11,048 research outputs found

    Fluid Models for Kinetic Effects on Coherent Nonlinear Alfven Waves. II. Numerical Solutions

    Get PDF
    The influence of various kinetic effects (e.g. Landau damping, diffusive and collisional dissipation, and finite Larmor radius terms) on the nonlinear evolution of finite amplitude Alfvenic wave trains in a finite-beta environment is systematically investigated using a novel, kinetic nonlinear Schrodinger (KNLS) equation. The dynamics of Alfven waves is sensitive to the sense of polarization as well as the angle of propagation with respect to the ambient magnetic field. Numerical solution for the case with Landau damping reveals the formation of dissipative structures, which are quasi-stationary, S-polarized directional (and rotational) discontinuities which self-organize from parallel propagating, linearly polarized waves. Parallel propagating circularly polarized packets evolve to a few circularly polarized Alfven harmonics on large scales. Stationary arc-polarized rotational discontinuities form from obliquely propagating waves. Collisional dissipation, even if weak, introduces enhanced wave damping when beta is very close to unity. Cyclotron motion effects on resonant particle interactions introduce cyclotron resonance into the nonlinear Alfven wave dynamics.Comment: 38 pages (including 23 figures and 1 table

    Quantitative characterization of the x-ray imaging capability of rotating modulation collimators with laser light

    Get PDF
    We developed a method for making quantitative characterizations of bi-grid rotating modulation collimators (RMC ’s) that are used in a Fourier transform x-ray imager. With appropriate choices of the collimator spacings, this technique can be implemented with a beam-expanded He -Ne laser to simulate the plane wave produced by a point source at infinity even though the RMC ’s are diffraction limited at the He -Ne wavelength of 632.8 nm. The expanded beam passes through the grid pairs at a small angle with respect to their axis of rotation, and the modulated transmission through the grids as the RMC ’s rotate is detected with a photomultiplier tube. In addition to providing a quantitative characterization of the RMC ’s, the method also produces a measured point response function and provides an end-to-end check of the imaging system. We applied our method to the RMC ’s on the high-energy imaging device (HEIDI) balloon payload in its preflight configuration. We computed the harmonic ratios of the modulation time profile from the laser measurements and compared them with theoretical calculations, including the diffraction effects on irregular grids. Our results indicate the 25-in. (64-cm) x-ray imaging optics on HEIDI are capable of achieving images near the theoretical limit and are not seriously compromised by imperfections in the grids

    A Search for Kinematic Evidence of Radial Gas Flows in Spiral Galaxies

    Full text link
    CO and HI velocity fields of seven nearby spiral galaxies, derived from radio-interferometric observations, are decomposed into Fourier components whose radial variation is used to search for evidence of radial gas flows. Additional information provided by optical or near-infrared isophotes is also considered, including the relationship between the morphological and kinematic position angles. To assist in interpreting the data, we present detailed modeling that demonstrates the effects of bar streaming, inflow, and a warp on the observed Fourier components. We find in all of the galaxies evidence for either elliptical streaming or a warped disk over some range in radius, with deviations from pure circular rotation at the level of ~20-60 km/s. Evidence for kinematic warps is observed in several cases well inside R_{25}. No unambiguous evidence for radial inflows is seen in any of the seven galaxies, and we are able to place an upper limit of ~5-10 km/s (3-5% of the circular speed) on the magnitude of any radial inflow in the inner regions of NGC 4414, 5033 and 5055. We conclude that the inherent non-axisymmetry of spiral galaxies is the greatest limitation to the direct detection of radial inflows.Comment: 22 emulateapj pages with bitmapped colour figures, to appear in ApJ (April 2004). For full resolution figures go to http://www.atnf.csiro.au/people/twong/preprints

    Spectral analysis for nonstationary audio

    Full text link
    A new approach for the analysis of nonstationary signals is proposed, with a focus on audio applications. Following earlier contributions, nonstationarity is modeled via stationarity-breaking operators acting on Gaussian stationary random signals. The focus is on time warping and amplitude modulation, and an approximate maximum-likelihood approach based on suitable approximations in the wavelet transform domain is developed. This paper provides theoretical analysis of the approximations, and introduces JEFAS, a corresponding estimation algorithm. The latter is tested and validated on synthetic as well as real audio signal.Comment: IEEE/ACM Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, In pres

    Inductive measurements of third-harmonic voltage and critical current density in bulk superconductors

    Full text link
    We propose an inductive method to measure critical current density JcJ_c in bulk superconductors. In this method, an ac magnetic field is generated by a drive current I0I_0 flowing in a small coil mounted just above the flat surface of superconductors, and the third-harmonic voltage V3V_3 induced in the coil is detected. We present theoretical calculation based on the critical state model for the ac response of bulk superconductors, and we show that the third-harmonic voltage detected in the inductive measurements is expressed as V3=G3ωI02/JcV_3= G_3\omega I_0^2/J_c, where ω/2π\omega/2\pi is the frequency of the drive current, and G3G_3 is a factor determined by the configuration of the coil. We measured the I0I_0-V3V_3 curves of a melt-textured YBa2Cu3O7δ\rm YBa_2Cu_3O_{7-\delta} bulk sample, and evaluated the JcJ_c by using the theoretical results.Comment: 3 pages, 1 figure, submitted to Appl. Phys. Let

    Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    Get PDF
    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh streaming in shallow, infinite, parallel-plate channels, our theory does include the effect of the microchannel side walls. The resulting predictions agree well with numerics and experimental measurements of the acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537 um and 5.33 um. The 3D particle motion was recorded using astigmatism particle tracking velocimetry under controlled thermal and acoustic conditions in a long, straight, rectangular microchannel actuated in one of its transverse standing ultrasound-wave resonance modes with one or two half-wavelengths. The acoustic energy density is calibrated in situ based on measurements of the radiation dominated motion of large 5-um-diam particles, allowing for quantitative comparison between theoretical predictions and measurements of the streaming induced motion of small 0.5-um-diam particles.Comment: 13 pages, 8 figures, Revtex 4.
    corecore