7 research outputs found

    A Six Degree-Of-Freedom Haptic Device Based On The Orthoglide And A Hybrid Agile Eye

    Get PDF
    This paper is devoted to the kinematic design of a new six degree-of-freedom haptic device using two parallel mechanisms. The first one, called orthoglide, provides the translation motions and the second one, called agile eye, produces the rotational motions. These two motions are decoupled to simplify the direct and inverse kinematics, as it is needed for real-time control. To reduce the inertial load, the motors are fixed on the base and a transmission with two universal joints is used to transmit the rotational motions from the base to the end-effector. Two alternative wrists are proposed (i), the agile eye with three degrees of freedom or (ii) a hybrid wrist made by the assembly of a two-dof agile eye with a rotary motor. The last one is optimized to increase its stiffness and to decrease the number of moving parts

    Kinematic and Dynamic Analysis of the 2-DOF Spherical Wrist of Orthoglide 5-axis

    Get PDF
    This paper deals with the kinematics and dynamics of a two degree of freedom spherical manipulator, the wrist of Orthoglide 5-axis. The latter is a parallel kinematics machine composed of two manipulators: i) the Orthoglide 3-axis; a three-dof translational parallel manipulator that belongs to the family of Delta robots, and ii) the Agile eye; a two-dof parallel spherical wrist. The geometric and inertial parameters used in the model are determined by means of a CAD software. The performance of the spherical wrist is emphasized by means of several test trajectories. The effects of machining and/or cutting forces and the length of the cutting tool on the dynamic performance of the wrist are also analyzed. Finally, a preliminary selection of the motors is proposed from the velocities and torques required by the actuators to carry out the test trajectories

    Kinematic and Dynamic Analyses of the Orthoglide 5-axis

    Get PDF
    International audienceThis paper deals with the kinematic and dynamic analyses of the Orthoglide 5-axis, a five-degree-of-freedom manipulator. It is derived from two manipulators: i) the Orthoglide 3-axis; a three dof translational manipulator and ii) the Agile eye; a parallel spherical wrist. First, the kinematic and dynamic models of the Orthoglide 5-axis are developed. The geometric and inertial parameters of the manipulator are determined by means of a CAD software. Then, the required motors performances are evaluated for some test trajectories. Finally, the motors are selected in the catalogue from the previous results

    Robotix-Academy Conference for Industrial Robotics (RACIR) 2019

    Get PDF
    Robotix-Academy Conference for Industrial Robotics (RACIR) is held in University of Liège, Belgium, during June 05, 2019. The topics concerned by RACIR are: robot design, robot kinematics/dynamics/control, system integration, sensor/ actuator networks, distributed and cloud robotics, bio-inspired systems, service robots, robotics in automation, biomedical applications, autonomous vehicles (land, sea and air), robot perception, manipulation with multi-finger hands, micro/nano systems, sensor information, robot vision, multimodal interface and human-robot interaction.

    Haptische Mensch-Maschine-Schnittstelle für ein laparoskopisches Chirurgie-System

    Get PDF
    Für eine Vielzahl von Operationen im Bauchraum ist heute die Laparoskopie Stand der Technik, so z.B. die Cholezytektomie zur Entfernung der Gallenblase. Hierbei handelt es sich um ein minimalinvasives Verfahren bei dem der Zugang zum Operationsgebiet durch kleinste Schnitte in der Bauchdecke des Patienten erfolgt. Bei der Operation kommen lange starre Instrumente zu Einsatz. Im Gegensatz zu einer offenen Operation haben die Hände des Chirurgen keinen direkten Zugang zum operierten Gewebe. Ein Abtasten des Gewebes ist nicht möglich, der haptische Sinn zur Diagnose und Navigation im Operationsgebiet steht dem Operateur folglich nicht zur Verfügung. Diese Einschränkung erhöht die Komplexität laparoskopischer Eingriffe erheblich. Auch die Beweglichkeit im Operationsfeld ist stark eingeschränkt. Eine technische Antwort auf diese Einschränkungen sind haptische Telemanipulationssysteme. Sie bestehen aus einer angetriebenen Instrumentenspitze sowie einem haptischen Bedienelement, das die Kontaktkräfte zwischen Instrumentenspitze und Gewebe an den Bediener meldet. Hierzu erfasst ein Kraftsensor an der Instrumentenspitze die auftretenden Kontaktkräfte. Antriebe im Bedienelement erzeugen daraus eine Kraftinformation und leiten sie über einen Mechanismus an den Bediener weiter. Die vorliegende Arbeit befasst sich mit der Erweiterung der Entwurfsmethodik für haptische Bedienelemente und der Realisierung eines neuartigen Bedienelements. Basis ist eine Analyse des chirurgischen Szenarios in der minimalinvasiven Leberchirurgie. Daraus leitet sich das Entwurfsziel eines haptischen Bedienelementes mit drei kartesischen Freiheitsgraden ab. Auf Grund ihrer guten dynamischen Eigenschaften sind besonders parallelkinematische Mechanismen zur Übertragung haptischer Informationen geeignet. Sie zeichnen sich durch eine große Struktursteifigkeit und geringe bewegte Massen aus. Ihr kinematisches Übertragungsverhalten ist hingegen meist komplex. Aus der Analyse der kinematischen Bedingungen für ein rein kartesisches Ausgangsverhalten ergibt sich ein möglicher Lösungsraum geeigneter Topologien. Alle bestehen aus drei Beinen mit je 5 Gelenkfreiheitsgraden, einer Basis-Plattform und einer Tool-Centre-Point-Plattform zur Ausgabe der haptischen Information. Für den vorliegenden Fall ist eine RUU- bzw. DELTA-Struktur geeignet. Diese Struktur übersetzt drei Antriebsmomente in eine rein kartesische Ausgabe. Basierend auf der Analyse der kinematischen Entwurfsziele für haptische Mechanismen erfolgte eine Auslegung des Mechanismus im Hinblick auf isotropes, d.h. richtungsunabhängiges Übertragungsverhalten. Charakteristisches Maß ist die globale Konditionszahl. Entscheidend für die Qualität der haptischen Rückmeldung ist das dynamische Übertragungsverhalten haptischer Bedienelemente. Für eindimensionale Systeme ist in der Literatur zur Modellierung der Zwei-Tor Ansatz basierend auf der elektromechanischen Netzwerktheorie eingeführt. Im Rahmen dieser Arbeit erfolgt erstmalig die Erweiterung auch für den mehrdimensionalen Fall. Damit ist es möglich, auch die dynamischen Eigenschaften mehrdimensionaler Mechanismen mit dem Zwei-Tor Ansatz abzubilden. Dies erlaubt Anwendung des Entwurfsverfahrens der "Transparenz" für mehrdimensionale Systeme. Zur Analyse der mechanischen Eigenschaften des operierten Gewebes entstehen zwei Messplätze für die Frequenzbereiche f = 10...10^4 Hz (taktile Wahrnehmung) und f=DC...50 Hz (kinästhetische Wahrnehmung). Sie ermöglichen die messtechnische Charakterisierung der mechanischen Impedanz und die Ableitung mechanischer Schaltungen. Damit lässt sich die Impedanz des Gewebes rechnerisch im Gütekriterium der Transparenz zur Bewertung eines haptischen Telemanipulationssystems einsetzen. Die Realisierung eines haptischen Bedienelements erfolgt für ein neuartiges, tragbares Teleoperationssystem. Das Bedienkonzept ist an Hand eines ergonomischen Funktionsmusters im Tierversuch evaluiert. Kernkomponente ist ein haptisches Joystick mit drei kartesischen Freiheitsgraden durch einen RUU-Mechanismus. Der Arbeitsraum beträgt 743,5 cm³. Das Bedienelement ist mit einer Impedanz-gesteuerten Systemstruktur entworfen und feinwerktechnisch umgesetzt. Als Antriebe kommen drei EC-Motoren zum Einsatz. Mit einem maximalen Moment von 0,2 Nm erzeugen sie eine haptische Rückmeldung von 5N in 82% des Volumens im Arbeitsraum. Die zum Betrieb erforderlichen kinematischen Berechnungen sind auf einem Steuerrechner implementiert. Zusammen mit der Leistungselektronik ist dieser in einem mobilen Rack integriert. Der Nachweis der Funktionsfähigkeit erfolgt an einem experimentellen Telemanipulationssystem im Laborbetrieb

    7-degree-of-freedom hybrid-manipulator exoskeleton for lower-limb motion capture

    Get PDF
    Lower-limb exoskeletons are wearable robotic systems with a kinematic structure closely matching that of the human leg. In part, this technology can be used to provide clinical assessment and improved independent-walking competency for people living with the effects of stroke, spinal cord injury, Parkinson’s disease, multiple sclerosis, and sarcopenia. Individually, these demographics represent approximately: 405 thousand, 100 thousand, 67.5 thousand, 100 thousand, and 5.9 million Canadians, respectively. Key shortcomings in the current state-of-the-art are: restriction on several of the human leg’s primary joint movements, coaxial joint alignments at the exoskeleton-human interface, and exclusion of well-suited parallel manipulator components. A novel exoskeleton design is thus formulated to address these issues while maintaining large ranges of joint motion. Ultimately, a single-leg unactuated prototype is constructed for seven degree-of-freedom joint angle measurements; it achieves an extent of motion-capture accuracy comparable to a commercial inertial-based system during three levels of human mobility testing
    corecore