1,864 research outputs found

    An opportunistic void avoidance routing protocol for underwater sensor networks

    Get PDF

    An effective data-collection scheme with AUV path planning in underwater wireless sensor networks

    Get PDF
    Data collection in underwater wireless sensor networks (UWSNs) using autonomous underwater vehicles (AUVs) is a more robust solution than traditional approaches, instead of transmitting data from each node to a destination node. However, the design of delay-aware and energy-efficient path planning for AUVs is one of the most crucial problems in collecting data for UWSNs. To reduce network delay and increase network lifetime, we proposed a novel reliable AUV-based data-collection routing protocol for UWSNs. The proposed protocol employs a route planning mechanism to collect data using AUVs. The sink node directs AUVs for data collection from sensor nodes to reduce energy consumption. First, sensor nodes are organized into clusters for better scalability, and then, these clusters are arranged into groups to assign an AUV to each group. Second, the traveling path for each AUV is crafted based on the Markov decision process (MDP) for the reliable collection of data. The simulation results affirm the effectiveness and efficiency of the proposed technique in terms of throughput, energy efficiency, delay, and reliability. © 2022 Wahab Khan et al

    Self-Organized Ad Hoc Mobile (SOAM) Underwater Sensor Networks.

    Get PDF
    Política de acceso abierto tomada de: https://beta.sherpa.ac.uk/id/publication/3570The need of underwater wireless sensor networks (UWSNs) having mobile sensor nodes has been there for a long time in form of underwater warfare or explorations by autonomous underwater vehicles (AUVs) or remote unmanned vehicles (ROVs). There are very few protocols for ad hoc mobile UWSNs (AMUWSNs). Designing a protocol for AMUWSN is quite challenging because of continuous random movement of the sensor nodes. In addition to random movement, the challenges to design a routing protocol for AMUWSN are more demanding than terrestrial ad hoc networks due to acoustic communications, which has large propagation delay in water. In this article, we present a self-organized ad hoc mobile (SOAM) routing protocol for AMUWSN. The sensor nodes may need to communicate with each other to the gateway (GW). The protocol, which we also refer to as SOAM, is a reactive, self-configuring, and self-organizing cluster-based routing protocol that uses received signal strength (RSS) for distance estimation. A beacon (BCN) packet will be sent by the GW, which will traverse through all the cluster heads (CHs) to form forwarding paths between the GW and the CHs. The ordinary sensor nodes (OSNs) will select the CHs every time they intend to forward a packet based on the BCN and they will receive from CHs. The formation of the forwarding path between the GW and the CHs and the selection CHs by OSN is explained in Section IV

    Self-Organizing and Scalable Routing Protocol (SOSRP) for Underwater Acoustic Sensor Networks

    Get PDF
    Las redes de sensores acústicas submarinas (UASN) han ganado mucha importancia en los últimos años: el 71% de la superficie de la Tierra está cubierta por océanos. La mayoría de ellos, aún no han sido explorados. Aplicaciones como prospección de yacimientos, prevención de desastres o recopilación de datos para estudios de biología marina se han convertido en el campo de interés para muchos investigadores. Sin embargo, las redes UASN tienen dos limitaciones: un medio muy agresivo (marino) y el uso de señales acústicas. Ello hace que las técnicas para redes de sensores inalámbricas (WSN) terrestres no sean aplicables. Tras realizar un recorrido por el estado del arte en protocolos para redes UASN, se propone en este TFM un protocolo de enrutamiento denominado "SOSRP", descentralizado y basado en tablas en cada nodo. Se usa como criterio para crear rutas una combinación del valor de saltos hasta el nodo recolector y la distancia. Las funciones previstas del protocolo abarcan: autoorganización de las rutas, tolerancia a fallos y detección de nodos aislados. Mediante la implementación en MATLAB de SOSRP así como de un modelo de propagación y energía apropiados para entorno marino, se obtienen resultados de rendimiento en distintos escenarios (variando nºextremo de paquetes, consumo de energía o longitud de rutas creadas (con y sin fallo). Los resultados obtenidos muestran una operación estable, fiable y adecuada para el despliegue y operación de los nodos en redes UASN

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    DOW-PR dolphin and whale pods routing protocol for underwater wireless sensor networks (UWSNs)

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) have intrinsic challenges that include long propagation delays, high mobility of sensor nodes due to water currents, Doppler spread, delay variance, multipath, attenuation and geometric spreading. The existing Weighting Depth and Forwarding Area Division Depth Based Routing (WDFAD-DBR) protocol considers the weighting depth of the two hops in order to select the next Potential Forwarding Node (PFN). To improve the performance of WDFAD-DBR, we propose DOlphin and Whale Pod Routing protocol (DOW-PR). In this scheme, we divide the transmission range into a number of transmission power levels and at the same time select the next PFNs from forwarding and suppressed zones. In contrast to WDFAD-DBR, our scheme not only considers the packet upward advancement, but also takes into account the number of suppressed nodes and number of PFNs at the first and second hops. Consequently, reasonable energy reduction is observed while receiving and transmitting packets. Moreover, our scheme also considers the hops count of the PFNs from the sink. In the absence of PFNs, the proposed scheme will select the node from the suppressed region for broadcasting and thus ensures minimum loss of data. Besides this, we also propose another routing scheme (whale pod) in which multiple sinks are placed at water surface, but one sink is embedded inside the water and is physically connected with the surface sink through high bandwidth connection. Simulation results show that the proposed scheme has high Packet Delivery Ratio (PDR), low energy tax, reduced Accumulated Propagation Distance (APD) and increased the network lifetime

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research
    corecore