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Data collection in underwater wireless sensor networks (UWSNs) using autonomous underwater vehicles (AUVs) is a more
robust solution than traditional approaches, instead of transmitting data from each node to a destination node. However, the
design of delay-aware and energy-efficient path planning for AUVs is one of the most crucial problems in collecting data for
UWSNs. To reduce network delay and increase network lifetime, we proposed a novel reliable AUV-based data-collection
routing protocol for UWSNs. The proposed protocol employs a route planning mechanism to collect data using AUVs. The
sink node directs AUVs for data collection from sensor nodes to reduce energy consumption. First, sensor nodes are organized
into clusters for better scalability, and then, these clusters are arranged into groups to assign an AUV to each group. Second,
the traveling path for each AUV is crafted based on the Markov decision process (MDP) for the reliable collection of data. The
simulation results affirm the effectiveness and efficiency of the proposed technique in terms of throughput, energy efficiency,
delay, and reliability.

1. Introduction

In the last decade, most systems have been investigated for
dynamic environment. Probably, the most popular system
in this area is the underwater wireless sensor network, which
refers to the organized interconnection between various sen-
sor nodes and other devices such as autonomous underwater
vehicles (AUVs), which are situated in an observing domain
to offer explicit applications, e.g., data collection without the
intervention of humans [1–4]. Recent developments in vari-
ous hardware and software technologies have provided
underwater sensor nodes with identifying, sensing, process-
ing, computing, and networking capabilities. Therefore, the
UWSN vision includes many applications such as navigation,
object localization, detection of mines, and environmental
pollution monitoring [5–8]. AUVs are widely employed for
these applications in gathering data from UWSNs. An AUV

that acts as a mobile sink may efficiently minimize sensor
node transmission energy; the AUV could travel to the mon-
itoring area for data gathering from the sensor node using a
specified path plan. The AUV would travel, gather, and
return to the surface sink to upload the collected data effec-
tively. Figure 1 shows the UWSN [9].

In UWSNs, energy-efficient reliable data collection and
aggregation is one of the most critical challenges to meet
the requirements of quality of service (QoS), including trans-
mission delay, a priority of data, reliability, and energy con-
sumption [10]. Aggregation of data is an intelligent
technique that aggregates data from many UWSN sensor
nodes compressed by an aggregation feature to reduce the
amount of inserted data traffic in the network [11, 12]. The
prime objective of data aggregation is to execute an algo-
rithm at sensor nodes to reduce redundant packet transmis-
sion to the sink through AUVs, reduce data transmission
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delay, and improve energy use, ultimately enhancing net-
work lifetime. This method gives UWSNs three advantages:
(1) in the network, the injected data size is decreased; (2)
the delay will be substantially decreased; (3) the transfer of
fewer data will help nodes consume less energy, thus maxi-
mizing the lifetime of UWSNs.

Limited battery capacity affects sensor node lifespan and
decreases system efficiency [13]. Therefore, it is essential to
use an effective and energy-efficient data collection method
for effective and sustainable UWSN efficiency. As wireless
communications generate substantial amounts of energy
during data aggregation in UWSNs [14, 15], achieving an
efficient link between nodes and effective path planning of
AUVs for data collection is a significant challenge.

Most of the existing data-collection approaches in
UWSN can be categorized into hop-by-hop, cluster-based,
and AUV-assisted [16–18]. In hop-by-hop, data packets
are transmitted from the source sensor to the destination
in a hop-by-hop manner. However, redundant packets are
still a challenging issue in such approaches; therefore, we
introduced a clustering technique in the proposed scheme
to control the retransmission of packets. The cluster-based
strategies organize UWSN into clusters in which each cluster
head (CH) is designated to collect data from member sensor
nodes and forward it to the sink/AUV. Improved network
communication, well-organized topology management, and
energy efficiency are the advantages of the clustering
method. However, CH selection is a critical problem because
CH uses more energy to collect and aggregate data before
delivering it to its destination. The introduction of AUV is
a promising method to save the wasted energy of sensor
nodes during clustering. In AUV-based approaches, the sen-
sor nodes/CHs connect with an AUV to conduct the collec-

tion process, and the AUV then transfers the collected data
to the sink node. Due to regular AUV position changes,
the transmission of control packets to maintain connections
between all the sensor nodes, and the AUV results in a sub-
stantial amount of energy dissipation, which reduces the net-
work lifetime. Furthermore, the sensor nodes located closer
to the AUV use energy rapidly because of the repeated
single-hop packet transmission. On the other hand, the sen-
sor nodes far from the AUV sending data directly to the
AUV will also consume substantial energy. Therefore, a
cluster-based routing design can help minimize transmission
energy use.

Although the above methods minimize the energy con-
sumption and improve the life cycle of the UWSNs to some
extent, they face additional challenges, including data prior-
ity and transmission delay [19–21]. Collection of data has
different preferences, since underwater sensor nodes are
being installed at diverse locations in the surveillance envi-
ronment. Few sensor nodes can sense vital information that
needs to be collected faster; therefore, the demise of sensor
nodes with high priority data would have a larger effect on
network stability as compared to other nodes. In UWSN,
transmission delay can be specified as the time required to
receive all sensor node-generated packets to the sink. In
addition, in most of the current approaches in the literature,
the sensor nodes near the sink node die earlier than the
other sensor nodes, which are far from the sink node, mak-
ing the whole network useless [22]. Therefore, deploying
multiple AUVs is more efficient for resolving data priority
problems in UWSNs, transmission delay, energy restriction,
and heterogeneity [23, 24]. To use these AUVs effectively,
the path planning of each AUV is an essential task, and it
also affects network performance [25].
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Figure 1: Diagrammatic representation of AUV-based UWSN.
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In AUV-based UWSN, the data-collection path taken by
AUV could not be neglected. The parameters that rely on
the AUV path are energy consumption, network dispersion,
data-collection latency, and network lifetime. Fixing the
AUV traversal path does not ensure the best and optimal
path. To establish the optimal collecting path, we used the
traveling salesman problem (TSP) to design the AUV tra-
versal path from the sink to CHs. Many heuristic
approaches, such as simulated annealing, greedy method,
and genetic algorithm, have been employed to solve the
TSP efficiently. In our situation, MDP was used to solve
TSP by determining the optimum route to make it possible
for the AUV to reach the CHs and then return to the surface
sink. We also focused on the energy and data priority
parameters of CHs when proposing a traveling path.

Recently, research has been carried out on the AUV-
based data collection in UWSNs, such as the greedy and
adaptive AUV pathfinding (GAAP) protocol presented by
Gjanci et al. [26]. GAAP derives the AUV path to gather
the sensed information from nodes and transmits this infor-
mation to the sink node with the maximum value of infor-
mation (VoI). GAAP imitates the best routes and obtains
the volume of the data provided. Although it is ideal for
AUV to tour all the sensor nodes, its prolonged tour time
might cause delays in emergencies. Additionally, if AUV
travels to all the sensor nodes, AUV must wait until all infor-
mation is collected from each node before going into the
next sensor node. It is possible to conserve transmission
energy in UWSNs using AUVs to reach every sensor node
and collect data from them. However, this method creates
significant collection delays and limited throughput because
of low AUV velocity. Thus, AUV-based UWSNs need to
optimize network throughput and energy consumption. To
encounter these problems, we are driven not only to design
a path for an AUV to enhance network throughput and
decrease its traveling time but also to establish a network
in such a way that decreases energy consumption.

This article suggests an efficient data-collection protocol
for UWSN with AUV path planning based on the MDP
(APP-MDP). The following are the main steps of our
approach: to decrease AUV traveling time and increase
energy efficiency, we employ a clustering approach. Each
CH collects data from its member node and transfers it to
the AUV. After clustering, CHs will be selected based on
holding time, and then, the division of clusters into small
groups is the means of an angle-based approach. After
grouping, the sink node determines the MDP parameters
for each AUV. It then calculates the optimal policy using a
value-iteration process. This step helps with efficient path
planning for each AUV visiting their particular group of
CHs. The AUV transfers the collected data of CHs to the
sink node. The simulation results verify the efficiency of
our proposed scheme in optimizing energy consumption,
reliability, and data transfer relative to recent UWSN data-
collection approaches.

The main contributions of this article are summarized as
follows: (1) the development of an energy-efficient method
in UWSNs for the collection of data using AUVs; (2) the
clustering of sensor nodes, applying angle-based grouping

strategy to arrange CHs in nonoverlapping and energy-
efficient groups for providing an AUV; and (3) the develop-
ment of a novel efficient method of path planning for AUVs
using MDP to collect the data from CH groups.

The rest of the paper is arranged in the following man-
ner: Section 2 describes the related work. Section 3 describes
the network model and channel model. Section 4 describes
the proposed mechanism, and Section 5 describes the simu-
lation results and analysis.

2. Related Work

Data-gathering schemes are designed based on routing algo-
rithms. Earlier studies have proposed many data-gathering
schemes where the transmission of data is accumulated
using clustering schemes or data gathering using hop-by-
hop methods. In these methods, sensed information is sent
hop-by-hop alongside the routing tracks. In this way, rout-
ing schemes assume an essential role in these methodologies.
UWSN is unique concerning terrestrial wireless sensor net-
works (TWSN) because the sensor nodes drift with water
streams automatically underwater. The intended protocol
for TWSNs could not be functional for UWSNs straightfor-
wardly. In this manner, the research focuses on structuring
an AUV-based reliable and energy-proficient routing proto-
col. We divide the related work into the following
subsections.

2.1. Multihop Techniques. In multihop techniques, the
source node uses a relay node to direct the sensed data
towards the sink nodes, positioned on the water’s surface
using routing mechanisms like the shortest-distance strategy
and greedy approach. In HH-VBF [27], the direction of a
virtual pipeline between the forwarding node and destina-
tion node was established. Every time at the next hop, the
path of the virtual channel is adjusted to select the most
favorable forwarding node. Additionally, the packets are
transmitted through that vector, which was established in
this plan, because adaptive adjustment of the virtual pipeline
on hops will increase end-to-end delay, and much energy
will also be consumed.

To overcome the problem of end-to-end delay, the
authors in [28] anticipated a routing protocol layer-by-
layer angle-based flooding (L2-ABF). This is deployed in
layers and measures the sensor node depth. This method
uses the multihop technique where all sensor nodes convey
data to the destination node by calculating the flooding
angle. The appropriate next forwarding node is nominated
through the remaining energy. This paper attained a higher
packet delivery ratio, and the energy consumption is also
low. However, in any case, the decision of flooding angle is
a troublesome assignment, particularly in sparse regions. If
the flooding angle is not suitable, the possibility of transfer-
ring data may cause failure, so it was not appropriate in the
sparse areas. Yu et al. presented the AHH-VBF [29] protocol
for sparse regions. In this protocol, the radius of the virtual
pipeline is adaptively accommodated for packet broadcast-
ing. This protocol changes transmission power dynamically
according to the next forwarder to compute holding times
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from the source to destination nodes and reduce redundant
transmissions to diminish energy consumption. However,
each transmission of data through selected nodes will cause
the node to die earlier, determined each time for data for-
warding. Therefore, the network void hole problem occurs
due to higher energy consumption.

To overcome the void hole problem, 2hop-AHH-VBF
[30] considered various parameters such as the distance
between receiver and sender, residual energy of next appro-
priate node, a threshold value for the number of nodes in the
vector, and from a virtual vector, the distance of the chosen
node. The purpose is to avoid consecutively choosing the
same node. Well-organized battery dissipation is guaranteed
using appropriate node recommendations. Energy calcula-
tion is performed at every hop to oblige any adjustments
in the capacity for proper node determination as a next for-
warder to obtain better results regarding network
performance.

2.2. Clustering Approaches. For the reduction of end-to-end
delay and better energy efficiency, clustering is the most
capable method when planning the routing protocol for
UWSNs. In UWSNs, because of the sparse deployment of
sensors and harsh environments, clustering is not the same
as terrestrial networks. The clustering technique is incorpo-
rated to manage the restricted energy constraints in UWSNs.
A definitive goal of clustering is to separate the system into
tiny areas and make a group of nodes. Each cluster elects
one CH considering different parameters. CH totals the
detected information and transfers it to the target node (sink
node). Propagation distance between sensor nodes is
reduced using clustering because only the CHs send the
information, and these CHs have a small distance with each
other.

Furthermore, this limits the consumption of energy by
evading excess information packets. For communication
among different clusters, a reasonable topology ought to be
chosen. This determination relies upon the cluster size and
separation among the sink node and CH [31]. The ideal
number of clusters also influences UWSN execution. If the
clusters are fewer, this implies that the size of the cluster will
be bigger. In bigger estimated clusters, sensors beyond CH
desire additional energy to direct the information towards
CH. However, if the size of clusters is small, this will cause
communication overhead. Therefore, the size of the cluster
ought to be kept ideal, neither small nor huge. The perfect
number of groups will eventually lessen energy use and
improve system lifetime.

ACH2 is introduced in [32]. The primary factor of this
scheme is that it is a localization-free process where the
nodes are allied with CHs. This plan avoids back transmis-
sion and reduces propagation distance. This reduces energy
use and results in an improved system lifetime. In this
approach, first, based on a threshold value, CHs are chosen.
The ideal number of cluster heads is determined based on
the perfect distance; due to this method, the loads are
adjusted among different clusters. The authors in this article
have accomplished improved system lifetime and attained
maximum packet delivery ratio (PDR) for UWSNs. How-

ever, a high communication delay occurred in this plan. In
homogeneous networks, this strategy can be useful, but any
dynamicity or unbalance in WSNs might cause intensive
run-time issues, such as chronic energy consumption in spe-
cific CHs.

Clustering techniques are implemented in [33] for rout-
ing in UWSNs to improve network lifetime. Cluster-based
routing protocols comprise the CH selection process and
data communication process. First, the CH node is selected
based on sensor nodes’ residual energy and position infor-
mation. All the cluster members forward data to their
respective CH in its range in the data communication pro-
cess. The CH node then compresses aggregated data and
sends a composite compressed data packet to sink through
multihop communication. Moreover, a collision occurs in
data packet transmission, which is avoided using the time
division multiple access (TDMA) technique. Due to the
algorithm’s centralised nature, it caused high communica-
tion overheads.

2.3. AUV and Mobile Agent-Based Approaches. The authors
in [34] used the MDP paradigm to formulate the data-
collection problem in mobile wireless sensor networks. The
ideal movement routes for mobile agents collecting sensor
node readings are defined. The mobile agent’s location
determined the states. The monitoring region is divided into
a sector, and each mobile agent directs towards a predefined
sector to collect data. The reward function indicates the
node energy use and the number of readings gathered. The
simulation results indicate that the approach presented sur-
passes traditional approaches, such as TSP-based
approaches. However, the author did not consider the
importance of data and residual energy parameters while
formulating the MDP parameters. Due to less residual
energy, some nodes need importance to collect data, which
is why in our approach, we also include the importance of
data parameters during MDP parameter formulation.

A mobile geocast routing protocol (3-D ZOR) [35] has
been proposed for UWSNs, in which the network is distrib-
uted in 3-D ZOR areas. AUV is introduced to gather data
from nodes in its vicinity, and the geographic zone where
the AUV resides is called 3-D ZOR. At a predefined trajec-
tory, the AUV moves and gathers sensed information from
different 3-D ZORs. Sleep–awake mode is used by nodes
for data forwarding. The operation of the routing protocol
depends on two stages. First is collecting information from
sensor nodes inside the 3-D ZOR areas and in the other
phase wakes up those nodes to forward data to the AUV
in the next 3-D ZOR. Only nodes in the 3-D ZOR forward
data to the AUV to save the node power consumption. How-
ever, the authors did not consider that much nodes inside
the coverage region should be employed to deliver the packet
which is a key issue for this approach.

An AUV-based routing protocol in [36] has been pro-
posed for UWSNs. The authors assumed random deploy-
ment of identical sensor nodes in the network. The sensor
nodes then perform the clustering technique and mutually
elect a CH node in each cluster. Each CH node further
divides the clusters into subclusters and distinguishes a key
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data-collection node called the PN node. To achieve energy
conservation, AUV is introduced to gather data from PN.
Thus, data collection from PN is done instead of CH as in
conventional schemes. Therefore, using AUV for PN data
collection achieves efficient sensor node transmission. This
scheme enhances the data gain and diminishes the node’s
energy consumption. However, it experiences severe gather-
ing delay when contrasted with multihop transfer strategies.

In addition, Javaid et al. [37] proposed an AUV-based
routing protocol for UWSNs (AEDG) to maximize data reli-
ability in the network. In AEDG, sensor nodes are associated
with special nodes (called gateway nodes) using the shortest
path selection algorithm (SPA) to improve the network life-
time. All other nodes are associated with special nodes to
forward their sensed data. The special nodes accumulate
data from member nodes and then forward it to the AUV,
which consumes energy efficiently and ensures reliability.
Thus, the least number of normal nodes (member nodes)
is associated with special nodes to reduce overloading. The
AUV traveling ways are not ideal, and the coordinated effort
of AUVs between various GNs was an exceptionally trouble-
some assignment. The plan decreased the delay and member
node’s energy consumption; however, it might practice the
problem of a hot zone.

Cheng and Li anticipated a data-gathering plan that
underlined the significance of data [19]. The high load of
data forwarding from deep underwater nodes to sink
depletes their energy rapidly. The imbalanced energy expen-
diture of underwater nodes because of multihop transmis-
sion in deep water is efficiently mitigated by announcing
AUVs to collect data from deep underwater nodes. It iden-
tifies the importance level of data and then gathers data in
a distributed manner. A mechanism to swap layers is intro-
duced to effectively solve long time delay and imbalance
energy consumption problems by introducing AUVs for
data collection, improving network performance, and
achieving better network lifespan. Due to the extent of sig-
nificant data, the impact of delay and energy consumption
is unsatisfactory for the entire system.

For the most part, fewer researchers take hop-by-hop
transmission or clustering for data gathering alone; a large
portion of them have started to merge these two methods
to deal with configuring better data accumulation schemes.
In the future, when structuring novel methodologies, it is
essential to know strategies for individual points of advan-
tages and drawbacks. This article uses the benefits of differ-
ent transmission modes of underwater wireless networks to
show the interconnection between other sectors, which
empowers efficient and distributed data-collection schemes
from underwater nodes to the nodes at the water’s surface.
The ratio of data delivery underwater is meager, and the
BER is very high due to UWSN harsh environment. Delivery
ratio, energy consumption, and the bit error rate can be
enhanced using decent-quality links. Therefore, better path
planning with decent-quality links is a significant problem.

Clustering-based routing schemes extend the efficiency
of the network to some extent, such as network lifetime
and energy consumption. However, the challenges not con-
sidered during planning data aggregation schemes include

the delay of data transmission and the priority of data.
Moreover, it is already discussed in the above literature that
nodes near the sink consume energy faster than other sensor
nodes that are far from sink nodes. Therefore, it is crucial to
exploit the abilities of AUVs for the collection of data from
underwater sensor nodes.

3. Network Model

In this article, the UWSN is shown as M = ðN , LÞ, in which
N is the number of sensor nodes and L is the links among
sensor nodes. The networking area is considered to be A ×
A × A, and the sink node is placed at the surface in the cen-
ter. The sensor nodes are homogeneous and have the same
transmission capabilities. Sensor nodes are equally distrib-
uted around the networking area using a pressure gauge
[38]. Each node determines its position using existing local-
ization algorithms [39, 40], and the sink node knows the
location of nodes. A sensor node Si has the following
properties:

(i) Dij: Dij presents the Euclidean distance between the
sensor node Si and sensor node Sj, a fundamental
factor in ensuring effective path planning for data
collection through AUVs on UWSN

(ii) Dis: Dis is the Euclidean distance between sensor
node Si and the destination node, a sink node that
plays a vital part in recommending well-organized
path planning for AUVs in UWSNs. In this pro-
posed process, it is considered that the surface sink
nodes remain fixed at the surface of the networking
area, and the AUVs are repeatedly approaching or
retreating from it

(iii) REi: REi represents sensor node (Si) residual energy.
During the initialization of the network, each sensor
node has specific initial energy, which is dissipated
by packets sending/receiving and processing tasks
by the AUVs. The sink node energy is considered
to be unlimited

(iv) ßi: sensor node (Si) priority of data is demonstrated
by ßi. As various sensor nodes are deployed at dif-
ferent monitoring areas, UWSN data collection has
varying preferences. A sensor node provides critical
data that needs to be collected early. Specifically, if a
sensor node with high priority dies, the system’s sta-
bility is diminished when a sensor node with low
priority fails

(v) Tr: this is the sensor node transmission radius

The suggested environment has k AUVs for the collec-
tion of data from CHs. Each AUV overall memory size is
presumed to be P, while it has a space of memory repre-
sented by QP during data collection. The sensor nodes of
the network are divided into clusters. Each sensor node in
the network transmits its sensed information to its CH,
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which provides enough memory to buffer the data obtained
from cluster members. Additionally, the selected CHs are
supposed to be clustered into R groups. After defining clus-
ter head groups, for collection of data, sink node assigns
AUV for every group. Thus, the CH groups and AUVs are
equal in number, and this is represented by R. Table 1 lists
all the notations.

3.1. Channel Model. The UWSN channel is a challenging
communication medium due to poor communication qual-
ity and restricted bandwidth. The channel’s time-varying
and high-frequency selective aspects also make it challenging
to develop an effective communications strategy. Different
parameters influence the function of acoustic channels, such
as water depth, temperature, and salinity. Figure 2 [41]]
demonstrates the relationship between water depth and
acoustic speed using thermoclines. Equation (1) [42] shows
the acoustic signal speed:

S = 1555:85 + 3:481T − 4:204 × 10−2

T−2 + 3:26310−2T−3 + 1:230 Y − 25ð Þ + 1:53 ×
10−1D + 1:565 × 10−6D2 − 1:035 ×
10−2T S − 25ð Þ − 6:129 × 10−14TD3,

ð1Þ

where S demonstrates the acoustic signal speed, T represents
the temperature (0-28 degrees Celsius), Y reflects salinity
(30-40 parts per thousand), and D represents the water
depth (0-6000 meters). In UWSN, the acoustic channel
attenuation is described [24].

A d, f kð Þ = dρα f kð Þd , ð2Þ

where ρ is the fixed spreading factor 1.5 and d in meters. α
ð f kÞ represents the absorption coefficient, which could be
shown by the empirical formula of Thorpe [24]:

10 log α f kð Þ = 0:1f 2k
1 + f 2k

+ 40f 2k
4400 + f 2k

+ 2:75f 2k
104 + 0:0003:

ð3Þ

Equation (3) is ideal for high frequencies and equation
(4) for lower frequencies.

10 log α f kð Þ = 0:1f 2k
1 + f 2k

+ :01f 2k + :002: ð4Þ

The noise of underwater can be stated as [42]

N fð Þ = Nth fð Þ + Nw fð Þ + Nt fð Þ + Ns fð Þ, ð5Þ

where Nthð f Þ, Nwð f Þ, Ntð f Þ, and Nsð f Þ specify thermal,
waves, turbulence, and shipping noise. Mathematically, the
level of noise frequency is low, and the attenuation fre-
quency is high. The signal-to-noise ratio can be expressed as

SNR f , dð Þ = P fð Þ −N fð Þ − A d, fð Þ, ð6Þ

where Pð f Þ states transmission power, Nð f Þ specifies noise,
and Aðd, f Þ represents attenuation.

In contrast to the aforementioned parameters, acoustic
modems are an essential component of acoustic channels
and influence communication. They are classified as acoustic
modems for research and commercial acoustic modems. The
properties of commercially available acoustic modems are
summarized in Table 2 [43].

4. Mechanism of the Proposed Scheme

In Figure 3, the proposed scheme is shown. This method
consists of two main steps.

(1) First of all, sensor nodes are organized into clusters for
better scalability. We employ the K-mean algorithm
[44–46] as a clustering mechanism as it is pretty adap-
tive, resistant to outliers, and is shown to be efficient for
clustering. After clustering, CHs are defined in each
cluster, which is grouped using the angle-based [46]
method into the same size sectors based on available
AUVs. In the first stage, each group includes at least
one CH near the sink to obtain the AUV and send back
the AUV to the sink after collecting all CH group’s data.
Reliable, accurate, and nonoverlapping CH groups for
AUV placement are the outcomes of this step

(2) The second step was aimed at giving an effective
path planning for each AUV employing the MDP
to each CH group separately. The MDP is regarded
for its effectiveness in maximizing uncertain
decision-making [47–49]. Sensor nodes are prone
to failures due to malfunctioning of various compo-
nents such as hardware, software, and power, result-
ing in uncertainty and instability. MDP uses
sophisticated decision-making techniques based on
artificial intelligence to successfully trade off reliabil-
ity, energy consumption, data priority, and delay.
Using the value-iteration process [47], the optimal
strategy (the best series of UWSNs nodes that each
AUV can visit) is obtained until the parameters of
the MDP are determined. In the cases where only
the initial state is known [50], the approach is an
appropriate forward induction. The value-iteration
approach is the best option in our proposed model
because only the AUV’s first destination is defined

When each AUV path planning is established at the sink
node, the sink node directs AUVs to collect data from
groups of CH. The sink node determined the final condition
to end or continue the mechanism. The overall mechanism
is shown in Figure 4.

Figure 4 shows the flowchart of the proposed scheme. The
scheme consists of two main phases. In the first phase, we have
done clustering of sensor nodes and then grouping CHs to
assign an AUV. In the second phase, the scheme exploits
MDP parameters to model AUV path planning. After calculat-
ing MDP parameters, a method called value iteration is used to
determine the best order of CHs, which the AUV should go to.
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4.1. Clustering and Grouping of CHs. The cluster center will
be measured first to decide the cluster’s final number. Sup-
pose the network’s initial cluster center number is R, and
the total node number is N . Given the average case, each
group would have N/R nodes. Assume CHs forward data
directly to the sink. Consider the network area is A ∗ A ∗ A
. The ideal number of clusters according to [45] would be

R =
ffiffiffiffiffiffiffiffiffiffiffiffi
NA
πDbs

:

s
ð7Þ

Dbs is the distance between the sensor nodes and sink.
After the initial R cluster centers are obtained, we use the

K-mean algorithm to cluster the network. Distance repre-
sents the proximity of nodes, and as a consequence, the
usual measuring function is equivalent to the total of the
square distances among the cluster center and nodes:

L = 〠
R

i=1
〠
x∈Ci

D Ci, xð Þ2: ð8Þ

The assortment of CHs will begin after clustering is
done. The sink node will use the following equation to mea-
sure each node’s holding time (Ht) in each cluster. Each
node has its own Ht which is different from other sensor
nodes.

Ht = T + ρ × Er
E0 , ð9Þ

where T is the period time and ρ [1, 0.5] is any conflict
avoiding value if nodes have equivalent residual energy.
From equation (9), we can determine that if the residual
energy of a node is high, thus the node will have a lower
holding time than other nodes. It will have a better opportu-
nity to choose as CH. When the holding time of a node
expires, the node will be selected as CH, which has a lower
holding time in the cluster. If multiple nodes have the same
holding time (Ht), the node with a high probability will be
selected as CH. The probability can be determined using
the following equation [22].

p = 1
en + 1 : ð10Þ

Table 1: Notations.

Notations Definition

N Number of sensor nodes

L Links of communication between sensor nodes

Dis The Euclidean distance among sensor node Si and the destination node

REi REi represents sensor node (Si) residual energy

βi Sensor node (Si) priority of data

Tr Sensor node transmission radius

Dij The Euclidean distance among the sensor node Si and sensor node Sj

P AUV overall memory size

QP Empty memory of an AUV

R CH groups

A Monitoring area

ρ Fixed spreading factor

α f kð Þ Absorption coefficient

Dbs Distance between the sensor nodes and sink

T Time period

εedtr Dissipated energy for transmitting and receiving of single bit data

G State space

Ni Corresponds to CH Si transmission radius

Rij Corresponds to distance among CHi and CHj

M A set in which recent visited CHs data is stored

ϱ1 Re zi, yjð Þ Revenue to select a CH which have a reduced amount of residual energy

Rej(i CHj initial energy

Rej(t Corresponds to CHj residual energy at a time t

ϱ2ρ zi, yjð Þ Corresponds to priority of data of CHs

∀ Risk region

ϱ1, ϱ2, ϱ3, and ϱ4 Reward compensation coefficients
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At this stage, to group CHs, the AAP-MDP system uses
an angle-based method [46] to allocate one AUV to each
influential and nonoverlapping group. The whole area is cat-
egorized into sectors having an equal size, depending on the
expected quantity of AUVs. To find adequate AUVs (CH
groups), we apply the following equation [46].

Y =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aεedtr ∣N ∣

εedtr A/6ð Þ − E
,

s
ð11Þ

where A is the monitoring area sides and εedtr determines the
dissipated energy for transmitting and receiving of single-
bit-data.

In cluster head grouping, every group must first cover a
CH near the surface sink and then a predetermined thresh-
old value to obtain the AUV and send back to the surface
sink after gathering all group data. The threshold value is
calculated for UWSN based on its sensor node’s transmis-
sion range. To group the CHs, if we implement traditional
clustering approaches like the K-mean algorithm, certain
clusters would be created at locations far away from the sur-
face sink so no group member can share the AUV and col-
lect data with the surface sink. While if the procedure of
angle-based grouping is used, in the first step, each group
covers at least one CH, which is placed closer to the surface
sink to obtain the AUV for data collection. Therefore, using
the angle-based method generates stable CH groups to
assign an AUV. Generally, suppose the CHs grouping is
not performed. In that case, several AUVs may be allocated
to a single CH that raises the inserted traffic through the net-
work and challenges the network delay-aware mechanism
and energy efficiency.

4.2. Formulation of MDP. This section explains how the
MDP model could be used for path planning of an AUV
in a UWSN for CH groups. MDP is a statistical optimization
framework for making a decision in unpredictable situations
[34, 51, 52]. The model assumes that the UWSN is in a given
state at any decision and selects one of the possible actions in
that state. In addition, after that, due to the transition prob-

ability, UWSN is shifted to a new state, and a reward is
obtained. The MDP shall be established by a tuple
(S, A, Pðy, zÞ, Rðy, zÞ, β), in which S corresponds to a finite
set of states, A corresponds to a finite set of actions, Pðy, zÞ
corresponds to the distribution of the transfer probability
over the group of states when action z is chosen in the state
y, and Rðy, zÞ is the reward function for performing action z
at state y. The solution of a MDP is a policy that determines
the action to be taken once a specific state occurs. The qual-
ity of a procedure is the expected sum of future rewards. A
discount factor β discounts future rewards to ensure that
the expected sum of rewards converges to a finite value.
Among many potential policies, the optimal reward-
optimizing policy ðπ ∗Þ is the main aim.

In the proposed method, MDP collaborates among sen-
sor nodes, such as decision-making for AUV’s next destina-
tion. The MDP parameters are explained for AUV path
planning. The parameters of the MDP method are described
below for modeling the path of an AUV:

4.2.1. State Space [G]. In our method, we analyze the CH
group as a state in the UWSN network when an AUV travels
to a particular sensor node/CH. The group state is indicated
by a CH identifier on which AUV has been deployed. For
path planning of an AUV, the state space is Z = ½x1, x2:⋯x
n�, where x1 corresponds to the AUV installed at a specific
group.

4.2.2. Action [A]. In every group state, decision-making
focused on action. In the proposed scheme, the action is a
decision regarding the next CH towards which AUV travels.
Consequently, some action would be taken if more CHs are
available in the current CH transmission radius. In a CH
group, for AUV path planning, the actions are measured as
A = ½y1, y2:⋯yn�, where y1 action demonstrates that the
AUV moves towards CH Si, and this is the AUV destination
over the next phase. Therefore, under any conditions when
the y1 action is chosen, the UWSN’s next state would be
xi. Any action selected in either state would impact the
chance of a change to another state over the next step.
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Figure 2: Relationship between water depth and acoustic speed using thermoclines for both winter (a) and summer (b) with depth of 200m.
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4.2.3. Transition Probabilities. While taking action, in the
following two modes, the transition probabilities would be
considered to be null.

(i) If the CH Sj location is outside the CH Si (AUV
present location) transmission radius, CH Si will
not transfer AUV towards CH Sj. Thus, the transi-
tion probability will be zero in this mode by choos-
ing action Yj

(ii) If an AUV has obtained CH Sj data in the current
phase, Si could not be picked further before the
phase is finished. Therefore, choosing the action Yj
the transition probability will be zero

In other cases, the transition probability of choosing the
Yj action is marked among the CH Euclidean distance. So, at
either state of the UWSN system, the transition probability
would be determined as follows:

Table 2: Acoustic modem properties.

Modem
Modulation
scheme

Range
(m)

Depth (m)
(typical-max)

Data
rate
(bps)

C.F
(kHz)

Bit
error
rate

BW
(kHz)

Power
consumption
(W) (TX)

Power
consumption
(W) (RX)

Temperature
( ∘C) (min-max)

S2CM HS S2C 300 200-200 62500 160 10-Oct 80 3.5 0.8 0-60

S2CM 48/
78

S2C 1000 200-2000 31200 63 10-Oct 30 18 0.8 0-60

S2CM 42/
65

S2C 1000 200-2000 31200 53.5 10-Oct 23 18 0.8 0-60

S2CM 18/
34

S2C 3500 200-2000 13900 26 10-Oct 16 35 0.8 0-60

S2CR 48/
78

S2C 1000 200-2000 31200 63 10-Oct 30 18 1.1 0-60

UWM2000 BASS 1500 2000-4000 17800 35.7 10-Sep 17.9 2 0.8 (-5) to 45

UWSN monitoring area Clustering of sensor nodes Selection of CHs

Grouping of CHsAUV path planing using MDP

AUV

Sink

CHs

Sensor nodes

Figure 3: Proposed scheme.
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P yi, yzð Þ =
0, Rij > Ni,
0, j ∈M,
PR yi, yzð Þ, otherwise:

8>><
>>: ð12Þ

In the above equation, Ni corresponds to CH Si trans-
mission radius, Rij corresponds to distance among CHi
and CHj.M is a set in which recent visited CH data is stored
in the current phase. At first, when the UWSN starts, M is
zero. Thus, the AUV collects information from each CH
attached to the M list. The key goal of state j ∈M is for the
AUV only to visit a CH once. At each round, the CHs visited
by the AUV would have no chance to acquire the AUV
again. The function j also means the list of any CH and
can be expressed as [1,2,3....n]. At last, PR ðyi, yzÞ could be
found using the following formula:

PR yi, yzð Þ = CDF Rijð Þ, ð13Þ

where Rij corresponds to cumulative distribution function.

4.2.4. Reward Function (Rðy, zÞ). This function uses penalties
and revenue to measure the model’s outcome when the yj
action is chosen at the zi state. The reward function is deter-
mined as follows:

R zi, yjð Þ = ϱ1 Re zi, yjð Þ + ϱ2ρ zi, yjð Þ + ϱ3G zi, yjð Þ − ϱ4Pe zi, yjð Þ,
ð14Þ

where ϱ1 Re ðzi, yjÞ specifies revenue to select a CH with a
reduced amount of residual energy, using this revenue is to
collect information from CHs that die quicker than the
others to improve UWSNs efficiency.

To fulfill these limitations:

(i) If the CHj residual energy is below the threshold
value, the AUV cannot be received, and the data is
sent to the other CH or sink. In this scenario, the
selection of CHj as the next destination for AUV will
be considered null

(ii) Alternatively, AUV will select the CH as the next
destination with less residual energy

It is important to note that the threshold value for CHj is
the total energy desirable to accept the AUV and transfer it
to the subsequent CH or sink node.

τ = Ej Að Þ + Ej Tð Þ: ð15Þ

Re ðzi, yjÞ could be calculated such as

Re zi, yjð Þ = Rej ið Þ − Rej tð Þ, ð16Þ

where RejðiÞ is the CHj initial energy while RejðtÞ corre-
sponds to CHj residual energy at a time t.

ϱ2ρðzi, yjÞ corresponds to the priority of data of CHs.
The AUV prefers to collect the data of those CHs that prior-
itize more than other CHs. The goal is to manage high-value

data in advance to avoid data loss if the AUV data memory
is full. ϱ2ρðzi, yjÞ could be determined as

ϱ2ρ zi, yjð Þ =
β1, Low,
β2, Medium,
β3, High:

8>><
>>: ð17Þ

In which β1, β2, and β3 are revenue that takes data pri-
orities into account. It must be considered that data priority
parameters can require various values based on the specifica-
tions of the different UWSN applications.

Gðzi, yjÞ) is to select CHs as the AUV next destination
near the sink than the ones not yet reached to sink. Since
the amount of valuable data in AUV memory expands when
accessing each CH, AUV tends to reach the sink progres-
sively to reduce injected network traffic; therefore, the
energy usage of the CHs and the lifespan of the sensor nodes
as a whole will be improved.

G zi, yjð Þ =
∂, djs < dms,
0, Else:

(
ð18Þ

∂is revenue and assumed to be the next destination of
the AUV to choose the closest CH to the sink, wheredjscor-
responds to Euclidean distance among the sink node and
AUV selected CH as the next destination anddmsis the
smallest Euclidean distance among sink and unmet CHs.
In different applications, this parameter may have changed
values.

At last, Pðzi, yjÞ is the penalty for choosing the CHs
arriving in the area of risk. The AUV is less interested in

Start

Clustering sensor nodes

Grouping CHs

Formulation of MDP

Value iteration

Dispatch AUVs for collection of data

Is end
condition satisfied?

No

End

Yes

Figure 4: Flow chart of the proposed mechanism.
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choosing the CHs on the boundaries of the monitoring area
as their next location.

P zi, yjð Þ =
dj, rm−∀<djs < rm,
0, Else,

(
ð19Þ

where ∀ is the risk region and rm is the monitoring area
radius. At last, it should be remembered that ϱ1, ϱ2, ϱ3,
and ϱ4 are the reward compensation coefficients.

4.3. Path Planning for AUV and Collection of Data from CHs
Using AUV. This segment proposes a path planning frame-
work for AUVs in CH groups, which exploits the value-
iteration method [34, 52, 53]. This process utilizes the tran-
sition probabilities for future states, and then, the cumulative
compensation or value V ðy, zÞ is determined for the action y
taken in the state z. For any state, the optimum action is the
action that gives a full reward. Indeed, the Q values are
determined depending on an optimal strategy for a given
step.

(i) Initialize V ðy, zÞ = 0
(ii) Repeat Vðy, zÞ = Rðy, zÞ +max ∑zPðy, z, y∗ÞVðy∗, z∗

Þ
This procedure will be continued and repeated before

the last cycle occurs. Methods of forwarding induction, like
the value-iteration method, must be ideal for situations
where only the initial condition is specified (the sensor
node’s initial data is specified in our prescribed system).
Algorithm 1 demonstrates the ultimate mechanism
operation.

As shown in Algorithm 1, the initial energy of sensor
nodes, residual energy, the priority of data, and the location
of sensor nodes are considered inputs of the suggested
model. When the framework starts to work, all the sensor
nodes broadcast their properties across the entire network.
Therefore, it can be stated that the sink knows the sensor
node’s features in the beginning. It determines all sensor

nodes’ total energy. If each cluster member has the energy
to transmit information to the CH, and, respectively, if CH
has the required energy to obtain and send back the AUV
to the subsequent location, the sink node will measure the
sensor node Euclidean distance and also measures the
Euclidean distance between the sensor node and sink. First
of all, the K-mean algorithm is used to cluster the network.
After clustering, CH is determined in each cluster using
equation (7). The sink node divided CHs into groups using
the angle-based method for assigning AUV to each group.

Next, the sink node determines MDP parameters for
each AUV. It then calculates the optimal policy through
the value-iteration process (the optimal path of the sensor
nodes that any AUV can visit); this stage helps in efficient
path planning for each AUV visiting their particular group
of CHs. The sink collects AUV data, and after receiving its
data, the sink node replenishes the data memory of AUV.
After that, the overall energy of sensor nodes is rechecked;
if the nodes have much power to send data to CHs and
CHs have much energy to receive AUV and dispatch that
to other locations, then the process will be repeated; other-
wise, it will end.

1: Input: initial energy of all sensor nodes, set of Pi (data priority), sink and sensor node location
2: Output: optimal policies π ∗
3: Begin
4: While Compute Dij
5: Compute Dis
6: Calculate R
7: Cluster sensor nodes via k-medoids method
8: Group the CHs
9: For every AUV
10: Compute P (y, z) and Compute M (y, z)
11: Obtain optimal policy via value-iteration process
12: End for
13: Transfer AUV with path plan π ∗ to all CH groups
14: Sink receive AUV data and revive its memory
15: End while
16: End

Algorithm 1: AUV path planning using MDP.

Table 3: Simulation parameters.

Parameters Value
Monitoring area 1km ∗ 1km∗1km
Sensor nodes 1000
Initial energy of AUV 15KJ
Initial energy of sensor nodes 5kJ
Sensor nodes transmission range 200m

Speed of AUV 6m/s

Channel bandwidth 10 kHz

Transmission power 0.303 watt

Receiving power .022 watt

Speed of acoustic signal 1.5 km/sec
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5. Simulation Results and Analysis

5.1. Simulation Setup. Extensive simulations were carried out
for the assessment of the proposed method. Since the phys-
ical layer of UWSNs varies between acoustic modems, we
determined these characteristics using Evologics acoustic
modems; they are commercially available products with
varying features. We used the S2CR18/34 modem, and the
parameters are described in Table 3. In addition, the net-
work parameters are set as follows, a 1 km ∗ 1 km ∗ 1 km
deep-sea UWSN was developed where the data-collection
sink drifts at the surface. Sensor nodes are installed uni-
formly at different locations, and multiple AUVs are used
for data collection in this simulation. The AUV manages
emergencies at the fastest speed. In this analysis, the AUV
unit consumption rate is 7 J/m [9]. On land, the SenCar con-
sumption rate is 5 J/m [54], and the AUV’s energy consump-
tion increases due to water resistance. It is assumed that the
AUV can collect 2048 bits of the system data. We exploit the
IEEE 802.15.4 [55] performance dataset, in which 1000 sen-
sor nodes from the dataset are highlighted that are suitable
for UWSN applications. Further simulation parameters are
described in Table??. For evaluating the MDP-based optimal
policy, we use a MATLAB MDP toolbox [56] to apply our
policy iteration algorithm. We choose the parameters of
the node based on intense Motes (XSM) [57]. The XSM
motes contain acoustic, magnetic, temperature, and infrared
sensors.

We compare the performance of our proposed scheme
with a data-gathering scheme using AUVs (DGSUA) [58]
and the greedy and adaptive AUV pathfinding (GAAP)
[26] approach. GAAP derives the AUV route from gathering
the sensed information from nodes and transmitting this
information to the sink node with maximum value of infor-
mation (VoI). DGSUA designs several AUV movement and
coordination processes in data processing. These schemes

aim to fix the issues of route planning and task assignments
of AUV to enhance the reliability of the UWSN. To analyze
possible solutions equally and accurately, we follow the same
cluster number and network topology. These algorithms’
output is measured in throughput, energy efficiency, collec-
tion delay, and reliability. A better approach is intended to
minimize collection delay, reduce energy consumption,
increase throughput, and boost reliability.

5.2. System Throughput. The throughput of a system refers
to the rate at which data packets are received at the sink.
Figure 5 shows the system’s throughput; since the strategy
of multi-AUV in DGSUA performs the collection of data
quickly, but the time required for the collection of data is
too scattered, not focused on higher-data packet clusters
and nodes. The GAAP algorithm takes a long time to per-
form data collection, preferably selecting sensor nodes with
more data packets to maintain maximum throughput. The
proposed approach combines the above two frameworks
and decreases the cumulative time to gather data, thus pre-
serving a high throughput.

5.3. Energy Efficiency. The ratio of total packets received to
total energy consumed by the network to deliver these
packets is called energy efficiency. Figure 6 indicates the
energy efficiency levels obtained for the three methods. The
multi-AUV navigation direction is mechanical and fixed in
DGSUA; therefore, DGSUA energy efficiency is compara-
tively poor, especially when the number of nodes is limited
in the network. This paper’s suggested algorithm logically
organizes the AUV path depending on actual circumstances.
Navigation of path planning using MDP decreases high
energy consumption compared to other schemes. The figure
shows that our suggested method has higher energy effi-
ciency than the other two methods.
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Figure 5: System throughput.
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5.4. Collection Delay. Figure 7 shows that as the number of
nodes increases, DGSUA and APP-MDP collection delay
remains relatively constant, while GAAP collection delay
increases. APP-MDP has the shortest collection delay as
compared to others. DGSUA has a minor collection delay
as compared to the GAAP algorithm. The reason is that, in
the GAAP algorithm, the AUV must visit each node for
the collection of data which in turn increases the collection
delay. In contrast, in other algorithms, the AUV only visits
the selected CHs to collect data. That is why its collection
delay is more minor. Furthermore, as DGSUA does not pro-
duce the optimum results of CH groups relative to APP-
MDP, the distance can be longer among CHs. Therefore,

the DGSUA collection delay might be higher as compared
to APP-MDP. Comparatively, the proposed scheme has a
minor collection delay due to the algorithm’s appropriate
path planning for AUV.

5.5. Execution Time of AUVs and Their Itinerary Length.
Figure 8 indicates AUVs’ execution time visiting all CHs
and how long they will return to sink. It contrasts our meth-
odology with other current protocols (DGSUA, GAAP). As
shown, the time of execution of routing protocols increases
with the increasing number of sensor nodes. Among other
routing protocols, GAAP has the maximum execution time,
due to its poor plan to move sensor nodes closer to the sink.
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DGSUA has less execution time as compared to the GAAP
algorithm. Our proposed approach has the lowest execution
time compared to all other routing protocols due to using
multiple AUVs and collecting data spending less time on
each CH using optimal route planning.

Figure 9 indicates the itinerary length of AUVs for differ-
ent routing protocols. The size of our suggested protocol is
short as compared to other protocols. This is because plan-
ning an optimal route for AUVs using MDP and the strategy
to plan AUV routes between CHs only, not among all sensor
nodes. GAAP has the longest route due to its poor plan to
select the closest sensor node as its destination and schedul-

ing AUV routes for all sensor nodes, not only for CHs.
DGSUA has a short itinerary length compared to GAAP
because of multi-AUVs.

5.6. Energy Consumption Fairness. The network lifespan is
linked to the fairness of energy consumption. This metric
shows the energy consumption levels of all sensor nodes
during the network operating time. Thus, when the fairness
of energy consumption is less, it will increase the network’s
lifespan and produce more live sensor nodes over a period.
Figure 10 shows the standard deviation (SD) chart of energy
consumed by active sensor nodes. SD is a metric to evaluate
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the amount of energy consumption dispersion by sensor
nodes per cycle. Small SD reveals that energy consumption
values tend towards the mean, although a huge SD specifies
that the values of energy consumption are distributed across
a broad range.

As seen in Figure 10, in the first 50 rounds, our method
SD is 25.95% smaller than the DGSUA SD. The low value of
SD indicates that the energy consumption of all sensor
nodes is near the average in our proposed system, which
indicates a fair allocation of the network workload across
the sensor nodes. In this case, the sensor nodes allocated to
some network portions do not expire earlier. The framework
would also perform well to meet the requirements of critical

applications, like tsunami warnings and pollution
monitoring.

Moreover, in the first 450 rounds, our method SD is
50.95% smaller than the GAAP SD. As the rounds progress,
our proposed mechanism has a higher SD than the other two
techniques. This is because the active sensor nodes are
reduced in GAAP and DGSUA techniques after a specified
time, and a rapid reduction in their SD is also reasonable
because of the reduced alive sensor nodes.

5.7. Reliability. UWSN’s reliability is evaluated in this sec-
tion, which is the critical factor in determining the system’s
ability to execute its defined tasks under specified conditions.
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To avoid the loss of sensitive data, the AUVs tend to collect
high priority data if an AUV data memory is being filled. So,
system reliability is described as the data priority, which
could be calculated as

R = LP + 2MP + 3HP
LG + 2MG + 3HG : ð20Þ

LP,MP, and HP are low, medium, and high priority data
numbers and have been reached to the sink. LG, MG, and
HG provide low priority, medium priority, and high priority
data that some sensor nodes generate. As described in
Table 4, the APP-MDP mechanism improves system reli-
ability by 1.39 to 1.36 times in contrast with other methods.

5.8. Single AUV Performance. Multi-AUV is often used for
data processing in the underwater sensor network. Route
planning and task assignment for AUV are essential; both
are related to network lifetime and AUV load balancing.
Therefore, the system’s efficiency of a single AUV is given
substantial consideration during the simulation. The
amount of AUVs is typically calculated upon network size
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Table 4: Reliability.

APP −MDP DGSUA GAAP
0:02564 0:01832 0:01875
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and data priority requirements. For the simulation, we con-
sidered only three AUVs and separately numbered them.

Figure 11 indicates each AUV’s residual energy when the
execution rounds increase. The AUVs’ initial energy is con-
sidered by one-third of the total energy, and for others, it is
regarded as the same. After each data gathering round, the
energy needed by the AUV stays the same to prevent a single
AUV executes more activities and absorbing faster energy.

Figure 12 shows the time each AUV spends executing its
task; this is significantly varying due to different route sizes
in the region assigned to it. This influences the whole task’s
completion period. Figure 13 demonstrates the AUV’s load
balancing, particularly as the number of nodes increases.
The supremacy of the geographic division of CHs in groups
and route planning using MDP is thoroughly expressed.

In short, the efficiency of several AUVs is essentially the
same without considering the impact of specific conditions
such as AUV failures and data importance. This flexibility
is beneficial to the system’s stability in achieving the task.

6. Conclusions

A data-collection protocol for UWSNs based on AUV path
planning has been developed in this work. The collection
of data is one of UWSN’s primary concerns. Using multiple
AUVs with efficient and reliable path planning for data col-
lection from sensor nodes significantly decreases the total
network energy consumption. It fulfilled QoS criteria, such
as data priority, reliability, and delay. The APP-MDP
method is proposed in this article. It provides efficient and
reliable path planning for AUVs to collect the data from sen-
sor nodes. We divided this method into two steps. The first
step is the clustering of sensor nodes using the k-medoids
algorithm. After clustering, CHs are specified in each cluster,
which is grouped employing angle-based technique into
same size sectors for providing of AUVs. In the second step,
APP-MDP takes advantage of the MDP using many factors,
such as sensor node residual energy and its priority of data,
and Euclidean distance between the sink and sensor nodes to
deliver efficient and reliable path planning for AUVs in CH
groups. Finally, the value-iteration method determines the
best route after UWSN modeling. The simulation results
affirm that the proposed technique has increased throughput
and reduced energy consumption compared to other tech-
niques. Our proposed technique enhances network reliabil-
ity. The findings show that our proposed approach is
better than all the other existing approaches; it takes less exe-
cution time and has the shortest itinerary length than others.

In the future, using the APP-MDP as a basis, we intend
to research real-world environments. In UWSNs, data gath-
ering based on AUV is a fascinating approach from a prac-
tical research perspective. There is still a lot of work to be
done on how to maneuver around in real situations under
the effects of obstacles, drifting of water, and wind, so we will
keep working on that.
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