1,464 research outputs found

    Semantic Web Personalization: A Survey

    Get PDF
    With millions of pages available on web, it has become difficult to access relevant information. One possible approach to solve this problem is web personalization. Web personalization is defined as any action that customizes the information or services provided by a web site to an individual. When personalization is applied to the semantic web it offers many advantages when compared to the traditional web because semantic web integrates semantics with the unstructured data on web so that intelligent techniques can be applied to get more efficient results. We have presented various approaches that are used for personalization in semantic web in this paper. The core of semantic web is the ontologies which are defined as explicit formalization of a shared understanding of a conceptualization. We exploit the machine understandable feature of semantic web to device strategies that perform effective personalization such that the results returned to the user are more relevant to the goal set by him. In this paper we have presented the classification of personalization techniques used for semantic web. Keywords: semantic web,ontologies,personalization,recommendation,user profile

    A general framework for intelligent recommender systems

    Get PDF
    AbstractIn this paper, we propose a general framework for an intelligent recommender system that extends the concept of a knowledge-based recommender system. The intelligent recommender system exploits knowledge, learns, discovers new information, infers preferences and criticisms, among other things. For that, the framework of an intelligent recommender system is defined by the following components: knowledge representation paradigm, learning methods, and reasoning mechanisms. Additionally, it has five knowledge models about the different aspects that we can consider during a recommendation: users, items, domain, context and criticisms. The mix of the components exploits the knowledge, updates it and infers, among other things. In this work, we implement one intelligent recommender system based on this framework, using Fuzzy Cognitive Maps (FCMs). Next, we test the performance of the intelligent recommender system with specialized criteria linked to the utilization of the knowledge in order to test the versatility and performance of the framework

    Panorama of Recommender Systems to Support Learning

    Get PDF
    This chapter presents an analysis of recommender systems in TechnologyEnhanced Learning along their 15 years existence (2000-2014). All recommender systems considered for the review aim to support educational stakeholders by personalising the learning process. In this meta-review 82 recommender systems from 35 different countries have been investigated and categorised according to a given classification framework. The reviewed systems have been classified into 7 clusters according to their characteristics and analysed for their contribution to the evolution of the RecSysTEL research field. Current challenges have been identified to lead the work of the forthcoming years.Hendrik Drachsler has been partly supported by the FP7 EU Project LACE (619424). Katrien Verbert is a post-doctoral fellow of the Research Foundation Flanders (FWO). Olga C. Santos would like to acknowledge that her contributions to this work have been carried out within the project Multimodal approaches for Affective Modelling in Inclusive Personalized Educational scenarios in intelligent Contexts (MAMIPEC -TIN2011-29221-C03-01). Nikos Manouselis has been partially supported with funding CIP-PSP Open Discovery Space (297229

    A Framework for Personalized Content Recommendations to Support Informal Learning in Massively Diverse Information WIKIS

    Get PDF
    Personalization has proved to achieve better learning outcomes by adapting to specific learners’ needs, interests, and/or preferences. Traditionally, most personalized learning software systems focused on formal learning. However, learning personalization is not only desirable for formal learning, it is also required for informal learning, which is self-directed, does not follow a specified curriculum, and does not lead to formal qualifications. Wikis among other informal learning platforms are found to attract an increasing attention for informal learning, especially Wikipedia. The nature of wikis enables learners to freely navigate the learning environment and independently construct knowledge without being forced to follow a predefined learning path in accordance with the constructivist learning theory. Nevertheless, navigation on information wikis suffer from several limitations. To support informal learning on Wikipedia and similar environments, it is important to provide easy and fast access to relevant content. Recommendation systems (RSs) have long been used to effectively provide useful recommendations in different technology enhanced learning (TEL) contexts. However, the massive diversity of unstructured content as well as user base on such information oriented websites poses major challenges when designing recommendation models for similar environments. In addition to these challenges, evaluation of TEL recommender systems for informal learning is rather a challenging activity due to the inherent difficulty in measuring the impact of recommendations on informal learning with the absence of formal assessment and commonly used learning analytics. In this research, a personalized content recommendation framework (PCRF) for information wikis as well as an evaluation framework that can be used to evaluate the impact of personalized content recommendations on informal learning from wikis are proposed. The presented recommendation framework models learners’ interests by continuously extrapolating topical navigation graphs from learners’ free navigation and applying graph structural analysis algorithms to extract interesting topics for individual users. Then, it integrates learners’ interest models with fuzzy thesauri for personalized content recommendations. Our evaluation approach encompasses two main activities. First, the impact of personalized recommendations on informal learning is evaluated by assessing conceptual knowledge in users’ feedback. Second, web analytics data is analyzed to get an insight into users’ progress and focus throughout the test session. Our evaluation revealed that PCRF generates highly relevant recommendations that are adaptive to changes in user’s interest using the HARD model with rank-based mean average precision (MAP@k) scores ranging between 100% and 86.4%. In addition, evaluation of informal learning revealed that users who used Wikipedia with personalized support could achieve higher scores on conceptual knowledge assessment with average score of 14.9 compared to 10.0 for the students who used the encyclopedia without any recommendations. The analysis of web analytics data show that users who used Wikipedia with personalized recommendations visited larger number of relevant pages compared to the control group, 644 vs 226 respectively. In addition, they were also able to make use of a larger number of concepts and were able to make comparisons and state relations between concepts

    An Ontology-Based Recommender System with an Application to the Star Trek Television Franchise

    Full text link
    Collaborative filtering based recommender systems have proven to be extremely successful in settings where user preference data on items is abundant. However, collaborative filtering algorithms are hindered by their weakness against the item cold-start problem and general lack of interpretability. Ontology-based recommender systems exploit hierarchical organizations of users and items to enhance browsing, recommendation, and profile construction. While ontology-based approaches address the shortcomings of their collaborative filtering counterparts, ontological organizations of items can be difficult to obtain for items that mostly belong to the same category (e.g., television series episodes). In this paper, we present an ontology-based recommender system that integrates the knowledge represented in a large ontology of literary themes to produce fiction content recommendations. The main novelty of this work is an ontology-based method for computing similarities between items and its integration with the classical Item-KNN (K-nearest neighbors) algorithm. As a study case, we evaluated the proposed method against other approaches by performing the classical rating prediction task on a collection of Star Trek television series episodes in an item cold-start scenario. This transverse evaluation provides insights into the utility of different information resources and methods for the initial stages of recommender system development. We found our proposed method to be a convenient alternative to collaborative filtering approaches for collections of mostly similar items, particularly when other content-based approaches are not applicable or otherwise unavailable. Aside from the new methods, this paper contributes a testbed for future research and an online framework to collaboratively extend the ontology of literary themes to cover other narrative content.Comment: 25 pages, 6 figures, 5 tables, minor revision
    • …
    corecore