7,518 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Optimized Gated Deep Learning Architectures for Sensor Fusion

    Full text link
    Sensor fusion is a key technology that integrates various sensory inputs to allow for robust decision making in many applications such as autonomous driving and robot control. Deep neural networks have been adopted for sensor fusion in a body of recent studies. Among these, the so-called netgated architecture was proposed, which has demonstrated improved performances over the conventional convolutional neural networks (CNN). In this paper, we address several limitations of the baseline negated architecture by proposing two further optimized architectures: a coarser-grained gated architecture employing (feature) group-level fusion weights and a two-stage gated architectures leveraging both the group-level and feature level fusion weights. Using driving mode prediction and human activity recognition datasets, we demonstrate the significant performance improvements brought by the proposed gated architectures and also their robustness in the presence of sensor noise and failures.Comment: 10 pages, 5 figures. Submitted to ICLR 201

    A literature survey on sideslip angle estimation using vehicle dynamics based methods

    Get PDF
    The vehicle sideslip angle or lateral velocity is a measure both for driving stability and for occupant’s subjective perception of safety. With the introduction of vehicle dynamics control systems and automated driving functions, knowledge of this vehicle motion state is required for many control strategies. This article gives an overview on the state of the art on sideslip angle estimation. In contrast to other literature studies on this topic, it focuses on vehicle dynamics based algorithms. The following types of observers are discussed: Kalman Filter-type, recursive least squares (RLS), sliding mode observers (SMO) or nonlinear observers (NLO). Eventually, cascaded observers are used that first estimate some states, which then act as input to the sideslip angle estimator. Since the choice of an observer strategy always depends on the application, this article provides a brief insight into the work of selected research groups that have studied the topic. These examples will help to clarify the presence of many different approaches in the literature. A detailed discussion on vehicle and tire models is not included but referenced to other sources. Finally, this article provides recommendations for two main target groups: First, researchers and engineers that plan to design an algorithm for sideslip angle estimation using deterministic vehicle dynamics based approaches. Second, researchers and engineers planning to include an existing algorithm in an automated driving function that want to learn about advantages and limitations of these types of algorithms. Author

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions
    • …
    corecore