74 research outputs found

    On the energy self-sustainability of IoT via distributed compressed sensing

    Get PDF
    This paper advocates the use of the distributed compressed sensing (DCS) paradigm to deploy energy harvesting (EH) Internet of Thing (IoT) devices for energy self-sustainability. We consider networks with signal/energy models that capture the fact that both the collected signals and the harvested energy of different devices can exhibit correlation. We provide theoretical analysis on the performance of both the classical compressive sensing (CS) approach and the proposed distributed CS (DCS)-based approach to data acquisition for EH IoT. Moreover, we perform an in-depth comparison of the proposed DCS-based approach against the distributed source coding (DSC) system. These performance characterizations and comparisons embody the effect of various system phenomena and parameters including signal correlation, EH correlation, network size, and energy availability level. Our results unveil that, the proposed approach offers significant increase in data gathering capability with respect to the CS-based approach, and offers a substantial reduction of the mean-squared error distortion with respect to the DSC system

    Research and developments of distributed video coding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The recent developed Distributed Video Coding (DVC) is typically suitable for the applications such as wireless/wired video sensor network, mobile camera etc. where the traditional video coding standard is not feasible due to the constrained computation at the encoder. With DVC, the computational burden is moved from encoder to decoder. The compression efficiency is achieved via joint decoding at the decoder. The practical application of DVC is referred to Wyner-Ziv video coding (WZ) where the side information is available at the decoder to perform joint decoding. This join decoding inevitably causes a very complex decoder. In current WZ video coding issues, many of them emphasise how to improve the system coding performance but neglect the huge complexity caused at the decoder. The complexity of the decoder has direct influence to the system output. The beginning period of this research targets to optimise the decoder in pixel domain WZ video coding (PDWZ), while still achieves similar compression performance. More specifically, four issues are raised to optimise the input block size, the side information generation, the side information refinement process and the feedback channel respectively. The transform domain WZ video coding (TDWZ) has distinct superior performance to the normal PDWZ due to the exploitation in spatial direction during the encoding. However, since there is no motion estimation at the encoder in WZ video coding, the temporal correlation is not exploited at all at the encoder in all current WZ video coding issues. In the middle period of this research, the 3D DCT is adopted in the TDWZ to remove redundancy in both spatial and temporal direction thus to provide even higher coding performance. In the next step of this research, the performance of transform domain Distributed Multiview Video Coding (DMVC) is also investigated. Particularly, three types transform domain DMVC frameworks which are transform domain DMVC using TDWZ based 2D DCT, transform domain DMVC using TDWZ based on 3D DCT and transform domain residual DMVC using TDWZ based on 3D DCT are investigated respectively. One of the important applications of WZ coding principle is error-resilience. There have been several attempts to apply WZ error-resilient coding for current video coding standard e.g. H.264/AVC or MEPG 2. The final stage of this research is the design of WZ error-resilient scheme for wavelet based video codec. To balance the trade-off between error resilience ability and bandwidth consumption, the proposed scheme emphasises the protection of the Region of Interest (ROI) area. The efficiency of bandwidth utilisation is achieved by mutual efforts of WZ coding and sacrificing the quality of unimportant area. In summary, this research work contributed to achieves several advances in WZ video coding. First of all, it is targeting to build an efficient PDWZ with optimised decoder. Secondly, it aims to build an advanced TDWZ based on 3D DCT, which then is applied into multiview video coding to realise advanced transform domain DMVC. Finally, it aims to design an efficient error-resilient scheme for wavelet video codec, with which the trade-off between bandwidth consumption and error-resilience can be better balanced

    On the Energy Self-Sustainability of IoT via Distributed Compressed Sensing

    Get PDF
    This paper advocates the use of the distributed compressed sensing (DCS) paradigm to deploy energy harvesting (EH) Internet of Thing (IoT) devices for energy self-sustainability. We consider networks with signal/energy models that capture the fact that both the collected signals and the harvested energy of different devices can exhibit correlation. We provide theoretical analysis on the performance of both the classical compressive sensing (CS) approach and the proposed distributed CS (DCS)-based approach to data acquisition for EH IoT. Moreover, we perform an in-depth comparison of the proposed DCS- based approach against the distributed source coding (DSC) system. These performance characterizations and comparisons embody the effect of various system phenomena and parameters including signal correlation, EH correlation, network size, and energy availability level. Our results unveil that, the proposed approach offers significant increase in data gathering capability with respect to the CS-based approach, and offers a substantial reduction of the mean-squared error distortion with respect to the DSC system

    Adaptive Key frame Rate Allocation for Distributed Video Coding

    Get PDF
    In the context of Distributed Video Coding (DVC), rate allocation among sources represents an important problem to solve. While in the information theoretical setting of Distributed Source Coding (DSC) the statistical correlation between sources is usually assumed to be known, in practical DVC systems there is no a priori knowledge of the underlying statistics of visual data. This lack of information makes it difficult to deal with the problem of rate allocation in practical DVC codecs. In this paper we focus on the problem of how to distribute the rate between differently encoded parts of the video sequence in a DVC system. Namely, we propose an adaptive rate allocation scheme for the encoding of the key frames depending on an estimation of the local motion activity of the sequence

    Layered Wyner-Ziv video coding for noisy channels

    Get PDF
    The growing popularity of video sensor networks and video celluar phones has generated the need for low-complexity and power-efficient multimedia systems that can handle multiple video input and output streams. While standard video coding techniques fail to satisfy these requirements, distributed source coding is a promising technique for ??uplink?? applications. Wyner-Ziv coding refers to lossy source coding with side information at the decoder. Based on recent theoretical result on successive Wyner-Ziv coding, we propose in this thesis a practical layered Wyner-Ziv video codec using the DCT, nested scalar quantizer, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information) for noiseless channel. The DCT is applied as an approximation to the conditional KLT, which makes the components of the transformed block conditionally independent given the side information. NSQ is a binning scheme that facilitates layered bit-plane coding of the bin indices while reducing the bit rate. LDPC code based Slepian-Wolf coding exploits the correlation between the quantized version of the source and the side information to achieve further compression. Different from previous works, an attractive feature of our proposed system is that video encoding is done only once but decoding allowed at many lower bit rates without quality loss. For Wyner-Ziv coding over discrete noisy channels, we present a Wyner-Ziv video codec using IRA codes for Slepian-Wolf coding based on the idea of two equivalent channels. For video streaming applications where the channel is packet based, we apply unequal error protection scheme to the embedded Wyner-Ziv coded video stream to find the optimal source-channel coding trade-off for a target transmission rate over packet erasure channel

    Distributed signal processing using nested lattice codes

    No full text
    Multi-Terminal Source Coding (MTSC) addresses the problem of compressing correlated sources without communication links among them. In this thesis, the constructive approach of this problem is considered in an algebraic framework and a system design is provided that can be applicable in a variety of settings. Wyner-Ziv problem is first investigated: coding of an independent and identically distributed (i.i.d.) Gaussian source with side information available only at the decoder in the form of a noisy version of the source to be encoded. Theoretical models are first established and derived for calculating distortion-rate functions. Then a few novel practical code implementations are proposed by using the strategy of multi-dimensional nested lattice/trellis coding. By investigating various lattices in the dimensions considered, analysis is given on how lattice properties affect performance. Also proposed are methods on choosing good sublattices in multiple dimensions. By introducing scaling factors, the relationship between distortion and scaling factor is examined for various rates. The best high-dimensional lattice using our scale-rotate method can achieve a performance less than 1 dB at low rates from the Wyner-Ziv limit; and random nested ensembles can achieve a 1.87 dB gap with the limit. Moreover, the code design is extended to incorporate with distributed compressive sensing (DCS). Theoretical framework is proposed and practical design using nested lattice/trellis is presented for various scenarios. By using nested trellis, the simulation shows a 3.42 dB gap from our derived bound for the DCS plus Wyner-Ziv framework

    A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    Get PDF
    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks
    • …
    corecore