20,639 research outputs found

    A self-managing infrastructure for ad-hoc situation determination

    Get PDF
    Automatically determining the situation of an ad-hoc group of people and devices within a smart environment is a significant challenge in pervasive computing systems. Current approaches often rely on an environment expert to correlate the situations that occur with the available sensor data, while other machine learning based approaches require long training periods before the system can be used. This paper presents a novel approach to situation determination that attempts to overcome these issues by providing a reusable library of general situation specifications that can be easily extended to create new specific situations, and immediately deployed without the need of an environment expert. The architecture of an accompanying situation determination infrastructure is provided, which autonomously optimises and repairs itself in reaction to changes or failures in the environment

    A Role-Based Approach for Orchestrating Emergent Configurations in the Internet of Things

    Full text link
    The Internet of Things (IoT) is envisioned as a global network of connected things enabling ubiquitous machine-to-machine (M2M) communication. With estimations of billions of sensors and devices to be connected in the coming years, the IoT has been advocated as having a great potential to impact the way we live, but also how we work. However, the connectivity aspect in itself only accounts for the underlying M2M infrastructure. In order to properly support engineering IoT systems and applications, it is key to orchestrate heterogeneous 'things' in a seamless, adaptive and dynamic manner, such that the system can exhibit a goal-directed behaviour and take appropriate actions. Yet, this form of interaction between things needs to take a user-centric approach and by no means elude the users' requirements. To this end, contextualisation is an important feature of the system, allowing it to infer user activities and prompt the user with relevant information and interactions even in the absence of intentional commands. In this work we propose a role-based model for emergent configurations of connected systems as a means to model, manage, and reason about IoT systems including the user's interaction with them. We put a special focus on integrating the user perspective in order to guide the emergent configurations such that systems goals are aligned with the users' intentions. We discuss related scientific and technical challenges and provide several uses cases outlining the concept of emergent configurations.Comment: In Proceedings of the Second International Workshop on the Internet of Agents @AAMAS201

    Situation determination with reusable situation specifications

    Get PDF
    Automatically determining the situation of an ad-hoc group of people and devices within a smart environment is a significant challenge in pervasive computing systems. Current approaches often rely on an environment expert to correlate the situations that occur with the available sensor data, while other machine learning based approaches require long training periods before the system can be used. In both cases, the situations are tailored to the specific environment, and are therefore not transferable to other environments. Furthermore, situations are recognised at a low-level of granularity, which limits the scope of situation-aware applications. This paper presents a novel approach to situation determination that attempts to overcome these issues by providing a reusable library of general situation specications that can be easily extended to create new speficic situations, and immediately deployed without the need of an environment expert. A proposed architecture of an accompanying situation determination middleware is provided, as well as an analysis of a prototype implementation

    Context for Ubiquitous Data Management

    Get PDF
    In response to the advance of ubiquitous computing technologies, we believe that for computer systems to be ubiquitous, they must be context-aware. In this paper, we address the impact of context-awareness on ubiquitous data management. To do this, we overview different characteristics of context in order to develop a clear understanding of context, as well as its implications and requirements for context-aware data management. References to recent research activities and applicable techniques are also provided

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201
    • ā€¦
    corecore