9,861 research outputs found

    VLSI implementation of an energy-aware wake-up detector for an acoustic surveillance sensor network

    Get PDF
    We present a low-power VLSI wake-up detector for a sensor network that uses acoustic signals to localize ground-base vehicles. The detection criterion is the degree of low-frequency periodicity in the acoustic signal, and the periodicity is computed from the "bumpiness" of the autocorrelation of a one-bit version of the signal. We then describe a CMOS ASIC that implements the periodicity estimation algorithm. The ASIC is functional and its core consumes 835 nanowatts. It was integrated into an acoustic enclosure and deployed in field tests with synthesized sounds and ground-based vehicles.Fil: Goldberg, David H.. Johns Hopkins University; Estados UnidosFil: Andreou, Andreas. Johns Hopkins University; Estados UnidosFil: Julian, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Pouliquen, Philippe O.. Johns Hopkins University; Estados UnidosFil: Riddle, Laurence. Signal Systems Corporation; Estados UnidosFil: Rosasco, Rich. Signal Systems Corporation; Estados Unido

    Software correlators as testbeds for RFI algorithms

    Get PDF
    In-correlator techniques offer the possibility of identifying and/or excising radio frequency interference (RFI) from interferometric observations at much higher time and/or frequency resolution than is generally possible with the final visibility dataset. Due to the considerable computational requirements of the correlation procedure, cross-correlators have most commonly been implemented using high-speed digital signal processing boards, which typically require long development times and are difficult to alter once complete. "Software" correlators, on the other hand, make use of commodity server machines and a correlation algorithm coded in a high-level language. They are inherently much more flexible and can be developed - and modified - much more rapidly than purpose-built "hardware" correlators. Software correlators are thus a natural choice for testing new RFI detection and mitigation techniques for interferometers. The ease with which software correlators can be adapted to test RFI detection algorithms is demonstrated by the addition of kurtosis detection and plotting to the widely used DiFX software correlator, which highlights previously unknown short -duration RFI at the Hancock VLBA station.Comment: 6 pages, 1 figure, accepted for publication in Proceedings of Science [PoS(RFI2010)035]. Presented at RFI2010, the Third Workshop on RFI Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland

    Performance Analysis of Channel Extrapolation in FDD Massive MIMO Systems

    Full text link
    Channel estimation for the downlink of frequency division duplex (FDD) massive MIMO systems is well known to generate a large overhead as the amount of training generally scales with the number of transmit antennas in a MIMO system. In this paper, we consider the solution of extrapolating the channel frequency response from uplink pilot estimates to the downlink frequency band, which completely removes the training overhead. We first show that conventional estimators fail to achieve reasonable accuracy. We propose instead to use high-resolution channel estimation. We derive theoretical lower bounds (LB) for the mean squared error (MSE) of the extrapolated channel. Assuming that the paths are well separated, the LB is simplified in an expression that gives considerable physical insight. It is then shown that the MSE is inversely proportional to the number of receive antennas while the extrapolation performance penalty scales with the square of the ratio of the frequency offset and the training bandwidth. The channel extrapolation performance is validated through numeric simulations and experimental measurements taken in an anechoic chamber. Our main conclusion is that channel extrapolation is a viable solution for FDD massive MIMO systems if accurate system calibration is performed and favorable propagation conditions are present.Comment: arXiv admin note: substantial text overlap with arXiv:1902.0684

    Toward single particle reconstruction without particle picking: Breaking the detection limit

    Full text link
    Single-particle cryo-electron microscopy (cryo-EM) has recently joined X-ray crystallography and NMR spectroscopy as a high-resolution structural method for biological macromolecules. In a cryo-EM experiment, the microscope produces images called micrographs. Projections of the molecule of interest are embedded in the micrographs at unknown locations, and under unknown viewing directions. Standard imaging techniques first locate these projections (detection) and then reconstruct the 3-D structure from them. Unfortunately, high noise levels hinder detection. When reliable detection is rendered impossible, the standard techniques fail. This is a problem especially for small molecules, which can be particularly hard to detect. In this paper, we propose a radically different approach: we contend that the structure could, in principle, be reconstructed directly from the micrographs, without intermediate detection. As a result, even small molecules should be within reach for cryo-EM. To support this claim, we setup a simplified mathematical model and demonstrate how our autocorrelation analysis technique allows to go directly from the micrographs to the sought signals. This involves only one pass over the micrographs, which is desirable for large experiments. We show numerical results and discuss challenges that lay ahead to turn this proof-of-concept into a competitive alternative to state-of-the-art algorithms

    Oscillator Phase Noise and Small-Scale Channel Fading in Higher Frequency Bands

    Get PDF
    This paper investigates the effect of oscillator phase noise and channel variations due to fading on the performance of communication systems at frequency bands higher than 10GHz. Phase noise and channel models are reviewed and technology-dependent bounds on the phase noise quality of radio oscillators are presented. Our study shows that, in general, both channel variations and phase noise can have severe effects on the system performance at high frequencies. Importantly, their relative severity depends on the application scenario and system parameters such as center frequency and bandwidth. Channel variations are seen to be more severe than phase noise when the relative velocity between the transmitter and receiver is high. On the other hand, performance degradation due to phase noise can be more severe when the center frequency is increased and the bandwidth is kept a constant, or when oscillators based on low power CMOS technology are used, as opposed to high power GaN HEMT based oscillators.Comment: IEEE Global Telecommun. Conf. (GLOBECOM), Austin, TX, Dec. 201

    Inflight estimation of gyro noise

    Get PDF
    A method is described and demonstrated for estimating single-axis gyro noise levels in terms of the Farrenkopf model parameters. This is accomplished for the Cosmic Background Explorer (COBE) by comparing gyro-propagated attitudes with less accurate single-frame solutions and fitting the squared differences to a third-order polynomial in time. Initial results are consistent with the gyro specifications, and these results are used to determine limits on the duration of batches used to determine attitude. Sources of error are discussed, and guidelines for a more elegant implementation, as part of a batch estimator or filter, are included for future work
    • …
    corecore