4,610 research outputs found

    Traffic at the Edge of Chaos

    Full text link
    We use a very simple description of human driving behavior to simulate traffic. The regime of maximum vehicle flow in a closed system shows near-critical behavior, and as a result a sharp decrease of the predictability of travel time. Since Advanced Traffic Management Systems (ATMSs) tend to drive larger parts of the transportation system towards this regime of maximum flow, we argue that in consequence the traffic system as a whole will be driven closer to criticality, thus making predictions much harder. A simulation of a simplified transportation network supports our argument.Comment: Postscript version including most of the figures available from http://studguppy.tsasa.lanl.gov/research_team/. Paper has been published in Brooks RA, Maes P, Artifical Life IV: ..., MIT Press, 199

    A Model of Risk-Sensitive Route-Choice Behavior and the Potential Benefit of Route Guidance

    Get PDF
    In this paper, we present a simulation-based investigation of the potential benefit of route-guidance information in the context of risk-sensitive travelers. We set up a simple two-route scenario where travelers are repeatedly faced with risky route-choice decisions. The risk averseness of the travelers is implicitly controlled through a generic utility function. We vary both the travelers' sensitivity toward risk and the equipment fraction with route-guidance devices and show that the benefits of guided travelers increase with their sensitivity toward risk

    a cross-entropy based multiagent approach for multiclass activity chain modeling and simulation

    Get PDF
    This paper attempts to model complex destination-chain, departure time and route choices based on activity plan implementation and proposes an arc-based cross entropy method for solving approximately the dynamic user equilibrium in multiagent-based multiclass network context. A multiagent-based dynamic activity chain model is developed, combining travelers' day-to-day learning process in the presence of both traffic flow and activity supply dynamics. The learning process towards user equilibrium in multiagent systems is based on the framework of Bellman's principle of optimality, and iteratively solved by the cross entropy method. A numerical example is implemented to illustrate the performance of the proposed method on a multiclass queuing network.dynamic traffic assignment, cross entropy method, activity chain, multiagent, Bellman equation

    An Agent-based Route Choice Model

    Get PDF
    Travel demand emerges from individual decisions. These decisions, depending on individual objectives, preferences, experiences and spatial knowledge about travel, are both heterogeneous and evolutionary. Research emerging from fields such as road pricing and ATIS requires travel demand models that are able to consider travelers with distinct attributes (value of time (VOT), willingness to pay, travel budgets, etc.) and behavioral preferences (e.g. willingness to switch routes with potential savings) in a differentiated market (by tolls and the level of service). Traditional trip-based models have difficulty in dealing with the aforementioned heterogeneity and issues such as equity. Moreover, the role of spatial information, which has significant influence on decision-making and travel behavior, has not been fully addressed in existing models. To bridge the gap, this paper proposes to explicitly model the formation and spread- ing of spatial knowledge among travelers. An Agent-based Route Choice (ARC) model was developed to track choices of each decision-maker on a road network over time and map individual choices into macroscopic flow pattern. ARC has been applied on both SiouxFalls network and Chicago sketch network. Comparison between ARC and existing models (UE and SUE) on both networks shows ARC is valid and computationally tractable. To be brief, this paper specifically focuses on the route choice behavior, while the proposed model can be extended to other modules of travel demand under an integrated framework.Agent-based model, route choice, traffic assignment, travel demand modeling

    Doctor of Philosophy

    Get PDF
    dissertationTraffic congestion occurs because the available capacity cannot serve the desired demand on a portion of the roadway at a particular time. Major sources of congestion include recurring bottlenecks, incidents, work zones, inclement weather, poor signal timing, and day-to-day fluctuations in normal traffic demand. This dissertation addresses a series of critical and challenging issues in evaluating the benefits of Advanced Traveler Information Strategies under different uncertainty modeling approaches are integrated in this dissertation, namely: mathematical programming, dynamic simulation and analytical approximation. The proposed models aim to 1) represent static-state network user equilibrium conditions, knowledge quality and accessibility of traveler information systems under both stochastic capacity and stochastic demand distributions; 2) characterize day-to-day learning behavior with different information groups under stochastic capacity and 3) quantify travel time variability from stochastic capacity distribution functions on critical bottlenecks. First, a nonlinear optimization-based conceptual framework is proposed for incorporating stochastic capacity, stochastic demand, travel time performance functions and varying degrees of traveler knowledge in an advanced traveler information provision environment. This method categorizes commuters into two classes: (1) those with access to perfect traffic information every day, and (2) those with knowledge of the expected traffic conditions across different days. Using a gap function framework, two mathematical programming models are further formulated to describe the route choice behavior of the perfect information and expected travel time user classes under stochastic day-dependent travel time. This dissertation also presents adaptive day-to-day traveler learning and route choice behavioral models under the travel time variability. To account for different levels of information availability and cognitive limitations of individual travelers, a set of "bounded rationality" rules are adapted to describe route choice rules for a traffic system with inherent process noise and different information provision strategies. In addition, this dissertation investigates a fundamental problem of quantifying travel time variability from its root sources: stochastic capacity and demand variations that follow commonly used log-normal distributions. The proposed models provide theoretically rigorous and practically usefully tools to understand the causes of travel time unreliability and evaluate the system-wide benefit of reducing demand and capacity variability

    Data Support of Advanced Traveler Information System Considering Connected Vehicle Technology

    Get PDF
    Traveler information systems play a significant role in most travelers’ daily trips. These systems assist travelers in choosing the best routes to reach their destinations and possibly select suitable departure times and modes for their trips. Connected Vehicle (CV) technologies are now in the pilot program stage. Vehicle-to-Infrastructure (V2I) communications will be an important source of data for traffic agencies. If this data is processed properly, then agencies will be able to better determine traffic conditions, allowing them to take proper countermeasures to remedy transportation system problems under different conditions. This research focuses on developing methods to assess the potential of utilizing CV data to support the traveler information system data collection process. The results from the assessment can be used to establish a timeline indicating when an agency can stop investing, at least partially, in traditional technologies, and instead rely on CV technologies for traveler information system support. This research utilizes real-world vehicle trajectory data collected under the Next Generation Simulation (NGSIM) program and simulation modeling to emulate the use of connected vehicle data to support the traveler information system. NGSIM datasets collected from an arterial segment and a freeway segment are used in this research. Microscopic simulation modeling is also used to generate required trajectory data, allowing further analysis, which is not possible using NGSIM data. The first step is to predict the market penetration of connected vehicles in future years. This estimated market penetration is then used for the evaluation of the effectiveness of CV-based data for travel time and volume estimation, which are two important inputs for the traveler information system. The travel times are estimated at different market penetrations of CV. The quality of the estimation is assessed by investigating the accuracy and reliability with different CV deployment scenarios. The quality of volume estimates is also assessed using the same data with different future scenarios of CV deployment and partial or no detector data. Such assessment supports the identification of a timeline indicating when CV data can be used to support the traveler information system

    A preliminary safety evaluation of route guidance comparing different MMI concepts

    Get PDF
    corecore