11,244 research outputs found

    Investigation into intermodulation distortion in HEMTs using a quasi-2-D physical model

    Get PDF
    The need for both linear and efficient pseudomorphic high electron-mobility transistors (pHEMTs) for modern wireless handsets necessitates a thorough understanding of the origins of intermodulation distortion at the device level. For the first time, the dynamic large-signal internal physical behavior of a pHEMT is examined using a quasi-two-dimensional physical device model. The model accounts fully for device-circuit interaction and is validated experimentally for a two-tone experiment around 5 GHz

    Asynchronous spiking neurons, the natural key to exploit temporal sparsity

    Get PDF
    Inference of Deep Neural Networks for stream signal (Video/Audio) processing in edge devices is still challenging. Unlike the most state of the art inference engines which are efficient for static signals, our brain is optimized for real-time dynamic signal processing. We believe one important feature of the brain (asynchronous state-full processing) is the key to its excellence in this domain. In this work, we show how asynchronous processing with state-full neurons allows exploitation of the existing sparsity in natural signals. This paper explains three different types of sparsity and proposes an inference algorithm which exploits all types of sparsities in the execution of already trained networks. Our experiments in three different applications (Handwritten digit recognition, Autonomous Steering and Hand-Gesture recognition) show that this model of inference reduces the number of required operations for sparse input data by a factor of one to two orders of magnitudes. Additionally, due to fully asynchronous processing this type of inference can be run on fully distributed and scalable neuromorphic hardware platforms

    Empirical assessment of VoIP overload detection tests

    Get PDF
    The control of communication networks critically relies on procedures capable of detecting unanticipated load changes. In this paper we explore such techniques, in a setting in which each connection consumes roughly the same amount of bandwidth (with VoIP as a leading example). We focus on large-deviations based techniques developed earlier in that monitor the number of connections present, and that issue an alarm when this number abruptly changes. The procedures proposed in are demonstrated by using real traces from an operational environment. Our experiments show that our detection procedure is capable of adequately identifying load changes

    Network flow algorithms for wireless networks and design and analysis of rate compatible LDPC codes

    Get PDF
    While Shannon already characterized the capacity of point-to-point channels back in 1948, characterizing the capacity of wireless networks has been a challenging problem. The deterministic channel model proposed by Avestimehr, etc. (2007 - 1) has been a promising approach for approximating the Gaussian channel capacity and has been widely studied recently. Motivated by this model, an improved combinatorial algorithm is considered for finding the unicast capacity for wireless information flow on such deterministic networks in the first part of this thesis. Our algorithm fully explores the useful combinatorial features intrinsic in the problem. Our improvement applies generally with any size of finite fields associated with the channel model. Comparing with other related algorithms, our improved algorithm has very competitive performance in complexity. In the second part of our work, we consider the design and analysis of rate-compatible LDPC codes. Rate-compatible LDPC codes are basically a family of nested codes, operating at different code rates and all of them can be encoded and decoded using a single encoder and decoder pair. Those properties make rate-compatible LDPC codes a good choice for changing channel conditions, like in wireless communications. The previous work on the design and analysis of LDPC codes are all targeting at a specific code rate and no work is known on the design and analysis of rate-compatible LDPC codes so that the code performance at all code rates in the family is manageable and predictable. In our work, we proposed algorithms for the design and analysis of rate-compatible LDPC codes with good performance and make the code performance at all code rates manageable and predictable. Our work is based on E2RC codes, while our approaches in the design and analysis can be applied more generally not only to E2RC codes, but to other suitable scenarios, like the design of IRA codes. Most encouragingly, we obtain families of rate-compatible codes whose gaps to capacity are at most 0.3 dB across the range of rates when the maximum variable node degree is twenty, which is very promising compared with other existing results
    corecore