
HAL Id: hal-03938177
https://hal.inria.fr/hal-03938177

Submitted on 13 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effective Weighted k-Nearest Neighbors for Dynamic
Data Streams

Maroua Bahri

To cite this version:
Maroua Bahri. Effective Weighted k-Nearest Neighbors for Dynamic Data Streams. 7th Workshop
on Real-time Stream Analytics, Stream Mining, CER/CEP & Stream Data Management in Big Data
in conjunction with the IEEE International Conference on Big Data 2022, Dec 2022, Osaka, Japan.
�hal-03938177�

https://hal.inria.fr/hal-03938177
https://hal.archives-ouvertes.fr


Effective Weighted k-Nearest Neighbors for
Dynamic Data Streams

Maroua Bahri
MiMove, Inria Paris

Paris, France
maroua.bahri@inria.fr

Abstract—Many real-world applications involve classification
from evolving data streams. However, learning in such envi-
ronment requires algorithms able to learn and predict from
potentially unbounded data that are constantly changing. For
this to happen, stream algorithms should restrict the storage to
a part of – and/or synopsis information from – the stream using
efficient and accurate manners and strategies, such as window
models and summarization techniques (e.g., sampling, sketching,
dimensionality reduction). In this work, we focus on the k-Nearest
Neighbors (kNN) where most of the existing approaches for data
streams consider that instances have the same weight from the
start to the finish of the processing task.

In a streaming data scenario, it is often the case that the
most recent elements from the data stream are the more relevant
ones. Taking into account that the most recent instances are
more relevant, we propose a novel kNN approach that stores
instances in a sliding window and weighs them according to
their arrival time (i.e position on the window) using an adjusted
weight function. The empirical results on comprehensive real
and synthetic datasets indicate the effectiveness and efficiency
of our proposed approach in comparison with state-of-the-art
algorithms.

Index Terms—Data stream classification, k-nearest neighbors,
sliding window, weighting vote.

I. INTRODUCTION

The evolution of technology has invaded our lives in mul-
tiple domains and changed the way in which we generate
and consume data. Several emerging applications and devices
produce and accumulate a massive volume of data at an ever
increasing rate in the form of streams. Hence, the use of data
stream mining has become common in different domains, such
as traffic management, health monitoring, social networks,
and Internet of Things. The latter is a good example where
multiple connected devices (things) and sensors are interacting
with each other yielding to huge amounts of data generated
continuously and online as streams [1], [2].

The application of machine learning in the classical offline
(or static) setting assumes that data can be randomly accessed
multiple times without strict processing time or memory con-
straints. Classification is a prevalent machine learning task that
creates a model using labelled data (i.e., training dataset) and
can accurately predict the class labels of unlabelled, previously
unseen data. Commonly, algorithms designed to be trained on
static data make multiple passes over the training data, each
of them refining the model further [3].

However, when applied on streams, static algorithms fail to
process a potentially infinite sequence of data because of its
evolving nature that requires methods to adapt automatically. A
data stream may evolve over time experiencing concept drift,
i.e., changes in the learned model. Dealing with concept drift is
one of the most important challenges to a classifier. Moreover,
the algorithm must be able to handle the stream using limited
resources, because the data stream flood continuously which
makes it impossible to be stored in the memory and processed
in an offline fashion. Under these constraints, an efficient and
effective algorithm should be able to obtain a high – relatively
good – accuracy and use reasonable amounts of resources, in
terms of memory and time [4]. Many real-world applications
involve classification from evolving data streams. Filtering
spam emails is a good example for classification where we
predict if an email is a spam or not based on the text contents
(attributes).

To cope with the data stream resource challenges (e.g.,
memory and time constraints) and address the stream frame-
work requirements while processing evolving data, stream
algorithms use well-established manners [4], [5]. The latter
techniques include, but not limited to, one-pass processing
where instances should be processed only once, sliding win-
dow [6] of a fixed size, where only the most recent instances
from the stream are stored, and dimensionality reduction [7]
to reduce the number of attributes of data.

The k-Nearest Neighbors (kNN) is a well-known algorithm
that has been adapted to the stream setting by maintaining a
sliding window of a fixed size since it is impossible to store
the entire stream in memory [8]. Despite the fact that this
stream version of kNN is limited by the size of the moving
window, previous empirical studies [8], [9] and our analysis
(in Section IV) show that the standard stream kNN is still
computationally expensive. Besides, drift detectors monitor the
data stream and update the model when a change is detected.
On the other hand, fading factors smoothly phase out older
instances in favor of the new by using a weighting function or
a sliding window of instances. The simplest sliding window
is of a fixed size, where the oldest instance is removed from
the tail and the newest one is added to the top, which makes
it suitable for gradual and incremental forms of drifts.

In this paper, we propose and efficient and effective kNN
approach for data streams that is robust to the presence of



concept drift. We also investigate the predictive performance
improvements of this proposed approach compared to well-
known baselines. The main contributions of this work are as
follows: (i) an adaptation of the existing kNN algorithm for
evolving data streams which uses a sliding window to maintain
the recent observations from the stream; (ii) an effective
weighting strategy to adjust the weight of instances as data
flow which makes the proposed approach work adaptively to
evolving data and handle concept drifts; and (iii) an experi-
mental study1 is provided where we assess the performance of
our proposed approach and compare it against state-of-the-art
algorithms based on a diverse set of real and synthetic datasets.

The remainder of this work is organized as follows. In Sec-
tion II, we discuss relevant work in stream classification and
neighborhood-based approaches for comparison. Section III
describes the weighting adjustment strategy and the proposed
kNN approach for data streams. Section IV presents the ex-
perimental results. We conclude the paper and pose directions
for future work in Section V.

II. RELATED WORK

Several classification algorithms have been thoroughly stud-
ied and used with evolving data streams, mostly derived from
the traditional algorithms for the offline setting [4], [10],
[11], e.g., decision trees [12]–[14], naive Bayes [15], [16],
k-Nearest Neighbors (kNN) [8], [17], [18], and the ensemble-
based methods [11], [19]–[21]. Naive Bayes (NB) [16] is the
simplest classifier that updates counters with each observation
and uses the assumption “all the attributes are independent of
each other given the class label”. In order to make prediction,
the NB classifier uses the Bayes theorem using the stored
counters which makes it useful with massive data streams. This
naive assumption between attributes does not always hold in
practice, which can lead to (potentially) bad results.

The Hoeffding Tree (HT) – also known as very fast decision
tree – algorithm is a common algorithm for classification that
consists in a streaming adaptation of the well-known static
decision tree algorithm [12]. It is a decision tree method that is
capable of learning from evolving data streams incrementally
by using the Hoeffding bound to choose the optimal splitting
attributes. Hoeffding tree has been widely used as a base
learner to ensemble-based methods, such as bagging and
adaptive random forest [19], [22].

Unlike naive Bayes and HT, the kNN algorithm does not
learn any model, since it maintains all instances in order to find
the neighbors for every test instance. A basic implementation
consists in keeping a moving window that stores the most
recent instances from the stream. Self-Adjusting Memory kNN
(SamkNN) [18] algorithm is another kNN variation that builds
an ensemble of models to deal with concept drifts. For this
to happen, the SamkNN algorithm uses two memories: short-
term memory to target current concept, the long-term memory
to keep track about the past concepts.

1The source code and datasets employed in our analysis can be found at
https://bit.ly/3gqDopQ.

In [8], authors proposed a Probabilistic Adaptive Window
(PAW) which is based on the approximate counting of Morris.
PAW includes older instances as well as the most recent ones
from the stream, and therefore maintains somewhat informa-
tion about past concept drifts and adapts to new ones. PAW has
been used with the kNN as a window to maintain instances.
In order to add an explicit change detection mechanism to the
aforementioned kNN approach, authors in [8] used, on top of
PAW, ADWIN [23], a change detector that keeps a variable-
length window of recently seen instances to handle concept
drifts in the distribution.

Instance Based Learner on Streams (IBLStreams) has been
proposed in [24] as an extension of MOA [25]. It consists of
a learning algorithm for stream classification and regression
problems, and optimizes the composition and size of the
case base autonomously by adding to the case base each
new instance available from the stream. Besides, IBLStreams
checks whether other instances might be removed, either
because they have become redundant or they are outliers. To
do so, a set k of instances within the neighborhood of a given
instance are considered as candidates. The prediction for a new
test instance is therefore achieved by combining the outputs
of its neighbors.

These aforementioned single algorithms serve the purpose
of common baselines since they are used for comparison in
the data stream classification.

III. WEIGHTED kNN

A. Preliminaries

A data stream is potentially an unbounded sequence of data
S = x1, x2, . . . , xt, · · · that arrives continuously, where each
observation is composed of a vector of d attributes, xi ∈ Rd.
Let y be an open-ended sequence of the corresponding class
labels, such that each instance xi has a class label y ∈ C,
where C = {c1, · · · , cl} is a finite set of possible class
labels and l > 1. We focus on data stream classification
which aims to predict a target class label given a new arrived
unlabeled instance. Unlike the traditional batch setting where
an algorithm generates a model based on a training set, data
stream classification is usually evaluated in the incremental
setting called Interleaved Test-Then-Train where instances are
firstly used for prediction (testing) before being used for
learning (training).

More formally, the classifier builds a model M and given
an instance xt, the learning aims to predict its discrete class
yt from a set C, st.

ŷ =Mt−1(xt)

, whereMt−1 is the last learned model. Afterwards, once the
true class label yt is revealed and before proceeding with the
next incoming instance, the algorithm updates its model and
generates the new one Mt using the current tuple (xt, yt) as

Mt = train(Mt−1, xt, yt).

https://bit.ly/3gqDopQ


Fig. 1: The nearest neighbors to a test instance (with k = 3).
The red point represents the unlabeled instance and the yellow
ones are the nearest neighbors in the window according to a
distance metric.

Fig. 2: The nearest neighbors have different weights that
depend on their position (proportional to their age) in the
window. The white point represents the oldest instance in the
window with the lowest weight, while the black one represent
the most recent with the highest weight.

B. Algorithm

Window models are a very popular way to keep instances
in the memory for data streams learning. For instance, the
sliding window with a fixed size that moves forward as
time progresses [6]. This window maintains the most recent
observations from the stream consisting of a smaller number
than the real size of the huge stream which is potentially
infinite. Several stream mining algorithms uses windows, e.g.,
the kNN and SAMkNN algorithms.

The kNN is one of the most popular non-parametric algo-
rithms used for classification. In the offline setting, the kNN
algorithm stores all the instances in a dataset and searches
for the k closet neighbors to an unlabeled test instance by
computing a distance metric (e.g., the Euclidean distance).
The prediction is therefore made by taking the most frequent
class label over the k-nearest neighbors in the dataset. kNN
has already been applied in the streaming scenario where the
basic algorithm maintains a fixed size sliding window of the
most recent data instances whilst older ones are constantly
deleted as the stream progresses. Label prediction of a new
instance is therefore obtained by taking the majority vote of its
k closest instances inside the sliding window. As mentioned
before, the sliding window is indeed an efficient technique
to make some static algorithms applicable on evolving data
streams. However, during the prediction and when k > 1, two
neighbor instances to the test instance (based on a distance
metric) can be the most recent and oldest instances in the
window that belong to two different concepts (see example
in Fig. 1 of a window of size 8). In this situation where
all the instances have the same weight (=1), the prediction
would impact the final accuracy of the algorithm. To overcome
this disadvantage, we propose the Weighted kNN, abbreviated
WkNN, that is able to cope with concept drifts and can be
easily applied in practice without any parametrization.

In the following, we describe the main idea of our WkNN

approach which is derived from the traditional kNN for data
streams that uses a fixed size sliding window. We employ a
weighted function that assigns a weight to instances based
on their position inside the window. This weighting strategy
addresses the question how much a neighbor matters relative
to other nearest neighbors taking into account their arriving
order. The time-dependent weight is therefore adjustable with
the stream progression, whenever a new instance enters the
window, we update the weight of all the instances using the
following formula:

wi = 2− (s− 1)

(w − 1)
, (1)

where w is the size of the window and s is the number of steps
back from the current time that an instance was seen. So, as
depicted in Fig. 2, the most recent instance “youngest”, s = 1,
would have a weight of 2. Similarly, the “oldest” instance that
is about to be removed from the window, with s = w (w steps
back from the current time), would have a weight of 1. Hence,
the weight would gradually go from 2 to 1 in order to avoid
having instances with a zero weight (in the case from 1 to 0),
and thus neighbor instances that are ignored. In this way the
window can be maintained at a fixed size and kept up-to-date.
The problems of data stream’s infinite length and concept drift
can correspondingly be well addressed.

The kNN approaches generally use the Euclidean distance
metric which is often chosen for computing the dissimilarities
of the nearest neighbors. Let us consider a window W , the
Euclidean distance between pairs of instances, xi and xj , is
computed as follows:

Dxj
(xi) =

√
‖xi − xj‖2. (2)

Likewise, the k-nearest neighbors distance is defined as fol-
lows:

DW,k(xi) = min
(Wk ),xj∈W

k∑
j=1

Dxj
(xi), (3)

where
(
W
k

)
stands for the subset of k-nearest neighbors to the

instance xi in W .
The main differences between the classical kNN and our

WkNN are: (i) our approach assigns an updatable weight to
each instance in the window while the vanilla kNN gives
an equal weight of 1 to all the instances; and (ii) the kNN
prediction process is based on equally weighted voting while
ours utilizes the weights to make predictions/votes and gives
more importance to recent instances. To make prediction, we
sum the weights of the k nearest neighbors from each class
label and select the label with the highest sum as follows:

ŷ = argmax
y∈C

∑
(xj ,yj)∈DW,k(x)

wj ∗ I(y = cj), (4)

where y is a class label in the set of labels C, xj is one
of the nearest neighbors to x in DW,k(x) from Equation (3),
I(y = cj) is an indicator function that returns 1 if the class of
yj of the neighbor xj is the same as y, and 0 otherwise. Hence,
this weighted voting strategy makes sense only for k > 1.



Algorithm 1 WkNN algorithm.
Symbols: S: data stream; C: set of class labels; k: number of
neighbors; W : sliding window; w: maximum window size.

1: function WkNN(S,w, k)
2: W ← ∅
3: while HasNext(S) do
4: (x, y)← Next(S)
5: ŷ ← Predict(x) . Using Equation (4)
6: if size(W ) ≥ w then
7: Remove(W [0]) . Delete the oldest instance

in W
8: end if
9: W ← Add(x, y, 2) . Add the instance of weight

2 (most recent one)
10: for all (xi, yi) ∈W do . i ∈ [0, w − 1]
11: wi ← 2− w−i−1

w−1
12: Update(xi, yi, wi)
13: end for
14: end while
15: end function

The overall pseudocode for the Weighted kNN (WkNN)
is presented in Algorithm 1. The WkNN is focused on the
well-known Test-Then-Train setting [26], where every instance
is used first for testing (prediction) and then for training.
Nevertheless, the WkNN approach does not build a model,
instead, the training phase consists of maintaining instances
inside a fixed size window.

When a new instance arrives from the stream, the pre-
diction of its label is made by taking the class label with
the highest sum of weights over the nearest neighbors (line
5, Algorithm 1) retrieved from W using the kNN distance
(Equation (3)). We assume that the true class label y of the
current instance is available before the next instance appears,
thus, it can be maintained with the corresponding instance in
the window. In order to maintain a window that slides over
the stream with the same size, we start by adding the first
w instances from the stream into the sliding window and
whenever the window is filled, the oldest instance (with a
weight of 1) is removed and the new one is added to it with
the highest weight 2 (line 6− 9, Algorithm 1). For each new
instance, we update the weights of all the instances inside
the window according to the weighting function introduced in
Equation (1), (line 10− 12, Algorithm 1).

IV. EXPERIMENTAL STUDY

In this section, we first describe the test collections and
configuration of each considered method. We then look at the
performance offered by our proposed WkNN approach against
its competitors (presented in Section II). The performance is
evaluated in terms of three main dimensions: (i) the predictive
performance or accuracy obtained as the final percentage of
instances correctly classified; (ii) the memory (MB) used to
keep the instances in the sliding window; and (iii) the time

TABLE I: The algorithms we consider and their parameters.

Abbr. Classifier Parameters

NB Naive Bayes

kNN k-Nearest Neighbors w = 1000, k = 10

SamkNN Self adjusting memory kNN w = 1000, k = 10

kNNW kNN with PAW w = 1000, k = 10

kNNA
W kNN with PAW + ADWIN w = 1000, k = 10

WkNN Weighted kNN w = 1000, k = 10

IBLS Instance Based Learner on Streams w = 1000, k = 10

TABLE II: Overview of the datasets.

Dataset #Inst #Att #Classes Type MF label LF label

SEAa 1,000,000 3 2 S 57.55 42.45
SEAg 1,000,000 3 2 S 57.55 42.45
AGRa 1,000,000 9 2 S 52.83 47.17
AGRg 1,000,000 9 2 S 52.83 47.17
Nomao 34,465 119 2 R 71.44 28.56
Poker 829,201 10 10 R 41.55 2.00
Spam 9,324 39,916 2 R 74.40 25.60
Covtype 581,012 54 7 R 48.76 0.47
CNAE 1,080 856 9 R 12.00 12.00
Har 10,299 561 6 R 19.44 14.06

MF and LF labels (in %) stands for the Most and Less Frequent
class label, respectively.

(seconds) required to learn (keep the most recent instance in
kNN) and predict from data.

A. Experimental setup

a) Methods parameters: All the methods evaluated in
this paper were implemented in Java within the Massive
Online Analysis (MOA) framework2 [25]. For comparison,
we used the baseline implementations of the original authors
available in MOA.

Based on previous studies, such as [8], [17], [18], a bigger
window size will increase the use of resource computations
(i.e., memory and time) and a smaller size will impact the
accuracy that may potentially decrease. Therefore, for a good
tradeoff, we select w = 1000, k = 10 for all the kNN-based
algorithms based on the empirical results reported in [8], [17].
These algorithms and their corresponding parameterization are
displayed in Table I.

b) Datasets: In our experiments, we used a diverse set of
both synthetic (S) and real (R) datasets in different scenarios.
For this paper, we used data generators and real data, where
most of them have been thoroughly used in the literature to as-
sess the performance of data stream classification algorithms.
Table II shows an overview of the datasets used while further
details are provided in the rest of this section.
SEA The SEA Generator proposed by [27] is generated with

3 attributes, where only 2 are relevant, and 2 decision classes.

2In order to improve the reproducibility of our approach, the source code
and datasets employed in our analysis can be found at https://bit.ly/3gqDopQ.

https://bit.ly/3gqDopQ


TABLE III: Accuracy comparison (%).

Dataset WkNN kNN SamkNN kNNW kNNA
W IBLS NB

SEAa 86.79 86.79 85.48 87.17 87.17 86.04 85.37

SEAg 86.56 86.54 85.21 86.93 86.93 85.77 85.37

AGRa 67.46 62.44 67.38 64.87 64.88 64.16 65.73

AGRg 66.11 61.26 65.70 63.60 63.54 62.86 65.75

Nomao 96.36 96.09 96.68 96.03 96.23 72.97 86.86

Poker 80.65 69.34 78.31 66.81 68.78 75.03 59.55

Spam 82.39 77.71 92.69 70.09 80.15 90.61 74.57

Covtype 92.05 92.22 89.22 91.89 91.89 88.63 60.52

CNAE 79.54 71.75 81.57 69.07 69.07 16.57 55.92

Har 92.73 92.33 87.57 93.07 93.03 86.73 73.36

Overall ∅ 83.10 79.65 82.95 78.95 80.17 72.92 71.14

Bold and underlined values indicate the best and the second best
results per dataset, respectively.

SEAa simulates three abrupt drifts while SEAg simulates 3
gradual drifts.
AGR The AGRAWAL generator [28] creates data stream

with 9 attributes and 2 classes. A perturbation factor is used
to add noise to the data, both AGRa and AGRg includes
10% perturbation factor. AGRa simulates 3 abrupt drifts in
the generated stream while AGRg simulates 3 gradual drifts.
Nomao It is a large dataset that has been provided by

Nomao Labs [29]. This dataset contains data that arrive from
multiple sources on the web about places (name, website,
localization, address, fax, etc · · · ).
Poker The poker-hand dataset3 consists of 829,201 in-

stances and 10 attributes describing each hand. The class
indicates the value of a hand.
Spam The spam corpus is the result of a text mining on an

online news dissemination system which intends on creating
an incremental filtering of e-mails classifying them as spam
or not [30]. Each attribute represents the presence of a word
in the instance (an e-mail).
Covtype The forest covertype dataset obtained from US

forest service resource information system data where each
class label presents a different cover type.
CNAE CNAE is the national classification of economic

activities dataset, initially used in [31]. It contains 1,080
instances, each of 856 attributes, representing descriptions of
Brazilian companies categorized into 9 classes. The original
texts were preprocessed to obtain the current highly sparse
dataset.
Har Human Activity Recognition dataset [32] built from

several subjects performing daily living activities, such as
walking, walking upstairs/downstairs, sitting, standing and
laying, while wearing a waist-mounted smartphone equipped
with sensors. The sensor signals were preprocessed using noise
filters and attributes were normalized and bounded within
[−1, 1].

3https://archive.ics.uci.edu/ml/datasets/Poker+Hand

TABLE IV: Processing time comparison (s).

Dataset WkNN kNN SamkNN kNNW kNNA
W IBLS

SEAa 50.78 103.22 106.14 257.83 412.63 113.88

SEAg 52.45 104.73 103.89 208.56 436.85 106.71

AGRa 65.40 231.82 78.63 406.85 747.15 510.13

AGRg 67.05 233.77 75.91 410.18 851.20 388.60

Nomao 8.09 66.49 29.62 99.05 189.47 77.19

Poker 54.23 207.74 95.17 374.72 541.89 163.23

Spam 9747.11 9820.15 18088.63 14152.23 16837.96 88393.01

Covtype 84.43 325.15 193.70 760.72 797.75 527.27

CNAE 21.33 17.76 2.49 17.30 31.24 1.65

Har 9.90 107.99 21.09 227.58 249.70 64.89

Overall ∅ 1654.18 1757.57 3071.95 2605.43 3108.00 9979.92

B. Results

We assess the predictive performance through accuracy
using the Test-Then-Train evaluation methodology [26], where
every instance is used for prediction and then used for training.
For fair comparison, we used the configurations previously
stated in Table I of the baselines presented in Section II.

Table III reports the accuracy comparison, the most common
quality measure in the stream classification field [4], that
is measured as the final percentage of correctly classified
instances over the Test-Then-Train evaluation.

To assess the benefits in terms of resources where small
values are desirable, Table IV reports the time cost, in terms
of seconds (s), of the classification algorithms which con-
sists in the time used to make prediction. For fair compari-
son, we assess the performance of our proposal against the
neighborhood-based competitors using the same values for k
and w (without NB).

Figure 3 depicts the memory performance of our proposed
approach against its competitors by taking the average perfor-
mance over of all the datasets.

C. Discussions

In Table III, we notice that WkNN is effective on all the
datasets, even when it achieves the second highest predictive
performance (underlined results), the difference with the com-
petitors is not huge and mostly after the decimal point. We
obtain the most accurate result on the overall average of all the
datasets. Our approach performs much better than the baseline
naive Bayes because of the naive assumption between features
of the latter that is not always true and does not hold with many
datasets. We also observe that the weighted kNN approach
defeats the standard kNN with almost all the datasets except
for Covertype where the difference is small (0.17%). On the
overall average, with WkNN, we gain around 4% in accuracy
in comparison with the vanilla kNN thanks to the weighting
function that seems to be more appropriate than considering
instances have the same weight independently from their age
in the window.

https://archive.ics.uci.edu/ml/datasets/Poker+Hand


WkNN kNN SamkNN kNN
W kNN

W
A IBLS

0

200

400

600

800

1000

1200

1400

M
em

or
y 

(M
B

)

Fig. 3: Memory usage (MB).

Besides, our approach is very competitive to the
neighborhood-based baselines even against those coupled with
an explicit drift detection mechanism, notably the SamkNN
and the kNNA

W , due to the weighted vote adjustment strategy
that assigns more weight to new instances. Compared to
SamkNN, we can see that better results have been obtained
with the synthetic datasets SEAa, SEAg , AGRa, and AGRg

that contain abrupt (a) and gradual (g) drifts, simulated using
MOA. However, the WkNN is largely defeated by SamkNN on
the Spam dataset that represents a gradual drift [33] thanks to
its sophisticated cleaning process that could decide to remove
instances from the short-term and the long-term memories as
the distribution may change [18]. Similarly, better predictive
performance has been obtained than kNNW and kNNA

W where
we are slightly defeated on the SEA datasets. For these
approaches with the latter data, the difference is less than
0.7%. IBLS is also outperformed by our proposal on all the
datasets because basically it keeps track of recent instances
from the stream and cannot adapt well to evolving concepts,
and thus the prediction performance is affected.

Table IV shows that our approach is faster than the other
methods mainly because of its simpler implementation under
the MOA software. Moreover, SamkNN uses a dual memory
(short-term and long-term memories) to maintain models for
current and past concepts which makes the prediction and drift
detection times more important. Besides, kNNA

W uses ADWIN
on top of the sliding window to detect the drifts making it less
efficient in terms of resources. One exception has occurred
with the CNAE data simply because it is a small dataset
that has the size of only one window. IBLS and SamkNN
are faster on this dataset because (i) IBLS removes instances
autonomously and (ii) SamkNN has a dual window that allows
it to compute pairwise distances in two small windows which
leads to faster computations than a big one (e.g., of w = 1000).

In Fig. 3, we observe that close amounts of memory are

used by WkNN and kNN since both use the same size of
window w = 1000 and do not utilize other data structures. On
the other hand, more memory is used by kNNW that stores,
other than the probabilistic approximate window, statistics
related to the probability of insertion of a new instance to the
window, and the kNNA

W , on top of that, ADWIN, to handle
drifts. SamkNN also uses more memory because of its drift
detection mechanism that needs to maintain two memories.
Similarly, IBLStreams is the most memory-consuming due to
its sophisticated strategy that aims at building an autonomous
classifier.

To sum up, the proposed approach offers the best trade-
off accuracy-resources by obtaining accurate performance on
almost all the datasets and being space and time-efficient
compared to the baselines.

V. CONCLUSIONS

We proposed the weighted kNN, a neighborhood-based
approach for data stream classification that uses a weighted
vote strategy to weight the instances according to their position
/ age in the sliding window. These weights are used during
prediction where more interest is given to the most recent
instances in the test data neighborhood. We discussed and
demonstrated how the adjust weight function tends to improve
the predictive performance of the standard kNN even for
datasets with concept drifts using feasible resources. As future
work for this project, we plan to investigate the use of
sophisticated weighting strategies to see if that could improve
further the accuracy taking into account the eventual presence
of different types of concept drift.

REFERENCES

[1] Z. Caiming and C. Yong, “A review of research relevant to the emerging
industry trends: industry 4.0, iot, blockchain, and business analytics,”
Journal of Industrial Integration and Management, pp. 165–180, 2020.

[2] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[3] D. J. Hand, H. Mannila, and P. Smyth, Principles of data mining. MIT
press, 2001.

[4] M. Bahri, A. Bifet, J. Gama, H. M. Gomes, and S. Maniu, “Data stream
analysis: Foundations, major tasks and tools,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 11, no. 3, p.
e1405, 2021.

[5] C. C. Aggarwal and S. Y. Philip, “A survey of synopsis construction in
data streams,” in Data Streams. Springer, 2007, pp. 169–207.

[6] W. Ng and M. Dash, “Discovery of frequent patterns in transactional data
streams,” in Transactions on large-scale data-and knowledge-centered
systems II. Springer, 2010, pp. 1–30.

[7] M. Bahri, A. Bifet, S. Maniu, and H. M. Gomes, “Survey on feature
transformation techniques for data streams,” in International Joint Con-
ference on Artificial Intelligence, 2020.

[8] A. Bifet, B. Pfahringer, J. Read, and G. Holmes, “Efficient data stream
classification via probabilistic adaptive windows,” in Symposium On
Applied Computing (SIGAPP). ACM, 2013, pp. 801–806.

[9] J. Read, A. Bifet, B. Pfahringer, and G. Holmes, “Batch-incremental
versus instance-incremental learning in dynamic and evolving data,” in
Intelligent Data Analysis (IDA). Springer, 2012.

[10] J. Gama, Knowledge discovery from data streams. CRC Press, 2010.
[11] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey on

ensemble learning for data stream classification,” Computing Surveys
(CSUR), vol. 50, no. 2, p. 23, 2017.



[12] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2000.

[13] J. Gama, R. Fernandes, and R. Rocha, “Decision trees for mining data
streams,” Intelligent Data Analysis (IDA), vol. 10, no. 1, pp. 23–45,
2006.

[14] J. Gama, R. Rocha, and P. Medas, “Accurate decision trees for mining
high-speed data streams,” in SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2003, pp. 523–528.

[15] M. Bahri, S. Maniu, and A. Bifet, “Sketch-based naive bayes algorithms
for evolving data streams,” in International Conference on Big Data.
IEEE, 2018, pp. 604–613.

[16] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network clas-
sifiers,” Machine learning, vol. 29, no. 2-3, pp. 131–163, 1997.

[17] M. Bahri, A. Bifet, S. Maniu, R. de Mello, and N. Tziortziotis,
“Compressed k-nearest neighbors ensembles for evolving data streams,”
in European Conference on Artificial Intelligence (ECAI). IEEE, 2020.

[18] V. Losing, B. Hammer, and H. Wersing, “Knn classifier with self
adjusting memory for heterogeneous concept drift,” in International
Conference on Data Mining (ICDM). IEEE, 2016, pp. 291–300.

[19] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger, G. Holmes, and T. Abdessalem, “Adaptive random forests
for evolving data stream classification,” Machine Learning, pp. 1–27,
2017.

[20] H. M. Gomes, J. Read, and A. Bifet, “Streaming random patches for
evolving data stream classification,” in International Conference on Data
Mining (ICDM). IEEE, 2019.

[21] N. C. Oza and S. Russell, “Experimental comparisons of online and
batch versions of bagging and boosting,” in SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2001, pp. 359–
364.

[22] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging for evolv-
ing data streams,” in Joint European conference on machine learning
and knowledge discovery in databases. Springer, 2010, pp. 135–150.

[23] A. Bifet and R. Gavalda, “Learning from time-changing data with
adaptive windowing,” in International Conference on Data Mining
(ICDM). SIAM, 2007, pp. 443–448.

[24] A. Shaker and E. Hüllermeier, “Iblstreams: a system for instance-based
classification and regression on data streams,” Evolving Systems, vol. 3,
no. 4, pp. 235–249, 2012.

[25] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive online
analysis,” Journal of Machine Learning Research (JMLR), vol. 11, no.
May, pp. 1601–1604, 2010.

[26] A. P. Dawid, “Present position and potential developments: Some
personal views statistical theory the prequential approach,” Journal of
the Royal Statistical Society: Series A (General), vol. 147, no. 2, pp.
278–290, 1984.

[27] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea)
for large-scale classification,” in SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2001, pp. 377–382.

[28] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: A perfor-
mance perspective,” Transactions on Knowledge and Data Engineering
(TKDE), vol. 5, no. 6, pp. 914–925, 1993.

[29] L. Candillier and V. Lemaire, “Design and analysis of the nomao
challenge active learning in the real-world,” in ALRA, Workshop ECML-
PKDD. sn, 2012.

[30] I. Katakis, G. Tsoumakas, E. Banos, N. Bassiliades, and I. Vlahavas, “An
adaptive personalized news dissemination system,” Journal of Intelligent
Information Systems, vol. 32, no. 2, pp. 191–212, 2009.

[31] P. M. Ciarelli and E. Oliveira, “Agglomeration and elimination of terms
for dimensionality reduction,” in International Conference on Intelligent
Systems Design and Applications. IEEE, 2009, pp. 547–552.

[32] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human
activity recognition on smartphones using a multiclass hardware-friendly
support vector machine,” in IWAAL. Springer, 2012, pp. 216–223.

[33] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Tracking recurring contexts
using ensemble classifiers: an application to email filtering,” Knowledge
and Information Systems, vol. 22, no. 3, pp. 371–391, 2010.


	Introduction
	Related Work
	Weighted kNN
	Preliminaries
	Algorithm

	Experimental Study
	Experimental setup
	Results
	Discussions

	Conclusions
	References

