709 research outputs found

    Incremental Decision Tree based on order statistics

    Get PDF
    International audienceNew application domains generate data which are not persistent anymore but volatile: network management, web profile modeling... These data arrive quickly, massively and are visible just once. Thus they necessarily have to be learnt according to their arrival orders. For classification problems online decision trees are known to perform well and are widely used on streaming data. In this paper, we propose a new decision tree method based on order statistics. The construction of an online tree usually needs summaries in the leaves. Our solution uses bounded error quantiles summaries. A robust and performing discretization or grouping method uses these summaries to provide, at the same time, a criterion to find the best split and better density estimations. This estimation is then used to build a na¨ıve Bayes classifier in the leaves to improve the prediction in the early learning stage

    Effective Weighted k-Nearest Neighbors for Dynamic Data Streams

    Get PDF
    International audienceMany real-world applications involve classification from evolving data streams. However, learning in such environment requires algorithms able to learn and predict from potentially unbounded data that are constantly changing. For this to happen, stream algorithms should restrict the storage to a part of-and/or synopsis information from-the stream using efficient and accurate manners and strategies, such as window models and summarization techniques (e.g., sampling, sketching, dimensionality reduction). In this work, we focus on the k-Nearest Neighbors (kNN) where most of the existing approaches for data streams consider that instances have the same weight from the start to the finish of the processing task. In a streaming data scenario, it is often the case that the most recent elements from the data stream are the more relevant ones. Taking into account that the most recent instances are more relevant, we propose a novel kNN approach that stores instances in a sliding window and weighs them according to their arrival time (i.e position on the window) using an adjusted weight function. The empirical results on comprehensive real and synthetic datasets indicate the effectiveness and efficiency of our proposed approach in comparison with state-of-the-art algorithms

    Classifying distinct data types: textual streams protein sequences and genomic variants

    Get PDF
    Artificial Intelligence (AI) is an interdisciplinary field combining different research areas with the end goal to automate processes in the everyday life and industry. The fundamental components of AI models are an “intelligent” model and a functional component defined by the end-application. That is, an intelligent model can be a statistical model that can recognize patterns in data instances to distinguish differences in between these instances. For example, if the AI is applied in car manufacturing, based on an image of a part of a car, the model can categorize if the car part is in the front, middle or rear compartment of the car, as a human brain would do. For the same example application, the statistical model informs a mechanical arm, the functional component, for the current car compartment and the arm in turn assembles this compartment, of the car, based on predefined instructions, likely as a human hand would follow human brain neural signals. A crucial step of AI applications is the classification of input instances by the intelligent model. The classification step in the intelligent model pipeline allows the subsequent steps to act in similar fashion for instances belonging to the same category. We define as classification the module of the intelligent model, which categorizes the input instances based on predefined human-expert or data-driven produced patterns of the instances. Irrespectively of the method to find patterns in data, classification is composed of four distinct steps: (i) input representation, (ii) model building (iii) model prediction and (iv) model assessment. Based on these classification steps, we argue that applying classification on distinct data types holds different challenges. In this thesis, I focus on challenges for three distinct classification scenarios: (i) Textual Streams: how to advance the model building step, commonly used for static distribution of data, to classify textual posts with transient data distribution? (ii) Protein Prediction: which biologically meaningful information can be used in the input representation step to overcome the limited training data challenge? (iii) Human Variant Pathogenicity Prediction: how to develop a classification system for functional impact of human variants, by providing standardized and well accepted evidence for the classification outcome and thus enabling the model assessment step? To answer these research questions, I present my contributions in classifying these different types of data: temporalMNB: I adapt the sequential prediction with expert advice paradigm to optimally aggregate complementary distributions to enhance a Naive Bayes model to adapt on drifting distribution of the characteristics of the textual posts. dom2vec: our proposal to learn embedding vectors for the protein domains using self-supervision. Based on the high performance achieved by the dom2vec embeddings in quantitative intrinsic assessment on the captured biological information, I provide example evidence for an analogy between the local linguistic features in natural languages and the domain structure and function information in domain architectures. Last, I describe GenOtoScope bioinformatics software tool to automate standardized evidence-based criteria for pathogenicity impact of variants associated with hearing loss. Finally, to increase the practical use of our last contribution, I develop easy-to-use software interfaces to be used, in research settings, by clinical diagnostics personnel.Künstliche Intelligenz (KI) ist ein interdisziplinäres Gebiet, das verschiedene Forschungsbereiche mit dem Ziel verbindet, Prozesse im Alltag und in der Industrie zu automatisieren. Die grundlegenden Komponenten von KI-Modellen sind ein “intelligentes” Modell und eine durch die Endanwendung definierte funktionale Komponente. Das heißt, ein intelligentes Modell kann ein statistisches Modell sein, das Muster in Dateninstanzen erkennen kann, um Unterschiede zwischen diesen Instanzen zu unterscheiden. Wird die KI beispielsweise in der Automobilherstellung eingesetzt, kann das Modell auf der Grundlage eines Bildes eines Autoteils kategorisieren, ob sich das Autoteil im vorderen, mittleren oder hinteren Bereich des Autos befindet, wie es ein menschliches Gehirn tun würde. Bei der gleichen Beispielanwendung informiert das statistische Modell einen mechanischen Arm, die funktionale Komponente, über den aktuellen Fahrzeugbereich, und der Arm wiederum baut diesen Bereich des Fahrzeugs auf der Grundlage vordefinierter Anweisungen zusammen, so wie eine menschliche Hand den neuronalen Signalen des menschlichen Gehirns folgen würde. Ein entscheidender Schritt bei KI-Anwendungen ist die Klassifizierung von Eingabeinstanzen durch das intelligente Modell. Unabhängig von der Methode zum Auffinden von Mustern in Daten besteht die Klassifizierung aus vier verschiedenen Schritten: (i) Eingabedarstellung, (ii) Modellbildung, (iii) Modellvorhersage und (iv) Modellbewertung. Ausgehend von diesen Klassifizierungsschritten argumentiere ich, dass die Anwendung der Klassifizierung auf verschiedene Datentypen unterschiedliche Herausforderungen mit sich bringt. In dieser Arbeit konzentriere ich uns auf die Herausforderungen für drei verschiedene Klassifizierungsszenarien: (i) Textdatenströme: Wie kann der Schritt der Modellerstellung, der üblicherweise für eine statische Datenverteilung verwendet wird, weiterentwickelt werden, um die Klassifizierung von Textbeiträgen mit einer instationären Datenverteilung zu erlernen? (ii) Proteinvorhersage: Welche biologisch sinnvollen Informationen können im Schritt der Eingabedarstellung verwendet werden, um die Herausforderung der begrenzten Trainingsdaten zu überwinden? (iii) Vorhersage der Pathogenität menschlicher Varianten: Wie kann ein Klassifizierungssystem für die funktionellen Auswirkungen menschlicher Varianten entwickelt werden, indem standardisierte und anerkannte Beweise für das Klassifizierungsergebnis bereitgestellt werden und somit der Schritt der Modellbewertung ermöglicht wird? Um diese Forschungsfragen zu beantworten, stelle ich meine Beiträge zur Klassifizierung dieser verschiedenen Datentypen vor: temporalMNB: Verbesserung des Naive-Bayes-Modells zur Klassifizierung driftender Textströme durch Ensemble-Lernen. dom2vec: Lernen von Einbettungsvektoren für Proteindomänen durch Selbstüberwachung. Auf der Grundlage der berichteten Ergebnisse liefere ich Beispiele für eine Analogie zwischen den lokalen linguistischen Merkmalen in natürlichen Sprachen und den Domänenstruktur- und Funktionsinformationen in Domänenarchitekturen. Schließlich beschreibe ich ein bioinformatisches Softwaretool, GenOtoScope, zur Automatisierung standardisierter evidenzbasierter Kriterien für die orthogenitätsauswirkungen von Varianten, die mit angeborener Schwerhörigkeit in Verbindung stehen

    A Cheat Sheet for Bayesian Prediction

    Full text link
    This paper reviews the growing field of Bayesian prediction. Bayes point and interval prediction are defined and exemplified and situated in statistical prediction more generally. Then, four general approaches to Bayes prediction are defined and we turn to predictor selection. This can be done predictively or non-predictively and predictors can be based on single models or multiple models. We call these latter cases unitary predictors and model average predictors, respectively. Then we turn to the most recent aspect of prediction to emerge, namely prediction in the context of large observational data sets and discuss three further classes of techniques. We conclude with a summary and statement of several current open problems.Comment: 33 page

    Pyramid: Enhancing Selectivity in Big Data Protection with Count Featurization

    Full text link
    Protecting vast quantities of data poses a daunting challenge for the growing number of organizations that collect, stockpile, and monetize it. The ability to distinguish data that is actually needed from data collected "just in case" would help these organizations to limit the latter's exposure to attack. A natural approach might be to monitor data use and retain only the working-set of in-use data in accessible storage; unused data can be evicted to a highly protected store. However, many of today's big data applications rely on machine learning (ML) workloads that are periodically retrained by accessing, and thus exposing to attack, the entire data store. Training set minimization methods, such as count featurization, are often used to limit the data needed to train ML workloads to improve performance or scalability. We present Pyramid, a limited-exposure data management system that builds upon count featurization to enhance data protection. As such, Pyramid uniquely introduces both the idea and proof-of-concept for leveraging training set minimization methods to instill rigor and selectivity into big data management. We integrated Pyramid into Spark Velox, a framework for ML-based targeting and personalization. We evaluate it on three applications and show that Pyramid approaches state-of-the-art models while training on less than 1% of the raw data
    corecore