that aim to express such properties. Instead of
state sequences of the untimed systems we will now look at timed state sequences
that include timing information.

In LTL we can express for instance that every a event is at some point followed by
a b event, but we cannot express constraints on the amount of time between these
events. The timed extensions of LTL aim to provide such expressive power.

We proceed along the same lines as the previous chapter, first introducing the com-
plete tableaux and then on-the-fly tableaux, and see how we have to extend the
method to deal with qualitative temporal properties. To keep matters simple we
will initially only consider a particular type of timed state sequences. We only allow
one type of intervals, namely those that are left-closed and right-open, i.e. that are of
the form [a, b) for b > a. Tableaux for this type of timed state sequences are intro-
duced in section 8.1. Subsequently, section 8.2 introduces tableau constructions for
arbitrary interval types. With some extra bookkeeping, the same principles can be
applied.

8.1 Restricted Real-Time Tableaux

We used Buchi automata for tableaux of LTL properties. In order to capture the
guantitative timing properties, we employ timed automata (see section 2.6.2) for our
timed tableaux. If we want to define a tableau construction for real-time temporal
logic, we make use of timers to remember the distance in time to important events
in the past. This information by itself however, may not be enough to determine the
resulting constraints on the remaining timed state sequence. For instance, suppose
we are interested in the formula ¢ <5p and we want to verify that the formula holds
for every moment in some timed state sequence p. If we know that at moment t, the

160 Tableaux for a Real-Time Temporal Logic

state changed from {p} (pis true) to & (p is false), then this information is insufficient
to determine constraints on the future of the state sequence. For letp; = (E, I1) and
p» = (7, 1) be timed state sequences, partly depicted below

o {p} @ {p}
l1: ...t) [tt+5] (t+5,...
T,: ...t (tt+5 (t+5,...

then it is clear that in p;, ©<sp does not hold at time t, whereas it does hold at t in
23

In order to successfully construct a tableau automaton for MITL formulas, one needs
to memorise both the moment of a transition (using a timer) and the type of the
transition (from a right-open to a left-closed interval or vice versa).

In this section we start with defining our real-time temporal logic, MITL<, and a
tableau construction for MITL<, interpreted over a restricted class of timed state se-
guences, namely those whose intervals are always left-closed and right-open. Then
the type of transition is known a priori and we can concentrate on the use of timers
to introduce the quantitative timing constraints. In section 8.2 we discuss the general
case, building upon the restricted version and adding the required bookkeeping to
keep track of the types of transitions.

8.1.1 Preliminaries

If we use interval sequences in this section, we refer to interval sequences as defined
in section 2.1.5, but only those that are composed of intervals that are all left-closed
and right-open. Also, the timed automata in this section have only runs that use this
kind of interval sequences and thus only accept timed state sequences with this kind
of intervals.

Moreover, we will use a restricted version of MITL ([5], see section 2.5.3). In the
construct @1U;¢», the interval I is restricted to be of the form [0, d]. The formula is
denoted as @1Uq@7. Itis not that hard to extend the results to include also intervals
such as [0, 0), [0,d) or (0,d). The use of arbitrary (rational) lower bounds to the
interval however, makes the construction too complex for practical use (EXPSPACE
as opposed to PSPACE).

8.1.2 Real-Time Temporal Logic

In this section MITL< is defined as a restricted version of Metric Interval Temporal
Logic MITL [5] (see section 2.5.3). The syntax of MITL < is defined by the following
grammar (d € IN):

pu=true|p| | @1V e | e1Uqes.

The semantics of MITL< remains unchanged from the semantics of MITL as defined
in section 2.5.3 (using ¢1U<q¢> as shorthand notation for ¢1Ujg g¢2). Notice that

IThis is true even for the MITL formula < _5p, a case that, we suspect, is not dealt with correctly in
[5, 9]. Although they observe that requiring p to hold at some time where the associated clock is smaller
than 5 is too strong, their solution, changing this to the clock being at most 5, is still too strong. (See also
section 8.2.2.)

8.1 Restricted Real-Time Tableaux 161

MITL< cannot discriminate between equivalent timed state sequences: if p; = p,
then p; = ¢ iff p, = @ for any MITL< formula ¢.

8.1.1 DEFINITION (After[5]) Letp € MITL<. Aninterval sequence | is called ¢-fine
for timed state sequence p if for all € sub(g), allk > 0and allty, t; € 1(k), ol =
iffp%2 |= 4. A timed state sequence p = (@, 1) is called ¢-fine if 1 is p-fine forp. O

Note that due to the choice of [0, d] as the interval of the Until formulas, ¢-fine in-
terval sequences also consist of left-closed and right-open intervals. Such a ¢-fine
interval sequence exists for any ¢ and p.

8.1.2 LEMMA [83, 5] Let ¢ be an MITL < formula and letp be a timed state sequence.
Then there exists a @-fine interval sequence for p.

PROOF One can show by induction on the structure of ¢ that this is the case. The only non-
trivial case is the formula ¢ = @1U<q@,. Let I3 and 1, be @, respectively ¢,-fine interval
sequences for p. Then we can construct a ¢-fine interval sequence T by letting our new interval
sequence have a transition to a new interval at every point in time where T, has a transition or
1, has a transition, and at all points at distance d in time before such transitions (if larger than
0). Then Tis a -fine interval sequence for p. O

For our tableaux we need a suitable discretisation of the time domain. In the untimed
case, the state sequences were inherently discrete. For timed state sequences, the ¢-
fine interval sequences provide the necessary discretisation.

The language £(¢) associated with the MITL< formula ¢ (w.r.t. a set Prop of propo-
sitions) is the set of all timed state sequences over Prop that satisfy ¢,

L(¢)={p|PF o}

8.1.3 Tableaux for Real-time Temporal Logic

In this section we define the construction of a timed automaton that accepts precisely
all the models that satisfy an MITL< formula ¢. We first describe the ideas behind
the construction and later give a precise definition.

Intuition behind the construction

The real-time tableau automaton is very similar to the untimed tableaux for LTL for-
mulas. The added quantitative timing constraints are dealt with by timers of the
timed automaton. Consistency constraints are applied the same way as in the un-
timed case. Temporal consistency is modified to include validity of the timer manip-
ulations.

Figure 8.1 shows an example of a tableau automaton for the formula O<sp. For the
time of stay in the initial location, the formula O<sp must hold and so must p. After
leaving the initial location, a timer y is set to 5 and until the time has decreased to
0, p should remain satisfied. After that, a transition to the upper right location is
possible. At this location, p need no longer hold and the run continues to the lower

162 Tableaux for a Real-Time Temporal Logic

Figure 8.1: Example tableau of the formula O <5p

right location, where it can remain forever. Note that the transition from the upper
left to the upper right location labelled with the timer setting y := 5 leading to a
location where y is required to be at most 0 is redundant?, but it is produced by the
on-the-fly algorithm to be presented later.

The general strategy for checking that timed state sequences satisfy an Until formula
or its negation when they match a run that passes through a location labelled accord-
ingly, is done in two parts. First, we look at checking the positive Until formulas and
later we look at the structure for checking negations of Until formulas.

The strategy for checking the formula 1 = @1U«4¢ is depicted in figure 8.2. As in
the previous chapter, the large circles labelled with formulas denote classes of loca-
tions, namely those that are labelled with at least those formulas. In the figure, only
the edges of the locations labelled with ¢,U4¢, are fully The edges Notice that the
transitions are almost identical to those of the untimed version of figure 7.2. There is
an extra transition from the non-trivial = (¢1U<q@2) sets to the non-trivial ¢1U<q@2
sets. Whereas this situation was impossible in the untimed case, it may occur in the
timed case if a moment when ¢, holds comes within the reach of d units of time. For
instance, if p holds for all t > 2 and does not hold for any t < 2, then for t < 1, the
formula trueU <1 p (non-trivially) does not hold and for all 1 < t < 2 it (non-trivially)
does hold.

e Ifalocation is labelled with ¢1U<4¢, and with ¢, at the same time, it is trivial
for p1U<q@2. The Until formula is immediately satisfied and no other con-
straints are required (no timers need to be applied yet).

e If alocation is labelled with ¢1U4¢,, but not with ¢,, then the Until formula
is not satisfied immediately and using temporal consistency constraints as in
the untimed case, one can verify that at some later time ¢, will occur and ¢4
remains true in the meantime. But besides that, we now have to verify that
this ¢, occurs within d time units from the moment we first encountered such
a ‘non-trivial’ Until location. This is accomplished by setting a corresponding
timer, say X, to the value d at the moment the non-trivial location is entered
and requiring that the value of this timer remains larger than zero as long

2Although it would not be redundant if, for instance, the timed automaton was interpreted on the
discrete time domain consisting of the time points {0, 5, 10,15,...}.

8.1 Restricted Real-Time Tableaux 163

g ((pl U 0d (pz g trivial
a ((p] u 0d (PZ a
0 @, m Q, sets

non-trivial

0(p,U.,®,)

sets

non-trivial

@, u 0 P, sets

0(e,U,,9,)

(pl D(pz

trivial

©,U_,®,sets

Figure 8.2: Pattern for checking the formula ¢ 1 U<q¢»

164 Tableaux for a Real-Time Temporal Logic

D((p]UHd(pz)
D((|01U<y(p2)
y o
O, D@,

trivial

0(e,U,, @)

sets

non-trivial

0(9,U,, @)

sets

non-trivial

©,U_,@,sets

D

D((plUDJq)Z)
Ole,U_, @)
y o

¢, To,

¢,U,0,
D((plu<y(pz)
y0

trivial

®, U 0P, sets

2

Figure 8.3: Pattern for checking the formula = (91U <q¢2)

as o is not yet encountered (remember that we let timers decrease as time
advances). As soon as ¢, is encountered, the timer is ‘deactivated’, i.e. the
constraint x > 0 disappears. In order to signify that the timer x is active in a lo-
cation and ‘guards’ the formula @1 U <42, we label the location with ¢1U<x@>.
The intuitive meaning of the label is that whenever the automaton is in an
extended location (¢, v) (the automaton resides in location £ and the timer val-
uation equals v) then in order to accept the timed state sequence, the ‘formula’
p1U<x@, must hold, where v(x) is substituted for x. Note that we can use a
single timer to verify the formula for all instants the automaton resides in the
non-trivial Y sets, because if it holds for the first instant, then it must also hold
for later instants.

The second part of the strategy deals with the verification of a Release (negated Un-

til) formula 1p = = (@1U<q92) (= (—@1)V<d(—92)). We apply the following rules
(illustrated in figure 8.3).

e Ifalocation is labelled with 1 and with both —¢; and —¢,, then it is trivial for
1p and the formula follows immediately (the locations at the top of figure 8.3).

8.1 Restricted Real-Time Tableaux 165

e If it is not labelled with — ¢4, then temporal consistency constraints are neces-
sary to constrain the remainder of the sequence. Now there are two possible
ways in which 1y can be true. Either because ¢, remains false and ¢, remains
true until some point is reached where both ¢, and ¢, are false, or ¢, remains
false and @1 remains true until some point in time is reached, more than d units
of time away. Only the latter case requires the use of timers to check the quanti-
tative constraint ‘further than d time units away’. This is done in the following
way. We need to check the constraint for all instants we reside in the non-
trivial = (p1U<q¢>) locations. It suffices in this case, to verify this for the last
instant (compared to the first instant for the non-trivial ¢1U—q¢; sets), since
this immediately implies the satisfaction of the constraint for all previous in-
stants. However, because of the left-open and right-closed shape of the interval
there is no last instant. Hence we need to check a slightly modified constraint
represented by the label — (<p1U<y(p2) (notice the constraint < y rather than
< y). Any location containing this label shall not contain ¢, or contains the
constraint y < 0, signifying that enough time has passed and the constraints
have been met. Then we have verified that the ¢, location did not occur at a
distance smaller than or equal to d from any point in time that the automaton
was in a location labelled). Note that even a transition exists from the non-
trivial = (p1U<q@2) locations to the trivial ¢1U<q¢> locations (containing ¢),
but taking this transition is only possible if d equals 0.

In order to conclude this introductory description of a tableau for ¢1Uq¢2, we put
figures 8.2 and 8.3 together, resulting in figure 8.4. One can see that both timers are ei-
ther not active at the same time, or have identical values (x is active in the non-trivial
p1U<qe, locations and y is active after a transition from a non-trivial - (¢1U<q@3)
location to a ¢1U4¢, location and remains active until a location containing y < 0
is reached). Indeed in general, it is possible to use only one timer per Until formula.
In order to keep things simple in the discussion of the tableau however, we shall use
two separate timers per Until formula. Also in the on-the-fly version of the tableaux
to be discussed later (in section 8.1.6), we need only one timer per Until formula.

Definition of the Tableau Automaton

The definition of tableau automata for real-time temporal logic follows the same
structure as the untimed tableaux in the previous chapter. Adapted versions of lo-
cal and temporal consistency constraints are defined, now including constraints on
timer manipulations and timer values as well.

The set sub(¢) of subformulas of an MITL< formula ¢ is again the set of all syntactic
subformulas of ¢ (in positive form). Next, the closure of an MITL< formula is de-
fined. It contains its subformulas, their negations, but also for all Until and Release
formulas, the corresponding labels.

8.1.3 DEFINITION The closure cl(¢@) of an MITL< formula ¢ is the smallest set @,
such that

e sub(p) C ©;
e if1 € sub(¢), then -y € ©;

166 Tableaux for a Real-Time Temporal Logic

O(e,Uy0,)
D(‘P1U<y(pz) trivial
O(p,U0,)
U, Mo, sets
iy
o A -
non-trivial "\\Q, non-trivial
O(p,U;0,)
ot oUs0) @, U0, N\ 1Y@, sets
¢,Un0,
O(,U_,0,) xi=d
172 =i » Do U9,
¢, Uo, ¢, Mo,
y[[) '*//z}q x>0
&
N\
g \4
@, U0,
o,UL0, trivial
D((P1U<1/‘92) o,U 0, sets
9, y[[)

)

Figure 8.4: Pattern for checking the formulas - (p1U<q2) and ¢1U<q¢; at the same time

8.1 Restricted Real-Time Tableaux 167

o forevery Until formulay = ¢1U<qp, € @, the labels
{(PlUSXu,@Zi Xl[) > 0! (P1V<yu,(02; yll) S 0} g . d
Note that (for now) the labels are not considered to be formulas; they just help to de-
fine the locations of the automata. In section 8.1.6 we do interpret them as formulas

to define a normal form for the on-the-fly construction. Similar to the negated formu-
las and formulas in positive form we use negated labels as well as labels ‘in positive

form’. Whenever convenient, we use — (<p1U<y¢<p2) to denote (—¢1)V<y, (=¢2).

The set Timers(¢) of timers for an MITL< formula ¢ is the set containing two timers
for every Until formulay = ¢1U—4¢, incl(¢) (even if there are multiple occurrences
of the Until formula in ¢). These timers are called x,, and y,.

Timers(¢) = {Xy, Yy | ¥ = @1U<q2 € cl(@)}.

We need to extend the notions of local and temporal consistency of LTL to include
the new timing related labels.

8.1.4 DEFINITION A set ® of MITL< formulas and labels is called locally consistent
if

false ¢ @,
ifi Vi, € ® theny, € ®© ory, € ®;
ify A, € © thenp, € ® and Y, € O;

l-f(plUSd(pg € O then (p1U§le(,02 € o,

o A W N B

if(plngw,Wz € @ then ¢, € ® or both xy >0 € @ and p; € ©;

S

if(p]_VSd(pz € @ then ¢, € @;

N

l-f(,01V<yw,(,02 € O thenyy, <0€ ®org; € 0. a

Note that requirements 1, 2, 3 are identical to the requirements in the untimed case
and the others are adapted to the bounded Until formula and its labels. Non-trivial
sets are defined for the new labels as well (compare definition 7.1.4).

8.1.5 DEFINITION [If1 is a formula or label of one of the following forms: p1U<q¢2,
<p1U§Xw, @2, p1V<q@2 OF (p1V<yw, @2, then a y-set @ is called non-trivial for y

o if)p = p1Uqpr and @, ¢ ©;

o ifip = @1U<x, 02 and @, ¢ O;

o ifp = @1Veqpo and 1 ¢ ©;

o ifip= P1V<y, @2, 01 gDdandyy, <0¢ . O

Again, for such a formula or label 1, a y-set is called trivial for v if it is not non-
trivial for . Completeness of a set now requires that it is fully decorated with the
appropriate labels (corresponding to figure 8.4).

168 Tableaux for a Real-Time Temporal Logic

8.1.6 DEFINITION A set @ is called complete w.r.t. the set L of formulas and labels
if

1. forevery formula ¢ € L, either ¢ € ® or —¢ € @ (but not both).
forevery) = p1V<qp2 € L, p1Vcy_ 02 € O,

forevery ¢ = p1U<qp2 € L, p1U<x, 92 € O iffY € ©;

A W DN

forevery ¢ = <p1U§Xw, @2 € L, Xy > 0 € @ iff ® is non-trivial for 1;

5. foreveryp = @1U<qpz € L, yy <0 € @ iff® is not non-trivial for 1U<q¢,.0

A set @ is called complete w.r.t. the formula ¢ if @ is complete w.r.t. cl(¢). Temporal
consistency is also defined and includes constraints on the added labels as well as
on the timer settings used on edges.

8.1.7 DEFINITION A set ®' of formulas is a temporally consistent successor of the
set @ of formulas under the timer setting TS if for every bounded Until formula

Y = @p1U<qp2,

1. if ® is non-trivial for p1U<x, 92, then P1U<x, @2 € @' and xy, is undefined in
TS;

2. if @ is not non-trivial for p;U<x,, @2 and @' is, then TS(xy,) = d;
and if for every bounded Release formula) = @1V,
3. if ® is non-trivial for i, then y € @' or both TS(yy,) = d and p1V<y, @2 € @',

4. if @ is non-trivial for o1V <y, @2 then p1V<y, @2 € Q'

Temporal consistency is denoted as © s 0. |

To be used later for an on-the-fly construction, we describe temporal consistency in
terms of temporal consistency constraints similar to the untimed case. The temporal
consistency constraints of a location now determine not only formulas or labels of
the next location, but also place constraints upon the update of timer values.

8.1.8 DEFINITION Let @ be a set of formulas. Then the pair Next(®) of temporal
consistency constraints, is the pair (TS, ®') where TS and @' are the smallest sets
such that

e if ® is non-trivial for p1U<x ¢, then @' contains p1U<x, @2/

e if ® is non-trivial for 1V 4@, then @' contains ¢1V<y ,®2 and TS contains
Yy :=d;

e if @ is non-trivial for P1V<y, 92 then @' contains p1V <y, @2 O

Now the complete tableau can be defined using these consistency requirements as
the following automaton.

8.1 Restricted Real-Time Tableaux 169

8.1.9 DEFINITION The (restricted) complete tableau automaton A, of MITL< for-
mula ¢ is the timed automaton (L, £, ©, Ly, Q, TC, E) where

o L C 2°9) contains all sets that are locally consistent and complete w.r.t. ¢;
o ¥ = 2Prop(e).
e © = Timers(g);

e L, is the set of all extended locations (®g, vy), such that ®y € L, ¢ € ®q and
vo(Xy) = d and vo(yy) = 0 for every bounded Until formula ¢1Uq@, in

cl(e);

e Q is the mapping that assigns to the location @, the set of all states o € 2°™P
such that

- peoifpe @,
-pé¢oif-pe o

e TC is the mapping that assigns to the location @, the set of all timer conditions
(see section 2.6.2) x € @;

e E is the set of all edges (®,TS, ®') € L x TSet(©) x L such that & —>> @’
(only considering timer settings of the form x,, := d or y,, := d for bounded
Until formulas = @1Uq@, € cl(@)). O

8.1.4 Example

As an example, we construct the tableau automaton of the formula ¢ = ~C<sp =
- (trueU<sp). The subformulas of ¢, are

sub(¢) = {— (trueU<sp) , trueU<sp, p, true}.

The closure set is

cl(p) = {— (trueU<sp), trueU<sp, p, =p, true, —true, = (trueUyp),
trueU<yp,x > 0,y < 0}.

Inspecting all the subsets of cl(¢), we find only three complete locally consistent
subsets:

1. {trueU<sp, p, true, - (trueU<yp) , trueU<xp, y < 0};
2. {trueU<sp, —p, true, = (trueUyp) , trueU<xp, x > 0};
3. {= (trueU<sp), —p, true, = (trueU<yp) ,y < 0}.

We see that set number 2 is non-trivial for trueU<sp and set number 3 is non-trivial
for - (trueU<sp). We can now determine the temporally consistent pairs of sets and
appropriate timer settings. Set 3 is the (only) initial location, since it contains ¢. This
leads to the automaton represented in figure 8.5.

170 Tableaux for a Real-Time Temporal Logic

Figure 8.5: Timed tableau automaton of the formula =< <5p

8.1.5 Correctness

We will now prove that the tableau A, accepts precisely the timed state sequences
that satisfy the formula ¢. The proof is very similar to the corresponding proof in
the untimed case, but a little more intricate.

8.1.10 THEOREM Let ¢ be an MITL< formula and let A, be its tableau automaton.
Then L(Ay) = L(@).

The theorem follows immediately from the lemmas 8.1.17 and 8.1.21, which prove
soundness and completeness respectively.

Soundness

To show that the tableau is sound we need to demonstrate that every timed state
sequence accepted by the automaton A,, satisfies the formula ¢. As in the untimed
case we show that the formulas in the locations of the automaton are satisfied by
any timed state sequence matching a run starting in that location. The following
two lemmas deal with the Until formulas and are illustrated by figure 8.6. The first
lemma says that timers and temporal consistency constraints are applied as intended
to verify Until formulas.

8.1.11 LEMMA Lett = (¥,1,%) be a timed run forp on A, and Y = @1U<qp, €
cl(@). For any k > 0 such that W(k) is non-trivial for ®1U<x, @2, we have (i) 1 €
T(K), (if) xy > 0 € W(K), (iii) V(K + 1)(xy) = (k) (xy) — [T(K)| and (iv) either @, €
W(k+ 1) or ¥(k + 1) is non-trivial for p1U<x,, @s.

PROOF @1 € ¥(k) and xy, > 0 € ¥(k) follow from the fact that ¥(k) is non-trivial for
©1U<x, 02 and local consistency requirement 5. From temporal consistency (1) it follows
that timer x,, is not set in the transition from W(k) to W(k 4+ 1) and thus (k + 1)(x,) =
(k) (xy) — [1(k)|. Finally, it follows from temporal consistency (1) that either ¢, € W(k + 1)
or W(k 4 1) is non-trivial for p; U<y, 2. O

8.1 Restricted Real-Time Tableaux 171

Figure 8.6: Soundness of the verification of ¢ ;U<4¢>

We can now prove the lemma that tells us that Until formulas are checked correctly
(notice the correspondence between the following lemma and lemma 7.1.9).

8.1.12 LEMMA Letr be atimed run forp on A, and let 1 = p1U<q¢, € r(0). Then
there is somet < d, such that ¢, € r(t) andforall0 < t' < t, g1 € r(t') or p, € r(t').

PROOF Letr = (¥, 1,%). If € ¥(0) then either of the following is true:

e ¥(0) istrivial for i, then ¢, € ¥(0) by local consistency and the lemma follows trivially,
takingt = 0.

e Y(0) is non-trivial for i (and for ©1U<x, @2 by local consistency) then one can show
using lemma 8.1.11 and knowing that ¥(0)(xy,) < d, that there is some k > 0, such that
I(T(k)) < d, p; € ¥(k) and forall 0 < m < k, p; € ¥(m). Thus taking t = 1(T(k)),
@y er(t)andforall 0 < t' <t, 1 € (t') or g, € F(t'), the lemma follows. O

The next two lemmas help us to show the same for Release formulas (illustrated by
figure 8.7). From a location labelled with ¢1V<4¢> (and thus also with ¢5), a run
leads to a trivial ¢1V_4, location containing @1 and ¢, or to a location containing
p1V<y, 2 (and thus also containing ¢,). From there, a run must proceed until a
trivial p1V<y, P2 location is reached (either with y,, < 0 or with ¢,).

8.1.13 LEMMA Lett = (¥, 1,%) be atimed run forp on A, and let) = ¢1V<gip, €
cl(p). For any k > 0 such that ¥ (k) is non-trivial for 1, one of the following is true:
(i) W(k + 1) is trivial for, (ii) W(k + 1) is non-trivial for y or (iii) v(k + 1) (yy) = d
and (p1V<yw(p2 € W(k +1).

PROOF From temporal consistency (3) it follows that W(k + 1) is a 1 set or ¥(k + 1) contains
©1V<y,@2. In the former case it can be either trivial (i) or non-trivial (ii) for 1. In the latter

case (iii), p1V<y, @2 € Y(k+1) and ¥(k + 1)(yy) = d. =

The three options in the previous lemma correspond to the outgoing edges of the left
location at the top in figure 8.7. The following lemma deals with the middle location
in the middle row of the figure.

172 Tableaux for a Real-Time Temporal Logic

Figure 8.7: Soundness of the verification of ¢ 1 V4>

8.1.14 LEMMA Lett = (¥, 1,%) be atimed run forp on let A, and) = ¢1V<gp, €
cl(p). IF¥(0) is non-trivial for 1V <y, @, and¥v(k)(yy) = d' > 0 thenforall0 < t <
d’, g, € r(t) or there is somet', 0 < t' < t such that ¢; € r(t') and ¢, € r(t').

PROOF If for some i > 0, ¥(i) is non-trivial for ©1V<y, @2 then from temporal consistency
(4) it follows that o1V<y, @2 € W(i+1). Local consistency (7) says that when 1Vay, 02 €
Y(i+1), then ¢, € W(i+1) oryy <0 € ¥(i+ 1). From this it follows that the first (if any)
m such that ¢, ¢ ¥(m) occurs either for I(T(m)) > d’ and forall 0 < n < m, ¢, € ¥(n) or if
there is some 0 < n < m such that ¢1 € ¥(n) and ¢, € ¥(n). O

Using the previous two lemmas together, we can now show that the Release formula
is checked correctly (corresponding to lemma 7.1.10 in the untimed case).

8.1.15 LEMMA Let r be a timed run forp on Ay, let = @1V<q92 € cl(p) and let
Y €1(0). Then forall0 < t < d, ¢, € r(t) or thereis some0 < t' < t, p; € r(t') and
@2 € ().
PROOF Letr = (¥, 1,%). Either of the following is true:

e ¥(0) is trivial for i, then the lemma follows trivially, since ¢, € r(0) and ¢, € 7(0).

e W(0) is non-trivial for v, then from lemma 8.1.13 it follows that the first (if any) ¥(i) that

is not non-trivial for v, is either trivial for 1 or contains ¢1V<y, @2 and ¥(i)(yy) = d,
— if ¥(i) is non-trivial for i for all i > 0 then for all t > 0, @, € ©(t) by local
consistency (6);

— if the first is trivial for ¢ then there is some t > 0 such that ¢; € r(t), 2 € r(t)
and @, € r(t') forall 0 < t’ < t, which satisfies the lemma;

8.1 Restricted Real-Time Tableaux 173

— if the first, say ¥(k), contains ¢1V<y, @, and ¥(k)(yy) = d, then from lemma
8.1.14 it follows that for all I(1(k)) < t < I(I(k)) +d, 2 € F(t) or there is some
I(1(k)) < t' < tsuchthat g1, @, € r(t') and since I(I1(k)) > 0, the lemma follows.

O

Having the results for Until and Release formulas, we can now show that whenever
a location is labelled with a formula v, then this formula is checked correctly (see
lemma 7.1.11 in the untimed case).

8.1.16 LEMMA Letr be a run on A, for the (restricted) timed state sequence p and
let y be an MITL< formula such thaty € r(0). Thenp |= ¢.

PROOF By structural induction on v

e if i) = true, then it is trivial, since any timed state sequence satisfies true;

e 1) = false cannot occur in any locally consistent set;

e if p € Prop(¢p) and ¢ € r(0), then 1p € 5(0) and thusp = ;

e ifp = —pfor some p € Prop(¢) and i € r(0), then p ¢ p(0) and thus p = y;

e if Y is of the form 1 V ¢, and ¢ € r(0), then (by local consistency) either 1 or 15 in
r(0) and thus (by the induction hypothesis) 5 |= ;

e if ¢ is of the form 11 A 1, and ¢ € r(0), then (by local consistency) both ; and 1, are
in r(0) and thus (by the induction hypothesis) p |= 1;

e if1p = @1Uqg,, then forall t > 0, it is a run on A, for p* and if ¢ € (0), then by
lemma 8.1.12, there is some 0 < t < d such that ¢, € 1(t) and @1 € r(t') or ¢, € r(t')
forall 0 < t’ < t. By the induction hypothesis, it follows that p = ;

e if p = @1V<qgpy, then forall t > 0, it is a run on A, for p' and if 1 € 1(0), then
by lemma 8.1.15, forall 0 < t < d, ¢, € 1(t) or o1 € r(t') and @, € r(t') for some
0 < t’ < t. By the induction hypothesis it follows that p = 1. |

The previous result assures us that only state sequences that satisfy the formula ¢
are accepted by the tableau automaton.

8.1.17 LEMMA If A, acceptsp thenp = ¢.

PrRoOF Follows from lemma 8.1.16 and the fact that there is an initial runr on A, for p and
thus ¢ € 1(0). O

Completeness

We now show that any timed state sequence that satisfies the formula ¢ is accepted
by our automaton. Using the following definitions we construct an accepting run for
a timed state sequence p.

8.1.18 DEFINITION Letp be a timed state sequence, let ¢ be an MITL< formula and
letp’ = (o, 1) be equivalent to p where 1 is p-fine. Let ®y contain all y € cl(¢p) that
are true for all t € 1(k) and — for all y € cl(¢p) that are false for all t € 1(k). For an
Until formula = @1U<q@, € cl(@),

e the timer xy, is said to be active during interval 1(k), if ® is non-trivial for 1,

174 Tableaux for a Real-Time Temporal Logic

e the timer yy, is said to be active during interval 1(k), if @y contains y» and the
closest interval before 1(k) that does not contain vy was non-trivial for -1, O

Notice that the moments t at which a timer is active are the same for equivalent timed
state sequences and are independent of the chosen ¢-fine interval sequence.

8.1.19 DEFINITION Given a timed state sequence p and an MITL< formula ¢, let for
allt > 0 and every 1 = @1Uqp, € cl(@), u, the @-fine timer valuation for p at
moment t, be defined as follows.
e ut(xy) equals d minus the time, elapsed since the last time x,, was activated
(1t(xy) equals d at the moment of activation itself). If x,, has never been acti-
vated before, then pit(xy,) equals d minus the time since t = 0.

o ut(yy) equals d minus the time, elapsed since the last time y,, was activated. If
yy has never been activated before, then ut(yy,) equals 0 minus the time since
t=0. O

8.1.20 DEFINITION Given an MITL< formula ¢ and a timed state sequence p. Then
a p-fine timed run r = (¥, 1,%) is constructed as follows: let | be a p-fine interval
sequence for b, ut the @-fine timer valuation for o at time t, then v(k) = Hi(T(0) and
Y (k) contains

e all € cl(¢p) that are true for all t € 1(k) and = for all € cl(¢) that are false;
and for every = p1U—q¢; € cl(p)

o p1U<x, 92 if p1U<q@; is true during 1(k);

* p1Voy, @2 always;

e Xy > 0 ifitis non-trivial for 1,

e yy < 0 ifitis not non-trivial for. O
Now we show that the ¢-fine timed run for p is an initial runon Ag if p = ¢.

8.1.21 LEMMA Ifp |= ¢ then A, accepts p.

PROOF Lett = (¥, 1,%) be a p-fine timed run for p. Then I is a run for o on A. This follows
from the following facts:

e Vs a sequence of locally consistent and complete sets w.r.t. ¢. This can easily be
checked by the definitions of local consistency completeness and the definition of a
@-fine timed run.

e [Symbol match] For every t > 0, p(t) € Q(r(t)). This is obvious since r(t) contains
precisely the propositions that are true at moment t.

e [Consecution] Let k > 0 and let every timer x be set in TSy if x is activated at moment
[(lgs1). Then W(k) SN Y(k + 1) and thus there is an edge (¥(k), TS, ¥(k+1)) €
E. One can show using the definition of the ¢-fine timer valuations that v(k + 1) =
TS[v(k) = [1(k)).

e [Timing] Forallk > 0, every t € 1(k) and every x € TC(¥(k)), v(k) — (t—1(1(k))) E x-
This can be verified by the semantics of the logic and the definition of a ¢-fine timed
run.

[Initiality] Since p |= ¢, ¢ € ¥(0). Thus (¥(0),%(0)) € L. |

8.1 Restricted Real-Time Tableaux 175

8.1.6 Other Tableaux

As in the untimed case we proceed to non-complete and on-the-fly constructions to
obtain smaller automata that can be used for efficient analyses.

Non-complete tableaux

As in the untimed case, we can drop the completeness condition and allow also non-
complete locations without changing the set of timed state sequences accepted by
the automaton.

8.1.22 DEFINITION The non-complete real-time tableau automaton B, of MITL<
formula ¢ is the timed automaton (L, Z, ©, Lo, Q, TC, E), where L consists of all (also
non-complete) locally consistent sets ® C 2°1(®) of formulas and labels and the rest
is defined exactly the same as the complete tableau automaton in definition 8.1.9. O

Using these non-complete sets one can show that lemma 8.1.16 still holds since (as
in the untimed case) completeness of the sets is never used.

8.1.23 THEOREM Let B, be the non-complete tableau automaton of MITL< formula
@ and let A, be the complete tableau automaton. Then L(A,) = L(By,).

PROOF The two inclusions are shown separately.

e L(Ay) C L(By). It can be shown that any run on A, isstillarunon B, since La C Lg,
Ea CEgandforevery £ € La, Qa(¢) = Qg(¢) and TCa(¢) = TCg(¥).

e L(By) C L(Ay). Let b be a timed state sequence and let p € £(B,,). Then it follows
from lemma 8.1.16 that 5 |= @ and thus thatp € L(A,). O

On-the-fly tableaux

To define an on-the-fly version of the tableau construction for real-time temporal
logic, we introduce a hormal form similar to the one used for the untimed tableaux.
To deal with the gquantitative timing constraints, we need to extend the logic with
explicit timers and formulas constrained by timers. We will take the extra labels of
the complete tableaux and interpret them as formulas in the extended logic.
Essential to the on-the-fly tableau construction in the untimed case was the separa-
tion of constraints on the current state from constraints on the remainder of the state
sequence using the () operator. In timed state sequences there is no notion of a next
moment and there is no () operator. We have already seen that an appropriate dis-
cretisation is provided by the ¢-fine timed state sequences. We introduce a form of
(O operator that can be used for timed state sequences and provides the intended
meaning for those timed state sequences that are ¢-fine.

Formulas in the extended logic are interpreted within an environment v that assigns
a value to the individual timers. The syntax of the extended logic is given by the
following grammar (¢ € MITL<, x € TCond(®), x € ©, d € IN for a set © of timers):

Y= [PV [Y1 AP | x| TSY | 1U<x@2 | p1Vexp2 | O .

176 Tableaux for a Real-Time Temporal Logic

We use 1 to range over formulas of the extended logic. We use the notation {x :=
di,y :=dy,...} to denote the timer setting {(x,d1), (y,dz), ...}, the function assign-
ing the value d; to the timer x, d, to the timer y, etcetera. The interpretation of the
extended logic is the following. We define a relation i |=, p expressing when a
timed state sequence p = (, 1) satisfies a formula 1 in the context of a timer valua-
tion v:
PEve ifo F o
PV VYo ifD |y Y1 oro Ey P
ﬁ|:v1,bl Ao ifp ':v Y andp ':v Py,
PEvX ifv = x;
PEVTS. if0 =1spy i
PEvp1U<xpa if P =y @, or there is some 0 < t < v(x), such that pt =yt @2
andforall0 < t' < t, p . v @1V @2 (note that v(x) may be
smaller than 0, see below);
PEvp1Vayp, ifforall0 <t < v(y),p' Ev_t @y or thereissome 0 < t' < t,
such that o' |=, v @1 A @
POy iff O iy ¥
The semantics of the extended formulas is quite straightforward. MITL< formulas
and V and A operators are interpreted as usual. Timer conditions (formulas of the
form x > 0 or y < 0) are interpreted by substituting the timers with their values in
the timer environment v. A timer setting TS in the formula TS.1p binds free timers in
1 to particular values given by the function TS.

The semantics of the Until formula ¢1U<x¢> is similar to the bounded Until formula
of MITL<, but the bound is determined by the value of x in v. Moreover it holds
whenever @, holds, independent of the value of x, which simplifies the treatment
in the remainder of this section. @1V<y@, and @1V_4¢@, are similar, but note the
strict upper bound in contrast with the MITL< Release formula. There is also a O
operator that is used to take advantage of the discretisation required for the tableau
construction and provided by the interval sequence. The meaning of O is that ¢
holds for the timed state sequence obtained by removing the first interval. Notice
that in general, this operator is sensitive to the choice of interval sequence among
equivalent timed state sequences. We will only use it with timed state sequences
that are fine for the formulas under consideration and in formulas that are insensi-
tive to refinements of interval sequences, i.e. the timed equivalent of stutter-closed
formulas. Therefore, this will not be a problem.

Normal form and rewrite rules. The construction is again based upon separating
what has to be true now from what has to be true in the future. Since time is dense
however, we cannot just separate the current moment from the rest of the time do-
main. In order to arrive at an appropriate discretisation of the timed states sequence,
we look at ¢-fine interval sequences. Within the intervals of such a sequence, the
valuations of individual subformulas do not change. Now we can unfold our for-
mulas into current (in the current ¢-fine interval) and future requirements (from the
next interval onwards).

An extended MITL< formula is said to be in disjunctive temporal normal form (DTNF)

8.1 Restricted Real-Time Tableaux 177

if itis of the form

k

\/ TSi.(7 A Owy).

i=1
The rewriting rules of the untimed case still apply in the timed case. Additionally
we need the following equivalences. 1)y = 1, denotes that for every timed state
sequence p and timer valuation v, ; =, p iff Yo =, p. If conditions are noted
along with the equivalence, it means that this is only true for p and v that meet those
conditions.

¢ Distribution rules of v, A and () apply as in the untimed case.
e Distribution of timer settings.

= (TS1.1) A (TS2.¢2) = (TS UTSy). (1 A) (if the domains of TS; and
TS, are disjoint)

= TS(P1Vh2) = (TSh1) V (TS.y)

e Timer instantiation

= p1U<qp2 = {x:=d}.(p1U<xp2)
e Unfolding

- @1U<xp2 = 92V (x > 0A @1 A O(@1U<xe2)) (if p is both ¢;-fine and
@»-fine and v(x) > 0)

= #1V<q02 = 92 A (01 V O({y = d}.o1Veypa)) (if D is o1V gpo-fine)

- @1Veypr =y < 0V (@2 A (@01 V O(@1V<yp2))) (if p is both ¢;- and
(pz-fiﬂﬁ)

These equivalences, when interpreted as rewrite rules from left to right, can be used
to convert any extended MITL < formula into disjunctive temporal normal form. The
formula pU<sq for instance can be written in normal form via {x :=5}.(pU<xq) as
{x:=5}qV{x:=5}(x>0ApAO(PUxq)).

However, the unfolding rules introduce new timers. If we want to use this normal
form for the construction of a timed automaton we have to make sure that the to-
tal number of timers remains finite. To achieve this we make use of the fact that
P1U<x@2 A @1U<ypr = p1U<x@> in any environment v where v(x) < v(y). Simi-
larly, in such an environment v, p1V<x@2 A 1V<y@s = @1V<y@o.

Timers related to the Until formula ¢1U 4, are introduced with a timer setting that
assigns to such a timer the value d. If another timer related to this Until formula is
active, we know that its value is at most d and thus we can forget about the new
timer. Similarly, we can forget about the existing timer in case of p1V<q@,. This is
expressed by the following equivalences. -

e Absorbtion

- @1U<x@2 A ({y :=d}.(01U<y@2)) = @1U<x@2 if v(x) < d
- p1Vex@2 A ({y == d}(01V<yp2)) = {y == d}.(p1V<yp2) if v(x) < d

178 Tableaux for a Real-Time Temporal Logic

pU55q

&

puU_g,

:=5}.pU
(PUa)* b=5kpUag

x:=5}q 0 {x=5}.0c-00pCO(PU_,)

Figure 8.8: Example of the normal form reduction procedure for the timer-setting formula pair
(2, pU<s0)

Constructing the Automaton. Based on the normal form rules and the local and
temporal consistency constraints, we can again define a procedure to construct a
timed tableau on-the-fly. The main ingredient is, like in the previous chapter, a pro-
cedure to obtain from the temporal consistency constraints of a location, a set of
edges and new locations that are reachable from that location. In this case we deal
not just with sets of formulas that become the new locations, but also with timer
settings. These requirements are represented as a set of pairs (TS, @) consisting of a
required timer update TS and a set ® of formulas (as in the untimed case).

As an example, figure 8.8 shows the procedure performed on the formula pU<sq
and empty timer setting, i.e. on the pair (&, pU<sq). In the first step the timer x is
introduced and in the second step, the Until formula is unfolded. As the formulas
are processed, they are marked (indicated by an asterisk), as further explained below.

8.1.24 DEFINITION The local consistency procedure that generates a set of consis-
tent terms from a pair (TS, ¥) is defined as follows.

o LetPy = {(TS,‘P)}.

e Then as long as P, contains a pair with an unmarked formula apply one of the
rules of table 8.1 to produce a new set Py 1.

We use NF((TS, W)) to denote a result of the procedure® on (TS, W), NF(W¥) to denote
a result of the procedure performed on the pair (,¥) and NF(¢) to denote a result
of the procedure performed on the pair (&, {¢}). m]

3The procedure is non-deterministic as it is described here. We assume the existence of a deterministic
implementation NF of this procedure.

8.1 Restricted Real-Time Tableaux 179

Case PU{(TS,YU {y})} reduces to:
P = false P
1P = true, p, =p,

s onzo | PULTS YUY}
=PV | PU{(TSWU{$" 1)), (TS, WU {9, ho})}
Y=9YP1AY PU{(TS,YU{¢*, ¥1,¥2})}
¥=pUso0z | PU{({xy = dHTS, WU (" 01Uk, 02})}
if p1U<x, 02 ¢ ¥
PU{(TS. W U{¥*, 01Uy, 02})}
if p1U<x, 02 €Y
6 IP:<P1U§xU,,(,02 PU{(TS,‘PU{L[)*,(pg}),(TS,‘PU{I,D*,XW >0,(p1})}
Y =91Veqpz | PU{(TS,YU{Y", 0o}), (TS, Y U{Y", 91, 02})}
8| ¥=0Vay, 02 | PU{(TSYU{Y* yy <0}), (TS, YU {¥* o1, 92}),
(TS, YU{y*, @2})}
Table 8.1: Local consistency procedure. If an unmarked formula is added to a set already

containing that formula, the formula will be unmarked in the new set. We assume that ¢ ¢ ¥
and that (TS, YU {y}) ¢ P

g AW N

~

The reduction rules of the procedure correspond closely to the equivalences used
for rewriting an extended formula in temporal normal form. The first absorption
rule for instance, can be recognised in reduction rule 5; a new timer setting is only
introduced if the location does not yet contain ¢; U<y, @2 (in which case the timer x,;
is already active and cannot be larger than the corresponding bound d).

The on-the-fly tableau automaton of the MITL< formula ¢ is the automaton (L, £, ©,
Lo, Q, TC,E). The locations (L, L) and edges (E) of the automaton are constructed
by the algorithm presented in figure 8.9. Furthermore, £, Q and TC are defined as
in the maximal tableau. © is also similar, but contains only one timer per Until or
Release formula occurring in ¢.

Example OTF Tableau

As an example we construct a tableau for the MITL<-formula ¢ = O<199{<sp, il-
lustrated with table 8.2 and figure 8.10. We start with the formula O<199<¢<5p; un-
folding leads to the pairs:

({x:=5},{0<1000<5p, O<5p, ©<xp, X > 0}),
({x:=5},{0<1000<5p, ©<5p, O<xP, P})

These give rise to the initial locations 1 and 2 respectively (the second set of each
pair). The temporal consistency requirements for location number 1 are: ({y := 100},
{O0<yO<sp, O<xp}). Unfolding these requirements leads to the new pairs

({y := 100}, {D<y©<5p, O<xp,y < 0,x > 0}),,
({y := 100}, {O<yO<sp, O<xp, ¥ < 0, p})
({y := 100}, {O<yO<5p, ©<5p, O<xp, x > 0}),
({y := 100}, {OcyO<sp, O<5p, O<xp, P})

180

Tableaux for a Real-Time Temporal Logic

Lo 1= {(TS[0], ®) | (TS, ®) € NF(p)}
L := @, Edges := @
New : = {®@ | (v,®) € Lo}
while New # @& do
Let ® € New
New : = New\{®}
L := LU{®}

for every (TS,®') € NF(Next(®)) do
Edges : = EdgesU{(®,TS, @)}
if ® ¢ L then New := NewJ{d'}
od
od

Figure 8.9: Algorithm for constructing the locations and edges of the on-the-fly tableau au-
tomaton

which yield the locations 3, 4, 5 and 6 respectively.
The only consistency requirement of location 2 is, ({y := 100}, {0y <sp}), which
leads to the pairs

({y := 100}, {O<yO<sp,y < 0}),
({x:=5,y =100}, {O<y®<5p, ©<5p, O<xp, X > 0})
({x:=5,y:=100}, {O<yO<sp, O<5p, O<xP, P})

the first of which introduces a new location, number 7, and the last two correspond
to the locations 5 and 6.

Location 3 has temporal consistency requirements (&, {<><xp}), leading to new lo-
cations 8 and 9:

(2, {C<xp, x> 0}), (2, {O<xp, P})-

Location 4 has temporal consistency requirements (&, &) and therefore has an edge
to location 10, the empty set @. Location 5 has the requirements (&, {0<y<<sp,
O<xp}) resulting in edges to locations 3, 4, 5 and 6. Location 6 has similar require-
ments as location 2, (@, {D<y<>§5p}). Location 7 has no requirements, location 8 the
same as 3 and the requirements of locations 9 and 10 are empty. These temporal con-
sistency requirements are summarised in table 8.2. Together, this leads to the timed
automaton depicted in figure 8.10.

Some information on the numbers of locations, transitions and timers of tableau au-
tomata for different formulas has been collected in table 8.3.

Correctness

Correctness is established along the same lines as in the untimed case in the previous
chapter. The automaton is sound since all its locations and edges are consistent. To
show that it is complete we demonstrate how an initial run can be constructed for
any timed state sequence satisfying ¢.

8.1 Restricted Real-Time Tableaux

181

Location Consistency Requirements Successor Locations
1 ({y = 100}, {O<,®<5p, O<xP}) 3,456
2 ({y =100}, {O<yO<sp}) 5,6, 7
3 (2, {0<xp}) 8,9
4 (2, 2) 10
5 (2, {O0cyO<sp, ©<xp}) 3,4,56
6 (@,{D<y<>§5p}) 5, 6, 7
7 (2, 2) 10
8 (2, {0<«xp}) 8,9
9 (2, 2) 10
10 (2,9) 10

Table 8.2: Consistent successor locations for the tableau of O <100 <5p

Figure 8.10: Example of on-the-fly tableau for the formula O <190¢ <5p

182 Tableaux for a Real-Time Temporal Logic

Non-Complete | Complete | On-the-fly
—O<sp 19872802872 3/8/2 4/6/1
Oc1000<5P 3632/2/4 5/19/4 | 10/22/2
Ocs(O<1pV O<10) 2/2/6 2/2/6 11/21/3
pU<1 (qU<1 (rU<19)) 2/?/6 ?2/?/6 14/30/3
p= (Ocs(q= Ocyr)) 2/2/4 2/2/4 15/48/2
(p = ©<50) U<100d<5p 2/2/6 2/2/6 21/64/3
(((pU<4q) U<zr) U<ps) Ut 2/2/8 2/2/8 | 60/271/4

Table 8.3: Numbers of locations / transitions / timers of different tableaux. We were unable to

determine certain figures with the prototype implementation, those have been replaced with
.

8.1.25 THEOREM Let A, be the ‘on-the-fly’ tableau automaton of ¢ then L(A,) =
L(e).

Soundness and completeness are proved in lemmas 8.1.27 and 8.1.30 respectively.
We introduce some shorthand notation. We write 5 |=, @ instead of “ for all i € @,
P Ev Y andweusep | (TS, @) to denote “forall ¢ € ©,p =, TS,y . Thus, the
following is a valid statement: p =, Next(®).

Soundness We can establish that the on-the-fly automaton is sound by checking
that its locations and edges are consistent (compare to lemma 7.2.7 of the previous
chapter).

8.1.26 LEMMA Let @ be a set of extended MITL< formulas and let (TS', ®')

NF(®). Then @' is locally consistent. Moreover, ® TS5 @' for any (TS, @)
NF(Next(®)).

S
S
For the proof, see appendix B.2.1.

8.1.27 LEMMA Let A, be the ‘on-the-fly’ tableau automaton of ¢. Then L(A,) C
L(e).

PROOF Let B, be the non-complete tableau automaton of ¢. By lemma 8.1.26, every initial
run on A, is also an initial run on B, and thus every timed state sequence accepted by A,
satisfies @. O

Completeness We now show the converse, i.e. that the automaton is also complete.
Given a timed state sequence that satisfies ¢, we can incrementally construct a run
for p on A,. Intuitively, a location corresponds to an extended formula. If a timed
state sequence satisfies this formula, there must be a run for this timed state sequence
starting from this location. This is so, since all the outgoing edges of the location
correspond to a term in the normal form of the ‘Next’ part of the location. If we
know it satisfies the formula, then it must satisfy some term in the normal form,
which is the edge that can be taken for the run.

The following lemma tells us that we can find a suitable initial location for the run
we want to construct.

8.2 Unrestricted Real-Time Tableaux 183

8.1.28 LEMMA Let ¢ be an MITL< formula and ® C cl(¢) be a set of extended
formulas. Lettsseq be a timed state sequence such thatp |=, ®. Then for any ¢-fine
interval sequence 1, there is some (TS, ®') € NF(®) such that o' |=1gp,_¢ @' for all

te1(0) andpl'©l =rg 1) Next(@).

This lemma is proved in appendix B.2.2.

From this initial location we can continue to find transitions to new locations. If the
remainder of the timed state sequence satisfies the temporal consistency constraints
of the location, then there is an edge to a new location, where it satisfies the local
constraints during the entire interval, as well as the new temporal consistency con-
straints.

8.1.29 LEMMA Let @ be a location in the on-the-fly tableau automaton A, let p
and v be such that p =, Next(®) and let | be a p-fine interval sequence. Then
there is an edge (@, TS', @') of A, such thatp' =gy, @' for all t € 1(0) and

‘5‘ I(O)‘ |:TS’[V]—|T(O)| NeXt((DI).
ProoF It follows from lemma 8.1.28 and the construction of the on-the-fly tableau. a

This demonstrates that the tableau automaton is complete.

8.1.30 LEMMA Let A, be the ‘on-the-fly’ tableau automaton of ¢. Then L(¢) C
L(Ay).

PROOF Let p be a timed state sequence such that 5 |= ¢. It can be shown using lemmas 8.1.28
and 8.1.29 that there is a run for p on A,. O

8.2 Unrestricted Real-Time Tableaux

In this section we extend the real-time logic and its tableaux of the previous section
to unrestricted interval sequences. The basic principles remain the same, but a lot of
extra bookkeeping is required to deal with them. Definitions that are identical to the
restricted case are not repeated.

8.2.1 Preliminaries

In the previous section we used timed automata with interval sequences that consist
of left-closed and right-open intervals only. We now allow any kind of interval. We
need to differentiate between locations that are entered in a left-closed interval and
locations that are entered in a left-open interval, as explained in section 8.1. For
this, we define a notion of timed automata that are unconventional in the sense that
edges of the automaton are labelled with a type stating that the edge is allowed for
a transition between a right-open and a left-closed interval only or between a right-
open and left-closed interval only. Such a feature is not strictly necessary, but it
simplifies things when defining the tableau automata.

Let the set TT of transition types be defined as the set {#co, #oc}. #co is intended to
represent a transition from a right-closed to a left-open interval and #oc a transition
from a right-open to a left-closed interval.

184 Tableaux for a Real-Time Temporal Logic

Figure 8.11: Alternating open and singular intervals

8.2.1 DEFINITION A timed automaton A = (L, %, ©, Lo, Q, TC, E) consists of

e afinite set L of locations;

a finite alphabet X,

a set © of timers;

a finite set Ly of initial extended locations ({y,vg) € L x TVal(©);

a mapping Q : L — 2% labelling every location with a set of symbols of the
alphabet;

a mapping TC : L — 27¢nd(®) japelling every location with a set of timer
constraints over timers in ©;

asetE C L xTSet(©) x TT x L of edges. (¢, TS,tt,¢') € E denotes an edge
from location / to location ¢', labelled with a timer set operation TS and a tran-
sition type tt. m|

Note that the special semantics using transition types is only added for convenience.
It can be removed by the same trick as applied in [5, 9]. An extra timer is used to
enforce the interval sequence of a run to alternate open intervals ((a, b)) and singular
intervals ([a, a]). For a singular location, the extra timer x is set to 0 when the location
is entered and the location contains the timer constraint x = 0 (see figure 8.11).
Then the automaton can only reside in such location for a single instant in time.
Open-interval locations are constrained to occur between singular locations and can
therefore only correspond to open intervals.

A run on such an automaton with transition types is now required to match the
transitions of intervals to the transition types of the edges.

8.2.2 DEFINITION A timed run r for timed word v on timed automaton A is a triple
(Z 1, 7) consisting of a sequence of locations, an interval sequence and a sequence
of timer valuations, such that

e [Symbol match] for allt > 0, v(t) € Q(r(t));

e [Consecution] for all k > 0 there is an edge (Z(k), TSy, tt, £(k + 1)) € E such

that v(k + 1) = TS,[v(k) — |1(k)|] and tt, matches the transition from 1(k) to
I(k+1);

e [Timing] for allk > 0, every t € T(k) and every x € TC({(k)), ¥(k) — (t —
1(T()) b= x 0

8.2 Unrestricted Real-Time Tableaux 185

Figure 8.12: Timed state sequence requiring ¢ 1 U<, +@2-label

Also these automata cannot discriminate between equivalent timed words. Further-
more, it is still true that any suffix of a timed run is also a timed run (see section
2.6.2).

Drawing conventions In the illustrations of these automata we use the same con-
ventions as before. Moreover, we denote the type of a transition (#oc or #co) along-
side of the arrow. If no transition type is shown along the arrow, then it represents
two edges, both a corresponding edge labelled with #oc and an edge labelled with
#co.

8.2.2 Tableaux for Real-time Logic

In this section we define the construction of a timed automaton from an MITL< for-
mula ¢ that accepts precisely all models that satisfy ¢, interpreted over unrestricted
interval sequences. This is done by extending the method applied in the restricted
case.

Intuition behind the construction

The principles behind the real-time tableau are the same as in the case of the ‘left-
closed tableau’. Due to the problem of open and closed intervals, we need to distin-
guish between two types of labels: those that are started at open and those that are
started at closed intervals.

In the restricted case, we used a label ¢1U<x, ¢, to denote that ;U492 must hold
for the instant t when the timer was started. Suppose now that ¢; U492 must hold
in some left-open interval and the timer x,, was set to d at the start of this interval.
Then requiring that ¢1U<x, ¢, holds is too strong, as demonstrated by the timed

state sequence in figure 8.12%. If we want to check that <& <2p holds during the second
interval ((2,4]) then we set the timer x to 2 at t = 2. One can check that in the
presented timed state sequence, &<, p holds for every instant in the second interval,
but p holds only after timer x expires.

4The tableau of [5, 9] is not complete. Assume (using notation of [5, 9]) we have the MITL formula
Y = O(g,qyp. Consider an incoming edge to an open-interval location containing i from a location not
containing xy,. Then the timer is allowed to be reset upon entering the location. From that point onwards,
subsequent locations contain xy, and xy, € (0, 1] until a location is reached containing p and the timer x,,
is not reset in the mean time. Thus by the time when x,, = 1, a location containing p must have been
reached, otherwise the run is stuck. But the formula holds in the initial open interval if p becomes true
immediately after this moment.

186 Tableaux for a Real-Time Temporal Logic

y:=2
l Dl:/f’
Upp —Uop yD
[p I(p 10 —p
[I I
0 2 4

Figure 8.13: Timed state sequence requiring = (¢1U<y, ¢2)-label

In general, ¢, must become true at the latest immediately after the timer expires.
To be precise, for every e > 0, ¢, must become true within xy, + € units of time.
Hence, to denote this we use the following label: ¢;1U<x,,+e@2. Similarly, we need the

extra label — ((01U§yw(p2) for timing constraints on Release formulas if the interval

during which = (¢1U<q¢2) must be checked is right-closed. For instance, in the
timed state sequence shown in figure 8.13, O<,p must be checked during the first
interval. Att = 2 the timer y is set to 2. Then p must remain satisfied until y < 0
(as opposed to y < 0 in the restricted case). This is expressed by the new label

O<yp (and — (<p1U§yw(pz) in general). The new labels bring forth the new timer

constraints x,, > 0 and y,, < 0.

Figure 8.14 shows the familiar pattern for checking the Until formula ¢;U<qe>.
Notice that the pattern is very similar to the restricted case with the exception of
the duplication of the non-trivial o, U4, sets. These sets contain either the label
p1U<x, ¥z OF the label P1U<x,+e®2 and which one of these locations is entered de-
pends on the type of transition, as explained above. For the rest of the pattern, the
types of transitions are irrelevant.

The pattern for Release formulas is shown in figure 8.15. Also this pattern is very

similar to the restricted case. As the label — (<p1U<y¢<p2) occursinall locations in the
restricted setting, all locations are now duplicated containing either — ((01U<yw(p2)

or — ((p]_USyw(pz). The corresponding timer is activated on a transition from a non-

trivial = (p1U<q¢2) location to a non-trivial ¢,U<q¢, location. If this transition is
from a right-open to a left-closed interval then the edge leads to a location labelled

with — ((,DlU<yw(pg), otherwise it leads to a location labelled with — ((,01U§yw(,02).

For the other transitions, the type is irrelevant.

We do not attempt to draw the combined pattern for ¢1U«q@, and —¢@1U <42 (such
as figures 7.2 for the untimed case and figure 8.4 for the restricted timed case) for the
resulting image would be too cluttered to be readable.

Definition of the Tableau Automaton

We proceed with the precise definition of the complete tableau automaton, by ex-
tending the familiar concepts further to deal with the extra labels and transition
types. These definitions are extended after the patterns displayed in figures 8.14
and 8.15 and discussed in the previous section. The closure set includes the new
labels and timer constraints.

8.2 Unrestricted Real-Time Tableaux

187

non-trivial

O(@,Ury0,)
sets

O(eUry,)

2 <tgjvial

non-trivial

feo x:=d @, U0, sets

U0, sets

#toc x:=d ©,

Py x>0

4

&9 ($

Figure 8.14: Pattern for the verification of ¢ 1U<q¢>

188 Tableaux for a Real-Time Temporal Logic

O(e,U0,) (tritrjial)
(@U@,
O(e,U_,0,) sets
Ue, Ue,
yD
non-trivial 0 trivial
Oe,U,) non-trivia
sets ¢©,U 0, sets
D((p1UDd(’02) y:=d #co o,Ug0,
O(e,U_,9,)
0 Y #oc D((‘31U<yq)2)
P, 0
y ‘}"\\q ®2
%
< v
@ A 4
U
@172 trivial
D(<p1U<y(p2) ¢,Upy,0, sets
©,
yD

Figure 8.15: Pattern for the verification of = (1U<q¢7)

8.2 Unrestricted Real-Time Tableaux 189

8.2.3 DEFINITION The closure cl(¢) of an MITL< formula ¢ is the smallest set ® of
formulas and labels, such that

e sub(p) C ©;
e if1 € sub(g), then -y € ©;

o forevery Until formulay = ¢1U<qp, € @, the labels

{o1U<x, @2, %Xy > 0, p1U<x+e®2, Xy > 0,

= (P1U<yy2) Yy < 0,7 92Uy, 02) vy < 0} C ©. 0

Local consistency is redefined for the different types of labels. Only the rules 4, 5.(b)
and 7.(b) are changed or new, compared to the corresponding definition (8.1.4) in the
restricted case.

8.2.4 DEFINITION A set @ is called locally consistent if
1. false ¢ ©;

ifi1 Vi, € @ theny, € © ory, € O,

ify A, € O© then, € ® and Y, € ©;

if(p]_USd(pz € @ then either (p]-USXLp(pZ € ®or (pj_USXw+e(p2 € O (but not both);

a A~ w0 D

(@) if(p1U§xw,(p2 € ®© then ¢, € ®© or bothx, >0 € ® and p; € ©;
(b) if<p1U§Xw,+€<p2 € ® then ¢, € ® or bothxy >0 € ® and ¢; € ®;

6. if p1V<qp, € @ then ¢, € ©;

N

(a) if(p1V<yw,<pz € Othenyy <0€ ®org; € O,
(b) I'f(p]_VSyw,(pz € O then Yy < 0€ ®orgp, €. O

The notion of non-trivial set is extended to cover the new labels in a way that is very
similar to the existing labels.

8.2.5 DEFINITION Ify isaformula or label of one of the forms o1U<q¢», (p1U§Xw, ©2,

(p1U§Xw,+e<p2, P1V<q@2, (p1V<yw, @y or <p1V§yw, @, then a-set @ is called non-trivial
for

o ifp = @1U<qpr and o, ¢ @;

o ifp = p1Uc<x 92 and @, ¢ ©;

ifh = p1U<x +ep2 and g, ¢ ©;
it = @1V<qpr and 1 ¢ ©;

ifp = p1Vey, @2, 01 ¢ ®andyy <0¢ @,

190 Tableaux for a Real-Time Temporal Logic

° lfl[) = (p]_VSyw,(pz, Q1 ¢ () andywr <0 ¢ O. a

Completeness of sets is redefined as well in order to deal with the added labels.

8.2.6 DEFINITION A set @ is called complete wir.t. the set L of formulas and labels
if

1. for every MITL< formulay € L, precisely one of » and = isin ®;
2. exactly one of p1V<y_ ¢, and p1V<y @2 isin @ forevery = @1V<qpy € L,

3. exactly one of p1U<x, @2 and ¢1U<x,+e@2 is in @ if Y € @, and neither of
them if ¢ @, forevery) = p1Uqpy € L;

4. (a) Xy > 0isin @ iff @ is non-trivial for i = (01U§Xw, @2 €L
(b) Xy > 0isin @ iff ® is non-trivial for y = wlngw,Jre(pz eL;

5. (a) yy < 0isin® iff® is not non-trivial forp = p1U<qe, € L and o1V<y, @2

in @;
(b) yy < 0isin @ iff® is not non-trivial forp = @1U<q¢p, € L and p1V<y, @2
in @, |

Temporal consistency between sets of formulas and labels and timer settings de-
pends now not only on the sets of formulas and labels and the timer setting, but also
on the type of transition (#oc or #co) as explained earlier in this section. If a particu-
lar label is introduced, the required version of the label depends on the type of the
transition.

8.2.7 DEFINITION A set @ is temporally consistent with the set ®' under the timer
setting TS and transition type tt if for every bounded Until formulay = ¢1U<q@>

1. (a) if @ is non-trivial for 1U<x,, @2 then 1U<x, ¢, € @' and xy, is undefined
inTS;

(b) if ® is non-trivial for (plngere(pz then (Plngere(Pz € @' and Xy IS un-
defined in TS;

2. (a) if @ is not non-trivial for 1U<x, @2 and @' is, then TS(xy) = d and tt =
#oc,

(b) if ® is not non-trivial for ¢1U<x,+ep2 and @' is, then TS(xy,) = d and
tt = #co,

and for every bounded Release formula = ¢1V<q¢p»

3. if ® is non-trivial for 1V <4, then

(@) 91V<qp2 € @' or
(b) tt = #oc, TS(y-y) = d and p1V<y_ @2 € @' or
(c) tt=#co, TS(y-y) = dand p1V<y_ @, € @',

4. (a) if ®© is non-trivial for p1V<y_ @, then p1V<y_ @; € @/,

8.2 Unrestricted Real-Time Tableaux 191

(b) if @ is non-trivial for o1V<y @2 then p1V<y @2 € ',

Temporal consistency is denoted © LN Y |
Finally, we have to refine the definition of temporal consistency constraints, by means
of the function Next. The set of consistency constraints is now sensitive to the type
of the transition to the next interval as well.

8.2.8 DEFINITION Let @ be a set of formulas and labels and let tt be a transition
type. Then Next(®, tt) is the triple (TS, tt, ®') where TS and ®' are the smallest sets
such that

o if @ is non-trivial for ¢1U<x,, @2, then ®' contains ¢1U<x, @2,

if ® is non-trivial for P1U<x,+e®2, then @' contains ®1U<x, +eP2;

e if @ is non-trivial for V<4, and tt = #oc, then @' contains $1V<y, ®2 and
TS contains y,, .= d,

e if @ is non-trivial for V<4, and tt = #co, then @' contains ¢1V<y »¥2 and
TS contains yy, .= d,

e if @ is non-trivial for P1V <y, 92, then @' contains P1V<y, @2,
e [f @ is non-trivial for P1V<y, 92, then ®' contains $1V<y, ®2. |
We use Next(®) to denote the consistency constraints of both types together,
Next(®) = {Next(®, #oc), Next(®D, #co)}.

Again, Next(®, tt) yields the necessary timer setting and formulas to be a temporally
consistent successor of ® under the timer setting and the transition type tt. The
normal form procedure in the on-the-fly construction that will follow, maintains this
temporal consistency. All the following definitions are analogous to the restricted
case, but are now possibly sensitive to the transition type. With these new definitions
we can define the tableau automaton for the MITL< formula ¢ for arbitrary interval
sequences.

8.2.9 DEFINITION The complete tableau automaton A, of MITL< formula ¢ is the
timed automaton (L, I, ©, Lo, Q, TC, E) where

e L contains all sets that are locally consistent and complete w.r.t. ;

o ¥ = 2Prop(e).

e L is the set of all extended locations (®g,vq) such that ®y € L, ¢ € @,
P1U<x,+e®2 ¢ @o and vo(xy) = d and vo(yy) = 0 for every bounded Until
formula p1U<qp; € cl(@);

e Q is the mapping that assigns to the location @, the set of all states o € 2°™P
such that

192 Tableaux for a Real-Time Temporal Logic

Xi=
yi=

Figure 8.16: Example of the unrestricted tableaux of the formula & <sp

- peoifpe @,
-pé¢oif-pe o

e TC is the mapping that assigns to the location @, the set of all timer conditions
x €,

e E isthe set of all edges (®, TS, tt, ®') such that ® SELINY (only considering
timer settings of the form xy, := d or yy := d for bounded Until formulas

Y = p1U<qgp2 incl(p)). m

This definition is straightforward and similar to the definition of the previous com-
plete tableau automata. Note that if the initial location is non-trivial for some Un-
til formula ¢1U<q¢2, then it contains ¢;U<x, @2 and not ¢1U<x, 1@z, since every
timed state sequence starts with a left-closed interval.

8.2.3 Example

As an example, the unrestricted complete tableaux automaton for the formula ¢ <5p
is shown in figure 8.16. The locations of the automaton are the following locally con-
sistent and complete subsets of cl(C<sp) = {C<s5p, 7O <5p, C<xP, C<xteP, ~C<yP,
—O<yp, p, P, true, false} (using x to denote x¢_.p and y to denote yo_.p).

61 = {O<s5p,~O<yp,y <0, p, true}
{O<5p, O<xp, 7O <yp, x > 0, =p, true}

)
)
1

€z = {O<5p, OcxteP, ~O<yp, X > 0, —p, true}
by = {O<s5p,~O<yp,p,y <0, true}

ls = {O<5p, Ocxtep, 7Oy, X > 0, —p, true}
66 = {_‘<>§5pv_‘<><yp:)’§ O!ﬁp’true}

7 = {=0<sp, ~O<yp,y <0,p, true}

lg = {O<sp, O<xp, 7O<yp, x > 0, p, true}

The locations show only those formulas and labels that determine their labelling.
The edges are determined by temporal consistency constraints. The symmetrical

8.2 Unrestricted Real-Time Tableaux 193

non-trivial non-trivial e RN
P — ~ \D<>_5p sets Oup sets; —~ ~ N \\\
/ \ \
|)/
\ /
\ /
N e

trivial
Op sets

Figure 8.17: Correspondence between the tableau of formula & <5p and the general pattern

parts on the left and on the right represent the locations labelled with =< yp and
—O<yp respectively. Upon leaving location 6 or 7, a choice is made between the
two sides, depending on the type of transition. The initial extended locations are
forevery k € {1,2,4,8}: ({x:=5,y:=0},¢). Infigure 8.17 the locations of the
tableau are arranged according to the general pattern related to ¢ <sp (see figure
8.14). There are no trivial - <5p sets, since they would contain false. The labelling
of the edges and locations has been left out and can be found in figure 8.16.

8.2.4 Correctness

8.2.10 THEOREM The tableau automaton A, accepts precisely the models of MITL <
formula ¢.

PrRoOF Follows immediately from the lemmas 8.2.19 and 8.2.21 showing soundness and com-
pleteness of the tableau respectively. m|

Soundness We start by showing that Until formulas are verified correctly. The gen-
eral idea is displayed in figure 8.18. Any location that is labelled with ¢1U4¢, corre-
sponds to one of the three kinds of locations on the left. It is trivial (the middle one),
itis non-trivial for ;U< @, (the top one if the non-trivial situation was entered in a
left-closed fashion, covered by lemma 8.2.11) or it is non-trivial for ¢1U<x,,+e@2 (the
bottom one if it was entered in a left-open fashion, covered by lemma 8.2.12). The
next two lemmas correspond to lemma 8.1.11 in the restricted case.

8.2.11 LEMMA Lett = (¥, 1,%) be a timed run forp on A, and let ¥ = p1U<qep; €
cl(p). If¥(k) is non-trivial for p1U<x, @2, then we have (i) p1 € Y(k), (i) xy > 0 €
T(K), (ii) (k + 1) (xy) = (k) (xy) — [T(k)| and (iv) either ¢, € T(k+ 1) or T(k+ 1)
is non-trivial for o;U<x,,¢2.

194 Tableaux for a Real-Time Temporal Logic

non-trivial
@U@, sets

#oc, x:=d
@

trivial
©;Up0, sets

®,

non-trivial

#co, xi=d 01U 60, sets

P
x[D

Figure 8.18: Verification of ¢ 1 U<4¢>

PROOF That @1 € ¥(k) and xy, > 0 € ¥(k) follows from the fact that ¥(k) is non-trivial for
@1U<x, 2 and local consistency (5a). From temporal consistency (1a) it follows that timer x,,
is not set in the transition from W(k) to W(k + 1) and thus ¥(k + 1) (xy) = (k) (xy) — [1(K)|.
Finally, it follows from temporal consistency (1a) that either ¢, € W(k + 1) or W(k + 1) is
non-trivial for o1 U<, @2. O

Almost identical to the previous lemma, but now for P1U<x,+ep2 We demonstrate
the following lemma.

8.2.12 LEMMA Lett = (¥, 1,%) be a timed run forp on A, and let) = p1U<qp, €
cl(@). IF¥(k) is non-trivial for p1U<x, @2, then we have (i) o1 € ¥(k), (i) xy > 0 €
T(K), (iii) (k + 1) (xy) = (k) (xy) — [T(k)| and (iv) either ¢, € T(k+ 1) or T(k+ 1)
is non-trivial for P1U<x+e@2.

PROOF That @1 € ¥(k) and xy, > 0 € ¥(k) follows from the fact that ¥(k) is non-trivial for
©1U<x,+eP2 and local consistency (5b). From temporal consistency (1b) it follows that timer
Xy is not set in the transition from ¥(k) to W(k + 1) and thus v(k + 1)(xy) = ¥(K) (xy) — [1(K)|.
Finally, it follows from temporal consistency (1b) that either ¢, € W(k + 1) or ¥(k+ 1) is non-
trivial for @ U<x, +e®2. O

We can now prove the lemma that tells us that Until formulas are verified correctly.

8.2.13 LEMMA Letr be a timed run forp on A, and let = ¢1U<q¢p, € 1(0). Then
there is some t < d such that ¢, € r(t) and forall0 < t' < t, @1 € r(t') or p, € r(t').

PROOF Letr = (¥, 1,%). If € ¥(0) then one of the following is true:

e W(0) is trivial for ¢. Then @, € ¥(0) and the lemma follows trivially, taking t = 0.

8.2 Unrestricted Real-Time Tableaux 195

non-trivial
@V, sets

Z !
non-trivial

@,V 0, sets

©y

Figure 8.19: Verification of ¢ 1 V<42

e Y(0) is non-trivial for 1 and p1U<x,¥2 € ¥(0). Then one can show using lemma 8.2.11
and knowing that ¥(0)(x,,) < d, that there are some k > 0 and t € 1(k) such that t < d,
@2 € ¥(k)and forall0 < m < k, @1 € ¥(m). Thus, ¢, € r(t)and forall 0 < t’ < t,
@1 € r(t') or g, € r(t'), and the lemma follows.

e Y(0) is non-trivial for i and @1U<x+eP2 € ¥(0). Then one can show using lemma
8.2.12 and knowing that ¥(0)(xy) < d, that there are some k > 0 and t € I(k) such
thatt < d, ¢, € W(k)and forall0 < m < k, 91 € ¥(m). Thus, ¢, € r(t) and for all
0<t <t g er(t) or g, €r(t'),and the lemma follows. O

The next three lemmas help us to show the same for Release formulas along the lines
of figure 8.19. A location labelled as a @1V 42 set is either trivial (the centre loca-
tions of the figure) or non-trivial (the left-most locations). Lemma 8.2.14 will show
that a run, starting from a non-trivial 1V 4> location, ends up in a trivial @1V <4@»
location or in either a non-trivial (p1V<y¢(;)2 or a hon-trivial p1V<y, 92 location with
timer y,, set to d. Lemmas 8.2.15 and 8.2.16 respectively will take it from there for
the respective cases.

8.2.14 LEMMA Lett = (¥, 1,%) be atimed run forp on A, and let p = ¢1Vgp, €
cl(e). If¥(k) is non-trivial for v, then one of the following is true: (i) ¥(k + 1)
is trivial for 1, (i) W(k 4 1) is non-trivial for y or (iii) ¥(k + 1)(y-y) = d and
@1Vay_,@2 € ¥(k+ 1) if 1(k) is right-open and p1V<y @, € W(k+ 1) if 1(k) is
right-closed.

PrROOF From temporal consistency (3a,b,c) it follows that W(k + 1) is a 1 set or ¥(k + 1) con-
tains either p1V<y_, @2 Or 1V<y , @2 depending on the type of transition. In the former case
it can be either trivial (i) or non-trivial (ii) for 1. In the latter case, v(k 4+ 1)(y-y) = d and

196 Tableaux for a Real-Time Temporal Logic

©1V<y @2 € ¥(k+ 1) if I(k) is right-open (3b) and p1V<y @2 € Y(k+ 1) if I(k) is right-
closed (3c). m|

8.2.15 LEMMA Lett = (¥, 1,%) be a timed run forp on A, and let i = ¢1V<4ip, €
cl(@). Ifp1Vey @2 € ¥(k) andV(k)(yy) = d', then for all t such thatt € T(m) for

somem > k andt < 1(1(k)) +d’, ¢, € 1(t) or there is some t' with t' € 1(m) for
somem >k andt' < t, such that ¢, € r(t) and ¢, € r(t).

PrRooOF W(k) is non-trivial for ®1V<y_, @2 and from temporal consistency (4a) it follows that
if for some i > 0, W(i) is non-trivial for ¢1V<y @2, then ;Vey @2 € Y(i+1). Local
consistency (7a) says that when @1V<y 0> € W(i+1), then o € W(i+1)ory , <0 €
W(i+1). From this it follows that the first (if any) ¥(m) that is not non-trivial for 1V<y_, @,
contains either both ¢; and ¢; or y-y, < 0. In the former case, the lemma holds, since ¢, €
Y(n) for every k < n < m. In the latter case, the lemma follows from the fact that I(1(m)) >
I(T(k)) +d". |

8.2.16 LEMMA Lett = (¥, 1,%) be a timed run forp on A, and let i = ¢1Vgp, €
c(@). If p1V<y 02 € Y(k) and ¥(k)(y-y) = d', then for all t such that t € T(m)
T(k

for somem >k andt < I(1(k)) + d’, ¢, € 1(t) or there is some t' with t' € 1(m) for
somem > k and t’ < t such that @1 € r(t) and @, € r(t).

PrRooOF ¥(k) is non-trivial for ©1V<y , @2 and from temporal consistency (4b) it follows that if
W(i) is non-trivial for ¢1V<y @2 then o1V<y @, € W(i+1). Local consistency (7b) says that
when @1V<y @2 € W(i + 1), then g € W(i+ 1) ory_y < 0 € ¥(i 4 1). From this it follows
that the first (if any) ¥(m) that is not non-trivial for p1V<y_, @2, contains either both ¢; and
@2 ory_y, < 0. In the former case, the lemma holds, since ¢, € ¥(n) foreveryk < n < m. In
the latter case, the lemma follows from the fact that every t € 1(m), t > I1(1(k)) +d’. O

Using the previous three lemmas we can now show that Release formulas are veri-
fied correctly (see figure 8.19).

8.2.17 LEMMA Letr be atimed run forp on A, and let 1 = @1V<q¢, € r(0). Then
forall0 < t < d, ¢, € r(t) or there is some 0 < t' < t such that ¢; € r(t') and
@z € ().

PROOF Letr = (¥, 1,¥). Either of the following is true:

e W(0) is trivial for ¢. Then the lemma follows trivially, since ¢, € 1(0) and ¢; € r(0).

e W(0) is non-trivial for 1. Then from lemma 8.2.14 if follows that the first (if any) ¥(i)
that is not non-trivial for 1, is either trivial for 1 or contains o1V<y_, @2 or 1V<y_ 02
depending on the type of transition.

- If¥(i) is non-trivial for y for all i > 0, then for all t > 0, ¢, € r(t).

— Ifthe firstis trivial for ¢, then there is some t > 0 such that ¢; € r(t) and @, € r(t)
and ¢, € r(t') forall 0 < t’ < t, which satisfies the lemma.

- If the first, say ¥(k), contains P1V<y @2 OF 1V<y @2, then:

* If 1V<y 0y € ¥(k), then¥(k)(y-y) = d. From lemma 8.2.15 it follows that
forall 1(1(k)) < t < I(I(k)) +d, 2 € I(t) or there is some I(I(k)) < t' <t
such that ¢; € 1(t) and ¢, € r(t). Furthersince I(T1(k)) > 0 (I(k) is left-closed
and k > 0) the lemma follows.

8.2 Unrestricted Real-Time Tableaux 197

x Ifp1Vey @2 € ¥(k), then ¥(k)(y-y) = d. From lemma 8.2.16 it follows that
for all 1(1(k)) < t < I(I(k)) +d, ¢, € F(t) or there is some I(I(k)) < t' <t
such that ¢; € r(t) and ¢, € r(t) and the lemma follows. O

Having the results for Until and Release formulas, we can now show (in exactly the
same manner as in the restricted case) that whenever a location is labelled with a
formula 1, this formula is verified correctly.

8.2.18 LEMMA Letr be a run on A, for the timed state sequence p and let 1y be an
MITL< formula such thaty € r(0). Thenp = 1.

The proof of lemma 8.1.16, the corresponding lemma in the restricted case, applies
to this lemma as well, with the references to lemmas 8.1.12 and 8.1.15 replaced by
references to the corresponding lemmas 8.2.13 and 8.2.17 respectively.

The previous result assures us that only state sequences that satisfy the formula ¢
are accepted by the tableau automaton.

8.2.19 LEMMA If A,, accepts the timed state sequence p thenp = ¢.
PrRoOF Follows from lemma 8.2.18 and the fact that there is some initial runr on A,, and thus
@ €r1(0). O

Completeness We now show that any timed state sequence that satisfies the for-
mula ¢ is accepted by our automaton. Using the following definitions we construct
an accepting run for a timed state sequence p.

8.2.20 DEFINITION Given an MITL< formula ¢ and a timed state sequence p. Then
a ¢-fine timed run r = (¥, 1,%) is constructed as follows: let 1 be a ¢-fine interval
sequence for p, let u(t) be the @-fine timer valuation for 5 at time t (see definition
8.1.19), let ¥(k) = u(1(1(k))) and let ¥ (k) contain

e all € cl(¢p) that are true for all t € 1(k) and = for all € cl(¢p) that are false;
and for every ¥ = p1U—q¢> € cl(p)

e p1U<x, @2 and xy, > 0 if xy, is active during 1(k) and Xy was activated in a
left-closed way;

o 1U<x,+e@2 and xy, > 0 if xy, is active during 1(k) and Xy was activated in a
left-open way;

* — (<p1U<y 1,)(pz) ifyy is active during 1(k) and y,, was activated in a left-closed
way;

* — (galUSy 1,)(pz) if yy is active during 1(k) and y,, was activated in a left-open
way;

e yy, < 0ifyy is not active after a left-closed active interval or no active interval
has yet occurred;

e yy < 0ifyy is not active after a left-open active interval. a

198 Tableaux for a Real-Time Temporal Logic

8.2.21 LEMMA Ifp |= ¢ then A, accepts p.

PROOF Lett = (¥, 1,%) be a -fine timed run for p. Then f is a run for o on A. This follows
from the following facts:

e Vis a sequence of locally consistent sets. This can easily be checked by the definitions
of local consistency and the definition of a ¢-fine timed run.

e [Symbol match] For every t > 0, p(t) € Q(r(t)). This is obvious since r(t) contains
precisely the propositions that are true at moment t.

e [Consecution] Let k > 0 and let every timer x be set in TSy if x is activated at moment

I(1(k + 1)) and let tt correspond to the transition 1(k) to I(k + 1). Then ¥(k) SILTLIN

Y(k 4+ 1) and thus there is an edge (¥(k), TSy, tt,¥(k+1)) € E. One can show by
definition of the ¢-fine timer valuations that v(k + 1) = TS, [v(k) — [1(K)]].
e [Timing] For all k > 0, every t € 1(k) and every x € TC(¥(k)), ¥(k) — (t—1(1(k))) & x.
This can be verified by the semantics of the logic and the definition a ¢-fine timed run.
e [Initiality] Since = ¢, ¢ € ¥(0) and by definition of the run @1U<y, 102 ¢ ¥(0).
Thus ¥(0) € Lo. |

8.2.5 Other Tableaux
Non-complete tableaux

As in the previous cases, one can leave out the completeness condition and allow also
non-complete locations without changing the set of timed state sequences accepted
by the automaton.

8.2.22 DEFINITION The non-complete real-time tableau automaton B, of MITL<
formula ¢ is the timed automaton (L, £, ©, Lo, Q, TC, E) where L consists of all (also
non-complete) locally consistent sets ® C 2°1(®) of formulas and labels and the rest
is defined exactly the same as the complete tableau automaton in definition 8.2.9. O

Using these non-complete sets one can show that lemma 8.2.18 still holds since (as
in the previous cases) completeness of the sets is never used.

8.2.23 THEOREM Let B, be the non-complete tableau automaton of MITL< formula
@ and let A, be the complete tableau automaton. Then L(A,) = L(By,).

PROOF The two inclusions are shown separately.

e L(Ay) C L(By). It can be shown that any run on A, isstillarunon B, since La C Lg,
Ea C Eg, QA(é) = QB(E) and TCA(Z) = TCB(é) forall £ € La.

e L(By) C L(Ay). Let b be a timed state sequence and let p € £(B,,). Then it follows
from lemma 8.2.18 that 5 |= @ and thus thatp € L(A,). O

On-the-fly tableaux

We proceed towards the on-the-fly construction of the timed tableau automata. In
the previous cases, the foundation for a normal form reduction procedure was found
in the local consistency requirements and directly inspired by the normal form and

8.2 Unrestricted Real-Time Tableaux 199

rewrite rules for formulas of the logic. Although a similar normal form can be de-
fined for the unrestricted real-time case, it would become rather involved because
of the differentiation transition types for both the previous and the next interval of
time. Such a setting requires two sets of rewrite rules, one set for the case that the
first interval is left-closed and one set for the left-open case. Similarly we need to
introduce two types of Next operators, one (say Ouoc) that is in effect if the current
interval is right-open (and the following interval thus left-closed) and one (o)
for the case that the current interval is right-closed. Then the normal form looks
somewhat like this:

k
\/ Tsi-(ﬂi A (O#ocll)i,l Vv O#coll)i,Z))
i=1

The logical normal forms were introduced in the previous cases to enhance the in-
sight in the reasons for constructing the normal form procedures the way they are.
In this case, the normal form would become too complicated to add much to the
intuitive understanding of the procedure. This exercise is therefore skipped in this
section.

Constructing the Automaton In the on-the-fly tableau we use the same type of
procedure as in the previous cases. This time we generate a set of triples (TS, tt,)
consisting of a timer setting TS, a transition type tt and a set @ of formulas.

The transition type denotes whether the formulas in the set are to be interpreted
at the beginning of a left-closed interval or at the beginning (some initial interval)
of a left-open interval. Note that the two types of Next operators that would arise
in a logical normal form for this case, can be avoided since the ‘Next formulas’ are
defined implicitly by ®.

8.2.24 DEFINITION The local consistency procedure that generates a set of locally
consistent sets from a timer setting TS and a set ® of formulas is defined as follows:

e LetPy = {(TS,#oc, @), (TS, #co, ©)}.

e Then as long as P, contains a triple with an unmarked formula, apply one of
the reductions of table 8.4. |

A result of the procedure is denoted as NF((TS, ®)). We use NF(®) to denote
NF((2, ®)). An example of the application of the procedure is shown in figure 8.20
for the formula pU<sg. There are separate reductions for the #oc and #co cases.

The locations (L, Lg) and edges (E) of the on-the-fly tableau automaton (L, £, ©, Lo,
Q, TC, E) are produced by the algorithm of figure 8.21. The alphabet %, the set © of
timers and the labelling Q and TC are defined as in the restricted case.

Example Figure 8.22 shows an example of an on-the-fly tableau construction for
the formula pU<5(<¢<1q). Note that this is the automaton as it is produced by the
presented algorithm. Some straightforward optimisations along the lines of [89] and
[60] would lead to a much smaller automaton. Indeed, it can be verified from figure
8.22 that all locations labelled g are equivalent, and more in general, all locations
carrying the same labelling are equivalent, showing that the same could have been
achieved with an automaton with 5 locations.

200 Tableaux for a Real-Time Temporal Logic

#oc\ #co\

#co \

{x:=5}

PYreds

pUa*

#co
{x:=5}

fico \

{x:=5}

Figure 8.20: Example of the normal form reduction procedure for unrestricted intervals for the
timer-setting formula pair (&, pU<s0)

Correctness The correctness of the on-the-fly construction is expressed by the fol-
lowing theorem and is proved again by demonstrating its soundness and complete-
ness in lemmas 8.2.27 and 8.2.31 respectively.

8.2.25 THEOREM Let A, be the ‘on-the-fly’ tableau automaton of ¢. Then L(A,) =
L(e).

Soundness We show that the automaton is sound since the procedure produces
only consistent locations and edges.

8.2.26 LEMMA Let ® C cl(¢) be a set of MITL< formulas and labels and let (TS', tt,

®') € NF(®). Then @' is locally consistent. Moreover ® S, 9! for any

(TS, tt, ®') € NF(Next(®)).

The proof of this lemma can be found in appendix B.2.4.

8.2.27 LEMMA Let A, be the ‘on-the-fly’ tableau automaton of ¢. Then L(A,) C
L(e).

PROOF Let B, be the non-complete tableau automaton of ¢. By lemma 8.2.26, every initial
run on A, is also an initial run on B, and thus every timed state sequence accepted by A,
satisfies . O

8.2 Unrestricted Real-Time Tableaux

201

Y= p1V<y, @2

Case PU{(TS,tt, YU {1y})} reduces to:
1 P = false P
2 Y =true,p,—p, | PU{(TS, tt, YU {y*})}
x>0,x>0,
y<0,y<o0
3 Y =11V PU{(TS, tt, YU {y*,1}), (TS, tt, YU {yp", ¥o})}
4 Y=19P1AY; PU{(TS, tt, YU {¢", 1, P2})}
5 | w=¢iUcer | PU{({xy = d}TSL YU (", 1Usx, 02})}
if (plUSle(,Dz ¢ v, (plUSXu)_i_e(pg Qé Y and tt = #oc
PU{({xy = d}[TS], tt, Y U {t", p1Usx,sc02}) }
if (plUSle(,Dz ¢ v, (plUSXu)_i_e(pg Qé Y and tt = #co
PU{(TS,“,‘VU {w*:(Pluﬁxu,(PZ})}
if (p]_USXw(pz evy
PU{ (Ts, t, W U {3, (plUSXw_;_e(pg})}
if (P1U§x¢+e(,02 eV
6a Y = (pj_ngw,(pz PU{(TS,tt,WU{lI)*,(pz}),
(TS, tt, WU {h*, x> 0,01})}
6b | Y =@iUcx+e@2 | PU{(TS YU {Y", @2}),
(TS, tt, WU {p*, xy > 0,91})}
7 Y= @i1Veqpz2 | PU{(TS, tt, YU {Y*, 02}), (TS, tt, YU {¥*, 01, 02 })}
8a | Y=q1Vey, 02 | PU {(TS, YU {y*,yy <0}), (TS, tt, YU {¢*, 91, 02}),
(TS, tt, Y U {yp*, 02})}
8b PU{(TS, WU {¥*,yy < 0}), (TS, tt, YU {¥*, 01, 92}),

(TS, tt, YU {¥*, po})}

Table 8.4: Local consistency procedure. If an unmarked formula is added to a set already
containing that formula, in the new set the formula will be unmarked

Lo : =
L :=
New :

Let
New
L :=

od
od

{
2,

while New # @ do
® € New
i = New\{®}

for every (TS, tt,®') € NF(Next(®)) do
Edges : =
if ® ¢ L then New : =

(TS[0], @) | (TS, #oc, ®) € NF(¢, #oc)}
Edges := @
{® | (v,®) € Lo}

LU{®}

EdgesU{(®, TS, tt, ®')}
NewU{®'}

Figure 8.21: Algorithm for constructing the locations and edges of the on-the-fly tableau au-
tomaton

202 Tableaux for a Real-Time Temporal Logic

Figure 8.22: Example of the on-the-fly tableau of the formula pU <5(<<10)

Completeness To show completeness, a similar argument as in the restricted case
is used to show that one can incrementally, from one fine interval to the next, create
a run on the tableau automaton for any timed state sequence satisfying its formula.
We now discriminate between left-open and left-closed intervals.

The next lemma tells us how to find a suitable initial extended location for the run.
The initial locations are generated by starting the procedure from ¢ and transition
type #oc. The lemma states that one of the resulting initial extended locations can
form the basis for constructing the run.

8.2.28 LEMMA Let @ C cl(¢p) be a set of formulas. Letp =, ® and let | be
a -fine interval sequence. Then there is some (TS, #oc, ®') € NF(®) such that

' syt @' forallt € 1(0) and pl1(0)] Frspy—(T(0) Next(®', tt) where tt matches
the transition from 1(0) to 1(1).

The proof is in appendix B.2.5.

The following two lemmas state how one can repeatedly find suitable next locations
for the construction of the run. The first lemma deals with the case that the particular
interval is left-closed and the second lemma deals with left-open intervals.

8.2.29 LEMMA Let @ be a location in the on-the-fly tableau automaton A, letp and
v be such that o =, Next(®,#oc) and let | be a ¢-fine interval sequence. Then
there is an edge (@, TS', #oc, @) of A, such thatp' =1, _ @' for allt € 1(0) and

o100l Frs'v—[T(0)] Next(®’, tt') where tt’ matches the transition from 1(0) to 1(1).

The proof is in appendix B.2.5.

8.3 Timed Automata for Prefixes 203

8.2.30 LEMMA Let @ be a location in the on-the-fly tableau automaton A, let p
and v be such that p =, Next(®,#co) and let | = [0,0]l11;... be a p-fine interval
sequence. Then there is an edge (@, TS', #co, ®') of A, such that 8" Frgi(, ¢ @' for
all't € T(1) and p/'® Frsiv—(i1) Next(®',tt') where tt'" matches the transition
from 1(1) to 1(2).

The proof is in appendix B.2.5.
Finally, the next lemma claims the completeness of the on-the-fly tableau.

8.2.31 LEMMA Let A, be the ‘on-the-fly’ tableau automaton of ¢, then L(¢) C
L(Ay).

PROOF Letp be a timed state sequence such that p |= ¢. It can be shown using lemmas 8.2.28,
8.2.29 and 8.2.30 that there is a run for p on A,,. O

8.3 Timed Automata for Prefixes

In this section we look at the analysis of finite prefixes of timed state sequences for
the verification of safety properties® in particular during simulations. A finite timed
state sequence T = (E, I) consists of a (finite) prefix & of a state sequence and a prefix
1 (of equal length) of an interval sequence. We would like to adapt the analysis of
good and bad prefixes to the setting of timed state sequences and logic. Again, lo-
cal and temporal consistency requirements capture the notion of informativeness of
prefixes. An information sequence is now a sequence of intervals and corresponding
sets of formulas, timer valuations and timer settings. As such it describes completely
why particular formulas are satisfied for certain timed prefixes.

8.3.1 DEFINITION A timed informative sequence IS for a finite timed state sequence
T, is a tuple ((D, TS,%, I) of finite sequences, say of length n + 1, such that

e O(n)=g;

e forall0 <i<nandy € O(i),

— if1 is a propositional formula then Tt |= 1 for all t € 1(i);

— ifv is a timer condition then 7' Fs(n)—(t—1i(n))) ¥ forall t € 1(i);

— @(i) is locally consistent;
(i+1) =TS(i+1)(3(i) — [1(D)]);
(i+ 1) is a temporally consistent successor of ®(i) under the timer

tting TS(i) and transition type tt matching the transition from 1(i) to
i+1).

|
<I

:\'% @I

8.3.2 DEFINITION A prefix T of a timed state sequence is an informative good prefix
for a formula v in timer environment v if there is an informative sequence 1S such
that Y € ©(0) andv(0) = v. O

5In MITL <, all expressible properties are safety properties since every Until formula is bounded.

204 Tableaux for a Real-Time Temporal Logic

The on-the-fly tableau automaton for real-time temporal logic as presented earlier,
when interpreted on finite (prefixes of) timed state sequences (denoted as [A,]), can
be used to detect the informative good as well as the informative bad prefixes, ex-
actly as in the untimed case.

We now show that a timed state sequence is a bad prefix if and only if there is no
run at all and that it is a good prefix if and only if there is a run to the location &,
beginning with the latter. The following two lemmas correspond to lemma 7.4.8 in
the untimed case. They state (for #oc and #co type transitions respectively) that if
there is an informative sequence and an extended location of a tableau automaton
such that the extended location represents a weaker constraint than the start of the
informative sequence indicates, then there is an initial interval and an edge to a new
location such that the extended location, after making the transition, represents a
weaker constraint than the corresponding point in the informative sequence. Since
the informative sequences end in an empty set of formulas, representing no con-
straint at all, the automaton must be able to end up in a corresponding location as
well. The relation < in an expression (®;,v1) < (®,v2) defines what it means
for a combination (®4,v;) to represent a weaker constraint than the combination
(®3,v,). This relation is defined in appendix B.2.6 where also the proofs of the lem-
mas can be found. First the lemma for the case of an #oc transition type.

8.3.3 LEMMA Let @ be a set of formulas, let v be a timer valuation and let IS =
(@, TS,¥,1) be an informative sequence such that (©,v) < (®(0),%(0)). Then
there is some (TS (D’ #oc) € NF(d) #oc) such that (@', TS[v]) < (®(0),%(0)) and
(", TS"[TS[v] — |1(0)]]) < (®(1),%(1)) where (TS", ®") = Next(®’, tt) iftt is the
type of transition from 1(0) to I(l)

The corresponding lemma for the case of a #co transition type.

.3.4 LEMMA Let @ be a set of formulas, let v be a timer valuation and let IS =

@, TS, ¥, 1) be an informative sequence such that I(1(1)) = 0 and (®,v) < (®(1),
(1)). Then there is some (TS, @', #co) € NF(®, #co) such that(d)’ TS[1) < (@(1)
V(1)) and (®", TS"[TS[v] — [1(1)[]) < (®(2),7%(2)) where (TS", ®") = Next(®', tt
if tt is the type of transition from 1(1) to 1(2).

|<|/-\oo

t)

8.3.5 THEOREM T is an informative good prefix of the formula ¢ iff there is a run for
T on [A,] ending in the location &.

The good prefix theorem follows from lemmas 8.3.3 and 8.3.4.

PROOF (<) The run itself forms, with the timer settings on the edges that were followed,
the informative sequence demonstrating that it is an informative good prefix. (=) Let IS =
((D,TS, v, I) be the corresponding informative sequence. By the lemmas 8.3.3 and 8.3.4 and

the construction of the tableau automaton, there isa runr = (5',1 V’) for 7 on [Ag] such
that (5'(n),7’(n)) < (®(n),¥(n)) forall n > 0. Thus for some k > 0, @’ (k) = D(k) = @. O
We now show that the informative bad prefixes are the ones that have no run on

the automaton. The first lemma states that the normal form procedure preserves
‘informative badness’ (compare lemma 7.4.4 in the untimed case).

8.4 Deterministic Timed Automata 205

8.3.6 LEMMA If T is an informative bad prefix for NF(®, #oc) in timer environment
v, then T is an informative bad prefix for ® in timer environment-v.

This is proved by induction on the steps of the normal form procedure (compare the
proof of lemma 7.4.4). The proof is in appendix B.2.6.

The following lemma (corresponding to lemma 7.4.5) says that if there is no run for
a prefix starting from a particular extended location, then this prefix is informatively
bad for the formula that is represented by this extended location.

8.3.7 LEMMA Let A, be a tableau automaton, let ® be a location of A, and let T
be a p-fine prefix of a state sequence for which there is no (accepting) run on Ay,
starting from extended location (®,v). ThenT is an informative bad prefix for ® in

timer environment v or7/'(%)l is an informative bad prefix of ®' in timer environment
TS[v —|1(0)|] whereT = (&,1), (TS, ®') = Next(®, tt) and tt matches the transition
from 1(0) to 1(1).

This lemma is also proved in appendix B.2.6. The next lemma is used for the con-
verse; if there is an informative sequence contradicting some formula in some loca-
tion, then there is no run for that prefix starting from that location (compare lemma
7.4.6).

8.3.8 LEMMA Lety € @, letv be a timer valuation and let T be an informative bad
prefix for 1 in v. Then there is no run for T on [A,] starting from the extended
location (@,).

This is proved in appendix B.2.6 by induction on ¢ and the length of the prefix.
Finally, we have the theorem about informative bad prefixes.

8.3.9 THEOREM There is a run for T on [Ay] iff T is not an informative bad prefix of
the formula .

The theorem follows from lemmas 8.3.6 and 8.3.8.

PROOF (=) Assume towards a contradiction that 7 is an informative bad prefix for ¢. Any
initial run starts from a location @ such that ¢ € ®. But by lemma 8.3.8, such a run cannot
exist. (<) Again, by contradiction, assume that 7 is not accepted by [A,]. Then by lemmas
8.3.6 and 8.3.7, T is an informative bad prefix for ¢. a

Now that we have automata that discriminate the informative good and bad pre-
fixes, we need to see if we can effectively determine if a prefix is accepted or rejected
by the timed automaton.

8.4 Deterministic Timed Automata

The on-the-fly tableau construction presented in section 8.2.5 enables the effective
model-checking with linear-time temporal logic formulas in a dense time domain.
This is achieved by the classic approach of constructing the synchronous product
of the system automaton and the tableau automaton of the negated formula and
performing an emptiness check on the resulting automaton, as explained in chapter

206 Tableaux for a Real-Time Temporal Logic

6. Emptiness can be decided by the famous algorithm of [7]. The clever use of an
equivalence relation (region equivalence) on the infinite set of extended locations
allows these locations to be grouped into a finite number of equivalence classes. Such
an equivalence relation exists since both the formula and the system automaton only
refer to integer (or rational) time bounds.

If we would like to employ the same tableau construction for verifying individual
(prefixes of) timed state sequences that result for instance from a system simulation,
then the region equivalence does not help. As explained in chapter 6, for this applica-
tion we need the observer automaton to be deterministic (or at least a deterministic
procedure to analyse the acceptance of a state sequence), and a determinisation of
timed automata is impossible in general.

It is for this reason that we now investigate the use of a fragment of the logic, that we
can employ to produce deterministic timed observer automata. The fragment is the
timed equivalent of the deterministic fragment discussed in the previous chapter.

8.4.1 DEFINITION The syntax of deterministic MITL< is defined by the following
grammar

pui=mn|aVe|eAe|pUcqm | Vg
where m € PL andd € IN, O

For this logic and the appropriate normal form procedure (the rules of which are
depicted in table 8.5), every disjunctive term arising in the normal form contains
mutually exclusive propositional formulas and timer constraints.

In table 8.5, only rules 2, 5 a/b, 6 and 7a/b have been adapted in a way similar to the
untimed case. Whenever sets are split, the choice between the sets is deterministic.
The choice between outgoing edges of a location is entirely deterministic.

Example As an example, the deterministic tableaux automaton for the formula
O<1009<5p is shown in figure 8.23.

The Linear/Quadratic Fragment Another way to circumvent the problem of non-
determinisability, is to adopt a linear fragment. A subset construction does not work
in the general case, since one has to remember sets of extended locations. If, however,
we restrict ourselves to a fragment of the logic that yields tableau automata the loca-
tions of which are non-trivial with respect to at most one Until or Release formula,
then there is at most one timer ‘active’ in any particular location. Moreover, the timer
behaves monotonically; if a timed state sequence is accepted from a particular loca-
tion with a particular timer value, then it is also accepted from that same location
for any larger timer value in case of Until formulas and for any smaller timer value
in the case of Release formulas. In this situation it is possible to select, from a set of
extended locations, a single representative extended location by the observation that
P1U<x@2 V 1U<ypr = @1U<xey if v(X) > v(y). Now a sort of subset-like analysis
is possible for a determinisation. The syntax for this fragment is the following.

8.4.2 DEFINITION The syntax of linear MITL< is defined by the following grammar

pi=m|oVe|nAe| U@ | oVyr
where r € PL andd € IN. m|

8.4 Deterministic Timed Automata

Case PU{(TS,tt, YU {¢})} reduces to:
1 [9=mnx>0, |PU{(St,YU{P})]}
x>0,y<0,
y<o0
2 | p=avy | PU{TSt,YU{p*, 7)), (TSt WU {*, ~m 9'})}
3 Y=y1AP, | PU{(TS t,YU{Y* 1,92 })}
4 | p=gUgnr | PU{ ({xw = d}[TS], tt, ¥ U {y*, (pusan})}
if oU<x,m ¢ ¥, U<y, e ¢ W and tt = #oc
PU{ ({x¢ = d}[TS], tt, Y U {y*, (pUSXereﬂ})}
if oU<x,m ¢ ¥, U<y, e ¢ W and tt = #co
PU{(TS,tt,‘PU {w*,<pugan})}
if pUcx,m €W
PU{ (Ts, t, WU {y*, (pUSXw+€7T})}
if U, +em € W
S5a| Pp=oUcy,m PU{(TS, tt, YU {y*, n}),
(TS, tt, WU {y*, xyy > 0,7, ¢}) }
5b | ¢y = (pUng,Jreﬂ PU{(TS, tt, YU {y*, n}),
(TS, tt, YU {y*, xyy > 0,7, @}) }
6 Y =mVeqp | PU{(TS t, YU {9* -7, ¢}), (TS, tt, YU {9*, 7, 0})}
Ta| =nVa,e | PU{(TS,YU{y" vy <0}),
(TS, t, WU {$*, yy > 0,7, 0}),
(TS, tt, YU {y*,yyy >0, -7, 9})}
7b | $=nVey,0 | PU{(TS,YU{p* yy <0}),
(TS, tt, YU {9*,yy > 0,7, ¢}),
(TS, tt, WU {*, yy > 0, -7, ¢}) }

Table 8.5: Local consistency procedure for the deterministic fragment. If an unmarked formula
is added to a set already containing that formula, in the new set the formula will be unmarked

207

208 Tableaux for a Real-Time Temporal Logic

Op x:=5 x:=5
x[0 p
Nz o Ess
~§]00 4XQ [2N
> 2. 4‘&“ S]00, %
8 X ;/\ ﬁ ©
i N

A
=
-
A 4

) 4

C Op x:=5, #oc Op
x[0 \ x[0
>0 yro- Je y>0

Op p p Op
x[0D yd x[D
y[o yeo yeo y[D
Op Up
x>0 P P x[0D

L W D

Figure 8.23: Deterministic tableau automaton of the formula O <190 <s5

8.5 Related Work 209

Being the dual of the deterministic fragment, the negation of every linear formula
is in fact a deterministic formula. Since the on-the-fly construction for deterministic
formulas can detect both good and bad prefixes, the same construction can be ap-
plied to the (deterministic) negation of the formula. An informative good prefix for
a linear MITL< formula ¢ is an informative bad prefix for —¢ and an informative
bad prefix for ¢ is an informative good prefix for —¢.

As in the untimed case, for this fragment every location resulting from the normal
form procedure is non-trivial for at most one Until or Release formula. Therefore,
we can use the method sketched earlier to analyse the acceptance of a timed state
sequence (for instance under simulations). We do not elaborate on this and assume
that they are analysed using the deterministic tableau construction.

8.5 Related Work

Real-temporal logics

Timed temporal logics exist in many variations. Some as extensions of LTL, some
adopt the branching time model of behaviour and some are derived from interval
temporal logic. They may be interpreted on a discrete time domain or on a dense
time domain. Several ways have been put forward to quantify time in formulas,
such as adding bounds to existing operators (MTL [120], MITL [9]) of the untimed
logic, or the introduction of clocks and constraints on those clocks (TPTL [13], L,
[126], state-clock logic [158]).

The complexity of timed temporal logics varies with the adopted operators and time
domain. Many combinations in fact lead to undecidable logics. In a dense time do-
main for instance, the ability to express punctuality constraints such as ‘every event
p is followed after exactly 1 unit of time by an event q’ leads to undecidability [13].
MITL is a decidable variant that restricts timing constraints on temporal operators
to be of the shape of an interval bounded by integer numbers. Its complexity is
EXPSPACE, whereas a further restriction as used in this chapter is PSPACE [9].

On the branching time side of the spectrum there are logics such as TCTL [6, 102], an
extension of CTL with a temporally constrained Until operator, timed modal logic
L, [126] with explicit timers and a timed version of the modal u-calculus [106]. Real-
time extensions of other logics also exist, such as interval temporal logic [157].
Overviews and discussions of real-time models, real-time temporal logics and their
complexities (a topic left aside in this thesis) can be found in [12, 11, 9, 101].

Tableaux for real-time temporal logic

Tableau constructions are important components of automated analysis of real-time
systems and requirements. Whereas tableau constructions for untimed modal logic
have been developed to a high degree of efficiency, tableaux for linear timed modal
logics do not yet exist or are intended to establish the theoretical connection between
logic and automata rather than to be used for practical automated analyses.

A tableau construction for TPTL interpreted in a discrete time domain is found in
[13]. Here the timing constraints are unfolded into locations of the automaton, a
strategy that does not apply in the dense time case.

210 Tableaux for a Real-Time Temporal Logic

The construction of so-called testing automata from formulas in a safety modal logic
for the UpPAAL tool is described in [3] and [2]. This logic is a restricted variant of
the logic in [126], with restrictions similar to the deterministic fragment described
in this chapter. Although the logic is a branching time logic, the restrictions allow
the model-checking to be performed as a reachability analysis of the synchronous
composition of the system with the test automaton.

The only tableau construction (that the author knows of) for dense linear time tem-
poral logic is the tableau for MITL in [5, 9]. As it uses operators constrained with
intervals with an integer lower and upper bound, the complexity of the construction
is high (EXPSPACE). Moreover, the presented tableau is not intended for practical
model-checking, but rather to establish the theoretical connection between the logic
and the theory of timed automata. We have seen in this chapter that the construction
does not deal correctly with formulas of the form ®1U(0,a)®2-

The on-the-fly tableau construction for the restricted type of interval sequences dis-
cussed in this chapter was presented in [83]. A decision procedure for real-time
interval logic is given in [157]. It employs a similar restriction on intervals (both
on interval constraints and intervals of models) to enforce a uniform treatment of
the right continuous interval [t, co) (and possibly to avoid problems with a different
transition type as discussed in this chapter).

Branching time temporal logic model-checking is performed on the region graph
(e.g. TCTL, enumeratively in [6], symbolically in [102] and symbolically on-the-fly
in [36]). Timing constraints are interpreted directly and symbolically on this graph.
This is based on the fact that two extended locations that are in the same region
satisfy the same TCTL formulas.

Tools for the verification of real-time systems

A number of tools exist for automata theoretic analysis of (dense) real-time and hy-
brid systems. The UpPPAAL tool [127, 128] performs reachability analysis on timed
and hybrid systems. It can perform model-checking for a restricted real-time tempo-
ral logic. It has been successfully applied to verify a number of telecommunication
and consumer electronics protocols. The Kronos tool [63] allows for TCTL model-
checking using a symbolic verification algorithm [102].

Extensions have also been made to the Spin verification tool and model-checker. Ex-
tensions to Spin such as [173, 35], analyse discrete or dense timed systems. These
extensions do not support timed temporal logic model-checking. HyTech [10] is an-
other tool for the verification of (parametric) timed and hybrid systems.

8.6 Conclusions and Future Work

In this chapter we have presented a tableau construction for a real-time temporal
logic. The construction is presented in two steps, first a restricted version is dis-
cussed introducing the use of timers to check quantitative timing constraints. Then
the unrestricted version was discussed, adding the necessary bookkeeping to deal
with the shape of interval transitions.

The tableau construction forms the basis of formal analysis tools that deal with real-
time systems described as timed automata and real-time properties expressed in the

8.6 Conclusions and Future Work 211

logic, such as satisfiability analysis and model-checking. It is also the basis for the
construction of observers to monitor quantitative timing properties during simula-
tions.

We introduced fragments of the logic that lead (similar to the untimed fragments of
the previous chapter) to deterministic tableaux and tableaux where along any path
at any given time, at most one Until or Release operator is active.

Future work includes the investigation of weakly monotonic timed state sequences.
The interleaving semantics of the calculus in this thesis does in fact give rise to timed
state sequences that are not strictly monotonic. Processes of the calculus can perform
a sequence of instantaneous actions at a certain point in time. A similar interpreta-
tion is adopted for the timed automata in the UpPPAAL tool [2]. This implies that
atomic proposition may change value a number of times at that point in time. This
requires a somewhat adapted interpretation of the logic and of the notion of a run on
the automaton. The types of transitions would include the possibility of a transition
from aright-closed to a left-closed interval of time. It remains to be investigated how
such a model fits in the described framework.

Although we have a prototype implementation, a real implementation still has to
be made that can be integrated with the existing analysis tools for simulation and
verification. In such an implementation, one also needs to consider optimisations of
the construction along the lines of [89] and [60] in order to obtain automata that are
small enough for effective analysis, especially since the analysis of timed automata
is much more involved in practice than the analysis of ordinary Blchi automata.
Furthermore, one could think about the use of similar techniques on extensions ver-
sions of MITL< or other logics such as interval logics, which also have an attractive
graphical representation that could facilitate their use.

212 Tableaux for a Real-Time Temporal Logic

Chapter 9

Conclusion

Increasing complexity in real-time distributed systems calls for techniques to auto-
mate and support their design. In particular concurrent and communicating systems
are hard to design correctly. This is especially important for embedded and safety-
critical systems. Formal techniques are useful for the construction of tools that sup-
port the design process and verification of a design. This thesis has introduced or
extended formal techniques that assist in the assessment of the correct operation of
a system’s design, in particular in its earliest stages of the design trajectory, when
executable specifications are made and analysed. Errors detected early in the design
process can be eliminated without excessive costs.

System-level modelling languages are applied to create executable specifications.
These specifications model the system at a high level of abstraction and can be used
to explore the design space. If a design involves certain communication protocols or
interaction patterns, it is necessary to test the correct operation of the interactions.
Unexpected sequences of events may lead to deadlock situations or otherwise un-
wanted forms of behaviour. Although traditional formal verification methods are
designed to attack these types of problems, they possess some characteristics that
clash with the dynamic nature of the initial design process:

e They tend to be quite involved and not suitable for quick assessment of a de-
sign.

e They assume that both the design and the specified requirements are fixed.
This is not true in a design-space exploration phase. The conceptual solution
has not yet been fixed and the requirements list is still incomplete and chang-
ing. Both the design and the detailed list of requirements evolve concurrently
during this phase. Since typical current formal methods require a considerable
effort in terms of time, expertise and resources, they cannot easily deal with
quickly changing designs and specifications.

e The fact that the application of formal verification methods is laborious and
aims at finding the ‘final’ few errors, it should not be applied to an immature
design that is likely to contain many errors that can be discovered by studying
the specification or by executing it in a simulation.

214 Conclusion

In practice in the early stages of the design, a popular tool to study designs is sim-
ulation. Too often such simulations are done in languages that do not have suitable
primitives to model aspects like concurrency or real-time, or do not support appro-
priate structuring concepts. Many languages do not possess a well defined (formally
defined) semantics. Simulation is very effective for a quick assessment of a design,
since it is flexible, easy to use, interactive and gives the designer the opportunity to
develop some feeling for the system’s behaviour.

As a design evolves, the need for more thorough analyses emerges. The design and
its requirements are more stable and in this phase the investments required for the
application of (more) exhaustive formal verification techniques can be justified. The
currently available tools largely lack the support for large-scale application, such as
support for management of designs and specifications and support for push-button
regressive verification after small changes have been made to a design. In princi-
ple, however, these methods can be applied. To smoothen the design process, it is
necessary to allow a formal design specification and formal requirements to evolve
together, from initial specifications to the refined specifications they become later
and to allow formal verification of the design to evolve simultaneously from non-
exhaustive simulation techniques to exhaustive analyses of the more mature design.

9.1 Contributions of this thesis

This thesis contributes a number of formal techniques that are effective to study the
behaviour and in particular the correct operation of distributed real-time systems.

¢ In this thesis, the calculus of chapter 3 is an abstract semantical model on which
executable specification languages can be built. An example of such a specifi-
cation / modelling language is PoosL. Such languages can be characterised
as concurrent, real-time, expressing structure and architecture as well as be-
haviour. A more operational description of terminating behaviour is described
towards implementing it.

In chapter 4, an execution technique for such executable specification languages
for concurrent communicating real-time systems is introduced, that is built on
the basis of the formal semantics. This technique has been applied to the formal
specification language PoosL, to obtain the SHESIim tool. This tool supports
interactive modelling and simulation of PoosL models and the graphical spec-
ification and visualisation of the system’s architecture.

e The semantics of the calculus is extended to expose internal behaviour in chap-
ter 5. In simulations one typically employs closed systems that model both the
actual system under design and the behaviour of its environment. In this case,
the semantics in terms of externally observable behaviour alone is inadequate.
Moreover, we introduce a semantics that focusses in particular on the static
structure of a system and that allows one to establish the connection between
the behaviour of the entire system and the contributing behaviour of individ-
ual components.

e A formalism to specify properties of such statically structured systems is also
introduced in chapter 5, by attributing temporal logic properties to individual

9.2 Future Work 215

components. This approach is in particular suitable to support the concept of
encapsulation and component-based approaches.

e Chapter 6 discusses the advantages and disadvantages of different approaches
to formal verification and in particular of random state-space exploration (sim-
ulation) as opposed to traditional exhaustive verification techniques. It has
been shown that different techniques serve different needs in different stages of
the design. Non-exhaustive techniques apply to bigger systems and to chang-
ing specifications and requirements. Exhaustive techniques, on the other hand,
are superior when it comes to finding the subtle errors that depend on very par-
ticular combinations of events. Besides that, the application of such methods
forces the user to think more closely about the design and the reasons why it
must be correct (an activity which by itself may lead to the discovery of prob-
lems in the design).

¢ In chapter 7 the construction is discussed of finite-state automata that can mon-
itor correctness requirements specified in linear temporal logic. A general
framework is introduced to describe the construction of such automata, in
which different approaches can be captured uniformly. It is shown that par-
ticular fragments of temporal logic can be identified for which deterministic
automata can be produced. It is also shown how tableau automata can be used
to incrementally monitor finite executions produced by simulations for tempo-
ral logic properties.

e Chapter 8 extends the tableau method to a real-time temporal logic. In this
logic, it is possible to express quantitative temporal requirements as well as
gualitative ones. It is shown that for a particular class of formulas, efficient
automata can be constructed (on-the-fly) that can be used as monitors for real-
time model-checking in practice. It is shown that this extension is applicable to
exhaustive verification methods for real-time systems as well as to simulations.
A prototype implementation of the constructions has been implemented and
some experimental results are presented.

9.2 Future Work

Obviously, the work presented in this thesis does not solve all of the problems we are
currently facing with verification. Indeed, the fact that formal verification methods
have been around for a while, but are not yet fully embraced by industrial designers
suggests that there is a lot more work to be done on the theoretical side, but equally
important, on the practical side as well. In this section we mention but a few aspects
of the work that remains to be done.

e To apply automatic verification methods, exhaustive or non-exhaustive, both
the system and its requirements have to be formalised. Many requirements are
generated in the initial design. Specifications in natural language, interaction
diagrams, use-case diagrams, activity diagrams, object-class diagrams, timing
diagrams, and so forth, informally state requirements of the system. It remains
to be investigated how such information is effectively transformed into formal

216

Conclusion

specifications and what kind of formalisms capture them best. Timing dia-
grams, for instance, can be expressed in linear temporal logic.

The extension of the automata theoretic approach to timed properties remains
to be implemented and the effectiveness of the considered fragments of the
logic in practical verification needs to be assessed. A prototype implementa-
tion of the construction has been made, but needs to be integrated with verifi-
cation and simulation tools for timed systems.

Practical aspects of tool support require more attention. Managing catalogs of
models and requirements should be automated. Support is required for track-
ing dependencies between models and requirements and re-verification after
changes have been made. Interoperability between tools is also important. One
would like for instance, to be able to replay counterexamples found by a veri-
fication tool in one’s popular simulation environment.

More practical case studies are required to investigate the strong and weak
points of the different methodologies, for example to test the error-finding ca-
pabilities of the different approaches and to find guidelines for assessing when
to invest time in detailed verification efforts and for what subsystems.

Appendix A

POOSL Description of the APS
Protocol

This appendix shows the (simple) PoosL model of the APS protocol'. Since the
subject of data objects is not touched upon in this thesis, the specification of the data
classes Request , Request Type and Si ghal Condi t i on have been omitted. They
can be thought of as objects a la Smalltalk, Java or C++ and their behaviour should
be easy to grasp from the context. This appendix merely serves as an indication of
what the PoosL model and language look like. It is beyond the scope of this thesis
to go into the exact syntax and semantics of PoosL. The interested reader is directed
to [156, 86, 85]. The PoosL description is divided in the description of the process
classes and the description of the cluster classes, presented in the following sections.

A.1 Process Classes

This section contains the process class definitions. Process classes capture the dy-
namic behaviour of process objects, the PoosL counterparts of the dynamic pro-
cesses described in section 3.1.1 of this thesis. The process classes that together
make up an APS node are: Local Pr ocess, Ext er nal Process, APSPr ocess and
A obal Process, and Net wor kManager and Envi r onnment model the surround-
ings interacting with the protocol.
process cl ass Local Process(Nunber O Si gnal s: | nteger)
i nstance vari abl es | ocal Request: Request; |ockedout: Array; signal Conditions: Array
communi cati on channel s | op, sgnCond, |ocReq
nmessage i nterface

| ocReq! changelLocal Request (1) ;

sgnCond?changeCondi tion(2);

| op?l ockout (1);

| op?cl ear| ockout (1)

initial nethod call init()()

1A more detailed model is described in [132].

218 POOSL Description of the APS Protocol

i nstance met hods

updat eLocal Request () ()
| newLocal Request: Request Type |
conput eLocal Request () (newLocal Request) ;
i f (newLocal Request =l ocal Request) not then
| ocal Request : = newLocal Request;
| ocReq! changelLocal Request (| ocal Request) ;
fi.

nor mal Qper ation() ()
| n: Integer; condition: Signal Condition |
sel
sgnCond?changeCondi ti on(n, condi tion);
si gnal Condi ti ons put(n, condition);

or

| op?l ockout (n);

| ockedout put(n, true);
or

| op?cl earl ockout (n);

| ockedout put(n, false);
| es;

updat eLocal Request () () ;
nor mal Operation() ().

init()()
| i: Integer |
si gnal Condi tions := new(Array) size(Nunber O Signals);
i:=1;

whi | e i <=Nunber O Si gnal s do
si gnal Condi ti ons put (i, new(Si gnal Condition) set ToNormal);
i=i+1;
od;
| ockedout := new(Array) size(NunberOf Signals) putAll(false);
conput eLocal Request () (| ocal Request);
| ocReq! changelLocal Request (| ocal Request);
nor mal Operation() ().

conput eLocal Request () (resul t Request: Request)
| i: Integer |
resul t Request : = new(Request) setRequest TypeToNR set Si gnal Nunber (0);
i:=1;
whi | e i <=Nunber O Si gnal s do
if (signal Conditions get(i) requestType hi gher Than(resul t Request request Type)) &
(1 ockedout get(i) not) then
resul t Request set Request Type(signal Conditions get(i) requestType);
resul t Request set Si gnal Nunber (i);
fi;
i:=i+1;
od.

process cl ass External Process()

i nstance vari abl es activeCommand: String; external Request: Request;
activeSignal: Integer

communi cati on channel s | op, extReq, extConm

nmessage i nterface
| op! | ockout (1);
ext Req! changeExt er nal Request (1) ;
ext Corm?conmmand(2) ;
| op! cl ear | ockout (1)

initial nethod call init()()

A.1 Process Classes 219

i nstance met hods

conput eExt er nal Request () (newExt er nal Request: Request)
if activeCommand = "forcedsw tch" then
newExt er nal Request : = new(Request) set Request TypeToFSw
set Si gnal Nunber (acti veSi gnal)
el se
if activeCommand="cl ear" then
newExt er nal Request : = new(Request) set Request TypeToNR set Si gnal Nunber (0)
el se
delay nil error("unknown command")
fi
fi.

processExt ernal Command(comm String; signal: Integer)()
if conm="lockout" then
| op!| ockout (signal);
el se
if comm¥"clearl ockout" then
| op! cl earl ockout (si gnal)
el se
acti veCommand : = conm
activeSignal := signal;
fi
fi;
updat eExt er nal Request () ().

nor mal Qper ation() ()
| comm String; signal: |nteger; newExternal Request: Request |
ext CommP?comrand(comm signal);
processExt er nal Command(conmm signal) ();
nor mal Operation() ().

updat eExt er nal Request () ()
| newExt ernal Request: Request |
conput eExt er nal Request () (newExt er nal Request) ;
i f (newExt er nal Request =ext er nal Request) not then
ext er nal Request : = newExt er nal Request ;
ext Req! changeExt er nal Request (ext er nal Request) ;
fi.

init()()
activeCommand : = "clear";
activeSignal := 0;
nor mal Operation() ().

process cl ass APSProcess(Side: String)
i nstance vari abl es gl obal Request: Request Type; renpteRequest: Request Type
communi cati on channel s sndAPS, gl bReq, recAPS, rntReq

nmessage i nterface
sndAPS! request (1) ;
recAPS?r equest (1) ;
rnt Req! changeRenot eRequest (1) ;
gl bReg?changed obal Request (1)

initial nethod call init()()
i nstance net hods
sendRenpt eRequest () ()
sndAPS! r equest (gl obal Request);

del ay 1;
readRenot eRequest () ().

220 POOSL Description of the APS Protocol

readd obal Request () ()
| newd obal Request: Request Type |
gl bReg?changeQ obal Request (newd obal Request) ;
i f (newd obal Request =gl obal Request) not then
gl obal Request : = newd obal Request ;
fi;
readd obal Request () ().

readRenpt eRequest () ()

| newRenot eRequest: Request Type |

r ecAPS?r equest (newRenot eRequest) ;

i f (newRenpt eRequest =r enpt eRequest) not then
renot eRequest : = newRenpt eRequest ;
rmt Req! changeRenot eRequest (r enot eRequest) ;

fi;

sendRenot eRequest () () .

init()()
par
readd obal Request () ()
and
if Side="left" then
sendRenpt eRequest () ()
el se
readRenpt eRequest () ()
fi
rap.

process class @ obal Process()

i nstance vari abl es | ocal Request: Request; gl obal Request: Request;
renot eRequest: Request; external Request: Request

conmmuni cati on channel s ext Req, gl bReq, |ocReq, rntReq
message i nterface
| ocReq?changelLocal Request (1) ;
ext Req?changeExt er nal Request (1) ;
rmt Req?changeRenpt eRequest (1) ;
gl bReq! changed obal Request (1)
initial nmethod call init()()
i nstance met hods

conput ed obal Request () (resul t Request: Request Type)
| highest Request: Request |

hi ghest Request : = | ocal Request max(renpteRequest) max(external Request);
i f hi ghest Request ==r enpt eRequest t hen
resul t Request : = new(Request) setRequest TypeToRR
set Si gnal Nunber (r enot eRequest si gnal Nunber)
el se
resul t Request : = hi ghest Request

fi.

nor mal Qper ation() ()
| newd obal Request: Request Type |
/* Wait for a new request */

sel

| ocReg?changelLocal Request (| ocal Request) ;
or

ext Reg?changeExt er nal Request (ext er nal Request) ;
or

rmt Req?changeRenot eRequest (r enpt eRequest) ;
| es;
conput ed obal Request () (newd obal Request) ;
i f (newd obal Request =gl obal Request) not then
gl obal Request : = newd obal Request ;
gl bReq! changed obal Request (gl obal Request) ;

A.1 Process Classes

221

fi;
nor mal Operation()().

init()()
| ocal Request : = new(Request) set Request TypeToNR set Si gnal Nunber (0);
renot eRequest : = new(Request) set Request TypeToNR set Si gnal Nunber (0) ;
ext ernal Request : = new(Request) set Request TypeToNR set Si gnal Nunber (0) ;
nor mal Operation() ().

process cl ass Net wor kManager ()
i nstance vari abl es
comuni cati on channel s ext Conmil, ext Corm®2
nmessage i nterface
ext Commil! command(2) ;
ext Corm2! command(2)
initial nethod call init()()
i nstance met hods
scenariol() ()
delay 7.8;
ext Commil! command(" ockout ", 1);
ext CormR! command("l ockout”, 1) .

scenario2() ()

del ay 50;
ext Comm! command(" f orcedswi tch", 2);
del ay 50;
ext Commi! command("f orcedsw tch", 1);
del ay 50;

ext Comml! comrand("cl ear", 0);
ext Comm2! comrand("cl ear", 0).

init()()

scenariol()().

process cl ass Environnent()
i nstance vari abl es random RandonCener at or
communi cati on channel s sgnCondl, sgnCond2

message i nterface
sgnCond1! changeCondi ti on(2);
sgnCond2! changeCondi ti on(2)

initial nmethod call init()()
i nstance net hods

changeSi gnal s() ()

| n: Integer; cond: Integer; sc: Signal Condition |
n := (randomrandon() *2) floor() +1;
cond : = (random randon() *20) floor() +1;
sc : = new(Si gnal Condi tion);
if cond<18 then

sc set ToNor mal
else if cond=18 then

sc set ToDegr aded

el se sc set ToFai |

fi
fi;
sgnCond1! changeCondi ti on(n, sc);
del ay random random * 10 ;
n := (randomrandon() *2) floor() +1;

222

POOSL Description of the APS Protocol

cond : = (randomrandon() *20) f
sc : = new(Si gnal Condi tion);
if cond<18 then

sc set ToNor nal
else if cond=18 then

sc set ToDegr aded

el se sc set ToFai l

fi
fi;
sgnCond2! changeCondi tion(n, sc);
del ay random random * 10 ;
changeSi gnal s() ().

scenariol() ()
| scl, sc2: Signal Condition |
scl : = new(Signal Condition);
scl set ToDegr aded;
sc2 : = new Si gnal Condition);
sc2 set ToFail;
delay 5.5;

loor() +1;

sgnCond1! changeCondi tion(1, scl);
sgnCond2! changeCondi ti on(1, sc2).

init()()

scenariol()().

A.2 Cluster Classes

PoosL’s cluster classes capture structure and hierarchy of the model and are the
counterparts of the static processes (see section 3.1.2). This model contains two
cluster classes, first the class APSNode, built from process objects of the classes
Local Process, Ext ernal Process, APSPr ocess and G obal Process, and the

class APSPr ot ocol , built from

two APSNode’s, one Net wor kManager and one

Envi r onnent , as visualised in figures 5.4 and 5.5.
cluster class APSNode(Nunmber Of Si gnal s: Integer; Side: String)

communi cati on channel s recAPS, sndAPS, sgnCond, extComm

nmessage i nterface
sndAPS | request(1);
recAPS ? request(1);
sgnCond ? changeCondi tion(2);
ext Comm ? comnmand(2)

behavi our specification

(d obal Process: d obal Process || Local Process: Local Process(Nunber Of Si gnal s) ||

Ext er nal Process: External Process |
)\{rnm Req, locReq, lop, glbReq, ext

| APSMessages: APSProcess(Si de)
Req}

cluster class APSProtocol ()
communi cati on channel s
nmessage i nterface

behavi our specification
(Net wor kManagenent : Net wor kManager
APSNodel: APSNode(2, "left")
[ext Commil/ ext Conm apsl/ sndAPS,
APSNode2: APSNode(2, "right")
[ext CormR2/ ext Conm aps2/ sndAPS,
) \{ext Conmil, extComm®2, apsl, aps2,

|| Environment: Environnent ||
aps2/recAPS, sgnCondl/sgnCond] ||

apsl/recAPS, sgnCond2/sgnCond]
sgnCondl, sgnCond2}

Appendix B

Proofs

This appendix contains the proofs of lemmas in chapters 7 and 8

B.1 Proofs of chapter 7

This section contains the proofs omitted from chapter 7.

B.1.1 Proof of lemma 7.2.7

To complete the soundness proofs, we need an alternative definition of local con-
sistency. In the normal form procedure, a set of locally consistent sets is produced.
During this construction the sets will be partially locally consistent, more precisely,
they will be locally consistent w.r.t. those formulas that have been processed.

B.1.1 DEFINITION A set ® of formulas is called locally consistent w.r.t. the set L of
formulas if forevery ¢ € L

1. ify = false, then ¢ ¢ ©;

2. ify is of the form Y V Y, andy € @, then iy, € © or, € ®;

3. ify is of the form Yy APy andp € @, then i, € ® and P, € O;

4. if is of the form Y, Uy, and Y € @, then P, € ® ory, € O;

5. if is of the form {1V, and ¢ € @, then, € ©.]

To prove lemma 7.2.7, we first prove the following lemma.

B.1.2 LEMMA Let P, be a set of sets of formulas generated during the procedure
described in definition 7.2.5. Then every set Y € Py is locally consistent w.r.t. its
marked formulas.

224 Proofs

PROOF One can prove that the rules for generating P,,.1 from Py, preserve this property. Since
the procedure is started from Py containing no marked formulas and end with only marked
formulas, the lemma follows. Note that none of the rules ever removes a formula from a set.
Once a set is consistent w.r.t. certain formulas it will remain consistent w.r.t. those formulas or
the set is removed completely. The proof follows by induction on n

e noV¥ € Py has marked formulas;

e let every W € P, be consistent w.r.t. all marked formulas. Then it can be shown that
every ¥’ € P, 1 is also consistent w.r.t. all marked formulas. It is shown for every case
separately

— case 1, trivial since the set containing false is removed,;
— case 2, 3, 4, the formula is marked and does not impose any new requirements;

— case 5, both new sets W' U {¢*, 1 } and W' U {¢*, ¢, } are locally consistent with
respect to the newly marked formula ¢*;

— case 6, the new set W U {1*, 1, P, } is locally consistent with respect to the newly
marked formula y*;

— case 7, it is easy to see that the new sets satisfy also local consistency constraint 4
which applies to the newly marked formula;

— case 8, similarly it can be shown that constraint 5 is satisfied in the new sets. O

Now lemma 7.2.7 follows.

7.2.7 LEMMA Let @ be a set of formulas and let ®' € NF(®). Then @' is locally
consistent. Moreover, ® — @' for any ®' € NF(Next(®))

PROOF At the end of the procedure, the formulas in @' are all marked. From this it follows
easily using lemma B.1.2 that @’ is locally consistent. Furthermore, for any set of formulas
@, ® — Next(®) and those formulas are never removed during the procedure, for every
@' € NF(®), Next(®) C @' and thus ® — @', |

B.1.2 Proof of lemma 7.2.9

For the proof of lemma 7.2.9, regarding the completeness of the on-the-fly construc-
tion, we need some more definitions. We need to consider temporal consistency
constraints with respect to marked formulas (as opposed to consistency constraints
with respect to all formulas in the set, given by the function Next). Such a function
gives the constraints only w.r.t. those formulas that have already been processed by
the procedure.

B.1.3 DEFINITION LetV¥ be a set of formulas, some of which are marked. Then the
set MNext(V) of marked temporal consistency constraints is the smallest set such
that if the Until or Release formula y € V is marked and V¥ is non-trivial for 1 then
MNext(¥) contains . O

Thus, at the end of the procedure, if all formulas of ¥ are marked, then MNext(¥) =
Next(¥). The following property is used to demonstrate completeness of the on-
the-fly tableau construction. It is formulated as an invariant of the local consistency
procedure.

B.1 Proofs of chapter 7 225

B.1.4 DEFINITION Let the set P contain setsV¥ C cl(¢) for some LTL formula ¢. Let
O be a state sequence. The predicate Inv(P, @) holds iff there is some ¥ € P such that

(i) forally € ¥, = 1;
(i) ot |= ¢ for all p € MNext(¥);

(i) for every marked Until formula,U, inV such thate = ,, we havey, € V.
O

The next lemma shows that Inv(Py, @) is invariant during the construction of NF(®).

B.1.5 LEMMA Let P, contain sets ¥ C cl(¢) for some LTL formula ¢ and let & be
a state sequence. Assume Inv(P,, @) and let P, 1 be obtained from P, by applying
one of the above rules, then Inv(Pp1,7).

PROOF If the Inv(Py, @) holds for some ¥ € P, different from the one on which the case
applies then the lemma holds trivially since ¥ € P, 1. If it holds for the ¥ € P, on which the
case applies, then Inv (P, 1, @) can be proved for every case separately

e case 1, cannot occur since & [~ false;

e case 2, 3, 4 are trivial since P17 = Py (except for the markings, but no new consistency
constraints are introduced);

e case 5, from o |= 1 it follows that & |= {1 or & |= ¥,. In the first case, ¥/ U {¢*, 1 }
satisfies the requirements and in the latter case ¥’ U {4*, 1} does (no new temporal
consistency constraints are introduced);

e case 6, from o = v it follows that & = 1 and & = 1y, and thus W U {y*, 1, P }
satisfies the requirements;

e case 7, froma = Uy, itfollows that @ |= 1 or o = 1, If & |= 1, then W U {i*, 4o }
satisfies the requirements, if not then W U {*, 11 } does. If & = 1, then & = 1.

e case 8, from o = Y1V, it follows that & = . If & |= 1 then W U {¢*, 1, Y}
satisfies the requirements, if not then W U {¢*, 1, } does. If & [~ ¢, thenc! = 1. O

From the invariant, the desired lemma follows.

7.2.9 LEMMA Let @ be a set of formulas. Leta |= y for all p € ®. Then there is
some ®' € NF(®) such that (i) & |= for ally € @', (ii) 7 = Next(®') and (iii) for
every Until formula 11U, in @ such that o |= 1, we have ¢, € ©.

PrRooOF Follows immediately from lemma B.1.5. Initially, nothing is marked and (ii) and (iii)
of the invariant follow trivially. At the end of the procedure the invariant still holds and
coincides with the conclusion of the lemma. m|

B.1.3 Proof of lemma 7.4.4

Lemma 7.4.4 states that informativeness of prefixes is preserved by the normal form
construction. To prove it we need to define when a prefix is considered to be infor-
mative for the artifacts used during the normal form procedure.

226 Proofs

B.1.6 DEFINITION A finite state sequence & is an informative bad prefix for a (par-
tially) marked set'¥ of formulas if there is some 1\ € ¥ such that & is an informative
bad prefix for) or there is some 1) € MNext(¥) (MNext as defined in section B.1.2)

such thatZ" is an informative bad prefix for .

A set of such sets, corresponds to the disjunction of the formulas associated with
these sets. To disprove their disjunction, a prefix has to be informative for every
term in the disjunction.

B.1.7 DEFINITION A finite state sequence £ is an informative bad prefix for a set P
of marked sets of formulas if & is an informative bad prefix for every ¥ € P.

Two informative sequences can be combined into a single new one, simply by taking
the union of the corresponding sets. If IS; and IS, are both informative sequences,
then (I1S; U 1S3)(k) = 1S1(k) U 1S, (k) for all k > 0 (taking IS(k) = @ if k > [IS|). It
is easy to see that if IS; and IS, are informative sequences for &, then IS; U IS; is an
informative sequence for & as well.

The next lemma shows that reductions in the normal form procedure preserve infor-
mativeness of bad prefixes.

B.1.8 LEMMA Let prefix & be an informative bad prefix for P’ and let P = P’ in the
normal form procedure. Then & is an informative bad prefix for P.

PROOF One can prove this for the reduction cases individually, which is a tedious case anal-
ysis. We only show cases 5 and 7.

e Case 5, P = P'U{VU{Yy Vi}} and P' = P"U{VU {1 V5, 1}, YU{yy VvV
Y3,y }}. If £ is an informative bad prefix of P’, it is a bad prefix of both W U {1, v
P31} and WU {4y V 5,0} If IS is an informative sequence demonstrating this
(both), then ISU { = (11 V ¥2) } is an informative sequence for W U {1 V 1, }. From this
it follows straightforwardly that & is an informative bad prefix for P (note that marking
11 V Y, does not add any consistency constraints).

e Case 7 is a little more intricate. It corresponds to the rewriting of 11Uy = 1o V (1 A
O(¥1U1hy)). The case analysis below essentially amounts to saying that either the bad
prefix disproves other formulas than ;U1 or it disproves 1, Uy, by =, and either
=1 or = O (P1Uyy).

In this case we have P = P” U {WU {1U1p,}} and P' = P" U{W U {p1U1p5, y },{WU
{P1U;, P, }}. Let & be an informative bad prefix for P’ and let IS be an informative
sequence demonstrating this.

— If there is some 1 € W such that —1p € 1S(0) or if there is some 1 € MNext(¥)
such that —1p € 1S(1) then IS is an informative sequence for P.
— Otherwise,
x 1f =(1Uyp,) € 1S(0) then IS is an informative sequence for P.

x Otherwise, ~p, € 1S(0) and either —p; € 1S(0) or =(y1Uthp) € IS(1). In
either case, ISU {—(1Uy)} is an informative sequence demonstrating that
& is an informative bad prefix of P. O

From this it follows immediately that the entire normal form procedure preserves
informativeness of bad prefixes.

B.1 Proofs of chapter 7 227

7.4.4 LEMMA If¢ is an informative bad prefix for NF(®), then & is an informative
bad prefix for @.

B.1.4 Proof of lemma 7.4.6

This lemma says that an informative bad prefix cannot have a run on the on-the-fly
tableau automaton.

7.4.6 LEMMA Lety € @ and let IS be an informative sequence demonstrating —p
for &. Then there is no run for & on [A,] starting from ®.

PROOF By induction on the length of £ and the structure of 1.

e 1 = p,sincelSisan informative sequence for -p, p ¢ Z(0). But p € @ and thus there

is no run on [A,] for & starting from .

P = P V Py, then both —; and —1p; are in 1S(0) while ¢y € @ or 1, € ®@. Thus by

induction there is no run on [A] for & starting from @.

e 1 = 1 APy then =iy or =iy is in 1S(0) while both ¢ € ® and y, € ®. Thus by
induction there is no run on [A,] for & starting from ®.

e 1 = P1Uyp, then either Y, € @ or Y € ®and Y € 2(1) for any appropriate run l.
Since ~(1Uy) € 1S(0), 7, € 1S(0) and =3y € I1S(0) or =P € IS(1). That such a run
¢ cannot exist follows by induction. Notice that the latter case can only occur if [£] > 1
since I1S(|¢|) = @, i.e. = cannot be postponed forever.

e 1 = P1Vip; then Y, € ® and y; € @ or ¢ € (1) for any appropriate run /. Since
=(P1ViPy) € 1S(0), P, € 1S(0) or =pg € 1S(0) and =y € 1S(1). That such a run ¢
does not exist follows by induction again. a

B.1.5 Proof of lemma 7.4.8

This lemma suggests how informative sequences can be used to construct a run to
the empty location. The lemma is proved using an invariant on the normal form
procedure, introduced in the next definition.

B.1.9 DEFINITION In the following lemmas, the predicate Inv(P,1S) holds iff there
is some V¥ € P such that ¥ C 1S(0) and MNext(¥) C IS(1) (MNext as defined in
section B.1.2).

Inv(P,1S) states that IS is informative for at least one of (the formulas associated
with) the sets in P and thus for (the formula associated with) the set itself. We show
that Inv(P, IS) is invariant under reductions in the normal form procedure.

B.1.10 LEMMA LetP = P’, letIS be an informative sequence and assume Inv(P, IS).
Then Inv(P’,1S).

PROOF By case analysis of the procedure. We only show cases 6 and 8.

e Case 6, P =P"U{YU{y1 Ayp}}and P" = P"U{WYU {1 A}, 1,12 }}. If there is
some ¥’ € P” such that ¥’ C 1S(0) and MNext(¥’) C 1S(1) then the result is trivial.
Otherwise, the set satisfying the property is W U {1 A ¥, }. Then y1 A, € 1S(0) and
by local consistency, 11 € 1S(0) and 1, € IS(0). Then WU {1 A5, 1,1} C 1S(0)
and MNext(W U {11 A3, 1,2 }) € MNext(W U {1 App}) CI1S(1).

228

Proofs

e Case8, P =P/ U{VU{yVip}} and P' = P" U {W U {yn V5,1, Yo}, W U {yp1 V)3,

Yo }}. If there is some ¥/ € P” such that ¥ C 1S(0) and MNext(¥') C 1S(1) then
the result is trivial. Otherwise, the set satisfying the property is W U {1 Vi }. Then
P1ViP, € 1S(0) and by local consistency ¢, € 1S(0).

- If Y1 € 1S(0) then W U {1 V5, ¥1,¥p} C 1S(0) and MNext(¥ U {¢1 Vs, i1,
P }) € MNext(W U {11V, }) CIS(L).
- If g ¢ 1S(0) then W U {y1V5, 12} C 1S(0) and MNext(¥ U {p1Vp3, t2}) C

MNext(W U {1V }) U {1V} C 1S(1) since P1Vi, € 1S(1) by temporal
consistency. m]

From the previous lemma it follows directly that the following holds for the entire
normal form procedure.

7.4.8 LEMMA Let @ be a set of formulas and let IS be an informative sequence with
® C 1S(0). Then there is some ®' € NF(®) such that ®' C 1S(0) and Next(®') C

IS(

B.2 Proofs of chapter 8

This section contains the proofs left out of chapter 8.

B.2.1 Proof of lemma 8.1.26

Here, again, we need a modified definition of local consistency to deal with the in-
termediate stages during the normal form construction.

B.2.1 DEFINITION A set @ is called locally consistent w.r.t. the set L of formulas and
labels, if for every { € L

1

2.

3.

if1 is false, then ¢ ©;

if is of the formy1 V Y, and{ € ©, theny; € ® ory, € ©;
if is of the form Y1 A Y, andp € @, theny; € ® and Y, € O;
ify is of the form U4, andy € @, then p1U<x, 92 € O;

if 1 is of the form (p1U§Xw,(,02 andy € ®, then ¢, € ® orxy >0 € ® and
@1 € O,

ify is of the form o1V <4, and ¢ € @, then ¢, € @;

if is of the form (p1V<yw,(,02 andiy € @, theny, <0€ @ org; € O. O

B.2.2 LEMMA Let P, be a set of locations generated during the normal form pro-
cedure. Then for every pair (TS,¥), ¥ € Py is locally consistent w.r.t. its marked
formulas.

B.2 Proofs of chapter 8 229

PROOF It is easy to verify that the rules for generating P51 from Py preserve this property.
The rules closely follow the consistency requirements. Since the procedure is started from Pg
containing no marked formulas, the lemma follows. O

B.2.3 COROLLARY Let NF((TS, ®)) be a set of pairs generated during the normal
form procedure and let (TS', ®') € NF((TS, ®)). Then @' is locally consistent.

PROOF Let ¢ € cl(gp). Then either ¢p € W in which case ¥ is consistent w.r.t. ¢ (by lemma
B.2.2) or i ¢ ¥ in which case V is also consistent w.r.t. i since all consistency constraints are
of the form “if Y € W then ...”” (except the false rule, but false ¢ V). a

B.2.4 LEMMA Let¥ — s W' forall (TS',¥') € Py and let P, be obtained from P,
by a reduction of the procedure. Then¥ TS ' forall (TS, ¥') € Pny1.

PROOF Proved by the rules individually. Let (TS',¥’) be the pair on which the reduction is
applied.

e Rules 1 through 4 and 6 through 8 do not affect the temporal consistency constraints.

e Rule5. If p1U<x, 02 ¢ VW' then ¥ cannot be non-trivial for ©1U<x, @2 thus the addition
of xy, := d does not violate temporal consistency condition 1. Moreover, the addition
guarantees that condition 2 is satisfied. If on the other hand ¢1U<x,¢2 € Y then
nothing changes. m|

Lemma 8.1.26 follows directly from corollary B.2.3 and lemma B.2.4.

8.1.26 LEMMA Let ® C cl(¢) be a set of formulas and let ®' € NF(®). Then @' is
locally consistent. Moreover, ® —1> @' for any (TS, @") € NF(Next(®)).

B.2.2 Proof of lemma 8.1.28

This lemma lies at the heart of the construction of a run for a timed state sequence
that satisfies the formula of the tableau automaton. To prove it, we need the follow-
ing extra definitions. During the normal form procedure, if only part of the formulas
have been marked, we want to look at the consistency constraints associated with
those marked formulas only.

B.2.5 DEFINITION Let ¥ be a set of formulas, some of which may be marked. Then
MNext(V) is the pair (TS, V') where TS and ¥’ are the smallest sets such that

o ifY = @1U<x 92 is marked and Y is non-trivial for1p, then V' contains 1;

o ifp = @1Vqp, Y is marked and V¥ is non-trivial for y, then V' contains
@1V<y, @2 and TS contains yy, := d;

o if p1V<y, @2 is marked and V¥ is non-trivial for ¢1V<y, ¢, then V' contains
p1V<y, P2

O

230 Proofs

Once all formulas are marked, Next(¥) = MNext(¥). Similar to the untimed case
we can establish an invariant during the procedure that tells us that if a timed state
sequence satisfies the initial formulas, then there will be a term in the normal form
that it satisfies, and thus there will be an appropriate edge to be taken in the automa-
ton.

B.2.6 DEFINITION Let P contain pairs (TS,¥), ¥ C cl(¢) for some MITL< formula
@. Let p be a timed state sequence, and let v be a timer valuation such that for
every timer x in the domain of v, corresponding to the Until formula @1U4@, or
the Release formula 1V -4@,, v(x) < d. The predicate Inv(P, p,v) holds iff for any
o-fine interval sequence 1, there is some (TS, ¥) € P such that

(i) forallt € 1(0), 3' Erspy ¢ ¥

(i) MO frgryy 10y MNext(¥). 0

We now show that this predicate is an invariant during the normal form procedure.

B.2.7 LEMMA Let P, contain pairs (TS,¥) where ¥ C cl(¢) for some MITL< for-
mula @. Let p be a timed state sequence, let v be a timer valuation, assume that
Inv(Pn, D, v) and let P, 1 be obtained from P, by applying one of the above rules.
Then Inv(Pp11,7,v).

PrROOF If there is such a set other than the one on which the case applies, then the lemma
follows trivially. If not, it is shown case by case that the invariant is preserved. Let (TS, V) €
Pn and let Y € ¥ on which the case is applied.

e Cases 1,2,3 and 4 are trivial or similar to the untimed case and consistency constraints
are not affected.

e Caseb.
- If p1U<x, 02 ¢ Y, then @1U<x, @2 is added and x,, := d is added to TS. Be-
cause x,, does not occur in any formulay’ € W, it follows from p |=rg,; ¥’ that
ﬁt |:({X¢Z=d}[TSD[V]—t Y forallt e |(0) Furthermore, r)t |:({X¢Z=d}[TSD[V]—t Y for

all't e T(O) (Either ﬁt |:({X¢Z=d}[TSD[V]—t @y forall t € T(O) or |T(0)| < d) No
temporal consistency constraints are added.
= If p1U<x, @2 € ¥, then it is trivial since nothing is added.

e Case 6. From p |=rg},) ¥ it follows that p =rg[,; @2 Or v(Xy) > 0and p [Ergy) @1
In the former case, the first pair satisfies the requirement and no new consistency con-
straints are introduced. If p F&Ts[v] @2, then the second pair satisfies the requirement.
Since the interval sequence is @,-fine, the first interval cannot be longer than v(xy,) and
thus satisfies xy > 0 forall t € 1(0). The consistency constraint ‘plUSXw' @> is added,

but it is satisfied by p: pl' (Ol Frsiv= ()| TS -#1U<x,, 92 (TS' does not modify x,).

e Case 7. Straightforward. If p [=1gp,) @1 then the second pair satisfies the invariant.
Otherwise the first does and the new consistency constraint is satisfied by p.

e Case 8. Similar. O

Lemma 8.1.28 now follows directly from the previous lemma.

B.2 Proofs of chapter 8 231

8.1.28 LEMMA Let ¢ be an MITL< formula and let ® C cl(¢) be a set of extended
formulas. Letp be a timed state sequence such that p =, ®. Then for any ¢-fine
interval sequence 1, there is some (TS, ®') € NF(®) such that p' |=1gp,_¢ @' for all

te1(0) andpl'©l =rg 1) Next(@).

B.2.3 Proofs for the Unrestricted Case

For the proofs of the on-the-fly tableau for unrestricted timed state sequences, we
use the following alternative definition of local consistency.

B.2.8 DEFINITION A set @ is called locally consistent w.r.t. a set L of formulas and
labels if for every Y € L

=

if1 isfalse, theny ¢ ©;
if1 is of the form 1 V 1o and € ®, then, € ® ory, € ©;

if1 is of the form Y1 A and € ©, thenp, € ® and y, € @;

A W N

if is of the form p1Uq2 and i € @, then either p1U<x, 92 € ® or
P1U<x,+e@2 € @ (not both);

5. (a) ify isofthe form (plngw,(pz andiy € @, then ¢, € ® orbothxy >0¢€ @
and ¢, € @,
(b) if is of the form (p1U§Xw,+€<p2 and ¢y € @, then ¢, € ® or both X, >
0e€ ®andyp;, € O;

6. if1 is of the form @V 49, and € @, then ¢, € ©;

N

(a) if is of the form <p1V<yw, p2and € @, theny <0€ @ org; € ©;
(b) if1 is of the form (pj_VSyw,(pz andy € ®,thenyy, <0€ ®org; € ®. O

B.2.4 Proof of lemma 8.2.26

This lemma states the soundness of the tableau construction. It is shown, by an
appropriate invariant on the normal form procedure, that the generated locations
are consistent.

B.2.9 LEMMA Let P, be a set of locations generated during the normal form pro-
cedure. For every (TS, tt, V) € Py, location ¥ is locally consistent w.r.t. its marked
formulas.

PROOF It is easy to verify that the rules for generating P51 from Py preserve this property.
The rules closely follow the consistency requirements. Since the procedure is started from Pg
containing no marked formulas, the lemma follows. m|

B.2.10 COROLLARY LetNF((TS, ®)) be a set of triples generated during the normal
form procedure and let (TS', tt, ®') € NF((TS, ®)). Then @' is locally consistent.

232 Proofs

The next lemma deals with the second part of lemma 8.2.26, with temporal consis-
tency.

TS tt

B.2.11 LEMMA LetV¥ ——— V' for all (TS',tt,¥') € P, and let P, be obtained

/!
from Py by a reduction of the procedure. Then ¥ —"> W' for all (TS',tt,¥') €

I:)n+1-
PrROOF Proved by the rules individually. Let (TS’, tt,‘l”) be the pair on which the reduction
is applied.

e Rules 1 through 4 and 6 through 8 do not affect the temporal consistency constraints.

e Rule 5. Similar to the restricted case. Timer settings and ¢;U<x, @2 and ¢1U<x +c®2
formulas are dealt with correctly. m|

8.2.26 LEMMA Let ® C cl(¢) be a locally consistent set of formulas and let (TS', tt,

/
®') € NF(®). Then @' is locally consistent. Moreover, ® M o for any

(TS',tt, @") € NF(Next(®)).

PrROOF Follows directly from corollary B.2.10 and lemma B.2.11. a

B.2.5 Proof of the lemmas 8.2.28, 8.2.29 and 8.2.30

These lemmas tell us how to construct a run for a timed state sequence that satisfies
the formula of the tableau automaton. Lemma 8.2.28 tells us how to select an ap-
propriate initial extended location and lemmas 8.2.29 and 8.2.30 tell us how to select
subsequent locations in the case of left-closed and left-open intervals respectively.
First, we define temporal consistency constraints w.r.t. marked formulas.

B.2.12 DEFINITION LetV be a set of formulas, some of which may be marked. Then
MNext(V¥, tt) is the pair (TS, ¥') where TS and V' are the smallest sets such that

o ifY = @1U<x o P2 is marked and ¥ is non-trivial for 1, then V' contains 1;
o ifY = (01U§le,+e(pz is marked and ¥ is non-trivial for 1, then W' contains 1,

e ifY = @1V<q, is marked, ¥ is non-trivial for 1 and tt = #oc, then Y contains
@1V <y, @2 and TS contains y,, := d;

o ifl = @1Vqy is marked, ¥ is non-trivial for i and tt = #co, then'V' contains
®1V<y, @2 and TS contains y,, := d;

o ifY = (p1V<yw, @> is marked and ¥ is non-trivial for 1, then W' contains 1;
o ifp = (p1V§yw, @- is marked and V¥ is non-trivial for 1, then V' containsy. O

If all formulas are marked, then Next(V, tt) = MNext(¥, tt). The rules in the normal
form procedure are different for the different types of transitions. This is caused by
the fact that the interval may have or may not have a first instant where the formulas
of the new interval need to hold. Both types of reduction rules maintain slightly
different invariants.

B.2 Proofs of chapter 8 233

B.2.13 DEFINITION Let P contain triples (TS, tt, V), let¥ C cl(¢) for some MITL<
formula ¢. Letp be a timed state sequence, let v be a timer valuation such that for
every timer x in the domain of v, corresponding to the Until formula @1U4¢p, or
the Release formula 1V <qp,, v(x) < d. -

The predicate Inv* (P, p,v) holds iff for any ¢-fine interval sequence 1, there is some
(TS, #oc, V) € P such that

(i) forallt € 1(0), p' Frspyi—t ¥

(i) pI"O)l Frsivi—[i(0)] MNext(¥, tt') where tt' matches the transition from 1(0) to
1(1).

For the intervals starting in a left-open fashion we have the following invariant,
which is identical except for the fact that the formulas in ¥ need not hold att = 0,
but instead for the left-open interval following the first singular interval [0, 0].

The predicate Inv**°(P, 5,v) holds iff for any @-fine interval sequence T = [0, 0]l1,
..., there is some (TS, #co, V) € P such that

(i) forallt € 1(1), p' Fryspyi— ¥

(i) pI' Frsivi—(i(1)] MNext(¥, tt') where tt' matches the transition from 1(1) to
1(2). i

B.2.14 LEMMA Let Py contain triples (TS, tt, ¥) where W C cl(¢) for some MITL<
formula ¢. Let p be a timed state sequence, let v be a timer valuation, assume
Invt(Py, p,v) for some tt € {#oc, #co} and let P, 1 be obtained from Py by applying
one of the rules of table 8.4. Then Inv(P,,1,p, V).

PrRoOF If there is such a set other than the one on which the case applies, then the lemma
follows trivially. If not, it is shown case by case that the invariant is preserved. Let (TS, tt, V) €
Pn and let ¢ € ¥ on which the case is applied.

e Cases 1,2,3 and 4 are trivial or similar to the untimed case and consistency constraints
are not affected.

e Case5.1. Inthis case tt = #oc, p1U<x, 02 € ¥ and p1U<x,+e@2 ¢ Y. Thus the addition
of xy := d to TS has no influence on the existing formulas in ¥. The new formula
(01U <x, 92) is satisfied in the timer environment after setting x;, to d, since p1U<qp; is
satisfied. It is satisfied in the entire interval, since either ¢, holds or the interval cannot
be longer than d. With regard to part (ii) of the invariant, we observe that it still holds,
since no new consistency constraints will be added after marking @1 U q¢>.

e Case5.2. In this case tt = #c0, p1U<x, 02 ¢ ¥ and p1U<x, +cp2 ¢ W. Thus the addition
of xy := d to TS has no influence on the existing formulas in ¥. The new formula
(01U <x,+eP2) is satisfied during the second interval in the timer environment after
setting xy, to d, since @1U<q¢> is satisfied in the interval. With regard to part (ii) of
the invariant, we observe that it still holds, since no new consistency constraints will be
added after marking @1U<q@3.

e Case 5.3. In this case tt can be either #co or #oc. In both cases, nothing is added to ¥ or
TS. Therefore, the invariant trivially still holds.

e Case 5.4. Identical to case 5.3; nothing is added.

234 Proofs

e Caseba.
— Iftt = #oc, D ':TS[V] ¢1U<x,, #2 and thus either

xp ':TS[V] @2. Then the new triple (TS, #oc, W U {1p*, ¢, }) satisfies the require-
ments. Requirement (i) is satisfied since the newly added ¢, holds. For re-
quirement (ii) no new consistency constraints are added;

* P FErsy] P2, TS[V](xy) > 0and p [=rgp,) 1. Then the new triple (TS, #oc, WU
{Y*, xy > 0,¢1}) satisfies the requirements. Requirement (i) is satisfied
since the newly added x; > 0 and ¢; hold (the interval cannot be longer
than TS[v](xy)). For (ii) the consistency constraint ©1U<x,, 2 is added and

plloI Frsp-(i(0) TS -@1U<x,, @2 (TS’ does not modify xy).

— If tt = #co, p satisfies (p1U§Xw,(p2 in the environment TS[v] on the second interval
and thus

 if it satisfies @, then the new triple (TS, #co, W U {¢*, p,}) satisfies the re-
guirements. Requirement (i) is satisfied since the newly added ¢, holds. For
requirement (ii) no new consistency constraints are added;

* if it does not satisfy ¢, then it must satisfy x,» > 0 and ¢, on the inter-
val. Then the new triple (TS, #co, W U {4*, xy» > 0, @1 }) satisfies the require-
ments. (i) is satisfied since the newly added x, > 0 and ¢; hold (for every
t € 1(0), t < TS[v](xy/)). For (ii) the consistency constraint P1U<x, @2 is

added, p/'(V)l ':TS[vHT(l)I TS’.<p1U§XW, @2 (TS’ does not modify xy).
e Caseb6b.
- Iftt =#oc, p ':TS[V] P1U<x, +e2 and thus either:

xp ':TS[V] @2. Then the new triple (TS, #oc, W U {1p*, ¢, }) satisfies the require-
ments. Requirement (i) is satisfied since the newly added ¢, holds. For (ii)
Nno new consistency constraints are added;

* P [Frspy) @2 Then TS[v](xy) > 0and p =rg,) @1 Then the new triple
(TS, #oc, YU {yp*, xyr > 0, 1}) satisfies the requirements. (i) is satisfied since

the newly added x,» > 0 and ¢, hold (again the interval is no longer than
TS[v](xyr)). For (ii) the consistency constraint P1U<x, +eP2 is added and

il Ersi]—[1(0)] TS 91U<x,+cw2 (TS does not modify xyy).

— If tt = #co, p satisfies P1U<x, +e92 in the environment TS[v] on the interval and
thus

x if it satisfies ¢, in the interval, then the new triple (TS, #co, W U {¢*, ¢2})
satisfies the requirements. Requirement (i) is satisfied since the newly added
@2 holds. For requirement (ii) no new consistency constraints are added;

* if it does not satisfy ¢, then v(xy) > 0 and thus it satisfies x,y > 0 and
@1 on the interval (the interval is no longer than TS[v](xy)). Then the new
triple (TS, #co, WU {y*, xy > 0, @1 }) satisfies the requirements. (i) is satis-
fied since the newly added xyr > 0 and ¢; hold. For requirement (ii) the
consistency constraint <p1U§xw,+€<p2 is added;

Pl F sty TS 91U<x, +ew2 (TS does not modify xy).
e Case 7. @> is obviously satisfied.

— If ¢, is satisfied, then the requirements clearly hold for the new triple (TS, tt, ¥ U
{¥*, 1, p2}). No consistency constraints are added.

B.2 Proofs of chapter 8 235

— If ¢4 is not satisfied, then it follows from 1-fineness of T that 1 is still satisfied at
the end of the interval and depending on the type of transition to the next interval,
the corresponding added consistency constraint holds.

e Case8a. (p1V<yw, @2 holds and thus TS[v](yys) < 0 or ¢, holds.

- If yyy < 0 holds, then the triple (TS, tt, W U {¢)*, y,s < 0}) satisfies the require-
ments. No consistency constraints are introduced.

— If 1 holds, then the triple (TS, tt, Y U {y*, @1, ¢, }) satisfies the requirements. No
consistency constraints are introduced.

— If neither yy, < 0 nor ¢, holds, then the triple (TS, tt, W U {1*, @, }) satisfies the
requirements. The consistency constraint (p1V<yw, @ is added. Since 1 is ¢q-fine

and TS[v](yy) < d, /') Frsp (i) TS -@1V<y, ®2.
e Case8b.
- If tt = #oc, 1V<y , @2 holds and thus TS[v](yy) < 0 or ¢, holds.Further
x if yyy < 0 holds, then the triple (TS, #oc, W U {y*, yy < 0}) satisfies the re-

guirements. No consistency constraints are introduced.

x if @1 holds, then the triple (TS, #oc, W U {¢*, 91, ¢, }) satisfies the require-
ments. No consistency constraints are introduced

* ifneither y,, < 0nor 1 holds, then the triple (TS, #oc, ¥ U {¢*, . }) satisfies
the requirements. The consistency constraint (plvgyw, @ is added. Since T is

@1-fine and TS[V](yW) <d, 5|T(0)| ':TS[‘V]f‘T(O)‘ TS/.(p1VSyw, ©3.
- If tt = #co, p1V<y,, ¢, holds and thus TS[v](yy) < 0o0r @, holds. Further
if TS[v](yy) < 0, then yy < 0 holds during the interval and the triple

(TS,#oc,‘PU {y*, Yy < O}) satisfies the requirements, no consistency con-
straints are introduced

x if @1 holds, then the triple (TS, #oc, Y U {¢*, @1, p2}) satisfies the require-
ments. No consistency constraints are introduced,;

* ifneither y,y < 0nor ¢4 holds, then the triple (TS, #oc, W U {¢*, ¢, }) satisfies
the requirements. The consistency constraint (p1V§yw, @7 is added. Since I is

p1-fine and TS[v](yy) < d, pl1)] ':Ts[v]—ﬁ(o)\ TS'-@lngwr Q2. O

8.2.28 LEMMA Let ® C cl(¢p) be a set of formulas. Letp =, ® and let | be
a ¢-fine interval sequence. Then there is some (TS, #oc, ®') € NF(®) such that

P Frspy—t @' forallt € 1(0) and o100l Frsp-[i(0)] Next(®', tt) where tt matches
the transition from 1(0) to 1(1).
PRoOOF Follows from lemma B.2.14. The procedure is started from Py = { (&, #oc, @), (2, #co,

®)}. Inv¥(Py, 5,v) holds. Thus Inv#(Py,,5,v) holds when the procedure ends and from
this the result follows. O

8.2.29 LEMMA Let @ be a location in the on-the-fly tableau automaton A, letp and
v be such that p =, Next(®,#oc) and let | be a ¢-fine interval sequence. Then
there is an edge (@, TS', #oc, @') of A, such that o' [=1g1(,;_ @' for allt € 1(0) and

pl1(0)] Frsv—(i(0) Next(®', tt') where tt" matches the transition from 1(0) to 1(1).

236 Proofs

PrROOF It follows from lemma B.2.14 and the construction of the on-the-fly tableau. The in-
variant Inv#°® holds for some edge. O

8.2.30 LEMMA Let @ be a location in the on-the-fly tableau automaton A, let p
and v be such that p =, Next(®,#co) and let | = [0,0]l11;... be a p-fine interval
sequence. Then there is an edge (®, TS', #co, ®') of A, such that ' |=1g(,)_ @' for

all't € 1(1) and pl'@) Frsiy i) Next(®',tt') where tt’ matches the transition
from1(1) to 1(2).
PrROOF It follows from lemma B.2.14 and the construction of the on-the-fly tableau. The in-

variant Inv#®® holds for some edge. O

B.2.6 Proof of the Lemmas on Informative Prefixes

In this section we prove the lemmas 8.3.3, 8.3.4, 8.3.6, 8.3.8 and 8.3.7.

B.2.15 DEFINITION LetW¥, and ¥, be two sets of extended formulas and let v, and
v, be two timer valuations. Then (V1,v1) < (W2,vy) iff forevery{ € ¥q

e ify isan MITL< formula, thenp € ¥5;

e ifip = xy > 0, theneitherx,, > 0 € Wy andvy(Xys) > vo(Xy) Or Xy > 0 € ¥
and 'Vl(lel) > ’\/2(le/),’

o if1p = P1U<x,, P2, then either P1U<x, 02 € ¥ and vy (Xy) > va(Xy) or
(P1U§x¢;+e(P2 ev, andvl(x,l,,) > VZ(XW);

o ify =y, <0, then either y,y <0 € ¥ and vi(yy) < va(yy) Oryy <0 €
Vo andva(yy) < va(yy):

o if =Xy >0, thenvi(Xy) > va(Xyr) and Xy >0 € Wy orxy >0 € Wy,

o ifp = (p1U§Xw,+€<p2, then vi(Xy) > va(xy) and either (p1U§Xw,(,02 € V¥, or
P1U<x, +ep2 € Wo;

o ifYp =y <0, thenvi(yy) < va(yy) and eitheryy <0 € Wy oryy <0 €
Y.

o ifp = p1V<y @2, then p1V<qp, € W2 orboth p1V<y 2 € Wp andvi(yy) <
Va(Yyr),

o ifY= (p1V<yw, @, then either
- @1V<qpr € ¥y (and vi(yy) < d)or
- Vl(yd)r) < Vz(ylpr) and (p1V<pr(,02 eV, or (01V§yw(pg e VY.

(Relation = is reflexive and transitive.)

B.2 Proofs of chapter 8 237

8.3.3 LEMMA Let @ be a set of formulas, let v be a timer valuation and let IS =
(@, TS,¥,1) be an informative sequence such that (®,v) < (®(0),%(0)). Then
there is some (TS (D’ #oc) € NF(d) #oc) such that (@', TS[v]) < (®(0),%(0)) and

(@, TS"[TS[v] — [T(0)]]) = (®(1),%(1)) where (TS", ®"") = Next(®', tt) iftt is the
type of transition from 1(0) to I(l)

The lemma is proved similar to lemma 7.4.8 in the untimed case.

PROOF In the following proof, the predicate Inv(P,v,1S) holds iff IS = (@, TS,¥, 1), there is
some (TS, #oc, ¥) € P such that (¥, TS[v]) < (1S(0),%(0)) and (®",TS"[TS[v] — [1(0)]]) <
(1S(1),%(1)) where (TS"”, @"”) = MNext(V¥, tt) if tt matches the transition from 1(0) to I(1).
Then if Inv(P,v, 1S) is an invariant of the DTNF procedure, the lemma follows. The proof
proceeds for every reduction rule separately. If the rule was applied on another tuple, then
the invariant remains true. Otherwise we get:

e Case 6b (for instance). Then 1 = ¢1U<x,, +e92 € ¥ and 4 is unmarked W =w\{y}.

Then TS[v](xy) > ¥(0)(xyr) and either of the following is true:

— @1U<x, +eP2 € @(0). By local consistency, either ¢, € ®(0) or both p; € ®(0)
and xy > 0 € ®(0). Then

x if o € ©(0), (W U{y* 92}, TS[v]) < (@(0),7(0)) and nothing is added

to TS. (', TS'ITSRY] — 1(0)[]) < (@, TS"[TS[v] ~[1(0)]) < (P(1).¥(1)),
where (TS', @') = MNext(¥' U {*, g, },#oc) and (TS", ") = MNext(V¥,
#oc);

* if @ ¢ ®(0), we have by local consistency, ¢; € ®(0) and xyy > 0 € ®(0).
Thus (V' U {*, 1, %y > 0}, TS[v]) < (®(0),7(0)) and
(@', TS'ITS[V] — [1(0)]]) = (@(1),7(1)) where (TS', @') =
MNext(¥' U {¢*, @1, Xy > 0},#0c) = MNext(¥, #oc) U {p1U<x,, +ew2}, by
temporal consistency since @, ¢ ®(0) and TS[v](Xyr) > V(0)(Xyy).

- 91U<x, 92 € ©(0). By local consistency, either ¢, € ®(0) or both ¢ € ©(0) and
Xy >0 € ®(0). Then

+ if oo € ©(0), then the case is identical to the case p1U<x , +e@2 € @(0);

* if pp ¢ @(0), we have by local consistency, 91 € ®(0) and xy» > 0 € @(0).
Thus (w’u{w* (pl,xl,,, >0}, TS[]) (®(0),7(0)) and
(@', TS'[TS[v] = [1(0)[]) = (@(1),%(1)) where (TS, ®') = MNext(¥' U
{Y*, p1,xy > 0}, #oc) = MNext(‘P #oc) U {(p1U<Xw,+€(p2} by temporal
consistency since ¢, ¢ ®(0) and TS[v](Xyr) > V(0)(Xyy).

O

8.3.4 LEMMA Let @ be a set of formulas, let v be a timer valuation and let IS =
(@, TS,¥,1) be an informative sequence such that 1(1(1)) = 0 and (®,v) < (®(1),
v(1)). Then there is some (TS, @', #co) € NF(®, #co) such that (', TS[1) < (@(1),
v(1)) and

(@", TS"[TS[v] — [1(1)]]) = (®(2),%(2)) where (TS", ®") = Next(®', tt) iftt is the
type of transition from 1(1) to I(2).

3.

This lemma is similar to the previous one, but this time for the #co case.

238 Proofs

PROOF In the following lemmas, the predicate Inv(P,v, IS) holds iff (let IS = (@, TS, ¥, 1))
there is some (TS, #co, ¥) € P such that (W, TS[v]) < (I1S(1), 1(1)) and (MNext(¥, tt), TS[v] —
[1(1)]) = (1S(2),%(2)) where tt matches the transition from 1(1) to 1(2). Then if Inv(P,v,1S)
is an invariant of the DTNF procedure, the lemma follows. The proof proceeds for every
reduction rule separately. If the rule was applied on another tuple, then the invariant remains
true. Otherwise we get:

e Case 5, for instance. Then ¥ = @1U<qp, € W is unmarked. Let W' = W\{y}. Then
@1U<gp2 € @(1) and thus p1U<x, 02 € @(1) or P1U<x,+e@2 € ®(1). There are three
cases to the rule

- 01Uy, 02 € ¥, 1U<x+e02 ¢ V.
Then TS' = {xy, := d}[TS]and ¥ = ¥ U {p1U<q@3, @1U<x,+c02}
(W”,TSI[V]) = (‘{”E{(plusd(p;(p1U§Xw+€£2},{Xw = d}[TS][’V]) =< (IS(l),V(l))
since p1U<x, @2 € (1) or p1U<x,+ep2 € @(1) and ¥(1)(xy) < d.

- p1U<x, 2 €Y.
Then TS = TSand V"' = W U {¢*, p1U<x, 02}. (W', TS'[v]) =

(V' U{@1U<q@s, @1U<x, 02}, TS[v]) < (®(1),7(1)) because
% if @1U<y, @2 € @(1), then TS[v](xy) > ¥(1)(xy) and
* if iUy, +ep2 € @(1), then TS[v](xy) > V(1) (Xy)-

= p1U<x +ep2 € V.
Then TS = TSand V"' = W U {¢*, p1U<x,+e@2}. (W', TS'[V]) =

(WU {@1U<q@s, @1U<x, +e®2}, TS[V]) < (@(1),7%(1)) because
TS[v](xy) > (1) (xy).

In all three cases, (@', TS'[TS[v] — [1(1)[]) < (®",TS"[TS[v] — [1(1)]]) = (15(2),7(2))
where (TS, ®') = MNext(¥"”,tt) and (TS"”, @) = MNext(¥,tt) (by the induction
hypothesis) m|

B.2.16 DEFINITION A pair (®,v) contradicts another pair (®',+') if one of the fol-
lowing holds:

e there is some MITL< formula ¢ € ® such that —¢ € @';
o there is some 1 € ® for which one of the following applies

- ifY = p1U<x , @2, then there is some (m@1)V<y(—@2) € ®" and v(xy) <
Vi(y);

- ifp = @1U<x @2, then there is some (m@1)V<y(—g2) € @' and
v(Xyr) <V(y)

- ifp = p1V<y , @2, then there is some (mp1)U<x(—g2) € " andv'(x) <
V(Yyr)s

- ifyp = P1V<y, @2, then there is some (—¢@1)U<x(—¢2) € ®" andv'(x) <
V(Yyr)-

B.2.17 DEFINITION A prefix T is an informative bad prefix for the pair (®,v) if there
is an informative sequence IS = (®,TS,7¥, 1) such that either of the following holds:

e (®,v) contradicts (©(0),v(0));

B.2 Proofs of chapter 8 239

e or (TS',®’) = Next(®, tt) where tt is the type of transition from 1(0) to 1(1)
and (@', TS'[v — [I(0)]]) contradicts (®(1),v(1)).

Proof of lemma 8.3.6

8.3.6 LEMMA IfT is an informative bad prefix for NF(®, #oc) in timer environment
v, then T is an informative bad prefix for ® in timer environment-v.

This is proved by induction on the steps of the normal form procedure (compare the
proof of lemma 7.4.4).

B.2.18 DEFINITION A prefix T is an informative bad prefix for P in timer environ-
ment v if for every (TS, #oc, V) € P, T is an informative bad prefix for (TS, #oc, ¥) in
timer environment v.

B.2.19 DEFINITION A prefix T is an informative bad prefix for_(TS_,#oc,_W’) in timer
environment -v if there is some informative sequence 1S = ((D, TS,%, I) such that
either of the following is true:

e (W, TS[v]) contradicts (®(0),%(0));

o (®", TS'[TS[v — [1(0)|]) contradicts (®(1),¥(1)) where (TS, @") =
MNext(W’, tt) and tt matches the transition from 1(0) to 1(1).

The induction step for the proof of lemma 8.3.6 is provided by the following lemma.

B.2.20 LEMMA Let P, = Pny1 be a reduction step in the procedure. Let T be an
informative bad prefix for Pn1 inv. Then T is an informative bad prefix for Pn inv.

PrROOF This lemma is proved by case analysis. Assume the reduction is applied to
(TS, #oc, YU {y}) for unmarked formula .

e Case 6a (for instance). ¢ = ‘plUSXw @». Then T is an informative bad prefix for both
(TS, #oc, YU {y*, @2}) and (TS, #oc, ¥ U {yp*, p1, Xy > 0}). If there is an informative
sequence that contradicts V¥, then there is also one that contradicts P,. Otherwise, there
is one that disproves @, and ¢y or Xy > 0 or p1U<x, @, at the next interval. From this
informative sequence one can construct an informative sequence that disproves P,. O

Proof of lemma 8.3.7

8.3.7 LEMMA Let A, be a tableau automaton, let ® be a location of A, and let T
be a p-fine prefix of a state sequence for which there is no (accepting) run on Ay,

starting from extended location (®,v). Then T is an informative bad prefix for @ in
timer environmentv orT| '(_0)‘ is an informative bad prefix of ®' in timer environment

TS[v — [1(0)|] whereT = (£,1), (TS, ®') = Next(®, tt) and tt matches the transition
from1(0) to 1(1).

PROOF The lemma is proved by induction on the length of the timed state sequence ||, com-
parable to lemma 7.4.5.

240 Proofs

e If [£] = 1, then there is some atomic proposition or some timer condition in @ that
conflicts with Z(0) of v respectively. In both cases it is straightforward to construct an
informative sequence.

o If |§| > 1, then either the first location @ contradicts, or all successor locations (with
transitions of type corresponding to the transition from 1(0) to 1(1)) do not accept the
tail of 7. By induction and lemma 8.3.6, 7/'(%)l is an informative bad prefix of @' in timer
environment TS[v — [1(0)|] where (TS, ®’) = Next(®, tt) and tt matches the transition
from 1(0) to 1(1). |

Proof of lemma 8.3.8

8.3.8 LEMMA Let1 € @, letv be a timer valuation and let T be an informative bad
prefix for 1 in v. Then there is no run for T on [A,] starting from the extended
location (®,v).

This is proved by induction on 1y and on the length of the prefix (compare the proof
of lemma 7.4.6).

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

L. Aceto. A static view of localities. Formal Aspects of Computing, 6(2):201-222,
1994,

L. Aceto, P. Bouyer, A. Burguefio, and K.G. Larsen. The power of reachability
testing for timed automata. In V. Arvind and R. Ramanujam, editors, Proceed-
ings of the 18th Conference on the Foundations of Software Technology and Theoret-
ical Computer Science (FST&TCS’98), Chennai, India, Dec. 1998, LNCS Vol.1530,
pages 245-256, Berlin, 1998. Springer Verlag.

L. Aceto, A. Burguefio, and K.G. Larsen. Model checking via reachability test-
ing for timed automata. In B. Steffen, editor, Proceedings of Tools and Algorithms
for Construction and Analysis of Systems, 4th International Conference, TACAS ’98,
Lishon, Portugal, March 28 - April 4, 1998, LNCS Vol. 1384, pages 263-280, Berlin,
1998. Springer Verlag.

B. Alpern and F.B. Schneider. Defining liveness. Information Processing Letters,
21:181-185, 1985.

R. Alur. Techniques for Automatic Verification of Real-Time Systems. PhD thesis,
Stanford University, 1991.

R. Alur, C. Courcoubetis, and D.L. Dill. Model checking for real-time systems.
In Proc. Of the Fifth Annual Symposium on Logic in Computer Science, pages 414—
425. IEEE Computer society Press, 1990.

R. Alur and D.L. Dill. Automata for modeling real-time systems. In M.S. Pa-
terson, editor, Proc. Of ICALP90: Automata, Languages and Programming LNCS
Vol. 443, pages 322-335. Springer Verlag, 1990.

R. Alurand D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. Journal
of the ACM, 43(1):116-146, January 1996.

[10] R. Alur, T. Henzinger, and P.H. Ho. Automatic symbolic verification of embed-

ded systems. IEEE Transactions on Software Engineering, 22(3):181-201, 1996.

242 BIBLIOGRAPHY

[11] R. Alur and T.A. Henzinger. Logics and models of real-time: A survey. In
J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Real-
Time Theory in Practice. REX Workshop Proceedings Mook, the Netherlands 3-7 June
1991, LNCS Vol. 600, pages 74-106, Berlin, 1992. Springer Verlag.

[12] R. Alur and T.A. Henzinger. Real-time logics: Complexity and expressiveness.
Information and Computation, 104(1):35-77, 1993.

[13] R. Alur and T.A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181-204, 1994.

[14] R. Alur, T.A. Henzinger, FY.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran.
Mocha: Modularity in model checking. In AJ. Hu and M.Y. Vardi, editors,
Proceedings of the Tenth International Conference on Computer-Aided Verification
(CAV 1998), LNCS 1427, pages 521-525, Berlin, 1998. Springer Verlag.

[15] R. Alur, G.J. Holzmann, and D. Peled. An analyzer for message sequence
charts. Software - Concepts and Tools, 17(2):70-77, 1996.

[16] P.H.M. America and J.J.M.M. Rutten. A Parallel Object-Oriented Language: De-
sign and Semantic Foundations. PhD thesis, Vrije Universiteit Amsterdam, Am-
sterdam, The Netherlands, 1989.

[17] D. P. Appenzeller and A. Kuehlmann. Formal verification of the PowerPC™
microprocessor. In Proceedings of the International Conference on Computer Design
(ICCD’95, Oct), pages 79-84, 1995.

[18] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects of
Computing, 3(2):142-188, 1991.

[19] J.C.M. Baeten and J.A. Bergstra. Real time process algebra with infinitesimals.
In A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, editors, Algebra of Commu-
nicating Processes 1994, Workshop in Computing Series, pages 148-187. Springer
Verlag, 1995.

[20] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. Formal Aspects
of Computing, 8(2):188-208, 1996.

[21] J.C.M. Baeten and C.A. Middelburg. Process algebra with timing: Real time
and discrete time. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Hand-
book of Process Algebra, chapter 10, pages 627-684. Elsevier Science, Amsterdam,
2001.

[22] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, Cambridge, 1990.

[23] H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model
and its temporal logic. In Proc. 13th Annual ACM Symposium on Principles of
Programming Languages, pages 173-183, New York, January 1986. ACM Press.

BIBLIOGRAPHY 243

[24] G. Behrmann, A. Fehnker, T. Hune, K.G. Larsen, P. Pettersson, and J. Romijn.
Efficient guiding towards cost-optimality in UPPAAL. In T. Margariaand W. Yi,
editors, Proceedings of the 7th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, LNCS Vol. 2031, pages 174-188, Berlin,
2001. Springer Verlag.

[25] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL - a
tool suite for automatic verification of real-time systems. In R. Alur, T.A. Hen-
zinger, and E.D. Sontag, editors, Proceedings of Hybrid Systems IlI: Verification
and Control, DIMACS/SYCON Workshop, October 22-25, 1995, Ruttgers Univer-
sity, New Brunswick, NJ, USA. LNCS, Vol. 1066, pages 232-243, Berlin, 1995.
Springer Verlag.

[26] J.A. Bergstra, J. Heering, and P. Klint. Algebraic Specification. ACM Press, New
York, 1989.

[27] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1):109-137, 1984.

[28] J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra.
Elsevier Science, Amsterdam, 2001.

[29] L.J. van Bokhoven, J.P.M. Voeten, and M.C.W. Geilen. Software synthesis for
system-level design using process execution trees. In Proceedings 25th Euromi-
cro Conference, Milan, Italy, 1999, pages 463-467, Los Alamitos, California, 1999.
IEEE Computer Society Press.

[30] R. Bol and J.F. Groote. The meaning of negative premises in transition system
specifications. Journal of the ACM, 43(5):863-914, September 1996.

[31] T. Bolognesi et al. Converging towards a timed LOTOS standard. Computer
Standards and Interfaces, 16:87-118, 1994.

[32] T. Bolognesi and F. Lucidi. Timed process algebras with urgent interactions
and a unique powerful binary operator. In J.W. de Bakker, C. Huizing, W.P.
de Roever, and G. Rozenberg, editors, Real-Time Theory in Practice. REX Work-
shop Proceedings Mook, the Netherlands 3-7 June 1991, pages 124-48, Berlin, 1992.
Springer Verlag.

[33] V. Bos and J.J.T. Kleijn. Formalisation of a production system modelling lan-
guage: The operational semantics of x core. Fundamenta Informaticae, 41(4):367—
392, 2000.

[34] D.Bo3nacki. Enhancing State Space Reduction Techniques for Model Checking. PhD
thesis, Eindhoven University of Technology, 2001.

[35] D. Bo3nacki and D. Dams. Integrating real-time in Spin: A prototype imple-
mentation. In FORTE/PSTV’98, pages 423-439. Kluwer, 1998.

[36] A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly model checking for real-
time systems. In Proc. 1997 IEEE Real-Time Systems Symposium RTSS’97, San
Francisco, CA. IEEE Computer Society Press, december 1997.

244

BIBLIOGRAPHY

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

G. Boudol and I. Castellani. Permutation of transitions: An event structure
semantics for CCS and SCCS. In J.W. de Bakker, W.P. de Roever, and G. Rozen-
berg, editors, LNCS, Vol. 354: Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, pages 411-427. Springer Verlag, Berlin, 1989.

G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities.
Theoretical Computer Science, 114:31-61, 1993.

R.S. Boyer, M. Kaufmann, and J.S. Moore. The Boyer-Moore theorem prover
and its interactive enhancement. Computers and Mathematics with Applications,
29(2):27-62, 1995.

J. Bradfield and C. Stirling. Modal logics and p-calculi: An introduction. In
J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra,
chapter 4, pages 293-330. Elsevier Science, Amsterdam, 2001.

J.P. Briand, M.C. Fehri, L. Logrippo, and A. Obaid. Executing LOTOS specifi-
cations. In B. Sarikaya and G. Von Bochmann, editors, Proceedings of PSTV’86,
6th International Workshop on Protocol Specification, Testing and Verification, 1986,
June 10-13, Montreal, Quebec, Canada, pages 73-84, North-Holland, 1987. Else-
vier Science Publishers B.V.

B. Brock, W.A. Hunt, and M. Kaufmann. The FM9001 microprocessor proof.
Technical Report 86, Computational Logic, Inc., Austin, TX, 1994,

J.R. Bichi. On a decision method in restricted second order arithmetic. In Proc.
International Conference Logic, Method and Philos. Sci. 1960, pages 1-12, Stanford,
1962. Stanford University Press.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and LJ. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Computation,
98(2):142-179, 1992.

W. Canfield, E.A. Emerson, and A. Saha. Checking formal specifications under
simulation. In Proceedings International Conference on Computer Design. VLSI in
Computers and Processors, pages 455-460, Los Alamitos, CA, USA, 1997. IEEE
Computer Society Press.

I. Castellani. Bisimulations for Concurrency. PhD thesis, University of Edin-
burgh, 1988.

I. Castellani. Process algebras with localities. In J.A. Bergstra, A. Ponse, and
S.A. Smolka, editors, Handbook of Process Algebra, chapter 15, pages 945-1045.
Elsevier Science, Amsterdam, 2001.

A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the ACM,
28:114-133,1981.

L. Chen. An interleaving model for real-time systems. In A. Nerode and
M. Taitslin, editors, Logical Foundations of Computer Science Tver’92 Proc. 2nd
Int. Symp. Tver, Russia, 20-24 July. 1992, pages 81-92, Berlin, 1992. Springer Ver-
lag.

BIBLIOGRAPHY 245

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Y.-A. Chen, E. Clarke, P.-H. Ho, Y. Hoskote, T. Kam, M. Khaira, J. O’Leary,
and X. Zhao. Verification of all circuits in a Floating-Point Unit using word-
level model checking. In M. Srivas and A. Camilleri, editors, Proceedings of
the First International Conference on Formal Methods in Computer-Aided Design
(FMCAD’96, Palo Alto, CA, Nov.) LNCS Vol. 1166, pages 19-33, New York, NY,
1996. Springer Verlag.

Y. Choueka. Theories of automata on w-tapes: A simplified approach. Journal
of Computer and System Sciences, 8:117-141, 1974,

E.M. Clarke, O. Grumberg, H. Hiraishi, S.Jha, D.E. Long, K.L. McMillan, and
L.A. Ness. Verification of the futurebus+ cache coherence protocol. Formal
Methods in System Design, 6(2):217-232, 1995.

E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional model checking. In
Proceedings of the 4th Annual Symposium on Logic in Computer Science, Asilomar
Conference Center, Pacific Grove, California, 5-8 June 1989., pages 353-362. IEEE
Computer Society Press, 1989.

R. Cleaveland and D. Yankelevich. An operational framework for value-
passing processes. In Proceeding of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 326-338, New York, 1994. ACM.

D. Coleman, P. Arnold, and S. Bodoff. Object-Oriented Development : The Fusion
Method. Prentice Hall, Englewood Cliffs, 1994,

S. Conrad. Compositional object specification and verification. In I. Rozman
and M. Pivka, editors, Proc. Int. Conf. On Software Quality (ICSQ’95), Maribor,
Slovenia, pages 55-64. University of Maribor Press, 1995.

C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. Formal Methods in System
Design, 1:275-288, 1992.

D.R. Dams. Abstract Interpretation and Partition Refinement for Model Check-
ing. PhD thesis, Eindhoven University of Technology, Eindhoven, The Nether-
lands, July 1996.

D.R. Dams. Flat fragments of CTL and CTL*: Separating the expressive and
distinguishing powers. Logic Journal of the IGPL, 7(1):55-78, 1999.

M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for
linear temporal logic. In N. Halbwachs and D. Peled, editors, Computer Aided
Verification: 11th International Conference Proceedings, CAV’99, Trento, Italy, July
6-10, 1999 (LNCS 1633), pages 249-260. Springer Verlag, 1999.

P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. Specification and analysis of soft
real-time systems: Quantity and quality. In Proceedings of the 20th IEEE Real-
Time Systems Symposium, Phoenix, Arizona, USA, pages 104-114. IEEE Com-
puter Society Press, 1999.

246

BIBLIOGRAPHY

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

J. Davies, D.M. Jackson, G.M. Reed, J.N Reed, A.W. Roscoe, and S.A. Schnei-
der. Timed CSP: theory and practice. In J.W. de Bakker, C. Huizing C, W.P.
de Roever, and G. Rozenberg, editors, Real-Time Theory in Practice. REX Work-
shop Proceedings Mook, the Netherlands 3-7 June 1991, pages 64075, Berlin, 1992.
Springer Verlag.

C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In R. Alur,
T.A. Henzinger, and E.D. Sontag, editors, Proceedings of Hybrid Systems 11 Ver-
ification and Control, DIMACS/SYCON Workshop, October 22-25, 1995, Ruttgers
University, New Brunswick, NJ, USA. LNCS, Vol. 1066, pages 208-219, Berlin,
1995. Springer Verlag.

F. de Boer and J. Hooman. The real-time behaviour of asynchronously com-
municating processes. In J. Viytopil, editor, Proceedings of the 2nd Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems, Nijmegen, The Nether-
lands, January 8-10, pages 451-472, Berlin, 1991. Springer Verlag.

M.L. de Leijer. A poosL-compiler for Smalltalk and C++. Master’s thesis,
Eindhoven University of Technology, 1997.

T.T.H. Dennemans. Specification and design of a distributed real-time reactive
control system, using the method Software/Hardware Engineering. Master’s
thesis, Faculty of Electrical Engineering, Eindhoven University of Technology,
1998.

D. D’Souza. On-the-fly verification for linear time temporal logic. Master’s
thesis, SPIC Mathematical Institute, Madras, June 1997.

H.-D. Ehrich, C. Caleiro, A. Sernadas, and G. Denker. Logics for specifying
concurrent information systems. In J. Chomicki and G. Saake, editors, Logics
for Databases and Information Systems, pages 167-198. Kluwer, 1998.

P. van Eijk. A comparison of behavioural language simulators. In B. Sarikaya
and G. Von Bochmann, editors, Proceedings of PSTV’86 International Workshop
on Protocol Specification, Testing and Verification, June 10-13, Montreal, Quebec,
Canada, pages 85-96, North-Holland, 1986. Elsevier Science Publishers B.V.

P. van Eijk. The design of a simulator tool. In P.H.J. van Eijk, C.A. Vissers,
and M. Diaz, editors, The Formal Description Language LOTOS, pages 351-390.
Elsevier Science Publishers B.V., North-Holland, 1989.

P.H.J. van Eijk, C. A. Vissers, and M. Diaz. The Formal Description Technique
LOTOS : Results of the ESPRIT/SEDOS Project. North-Holland, Amsterdam,
1989.

E.A. Emerson and E.M. Clarke. Using branching time temporal logic to synthe-
size synchronization skeletons. Science of Computer Programming, 2(3):241-266,
1982.

K. Etessami and G. Holzman. Optimising Buchi automata. In C. Palamidessi,
editor, Proceedings of the 11th Int. Conf. On Concurrency Theory (CONCUR’2000),
Pennsylvania State University, Pennsylvania, USA, August 22-25, 2000, LNCS
1877, pages 153-167, Berlin, 2000. Springer.

BIBLIOGRAPHY 247

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

P.-A. Etique. Service Specification Verification and Validation for the Intelligent Net-
work. PhD thesis, Ecole Polytechnnique Fédérale de Lausanne, 1995.

ETSI. ETS 300-417-1-1 - Transmission and Multiplexing (TM); Generic Func-
tional Requirements for Synchronous Digital Hierarchy (SDH) Equipment; Part 1-1:
Generic Processes and Performance. ETSI, 1996.

JW.G. Fleurkens, C.AJ. van Eijk, and J.A.G. Jess. Run-time consistency check-
ing in discrete simulation models. In Proceedings of the European Design and Test
Conference, 1995. ED&TC; 1995, pages 223-227, Brussels, 1995. IEEE Computer
Society Press.

W.J. Fokkink, J.F.Th. Kamperman, and H.R. Walters. Within ARM’s reach:
Compilation of left-linear rewrite systems via minimal rewrite systems. ACM
Transactions on Programming Languages and Systems, 20(3):679-706, May 1998.

R. Fraer, G. Kamhi, B. Ziv, M.Y. Vardi, and L. Fix. Prioritized traversal: Efficient
reachability analysis for verification and falsification. In E.A. Emerson and A.P.
Sistla, editors, Proceedings of the 12th International Conference, CAV 2000 Chicago,
IL, USA, July 15-19, 2000, Berlin, 2000. Springer Verlag.

N. Francez. Fairness. Springer Verlag, Berlin, 1986.

M.C.W. Geilen. Real-time concepts for Software/Hardware Engineering. Mas-
ter’s thesis, Faculty of Electrical Engineering, Eindhoven University of Tech-
nology, Eindhoven, The Netherlands, 1996.

M.C.W. Geilen. Formal models for encapsulation, structure and hierarchy in
distributed systems. In J.P. Veen, editor, Proceedings of the 10th Annual Workshop
on Circuits, Systems and Signal Processing, Mierlo, The Netherlands, November 24-
26, 1999, pages 155-166, Utrecht, The Netherlands, 1999. STW/IEEE Technol-
ogy Foundation.

M.C.W. Geilen. On the construction of monitors for temporal logic properties.
In K. Havelund and G. Rosu, editors, Proceedings of RV’01 - First Workshop on
Runtime Verification. Satellite Workshop of CAV’01. July 23, 2001 Paris, France.
Electronic Notes in Theoretical Computer Science 55(2), Amsterdam, 2001. Elsevier
Science.

M.C.W. Geilen and D.R. Dams. An on-the-fly tableau construction for a real-
time temporal logic. In M. Joseph, editor, Proceedings of the Sixth Interna-
tional Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems,
FTRTFT2000, 20-22 September 2000 Pune, India, LNCS 1926, pages 276-290,
Berlin, 2000. Springer Verlag.

M.C.W. Geilen, D.R. Dams, and J.P.M. Voeten. Applying verification meth-
ods to non-exhaustive verification of Software/Hardware systems. In J. Veen,
editor, Proceedings of CSSP-98, 9th Annual ProRISC/IEEE Workshop on Circuits,
Systems and Signal Processing Mierlo, Netherlands, November 25-27, 1998, pages
177-183, Utrecht, The Netherlands, 1998. STW, Technology Foundation.

248 BIBLIOGRAPHY

[85] M.C.W. Geilen and P.H.A. van der Putten. Brief manual for the SHESiIm, the
modelling and simulation tool for the SHE methodology, 2000. Available via
www: http://ww. ics.ele.tue.nl/~ngeil en/shesim

[86] M.C.W. Geilen and J.P.M. Voeten. Real-time concepts for a formal specification
language for software /7 hardware systems. In Proceedings of ProRISC 1997,
Utrecht, 1997. STW, Technology Foundation.

[87] M.C.W. Geilen and J.P.M. Voeten. Object-oriented modelling and specification
using SHE. In D. Bo3nacki, S. Mauw, and T. Willemse, editors, Proceedings of
the First International Symposium on Visual Formal Methods VFM’99, pages 16-24.
Computing Science Reports 99/08 Department of Mathematics and Computer
Science, Eindhoven University of Technology, 1999.

[88] M.C.W. Geilen, J.P.M. Voeten, P.H.A. van der Putten, L.J. van Bokhoven, and
M.P.J. Stevens. Object-oriented modelling and specification using SHE. Journal
of Computer Languages, 27(1-3):19-38, April-October 2001.

[89] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Proc. IFIP/WG6.1 Symp. Protocol Speci-
fication Testing and Verification (PSTV95), Warsaw Poland, pages 3-18. Chapman
& Hall, June 1995.

[90] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems,
volume 1032 of LNCS. Springer Verlag, Berlin, 1996.

[91] P. Godefroid. Model checking for programming languages using VeriSoft. In
Proceedings of the 24th ACM Symposium on Principles of Programming Languages,
pages 174-186, Paris, 1997.

[92] P. Godefroid, G.J. Holzmann, and D. Pirottin. State-space caching revisited.
Formal Methods and System Design, 7(3):1-15, November 1995.

[93] A. Goldberg and D. Robson. Smalltalk-80: The Language. Addison-Wesley,
Reading, Massachusetts, 1989.

[94] M. Gordon. HOL: a proof generating system for higher-order logic. In VLSI
Specification, Verification and Synthesis. Kluwer, 1987.

[95] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, Amsterdam, 1996.

[96] J.F. Groote. The syntax and semantics of timed pCRL. Technical Report SEN-
R9709, Centrum voor Wiskunde en Informatica, 1997.

[97] J.F. Groote and M.A. Reniers. Algebraic pocess verification. In J.A. Bergstra,
A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra, chapter 17,
pages 1151-1208. Elsevier Science, Amsterdam, 2001.

[98] H. Hansson and B. Jonsson. A calculus for communicating systems with time
and probabilities. In Proceedings of 11th Real-Time Systems Symposium, 1990,
pages 278-287. IEEE, 1990.

BIBLIOGRAPHY 249

[99] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231-274, 1987.

[100] M. Hennessy. The Semantics of Programming Languages: An Elementary Introduc-
tion Using Structural Operational Semantics. Wiley, Chichester, 1990.

[101] T. Henzinger. It’s about time: Real-time logics reviewed. In D. Sangiorgi and
R. de Simone, editors, Proceedings of CONCUR ’98: Concurrency Theory, 9th In-
ternational Conference, Nice, France, September 8-11, 1998, LNCS 1466, pages 439—
454, Berlin, 1998. Springer Verlag.

[102] T.A.Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111(2):193-244, 1994.

[103] C. Ho-Stuart, H.S.M. Zedan, and M. Fang. Congruent weak bisimulation with
dense real-time. Information Processing Letters, 46(2):55-61, 1993.

[104] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[105] D.W. Hoffmann, J. Ruf, T. Kropf, and W. Rosenstiel. Simulation meets verifica-
tion - checking temporal properties in SystemC. In F. Vajda, editor, Proceedings
of the 26th EUROMICRO Conference - Volume I, Maastricht, the Netherlands, Sept
5-7, 2000, pages 435-438, Los Alamitos, California, 2000. IEEE Computer Soci-
ety.

[106] U. Holmer, K.G. Larsen, and W. Yi. Deciding properties of regular real-timed
processes. In K.G. Larsen and A. Skou, editors, Proc. CAV’91 Computer Aided
Verification 3rd Int. Workshop, Aalborg Denmark 1-4 July 1991, pages 443-453.
Springer Verlag, 1992.

[107] G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1991.

[108] T.Hune, K.G. Larsen, and P. Pettersson. Guided synthesis of control programs
using UPPAAL. Nordic Journal of Computing, 8(1):43-64, 2001.

[109] A. Ingdblfsdottir and H. Lin. A symbolic approach to value-passing processes.
InJ.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra,
chapter 7, pages 427-478. Elsevier Science, Amsterdam, 2001.

[110] ITU-T. Recommendation G.841 - Types and Characteristics of SDH Network Protec-
tion Architectures. ITU, 1998.

[111] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart 1996
(MSC96). Technical report, ITU-TS, Geneva, 1996.

[112] G.L.J.M. Janssen. Logics for Digital Circuit Verification. PhD thesis, Eindhoven
University of Technology, February 1999.

[113] W.Janssen, R. Mateescu, S. Mauw, P. Fennema, and P. van der Stappen. Model
checking for managers. In D. Dams, R. Gerth, S. Leue, and M. Massink, editors,
Theoretical and Practical Aspects of SPIN Model Checking: Proceedings of the 5th and
6th International SPIN Workshops, 1999, LNCS 1680, pages 92-107, Berlin, 1999.
Springer Verlag.

250

BIBLIOGRAPHY

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

H.E. Jensen. Abstraction-Based Verification of Distributed Systems. PhD thesis,
Department of Computer Science, Aalborg University, 1999.

J.L.Fiadeiro and T.Maibaum. Verifying for reuse: Foundations of object-
oriented system verification. In C.Hankin, I.Makie, and R.Nagarajan, editors,
Theory and Formal Methods 1994. World Scientific Publishing Company, 1994,

M. Kantrowitz and L.M. Noack. I'm done simulating; now what? \erification
coverage analysis and correctness checking of the DECchip 21164 Alpha mi-
croprocessor. In Proceedings of the 33rd Annual Conference on Design Automation
Conference June 3 - 7, 1996, Las Vegas, NV USA, pages 325-330, 1996.

C. Kern and M.R. Greenstreet. Formal verification in hardware design: A sur-
vey. ACM Transactions on Design Automation of Electronic Systems, 4(2):123-193,
april 1999.

Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for full
propositional temporal logic. In Proceedings of the 5th Conference on Computer
Aided Verification, Lecture Notes in Computer Science 697, pages 97-109, Berlin,
1993. Springer Verlag.

P. Klint. A meta-environment for generating programming environments.
ACM Transactions on Software Engineering and Methodology, 2:176-201, 1993.

R. Koymans. Specifying real-time properties with metric temporal logic. Real-
time Systems, 2:255-299, 1990.

D. Kozen. Results on the propositional p-calculus. Theoretical Computer Science,
27:333-354,1983.

R. Kuiper and W. Penczek. Lecture Notes on Modal and Temporal Logic in Com-
puter Science. Faculty of Mathematics and Computing Science, Eindhoven Uni-
versity of Technology, Eindhoven, 1998.

O. Kupferman and M.Y. Vardi. Model checking of safety properties. In
N. Halbwachs and D. Peled, editors, Computer Aided Verification: 11th Interna-
tional Conference Proceedings, CAV’99, Trento, Italy, July 6-10, 1999 (LNCS 1633),
pages 172-183. Springer Verlag, 1999.

L. Lamport. What good is temporal logic? In R. E. A. Mason, editor, Information
Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris, France,
September 19-23, 1983, pages 657-668. Elsevier Science Publishers B.V. (Noth-
Holland), 1983.

L. Lamport. Logical foundation. In Distributed Systems - Methods and Tools for
Specification, LNCS 190. Springer Verlag, 1985.

F. Laroussinie, K.G. Larsen, and C. Weise. From timed automata to logic -
and back. InJ. Wiedermann and P. Hajek, editors, Proceedings of Mathematical
Foundations of Computer Science 1995, 20th International Symposium, MFCS’95,
Prague, Czech Republic, August 28 - September 1, 1995, LNCS, Vol. 969, pages
529-539, Berlin, 1995. Springer Verlag.

BIBLIOGRAPHY 251

[127] K.G. Larsen, P. Pettersson, and W. Yi. Diagnostic model checking for real-time
systems. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Proceedings of
Hybrid Systems I1I: Verification and Control, DIMACS/SYCON Workshop, Octo-
ber 22-25, 1995, Ruttgers University, New Brunswick, NJ, USA. LNCS, Vol. 1066,
pages 575-586, Berlin, 1995. Springer Verlag.

[128] K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1-2):134-152, October 1997.

[129] K.G. Larsen and W. Yi. Time abstracted bisimulation: Implicit specifications
and decidability. Information and Communication, 134:75-103, 1997.

[130] P. Liggesmeyer, M. Rothfelder, M. Rettelbach, and T. Ackerman.
Qualitatssicherung Software-basierter technischer Systeme - Problembereiche
und Losungsansétze. Informatik-Spektrum, 21(5):249-258, 1998.

[131] L.M.B. Lopes. On the Design and Implementation of a Virtual Machine for Process
Calculi. PhD thesis, University of Porto, 1999.

[132] G. Lopez. Modélisation, Simulation et Vérification du Protocole APS. Faculty of
Electrical Engineering, Eindhoven University of Technology, Eindhoven, 1998.

[133] M. Maidl. The common fragment of CTL and LTL. In Proceedings of 41st Annual
Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November 2000,
Redondo Beach, California, USA, pages 643-652, Los Alamitos, California, 2000.
IEEE Computer Society Press.

[134] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer Verlag, New York, 1992.

[135] S. Mauw and M.A. Reniers. An algebraic semantics of basic message sequence
charts. The Computer Journal, 37(4):269-277, 1994.

[136] S. Mauw and G.J. Veltink, editors. Algebraic Specification of Communication Pro-
tocols. Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, Cambridge, 1993.

[137] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Nor-
well, 1993.

[138] M. Mihail and C.H. Papadimitriou. On the random walk method for protocol
testing. In D. L. Dill, editor, Proc. Of 6th International Conference on Computer
Aided Verification LNCS 818, pages 132-141. Springer Verlag, 1994.

[139] G.J. Milne. CIRCAL and the representation of communication, concurrency
and time. ACM Transactions on Programming Languages and Systems, 7(2):270-
298, april 1985.

[140] R. Milner. Communication and Concurrency. Prentice Hall, Englewood Cliffs,
New Jersey, 1989.

[141] S. Miyano and T. Hayashi. Alternating automata on w-words. Theoretical Com-
puter Science, 32:321-330, 1984.

252

BIBLIOGRAPHY

[142] A. Mokkedem and D. Méry. A stuttering closed temporal logic for modular

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

reasoning about concurrent programs. In D.M. Gabbay and H.J. Ohlbach, ed-
itors, Proc. Of the First Int. Conf. On Temporal Logic (ICTL'94), LNAI 827, pages
382-397. Springer Verlag, 1994.

F. Moller and C. Tofts. A temporal calculus of communicating systems. In
J.C.M. Baeten and J.W. Klop, editors, CONCUR’90 Theories of Concurrency: Uni-
fication and Extension Proc. Amsterdam, The Netherlands 27-30 Aug. 1990, Lecture
Notes in Computer Science V.458, pages 401-415, Berlin, 1990. Springer Verlag.

M. Mukund and M. Nielsen. CCS, locations and asynchronous transition sys-
tems. In R.K. Shyamasundar, editor, Proceedings of Foundations of Software Tech-
nology and Theoretical Computer Science, 12th Conference, New Delhi, India, Decem-
ber 18-20, 1992, LNCS, Vol. 652, pages 328-341, Berlin, 1992. Springer Verlag.

D. Murphy. Observing located concurrency. In A.M. Borzyszkowski and
S. Sokolowski, editors, Proceedings of Mathematical Foundations of Computer Sci-
ence 1993, 18th International Symposium, MFCS’93, Gdansk, Poland, August 30 -
September 3, 1993, LNCS, Vol. 711, pages 566-576, Berlin, 1993. Springer Verlag.

R. de Nicola and FW. Vaandrager. Action versus state based logics for tran-
sition systems. In I. Guessarian, editor, Proceedings of Semantics of Systems of
Concurrent Processes, LNCS Vol. 469, pages 407-419, Berlin, 1990. Springer Ver-
lag.

X. Nicollin and J. Sifakis. An overview and synthesis on timed process alge-
bras. In K. Larsen and A. Skou, editors, Proc. CAV’91 3rd International Workshop
Computer Aided Verification, Alborg, Denmark, July 1991 (LNCS 575), pages 376—
398, Berlin, 1992. Springer Verlag.

X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time specifications into
extended automata. IEEE Transactions on Software Engineering, 18(9):794-804,
September 1992,

M. Nielsen. CCS and its relationship to net theory. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Applications and Relationships to Other Models
of Concurrency, Advances in Petri Nets 1986, Part 11, Proceedings of an Advanced
Course, Bad Honnef, September 1986, LNCS, Vol. 255, pages 393-415, Berlin, 1987.
Springer Verlag.

T. Nipkow and L.C. Paulson. lIsabelle-91. In D. Kapur, editor, Proceedings of
the 11th International Conference on Automated Deduction, Saratoga Springs, NY,
LNAI 607, pages 673-676. Springer Verlag, 1992.

Telecommunication Standardization Sector of ITU. CCITT Recommendation
Z.100: Specification and Description Language (SDL). International Telecommu-
nication Union, General Secretariat - Sales Section, Places des Nation, CH-1211
Geneva 20, 1988.

S. Owre, J. Rushby, and N. Shankar. PVS: a prototype verification system.
In D. Kapur, editor, Proc. 11th International Conference on Automated Deduction

BIBLIOGRAPHY 253

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

(CADE) Lecture Notes in Artificial Intelligence Vol. 607, pages 748-752. Springer
Verlag, June 1992.

D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proc. 5th Gl Conference LNCS Vol. 104, pages 167-183, Berlin, 1981.
Springer Verlag.

G.D. Plotkin. A struoctural approach to operational semantics. Technicoal Re-
port DAIMI FN-19, Arhus University, Computer Science Department, Arhus,
Denmark, 1981.

A. Pnueli. The temporal logic of programs. In Proc. Of the 18th Annual Sympo-
sium on Foundations of Computer Science, pages 46-57. IEEE Computer Society
Press, 1977.

P.H.A. van der Putten and J.P.M. Voeten. Specification of Reactive Hardware / Soft-
ware Systems. PhD thesis, Eindhoven University of Technology, Department of
Electrical Engineering, 1997.

Y.S. Ramakrishna, P.M. Melliar-Smith, L.E. Moser, L.K. Dillon, and G. Kutty.
Interval logics and their decision procedures part I1: a real-time interval logic.
Theoretical Computer Science, 170(1-2):1-46, december 1996.

J.-F. Raskin and P.-Y. Schobbens. State clock logic: A decidable real-time
logic. In Proc. Hybrid and Real-Time Systems HART 97, pages 33-47, Berlin, 1997.
Springer.

G.M. Reed and A.W. Roscoe. A timed model for communicating sequential
processes. Theoretical Computer Science, 58:249-261, 1988.

E.A.J. Reuter. Specification of a distributed real-time reactive control system,
using Software/Hardware Engineering method. Master’s thesis, Faculty of
Electrical Engineering, Eindhoven University of Technology, 1997.

I. Satoh and M. Tokoro. A formalism for real-time concurrent object-oriented
computing. In Proceedings of OOPSLA’92, pages 315-326, 1992.

R. Schlér and W. Damm. Specification and verification of system-level hard-
ware designs using timing diagrams. In Proc. European Conference on Design
Automation Paris, France, February 22-25, 1993, pages 518-524. IEEE Computer
Society Press, 1993.

S. Schwiderski, T. Hartmann, and G. Saake. Monitoring temporal precondi-
tions in a behaviour oriented object model. Data & Knowledge Engineering,
14(2):143-186, 1994,

A.P. Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of
Computing, 6:495-511, 1994.

S. Somé and R. Dssouli. From scenarios to timed automata: Building specifica-
tions from users requirements. In Proceedings of Asia Pacific Software Engineering
Conference, Pages 48-57, 1995, pages 48-57, Los Alamitos, 1995. IEEE Computer
Society Press.

254

BIBLIOGRAPHY

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

F. Somenzi and R. Bloem. Efficient Blichi automata from LTL formulae. InE. A.
Emerson and A. P. Sistla, editors, Proceedings of Computer Aided Verification, 12th
International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, pages
248-263, Berlin, 2000. Springer.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Mas-
sachusetts, 1992,

H. Tauriainen. A randomized testbench for algorithms translating linear tem-
poral logic formulae into Bichi automata. In Proceedings of the Workshop Con-
currency, Specification and Programming 1999 (CS&P’99), pages 251-262. Warsaw
University, September 1999.

J.N. van Tetrode. Implementing pPoosL in C++. Master’s thesis, Eindhoven
University of Technology, Faculty of Electrical Engineering, 1997.

B.D. Theelen. Towards modelling optical WDM transport networks. Master’s
thesis, Faculty of Electrical Engineering, Eindhoven University of Technology,
1999.

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science Vol., pages 133-191. Elsevier Science Publishers
(North Holland), 1990.

H. Toetenel, R.L. Spelberg, S. Stuurman, and J. van Katwijk. Modeling and
analysis of complex computer systems - the MTCCS approach. In Proceedings of
the Second IEEE International Conference on Engineering of Complex Computer Sys-
tems, 1996, pages 423-430, Los Alamitos, 1996. IEEE Computer Society Press.

S. Tripakis and C. Courcoubetis. Extending Promela and Spin for real-time.
In T. Margaria and B. Steffen, editors, Tools and Algorithms for Construction
and Analysis of Systems, Second International Workshop, TACAS ’96, Passau, Ger-
many, March 27-29, 1996, Proceedings. LNCS 1055., pages 329-348, Berlin, 1996.
Springer.

I. Ulidowski and I. Phillips. Formats of ordered SOS rules with silent actions.
In M. Bidoit and M. Dauchet, editors, Proceedings of the 7th International Con-
ference on Theory and Practice of Software Development TAPSOFT’97, Lille, France,
LNCS 1214. Springer Verlag, 1997.

I. Ulidowski and S. Yuen. Extending process languages with time. In M. John-
son, editor, Proceedings of the 6th International Conference on Algebraic Methodol-
ogy and Software Technology AMAST’97 Sydney, Australia, LNCS 1349. Springer
Verlag, 1997.

UML.: Unified modelling language. rational software corporation, 1997. Avail-
able viawww: htt p: //ww. rati onal . conf um .

M.Y. Vardi. Alternating automata: Checking truth and validity for temporal
logics. In W. McCune, editor, Proc. 14th Int. Conf. On Automated Deduction,
Townsville Australia, pages 191-206. Springer Verlag, 1997.

BIBLIOGRAPHY 255

[178]

[179]

M.Y. Vardi and P. Wolper. An Automata-Theoretic approach to automatic pro-
gram verification. In Proc. Of Logic in Computing Science, 1986.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115:1-37, 1994.

[180] J.P.M. Voeten, M.C.W. Geilen, L.J. van Bokhoven, P.H.A. van der Putten, and

[181]

[182]

[183]

[184]

[185]

M.P.J. Stevens. A probabilistic real-time calculus for performance evaluation.
In G. Horton, D. Méller, and U. Ride, editors, Proceedings of the 11th Euro-
pean Simulation Symposium 1999, Erlangen, Germany, pages 608-617, Delft, The
Netherlands, 1999. SCS.

C.H. West. Protocol validation in complex systems. Computer Communication
Review, 19(4):303-312, 1989.

F.N. van Wijk. A poosL model of the MASCARA steady state control. Master’s
thesis, Faculty of Electrical Engineering, Eindhoven University of Technology,
1999.

G. Winskel. The Formal Semantics of Programming Languages. An Introduction.
Foundations of Computing. The MIT Press, Cambridge, Massachusetts, 1993.

P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation
paths. In Proceedings of 24th IEEE Symposium on Foundation of Computer Science,
Tuscan, pages 185-194, 1983.

C.H. Yang and D.L. Dill. Validation with guided search of the state space.
In Proceedings of the 35th Conference on Design Automation, Moscone Center, San
Francisco, California, USA, June 15-19, 1998, pages 599-604. ACM Press, 1998.

[186] W. Yi. Real-time behaviour of asynchronous agents. In Proceedings of CON-

CUR90 (International Conference on Concurrency Theory), Amsterdam, LNCS 458.
Springer Verlag, 1990.

256 BIBLIOGRAPHY

List of Publications

e M.C.W. Geilen. On the construction of monitors for temporal logic proper-
ties. In K. Havelund and G. Rosu, editors, Proceedings of RV’01 - First Workshop
on Runtime Verification. Satellite Workshop of CAV’01. July 23, 2001 Paris,
France. Electronic Notes in Theoretical Computer Science 55(2) , Amsterdam,
2001. Elsevier Science.

e M.C.W. Geilen, J.P.M. Voeten, P.H.A. van der Putten, L.J. van Bokhoven, and
M.P.J. Stevens. Object-oriented modelling and specification using SHE. Journal
of Computer Languages 27(1-3), pages 19-38, Amsterdam, 2001. Elsevier Science.

e M.C.W. Geilen. Non-exhaustive model-checking in component based systems.
Journal of Systems Architecture : the EUROMICRO Journal (to be published).

e M.C.W. Geilen and D.R. Dams. An on-the-fly tableau construction for a real-
time temporal logic. In M. Joseph, editor, Proceedings of the Sixth Interna-
tional Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems,
FTRTFT2000, 20-22 September 2000 Pune, India, LNCS 1926, pages 276-290, Berlin,
2000. Springer Verlag.

e M.C.W. Geilen. Model-checking in simulations of distributed Systems. In
D.P.F. Mdller, editor, Proceedings of 12th European Simulation Symposium ESS
2000, Hamburg, Germany Sept. 28-30, 2000, pages 606—611, 2000, Society for
Computer Simulation International.

e M.C.W. Geilen and J.P.M. Voeten. Object-oriented modelling and specification
using SHE. In R.C. Backhouse and J.C.M. Baeten, editors, Proceedings of the
First International Symposium on Visual Formal Methods VFM’99, pages 16-24.
Computing Science Reports 99/08 Department of Mathematics and Computer
Science, Eindhoven University of Technology, 1999.

e M.C.W. Geilen. Formal models for encapsulation, structure and hierarchy in
distributed systems. In J.P. Veen, editor, Proceedings of the 10th Annual Work-
shop on Circuits, Systems and Signal Processing, Mierlo, The Netherlands, November
24-26, 1999, pages 155-166, Utrecht, The Netherlands, 1999. STW/IEEE Tech-
nology Foundation.

e M.C.W. Geilen, D.R. Dams, and J.P.M. Voeten. Applying verification meth-
ods to non-exhaustive verification of software/hardware systems. InJ. Veen,
editor, Proceedings of CSSP-98, 9th Annual ProRISC/IEEE Workshop on Circuits,

258 BIBLIOGRAPHY

Systems and Signal Processing Mierlo, Netherlands, November 25-27, 1998, pages
177-183, Utrecht, The Netherlands, 1998. STW, Technology Foundation.

e M.C.W. Geilen and J.P.M. Voeten. Real-time concepts for a formal specification
language for software / hardware systems. In Proceedings of ProRISC 1997,
Utrecht, 1997. STW, Technology Foundation.

Curriculum Vitae

Marc Geilen was born on October 24th, 1972 in Sittard, the Netherlands. In 1991
he graduated from the Serviam Lyceum in Sittard for the gymnasium-3 program.
From 1991 he was a student in Information Technology at the Faculty of Electri-
cal Engineering, Eindhoven University of Technology, where he received his degree
with honours in 1996. From 1996 to 2000 he has worked as a Ph.D. student at the
Information and Communication Systems Group at the same department.

In the period from September 2000 to January 2002, he held a position as an assistant
professor in the Information and Communication Systems group in the field of for-
mal verification of reactive systems. As of February 2002 he is active as a researcher
in the European IST project Ozone, “New Technologies and Services for Emerging
Nomadic Societies”, where he focusses on programming paradigms for multipro-
cessor systems. His research interests include validation and (formal) verification,
real-time systems, system-level modelling, simulation and programming paradigms
for concurrent systems.

260 BIBLIOGRAPHY

Index

abstract grammar, see grammar, abstract
acceptance

Buichi, 36

generalised, 37

action

extended, 96
action request, see request, action
action urgency, 23
actions, 27
active timer, see timer, active
alphabet, 19
APS, see Automatic Protection Switch-

ing

Automatic Protection Switching, 41
automaton, 36

deterministic, 38

language, 37

run, 37

tableau, 114

complete, 133

timed, 38, 183

timed run, 40

untimed, 36

Backus-Naur Form, 17
bad prefix, see prefix, bad
bisimulation, 25
strong, 25
strong timed, 26
timed, 26
weak, 26
weak timed, 26
BNF, see Backus-Naur Form
Blchi acceptance, see acceptance, Biichi

calculus
component, 97
Calculus of Communicating Systems,
27

CCs, 27

closure set, 186

cluster, 105

cluster class, 95

CompCalc, 97

complete tableau, see tableau, complete

complete tableau automaton, see au-
tomaton, tableau, complete

completeness, 130, 190

component calculus, see calculus, com-
ponent

component identifier, 94

component processes, see processes, com-
ponent

conames, 27

concrete grammar, see grammar, con-
crete

consistency

local, 129, 132, 167, 189
temporal, 129, 130, 133, 168

dense, 20

derivation tree, 18

deterministic automaton, see automa-
ton, deterministic

diamond property, 88

discrete, 20

disjunctive temporal normal form, 141,
177

DTNF, see disjunctive temporal normal
form

dynamic processes, see processes, dy-
namic

equivalence
syntactic, 18
equivalences, 24
extended action, see action, extended
extended label, see label, extended

262 INDEX
extended location, see location, extended maximal progress, 23
MITL, 160
finite state automaton, see automaton MITL<, 160
Fischer-Ladner closure, 132 modal logic, see temporal logic
function, 16
partial, 16 names, 27
. o natural induction, see induction, natu-
generalised Buchi acceptance, see ac- ral

ceptance, Buchi, generalised
good prefix, see prefix, good
grammar, 17
abstract, 18
concrete, 18

identifier, 94
fully qualified, 95
Impl, 79
induction, 17
mathematical, 18
natural, 18
structural, 19
informative bad prefix, see prefix, bad,
informative
informative prefix, see prefix, informa-
tive
informative sequence, 152
interval, 20
interval sequence, 20

jobshop example, 46, 47

label
extended, 95
labelled transition system, 21
timed, 22
untimed, 21
labels, 27
language, 19
linear temporal logic, 33
liveness property, see property, liveness
local consistency, see consistency, local
location, 36
extended, 39
logic
propositional, 147
LTS, see labelled transition system

mathematical induction, see induction,
mathematical

negation normal form, 34

non-complete tableau, see tableau, non-
complete

non-determinism, 73

non-exhaustive verification, see verifi-
cation, non-exhaustive

non-trivial ¢ set, 132

non-trivial set, see set, non-trivial

normal form

extended real-time temporal logic,

176

w-automaton, see automaton, untimed
w-language, 19

w-word, 19

on-the-fly tableau, see tableau, on-the-

fly
overview thesis, 12

partial function, see function, partial
persistency, 23
@-fine run, see run, @-fine
PL, 147
Plotkin, 28
PoostL, 83
positive normal form, 34
prefix
bad, 119, 120, 151
informative, 120
good, 120, 151
informative, 152
process, 105
process algebra, see process calculus
process calculus, 27
semantics, 28
syntax, 27
process class, 95
process constant, 27
processes
component, 94

INDEX 263
dynamic, 46 structural operational semantics, 28
static, 47 subformulas, 165

property, 120 suffix
liveness, 120 timed word, 21
safety, 120 Synchronous Digital Hierarchy, 41

propositional logic, see logic, proposi- syntactic equivalence, see equivalence,

tional syntactic
syntax
real-time temporal logic, see temporal MITL<, 160
logic, real-time extended real-time temporal logic

relation , 175
binary, 16 PL, 147

request, 66 syntax of MITL<, see syntax, MITL<
action, 66
time, 67 tableau

run, 37 complete, 127
@-fine, 138 non-complete, 139
timed, 184 on-the-fly, 139

safety property, see property, safety
scheduler, 77
SDH, see Synchronous Digital Hierar-
chy
semantics
MITL<, 160
extended real-time temporal logic,
176
semantics of MITL <, see semantics, MITL<
sequence
informative
timed, 203
set, 15
non-trivial, 130, 167, 189
trivial, 130, 167
SHESiIm, 83
silent action, 96
simulation, 117
StatCalc, 48
state sequence, 33
timed, 35
state-space explosion, 5, 115
static processes, see processes, static
strong bisimulation, see bisimulation,
strong
strong timed bisimulation, see bisimu-
lation, strong timed
structural induction, see induction, struc-
tural

tableau automaton, see automaton, tableau
real-time
unrestricted, 191
tableau construction, 114
temporal consistency, see consistency,
temporal
temporal logic, 32
real-time, 35
time, 19
time additivity, 23
time continuity, 23
time determinism, 23
time domain, 19, 87
time request, see request, time
time-closure, 78
timed automaton, see automaton, timed
language, 40
timed bisimulation, see bisimulation,
timed
timed informative sequence, see sequence,
informative, timed
timed run, see automaton, timed run,
see run, timed
timed state sequence, see state sequence,
timed
timed trace, 23
timed word, 21
timed word, equivalence, 21
timer
active, 173

264

INDEX

timer condition, 39
timer setting, 39
timer valuation, 39
TLTS, see labelled transition system, timed
total function, see function, total
trace, 22
timed, 23
transition type, 183
trivial 1 set, 133
trivial set, see set, trivial
typical element, 16

unrestricted real-time tableau automa-
ton, see tableau automaton, real-
time, unrestricted

verification
non-exhaustive, 116

weak bisimulation, see bisimulation, weak

weak timed bisimulation, see bisimu-
lation, weak timed

word, 19

Zeno of Elea, 23
Zenoness, 23

	Contents
	Summary
	Samenvatting
	Acknowledgements
	1. Introduction
	2. Preliminaries
	3. A calculus for real-time concurrent systems
	4. Executing real-time concurrent models
	5. Structure and behaviour of components
	6. Automata theoretic verification
	7. The tableau method for linear temporal logic
	8. Tableaux for a real-time temporal logic
	9. Conclusion
	Appendix A
	Appendix B
	Bibliography
	List of publications
	Curriculum VItae
	Index

