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ABSTRACT

DATA STREAM ALGORITHMS FOR LARGE GRAPHS
AND HIGH DIMENSIONAL DATA

SEPTEMBER 2018

HOA T. VU

B.Sc., THE OHIO STATE UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McGregor

In contrast to the traditional random access memory computational model where

the entire input is available in the working memory, the data stream model only

provides sequential access to the input. The data stream model is a natural framework

to handle large and dynamic data. In this model, we focus on designing algorithms

that use sublinear memory and a small number of passes over the stream. Other

desirable properties include fast update time, query time, and post processing time.

In this dissertation, we consider different problems in graph theory, combinatorial

optimization, and high dimensional data processing.

The first part of this dissertation focuses on algorithms for graph theory and

combinatorial optimization. We present new results for the problems of finding the

densest subgraph, counting the number of triangles, finding max cut with bounded

components, and finding the maximum k set coverage.
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The second part of this dissertation considers problems in high dimensional data

streams. In this setting, each stream item consists of multiple coordinates correspond-

ing to different attributes. We consider the problem of testing or learning about the

relationships among the attributes, and the problem of finding heavy hitters in subsets

of attributes.
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CHAPTER 1

INTRODUCTION

Most traditional RAM algorithms scale poorly to large datasets. For this purpose,

new computational models such as the data stream model and distributed models

have been introduced. The data stream model is perhaps the most popular since it

captures two important restrictions of large datasets. Specifically, in the data stream

model, we only have one-way access to the data since the random access memory is

insufficient to store the entire input. Furthermore, it is a natural model to work with

dynamic data. In addition to the memory restriction, the data stream model also

considers other performance factors such as the number of passes, the update time,

the query time and the post-processing time.

Our work focuses on developing data stream algorithms for massive graphs which

arise in many applications. Some example include webpages and hyperlinks, papers

and citations, social network graphs and telephone networks. We also study algorithms

for massive hypergraphs which model the set-element relationships. Example appli-

cations of hypergraphs include sensor allocation, information retrieval and influence

maximization.

In the second part of this thesis, we consider the model based approach in high

dimensional data streams. In this setting, the stream consists of high dimensional

items. Each dimension corresponds to an attribute. The first problem is to test a

graphical model based on the observed data stream. We then consider the problem of

identifying heavy hitters of subsets of attributes.
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1.1 Related Data Stream Models

The graph stream model. In this model, the stream consists of edge insertions

of a graph on n nodes. If the stream also allows edge deletions, we refer to this model

as the dynamic graph stream model.

In the case there is no edge deletion, the adjacency list model assumes that edges

incident to the same node appear consecutively whereas the arbitrary order model

assumes that edges arrive in an arbitrary order. For weighted graphs, an edge insertion

or deletions provides the weight of the corresponding edge.

The streaming set model. This model is a natural extension of the graph stream

model. Given a universe U = {1, 2, . . . , n}, the stream consists of sets that are subsets

of U . In particular, the stream consists of m sets S1, . . . , Sm and each Si is encoded

as the list of elements in that set. This model extends the graph stream model to

hypergraphs since sets can also be viewed as hyperedges of the graph on n nodes.

High dimensional data streams. In this model, the stream consists of d-dimensional

items x1, x2, . . . , xm of a database where each xi ∈ [n]d. This model captures databases

where items have many attributes.

1.2 Graph Theory and Combinatorial Optimization

Finding the densest subgraph in dynamic graph streams. In dynamic graph

streams, Bahmani et al. [20] showed that a constant approximation algorithm requires

Ω(n) space. One of our main results is to show that it is possible to obtain a 1− ε

approximation of the densest subgraph in dynamic graph streams using Õ(ε−2n) space.

Our result improves upon the work of Bhattacharya et al. [25]. They presented two

algorithms that use similar space to our algorithm and process updates in polylog(n)

amortized time. The first algorithm returns a (1/2−ε) approximation of the maximum

density of the final graph while the second outputs a (1/4− ε) approximation of the
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current maximum density after every update while still using only polylog(n) time

per-update.

For our algorithms, we present a fast polylog(n) update time in the worst case.

For constant ε, our algorithm is optimal up to polylogarithmic factors. The design of

algorithm consists of two steps. First, we need to argue that uniformly sample the

edges using `p sampling obtains a good estimate for the densest subgraph. Regarding

the update time, we design a fast `p sampling algorithm that improves the update

time from Ω(n) to O(polylog n).

Counting triangles in the adjacency list model. Counting triangles is a canon-

ical problem in both the RAM model and the data stream model. In the data stream

model, it has been shown that Ω(n2) space is required just to test if the graph is

triangle-fre in the worst case [21]. Therefore, the problem has been studied based by

parameterizing of the number of triangles T (or a lower bound of T ) in the graph.

We present two main algorithms that (1 + ε) estimate the number of triangles for

the adjacency list order model where one is suitable for processing graphs with many

triangles (in particular, when T ≥ m) and the other is suitable for processing graphs

with fewer triangles (i.e., T ≤ m). Specifically, we present

1. A single-pass algorithm using Õ(ε−2m/
√
T ) space and

2. A two-pass algorithm using Õ(ε−2m3/2/T ) space.

Note that m/
√
T space has become natural goal in the context of estimating the

number of triangles. In particular, any constant pass algorithm in the arbitrary order

model required this amount of space when m = Θ(n
√
T ) and there is an existing

two-pass algorithm that returns a 3-approximation using this amount of space [51].

Furthermore, Jha et al. [81] showed that this space was sufficient for additively

approximating T . Unfortunately, Braverman et al. [29] showed it was insufficient for

achieving multiplicative approximation via a single-pass algorithm in the arbitrary

3



order model. The significance of our results is showing that ≈ m/
√
T space is sufficient

for 1 + ε approximation if we are given a single pass over a stream in adjacency list

order or two passes over a stream in arbitrary order.

However, it is possible to improve upon m/
√
T space when T is large and other

algorithm do just this. At a high level, the main difference between the two types of

algorithms we present is as follows. The m/
√
T dependence arises when we focus on

distinguishing between edges that are involved in many triangles and those that are

not, whereas the m3/2/T dependence arises when we distinguish between high and

low degree nodes. Our algorithms can also be implemented in arbitrary order model

by using additional passes [114].

Approximating max capacitated cut in the adjacency list model. We con-

sider the streaming capacitated max (t+ 1)-cut problem where t parts are bounded.

This problem and its variations have been studied previously in various work [2,65,

68, 142]. The goal is to find t disjoint sets S1, S2, . . . , St such that |Si| ≤ k and the

number of edges across the parts is maximized. The optimal solution is defined as

follows.

OPT := arg max
disjoint S1,S2,...,St⊂V

|Si|≤k

∣∣∣∣{(u, v) ∈ E : |{u, v} ∩ Si| = 1}
∣∣∣∣ .

In particular, the algorithm’s output is t disjoint sets of nodes S1, . . . , St. We

study this problem in the adjacency list model. We want to design algorithms, with

constant approximations, that use space depending only on k. Our main results are:

1. For the case t = 1, we present a) a single-pass, Õ(k2)-space algorithm that finds

a 0.4 − o(1) approximation and b) a two-pass, Õ(k3/ε)-space algorithm that

finds a 0.5− ε approximation.

4



2. As for the more general case t > 1, we present a single-pass, Õ(k2) space

algorithm that finds a 6/11− o(1) approximation.

Motivated by the case t = 1, we design new algorithms for non-monotone submod-

ular maximization under a cardinality constraint. By allowing more passes or space,

we improve the approximation given by Chekuri et al. [41].

Finding the maximum k set coverage in the streaming set model. The

maximum set coverage problem is a classic NP-Hard problem that has a wide range

of applications including facility and sensor allocation [101], information retrieval [8],

influence maximization in marketing strategy design [93], and the blog monitoring

problem where we want to choose a small number of blogs that cover a wide range

of topics [128]. In this problem, we are given a set system of m sets that are subsets

of a universe [n] := {1, . . . , n}. The goal is to find the k sets whose union covers the

largest number of distinct elements.

It is well-known that the greedy algorithm, which greedily picks the set that

covers the most number of uncovered elements, is a 1− 1/e approximation algorithm.

Furthermore, unless P = NP , this approximation factor is the best possible [62].

For the maximum set coverage problem, Saha and Getoor [128] gave a swap

based 1/4 approximation algorithm that uses a single pass and Õ(kn) space. Recently,

Badanidiyuru et al. [17] gave a generic single-pass algorithm for maximizing a monotone

submodular function on the stream’s items subject to the cardinality constraint that

at most k objects are selected. A careful adaptation to the maximum set coverage

problem uses Õ(ε−1n) space.

Our main goal is to find constant approximations using sublinear o(mn) space. In

particular, we present different algorithms and a lower bound giving evidence that our

algorithms are either optimal or near optimal.

5



1. A polynomial time data stream algorithms that achieve a 1− 1/e− ε approxi-

mation for arbitrarily small ε. The first algorithm uses one pass and Õ(ε−2m)

space whereas the second algorithm uses O(ε−1) passes and Õ(ε−2k) space.

2. A lower bound of Ω(m/k2) space for any constant pass (randomized) algorithm

to achieve an approximation factor better than 1− (1− 1/k)k with probability

at least 0.99; this holds even if the algorithm is permitted exponential time

3. With exponential time and Õ(ε−2m ·min(k, ε−1)) space we observe that a 1− ε

approximation is possible in a single pass.

For this problem, we also consider different constraints such as the budgeted

constraint and the group cardinality constraint (partition matroid). Finally, we also

consider a special case of this problem which is the maximum k-vertex coverage

problem. This problem asks for k nodes that covers the most number of edges. We,

however, study this problem in the dynamic graph stream model. We show a matching

upper bound and lower bound, up to polylogarithmic factors, of Θ(N) for a constant

approximation where N is the number of nodes in the graphs.

1.3 High Dimensional Data Streams Processing

Testing Bayesian networks. In this setting, the stream consists ofm items that are

n-tuples (i.e., each item has n coordinates) that empirically defines a joint distribution

of n random variables X1, X2, . . . , Xn where each Xi has range [k] := {1, 2, . . . k}. The

empirical joint probability mass function of these variables is defined as

P(x1, . . . , xn) = Pr [X1 = x1 and X2 = x2 and . . . and Xn = xn]

:=
c(x1, x2, . . . , xn)

m
,

where c(x1, x2, . . . , xn) is the count of the number of tuples equal to (x1, x2, . . . , xn).

This is also the probability of a random stream item is the tuple (x1, . . . , xn). Another
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terminology for the above definition is the frequency ratio of the tuple (or joint values)

(x1, . . . , xn). The marginal probability of a subset of variables {Xj : j ∈ S} for an

arbitrary S ⊂ {1, 2, . . . , n} is

Pr [Xj = xj for all j ∈ S] :=
∑

x`∈[k] for all `6∈S

Pr [X1 = x1, X2 = x2, . . . , Xn = xn] .

A Bayesian network is an acyclic graph G with a node Xi corresponding to each

variable Xi along with a set of directed edges E that encode a factorization of the

joint distribution. Specifically, if Pa(Xi) = {Xj : (Xj → Xi) ∈ E} are the parents of

Xi in G then the Bayesian network represents the assertion that for all x1, x2, . . . , xn,

the joint distribution can be factorized as follows:

Pr [X1 = x1, X2 = x2, . . . , Xn = xn] =
n∏
i=1

Pr [Xi = xi | Xj = xj ∀ Xj ∈ Pa(Xi)] .

For example, E = ∅ corresponds to the assertion that the Xi are fully independent

whereas the graph on nodes {X1, X2, X3} with directed edges X1 → X2, X1 → X3

corresponds to the assertion that X2 and X3 are independent conditioned on X1. We

consider the problem of evaluating how well the observed data fits a Bayesian network.

The data stream of tuples in [k]n and a Bayesian network G defines an empirical

distribution PG:

PG(x1, . . . , xn) :=
n∏
i=1

Pr [Xi = xi|Xj = xj ∀ Xj ∈ Pa(Xi)] ,

where

Pr [Xi = xi | Xj = xj for all Xj ∈ Pa(Xi)] =
Pr [Xi = xi ∧Xj = xj∀Xj ∈ Pa(Xi)]

Pr [Xj = xj, ∀Xj ∈ Pa(Xi)]

7



is just the fraction of tuples whose ith coordinate is xi amongst the set of tuples whose

jth coordinate is xj for all Xj ∈ Pa(Xi). We then define the error of G to be the

`p norm, for p ∈ {1, 2}, of the difference between the joint distribution P and the

factorization PG. In particular, we exhibit:

1. A lower bound of Ω(knd) space for any constant pass algorithm that determines

if the `p distance between P and PG is zero.

2. A near-optimal upper bound that (1 + ε)-approximate the `p distance between

P and PG.

Finding subcube heavy hitters. We study the problem of finding heavy hitters

in high dimensional data streams. Formally, let us start with a one-dimensional

stream of items x1, . . . xm where each xi ∈ {1, 2, . . . , n}. We can look at the count

c(v) = |{i : xi = v}| or the frequency ratio f(v) = c(v)/m. A heavy hitter value v is

one with c(v) ≥ γm or equivalently f(v) ≥ γ, for some constant γ. The standard data

stream model is that we maintain data structures of size polylog(m,n) and determine

if v is a heavy hitter with probability of success at least 3/4, that is, if f(v) ≥ γ

output YES and output NO if f(v) < γ/4 for all v.1 We note that if γ/4 ≤ f(v) < γ,

then either answer is acceptable.

Detecting heavy hitters on data streams is a fundamental problem that arises in

guises such as finding elephant flows and network attacks in networking, finding hot

trends in databases, finding frequent patterns in data mining, finding largest coefficients

in signal analysis, and so on. Therefore, the heavy hitters problem has been studied

extensively in theory, databases, networking and signal processing literature. See [49]

for an early survey and [139] for a recent survey.

1The gap constant 4 can be narrowed arbitrarily and the success probability can be amplified to
1− δ as needed, and we omit these factors in the discussions.
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We extend this problem to higher dimensional data streams. For this problem, we

use d to denote the dimensionality of stream items. A k-dimensional subcube T is a

subset of k distinct coordinates {T1, · · · , Tk} ⊆ [d].

Our problem takes k, γ as parameters and the stream as the input and build data

structures to answer:

• Subcube Heavy Hitter: Query(T, v), where |T | = k, and v ∈ [n]k, returns an

estimate if the frequency of the joint values v in coordinates T is at least γ.

Specifically, output YES if the frequency is at least γ and NO if the frequency

is smaller than γ/4. The required success probability for all k-dimensional

subcubes T and v ∈ [n]k is at least 3/4.

• All Subcube Heavy Hitters: AllQuery(T ) outputs all joint values v that return

YES to Query(T, v). This is conditioned on the algorithm used for Query(T, v).

It is important to emphasize that the stream is presented (in a single pass or constant

passes) to the algorithm before the algorithm receives any query.

The problem we address is directly related to frequent itemset mining studied in

the data mining community. In fact, the frequent itemset mining is a special case

of our problem where each dimension is binary (n = 2), and we only asks questions

about joint values that are all 1. Let Uk denote the k-tuple of all 1. Recently, Liberty

et al. showed that any constant-pass streaming algorithm answering Query(T,Uk)

requires Ω(kd/γ · log(d/k)) space.

We observe a simple approach using Reservoir sampling [137] solves subcube

heavy hitters problems more efficiently compared to the approaches mentioned above.

Our analysis shows that the space we use is within polylogarithmic factors of the

lower bound shown in [108] for binary dimensions and query vector Uk, which is a

special case of our problem. Therefore, the subcube heavy hitters problem can be

solved using Õ(kd/γ) space.
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We further avoid this quadratic bottleneck (i.e., when k is large, the memory

becomes d2) for finding subcube heavy hitters. We adopt the notion that there is

an underlying probabilistic model behind the data, and in the spirit of the Naive

Bayes model, we assume that the dimensions are nearly mutually independent given

an observable latent dimension. This could be considered as a low rank factorization

of the dimensions. In particular, one could formalize this assumption by bounding the

total variational distance between the data’s joint distribution and that derived from

the Naive Bayes formula. This assumption is common in statistical data analysis and

highly prevalent in machine learning. Following this modeling, we make two main

contributions:

1. A two-pass, Õ(d/γ)-space streaming algorithm for answering Query(T, v). This

improves upon the kd factor in the space complexity from sampling, without

assumptions, to just d with the Naive Bayes assumption, which would make this

algorithm practical for large k.

2. A fast algorithm for answering AllQuery(T ) in Õ((k/γ)2) time. The naive

procedure would take exponential time Ω((1/γ)k) by considering the Cartesian

product of the heavy hitters in each dimension. Our approach, on the other

hand, uses the structure of the Naive Bayes assumption to iteratively construct

the subcube heavy hitters one dimension at a time.

Our work develops the direction of model-based data stream analysis. Model-based

data analysis has been effective in other areas. For example, in compressed sensing,

realistic signal models that include dependencies between values and locations of the

signal coefficients improve upon unconstrained cases [55]. In statistics, using tree

constrained models of multidimensional data sometimes improves point and density

estimation. In high dimensional distribution testing, model based approach has also

been studied to overcome the curse of dimensionality [54].
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CHAPTER 2

BASIC BACKGROUND AND NOTATION

In this chapter, we present basic notation and background the the rest of this

thesis.

2.1 Basic Notation

We say y is a 1 + ε approximation of x if

(1− ε) · x ≤ y ≤ (1 + ε) · x

which is often denoted by y = (1± ε)x.

We frequently use [n] to denote the set of the first n natural numbers {1, 2, . . . , n}.

Vector Notation. If x is a vector of n entries, we use xi to denote the ith entry of

x. Furthermore, the pth norm of x is

‖x‖p := p

√√√√ n∑
i=1

xpi .

The pth frequency moment of x is simply ‖x‖pp. In the case p = 0, we define

‖x‖0 :=

∣∣∣∣{i ∈ [n] : xi 6= 0}
∣∣∣∣ which is the number of non-zero entries.

Tuples and joint values. We use (x1, x2, . . . , xk) ∈ [n]k to denote an k-tuple where

each xi ∈ [n]. We also use joint values and tuple interchangably.
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Asymptotic notation. We use polylog(n) to denote logc n for some constant c.

We use Õ to suppress polylog factors. For example, O(n log2 n) = Õ(n).

We also often rely on the observation that log1+ε n = O(ε−1 log n).

Probability and statistics notation. We often use I[A] to denote the indicator

variable for the event A. Let X be a random variable, E [X] and V [X] denote the

expectation and variance of X respectively.

2.2 Graph Theory Notation and Convention

We use the common convention notation that V and E are the sets of nodes of and

edges respectively. Additionally, we let n and m be the number of nodes and edges

respectively. Furthermore, we often refer to “high probability” as 1− 1/ poly(m,n) in

the corresponding problem.

The induce subgraph of a subset of nodes S ⊆ V is often denoted by GS. The set

of edges of GS is denoted by E(GS). We also often use deg(v) to denote the degree of

a node v.

We use node and vertex interchangeably in this thesis.

2.3 Concentration Bounds

We shall rely on some standard concentration bounds: Markov bound, Chebyshev

bound and Chernoff bound.

Theorem 1 (Markov bound). Let X be a non-negative random variable. Then,

Pr [X ≥ α · E [X]] ≤ 1

α
.

Theorem 2 (Chebyshev bound). Let X be a random variable. Then,

Pr [|X − E [X]| ≥ α] ≤ V [X]

α2
.
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Finally, we will frequently use the following version of Chernoff bound. We say

that Xi are negatively correlated if for all Xi and S ⊂ {1, 2, . . . , n} where i /∈ S, we

have

Pr [Xi = 1 | Xj = 1 for all j ∈ S] ≤ Pr [Xi = 1] .

But first, let X1, . . . , Xn be random binary variables. We will mostly appeal to the

following Chernoff bound.

Theorem 3 (Chernoff bound). Let X1, X2, . . . , Xn be random binary variables that

are either mutually independent or negatively correlated and let µ = E [
∑n

i=1Xi]. Then,

for any ε > 0,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ εµ

]
≤ exp

(
−min{ε2, ε} · µ

3

)
.
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CHAPTER 3

FAST `p SAMPLING AND ITS APPLICATION TO
FINDING THE APPROXIMATE DENSEST SUBGRAPH

3.1 Introduction

In this chapter, we develop a fast `p sampling algorithm. We then apply this

algorithm to the problem of finding the densest subgraph in dynamic graph streams.

`p sampling. In the turnstile data stream model, the stream is a sequence of m

additive updates on entries of an underlying vector x of length n. Specifically, each

update has the form

xi ← xi + ∆ .

An `p sampler (see [9, 85, 120]) is a data structure that takes one pass over a

turnstile stream and with high probability returns a pair of an index j and an estimate

yj where yj = (1± ε)xj and the probability that j is equal to i is proportional to xpi

up to a 1 + ε factor. In particular,

Pr [j = i] = (1± ε) · xpi
‖x‖pp

.

If p = 0, the `p sampling data structure returns a uniformly random index j where

xj is non-zero. We have the promise that the `p sampler succeeds with probability at

least 1− n−c where c is a constant. The constant c hides in the space use by the `p

sampler. The update time of a sampler is the time to process an update to the vector

x.
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Lemma 4 ( [9,85,120]). There exists an `p sampler that uses Õ(ε−max{1, p}) space for

0 < p ≤ 2. For p = 0, there exists an `0 sampler that uses Õ(1) space. In both cases,

the update time is Õ(1).

Densest subgraph problem. In the densest subgraph problem, the goal is to

identify the subgraph that has the maximum (weighted) average degree. Somewhat

surprisingly, there are polynomial time algorithms to find the densest subgraph

[40,64,72,95] and more efficient approximation algorithms also exist [40].

Our goal is to find an approximate densest subgraph in the dynamic graph stream

model. Two main ingredients of our algorithm are:

• For unweighted graphs, we will show that a subsampled graph formed by Õ(ε−2n)

random edges preserves the densest density up to a 1 + ε factor. For weighted

graphs, we can sample the edges with replacement based on their weights.

• The above observation can be translated into a natural streaming algorithm that

uses Õ(ε−2n) space, i.e., we can sample the edges using `0 or `1 sampling. A

major drawback of this implementation is that the update time is Ω(n). We show

that Õ(1) update time is possible by designing a fast `p sampling algorithm.

3.2 Fast `p Sampling Algorithm

Suppose we want to draw s independent `p samples. The naive implementation

that maintains s different `p samplers in parallel would require Ω(s) update time. This

section focuses on providing a faster update time. We prove the following result.
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Theorem 5. In the turnstile model, we have the following algorithms.

• For p ∈ (0, 2], there exists a single-pass algorithm that, with high probability,

outputs s independent `p samples using Õ(s · ε−max{1, p}) space and Õ(1)

update time.

• For p = 0, there exists a single-pass algorithm that, with high probability,

outputs s independent `0 samples using Õ(s) space and Õ(1) update time.

The theorem above implies polylog n update time regardless of s. This is most

significant when s = o(n) and s = ω(polylog n).

Approach. We hash the coordinates of x into w groups and for each of these groups

we maintain a small number of local `p samplers restricting to the corresponding

coordinates. To draw an `p sample, we randomly pick a group with probability

proportional to its mass contribution to the pth frequency moment ‖x‖pp and draw an

`p sample from that group using a local `p sampler. The main challenge is ensuring

that each group’s contribution is small so that we only need to maintain a small

number of samplers in each group. To do this, we separate the heavy coordinates into

one group using the Heavy-Hitters algorithm.

Algorithm for p ∈ (0, 2]. We rely on the following Heavy-Hitters result (see [85],

Lemma 1 and Section 4.4) .

Lemma 6 ( [85]). For p ∈ (0, 2], there exists a single-pass, Õ(ε−pφ−1)-space and Õ(1)-

update time algorithm that with high probability returns a subset of indices A ⊆ [n]

and the set of the corresponding estimates B = {yi : yi = (1± ε)xi and i ∈ A} such

that: If xpi ≥ φ · ‖x‖pp, then i is in A and xpi < φ/8 · ‖x‖pp, then i is not in A.
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We consider a set of pairwise independent hash functions

hi : [n]→ [w], for i = 1, 2, . . . , d ,

where d = c·log n and w = c·s for some sufficiently large constant c. We define a group

Ai,j as the set of indices that are hashed to j by the hash function hi. Specifically,

Ai,j :=

{
k ∈ [n] : hi(k) = j

}
.

Let a(i,j) be the vector that have the same entries of x except a
(i,j)
k = 0 if hi(k) 6= j.

Specifically,

a
(i,j)
k :=


xk , if hi(k) = j

0 , otherwise.

Finally, the set of heavy coordinates is defined as

H :=

{
k ∈ [n] : xpk ≥

‖x‖pp
s

}
.

We construct a superset H of H by running the Heavy-Hitters algorithm with

φ = s−1. Moreover, for each k ∈ H, the Heavy-Hitter algorithm also returns an

estimate

ypk = (1± ε)xpk .

Furthermore, we maintain the followings.

During the stream, maintain:

1. r = (1± ε) ‖x‖pp .

2. α(i,j) = (1± ε)
∥∥a(i,j)∥∥p

p
for all i and j .

3. A heavy hitter data structure with φ = 1/s.

4. O(log n) different `p samplers for each a(i,j) .
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One can use a frequency moment approximation algorithm (such as [79]) that uses

Õ(ε−2) space and Õ(1) update time to maintain r and each α(i,j). We observe that a

stream update to a coordinate k involves the following steps.

1. The update time for the data structure maintaining the estimate r of ‖x‖pp and

the heavy hitters data structure is Õ(1).

2. We need to compute hi(k) for each i = 1, 2, . . . , d. For each of d groups Ai,j

which the index k is hashed to, the algorithm needs to update the data structure

maintaining the estimate α(i,j) of
∥∥a(i,j)∥∥p

p
and O(log n) data structures of the

`p samplers for the corresponding vectors a(i,j).

Therefore, the total update time is Õ(1). At the end of the stream, we compute the

pth norm of the heavy entries

β :=
∑
k∈H

ypk .

We define

G :=

{
(i, j) : α(i,j) <

10r

s

}
and compute

α :=
∑

(i,j)∈G

α(i,j) .

We say group Ai,j is good if (i, j) is in G. Furthermore, we also consider H as a

good group. The number of good groups that an index k belongs to is denoted by

g(k) :=

∣∣∣∣{(i, j) ∈ G : k ∈ Ai,j
}∣∣∣∣+ I[k ∈ H] .

We use g(k) in the rejection probability to avoid bias toward the coordinates that

appear in many good groups. Repeat the following trial until we get s independent

random `p samples.
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1. Toss a fair coin.

2. If head, then randomly pick an index k ∈ H where Pr [k = u] =
ypu
β

.

(a) Reject the current trial with probability 1− β

2dr · g(k)
.

(b) Otherwise, add k to the sample set.

3. If tail, then randomly pick (i, j) in G where Pr [(i, j) = (u, v)] =
α(u,v)

α
.

(a) Reject the current trial with probability 1− α

2dr
.

(b) Otherwise, use the next `p sampler for a(i,j) to retrieve (k, yk) .

(c) Reject the current trial with probability 1− 1

g(k)
.

(d) Otherwise, add k to the sample set.

It is important to note that the rejection probability is valid. Since each coordinate

is in at most d good groups Ai,j, for sufficiently small ε, we have

α ≤ (1 + ε)
∑

(i,j)∈G

∥∥a(i,j)∥∥p
p
≤ (1 + ε)d · ‖x‖pp < 2dr .

It is also obvious that

β ≤ (1 + ε)
∑
k∈H

xpk ≤ (1 + ε) ‖x‖pp < 2dr .

Next, we need to show that each index is sampled with the desired probability.

The first step is to show that g(k) > 0 for all indices k.

Lemma 7. For all indices k /∈ H, we must have that k belongs to at least one good

group with probability at least 1− n−c+1.
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Proof. Observe that if k that is not in H, then xpk ≤ ‖x‖
p
p /s. Let us fix i and suppose

hi(k) = j. By pairwise independence,

E
[∥∥a(i,j)∥∥p

p

]
≤ xpk +

∑
z 6=k

xpz
w
≤

(1 + c) ‖x‖pp
cs

≤
2 ‖x‖pp
s

.

Applying Markov bound,

Pr

[∥∥a(i,j)∥∥p
p
>

8 ‖x‖pp
s

]
≤ 1

4
.

Hence,

Pr [Ai,j is good] ≥ Pr

[
(1 + ε)

∥∥a(i,j)∥∥p
p
<

10(1− ε) ‖x‖pp
s

]

≥ Pr

[∥∥a(i,j)∥∥p
p
<

8 ‖x‖pp
s

]
≥ 3

4

for sufficiently small ε. Thus, the probability that there is no good group for k is at

most 4−d = 4−c logn ≤ n−c. The lemma follows by taking the union bound over all k

in [n].

Let Sp(k) denote the event of adding k to the sample set. Then, the probability of

successfully retrieving a sample is

Sp(success) =
⋃
k∈[n]

Sp(k) .

We first lower bound the probability of successfully retrieving a sample.
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Pr [Sp(success)] =
∑
k∈H

Pr [Sp(k) | head] Pr [head] +
∑

(i,j)∈G
k∈Ai,j

Pr [Sp(k) | tail] Pr [tail] .

The first summation can be expressed as

∑
k∈H

Pr [Sp(k) | head] Pr [head] =
1

2

∑
k∈H

ypk
β
· β

2dr · g(k)

=
1

4

∑
k∈H

ypk
dr · g(k)

.

Next, we simplify the second summation

∑
(i,j)∈G
k∈Ai,j

Pr [Sp(k) | tail] Pr [tail] =
1

2

∑
(i,j)∈G
k∈Ai,j

α(i,j)

α
· α

2dr
· ypk
α(i,j)

· 1

g(k)

=
1

4

∑
(i,j)∈G
k∈Ai,j

ypk
dr · g(k)

.

First note that ∑
(i,j)∈G
k∈Ai,j

ypk
g(k)

= (1± ε) ‖x‖pp .

We then observe that r = (1± ε) ‖x‖pp and α(i,j) = (1± ε)
∥∥a(i,j)∥∥p

p
to yield

Pr [Sp(success)] =
1± 2ε

4d
= Θ

(
1

log n

)
.

We also have

Pr [Sp(k) and Sp(success)] =
1

4d
· y

p
k

r
.

Therefore,

Pr [Sp(xk) | Sp(success)] =
(1± 4ε)xpk
‖x‖pp

.

Thus, by re-parameterizing ε, we have proved the following.
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Lemma 8. The probability of sampling k in a successful trial is

Pr [Sp(k) | Sp(success)] =
(1± ε)xpk
‖x‖pp

.

Furthermore, each trial succeeds with probability Ω(1/ log n).

Finally, we show that it suffices to maintain O(log n) `p samplers on each vector

a(i,j).

Lemma 9. With high probability, repeating O(s log2 n) trials, we obtain at least s

independent `p samples and we need to draw O(log n) different `p samples from each

group.

Proof. As shown above, Pr [Sp(success)] = Ω(1/ log n). Thus, the first claim follows

immediately from Chernoff bound. On the other hand, we draw a sample from a(i,j) if

and only if (i, j) is in G which happens if and only if α(i,j) ≤ 10r/s. Therefore, for

each trial,

Pr [draw an `p sample from a good group Ai,j] =
α(i,j)

2dr
= O

(
1

s log n

)
.

For appropriate choice of constants, appealing to Chernoff bound again, the

probability that a good group needs more than O(log n) `p samples is less than

1/ poly(n). Finally, appealing to the union bound over O(s log n) good groups, we

conclude the second claim.

Algorithm for p = 0. The case p = 0 is simpler since we do not need to separate

the heavy coordinates. We can assume s = o(‖x‖0); otherwise, we can reconstruct x
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via standard sparse recovery algorithms (e.g., see [69]). We again consider a set of

pairwise independent hash functions

hi : [n]→ [w], for i = 1, 2, . . . , d ,

where d = c · log n and w = c · s for some sufficiently large constant c. Following the

same approach for the case p ∈ (0, 2], we define a group Ai,j as the set of indices that

are hashed to j by the hash function hi. Specifically,

Ai,j :=

{
k ∈ [n] : hi(k) = j

}
.

Similarly, we define the vectors a(i,j) that the same entries of x except a
(i,j)
k = 0 if

hi(k) 6= j.

a
(i,j)
k :=


xk , if hi(k) = j

0 , otherwise.

We first assume that all insertions and deletions are “atomic” such that xi is either

0 or 1 at all points. This is true for the characteristic vector of the set of edges E in

a dynamic graph stream. This means that we can maintain α(i,j) = ‖a(i,j)‖0 exactly.

The data structure during the stream is as follows.

During the stream, maintain the following:

1. α(i,j) = ‖a(i,j)‖0 .

2. r = ‖x‖0 .

3. O(log n) different `0 samplers for each a(i,j) .

Again, it is easy to see that the update time is Õ(1). We say that a group Ai,j is

good if ∥∥a(i,j)∥∥
0
≤ 8r

w
.
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We again let g(k) denote the number of good groups the index k belongs to and

show that g(k) > 0 for all indices k.

Lemma 10. For all indices k, with high probability, k belongs to a good group.

Proof. Fix a hash function hi and let h(k) = j. In expectation,

E
[
α(i,j)

]
≤ 1 +

‖x‖0
w
≤ cs+ ‖x‖0

w
≤ 2‖x‖0

w
.

Appealing to Markov inequality, for sufficiently small ε, we deduce that

Pr [Ai,j is good] = Pr

[
α(i,j) >

8r

w

]
≥ 3

4
.

The second inequality follows from the assumption that s = o(‖x‖0). Therefore, the

probability that k does not belong to a good group is at most 4−d ≤ n−10 since

d = c log n for some large constant c. By taking the union bound over all k, we deduce

the lemma.

In post-processing, let g(k) be the number of good group the index k belongs to.

Let

G :=

{
(i, j) : Ai,j is good

}
and

α :=
∑

(i,j)∈G

α(i,j) .

We repeat the following trial until s samples are retrieved.

1. Pick a random (i, j) with probability
α(i,j)

α
.

2. Use the next `0 sampler for a(i,j), retrieve an `0 sample k of a(i,j).

3. Reject the current trial with probability 1− 1/(2 · g(k)).

4. Otherwise, add k to the sample set.
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Similar to the case p ∈ (0, 2], we want to show that

Lemma 11. The probability of sampling k in a successful trial is

Pr [S0(k) | S0(success)] =
1

‖x‖0
.

Furthermore, each trial succeeds with probability Ω(1/ log n).

Proof. The success probability of retrieving a sample is

Pr [S0(success)] =
∑

(i,j)∈G

∑
k∈Ai,j

xk 6=0

α(i,j)

α
· 1

‖a(i,j)‖0
· 1

2g(k)
=
‖x‖0
2α
≥ 1

2c log n
.

The last inequality follows from the fact that each index belongs to at most

d ≤ c log n good groups. It is easy to see that the probability of sampling k is

Pr [S0(k) | S0(success)] =
1

2α
· 2α

‖x‖0
=

1

‖x‖0

as required.

We now show that we need to draw O(log n) samples from each good groups.

Lemma 12. With high probability, repeating O(s log2 n) trials gives us s independent

`0 samples and we need to draw O(log n) different `0 samples from each group.

Proof. Appealing to Chernoff bound, with probability at least 1− n−10, we need to

perform O(s log2 n) trials to attain s samples with high probability. For each trial, we

draw a sample from a good group Ai,j with probability

Pr [draw an `0 sample from a good group Ai,j] =
α(i,j)

2α
≤ 8r

wd‖x‖0
≤ 8

c2s log n
.

The second inequality follows from α ≤ d‖x‖0 since each entry belongs to at most d

good groups. Therefore, we draw O(s log n) samples from each good group Ai,j with
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probability at least 1 − n−10. Taking the union bound over O(s log n) good groups

concludes the claim.

Remark. In the case that the updates do not guarantee xi ∈ {0, 1} at all points,

then we can use F0 approximation algorithm (e.g., [50]) to find α(i,j) = (1 + ε)‖a(i,j)‖0

and r = (1± ε)‖x‖0, then the probability of sampling an index k entails a 1± ε factor.

Specifically,

Pr [S0(k) | S0(success)] =
1± ε
‖x‖0

.

3.3 Application: Finding Approximate Densest Subgraph

Problem description. We consider the densest subgraph problem in the dynamic

graph stream model. Let GU be the induced subgraph of graph G = (V,E) on nodes

U . Then the density of GU is defined as

d(GU) :=
|E(GU)|
|U |

,

where E(GU) is the set of edges in the induced subgraph. In weighted graphs, the

density of GU is

d(GU) :=
w (E(GU))

|U |
,

where w (E(GU)) is the total weight of the edges in E(GU).

We define the maximum density as

d∗ := max
U⊆V

d(GU) .

and say that the corresponding subgraph is the densest subgraph. The densest subgraph

can be found in polynomial time [40, 64, 72, 95] and more efficient approximation

algorithms have been designed [40]. Finding dense subgraphs is an important primitive
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when analyzing massive graphs; applications include community detection in social

networks and identifying link spam on the web, in addition to applications on financial

and biological data. See [105] for a survey of applications and existing algorithms for

the problem.

Our contributions. We present a single-pass algorithm that returns a (1 − ε)

approximation1 with high probability. For a graph on n nodes, the algorithm uses the

following resources:

• Space: O(ε−2n polylog n). The space used by our algorithm matches the lower

bound of Bahmani et al. [20] up to a poly-logarithmic factor for constant ε.

• Per-update time: polylog(n). We note that this is the worst-case update time

rather than amortized over all the edge insertions and deletions.

• Post-processing time: poly(n). This will follow by using any exact algorithm for

densest subgraph [40,64,72] on the subgraph generated by our algorithm.

Related work. The most relevant previous results for the problem were established

recently by Bhattacharya et al. [25]. They presented two algorithms that use similar

space to our algorithm and process updates in polylog(n) amortized time. The first

algorithm returns a (1/2 − ε) approximation of the maximum density of the final

graph while the second (the more technically challenging result) outputs a (1/4− ε)

approximation of the current maximum density after every update while still using

only polylog(n) time per-update. Our algorithm improves the approximation factor

to (1− ε) while keeping the same space and update time. It is possible to modify our

algorithm to output a (1− ε) approximation to the current maximum density after

1We adopt the convention that for maximization problems, an α approximation (where α ≤ 1) is
a solution that is at least αOPT.
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each update but the simplest approach would require the post-processing step to be

run after every edge update and this would not be efficient.

Bhattacharya et al. were one of the first to combine the space restriction of

graph streaming with the fast update and query time requirements of fully-dynamic

algorithms from the dynamic graph algorithms community. Epasto, Lattanzi, and

Sozio [60] present a fully-dynamic algorithm that returns a (1/2− ε) approximation

of the current maximum density. Other relevant work includes papers by Bahmani,

Kumar, and Vassilvitskii [20] and Bahmani, Goel, and Munagala [19]. The focus of

these papers is on designing algorithms in the MapReduce model but the resulting

algorithms can also be implemented in the data stream model if we allow multiple

passes over the data.

Our approach. For unweighted graphs, our algorithm requires maintaining Õ(ε−2n)

random edges. For weighted graphs, our algorithm samples with replacement Õ(ε−2n)

edges based on their weights. We then need to argue, via Chernoff bound, that the

subsampled graph approximately preserves the densest subgraph.

In both cases, a naive implementation requires Õ(ε−2n) update time. To reduce

the update time to Õ(1), we use fast `p-sampling algorithm that we developed in the

previous section. We first consider the unweighted case.

Subsampling approximately preserves maximum density. In this section, we

consider properties of a random subgraph of an unweighted input graph G. Specifically,

let G′ be the graph formed by sampling each edge in G independently with probability

p where

p = cε−2 log n · n
m

for some sufficiently large constant c > 0 and 0 < ε < 1/2. We may assume that m is

sufficiently large such that p < 1 because otherwise we can reconstruct the entire graph

in the allotted space using standard results from the sparse recovery literature [69].
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We will prove that, with high probability, the maximum density of G can be

estimated up to factor (1− ε) given G′. While it is easy to analyze how the density of

a specific subgraph changes after the edge sampling, we will need to consider all 2n

possible induced subgraphs and prove properties of the subsampling for all of them.

The next lemma shows that d(G′U) is roughly proportional to d(GU) if d(GU) is

“large” whereas if d(GU) is “small” then d(G′U) will also be relatively small.

Lemma 13. Let U be an arbitrary set of k nodes. Then,

Pr [d(G′U) ≥ pd∗/10] ≤ n−10k if d(GU) ≤ d∗/60

Pr [|d(G′U)− pd(GU)| ≥ εpd(GU)] ≤ 2n−10k if d(GU) > d∗/60 .

Proof. We start by considering the density of the entire graph d(G) = m/n and

therefore conclude that the maximum density, d∗, is at least m/n. Hence, p ≥

(cε−2 log n)/d∗.

Let X be the number of edges in G′U and note that E [X] = pkd(GU ). First assume

d(GU) ≤ d∗/60. Then, by an application of the Chernoff Bound (e.g., [119, Theorem

4.4]), we observe that

Pr [d(G′U) ≥ pd∗/10] = Pr [X ≥ pkd∗/10] ≤ 2−pkd
∗/10 < 2−(ck logn)/10

and this is at most n−10k for sufficiently large constant c.

Next assume d(GU) > d∗/60. Hence, by an application of an alternative form of

the Chernoff Bound (e.g., [119, Theorem 4.4 and 4.5]), we observe that

Pr [|d(G′U)− pd(GU)| ≥ εpd(GU)] = Pr [|X − pkd(GU)| ≥ εpkd(GU)]

≤ 2 exp(−ε2pkd(GU)/3)

≤ 2 exp(−ε2pkd∗/180)

≤ 2 exp(−ck(log n)/180) .
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and this is at most 2n−10k for sufficiently large constant c.

Corollary 14. With high probability, for all U ⊆ V :

d(G′U) ≥ (1− ε)pd∗ =⇒ d(GU) ≥ 1− ε
1 + ε

· d∗ .

Proof. There are
(
n
k

)
≤ nk subsets of V that have size k. Hence, by appealing to

Lemma 13 and the union bound, with probability at least 1 − 2n−9k, the following

two equations hold,

d(G′U) ≥ pd∗/10 =⇒ d(GU) > d∗/60

d(GU) > d∗/60 =⇒ d(GU) ≥ d(G′U)

p(1 + ε)

for all U ⊆ V such that |U | = k. Since (1 − ε)pd∗ ≥ pd∗/10, together these two

equations imply

d(G′U) ≥ (1− ε)pd∗ =⇒ d(GU) ≥ d(G′U)

p(1 + ε)
≥ 1− ε

1 + ε
· d∗

for all sets U of size k. Taking the union bound over all values of k establishes the

corollary.

We next show that the densest subgraph in G′ corresponds to a subgraph in G

that is almost as dense as the densest subgraph in G.

Theorem 15. Let U ′ = arg maxU d(G′U). Then with high probability,

1− ε
1 + ε

· d∗ ≤ d(GU ′) ≤ d∗ .
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Proof. Let U∗ = arg maxU d(GU ). By appealing to Lemma 13, we know that d(G′U∗) ≥

(1− ε)pd∗ with high probability. Therefore

d(G′U ′) ≥ d(G′U∗) ≥ (1− ε)pd∗ ,

and the result follows by appealing to Corollary 14.

Implementation in dynamic graph streams. First, we observe a dynamic graph

stream is just a turnstile stream on the characteristic vector of the set of edges E.

Therefore, we can use the `0 sampler to sample a random edge.

Sampling each edge independently with probability p can be simulated via a

two-step procedure below.

• Fix the number X of edges to sample: Let X ∼ Bin(g, p) where g is the number

of edges in the relevant group.

• Fix which X edges to sample: We then randomly pick X edges without replace-

ment.

The following lemma follows immediately from Chernoff bound.

Lemma 16. With high probability, X = O(ε−2n log n).

If we draw O(ε−2n log2 n) independent `0 samples from the set of edges E, with

high probability, we obtain Ω(ε−2n log n) distinct random edges. But we know that

we could do so in Õ(ε−2n) space and Õ(1) update time according to Theorem 5. We

summarize our result as the following theorem.

Theorem 17. There exists a single-pass algorithm that finds a 1− ε approxi-

mation of the densest subgraph in the dynamic graph stream model which uses

Õ(ε−2n) space and Õ(1) update time.
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Weighted densest subgraph. We show that the weighted densest subgraph prob-

lem can also be solved in the dynamic graph stream model using `1 sampling. We

sample t = cε−2n log n random edges with replacement based on their weights using

`1 sampling. In particular, we sample an edge e with probability:

Pr [sample edge e] = (1± ε)w(e)

W
.

where W is the total weight of the edges in the graph. Let the multi-set of the sampled

edges be S = {s1, s2, . . . , st}, and from S we construct a multi-graph G′. The weight

of an edge in the subsampled graph G′ is the number of times it appears in S. Another

interpretation of G′ is a multi-graph with edges in S. We will show that the densities

in the newly constructed graph, in expectation, is scaled by a factor p = t/W . We

observe that p = (cε−2n log n)/W ≥ (cε−2 log n)/d∗ since d∗ ≥ W/n. The next lemma

shows that d(G′U) is roughly p · d(GU) if d(GU) is “large” whereas if d(GU) is “small”

then d(G′U) will also be relatively small.

Lemma 18. Let U be an arbitrary set of k nodes. Then,

Pr [d(G′U) ≥ pd∗/10] ≤ n−10k if d(GU) ≤ d∗/100

Pr

[∣∣∣∣d(G′U)− pd(GU)

∣∣∣∣ ≥ εpd(GU)

]
≤ 2n−10k if d(GU) > d∗/100 .

Proof. We first observe that if d(GU) < d∗/100, then for sufficiently small ε,

E

∑
i∈[t]

I[si ∈ E(G′U)]

 = (1± ε)t · w(E(GU))

W
= (1± ε)t|U |d(GU)

W
≤ t|U |d∗

60W
.

We observe that

d(G′U) =

∑
i∈[t] I[si ∈ E(G′U)]

|U |
.

Then, we appeal to the Chernoff bound
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Pr

[
d(G′U) ≥ p · d

∗

10

]
= Pr

∑
i∈[t]

I[si ∈ E(G′U)] ≥ t|U |d∗

10W


≤ exp

(
−t|U |d∗

10W

)
≤ exp

(
−t|U |
10n

)
< n−10|U | .

The second inequality follows from d∗ ≥ W/n. These steps hold for sufficiently

large c and sufficiently small ε.

Next, we consider the case d(GU) ≥ d∗/100. We again appeal to the Chernoff

bound

Pr

[∣∣∣∣d(G′U)− p · d(GU)

∣∣∣∣ ≥ εp · d(GU)

]

= Pr

∣∣∣∣∣∣
∑
i∈[t]

I[si ∈ E(U)]− t|U |
W
· d(GU)

∣∣∣∣∣∣ ≥ εt|U |
W
· d(GU)


≤ exp

(
−ε2t|U |d(GU)

3W

)
≤ exp

(
−c|U | log n

180

)
≤ n−10|U | .

We use the assumption that d(GU) ≥ d∗/100 ≥ 1/100 ·W/n to get the inequality

in the third step. By taking a union bound over at most n|U | subgraphs of size |U |,

the above guarantees holds for all of those subgraphs with high probability.

Taking another union bound over all n possible values of |U |, we have the following

corollary.

Corollary 19. With high probability, for all subgraphs U ,

d(G′U) ≥ (1− ε)pd∗ =⇒ d(GU) ≥ 1− ε
1 + ε

· d∗ .
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Thus, if we find the densest weighted subgraph of the described graph G′, we have

the following.

Theorem 20. Let U ′ = arg maxU d(G′U). Then with high probability,

1− ε
1 + ε

· d∗ ≤ d(GU ′) ≤ d∗ .

Proof. Let U∗ = arg maxU d(GU) be the densest subgraph in G. By appealing to

Lemma 18, we know that d(G′U∗) ≥ (1− ε)pd∗ with high probability. Therefore

d(G′U ′) ≥ d(G′U∗) ≥ (1− ε)pd∗ ,

and the result follows by appealing to Corollary 19.

Finally, recall that we can sample t = cε−2n log n random edges with replacement

based on their weights using `1 sampling given by Theorem 5. We therefore proved

the following.

Theorem 21. There exists a single-pass algorithm that finds a 1 − ε approx-

imation of the weighted densest subgraph in the dynamic graph stream model

which uses Õ(ε−2n) space and Õ(1) update time.
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CHAPTER 4

TRIANGLE COUNTING IN THE ADJACENCY LIST
MODEL

4.1 Introduction and Related Work

Estimating the number of triangles in a graph is a canonical problem in the data

stream model of computation. The problem was first considered by Bar-Yossef et

al. [21] nearly fifteen years ago and a significant body of work has since been devoted

to designing more efficient and ingenious algorithms for the problem in both the single-

pass [5, 7, 21,32,33,81,84,103,109,122,125,134] and multi-pass models [29,51,98].

There appears to be two main reasons for the high level of interest in the problem.

First, the number of triangles in a network and related quantities such as the transitivity

or global clustering coefficient (the fraction of length two paths that are included in

a triangle) play an important role in the analysis of real-world networks. Popular

examples include motif detection in protein interaction networks [117], uncovering

hidden thematic structure in the web graph [56], analysis of social networks [138],

and the evaluation of large graph models [106]. Following Kutzkov et al. [31, 103],

we direct the interested reader to Tsourakakis et al. [136] for an excellent overview

of these and other applications. Second, the problem has a rich theory. The best

exact algorithm in the RAM model runs in O(m2ω/(ω+1)) time [7] where ω ≤ 2.3728 is

the matrix multiplication exponent and m is the number of edges. Recently, Eden

et al. [57] designed the first sub-linear time algorithm. Finally, there are connections

to a range of important problems in the field of fine-grained complexity [83]. Since

many of the real world graphs of interest are massive, it is natural that the problem
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has also been studied in the appropriate computation models, e.g., the MapReduce

model [133] and other parallel models [12, 24], external memory models [11], and the

data stream model (see above for the long stream of references).

Two data stream models have been considered in the literature on triangle counting:

the arbitrary order model in which the stream consists of the edges of the graph in

arbitrary order and the adjacency list order model in which all edges incident to the

same node appear consecutively.1 Of the algorithms designed in both models, some

are suitable when there are many triangles whereas others dominate if there are only

a few triangles. We next discuss the state-of-the-art results and these trade-offs in the

context of our new results.

Our results and related work. In discussing our results and the related work we

use n to denote the number of nodes in the input graph, m to be the number of edges,

and T is the number of triangles in the graph.

We present two main algorithms that (1 + ε)-estimate the number of triangles for

the adjacency list order model where one is suitable for processing graphs with many

triangles (in particular, when T ≥ m) and the other is suitable for processing graphs

with fewer triangles (i.e., T ≤ m).2 Specifically, we present

1. A single-pass algorithm using Õ(ε−2m/
√
T ) space and

2. A two-pass algorithm using Õ(ε−2m3/2/T ) space.

We show that the space can be further reduced if we only need to distinguish

triangle-free graphs from those with at least T triangles.

1The adjacency list order model is closely related to the vertex arrival model that has been
considered in the context of finding matchings in the data stream model [70,89] and row-order arrival
model consider in the context of linear algebra problems [48,67].

2For context, it can be shown that T = O(m3/2) and there are graphs where T = Ω(m3/2) [7].
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It can be argued that using only ≈ m/
√
T space has become a natural goal

in the context of estimating the number of triangles. In particular, Cormode and

Jowhari [51] showed that any constant pass algorithm in the arbitrary order model

required this amount of space when m = Θ(n
√
T ) and there is an existing two-pass

algorithm that returns a 3-approximation using this amount of space. Furthermore,

Jha et al. [81] showed that this space was sufficient for additively approximating

T . Unfortunately, Braverman et al. [29] showed it was insufficient for achieving

multiplicative approximation via a single-pass algorithm in the arbitrary order model.

The significance of our results is showing that ≈ m/
√
T space is sufficient for 1 + ε

approximation if we are given a single pass over a stream in adjacency list order or

two passes over a stream in arbitrary order.

However, it is possible to improve upon ≈ m/
√
T space when T is large and our

second algorithm does just this. At a high level, the main difference between the two

types of algorithms we present is as follows. The m/
√
T dependence arises when we

focus on distinguishing between edges that are involved in many triangles and those

that are not, whereas the m3/2/T dependence arises when we distinguish between

high and low degree nodes. The idea of distinguishing heavy and light edges or nodes

is an important idea in the non-streaming work by Alon et al. [7], Eden et al. [57],

Chiba and Nishizeki [44], among others. The main challenge in our work arises from

the constraints of the data stream model. This necessitates new algorithms and new

notions of heavy and light that may also depend on the ordering of the stream.

Notation and preliminaries It will be convenient to assume the node set of

the graph is [n] = {1, 2, . . . , n}. Let Γ(v) denote the neighbors of a node v and so

deg(v) = |Γ(v)|. We write (undirected) edges as sets of two nodes {u, v} and write

ordered pairs of nodes as uv. For example, {u, v} = {v, u} but uv 6= vu. We use ∆ to

denote the set of triangles in the input graph and so T = |∆|. For a random variable
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X, we denote the expectation and variance as E [X] and V [X] respectively. Bin(n, p)

denotes the binomial distribution with parameters n and p.

To simplify the presentation of our algorithms we adopt two main conventions that

we explain here. Following Braverman et al. [29], we restrict our attention to bounding

the expected space use of our randomized algorithm rather than bounding the space

with high probability. Note that if the algorithm satisfies its accuracy guarantee with

probability 99/100, for example, then it is straight-forward to show that the algorithm

satisfies its accuracy guarantee and doesn’t exceed its expected space use by more

than a factor 100 with probability at least 49/50. Hence, by running a logarithmic

number of copies of the algorithm in parallel, terminating any that exceed their space

bound, and taking the median of the remaining estimates ensures an accurate answer

with only a logarithmic space increase with 1− 1/ poly(n) probability. Secondly, we

parameterize our algorithms in terms of the actual number of triangles T in the graph

and various quantities in the algorithm will depend on T . Obviously, we do not know

T in advance (otherwise we wouldn’t be trying to estimate it) but this convention

is widely adopted in the literature. A natural way to formalize this is to phrase the

problem as distinguishing between graphs with at most t triangles from those with at

least (1 + ε)t triangles where t is an input parameter. In practice, the quantities in

the algorithm would be initialized based on a lower or upper bound (as appropriate)

for the unknown quantities.

In this model, we may assume that the stream consists of a sequence of ordered

pairs xy. For each edge {x, y}, both xy and yx will be present in the stream. The

promise on the ordering is that all tuples with the same first node appear consecutively

in the stream. Aside from that constraint, the stream is ordered arbitrarily. For

example, for the graph consisting of a cycle on three nodes V = {v1, v2, v3}, a possible

ordering of the stream could be
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〈v3v1, v3v2, v1v2, v1v3, v2v3, v2v1〉 .

In this example, we say that the adjacency list for v3 came first, then the adjacency

list for v1, and finally the adjacency list for v2.

Algorithms in arbitrary order model. Some of the ideas we present here can be

applied to the arbitrary order model with the use of one or few more passes through

the stream. We refer to [23, 114] for detailed algorithms in the arbitrary order model.

4.2 One Pass and Õ(ε−2m/
√
T ) Space

Algorithm and intuition. Define a total ordering on nodes <s based on stream

ordering where x <s y if the adjacency list of x is specified before the adjacency list

of y in the stream. Define

Rxy =


|{z : {x, y, z} ∈ ∆ and x <s z <s y}| if x <s y

0 if y <s x

and note that
∑

x,y Rxy = T .

The basic outline of the algorithm comprises of two interlocking parts. In the first

part, we will sample each edge xy with probability p when it arrives and, until yx

arrives, we count all nodes z such that {x, y, z} forms a triangle. If we do not observe

yx after xy was sampled (i.e., yx came before xy in the stream ordering) this counter

will never be used. Otherwise, the counter equals Rxy when yx arrives. Hence, by

summing these counters, we get an estimator that equals
∑

xy RxyI[xy sampled]. In

expectation it equals pT and has low variance if all Rxy are small.

The second part ensures that we estimate every Rxy if Rxy ≥
√
T regardless of

whether xy was sampled. This will allow us to restrict our attention to small Rxy in

the first part of the algorithm (and hence get a good variance bound). The critical

observation that allows us to estimate every large Rxy is as follows: when reading the
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neighbors of x, even if we did not sample xy, we will have probably sampled some of

the edges in the set

{xz : {x, y, z} ∈ ∆ and x <s z <s y}

if the number of edges in this set, i.e., Rxy, is large. Subsequently, each of these

sampled edges form a triangle with the incident edges of y and the number of these

triangles can be used to a) recognize Rxy is large and b) to estimate Rxy.

The algorithm maintains two sets of edges S1 and S2 where each is generated by

sampling each element of the stream with probability p.

For each xy ∈ S1, we maintain a counter c(xy) that counts the number of triangles

{x, y, z} where x <s z <s y. For each xy ∈ S2, we maintain a boolean order(xy) that

is initially 0 but is set to 1 when yx is observed; at this point we have deduced x <s y.

The elements in S2 will be used to determine whether each Rxy is large and, if so,

to estimate it. The elements of S1 will be used to estimate the contribution of all Rxy

that are not large.
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1. Initialize A ← 0, S1 ← ∅, S2 ← ∅ and p ← α · log n · ε−2/T 1/2 for some

large constant α.

2. On seeing edges adjacent to v in the adjacency stream:

(a) Update auxiliary information about sampled edges:

i. For all ab ∈ S1: If a, b ∈ Γ(v) then c(ab)← c(ab) + 1

ii. For all av ∈ S2: Let order(av) = 1

(b) Sample additional edges and update estimator. For each incident

edge vu:

i. With probability p, S1 ← {vu} ∪ S1 and set c(vu) = 0

ii. With probability p, S2 ← {vu} ∪ S2 and set order(vu) = 0

iii. Define

c1(uv) :=


c(uv) if uv ∈ S1

0 otherwise

c2(uv) := |{z : uz ∈ S2, order(uz) = 1, z ∈ Γ(v)}|

and say uv is heavy if c2(uv) ≥ p
√
T . Update the estimator as

follows:

A← A+


c1(uv) if uv is not heavy

c2(uv) if uv heavy

3. Return A/p

Analysis. For the analysis, let H consist of all edges xy such that xy is defined as

heavy by the algorithm. The final value of A can be written as A = Al + Ah where
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Al =
∑
xy 6∈H

c1(xy) and Ah =
∑
xy∈H

c2(xy)

The next two lemmas establish that, with good probability, Al/p ≈
∑

xy 6∈HRxy

and Ah/p ≈
∑

xy∈HRxy.

Lemma 22. With probability at least 99/100,

Ah/p =
∑
xy∈H

Rxy ± εT/2

and Rxy ≤ 2
√
T for all xy 6∈ H.

Proof. First note that c2(xy) ∼ Bin(Rxy, p). If Rxy ≥
√
T/2, then by an application

of the Chernoff bound,

Pr [c2(xy) = (1± ε/2)pRxy] ≥ 1− 2e−ε
2pRxy/12 ≥ 1− 1/n10 .

Alternatively, if Rxy ≤
√
T/2 then c2(xy) < p

√
T with probability at least 1− 1/n10.

Taking the union bound over all xy establishes the lemma since

∑
xy:c2(xy)≥p

√
T

c2(xy) = (1± ε/2)p
∑
xy∈H

Rxy .

Lemma 23. With probability at least 99/100,

Al/p =
∑
xy 6∈H

Rxy ± εT/2 .
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Proof. First note that c1(xy) = Rxy with probability p and 0 otherwise. Furthermore,

the c1(·) values are independent because they each depend on whether a different

tuple was sampled. Hence

E [Al] = p
∑
xy 6∈H

Rxy and V [Al] ≤ p
∑
xy 6∈H

R2
xy ≤ 4pT 3/2 .

since Rxy ≤ 2
√
T for xy 6∈ H. By an application of the Chebyshev bound,

Pr [|Al − E [Al] | ≥ εpT/2] ≤ 4pT 3/2

(εpT/2)2
=

16

pε2T 1/2
≤ 1

100
.

We then use the above two lemmas to prove our first main result.

Theorem 24. There exists a Õ(ε−2m/
√
T )-space algorithm using one pass in

the adjacency list model that returns a (1+ε)-approximation of T with probability

49/50.

Proof. The accuracy guarantee follows from Lemmas 22 and 23. The expected space

use is Õ(pm) = Õ(ε−2m/
√
T ) since each edge is sampled with probability p and Õ(1)

bits of auxilary data is collected for each sampled node.

4.3 Two Passes and Õ(ε−2m3/2/T ) Space

Algorithm and intuition. Define a total ordering on nodes <d based on degrees

where x <d y if

deg(x) < deg(y) or (deg(x) = deg(y) and ID(x) < ID(x)) ,
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i.e., <d is ordering the nodes by degree with ties broken by the id of the node (recall,

we assume the nodes are labelled in 1, 2, . . . , n). For each edge e = {x, y}, define

R{x,y} = |{z : {x, y, z} ∈ ∆ , x <d z, y <d z}|

and note that
∑

e∈E Re = T .

The detailed algorithm proceeds as follows.

1. First pass: Let S = S ′ = ∅ and p = 200ε−2
√
m/T . On seeing edges

adjacent to v in the stream:

(a) For each a ∈ Γ(v), with probability p let S ′ ← S ′ ∪ {va} and store

deg(v).

(b) For each bv ∈ S ′, let S ← S ∪ {{b, v}} and store deg(v).

2. Second pass: Let A = 0. On seeing edges adjacent to v in the stream:

(a) For each edge {a, b} ∈ S such that a <d v, b <d v, and a, b ∈ Γ(v),

A← A+ 1.

3. Output: Return A/p.

After the first pass, S contains each edge in the graph sampled with probability p

along with the degrees of the endpoints. In the second pass, we count the number of

triangles {a, b, v} where {a, b} ∈ S, a <d v, and b <d v.

The basic idea for the algorithm in this section is as follows: In the first pass, we

generate a sample of edges S along with the degree of each endpoint of the sample

edges. In the second pass, for each e ∈ S we compute Re and return
∑

e∈S Re. This

will equal pT in expectation and we will be able to bound the variance by first showing

that Re ≤
√

2m for all e ∈ E.
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Analysis. We first prove a bound on maxRe that will be required to bound the

variance of our estimator.

Lemma 25. maxRe ≤
√

2m.

Proof. Let e = {x, y} and suppose Re = R{x,y} >
√

2m. Then deg(x) ≥
√

2m.

Furthermore, there exist at least
√

2m nodes z1, z2, . . . such that {x, y, zi} is a triangle

and deg(zi) ≥ deg(x) >
√

2m. But then

deg(z1) + deg(z2) + . . . >
√

2m ·
√

2m = 2m

which is a contradiction since the sum of degrees of every node in the graph is 2m.

Theorem 26. There exists an Õ(ε−2m3/2/T )-space algorithm using two passes in the

adjacency list model that returns a (1 + ε)-approximation of T with probability 99/100.

Proof. Consider the above algorithm and note that each edge e is contained in S with

probability p and A =
∑

e∈S Re. Hence, by appealing to Lemma 25,

E [A] = Tp and V [A] <
∑
e∈E

R2
ep ≤

√
2mTp

Then, by the Chebyshev bound,

Pr [|A/p− T | ≥ εT ] ≤(
√

2mT/p)/(ε2T 2)

=p−1ε−2
√

2m/T ≤ 1/100.

Hence the algorithm has the desired accuracy. The expected space use is Õ(pm) =

Õ(ε−2m3/2/T ).
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Improved algorithm for testing triangle-freeness. We conclude this section

by showing that if we are only trying to distinguish triangle-free graphs from those

with at least T triangles, less space is sufficient.

Theorem 27. There exists an Õ(m/T 2/3)-space algorithm using two passes in

the adjacency list model that distinguishes triangle-free graphs from those with

at least T triangles with probability 99/100.

The basic observation is that a graph with T triangles has at least T 2/3 edges

involved in these triangles. This follows because any graph with m edges can have at

most O(m3/2) triangles (see, e.g., [7]). Hence, if each edge is sampled with probability

p = α/T 2/3 for some large constant α > 0 at least one edge {u, v} in some triangle

{u, v, z} will the sampled. We do this sampling in the first pass. Then, in the second

pass of the algorithm when the neighbors of z are observed we will identify a triangle

by tracking which of the sampled edges have two endpoints in Γ(z).
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CHAPTER 5

FINDING APPROXIMATE MAXIMUM COVERAGE IN
THE STREAMING SET MODEL

5.1 Introduction and Related Work

The maximum set coverage problem is a classic NP-Hard problem that has a

wide range of applications including facility and sensor allocation [101], information

retrieval [8], influence maximization in marketing strategy design [93], and the blog

monitoring problem where we want to choose a small number of blogs that cover

a wide range of topics [128]. In this problem, we are given a set system of m sets

that are subsets of a universe [n] := {1, . . . , n}. The goal is to find the k sets whose

union covers the largest number of distinct elements. For example, in the application

considered by Saha and Getoor [128], the universe corresponds to n topics of interest

to a reader, each subset corresponds to a blog that covers some of these topics, and

the goal is to maximize the number of topics that the reader learns about if she can

only choose k blogs.

It is well-known that the greedy algorithm, which greedily picks the set that covers

the most number of uncovered elements, is a 1 − 1/e approximation. Furthermore,

unless P = NP , this approximation factor is the best possible [62].

The maximum vertex coverage problem is a special case of this problem in which

the universe corresponds to the edges of a given graph and there is a set corresponding

to each node of the graph that contains the edges that are incident to that node. For

this problem, algorithms based on linear programming achieve a 3/4 approximation

for general graphs [1] and a 8/9 approximation for bipartite graphs [34]. Assuming
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P 6= NP , there does not exist a polynomial-time approximation scheme. Recent work

has focused on finding purely combinatorial algorithms for this problem [26].

Streaming algorithms. Unfortunately, for both problems, the aforementioned

greedy and linear programming algorithms scale poorly to massive data sets. This has

motivated a significant research effort in designing algorithms that could handle large

data in modern computation models such as the data stream model and the MapReduce

model [17,102]. In the data stream model, the k-set coverage problem and the related

set cover problem have received a lot of attention in recent research [14,16,39,58,77,141].

Two variants of the data stream model are relevant to our work. In the streaming-

set model [58, 74, 96, 126, 128, 132], the stream consists of m sets S1, . . . , Sm and

each Si is encoded as the list of elements in that set along with a unique ID for

the set. For simplicity, we assume that ID(Si) = i. In the dynamic graph stream

model [3–6,15, 25,45, 74,91, 92,99, 112,114], relevant to the maximum vertex coverage

problem, the stream consists of insertions and deletions of edges of the underlying

graph. For a recent survey of research in graph streaming, see [111]. Note that any

algorithm for the dynamic graph stream model can also be used in the streaming-set

model; the streaming-set model is simply a special case in which there is no deletion

and edges are grouped by endpoint.

Related work. For the maximum set coverage problem, Saha and Getoor [128] gave

a swap based 1/4 approximation algorithm that uses a single pass and Õ(kn) space.

At any point, their algorithm stores k sets explicitly in the memory as the current

solution. When a new set arrives, based on a specific rule, their algorithm either swaps

it with the set with the least contribution in the current solution or does nothing

and moves on to the next set in the stream. Subsequently, Ausiello et al. [16] gave

a slightly different swap based algorithm that also finds a 1/4 approximation using

one pass and the same space. Yu and Yuan [141] claimed an Õ(n) space, single-pass
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algorithm with an approximation factor around 0.3 based on the aid of computer

simulation.

Recently, Badanidiyuru et al. [17] gave a generic single-pass algorithm for maximiz-

ing a monotone submodular function on the stream’s items subject to the cardinality

constraint that at most k objects are selected. Their algorithm guarantees a 1/2− ε

approximation. At a high level, based on a rule that is different from [16,128] and a

guess of the optimal value, their algorithm decides if the next item (which is a set in

our case) is added to the current solution. The algorithm stops when it reaches the end

of the stream or when k items have been added to the solution. In the maximum set

coverage problem, the rule requires knowing the coverage of the current solution. As a

result, a careful adaptation to the maximum set coverage problem uses Õ(ε−1n) space.

For constant ε, this result directly improves upon [16, 128]. Subsequently, Chekuri et

al. [41] extended this work to non-monotone submodular function maximization under

constraints beyond cardinality.

The set cover problem, which is closely related to the maximum set coverage

problem, has been studied in [14,39,58,77,128]. See [14] for a comprehensive summary

of results and discussion.

For the maximum vertex coverage problem, Ausiello et al. [16]. They first observed

that simply outputting the k vertices with highest degrees is a 1/2 approximation;

this can easily be done in the streaming-set model. The main results of their work

were Õ(kN)-space algorithms that have better approximation for special types of

graph. Their results include a 0.55 approximation for regular graphs and a 0.6075

approximation for regular bipartite graphs. Note that their paper only considered the

streaming-set model whereas our results for maximum vertex coverage will consider

the more challenging dynamic graph stream model.

Our contributions Maximum k-set coverage. Our main goal is to achieve the

1− 1/e approximation that is possible in the non-streaming or offline setting.
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• We present polynomial time data stream algorithms that achieve a 1− 1/e− ε

approximation for arbitrarily small ε. The first algorithm uses one pass and

Õ(ε−2m) space whereas the second algorithm uses O(ε−1) passes and Õ(ε−2k)

space. We consider both algorithms to be pass efficient but the second algorithm

uses much less space at the cost of using more than one pass. We note that

storing the solution itself requires Ω(k) space. Thus, we consider Õ(ε−2k) space

to be surprisingly space efficient.

• For constant k, we show that Ω(m) space is required by any constant pass

(randomized) algorithm to achieve an approximation factor better than 1 −

(1 − 1/k)k with probability at least 0.99; this holds even if the algorithm is

permitted exponential time. To the best of our knowledge, this is the first

non-trivial space lower bound for this problem. However, with exponential time

and Õ(ε−2m ·min(k, ε−1)) space we observe that a 1−ε approximation is possible

in a single pass.

For a slightly worse approximation, a 1/2− ε approximation in one pass can be

achieved using Õ(ε−3k) space. This follows by building on the result of Badanidiyuru

et al. [17]. However, we provide a simpler algorithm and analysis.

Our approach generalizes to the group cardinality constraint in which there are

` groups and only ki sets from group i can be selected. This is also known as the

partition matroid constraint. We give a 1/(`+ 1)− ε approximation which improves

upon [37,41] for the case ` = 2. Let k = k1 + . . .+ k`. If O(ε−1 log(k/ε)) passes are

permitted, then we could achieve a 1/2 − ε approximation by adapting the greedy

analysis in [43] to our framework.

Finally, we design a 1/3− ε approximation algorithm for the budgeted maximum

set coverage problem using one pass and Õ(ε−1(n+m)) space. In this version, each

set S has a cost wS in the range [0, L]. The goal is to find a collection of sets whose

total cost does not exceed L that cover the most number of distinct elements. Khuller
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et al. [94] presented a polynomial time and 1− 1/e approximation algorithm based on

the greedy algorithm and an enumeration technique. Our results are summarized in

Figure 5.1.

In an independent work that was published shortly after, Bateni et al. [22] also

presented a polynomial-time, single-pass, Õ(ε−3m) space algorithm that finds a 1−

1/e− ε approximation for the maximum k-set coverage problem. Furthermore, given

unlimited post-processing time, their results also imply a 1− ε approximation using a

single-pass and Õ(ε−3m) space. Recently, Assadi proved a space lower bound Ω(ε−2m)

for any 1 − ε approximation for constant k [13]. We also note that our approach

also works in their edge arrival model in which the stream reveals the set-element

relationships one at a time.

Maximum k-vertex coverage. Compared to the most relevant previous work [16],

we study this problem in a more general model, i.e., the dynamic graph stream model.

We manage to achieve a better approximation and space complexity for general graphs

even when comparing to their results for special types of graph. Our results are

summarized in Figure 5.2. In particular, we show that

• Õ(ε−2N) space is sufficient for a 1− ε approximation (or a 3/4− ε approximation

if restricted to polynomial time) and arbitrary k in a single pass. The algorithms

in [16] use Õ(kN) space and achieve an approximation worse than 0.61 even for

regular bipartite graphs.

• Any constant approximation in constant passes requires Ω(N) space for constant

k.

• For regular graphs, we show that Õ(ε−3k) space is sufficient for 1− ε approxi-

mation in a single pass. We generalize this to an κ− ε approximation when the

ratio between the minimum and maximum degree is bounded below by κ. We

also extend this result to hypergraphs.
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Bound No. of passes Space Approximation Constraint

U O (ε−1) Õ(ε−2k) 1− 1/e− ε C

U 1 Õ(ε−3k) 1/2− ε C

U 1 Õ(ε−2m) 1− 1/e− ε C

U 1 Õ(ε−2m ·min(k, ε−1)) 1− ε C
L Constant Ω(mk−2) 1− (1− 1/k)k + ε C

U 1 Õ(ε−3k) 1/(`+ 1)− ε G

U O(ε−1 log(k/ε)) Õ(ε−2k) 1/2− ε G

U 1 Õ(ε−1(n+m)) 1/3− ε B

Figure 5.1. Summary of results for MaxSetCoverage, U: upper bound, L: lower bound,
C: cardinality, B: budget, G: group cardinality (partition matroid)

Bound No. of passes Space Approximation

U 1 Õ(ε−2N) 1− ε
U 1 Õ(ε−3k) κ− ε
L 1 Ω(Nκ3/k) κ+ ε

Figure 5.2. Summary of results for MaxVertexCoverage, U: upper bound, L: lower
bound, κ is ratio of lowest degree to highest degree.

Our techniques. On the algorithmic side, our basic approach is a “guess, subsample,

and verify” framework. At a high level, suppose we design a streaming algorithm for

approximating the maximum k-set coverage that assumes a priori knowledge of a good

guess of the optimal coverage. We show that it is a) possible to run same algorithm

on a subsampled universe defined by a carefully chosen hash function and b) remove

the assumption that a good guess was already known.

If the guess is at least nearly correct, running the algorithm on the subsampled

universe results in a small space complexity. However, there are two main challenges.

First, an algorithm instance with a wrong guess could use too much space. We simply

terminate those instances. The second issue is more subtle. Because the hash function

is not fully independent, we appeal to a special version of the Chernoff bound. The

bound needs not guarantee a good approximation unless the guess is near-correct. To
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this end, we use the F0 estimation algorithm to verify the coverage of the solutions.

Finally, we return the solution with maximum estimate coverage. This framework

allows us to restrict the analysis solely to the near-correct guess.

Some of our other algorithmic ideas are inspired by previous works. The “thresh-

olding greedy” technique was inspired by [18,39,52]. However, the analysis is different

for our problem. Furthermore, to optimize the number of passes, we rely on new

observations.

Another algorithmic idea in designing one-pass space-efficient algorithm is to treat

the sets differently based on their contributions. During the stream, we immediately

add the sets with large contributions to the solution. We store the contribution of

each remaining sets explicitly and solve the remaining problem offline. Har-Peled et

al. [77] devised a somewhat similar strategy for the set-cover problem, but the details

are different.

For the maximum k-vertex coverage problem, we show that simply running the

streaming cut-sparsifier algorithm is sufficient and optimal up to a polylog factor. The

novelty is to treat it as an interesting corner case of a more space-efficient algorithm

for near regular graphs, i.e., κ is bounded below.

One of the novelties is proving the lower bound via a randomized reduction from

the k-party set disjointness problem.

5.2 Algorithms for Maximum k-Set Coverage

In this section, we design various algorithms for approximating MaxSetCoverage in

the data stream model. Our main algorithmic results in this section are two 1−1/e− ε

approximation algorithms. The first algorithm uses one pass and Õ(ε−2m) space

whereas the second algorithm uses O(ε−1) passes and Õ(ε−2k) space. We also briefly

explore some other trade-offs in a subsequent subsection.

Notation. If A is a collection of sets, then C(A) denotes the union of these sets.
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5.2.1 (1− 1/e− ε) Approximation in One Pass and Õ(ε−2m) Space

Approach. The algorithm adds sets to the current solution if the number of new

elements they cover exceeds some threshold. The basic algorithm relies on an estimate

z of the optimal coverage OPT. The threshold for immediately including a new set in

the solution is that it covers at least z/k new elements. Unfortunately, this threshold

is too high to ensure that we selected sets that achieve the required 1 − 1/e − ε

approximation and we may want to revisit adding a set, say S, that was not added

when it first arrived. To facilitate this, we will explicitly store the subset of S that

were uncovered when S arrived in a collection of sets W. Because S was not added

immediately, we know that this subset is not too large. At the end of the pass, we

continue augmenting out current solutions using the collection W .

Technical details. For the time being, we suppose that the algorithm is provided

with an estimate z such that OPT ≤ z ≤ 4 OPT. We will later remove this assumption.

The algorithm uses C to keep track of the elements that have been covered so far.

Upon seeing a new set S, the algorithm stores S \C explicitly inW if S covers few new

elements. Otherwise, the algorithm adds S to the solution and updates C immediately.

At the end of the stream, if there are fewer than k sets in the solution, we use the

greedy approach to find the remaining sets from W .

The basic algorithm maintains I ⊆ [m], C ⊆ [n] where I corresponds to the ID’s of

the (at most k) sets in the current solution and C is the the union of the corresponding

sets. We also maintain a collection of setsW described above. The algorithm proceeds

as follows:

54



1. Initialize C = ∅, I = ∅, W = ∅.

2. For each set S in the stream:

(a) If |S \ C| < z/k then W ←W ∪ {S \ C}.

(b) If |S \C| ≥ z/k and |I| < k, then I ← I ∪ {ID(S)} and C ← C ∪ S.

3. Post-processing: Greedily add k − |I| sets from W and update I and C

appropriately.

Lemma 28. There exists a single-pass, O (k logm+mz/k · log n)-space algorithm

that finds a 1− 1/e approximation of MaxSetCoverage.

Proof. We observe that storing the set of covered elements C requires at most

OPT log n = O(z log n) bits of space. For each set S such that S \ C is stored

explicitly in W, we need O (z/k · log n) bits of space. Storing I requires O(k logm)

space. Thus, the algorithm uses the space as claimed.

After the algorithm added the ith set S to the solution, let ai be the number of

new elements that S covers and bi be the total number of covered elements so far.

Furthermore, for i ≥ 0, let ci = OPT−bi. Define a0 := 0 and b0 := 0.

At the end of the stream, suppose |I| = j. Then,

cj ≤ OPT−z · j
k
≤ OPT

(
1− j

k

)
≤ OPT

(
1− 1

k

)j
.

The last inequality holds when k ≥ 2 and j is a non-negative integer. The case k = 1

is trivial since we can simply find the largest set in Õ(1) space.

Now, we consider the sets that were added in post-processing. We then proceed

with the usual inductive argument to show that ci ≤ (1− 1/k)i OPT for i > j. Before
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the algorithm added the (i+ 1)th set for j ≤ i ≤ k− 1, there must be a set that covers

at least ci/k new elements. Therefore,

ci+1 = ci − ai+1 ≤ ci

(
1− 1

k

)
≤ OPT

(
1− 1

k

)i+1

.

The approximation follows since ck ≤ OPT(1− 1/k)k ≤ 1/e ·OPT.

Following the approach outlined in Section 5.2.3 we may assume z = O(ε−2k logm)

and that OPT ≤ z ≤ 4 OPT .

Theorem 29. There exists a single-pass, Õ(ε−2m) space algorithm that finds a

1− 1/e− ε approximation of MaxSetCoverage with high probability.

Better approximation using more space and unlimited post-processing

time. We observe that a slight modification of the above algorithm can be used

to attain a 1 − 1/(4b) approximation for any b > 1 if we are permitted unlimited

post-processing time and an extra factor of b in the space use. Specifically, we increase

the threshold for when to add a set immediately to the solution from z/k to bz/k and

then find the optimal collection of k− |I| sets from W to add in post-processing. It is

immediate that this algorithm uses O(k logm+mbz/k · log n) space.

Suppose a collection of y sets S1 were added during the stream. These y sets cover

| C(S1)| ≥ y · bz
k
≥ OPT ·yb

k

elements. On the other hand, the collection of sets S2 selected in post-processing

covers at least k−y
k
· (OPT−| C(S1)|) new elements. Then,
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|C(S1 ∪ S2)| ≥ | C(S1)|+
k − y
k
· (OPT−| C(S1)|)

=
(

1− y

k

)
OPT +

y

k
· | C(S1)|

≥
(

1− y

k

)
OPT +

y

k
·OPT ·yb

k

= OPT

(
1− y

k
+
(y
k

)2
b

)
≥ OPT

(
1− 1

4b

)

where the last inequality follows by minimizing over y. Hence, we obtain a 1 − ε

approximation by setting b = 4/ε.

Theorem 30. There exists a single-pass, Õ(ε−3m) space algorithm that finds a

1− ε approximation of MaxSetCoverage with high probability.

5.2.2 (1− 1/e− ε) Approximation in O(ε−1) Passes and Õ(ε−2k) Space

Approach. Our second algorithm is based on the standard greedy approach but

instead of adding the set that increases the coverage of the current solution the most

at each set, we add a set if the number of new elements covered by this set exceeds a

certain threshold. This threshold decreases with each pass in such a way that after

only O(ε−1) passes, we have a good approximate solution but the resulting algorithm

may use too much space. We will fix this by first randomly subsampling each set at

different rates and running multiple instantiations of the basic algorithm corresponding

to different rates of subsampling.

The basic “decreasing threshold” approach has been used before in different

contexts [18, 39, 52]. The novelty of our approach is in implementing this approach

such that the resulting algorithm uses small space and a small number of passes. For
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example, a direct implementation of the approach by Badanidiyuru and Vondrák [18]

in the streaming model may require O(ε−1 log(m/ε)) passes and O(n) space1.

Technical details. We will assume that we are given an estimate z of OPT such

that OPT ≤ z ≤ 4 OPT. We start by designing a (1 − 1/e − ε) approximation

algorithm that uses Õ(k + z) space and O(ε−1) passes. We will subsequently use a

sampling approach to reduce the space to Õ(ε−2k).

As with the previous algorithm, the basic algorithm in this section also maintains

I ⊆ [m], C ⊆ [n] where I corresponds to the ID’s of the (at most k) sets in the current

solution and C is the the union of the corresponding sets. The algorithm proceeds as

follows:

1. Initialize C = ∅ and I = ∅

2. For j = 1 to 1 + dlogα(4e)e where α = 1 + ε:

(a) Make a pass over the stream. For each set S in the stream: If |I| < k

and

|S \ C| ≥ z

k(1 + ε)j−1
,

then I ← I ∪ {ID(S)} and C ← C ∪ S.

Lemma 31. There exists an O(ε−1)-pass, O(k logm+ z log n)-space algorithm that

finds a 1− 1/e− ε approximation of MaxSetCoverage.

To analyze the algorithm, we introduce some notation. After the ith set was

picked, let ai be the number of new elements covered by this set and let bi be the

total number of covered elements so far. Furthermore, let ci = OPT−bi. We define

a0 := 0 and b0 := 0.

1Note that their work addressed the more general problem of maximizing sub-modular functions.
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Lemma 32. Suppose the algorithm picks k′ sets. For 0 ≤ i ≤ k′ − 1, we have

ai+1 ≥ ci/(αk).

Proof. Suppose the algorithm added the (i+ 1)th set S during the jth pass. Consider

the set of covered elements C just before the algorithm added the set S.

We first consider the case where j = 1. Then, the algorithm only adds S if

|S \ C| ≥ z

k
≥ OPT

k
≥ ci
k
≥ ci
αk

.

Now, we consider the case where j > 1. Note that just before the algorithm added

S, there must exist a set S ′ (which could be S) that had not been already added

where |S ′ \ C| ≥ ci/k. This follows because the optimal collection of k sets covers at

least ci elements that are currently uncovered and hence one of these sets must cover

at least ci/k new elements. But since S ′ had not already been added, we know that S ′

was not added during the first j − 1 passes and thus, |S ′ \ C| < z/(kαj−2). Therefore,

z

kαj−2
> |S ′ \ C| ≥ ci

k

and in particular, z/(kαj−1) > ci/(kα). Since the algorithm picked S, we have

ai+1 = |S \ C| ≥ z

kαj−1
>

ci
kα

as required.

Proof of Lemma 31. It is immediate that the number of passes is O(ε−1). The

algorithm needs to store the sets I and C. Since |C| ≤ z, the total space is

O(k logm+ z log n).
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To argue about the approximation factor, we first prove by induction that we

always have ci ≤
(
1− 1

αk

)i
OPT for i ≤ k′. Trivially, c0 ≤

(
1− 1

αk

)0
OPT. Suppose

ci ≤ (1− 1
αk

)i OPT. Then, according to Lemma 32, ai+1 ≥ ci/(αk). Thus,

ci+1 = ci − ai+1 ≤ ci −
ci
αk

= ci

(
1− 1

αk

)
≤ OPT

(
1− 1

αk

)i+1

.

Suppose the final solution contains k sets. Then

ck ≤
(

1− 1

αk

)k
OPT ≤ e−1/α OPT ≤

(
1

e
+ ε

)
OPT .

As a result, the final solution covers bk = OPT−ck ≥ (1− 1/e− ε) OPT elements.

Suppose the collection of sets S chosen by the algorithm contains fewer than k

sets. We define S̃ := S \ C(S) to be the set of elements in S that are not covered by

the final solution. For each set S in the optimal solution O, if S was not added, then

|S̃| ≤ z/(4ek). Therefore,

OPT =

∣∣∣∣∣⋃
S∈O

(S ∩ C(S))

∣∣∣∣∣+

∣∣∣∣∣∣
⋃

S∈O\S

S̃

∣∣∣∣∣∣ ≤ |C(S)|+
∑
S∈O\S

∣∣∣S̃∣∣∣ ≤ |C(S)|+ z

4e

≤ |C(S)|+ OPT

e
.

Hence, |C(S)| ≥ (1− 1/e) OPT.

Following the approach outlined in Section 5.2.3 we may assume z = O(ε−2k logm)

and that OPT ≤ z ≤ 4 OPT .

Theorem 33. There exists an O(ε−1)-pass, Õ(ε−2k) space algorithm that finds

a 1− 1/e− ε approximation of MaxSetCoverage with high probability.
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5.2.3 Removing Assumptions via Guessing, Sampling, and Sketching

In this section, we address the fact that in the previous two sections we assumed a

priori knowledge of a constant approximation of the maximum number of elements

that could be covered and that this optimum was of size O(ε−2k logm).

Addressing both issues are interrelated and are based on a subsampling approach.

The basic idea is to run the above algorithms on a new instance formed by removing

occurrences of certain elements in [n] from all the input sets. The goal is to reduce the

maximum coverage to min(n,O(ε−2k logm)) while ensuring that a good approximation

in the subsampled instance corresponds to a good approximation in the original

instance. In the rest of this section we will assume that k = o(ε2n/ logm) since

otherwise this bound is trivial.

In this section, we will need to use the following Chernoff bound for limited

independent random variables.

Theorem 34 (Schmidt et al. [129]). Let X1, . . . , Xn be binary random variables. Let

X =
∑n

i=1Xi and µ = E [X]. Suppose µ ≤ n/2. If Xi are dγµe-wise independent,

then

Pr [|X − µ| ≥ γµ] ≤ exp
(
−bmin(γ, γ2) · µ/3c

)
.

Subsampling. Assume we know a value v that satisfies OPT /2 ≤ v ≤ OPT. Let c

be some sufficiently large constant and set λ = cε−2k logm. Let h : [n] → {0, 1} be

drawn from a family of 2λ-wise independent hash functions where

p := Pr [h(e) = 1] = λ/v.

The space to store h is Õ(ε−2k). For any set S that is a subset of [n], we define

S ′ := {e ∈ S : h(e) = 1}.
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The next lemma and its corollary will allow us to argue that approximating the

maximum coverage among the elements {e ∈ [n] : h(e) = 1} gives only a slightly

weaker approximation of the maximum coverage among the original set of elements.

Lemma 35. With high probability2, for all collections of k sets S1, . . . , Sk in the

stream, |S ′1 ∪ . . . ∪ S ′k| = |S1 ∪ . . . ∪ Sk|p± εvp .

Proof. Fix any collection of k sets S1, . . . , Sk. Let D = |S1 ∪ . . . ∪ Sk| and D′ =

|S ′1 ∪ . . . ∪ S ′k|. We first observe that since k = o(ε2n/ logm), we may assume that

λ = o(n).

µ := E [D′] = pD ≤ pOPT < 2pv = 2λ ≤ n/2.

Appealing to the Chernoff bound with limited independence (Theorem 34) with the

binary variables Xi = 1 if and only if i ∈ S1 ∪ . . .∪Sk and h(i) = 1, i.e, D′ =
∑n

i=1Xi,

we have

Pr [|D′ − µ| ≥ εvp] = Pr [|D′ − µ| ≥ γDp] ≤ exp
(
−bmin(γ, γ2) · µ/3

⌋
)

where γ = εv/D since the hash function is dγµe = dεvpe-wise independent. But note

that

exp
(
−bmin(γ, γ2) · µ

3
c
)

= exp
(
−bmin(1, γ) · εvp

3
c
)

≤ exp

(
−
⌊

1

2
· ck logm

3

⌋)
≤ 1

m10k

where we use the fact that γ = εv/D ≥ ε/2 because D ≤ OPT ≤ 2v. The lemma

follows by taking the union bound over all
(
m
k

)
collections of k sets.

In particular, the following corollary establishes that a 1/t approximation when

restricted to elements in {e ∈ [n] : h(e) = 1} yields a (1/t− 2ε) approximation and at

most pOPT(1 + ε) = O(ε−2k logm) of these elements can be covered by k sets.

2We consider 1− 1/poly(m) or 1− 1/ poly(n) as high probability.

62



Corollary 36. Let OPT′ be optimal number of elements that can be covered from

{e ∈ [n] : h(e) = 1}. Then, with high probability,

pOPT(1 + ε) ≥ OPT′ ≥ pOPT(1− ε)

Furthermore, with high probability, if U1, . . . , Uk satisfies |U ′1∪. . .∪U ′k| ≥ pOPT(1−ε)/t

for t ≥ 1 then

|U1 ∪ . . . ∪ Uk| ≥ OPT

(
1

t
− 2ε

)
.

Proof. The fact that OPT′ ≥ pOPT(1 − ε) follows by applying Lemma 35 to the

optimal solution. According to Lemma 35, for all collections of k sets U1, . . . , Uk, we

have

|U ′1 ∪ . . . ∪ U ′k| = |U1 ∪ . . . ∪ Uk|p± εvp ≤ pOPT(1 + ε)

which implies the first inequality.

Now, suppose |U ′1 ∪ . . . ∪ U ′k| ≥ pOPT(1 − ε)/t. Since |U ′1 ∪ . . . ∪ U ′k| − εvp ≤

|U1∪. . .∪Uk|p, we deduce that |U1∪. . .∪Uk| ≥ OPT(1−ε)/t−εv ≥ OPT(1/t−2ε).

Hence, since we know v such that OPT /2 ≤ v ≤ OPT, then we know that

(1− ε)λ ≤ OPT′ ≤ 2(1 + ε)λ (5.1)

with high probability according to Corollary 36. Then, by setting z = 2(1 + ε)λ, we

ensure that OPT′ ≤ z ≤ 4 OPT′.

Guessing v and F0 sketching. We still need to address how to compute v such

that OPT /2 ≤ v ≤ OPT. The natural approach is to make dlog2 ne guesses for v

corresponding to 1, 2, 4, 8 . . . since one of these will be correct.3 We then perform

3The number of guesses can be reduced to dlog2 ke if the size of the largest set is known since this
gives a k approximation of OPT. The size of the large set can be computed in one additional pass if
necessary.
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multiple parallel instantiations of the algorithm corresponding to each guess. This

increases the space by a factor of O(log n).

But how do we determine which instantiation corresponds to the correct guess?

The most expedient way to deal with this question is to sidestep the issue as follows.

Instantiations corresponding to guesses that are too small may find it is possible to

cover ω(ε−2k logm) elements so we will terminate any instantiation as soon as it covers

more than O(ε−2k logm) elements. Note that by Corollary 36 and Equation 5.1, we

will not terminate the instantiation corresponding to the correct guess.

Among the instantiations that are not terminated we simply return the best

solution. To find the best solution we want to estimate | ∪i∈I Si|, i.e., the coverage

of the corresponding sets before the subsampling. To compute this estimate in small

space we can use the F0-sketching technique. For the purposes of our application, we

can summarize the required result as follows:

Theorem 37 (Cormode et al. [50]). There exists an Õ(ε−2 log δ−1)-space algorithm

that, given a set S ⊆ [n], can construct a data structure M(S), called an F0 sketch of

S, that has the property that the number of distinct elements in a collection of sets

S1, S2, . . . , Sr can be approximated up to a 1 + ε factor with probability at least 1− δ

given the collection of F0 sketches M(S1),M(S2), . . . ,M(Sr).

For the algorithms in the previous section, we can maintain a sketch M(C) of the

set of covered elements in Õ(ε−2 log δ−1) space and from this can estimate the desired

coverage. We set δ ← Θ(1/n2) so that coverages of all non-terminated instances are

estimated up to a factor (1 + ε) with high probability.

5.2.4 Other Algorithmic Results

In this final subsection, we briefly review some other algorithmic results for

MaxSetCoverage, either with different trade-offs or for a “budgeted” version of the

problem.
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(1− ε) approximation in one pass and Õ(ε−2mk) space. In the previous sub-

section, we gave a single-pass 1− 1/e− ε approximation using Õ(ε−2m) space. Here

we observe that if we are permitted Õ(ε−2mk) space and unlimited post-processing

time then a 1− ε approximation can be achieved directly from the F0 sketches.

In particular, in one pass we construct the F0 sketches of allm sets,M(S1), . . . ,M(Sm)

where the failure probability of the sketches is set to δ = 1/(nmk). Thus, at the end of

the stream, one can 1 + ε approximate the coverage |Si1 ∪ . . .∪ Sik | for each collection

of k sets Si1 , . . . , Sik with probability at least 1− 1/(nmk). Since there are at most(
m
k

)
≤ mk collections of k sets, appealing to the union bound, we guarantee that the

coverages of all of the collections of k sets are preserved up to a 1 + ε factor with

probability at least 1− 1/n. The space to store the sketches is Õ(ε−2mk).

Theorem 38. There exists a single-pass, Õ(ε−2mk)-space algorithm that finds a 1− ε

approximation of MaxSetCoverage with high probability .

In comparison to the algorithm in Theorem 30, the algorithm above is non-adaptive

and hence could be used in various distributed models. It also uses less space in the

case where k is much smaller than ε−1.

(1/2− ε) approximation in one pass and Õ(ε−3k) space We next observe that

it is possible to achieve a 1/2− ε approximation using a single pass and Õ(ε−3k) space.

Consider the following simple single-pass algorithm that uses an estimate z of OPT

such that OPT ≤ z ≤ (1 + ε) OPT. As with previous algorithms, the basic algorithm

in this section also maintains I ⊆ [m], C ⊆ [n] where I corresponds to the ID’s of the

(at most k) sets in the current solution and C is the the union of the corresponding

sets. The algorithm proceeds as follows:

1. Initialize C = ∅ and I = ∅.

2. For each set S in the stream:
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(a) If |S \ C| ≥ z/(2k) and |I| < k then I ← I ∪ {ID(S)} and C ← C ∪ S.

The described algorithm is a 1/2− ε approximation. To see this, if the solution

consists of k sets, then the final solution obviously covers at least z/2 ≥ OPT /2

elements. Now we consider the case in which the collection of sets S chosen by the

algorithm contains fewer than k sets. We define S̃ := S \C(S) to be the set of elements

in S that are not covered by the final solution. For each set S in the optimal solution

O, if S is unpicked, then |S̃| ≤ z/(2k). Therefore,

OPT =

∣∣∣∣∣⋃
S∈O

(S ∩ C(S))

∣∣∣∣∣+

∣∣∣∣∣∣
⋃

S∈O\S

S̃

∣∣∣∣∣∣ ≤ |C(S)|+
∑
S∈O\S

∣∣∣S̃∣∣∣ ≤ |C(S)|+ z

2

≤ |C(S)|+ OPT(1 + ε)

2

and thus |C(S)| ≥ 1−ε
2

OPT.

We note that the above algorithm uses O(k logm + z log n) space but we can

use an argument similar to that used in Section 5.2.3 to reduce this to Õ(ε−3k).

The only difference is since we need z such that OPT′ ≤ z ≤ (1 + ε) OPT′ we will

guess v in powers of 1 + ε/4 and set λ = 16cε−2k logm. Then Eq. 5.1 becomes

(1 − ε/4)λ ≤ OPT′ ≤ (1 + ε/4)2λ and hence z = (1 + ε/4)2λ is a sufficiently good

estimate.

Theorem 39. There exists a single-pass, Õ(ε−3k) space algorithm that finds a 1/2− ε

approximation of MaxSetCoverage with high probability.

Group cardinality constraint. We now consider a version of the problem where

each set belongs to a group amongst ` disjoint groups G1, G2, . . . , G` and we are

allowed to pick at most k1 sets from group G1, k2 sets from group G2, and so on. This

is also known as the partition matroid constraint. A 1− 1/e approximation is possible

for the offline version of this problem via linear programming [2,131]. Furthermore,
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Chekuri and Kumar showed that the offline greedy algorithm is guaranteed to return

a 1/2 approximation [43].

Single-pass algorithm. We first observe that by simply applying the previous 1/2−ε

approximation algorithm for each group and returning the best solution, we obtain

a (1/2− ε)/` approximation. The main idea for the improved algorithm is to set a

threshold for when to add a set that depends on the group to which this set belongs.

We now present an algorithm that returns a 1/(`+ 1)− ε approximation which

improves upon [37,41] for the case ` = 2. The basic algorithm maintains the sets Ii

for each i = 1, 2, . . . , ` where Ii corresponds to the IDs of the sets from group Gi that

are in the current solution. Similar to previous algorithms, C is used to keep track of

the current coverage. Finally, the algorithm also uses an estimate z of OPT such that

OPT ≤ z ≤ (1 + ε) OPT. The detailed algorithm proceeds as follows:

1. Initialize C = ∅ and Ii = ∅ for each i = 1, . . . , `.

2. For each set S ∈ Gi in the stream: if

|S \ C| ≥ z

(`+ 1)ki
and |Ii| < ki,

then Ii ← Ii ∪ {ID(S)} and C ← C ∪ S .

If there exists a group Gi in which ki sets are selected, then it is clear that the

solution covers at least z/(`+ 1) elements. On the other hand, suppose that for all

groups Gi, fewer than ki sets are selected. As before, S and C(S) are the collection

of sets in the solution and their union respectively. Again, we define S̃ := S \ C(S).

Furthermore, let Oi denote the sets in Gi that are also in the optimal solution, i.e.,

Oi = O ∩Gi. We have
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OPT =

∣∣∣∣∣⋃
S∈O

(S ∩ C(S))

∣∣∣∣∣+

∣∣∣∣∣∣
⋃

S∈O\S

S̃

∣∣∣∣∣∣ ≤ |C(S)|+
∑̀
i=1

∑
S∈Oi\S

∣∣∣ S̃ ∣∣∣
≤ |C(S)|+

∑̀
i=1

∑
S∈Oi\S

z

(`+ 1)ki
≤ |C(S)|+ ` · z

`+ 1
.

Therefore,

|C(S)| ≥ OPT− ` · z
`+ 1

≥
(

1

`+ 1
− ε
)

OPT .

Let k = k1 + k2 + . . .+ k`. The above algorithm uses O(k logm+ z log n) space but

we can use an argument similar to that used in Sections 5.2.3 and 5.2.4 to reduce this

to Õ(ε−3k). We summarize the result as the following theorem.

Theorem 40. There exists a single-pass, Õ(ε−3k) space algorithm that finds a

1/(` + 1) − ε approximation of group cardinality constraint MaxSetCoverage with

high probability.

We note the algorithm of [37,41] combining with our subsampling framework in

Sections 5.2.3 yields a 1/4− ε approximation in a single pass for matroid constraints.

The algorithm above gives a better approximation for partition matroid constraint

when the number of groups ` = 2.

Multiple-pass algorithm. Next, we present a 1/2 − ε approximation that uses

O(ε−1 log(k/ε)) passes. The idea is similar to the algorithm in Section 5.2.2 where we

pick a set if its contribution is above a threshold. We decrease the threshold by a factor

(1 + ε) after each pass. The main difference is to not pick a set if that violates the

group constraint. Here, we assume that OPT ≤ z ≤ 4 OPT. The detailed algorithm

proceeds as follows:

1. Initialize C ← ∅ and Ii = ∅ for each i = 1, . . . , `.

2. For j = 1 to dlogα(10 · k/ε)e where α = 1 + ε

(a) Make a pass over the stream. For each set S ∈ Gi:
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i. If |S \ C| ≥ z/αj and |Ii| < ki, then Ii ← Ii ∪ {ID(S)} and C ←

C ∪ S .

Recall that k = k1 + . . . + k`. Suppose the algorithm picks k sets S1, S2, . . . , Sk

in that order. If the algorithm picks fewer than k sets, at the end, we could simply

add dummy empty sets to the solution; thus, we can assume that the algorithm picks

exactly ki sets from each group Gi. Consider an optimal solution O = {O1, . . . , Ok}

and a bijection π : [k]→ [k] that satisfies the following:

• If π(i) = j, then Si and Oj belong to the same group.

• If Si is Oj, then π(i) = j.

When Si ∈ Gt was picked in the jth iteration for j > 1, by the second property of π,

we deduce that Oπ(i) had not been picked in the (j − 1)th iteration. Furthermore, the

first property of π ensures that since we picked Si in the jth iteration, we know that

Oπ(i) was available to pick in the (j − 1)th iteration; however, its contribution was

smaller than z/(kαj−1). Let Ŝi := Si \ (S1 ∪ . . . Si−1) and Õi := Oi \ C(S).

Therefore,

∣∣∣Õπ(i)

∣∣∣ < z

αj−1
= α · z

αj
≤ α

∣∣∣Ŝi∣∣∣ .
In the case j = 1, obviously,

∣∣∣Ŝi∣∣∣ ≥ z/α ≥
∣∣∣Õπ(i)

∣∣∣ · 1/α.

Finally, in the case that Si is a dummy set that was added at the end, then Oπ(i)

was not picked during the last pass (even though it was available to pick). Hence∣∣∣Õπ(i)

∣∣∣ ≤ εz/(10k). Suppose the algorithm picked y sets S1, . . . , Sy that are not dummy

sets. We have

|C(O)| − |C(S)| ≤
y∑
i=1

∣∣Oπ(i) \ C(S)
∣∣+

k∑
i=y+1

∣∣Oπ(i) \ C(S)
∣∣

≤
y∑
i=1

α
∣∣∣Ŝi∣∣∣+ ε |C(O)| = (1 + ε) |C(S)|+ ε |C(O)|
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and so (2 + ε) |C(S)| ≥ (1 − ε) |C(O)|. Therefore, |C(S)| ≥ (1 − ε) OPT /(2 + ε).

Repeating the subsampling argument in Section 5.2.3, we have the following.

Theorem 41. There exists a Õ(ε−2k) space algorithm that finds a 1/2− ε approxi-

mation of group cardinality constraint MaxSetCoverage in O(ε−1 log(k/ε)) passes with

high probability .

Budgeted constraint. In this variation, each set S has a cost wS ∈ [0, L]. The

problem asks to find the collection of sets whose total cost is at most L that covers

the most number of distinct elements. For I ⊆ [n], we use w(I) to denote
∑

i∈I wSi
.

We present the algorithm assuming knowledge of an estimate z such that OPT ≤

z ≤ (1+ ε) OPT; this assumption can be removed by running the algorithm for guesses

1, (1 + ε), (1 + ε)2, . . . for z and returning the best solution found. The basic algorithm

maintains I ⊆ [m], C ⊆ [n] where I corresponds to the ID’s of the (at most k) sets in

the current solution and C is the the union of the corresponding sets. The algorithm

proceeds as follows:

1. Initialize C = ∅ and I = ∅

2. For each set S in the stream:

(a) If

|S \ C| ≥ 2z

3
· wS
L

,

then:

i. If w(I) + wS > L: Terminate and return:

I ←


I if |C| ≥ |S|

{ID(S)} if |C| < |S|

ii. I ← I ∪ {ID(S)} and C ← C ∪ S.
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Lemma 42. If the clause in line 2ai is never satisfied, then the algorithm returns a

1/3− ε approximation.

Proof. Suppose the collection of sets chosen by the algorithm is S. As before, we define

S̃ := S \ C(S) to be the set of elements in S that are not covered by the final solution.

For each set S in the optimal solution O, if S is unpicked, then |S̃| ≤ 2z/3 · wS/L.

Therefore,

OPT =

∣∣∣∣∣⋃
S∈O

(S ∩ C(S))

∣∣∣∣∣+

∣∣∣∣∣∣
⋃

S∈O\S

S̃

∣∣∣∣∣∣ ≤ |C(S)|+
∑
S∈O\S

∣∣∣S̃∣∣∣ ≤ |C(S)|+ 2z

3

≤ |C(S)|+ 2 OPT(1 + ε)

3
,

and thus |C(S)| ≥ 1−2ε
3

OPT.

Lemma 43. If the clause in line 2ai is satisfied at some point, then the algorithm

returns a 1/3 approximation.

Proof. Suppose the clause is satisfied when the set S is being considered. Then

|S \ C|+ |C| ≥ 2z

3
· wS + w(I)

L
≥ 2z

3

where we used the fact that wS + w(I) > L. The claim then follows immediately.

The algorithm needs to store the IDs of the sets in the solution as well as the

current coverage C. Therefore, it uses Õ(m+ n) space.

Theorem 44. There exists a single-pass, Õ(ε−1(m+ n))-space algorithm that finds a

1/3− ε approximation of budgeted MaxSetCoverage.

We note that the subsampling approach would not work for budgeted constraints

since the number of sets in the optimal solution is no longer bounded by k.
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5.3 Algorithms for Maximum k-Vertex Coverage

In this section, we present algorithms for the maximum k-vertex coverage problem.

We present our results in terms of hypergraphs for full generality. The generalization

to hypergraphs can also be thought of as a natural “hitting set” variant of maximum

coverage, i.e., the stream consists of a sequence of sets and we want to pick k elements

in such a way to maximize the number of sets that include a picked element.

Notation. Given a hypergraph G and a subset of nodes S, we define CG(S) to be

the number of edges that contain at least one node in S. Recall that the maximum

k-vertex coverage problem is to approximate the maximum value of CG(S) over all

sets S containing k nodes. We use EG and VG to denote the set of edges and nodes of

the hypergraph G respectively.

The size of a cut (S, V \ S) in a hypergraph G, denoted as δG(S), is defined as the

number of hyperedges that contain at least one node in both S and V \ S. In the

case that G is weighted, δG(S) denotes the total weight of the cut. A core idea to our

approach is to use hypergraph sparsification:

Definition 45 (ε-sparsifier). Given a hypergraph G = (V,E), we say that a weighted

subgraph H = (V,E ′) is an ε-sparsifier for G if for all S ⊆ V , (1− ε)δG(S) ≤ δH(S) ≤

(1 + ε)δG(S).

Any graph on N nodes has an ε-sparsifier with only Õ(ε−2N) edges [130]. Similarly,

any hypergraph in which the maximum size of the hyperedges is bounded by d (rank

d hypergraphs) has an ε-sparsifier with only Õ(ε−2dN) edges. Furthermore, an ε-

sparsifier can be constructed in the dynamic graph stream model using one pass and

Õ(ε−2dN) space [74,91].

First, we show that it is possible to approximate all the coverages by constructing

a sparsifier of a slightly modified graph. In particular, we construct the sparsifier H

of the graph G′ with an extra node v, i.e., VG′ = VG ∪ {v}, and for every hyperedge
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e ∈ EG, we put the hyperedge e ∪ {v} in EG′ . It is easy to see that for all S that is a

subset of VG, we have CG(S) = δG′(S). Therefore, it is immediate that we could 1 + ε

approximate all the coverages in G by constructing the sparsifer of G′.

Theorem 46. There exists a single-pass, Õ(ε−2dN)-space algorithm that finds a 1− ε

approximation of MaxVertexCoverage of rank d hypergraphs with high probability.

The above theorem assumes unbounded post-processing time. If k is constant,

the post-processing will be polynomial. For larger k, if we still require polynomial

running time then, after constructing the ε-sparsifier H, we could either use the

(1− (1− 1/d)d) approximation algorithm via linear programming [1] or the folklore

(1− 1/e) approximation greedy algorithm.

Algorithm for near-regular hypergraphs. In this subsection, we show that it

is possible to reduce the space used to Õ(ε−3dk) in the case of hypergraphs that are

regular or nearly regular. Define κ ≤ 1 to be the ratio between the smallest degree

and the largest degree; for a regular hypergraph κ = 1. We show that a (κ − ε)

approximation is possible using Õ(ε−3dk) space for rank d hypergraphs. This also

implies a (1− ε) approximation for regular hypergraphs.

Theorem 47. There exists a single-pass, Õ(ε−3dk)-space algorithm that finds a

(κ− ε) approximation of MaxVertexCoverage of hypergraphs of rank d with high

probability.

Proof. Let t1 and t2 be the minimum and maximum degree of a node in G. Suppose

we uniformly sample a set S of k nodes. Let LS(y) = max(0, |y ∩ S| − 1). Then the

coverage of S satisfies

CG(S) =
∑
y∈EG

I[S ∩ y 6= ∅] =
∑
y∈EG

(|S ∩ y| − LS(y)) ≥ kt1 −
∑
y∈EG

LS(y) .

where the last inequality follows since every node in S covers at least t1 hyperedges.
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Let ξy(j) denote the event that j nodes in the hyperedge y are in S and let |y|

denote the number of nodes in y. We have

E [LS(y)] =

|y|∑
j=1

(j − 1) Pr [ξy(j)] =

 |y|∑
j=0

j Pr [ξy(j)]

− 1 + Pr [ξy(0)] .

The sum
∑|y|

j=0 j Pr [ξy(j)] is the expected value of the hypergeometric distribution

and therefore it evaluates to |y|k/N . Furthermore,

Pr [ξy(0)] =
k−1∏
i=0

(
1− |y|

N − i

)
≤
(

1− |y|
N

)k
≤ exp

(
−k|y|
N

)
≤ 1− k|y|

N
+

1

2

(
k|y|
N

)2

.

The last inequality follows from taking the first three terms of the Taylor’s expansion.

Hence,

E [LS(y)] ≤ k|y|
N
− 1 + 1− k|y|

N
+

1

2

(
k|y|
N

)2

=
1

2

(
k|y|
N

)2

.

Hence, if N ≥ 4kd/ε, then

∑
y∈EG

E [LS(y)] ≤ 1

2

∑
y∈EG

(
k|y|
N

)2

≤ 1

2
d

(
k

N

)2 ∑
y∈EG

|y| ≤ 1

2
d

(
k

N

)2

Nt2 =
1

2
d
k2

N
t2

≤ 1

8
εkt2 .

By an application of Markov’s inequality,

Pr

[∑
y∈EG

LS(y) ≥ εkt2

]
≤ 1/8 .

Thus, if we sample O(logN) sets of k nodes in parallel, with high probability, there

is a sample set S of k nodes satisfying
∑

y∈EG
LS(y) ≤ εkt2 which implies that
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CG(S) ≥ kt1 − εkt2 ≥ (κ− ε)kt2 ≥ (κ− ε) OPT. If N ≤ 4kd/ε, we simply construct

the sparsifier of G′ as described above to achieve a 1− ε approximation.

5.4 Lower Bounds

In this section, we prove space lower bounds for data stream algorithms that

approximate MaxSetCoverage or MaxVertexCoverage. In particular, these imply that

improving over an (1−1/e) approximation of MaxSetCoverage with constant passes and

constant k requires Ω(m) space. Recall that, still assuming k is constant, we designed

a constant-pass algorithm that returned a (1− 1/e− ε) approximation using Õ(ε−2k)

space. For constant k, we also show that improving over a κ approximation (where κ

is the ratio between the lowest degree and the highest degree) for MaxVertexCoverage

requires Ω(Nκ3) space. Our algorithm returned a κ− ε approximation using Õ(ε−3k)

space.

Approach. We prove both bounds by a reduction from r-player set-disjointness in

communication complexity. In this problem, there are r players where the ith player

has a set Si ⊆ [u]. It is promised that exactly one of the following two cases happens.

• Case 1 (NO instance): All the sets are pairwise disjoint.

• Case 2 (YES instance): There is a unique element e ∈ [u] such that e ∈ Si for

all i ∈ [r].

The goal of the communication problem is the rth player answers whether the

input is a YES instance or a NO instance correctly with probability at least 0.9. We

shall denote this problem by DISJr(u).

The communication complexity of the above problem in p-round, one-way model

(where each round consists of player 1 sending a message to player 2, then player 2

sending a message to player 3 and so on) is Ω(u/r) [38] even if the players may use

public randomness. This implies that in any randomized communication protocol,
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the maximum message sent by a player contains Ω(u/(pr2)) bits. Without loss of

generality, we will assume that |S1 ∪ S2 ∪ . . . ∪ Sr| ≥ u/4 via a padding argument.

Theorem 48. Assuming n = Ω(ε−2k logm), any constant-pass algorithm that

finds a (1 + ε)(1− (1− 1/k)k) approximation of MaxSetCoverage with probability

at least 0.99 requires Ω(m/k2) space even when all the sets have the same size.

Proof. Our proof is a reduction from DISJk(m). Consider a sufficiently large n where

k divides n. For each i ∈ [m], let Pi be a random partition of [n] into k sets V i
1 , . . . , V

i
k

of equal size. Each partition is chosen independently and the players agree on these

partitions using public randomness before receiving the input.

For each player j, if i ∈ Sj, then she puts V i
j in the stream. According to the

aforementioned assumption, the stream consists of Θ(m) sets.

If the input is a NO instance, then for each i ∈ [m], there is at most one set V i
j in the

stream. Hence, the stream consists of independent random sets of size n/k. Therefore,

for each e ∈ [n] and any k sets V i1
j1
, . . . , V ik

jk
in the stream, Pr

[
e ∈ V i1

j1
∪ . . . ∪ V ik

jk

]
=

1− (1− 1/k)k. By an application of Chernoff bound for negatively correlated boolean

random variables [123],

Pr

[∣∣∣∣∣|V i1
j1
∪ . . . ∪ V ik

jk
| −

(
1−

(
1− 1

k

)k)
n

∣∣∣∣∣ > ε

(
1−

(
1− 1

k

)k)
n

]

≤ 3 exp

(
−ε2

(
1−

(
1− 1

k

)k)
n

3

)

≤ 3 exp
(
−ε2(1− 1/e)n/3

)
≤ 1

m10+k
.

The last inequality holds when n is a sufficiently large multiple of kε−2 logm.

Therefore, the maximum coverage in this case is at most (1 + ε)(1− (1− 1/k)k)n with

probability at least 1− 1/m10 by taking the union bound over all
(
m
k

)
≤ mk possible

k sets.
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If the input is a YES instance, then clearly, the maximum coverage is n. This is

because there exists i ∈ [m] such that i ∈ S1 ∩ . . .∩ Sk and therefore V i
1 , . . . , V

i
k are in

the stream.

Therefore, any constant pass and O(s)-space algorithm that finds a (1+2ε)(1−(1−

1/k)k) approximation of the maximum coverage with probability at least 0.99 implies

a protocol to solve the k-party disjointness problem using O(s) bits of communication.

Thus, s = Ω(m/k2) as required.

Consider the sets S1, . . . , Sr ⊆ [u] that satisfy the unique intersection promise as in

DISJr(u). Let X be the r by u matrix in which the row Xi is the characteristic vector

of Si. Suppose there are r′ = Ω(r2) players. Chakrabarti et al. [36] showed that if each

entry of X is given to a unique player and the order in which the entries are given to

the players is random, then the players need to use Ω(u/r) bits of communication to

tell whether the sets is a YES instance or a NO instance with probability at least 0.9.

Thus, in any randomized protocol, the maximum message sent by a player contains

Ω(u/r3) bits. Hence, using the same reduction and assuming constant k, we show

that the same lower bound holds even for random order stream.

Theorem 49. Assuming n = Ω(ε−2k logm), any constant-pass algorithm that finds

a (1 + ε)(1− (1− 1/k)k) approximation of MaxSetCoverage with probability at least

0.99 requires Ω(m/k3) space even when all the sets have the same size and arrive in

random order.

Next, we prove a lower bound for the k-vertex coverage problem for graphs where

the ratio between the minimum degree and the maximum degree is at least κ. We

show that for constant k, beating κ approximation for constant κ requires Ω(N) space.

Since κ can be smaller than any constant, this also establishes that Ω(N) space is

required for any constant approximation of MaxVertexCoverage.
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Theorem 50. For ε > 0, any constant-pass algorithm that finds a (κ+ε) approx-

imation of MaxVertexCoverage with probability at least 0.99 requires Ω(Nκ3/k)

space.

Proof. Initially, assume k = 1. We consider the multi-party set disjointness problem

DISJt(N
′) where t = 1/κ and N ′ = N/t. Here, there are t players and the input sets

are subsets of [N ′]. We consider a bipartite graph where the set of possible nodes

are L ∪ R where L = {ui}i∈[N ′] and R = {vi,j}i∈[N ′],j∈[t]. Note that this graph has

(t + 1)N ′ = Θ(N) nodes. However we only consider a node to exist if the stream

contains an edge incident to that node.

The j-th player defines a set of edges on this graph based on their set Sj as follows.

If i ∈ Sj, she puts the edge between ui and vi,j. If S1, . . . , St is a YES instance,

then there must be a node ui that has degree t. If the input is a NO instance, then

every node in the graph has degree at most 1. Hence the ratio of minimum degree to

maximum degree is at least 1/t = κ as required.

Thus, for k = 1, a 1/t approximation with probability at least 0.99 on a graph

of N nodes implies a protocol to solve DISJt(N
′). Therefore, the algorithm requires

Ω(Nκ3) space. For general k, we make k copies of the above construction to deduce

the lower bound Ω(Nκ3/k).
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CHAPTER 6

FINDING CAPACITATED MAXCUT IN THE
ADJACENCY LIST MODEL

6.1 Introduction and Related Work

Capacitated MaxCut. We consider the streaming capacitated max (t + 1)-cut

problem where t parts are bounded. This problem and its variations have been studied

in various work [2,65,68,142]. We consider a slightly more special case of the problem,

denoted by MaxCut(k) in which the goal is to find t disjoint sets of nodes S1, S2, . . . , St

such that |Si| ≤ k and the number of edges across the parts is maximized. The optimal

solution is defined as follows.

OPT := arg max
disjoint S1,...,St⊂V

|Si|≤k

∣∣∣∣{(u, v) ∈ E : |{u, v} ∩ Si| = 1}
∣∣∣∣ .

We consider the streaming setting in which the stream is a concatenation of the

adjacency lists. Our goal is to design algorithms, with constant approximations, that

use space depending only on k. We note that the algorithm only needs to output the

t bounded parts and the unbounded part is implicit. Therefore, we will refer to the

solution as the bounded parts that the algorithm outputs.

Motivation. For this problem, Ageev and Sviridenko [2] presented a 1/2 approxi-

mation using linear programming. Gaur et al. [65] subsequently showed that local

search obtains a 1 − 1/t approximation. Their algorithms also work for the more

general constraint |Si| ≤ ki. This problem is motivated by some applications such as:
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• Placement of commercials where each of the bounded parts represents a com-

mercial break with a time constraint. The nodes in the graphs represent a large

pool of commercials and an edge between two commercials indicates competing

products. This formulation tries to avoid competing products to be placed in

the same break [65,68]. See [68] for a detailed experimental study.

• Finding small sets of items for recommendation systems where each item is a

node and an edge between two nodes represents that the corresponding items

are often not bought together [65].

• Design of product modules where each node represents a component of a product

and an edge connects a pair of nodes if the corresponding pair of components

do not interact with each other. We want to maximize the number of non-

interacting components are placed in different modules. The capacity restriction

arises because of the need to construct balanced modules [65].

• Clustering of data in which edges specify dissimilarities and we know that one

or more parts have bounded sizes. One example application is clustering in

protein interaction networks [47]. This also applies to imbalanced classification

and semi-supervised learning problems.

Other related problems such as MaxCut and MaxBisection have been extensively

studied the RAM model [63, 71, 86, 135] using semidefinite programming, spectral and

combinatorial methods. In streaming models and distributed models, MaxCut has

been studied in [35, 90, 97]. In the MaxCut problem, the goal is to partition the

vertices into two parts that maximize the cut across. In the MaxBisection problem,

the constraint is that the two parts have the same size.

We also note that for t = 1, MaxCut(k) is a special case of non-monotone submod-

ular maximization which is an important topic in algorithm design, both in the RAM

and streaming models.
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Graph stream model. We study this problem in the streaming setting. For

undirected graphs, we consider the adjacency list model in which the stream is a

concatenation of the adjacency lists. Many other graph problems have been studied in

this model. Some examples include triangle counting, maximum matching, maximum

coverage and set cover [13, 14, 29, 77, 100, 113, 114]. Furthermore, streaming graph

algorithms is a major research topic to handle large graphs. See [111] for a recent

survey.

The capacitated MaxCut(k) problem can also be viewed as a parameterized stream-

ing problem. For example, under the assumption that one side of the MaxCut has

at most k nodes, our algorithm allows us to approximate the MaxCut using space

depending only on k. Similar parameterized streaming algorithms have been studied

in the context of maximum matching and minimum vertex cover [45, 46].

We note that in the arbitrary order model, MaxCut(1) is the same as identifying

the node with highest degree which requires Ω(n) space for a constant approximation

(see [116]). In this model, streaming spectral sparsifiers [74,91] obtain an upper bound

Θ(ε−2n) for a 1− ε approximation assuming unbounded running time.

As mentioned earlier, MaxCut(k) is a special case of non-monotone submodular

maximization under a cardinality constraint. In the RAM setting, an incomplete

list of works related to submodular maximization includes [18, 30, 42, 59, 66, 75]. In

the streaming setting, submodular maximization has also received a lot of recent

attention [17,37,41,61,116].

Our results. We make several contributions. Our main results are as follows.

1. For the case t = 1, we present a single-pass, Õ(k2)-space algorithm that finds a

0.4− o(1) approximation. We also present a two-pass, Õ(k3/ε)-space algorithm

that finds a 0.5− ε approximation.
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2. For the case t > 1, we present a single-pass Õ((tk)2)-space algorithm that finds

a 6/11− o(1) approximation.

Motivated by the case t = 1, we design new algorithms for non-monotone submod-

ular maximization under a cardinality constraint. We show that by using more passes

or more space, we can obtain a better approximation than the algorithm given by

Chekuri et al. [41].

6.2 Algorithms for Capacitated MaxCut

Preliminaries. Let N(S) := {v ∈ V \ S : (u, v) ∈ E for some u ∈ S} denote the

set of neighbors of S. We use E(S) = {(u, v) ∈ E : u ∈ S and v ∈ S} to denote the

set of internal edges of S and E∗(S) = {(u, v) ∈ E : u ∈ S or v ∈ S} to denote the

set of edges that have at least one end point in S. For convenience, we also use the

standard notation S := V \S. For two disjoint sets of nodes A and B, the cut between

A and B is defined as

Cut(A,B) := {(u, v) ∈ E : u ∈ A and v ∈ B} .

We define δ(u,A) := {(u, v) ∈ E : v ∈ A} = Cut({u}, A\{u}) and for convenience,

let f(S) :=
∣∣Cut(S, S)

∣∣. We note that f is submodular and we use the following

standard notion of marginal gain

f(v | S) = f(S ∪ {v})− f(S) .

Algorithms for the case t = 1. We first develop algorithms for MaxCut(k) for the

case t = 1. We focus solely on the space, pass complexity, and the approximation

factor. We use O to denote the bounded part of the optimal solution, i.e., O is the

set of at most k nodes that maximizes f(O).
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Single-pass algorithm. We observe that a random bipartition of the set of k nodes

with highest degrees is a 0.25 approximation in expectation. This observation could

easily be translated to a single-pass and Õ(k2)-space algorithm.

We now present a better single-pass algorithm with a 0.4− o(1) approximation.

The algorithm stores the 2k nodes with highest degrees S and finds the best solution

(of at most k nodes) T in S. To find the best solution in S, it is sufficient to store the

internal edges E(S) and for each node v ∈ S, we store the degree of v. The algorithm

can be easily implemented in the adjacency list model with appropriate bookkeeping.

The space to maintain deg(v) for all nodes v ∈ S is Õ(k). Furthermore, maintaining

E(S) requires Õ(k2) space and therefore the algorithm uses Õ(k2) space overall.

Theorem 51. For t = 1, there exists a single-pass and Õ(k2)-space algorithm

that finds a 0.4− o(1) approximation of MaxCut(k) in the adjacency list model.

Proof. Consider the described algorithm. Let the 2k highest degrees be d1 ≥ d2 ≥

. . . ≥ d2k and let

d∗ :=
d1 + . . .+ dk

k
and d′ :=

dk+1 + . . .+ d2k
k

.

First, we observe that for each node o ∈ O\T , we have that deg(o) ≤ d2k ≤ d′. Hence,

f(O) ≤ f(O ∩ S) +
∑
o∈O\T

deg(o) ≤ f(T ) + kd′ .

Thus, if kd′ < 0.6f(O), then it is immediate that f(T ) ≥ 0.4f(O).

Now we consider the case kd′ ≥ 0.6f(O). We note that there are at least k(d∗+d′)/2

edges in E∗(S). If we randomly partition S into two sets of k nodes S1 and S2, we

can see that
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E [f(S1)] =
∑

v∈S,u∈N(v)

E [I[v ∈ S1 and u /∈ S1]]

≥
∑
v∈S

deg(v)(k − 1)

2(2k − 1)

=

(
1

4
− 1

4(2k − 1)

)
(kd∗ + kd′) .

Therefore, combining with the fact that kd∗ ≥ f(O), we deduce that f(T ) ≥ (1/4−

Θ(1/k)) · (kd∗ + kd′) ≥ (1/4−Θ(1/k)) · 1.6 · f(O) ≥ (0.4−Θ(1/k))f(O).

Remark. The above algorithm above gives a deterministic 0.4− o(1) approximation

whereas the generic streaming algorithm for submodular maximization given by

Chekuri et al. in [41] obtains a 1/3− ε approximation only in expectation.

Two-pass algorithm. We now present a two-pass, Õ(k3/ε)-space algorithm with a

0.5 approximation. We rely on the following framework that allows us to focus on

the case f(O) ≤ O(k2). Suppose γ is some constant. We observe that if f(O) > k2/γ,

in one pass and Õ(k) space, we can output the k nodes with highest degrees as the

solution T to obtain a 1− γ approximation. We refer to this as the naive algorithm.

To see that this is a 1− γ approximation given f(O) > k2/γ, we observe

f(T ) ≥
∑
v∈T

deg(v)−
∑
u,v∈T

I[(u, v) ∈ E] ≥ f(O)− k2 ≥ (1− γ)f(O) .

Given f(O) ≤ k2/γ, suppose we can design a χ-space core algorithm that is a

1 − γ approximation. If this assumption fails to hold, i.e., f(O) > k2/γ, the core

algorithm may use more than χ space. In this case, we simply terminate the core

algorithm and return the solution given by the naive algorithm. Otherwise, we return

the better solution given by the two algorithms.

Since we need to store the solution, χ = Ω̃(k). By combining the naive algorithm

and the core algorithm as described, we get a χ-space algorithm that is a 1 − γ

approximation.
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Following the aforementioned framework, we only need to consider the case f(O) ≤

2k2. Assuming we have a guess z such that f(O) ≤ z ≤ (1+ε)f(O), the core algorithm

proceeds as follows.

1. First pass: When process the adjacency list of a node v, if f(v | S) ≥ z/(2k)

and |S| < k, then S ← S ∪ {u}. Maintain N(S) in parallel.

2. If |S| = k, return S as the final solution T . Otherwise, take a second pass to

find all edges in E∗(S ∪N(S)).

3. Using E∗(S ∪N(S)), return the best solution A ⊆ S ∪N(S) where |A| ≤ k as

the final solution T .

Note that the space to maintain N(S) is Õ(k2) since we assume OPT ≤ 2k2.

Theorem 52. For t = 1, there exists a two-pass, Õ(k3/ε)-space algorithm that

finds a 1/2− ε approximation of MaxCut(k) in the adjacency list model.

Proof. Consider the described algorithm. We first show that the space to maintain

E∗(S ∪N(S)) is Õ(k3/ε) if the second pass is needed, i.e., if the algorithm picks fewer

than k nodes in the first pass. Consider S at the end of the first pass. If |S| < k, by

submodularity, all unpicked nodes v /∈ S satisfy

f(v | S) =
∣∣δ(v, S)

∣∣− |δ(S, v)| ≤ z

2k
<
f(O)

k
≤ 2k

and so
∣∣δ(v, S)

∣∣ < 2k + |δ(S, v)|.
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The last inequality follows from the assumption f(O) ≤ 2k2. Furthermore, we

already argued that f(O) ≤ 2k2 implies |N(S)| ≤ 2k2. Thus,

∑
v∈N(S)

∣∣δ(v, S)
∣∣ ≤ 2k2 · 2k +

∑
v∈N(S)

|δ(S, v)| .

This allows us to conclude that |E∗(N(S))| ≤ 4k3 + 2k2 ≤ O(k3). Finally, we have

|E(S)| ≤ k2 and therefore

|E∗(S ∪N(S))| = |E(S)|+ |E∗(N(S))| ≤ O(k3) .

Running this algorithm on O(ε−1 log(k/ε)) different guesses entails Õ(k3/ε) memory

in total.

Suppose the algorithm picks k nodes in the first pass, then clearly f(T ) ≥ z/2 ≥

1/2 ·f(O). Now, suppose that in the first pass, the algorithm picks fewer than k nodes.

We observe that for all o /∈ S ∪N(S), by construction, o is not connected to any node

in S. Then, we know that the deg(o) ≤ z/(2k) since otherwise, the algorithm would

pick o in the first pass. Let U = S ∪N(S), we have

f(O) ≤ f(O ∩ U) +
∑
o∈O\U

deg(o) ≤ f(T ) +
z

2

which implies f(T ) ≥ (1/2− ε) · f(O).

Algorithm for the case t > 1. We generalize the algorithm for t = 1. The

algorithm identifies 2kt nodes S with highest degrees and then find the best solution

in S. Particularly, the best solution in S is t disjoint parts, formed by nodes in S, of

sizes at most k that maximize the multicut.

More formally, let g to denote the size of the multicut,
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g(S1, . . . , St) :=

∣∣∣∣{(u, v) ∈ E : |{u, v} ∩ Si| = 1}
∣∣∣∣ .

We want to find t disjoint parts T1, . . . , Tt from the nodes in S such that |Ti| ≤ k

and g(T1, . . . , Tt) is maximized as the solution T . We again note that to find T , it is

sufficient to maintain E(S) and
∣∣δ(v, S)

∣∣ for each v ∈ S. This requires Õ(t2k2) space.

LetO1, . . . ,Ot denote the bounded parts in the optimal solution and letO = ∪ti=1Oi

and note that |O| ≤ tk.

Theorem 53. As t→∞, there exists a single-pass and Õ(t2k2)-space algorithm

that finds a 6/11− o(1) approximation of MaxCut(k) in the adjacency list model.

Proof. Consider the described algorithm. Again, let the highest degrees be d1 ≥ d2 ≥

. . . ≥ d2tk. Define

d∗ :=
d1 + . . .+ dtk

tk
and d′ :=

dtk+1 + . . .+ d2tk
tk

.

For all o ∈ O \ S, we have that deg(o) ≤ d′. Let O′i = Oi ∩ S. We have,

OPT ≤ g(O′1, . . . ,O′t) +
∑
o∈O\T

deg(o) ≤ g(T1, . . . , Tt) + tkd′ .

The second inequality follows from the definition of T and |O| ≤ tk. Thus, if

tkd′ ≤ 3/4− 1/8 · (1− 1/t)

5/4 + 1/8 · (1− 1/t)
OPT := γOPT ,

then g(T1, . . . , Tt) ≥ (1− γ) OPT. It is straightforward to check that

1− γ =
1/2 + 1/4 · (1− 1/t)

5/4 + 1/8 · (1− 1/t)
.

On ther other hand, if tkd′ > γ, we again use the probabilistic argument where

we pick t disjoint parts of size k randomly as the solution T ′1, . . . , T
′
t . First, there are
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at least tk(d∗ + d′)/2 edges in E∗(S). It is easy to see that each edge belongs to the

solution multicut with probability at least 1/2 + 1/4 · (1− 1/t).

Therefore,

E [g(T ′1, . . . , T
′
t)] ≥

tkd∗ + tkd′

2

(
1

2
+

1

4
·
(

1− 1

t

))
≥ OPT +tkd′

2

(
1

2
+

1

4
·
(

1− 1

t

))
≥ 1/2 + 1/4 · (1− 1/t)

5/4 + 1/8 · (1− 1/t)
OPT = (1− γ) OPT .

But g(T ) ≥ g(T ′) and we therefore have a 1− γ approximation. If we substitute t = 1,

we get a 0.4 approximation as expected. If we let t → ∞, then the approximation

approaches 6/11.

Remark. We note that the above algorithm obtains a better approximation than

that of the algorithm given by Ageev and Sviridenko [2]. However, it uses exponential

time in terms of t and k.

6.3 New Algorithms for Non-monotone Submodular Maxi-

mization

In this section, we introduce a tool for non-monotone submodular maximization.

In this model, the stream consists of m items N = {u1, u2, . . . , um} and an oracle is

available to evaluate a submodular function f : 2N → [1,∆]. A function f : 2N → R≥0

is submodular if for all A and B that are subsets of N where A ⊆ B, if u /∈ B, then

f(B ∪ {u})− f(B) ≤ f(A∪ {u})− f(A). The goal is to pick a set of at most k items

S such that f(S) is maximized. For simplicity, we assume that |O| = k by padding

dummy items with zero marginal gain to the stream. Formally,

O = arg max
S⊂N :|S|≤k

f(S) .

88



We refer to the above problem as SubmodularMax(k). Next, we state some useful

lemmas for our analysis.

Lemma 54. If the function f : 2N → R is submodular, then the function g : 2N\V → R

where g(S) = f(S ∪ V ) is submodular.

Proof. Consider arbitrary sets A ⊆ B ⊂ N \ V and u /∈ B. Since V ∪ A ⊆ V ∪ B

and f is submodular, we have f(u | V ∪B) ≤ f(u | V ∪ A) which is equivalent to

g(u | B) ≤ g(u | A).

The following claims argue that that if an items outside O appears in the solution

T with probability at most p, then E [f(O ∪ T )] ≥ (1− p)f(O).

Lemma 55 (Buchbinder et al. [30]). Let A ⊆ N be a random subset of N such that

an item is in A with probability at most p. If f : N → R is submodular, we have

E [f(A)] ≥ (1− p)f(∅).

We deduce the following corollary by appealing to Lemma 54 and Lemma 55.

Corollary 56. Let A ⊆ N \ V be a random subset of N \ V such that an item is in

A with probability at most p. If f : 2N → R is submodular and g : 2N\V → R where

g(S) = f(S ∪ V ), then E [f(A ∪ V )] = E [g(A)] ≥ (1− p)g(∅) = (1− p)f(V ).

Random coloring scheme. We use a (k + 1)-wise hash function h : [m]→ [k/ε]

to randomly color the stream items among [k/ε] colors. We use the notation h(O) :=

{c : h(oi) = c for some oi} to denote the set of colors of items in O = {o1, . . . , ok}.

We could try to guess a set of colors C with the hope that C = h(O) and run some

algorithm of choice on the items with the guessed colors, i.e., {u : h(u) ∈ C}. With

the correct guess C = h(O), the algorithm considers all items in O while other items

are considered with probability at most ε.

The important observation is that because h is (k + 1)-wise independent, for all

u /∈ O, we have Pr [h(u) ∈ D | h(O) = D] ≤ ε.
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Single-pass algorithm. We are now ready to describe a single-pass algorithm that

returns an expected 1/2− ε approximation of SubmodularMax(k). This algorithm is a

combination of our “coloring scheme” and the work of Badadiniyuru et al. [17]. The

algorithm proceeds as follows.

1. Guess z such that f(O) ≤ z ≤ (1 + ε)f(O) and guess C = h(O).

2. For each stream item u: if |S| < k and h(u) ∈ C and f(u | S) ≥ z/(2k), then

S ← S ∪ {u}.

3. Return S as the final solution T .

Lemma 57. If |T | < k, then f(T ) ≥ f(T ∪ O)− (1 + ε)/2 · f(O).

Proof. By submodularity and the algorithm’s logic, every unpicked item u satisfies

f(u | T ) ≤ z/(2k). Hence, f(T ∪O) ≤ f(T ) +
∑

o∈O\T f(o | T ) ≤ f(T ) + z/2 which

implies f(T ) ≥ f(T ∪ O)− (1 + ε)/2 · f(O).

Theorem 58. There exists a single-pass, O(ε−12k/ε log ∆)-space algorithm that

finds a 1/2− ε approximation in expectation of SubmodularMax(k).

Proof. We first implicitly condition on a fixed h(O) = D. We consider the algorithm

copy that corresponds to the correct guess C = D. We then condition on a fixed

X = {x ∈ N \ O : h(x) ∈ D}. Let TX be the solution of the algorithm given a fixed

X.

If |S| = k, we are done as f(T ) ≥ z/2 ≥ 1/2 · f(O). Otherwise, according to

Lemma 57, we have f(TX) ≥ f(TX ∪O)− (1 + ε)/2 · f(O). We then unfix X to yield

E [f(T )] ≥ E [f(T ∪ O)]− 1 + ε

2
· f(O) .
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We have argued that for all v /∈ O, we have Pr [v ∈ D | h(O) = D] ≤ ε. Then v ∈ T

with probability at most ε. According to Corollary 56,

E [f(T ∪ O)] = E [f((T \ O) ∪ O)] ≥ (1− ε)f(O) .

Note that the above expectations are still implicitly conditioned on a fixed D. Finally,

we unfix D and conclude E [f(T )] ≥ (1/2− ε) f(O) . Because h(O) is unknown, we

could run the algorithm on
(
k/ε
k

)
= O(2k/ε) different guesses and return best solution

given among the copies. Guessing z entails a factor Õ(ε−1 log ∆) in space.

O(1/ε)-pass algorithm. We now exhibit a multiple pass algorithm that returns a

1− 1/e− ε approximation of SubmodularMax(k). For monotone functions, this result

could be derived from previous work [116]. Here we consider the non-monotone case.

We again make use of the coloring scheme. The algorithm adds an item to the solution

if its marginal gain is above some threshold. This threshold decreases by a factor 1 + ε

after each pass.

1. Guess z such that f(O) ≤ z ≤ 2f(O) and guess C = h(O).

2. For i = 1, 2, . . . , r where r =
⌈
log1+ε(10 · e)

⌉
, make a pass over the stream:

(a) For each item u, if |S| < k and h(u) ∈ C and

f(u | S) ≥ z

k(1 + ε)i
, then S ← S ∪ {u} .

3. Return S as the final solution T .

Theorem 59. There exists a O(ε−1)-pass, O(ε−1 · 2k/ε log ∆)-space algorithm

that finds an expected 1− 1/e− ε approximation of SubmodularMax(k).
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Proof. We implicitly condition on a fixed h(O) = D. We then consider the algorithm

copy corresponding to the correct guess of C = D. Let Si be the solution after i items

were added. For convenience, let y = (1− ε)f(O). Appealing to Corollary 56 and the

random coloring scheme, for all i, we have

E [f(Si ∪ O)] = E [f((Si \ O) ∪ O)] ≥ (1− ε)f(O) = y .

The last inequality again follows from the fact that any item u /∈ O is in Si with

probability at most ε as argued. We condition on a fixed X = {x ∈ N \O : h(x) ∈ D}.

Suppose the algorithm picks k items. Consider the items that are picked in the jth

pass. If j = 1, then according to the algorithm,

f(SXi )− f(SXi−1) ≥
z

k
≥
f(O | SXi−1)

k
=
f(O ∪ SXi−1)− f(SXi−1)

k
.

For j > 1, there must be an item o ∈ O\SXi−1 such that f(o | SXi−1) ≥ 1/k ·f(O | SXi−1).

Since, o was not picked in the (j − 1)th pass, we must have

f(SXi )− f(SXi−1) ≥
z

k(1 + ε)j
≥
f(o | SXi−1)

1 + ε
≥ 1

1 + ε

f(O ∪ SXi−1)− f(SXi−1)

k
.

Unfixing X yields

E [f(Si)]− E [f(Si−1)] ≥
E [f(O ∪ Si−1)]− E [f(Si−1])

k(1 + ε)
≥ y − E [f(Si−1])

k(1 + ε)
.

Therefore,

y − E [f(Si)] ≤ y − 1

1 + ε

y − E [f(Si−1)]

k
− E [f(Si−1)]

=

(
1− 1

k(1 + ε)

)
(y − E [f(Si−1)])

≤
(

1− 1

k(1 + ε)

)i
y
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where the last inequality follows from induction. Thus, by letting i = k, we have

E [f(Sk)] ≥

(
1−

(
1− 1

(1 + ε)k

)k)
y ≥ (1− 1/e− 4ε)f(O) .

Finally, if the algorithm picks fewer than k items. Let the final solution be T . We

have

f(TX ∪ O) ≤ f(TX) +
∑
o∈O\T

f(o | TX) .

Unfixing X and appealing to Corollary 56, we deduce that

(1− ε)f(O) ≤ E [f(T )] +
f(O)

5e
.

Therefore,

E [f(T )] ≥
(

1− 1

5e
− 2ε

)
f(O) .

Finally, we unfix D to deduce the claim.
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CHAPTER 7

TESTING BAYESIAN NETWORKS IN DATA STREAMS

7.1 Introduction and Related Work

The problem of testing n-wise independence in data streams has attracted recent

attention in streaming algorithms literature [27,28,78]. In that problem, the stream

consists of m items that are n-tuples (i.e., each item has n coordinates) that empirically

defines a joint distribution of n random variables X1, X2, . . . , Xn where each Xi has

range [k] := {1, 2, . . . k}. One can think of Xi as the value of the ith coordinate of a

random item in the stream. Specifically, the stream defines the joint probability mass

function (pmf):

P(x1, . . . , xn) = Pr [X1 = x1 and X2 = x2 and . . . and Xn = xn] (7.1)

:=
c(x1, x2, . . . , xn)

m
, (7.2)

where c(x1, x2, . . . , xn) is the number of tuples equal to (x1, x2, . . . , xn). The marginal

probability of a subset of variables {Xj : j ∈ S} for some S ⊂ [n] is defined as:

Pr [Xj = xj ∀j ∈ S] :=
∑

x`∈[k] for all ` 6∈S

Pr [X1 = x1, X2 = x2, . . . , Xn = xn] .

The goal of previous work was to determine whether this distribution is close to being

a product distribution or equivalently, whether the corresponding random variables

are close to being independent by estimating:
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 ∑
x1,...,xn∈[k]

∣∣Pr [X1 = x1, . . . , Xn = xn]− Pr [X1 = x1] . · · ·Pr(Xn = xn)
∣∣p1/p

However, it is natural to ask more general questions about the dependencies between

the variables, e.g., can we identify an Xi such that the other random variables are

independent conditioned on Xi or whether there is an ordering Xσ(1), Xσ(2), Xσ(3), . . .

such that Xσ(i) is independent of Xσ(1), Xσ(2), . . . , Xσ(i−2) conditioned on Xσ(i−1).

The standard way to represent such dependencies is via Bayesian networks. A

Bayesian network is a directed acyclic graph G with a node Xi corresponding to each

variable Xi along with a set of directed edges E that encode a factorization of the

joint distribution. Specifically, if Pa(Xi) = {Xj : (Xj → Xi) ∈ E} are the parents of

Xi in G then the Bayesian network represents the assertion that for all x1, x2, . . . , xn,

the joint distribution can be factorized as follows:

Pr [X1 = x1, X2 = x2, . . . , Xn = xn] =
n∏
i=1

Pr [Xi = xi|Xj = xj ∀ Xj ∈ Pa(Xi)] .

For example, E = ∅ corresponds to the assertion that the Xi are fully independent

whereas the graph on nodes {X1, X2, X3} with directed edges X1 → X2, X1 → X3

corresponds to the assertion that X2 and X3 are independent conditioned on X1.

In this chapter, we consider the problem of evaluating how well the observed data

fits a Bayesian network. The data stream of tuples in [k]n and a Bayesian network G

defines an empirical distribution PG with the pmf:

PG(x1, . . . , xn) :=
n∏
i=1

Pr [Xi = xi | Xj = xj ∀ Xj ∈ Pa(Xi)] , (7.3)

where

Pr [Xi = xi | Xj = xj for all j ∈ Pa(Xi)] =
Pr [Xi = xi and Xj = xj,∀Xj ∈ Pa(Xi)]

Pr [Xj = xj, ∀Xj ∈ Pa(Xi)]
.

(7.4)
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is just the fraction of tuples whose ith coordinate is xi amongst the set of tuples

whose jth coordinate is xj for all Xj ∈ Pa(Xi). We then define the error of G to be

the `p norm, for p ∈ {1, 2}, of the difference between the joint distribution and the

factorization PG:

Ep(G) :=

 ∑
x1,...,xn∈[k]

|P(x1, . . . , xn)− PG(x1, . . . , xn)|p
 1

p

:= ‖P − PG‖p.

Clearly, if the factorization implied by G is valid then Ep(G) = 0. More generally,

if Ep(G) is small then we consider the factorization to be close to valid. The use of `p

distance to measure “closeness” was considered previously in the Bayesian network

literature [80, 124]. However, the space required to compute these measures was

considered a major drawback because it was assumed that it would be necessary to

explicitly store the full joint distribution whose space complexity is Ω(kn). Our results

show that this is not the case. Note that when G is the empty graph, Ep(∅) is the

quantity measured in [27,28,78].

In many applications, data comes in a streaming fashion. When it comes to very

large data volume, it is important to maintain a data structure that uses small memory

and estimates different statistics about the data accurately at the same time. As

the space requirement to measure the accuracy of Bayesian networks is as large as

O(kn) and as the size of our data set m increases, our problem of evaluating Bayesian

networks via data streams with small memory is of considerable importance.

Our results. Here, and henceforth we use k, n, d and m to denote the range of the

variables, the number of the variables, the maximum in-degree of the network and the

length of the stream respectively.

1. Testing and Estimating `p Accuracy. For any Bayesian network G, we prove

a space lower bound Ω(nkd) for the problem of testing whether the data is
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consistent with G, i.e., Ep(G) = 0.The lower bound is based on the Local Markov

Property, a result from Bayesian Networks literature, and a reduction from

communication complexity.

2. We also present a Õ(ε−2nkd+1)-space algorithm for estimating Ep(G) up to a

(1 + ε) factor. This is near-optimal up to polylogarithmic factors.

Notation. A ⊥ B | C denotes the assertion that random variables A,B are inde-

pendent conditioned on C, i.e.,

Pr [A = a,B = b | C = c] = Pr [A = a | C = c] Pr [B = b | C = c]

for all a, b, c in the range of A,B,C. Pa(Xi) denotes the set of variables that are

parents of Xi and ND(Xi) denotes the set of variables that are non-descendants of Xi,

other than Pa(Xi).

7.2 Algorithms for Estimating Ep(G)

In this section, we present approximation algorithms for estimating Ep(G) for an

arbitrary Bayesian network G. We first note that the factorized distribution PG can be

computed and stored exactly in O(nkd+1 logm) bits since, by Eq. (7.1) and Eq. (7.4),

it suffices to compute

∑
a∈[k]n : aj=xj ∀j s.t Xj∈{Xi}∪Pa(Xi)

c(a)∑
a∈[k]n : aj=xj ∀j s.t Xj∈Pa(Xi)

c(a)
.

for each i ∈ [n] and each of at most kd+1 combinations of values for Xi and Pa(Xi).

Given this observation, it is straightforward to approximate Ep(G) given any data

stream “sketch” algorithm that returns a (1 + ε) estimate for the `p norm of a vector

v. Kane et al. [88] presented such as algorithm that uses space that is logarithmic in

the dimension of the vector.
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Specifically, we apply the algorithm on a vector v defined as follows. Consider

v to be indexed as [k] × [k] × . . . × [k]. On the arrival of tuple (x1, . . . , xn), we

increment the coordinate corresponding to (x1, . . . , xn) by 1/m. At the end of the

stream, v encodes the empirical joint distribution. For each (x1, . . . , xn), we now

decrement the corresponding coordinate by PG(x1, . . . , xn). At this point, vx1,...,xn =

P(x1, . . . , xn)−PG(x1, . . . , xn) and hence the `p norm of v is Ep(G). Hence, returning

the estimate from the algorithm yields a 1 + ε approximation to Ep(G) as required.

Note that this simple approach also improves over existing work [28] on the case

of measuring `p(G) when G has no edges (i.e., measuring how far the data is from

independent) unless n is very small compared to k. The space used in previous work is

doubly-exponential in n but logarithmic in k whereas our approach uses Õ(nk) space

and hence, our approach is more space-efficient unless k > 2n
n
/n.

Theorem 60. There exists a single-pass algorithm that computes a (1 + ε)

approximation of Ep(G) with probability at least 1− δ using Õ(ε−2kd+1n log δ−1)

space.

We also design a slightly more-efficient two-pass algorithm that returns an additive

approximation for p = 1.

Theorem 61. There exists a two-pass algorithm that computes E1(G)± ε with proba-

bility at least 1− δ using Õ(ε−2kdn log δ−1) space.

Proof. We first rewrite:

E1(G) =
∑

x:P(x)<PG(x)

(PG(x)− P(x)) +
∑

x:P(x)>PG(x)

(P(x)− PG(x))

=
∑
x∈[k]n

PG(x)g1(x) +
∑
x∈[k]n

P(x)g2(x)

where
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g1(x) =


1− P(x)

PG(x)
, if P(x)

PG(x)
< 1

0, otherwise

g2(x) =


1− PG(x)

P(x) , if PG(x)
P(x) < 1

0, otherwise.

In the first pass, we sample O(ε−2 log δ−1) samples from each of P and PG. A

sample S ′ from P can be chosen by just picking a tuple from the stream uniformly

at random using Reservoir sampling [137]. Using Õ(nkd) space we can construct a

sample S = (s1, s2, . . . , sn) from the distribution PG as follows. For each i ∈ [n] and

y = [k]|Pa(Xi)|, we pick a tuple uniformly among those where the value of the set of

variables in Pa(Xi) equals y and set syi be the ith value of this tuple. At the end of

the stream, we build a sample S = (s1, . . . , sn) from the O(nkd) stored values: first

we set si = s∅i for all i where Pa(Xi) = ∅, then set si = syi if the Pa(Xi) have already

been set to y.

In the second pass, for each sample S drawn from PG in the first pass, compute

g1(S) exactly and for each sample S ′ drawn from P, compute g2(S ′) exactly. Note

that E [g1(S)] + E [g2(S ′)] = E1(G). Since, g1(S) and g2(S ′) are bounded between

0 and 1, an application of the Chernoff bound implies that repeating this process

O(ε−2 log δ−1) in parallel yields an additive ε approximation with probability at least

1− δ.

7.3 Lower Bound for Estimating Ep(G)

Decision problem. We now prove a space lower bound for testing Ep(G) = 0.

Definition 62. A Bayesian network G with vertices X1, .., Xn satisfies the Local

Markov Property if Xi ⊥ ND(Xi) | Pa(Xi) for all i ∈ [n].
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We rely on the following theorem. Its proof can be found in many Bayesian

networks literature such as [82].

Theorem 63 (Jordan et al. [82]). (Local Markov Property) Any given Bayesian

network G satisfies Ep(G) = 0 if and only if it satisfies the Local Markov Property.

Next, we show that the approximation algorithm above is near optimal. It has

been shown that independence testing via `p distance can be done in O(polylog k)

space. The open question we are trying to answer is whether it is still possible to

test more general dependencies in O(polylog k) space. Unfortunately, the answer is,

in general, no. We first prove that for testing whether two variables are perfectly

independent given the third variable, any constant-pass streaming algorithm requires

Ω(k) space.

The proofs of our lower bounds use the standard technique of reducing from

a communication complexity problem. In particular, we consider the disjointness

problem where Alice and Bob each has a string x ∈ {1, 2}k and y ∈ {1, 2}k respectively

and want evaluate DISJ(x, y) where

DISJ(x, y) =


0 if there exists i such that xi = yi = 1

1 otherwise

A classic result [87] shows that any (randomized) protocol with constant number

of rounds for this problem requires Ω(k) bits to be communicated. The following

remark is useful in our reduction.

Lemma 64. Given a stream of two binary (A,B)-tuple (a, 2), (2, b). Then, A,B are

independent if and only if a, b are not both equal 1.

Proof. If a = b = 1, then Pr [A = 1 and B = 2] = 0.5 6= Pr [A = 1] Pr [B = 2] =

0.5 × 0.5 = 0.25. Otherwise, one can easily check that Pr [A = x and B = y] =

Pr [A = x] Pr [B = y] for all x, y ∈ {1, 2}.
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Proposition 65. There exists a network G such that any constant-pass algorithm

that decides if Ep(G) = 0 with probability at least 2/3 requires Ω(kd) space.

Proof. Consider the Bayesian network G with vertices X1, . . . , Xd, Y, Z where each Xi

is a parent of X1, X2, . . . , Xi−1, Y, and Z. Let X = (X1, . . . , Xd) and x = (x1, . . . , xd).

Then,

E1(G) =
∑
y,z∈[2]
x∈[k]d

∣∣∣∣Pr [Y = y, Z = z | X = x] Pr [X = x]− (7.5)

Pr [Y = y | X = x] Pr [Z = z | X = x]
d∏
i=1

Pr [Xi = xi | Xi+1 = xi+1, . . . , Xd = xd+1]

∣∣∣∣
(7.6)

=

∣∣∣∣Pr [Y = y, Z = z | X = x]− Pr [Y = y | X = x] Pr [Z = z | X = x]

∣∣∣∣Pr [X = x] .

(7.7)

We make the reduction from DISJ where Alice and Bob, with bit strings a and b of

length kd, generate the streams SA and SB of (Y, Z,X1, X2, . . . , Xd)-tuples respectively:

SA = {(ai, 2, x1, . . . , xd) : (x1, . . . , xd) ∈ [k]d}

SB = {(2, bi, x1, . . . , xd) : (x1, . . . , xd) ∈ [k]d} .

By Equation 7.7, we have that Ep(G) = 0 if and only if Y ⊥ Z | {X = c} for all

c ∈ [k]d. By Lemma 64, this is satisfied if and only if DISJ(a, b) = 1. Therefore, any

constant-pass algorithm that decides if Ep(G) = 0 requires Ω(kd) space.

We now construct a more sophisticated reduction to incorporate n into the lower

bound.
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Figure 7.1. Construction for n = 4

Theorem 66. There exists a Bayesian network G such that any constant-pass

algorithm that determines if Ep(G) = 0 with probability at least 2/3 requires

Ω(nkd) space.

Proof. Without loss of generality, assume n is a power of 2. Let x ∈ {1, 2}nk, y ∈

{1, 2}nk be an instance of DISJ where it be convenient to index x and y by [n]× [k].

The Bayesian network we consider is balanced binary tree with leaves A1, B1, A2,

B2, . . . , An, Bn and internal nodes Rj
i where R1

i in the parent of Ai and Bi and Rj
i

is the parent of Rj−1
2i−1 and Rj−1

2i for j > 1. The root node is Rlogn+1
1 . See Figure 7.1.

The variables Rj
i will take 3k different values and it will be convenient to index these

values as [3]× [k]. The leaf variables take either the value 1 or 2.

Alice generates a stream that defines samples from the joint distribution based on

x. Each sample generated satisfies the following criteria and all distinct samples that

obey this criteria are generated:

1. Rlogn+1
1 ∈ {(1, z), (2, z) : z ∈ [k]}.

2. If Rj
i = (1, z) for j > 1:

• The left child Rj−1
2i−1 ∈ {(1, z), (2, z)} and the right child Rj−1

2i = (3, z).

3. If Rj
i = (2, z) for j > 1:
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• The left child Rj−1
2i−1 = (3, z) and the right child Rj−1

2i ∈ {(1, z), (2, z)}.

4. If Rj
i = (3, z) for j > 1:

• Both the values for the children Rj−1
2i−1 and Rj−1

2i are (3, z).

5. If R1
i ∈ {(1, z), (2, z)}:

• The values for the children are Ai = xi,z, Bi = 2

6. If R1
i = (3, z):

• The values for the children are Ai = 2, Bi = 2

Bob then generates a series samples in a similar manner except that Rule 5 becomes:

If R1
i ∈ {(1, z), (2, z)}, then Ai = 2, Bi = yi,z.

Note that each sample generated by either Alice or Bob specifies a path from the

root to a pair Ai, Bi as following: Starting from the root, if the current node’s value

is equal to (1, z), then go to its left child; on the other hand, if its value is equal to

(2, z), then go to the right child. Once we commit to a direction, every descendant on

the other direction is set to (3, z) for the R nodes and 2 for the A and B nodes.

First assume that DISJ(x, y) = 0. Then xi,z = yi,z = 1 for some z ∈ [k], i ∈ [n].

By Lemma 64 we infer that Ai and Bi are not independent conditioned on either

R1
i = (1, z) or R1

i = (2, z) and hence, Ep(G) 6= 0.

Conversely, assume that DISJ(x, y) = 1. The Local Markov Property says that if

every vertex is independent of its non-descendants given its parents then Ep(G) = 0.

• First we show that it is true for any Rj
i variable. Conditioned on the event that

the parent of Rj
i takes the value (3, z), Rj

i is constant and hence independent

of its non-descendants. Conditioned on the event that the parent of Rj
i takes

the value (1, z) or (2, z), the values of the non-descendants of Rj
i are fixed and

hence independent of Rj
i .
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• Next, we show that it is true for any Ai variable. The argument for Bi is identical.

Conditioned on R1
i = (3, z), then Ai is constant and hence independent of all

non-descendants. If R1
i = (1, z) or R1

i = (2, z), the values of all non-descendants,

except possibly Bi, are constant. But by Lemma 64, Bi is independent of Ai

conditioned on R1
i since DISJ(x, y) = 1.

Hence, DISJ(x, y) = 1 if and only if Ep(G) = 0 and therefore testing if Ep(G) = 0

requires Ω(nk) space.

To extend the lower bound to Ω(nkd) consider an instance of DISJ of length nkd.

Let the variables in G be children of all d− 1 new variables D1, . . . , Dd−1 where there

is a directed edge between Di → Dj for i > j. Let the new network be G′. Similar to

the proof of Theorem 65, to solve DISJ on the wth pair of bit strings of length nk

where w ∈ [kd−1], Alice and Bob generate samples with variables in G as described

above and set (D1, . . . , Dd−1) = w. Hence, any streaming algorithm that decides if

Ep(G′) = 0 requires Ω(nkd) space.
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CHAPTER 8

FINDING SUBCUBE HEAVY HITTERS IN DATA
STREAMS

8.1 Introduction and Related Work

We study the problem of finding heavy hitters in high dimensional data streams.

Most companies see transactions with items sold, time, store location, price, etc.

that arrive over time. Modern online companies see streams of user web activities

that typically have components of user information including ID (e.g., cookies),

hardware (e.g., device), software (e.g., browser, OS), and contents such as web

properties, apps. Activity streams also include events (e.g., impressions, views, clicks,

purchases) and event attributes (e.g., product id, price, geolocation, time). Even

classical IP traffic streams have many dimensions including source and destination IP

addresses, port numbers and other features of an IP connection such as application

type. Furthermore, in applications such as Natural Language Processing, streams of

documents can be thought of as streams of a large number of bigrams or multi-grams

over word combinations [73]. As these examples show, analytics data streams with

100’s and 1000’s of dimensions arise in many applications. Motivated by this, we

study the problem of finding heavy hitters on data streams focusing on d, the number

of dimensions, as a parameter. Given d one sees in practice, d2 in space usage is

prohibitive, for solving the heavy hitters problem on such streams.

Formally, let us start with a one-dimensional stream of items x1, . . . xm where

each xi ∈ [n] := {1, 2, . . . , n}. We can look at the count c(v) = |{i : xi = v}| or the

frequency ratio f(v) = c(v)/m. A heavy hitter value v is one with c(v) ≥ γm or

105



equivalently f(v) ≥ γ, for some constant γ. The standard data stream model is that

we maintain data structures of size polylog(m,n) and determine if v is a heavy hitter

with probability of success at least 3/4, that is, if f(v) ≥ γ output YES and output

NO if f(v) < γ/4 for all v.1 We note that if γ/4 ≤ f(v) < γ, then either answer is

acceptable.

Detecting heavy hitters on data streams is a fundamental problem that arises in

guises such as finding elephant flows and network attacks in networking, finding hot

trends in databases, finding frequent patterns in data mining, finding largest coefficients

in signal analysis, and so on. Therefore, the heavy hitters problem has been studied

extensively in theory, databases, networking and signal processing literature. See [49]

for an early survey and [139] for a recent survey.

Subcube heavy hitter problems. Our focus is on modern data streams such

as in analytics cases, with d dimensions, for large d. The data stream consists of

d-dimensional items x1, . . . , xm. In particular,

xi = (xi,1, . . . , xi,d) and each xi,j ∈ [n] .

A k-dimensional subcube T is a subset of k distinct coordinates {T1, · · · , Tk} ⊆ [d].

We refer to the joint values of the coordinates T of xi as xi,T .

The number of items whose coordinates T have joint values v is denoted by cT (v),

i.e., cT (v) = |{i : xi,T = v}| . Finally, we use XT to denote the random variable of the

joint values of the coordinates T of a random item. We have the following relationship

fT (v) := Pr [XT = v] =
cT (v)

m
.

1The gap constant 4 can be narrowed arbitrarily and the success probability can be amplified to
1− δ as needed, and we omit these factors in the discussions.
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For a single coordinate i, we slightly abuse the notation by using fi and f{i} inter-

changeably. For example, fTi(v) is the same as f{Ti}(v). Similarly, Xi is the same as

X{i}.

We are now ready to define our problems. They take k, γ as parameters and the

stream as the input and build data structures to answer:

• Subcube Heavy Hitter: Query(T, v), where |T | = k, and v ∈ [n]k, returns

an estimate if fT (v) ≥ γ. Specifically, output YES if fT (v) ≥ γ and NO if

fT (v) < γ/4. If γ/4 ≤ fT (v) < γ, then either output is acceptable. The required

success probability for all k-dimensional subcubes T and v ∈ [n]k is at least 3/4.

• All Subcube Heavy Hitters: AllQuery(T ) outputs all joint values v that return

YES to Query(T, v). This is conditioned on the algorithm used for Query(T, v).

It is important to emphasize that the stream is presented (in a single pass or constant

passes) to the algorithm before the algorithm receives any query.

Subcube heavy hitters are relevant wherever one dimensional heavy hitters have

found applications: combination of source and destination IP addresses forms the

subcube heavy hitters that detect network attacks; combination of stores, sales quarters

and nature of products forms the subcube heavy hitters that might be the pattern of

interest in the data, etc. Given the omnipresence of multiple dimensions in digital

analytics, arguably, subcube heavy hitters limn the significant data properties far

more than the single dimensional view.

Related work. The problem we address is directly related to frequent itemset

mining studied in the data mining community. In frequent itemset mining, each

dimension is binary (n = 2), and we consider Query(T, v) where v = Uk := (1, . . . , 1).

It is known that counting all maximal subcubes T that have a frequent itemset, i.e.,

fT (Uk) ≥ γ, is #P -complete [140]. Furthermore, finding even a single T of maximal

size such that fT (Uk) ≥ γ is NP-hard [76,108]. Recently, Liberty et al. showed that any
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constant-pass streaming algorithm answering Query(T,Uk) requires Ω(kd/γ · log(d/k))

bits of memory in general [108]. In the worst case, this is Ω(d2/γ) for large k, ignoring

the polylogarithmic factors. For this specific problem, sampling algorithms will nearly

meet their lower bound for space. Our problem is more general, with arbitrary n and

v.

Our contributions Clearly, the case k = 1 can be solved by building one of the

many known single dimensional data structures for the heavy hitters problem on each

of the d dimension; the k = d case can be thought of as a giant single dimensional

problem by linearizing the space of all values in [n]k; for any other k, there are
(
d
k

)
distinct choices for subcube T , and these could be treated as separate one-dimensional

problems by linearizing each of the subcubes. In general, this entails
(
d
k

)
and log(nd)

cost in space or time bounds over the one-dimensional case, which we seek to avoid.

Also, our problem can be reduced to the binary case by unary encoding each dimension

by n bits, and solving frequent itemset mining: the query then has kn dimensions.

The resulting bound will have an additional n factor which is large.

First, we observe that the reservoir sampling approach [137] solves subcube heavy

hitters problems more efficiently compared to the approaches mentioned above. Our

analysis shows that the space we use is within polylogarithmic factors of the lower

bound shown in [108] for binary dimensions and query vector Uk, which is a special

case of our problem. Therefore, the subcube heavy hitters problem can be solved

using Õ(kd/γ) space. However, this is Ω(d2) in worst case.

Our main contribution is to avoid this quadratic bottleneck for finding subcube

heavy hitters. We adopt the notion that there is an underlying probabilistic model

behind the data, and in the spirit of the Naive Bayes model, we assume that the

dimensions are nearly (not exactly) mutually independent given an observable latent

dimension. This could be considered as a low rank factorization of the dimensions.

In particular, one could formalize this assumption by bounding the total variational
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distance between the data’s joint distribution and that derived from the Naive Bayes

formula. This assumption is common in statistical data analysis and highly prevalent

in machine learning. Following this modeling, we make two main contributions:

• We present a two-pass, Õ(d/γ)-space streaming algorithm for answering Query(T, v).

This improves upon the kd factor in the space complexity from sampling, without

assumptions, to just d with the Naive Bayes assumption, which would make this

algorithm practical for large k. Our algorithm uses sketching in each dimension

in one pass to detect heavy hitters, and then needs a second pass to precisely

estimate their frequencies.

• We present a fast algorithm for answering AllQuery(T ) in Õ((k/γ)2) time. The

naive procedure would take exponential time Ω((1/γ)k) by considering the

Cartesian product of the heavy hitters in each dimension. Our approach, on

the other hand, uses the structure of the Naive Bayes assumption to iteratively

construct the subcube heavy hitters one dimension at a time.

Our work develops the direction of model-based data stream analysis. Model-based

data analysis has been effective in other areas. For example, in compressed sensing,

realistic signal models that include dependencies between values and locations of the

signal coefficients improve upon unconstrained cases [55]. In statistics, using tree

constrained models of multidimensional data sometimes improves point and density

estimation. In high dimensional distribution testing, model based approach has also

been studied to overcome the curse of dimensionality [54].

In the data stream model, [27, 28, 78] studied the problem of testing independence.

McGregor and Vu [115] studied the problem of evaluating Bayesian Networks. In

another work, Kveton et al. [104] assumed a tree graphical model and designed a

one-pass algorithm that estimates the joint frequency; their work however only solved

the k = d case for the joint frequency estimation problem. Our model is a bit different
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and more importantly, we solve the subcube heavy hitters problem (addressing all the(
d
k

)
subcubes) which prior work does not solve. In following such a direction, we have

extended the fundamental heavy hitters problem to higher dimensional data. Given

that many implementations already exist for the sketches we use for one-dimensional

heavy hitters as a blackbox, our algorithms are therefore easily implementable.

Background on the Naive Bayes model and its use in our context. The

Naive Bayes Model [127] is a Bayesian network over d features X1, . . . , Xd and a class

variable Y . This model represents a joint probability distribution of the form

Pr [X1 = x1, . . . , Xd = xd, Y = y]

= Pr [Y = y]
d∏
j=1

Pr [Xj = xj | Y = y] ,

which means that the values of the features are conditionally independent given the

value of the class variable. The simplicity of the Naive Bayes model makes it a popular

choice in text processing and information retrieval [107, 110], with state-of-the-art

performance in spam filtering [10], text classification [107], and others.

8.2 The Sampling Algorithm

In this section, we show that sampling solves the problem efficiently compared

to running one-dimensional heavy hitters algorithms for each of
(
d
k

)
k-dimensional

subcubes independently. It also matches the lower bound in [108] up to polylogarithmic

factors.

Algorithm details. The algorithm samplesm′ = Õ(γ−1kd) random items z1, . . . , zm′

from the stream using Reservoir sampling [137]. Let S = {z1, . . . , zm′} be the sample
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set. Given Query(T, v), we output YES if and only if the sample frequency of v,

denoted by f̂T (v), is at least γ/2. Specifically,

f̂T (v) :=
|{xi : xi ∈ S and xi,T = v}|

m′
.

For all subcubes T and joint values v of T , the expected sample frequency f̂T (v) is

fT (v). Intuitively, if v is a frequent joint values, then its sample frequency f̂T (v) ≈

fT (v); otherwise, f̂T (v) stays small.

Let us fix a k-dimensional subcube T and suppose that for all v ∈ [n]k, we have

f̂T (v) = fT (v)± max{γ, fT (v)}
4

. (8.1)

It is then straightforward to see that if fT (v) < γ/4, then f̂T (v) < γ/4+γ/4 = γ/2.

Otherwise, if fT (v) ≥ γ, then f̂T (v) ≥ 3fT (v)/4 ≥ 3γ/4 > γ/2. Hence, we output

YES for all v where f̂T (v) ≥ γ/2, and output NO otherwise.

Lemma 67. (Chernoff bound) Let X1, · · · , Xn be independent or negatively correlated

binary random variables. Let X =
∑n

i=1Xi and µ = E [X]. Then,

Pr [|X − µ| ≥ εµ] ≤ exp(−min{ε2, ε}µ/3) .

Recall that S = {z1, z2, . . . , zm′} is the sample set returned by the algorithm. For

a fixed v ∈ [n]k, we use Zi as the indicator variable for the event zi,T = v. Since we

sample without replacement, the random variables Zi are negatively correlated. The

following lemma shows that Eq. 8.1 holds for all v and k-dimensional subcubes T via

Chernoff bound.

Lemma 68. For all k-dimensional subcubes T and joint values v ∈ [n]k, with proba-

bility at least 0.9,

f̂T (v) = fT (v)± max{γ, fT (v)}
4

.
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Proof. Let m′ = cγ−1 log(dk · nk) for some sufficiently large constant c. We first

consider a fixed v ∈ [n]k and define the random variables Zi as above, i.e., Zi = 1 if

zi,T = v. Suppose fT (v) ≥ γ. Appealing to Lemma 67, we have

Pr

[∣∣∣∣∣
(

m′∑
i=1

Zi
m′

)
− fT (v)

∣∣∣∣∣ ≥ fT (v)

4

]

= Pr

[∣∣∣f̂T (v)− fT (v)
∣∣∣ ≥ fT (v)

4

]
≤ exp

(
−fT (v)m′

3× 16

)
≤ 1

10dknk
.

On the other hand, if fT (v) < γ/4, then

Pr
[∣∣∣f̂T (v)− fT (v)

∣∣∣ ≥ γ

4

]
≤ exp

(
−
(

γ

4fT (v)

)
fT (v)

m′

3

)
≤ 1

10dknk
.

Therefore, by taking the union bound over all
(
d
k

)
· nk ≤ dk · nk possible combinations

of k-dimensional subcubes and the corresponding joint values v ∈ [n]k, we deduce the

claim.

We therefore could answer all Query(T, v) correctly with probability at least 0.9

for all joint values v ∈ [n]k and k-dimensional subcubes T . Because storing each

sample zi requires Õ(d) bits of space, the algorithm uses Õ(dkγ−1) space. We note

that answering Query(T, v) requires computing f̂T (v) which takes O(|S|) time. We

can answer AllQuery(T ) by computing f̂T (v) for all joint values v of coordinates T

that appear in the sample set which will take O(|S|2) time. We summarize the result

as follows.

Theorem 69. There exists a 1-pass algorithm that uses Õ(dkγ−1) space and

solves k-dimensional subcube heavy hitters. Furthermore, Query(T, v) and

AllQuery(T ) take Õ(dkγ−1) and Õ
(

(dkγ−1)
2
)

time respectively.
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8.3 Algorithms under The Near-Independence Assumption

The near-independence assumption. Suppose the random variables representing

the dimensions X1, X2, . . . , Xd are near independent. We show that there is a 2-pass

algorithm that uses less space and has faster query time. At a high level, we make the

assumption that the joint probability is approximately factorized

f{1,...,d}(v) ≈ f1(v1)f2(v2) · · · fd(vd) .

More formally, we assume that the total variation distance is bounded by a small

quantity α. Furthermore, we assume that α is reasonable with respect to γ that

controls the heavy hitters. For example, α ≤ γ/10 will suffice.

The formal near-independence assumption is as follows: There exists α ≤ γ/10

such that for all subcubes T ,

max
v∈[n]|T |

∣∣∣∣∣∣fT (v)−
|T |∏
i=1

fTi(vi)

∣∣∣∣∣∣ < α .

We observe that:

• If fT (v) ≥ γ, then

|T |∏
i=1

fTi(vi) ≥ fT (v)− γ/10 > γ/2 .

• If fT (v) < γ/4, then

|T |∏
i=1

fTi(vi) ≤ fT (v) + γ/10 < γ/2 .

Thus, it suffices to output YES to Query(T, v) if and only if the marginals product∏|T |
i=1 fTi(vi) ≥ γ/2. For convenience, let

λ := γ/2 .
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Algorithm details. We note that simply computing fi(x) for all coordinates i ∈ [d]

and x ∈ [n] will need Ω(dn) space. To over come this, we make following simple but

useful observation. We observe that if v is a heavy hitter in the subcube T and if T ′

is a subcube of T , then vT ′ is a heavy hitter in the subcube T ′.

Lemma 70. For all subcubes T ,

|T |∏
i=1

fTi(vi) ≥ λ =⇒
∏
i∈V

fTi(vi) ≥ λ

for all V ⊆ [|T |] (i.e., {Ti : i ∈ V} is a subcube of T ).

The proof is trivial since all fTi(vi) ≤ 1. Therefore, we have the following corollary.

Corollary 71. For all subcubes T ,

|T |∏
i=1

fTi(vi) ≥ λ =⇒ fTi(vi) ≥ λ for all i ∈ [|T |] .

We therefore only need to compute fi(x) if x is a heavy hitter in coordinate i. To

this end, for each coordinate i ∈ [d], by using (for example) Misra-Gries algorithm [118]

or Count-Min sketch [53], we can find a set Hi such that if fi(x) ≥ λ/2, then x ∈ Hi

and if fi(x) < λ/4, then x /∈ Hi. In the second pass, for each x ∈ Hi, we compute

fi(x) exactly to obtain

Si := {x ∈ [n] : fi(x) ≥ λ} .

We output YES to Query(T, v) if and only if all vi ∈ STi and
∏|T |

i=1 fTi(vi) ≥ λ.

Note that if v ∈ Si, then fi(v) is available to the algorithm since it is computed exactly

in the second pass. The detailed algorithm is as follows.
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1. First pass: For each coordinate i ∈ [d], use Misra-Gries algorithm to find

Hi.

2. Second pass: For each coordinate i ∈ [d], compute fi(x) exactly for each

x ∈ Hi to obtain Si.

3. Output YES to Query(T, v) if and only if vi ∈ STi for all i ∈ [|T |] and

|T |∏
i=1

fTi(vi) ≥ λ .

The next theorem establishes that the above algorithm solves subcube heavy hitters

under the near-independence assumption.

Theorem 72. There exists a 2-pass algorithm that uses Õ(dγ−1) space and

solves subcube heavy hitters under the near-independence assumption. The time

to answer Query(T, v) and AllQuery(T ) are Õ(k) and Õ(kγ−1) respectively

where k is the dimensionality of T .

Proof. The first pass uses Õ(dλ−1) space since Misra-Gries algorithm uses Õ(λ−1)

space for each coordinate i ∈ [d]. Since the size of each Hi is O(λ−1), the second pass

also uses Õ(dλ−1) space. Recall that λ = γ/2. We then conclude that the algorithm

uses Õ(dγ−1) space.

For an arbitrary Query(T, v), the algorithm’s correctness follows immediately from

Corollary 71 and the observation that if vi ∈ STi , then fTi(vi) is available since it was

computed exactly in the second pass. Specifically, if

|T |∏
i=1

fTi(vi) ≥ λ , (8.2)
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then vi ∈ STi for all i ∈ [|T |] and we could verify the inequality and output YES.

On the other hand, suppose Eq. 8.2 does not hold. Then, if vi /∈ STi for some i, we

correctly output NO. But if all vi ∈ STi , then we are able to verify that the inequality

does not hold (and correctly output NO).

The parameter k only affects the query time. We now analyze the time to answer

Query(T, v) and AllQuery(T ) for a k-dimensional subcube T .

We can easily see that Query(T, v) takes Õ(k) time as we need to check if all

vi ∈ STi (e.g., using binary searches) and compute
∏k

i=1 fTi(vi).

Next, we exhibit a fast algorithm to answer AllQuery(T ). We note that naively

checking all combinations (v1, · · · , vk) in ST1×ST2×· · ·×STk takes exponential Ω(γ−k)

time in the worst case.

Our approach figures out the heavy hitters gradually and takes advantage of the

near-independence assumption. In particular, define

Wj := {v ∈ [n]j : fT1(v1) · · · fTj(vj) ≥ λ} .

Recall that the goal is to find Wk. Note that W1 = S1 is obtained directly by the

algorithm. We now show that it is possible to construct Wj+1 from Wj in Õ(λ−1)

time which in turn means that we can find Wk in Õ(kλ−1) time. We use the notation

T[j] := {T1, . . . , Tj} and v[j] := (v1, v2, . . . , vj).

We note that |Wj| ≤ 5/(4λ). This holds since if y ∈ Wj, then
∏j

i=1 fTi(yi) ≥ λ.

Appealing to the near-independence assumption, we have

fT[j](y) ≥
j∏
i=1

fTi(yi)− α ≥ λ− α ≥ 4/5 · λ .

For each y ∈ Wj, we collect all x ∈ Sj+1 such that

(
j∏
i=1

fTi(yi)

)
fTj+1

(x) ≥ λ
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and put (y1, · · · , yj, x) into Wj+1. Since |Wj| ≤ 5/4 · λ−1 and |Sj+1| ≤ λ−1, this

step obviously takes O(λ−2) time. However, by observing that there could be at

most λ−1
∏j

i=1 fTi(yi) such x for each y ∈ Wj, the upper bound for the number of

combinations of x and y is

∑
y∈Wj

1

λ

j∏
i=1

fTi(yi) ≤
∑
y∈Wj

1

λ
(fT[j](y) + α)

=
∑
y∈Wj

α

λ
+
∑
y∈Wj

fT[j](y)

λ

≤ |Wj|+
1

λ
≤ 3

λ
.

The last inequality follows from the assumption that α ≤ λ/5 and
∑

y∈Wj
fT[j](y) ≤ 1.

Thus, the algorithm can find Wj+1 given Wj in Õ(λ−1) time. Hence, we obtain Wk

in Õ(kλ−1) = Õ(kγ−1) time. The correctness of this procedure follows directly from

Lemma 70 and induction since v = (v1, . . . , vj+1) ∈ Wj+1 implies that v[j] ∈ Wj and

vj+1 ∈ Sj+1. Thus, by checking all combinations of y ∈ Wj and x ∈ Sj+1, we can

construct Wj+1 correctly.

8.4 Algorithms under The Naive Bayes Assumption

The Naive Bayes assumption. In this section, we focus on the data streams

inspired by the Naive Bayes model which is strictly more general than the near-

independence assumption. In particular, we assume that the coordinates are near-

independent given an extra (d+ 1)th observable class coordinate that has a value in

{1, . . . , `}. The (d+ 1)th coordinate is also often referred to as the latent coordinate.

As in typical in Naive Bayes analysis, we assume ` is a constant but perform the

calculations in terms of ` so its role in the complexity of the problem is apparent.
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Informally, this model asserts that the random variables representing coordinates

X1, . . . , Xd are near independent conditioning on a the random variable Xd+1 that

represents the class coordinate.

We introduce the following notation

fT | d+1(v | z) :=

∣∣{xi : xi,T = v ∧ xi,{d+1} = z}
∣∣∣∣{xi : xi,{d+1} = z}

∣∣
= Pr [XT = v | Xd+1 = z] .

In other words, fT | d+1(v | z) is the frequency of the joint values v in the T

coordinates among the stream items where the class coordinate d+ 1 has value z.

The formal Naive Bayes assumption is as follows: There exists α ≤ γ/10 such that

for all subcubes T ,

max
v∈[n]|T |

∣∣∣∣∣∣fT (v)−
∑
z∈[`]

fd+1(z)

|T |∏
i=1

fTi | d+1(vi | z)

∣∣∣∣∣∣ < α .

Algorithm details. As argued in the previous section, it suffices to output YES to

Query(T, v) if and only if

∑
z∈[`]

fd+1(z)

|T |∏
i=1

fTi | d+1(vi | z) ≥ γ/2 = λ .

However, naively computing all fi | d+1(v | z) uses Ω(`dn) space. We circumvent

this problem by generalizing Lemma 70 as follows. If a joint values v is a heavy hitter

in a subcube T in the Naive Bayes formula and T ′ is a subcube of T , then vT ′ is a

heavy hitter in the subcube T ′.
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Lemma 73. For all subcubes T ,

q(v) :=
∑
z∈[`]

fd+1(z)

|T |∏
i=1

fTi | d+1(vi | z) ≥ λ

=⇒
∑
z∈[`]

fd+1(z)
∏
i∈V

fTi | d+1(vi | z) ≥ λ

for all V ⊆ [|T |] (i.e., {Ti : i ∈ V} is a subcube of T ).

Proof. For a fixed z, observe that

∑
yj∈[n]

fTj | d+1(yj | z) = 1 .

Suppose q(v) ≥ λ and consider an arbitrary V ⊆ [|T |]. We have

∑
z∈[`]

fd+1(z)
∏
i∈V

fTi | d+1(vi | z)

=
∑
z∈[`]

fd+1(z)
∏
i∈V

fTi | d+1(vi | z)
∏
j /∈V

∑
yj∈[n]

fTj | d+1(yj | z)


≥
∑
z∈[`]

fd+1(z)
∏
i∈V

fTi | d+1(vi | z)
∏
j /∈V

fTj | d+1(vj | z)

=
∑
z∈[`]

fd+1(z)

|T |∏
i=1

fTi | d+1(vi | z) = q(v) ≥ λ .

An alternative proof is by noticing that q(v) is a valid probability density function of

|T | variables. The claim follows by marginalizing over the the variables that are not

in V .

Setting V = {i} for each i ∈ [|T |] and appealing to the fact that

∑
z∈[`]

fd+1(z)fTi | d+1(vi | z) =
∑
z∈[`]

f{Ti,d+1}((vi, z)) = fTi(vi) ,

we deduce the following corollary.

119



Corollary 74. For all subcubes T ,

∑
z∈[`]

fd+1(z)

|T |∏
i=1

fTi | d+1(vi | z) ≥ λ =⇒ fTi(vi) ≥ λ

for all i ∈ [|T |].

Therefore, we only need to compute fi | d+1(x | z) for all coordinates i ∈ [d],

values z ∈ [`] if x is a heavy hitter of coordinate i. Similar to the previous section, for

each dimension i ∈ [d], we find Hi in the first pass and use Hi to find Si in the second

pass. Appealing to Corrollary 74, we deduce that if

q(v) :=
∑
z∈[`]

fd+1(z)

|T |∏
i=1

fTi | d+1(vi | z) ≥ λ

then for all i = 1, 2, . . . , |T |, we have fTi(vi) ≥ λ which in turn implies that vi ∈ STi .

Therefore, we output YES to Query(T, v) if and only if all vi ∈ STi and q(v) ≥ λ.

To this end, we only need to compute fi | d+1(x | z) and fd+1(z) for all x ∈ Hi,

z ∈ [`], and i ∈ [d]. The detailed algorithm is as follows.
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1. First pass:

(a) For each value z ∈ [`], compute fd+1(z) exactly.

(b) For each coordinate i ∈ [d], use Misra-Gries algorithm to find Hi.

2. Second pass:

(a) For each coordinate i ∈ [d] and each value x ∈ Hi, compute fi(x)

exactly to obtain Si.

(b) For each value z ∈ [`], coordinate i ∈ [d], and x ∈ Hi, compute

fi | d+1(x | z) exactly.

3. Output YES to Query(T, v) if and only if vi ∈ STi for all i ∈ [|T |] and

∑
z∈[`]

fd+1(z)

|T |∏
i=1

fTi | d+1(vi | z) ≥ λ .

The next theorem establishes that the above algorithm solves subcube heavy hitters

under the Naive Bayes assumption.

Theorem 75. There exists a 2-pass algorithm that uses Õ(`dγ−1) space and

solves subcube heavy hitters under the Naive Bayes assumption. The time to

answer Query(T, v) and AllQuery(T ) are Õ(`k) and O(`(k/γ)2) respectively

where k is the dimensionality of T .

Proof. The space to obtain Hi and Si over the two passes is Õ(dλ−1). Additionally,

computing fi | d+1(x | z) for all i ∈ [d], z ∈ [`], and x ∈ Hi requires Õ(`dλ−1) bits of

space. The overall space we need is therefore Õ(`dλ−1) = Õ(`dγ−1).

The correctness of answering an arbitrary Query(T, v) follows directly from Corol-

lary 74. Specifically, if
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∑
z∈[`]

fd+1(z)

|T |∏
i=1

fTi | d+1(vi | z) ≥ λ , (8.3)

then, vi ∈ STi ⊆ HTi for all i ∈ [|T |] as argued. Hence, fTi | d+1(vi | z) is computed

exactly in the second pass for all z ∈ [`]. As a result, we could verify the inequality

and output YES. On the other hand, if Eq. 8.3 does not hold. Then, if some vi /∈ STi ,

we will correctly output NO. Otherwise if all vi ∈ STi , then we can compute the left

hand side and verify that Eq. 8.3 does not hold (and correctly output NO).

Obviously, Query(T, v) takes Õ(`k) time for a k-dimensional subcube T . We now

exhibit a fast algorithm to answer AllQuery(T ) for a k-dimensional subcube T . Define

Wj := {v ∈ [n]j :
∑
z∈[`]

fd+1(z)

j∏
i=1

fTi | d+1(vi | z) ≥ λ} .

Recall that the goal is to find Wk. We note that W1 = S1 is obtained directly by the

algorithm. Next, we show how to obtain Wj+1 in Õ(λ−2) time from Wj. Note that

|Wj| ≤ 5/(4λ) because if y ∈ Wj, then

∑
z∈[`]

fT1 | d+1(y1 | z) · · · fTj | d+1(yj | z)fd+1(z) ≥ λ

and hence fT[j](y) ≥ λ−α = 4/5 · λ−1 according to the Naive Bayes assumption. This

implies that |Wj| ≤ 5/(4λ).

For each (v1, · · · , vj) in Wj, we collect all vj+1 ∈ Sj+1 such that

∑
z∈[`]

fT1 | d+1(v1 | z) · · · fTj+1 | d+1(vj+1 | z)fd+1(z) ≥ λ

and put (v1, · · · , vj+1) to Wj+1. Since |Wj| ≤ 5/(4λ) and |Sj+1| ≤ 1/λ, this step

obviously takes Õ(`kλ−2) time. Since we need to do this for j = 2, 3, . . . , k, we attain
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Wk in Õ(`(k/γ)2) time. The correctness of this procedure follows directly from Lemma

73 and induction since (v1, . . . , vj+1) ∈ Wj+1 implies that (v1, . . . , vj) is in Wj and

vj+1 is in Sj+1. Since we check all possible combinations of (v1, . . . , vj) ∈ Wj and

vj+1 ∈ Sj+1, we guarantee to construct Wj+1 correctly.

It is possible to improve upon the running time of AllQuery(T ) with a divide-and-

conquer approach. Without loss of generality, we assume that |T | = k be a power of 2.

Let us consider the following divide-and-conquer algorithm:

1. Input AllQuery(T ).

2. Let TL = {T1, . . . , Tk/2} and TR = {Tk/2+1, . . . , Tk}.

3. Solve for AllQuery(TL) and AllQuery(TR).

4. For all vL returned by AllQuery(TL) and vR returned by AllQuery(TR), let

v = (v1, . . . , vk) be the joint values formed by combining vL and vR. Specifically,

vL = (v1, . . . , vk/2) and vR = (vk/2+1, . . . , vk).

5. Add v to the solution if the AllQuery(T, v) returns YES.

We notice that the base case k = 1 can be done by simply outputting Si corre-

sponding to the single coordinate in T . The correctness of this algorithm follows

directly from Lemma 73.

Since the time complexity for a Query(T, v) is O(`k). The running time of each

recursive level is at most O(`k · 1/γ2) by the same argument above, i.e., there could

be at most 1/γ different joint values vL and 1/γ different joint values vR. Thus, we

have the following.

Theorem 76. The time to answer Query(T, v) can be improved to O(`k ·

(1/γ)2 log k) where k is the dimensionality of T .
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CHAPTER 9

FUTURE WORK

In this chapter, we propose some related research problems for future work.

9.1 Graph Theory and Combinatorial Optimization

One open question is whether we could improve the query time for the densest

subgraph problem. Bhattacharya et al. provided a dynamic algorithm with a 1/4

approximation [25]. Therefore, an interesting result would be a better approximation

while still maintaining polylog(n) query time.

Another important research topic is to investigate the effect of random order stream

in the context of combinatorial optimization. Very recently, for the problem of maxi-

mizing a monotone submodular function under a cardinality constraint, Norouzi-Fard

et al. showed that we could beat a 1/2 approximation by a small constant in random

order streams [121]. This result could be applied directly to the maximum k-set cover-

age problem we considered in this thesis. One can ask whether the coverage function

admits a more significant improvement in terms of approximation. Additionally, it is

also natural to attempt to extend their result to non-monotone submodular functions.

For streaming set problems, we would also like to consider other related models.

A set system can be represented by a bipartite graph G with the bipartition (L,R)

where the nodes in L correspond the elements in the universe and the nodes in R

correspond to the sets. An edge (i, j) indicates that the ith element belongs to the

jth set. Bateni et al. considered the edge-arrival model where the stream consists of

edges (i, j) in this bipartite graph [22]; however, some results quickly become infeasible
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in this model. For example, we and they independently showed that any constant

approximation in this model for the maximum coverage problem requires Ω(m) space.

On the other hand, in the streaming set model where edges are grouped by end points

in R, we showed that it is possible to obtain a constant approximation in Õ(k) space.

Another natural model would be the edge arrival model where the edges are grouped

by end points in L.

9.2 High Dimensional Data Streams

We propose some open problems in high dimensional data streams. The first

problem is to design an `p sampling algorithm that allows us to sample a tuple from

an arbitrary subset of coordinates (i.e., subcube). The naive approach is to maintain

2d samplers corresponding to 2d subcubes. Note that it is trivial to beat this bound

for the case p = 1 by simply sampling an item in the stream at uniformly random.

However, for other values of p, nothing is currently known.

A closely related problem is to estimate the number of distinct tuples in each

subcube. Given a d-dimensional stream, we want to estimate (up to a constant factor)

the number of distinct tuples in each of 2d subcubes. Is it possible to beat the naive

upper bound Ω(2d) that maintains an F0 sketch for each subcube?
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[26] Bonnet, Édouard, Escoffier, Bruno, Paschos, Vangelis Th., and Stamoulis,
Georgios. A 0.821-ratio purely combinatorial algorithm for maximum k-vertex
cover in bipartite graphs. In LATIN (2016), vol. 9644 of Lecture Notes in
Computer Science, Springer, pp. 235–248.

[27] Braverman, Vladimir, Chung, Kai-Min, Liu, Zhenming, Mitzenmacher, Michael,
and Ostrovsky, Rafail. AMS without 4-wise independence on product domains.
In STACS (2010), vol. 5 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, pp. 119–130.

[28] Braverman, Vladimir, and Ostrovsky, Rafail. Measuring independence of
datasets. In STOC (2010), ACM, pp. 271–280.

[29] Braverman, Vladimir, Ostrovsky, Rafail, and Vilenchik, Dan. How hard is
counting triangles in the streaming model? In ICALP (1) (2013), vol. 7965 of
Lecture Notes in Computer Science, Springer, pp. 244–254.

[30] Buchbinder, Niv, Feldman, Moran, Naor, Joseph, and Schwartz, Roy. Sub-
modular maximization with cardinality constraints. In SODA (2014), SIAM,
pp. 1433–1452.

[31] Bulteau, Laurent, Froese, Vincent, Kutzkov, Konstantin, and Pagh, Rasmus.
Triangle counting in dynamic graph streams. CoRR abs/1404.4696 (2014).

[32] Bulteau, Laurent, Froese, Vincent, Kutzkov, Konstantin, and Pagh, Rasmus.
Triangle counting in dynamic graph streams. Algorithmica 76, 1 (2016), 259–278.

[33] Buriol, Luciana S., Frahling, Gereon, Leonardi, Stefano, Marchetti-Spaccamela,
Alberto, and Sohler, Christian. Counting triangles in data streams. In PODS
(2006), ACM, pp. 253–262.

[34] Caskurlu, Bugra, Mkrtchyan, Vahan, Parekh, Ojas, and Subramani, K. On
partial vertex cover and budgeted maximum coverage problems in bipartite
graphs. In IFIP TCS (2014), vol. 8705 of Lecture Notes in Computer Science,
Springer, pp. 13–26.

[35] Censor-Hillel, Keren, Levy, Rina, and Shachnai, Hadas. Fast distributed approx-
imation for max-cut. In ALGOSENSORS (2017), vol. 10718 of Lecture Notes in
Computer Science, Springer, pp. 41–56.

[36] Chakrabarti, Amit, Cormode, Graham, and McGregor, Andrew. Robust lower
bounds for communication and stream computation. Theory of Computing 12, 1
(2016), 1–35.

128



[37] Chakrabarti, Amit, and Kale, Sagar. Submodular maximization meets streaming:
matchings, matroids, and more. Math. Program. 154, 1-2 (2015), 225–247.

[38] Chakrabarti, Amit, Khot, Subhash, and Sun, Xiaodong. Near-optimal lower
bounds on the multi-party communication complexity of set disjointness. In
IEEE Conference on Computational Complexity (2003), IEEE Computer Society,
pp. 107–117.

[39] Chakrabarti, Amit, and Wirth, Anthony. Incidence geometries and the pass
complexity of semi-streaming set cover. In SODA (2016), SIAM, pp. 1365–1373.

[40] Charikar, Moses. Greedy approximation algorithms for finding dense components
in a graph. In Approximation Algorithms for Combinatorial Optimization, Third
International Workshop, APPROX 2000, Saarbrücken, Germany, September
5-8, 2000, Proceedings (2000), pp. 84–95.

[41] Chekuri, Chandra, Gupta, Shalmoli, and Quanrud, Kent. Streaming algorithms
for submodular function maximization. In ICALP (1) (2015), vol. 9134 of
Lecture Notes in Computer Science, Springer, pp. 318–330.

[42] Chekuri, Chandra, Jayram, T. S., and Vondrák, Jan. On multiplicative weight
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