17 research outputs found

    A near-optimal approximation algorithm for Asymmetric TSP on embedded graphs

    Full text link
    We present a near-optimal polynomial-time approximation algorithm for the asymmetric traveling salesman problem for graphs of bounded orientable or non-orientable genus. Our algorithm achieves an approximation factor of O(f(g)) on graphs with genus g, where f(n) is the best approximation factor achievable in polynomial time on arbitrary n-vertex graphs. In particular, the O(log(n)/loglog(n))-approximation algorithm for general graphs by Asadpour et al. [SODA 2010] immediately implies an O(log(g)/loglog(g))-approximation algorithm for genus-g graphs. Our result improves the O(sqrt(g)*log(g))-approximation algorithm of Oveis Gharan and Saberi [SODA 2011], which applies only to graphs with orientable genus g; ours is the first approximation algorithm for graphs with bounded non-orientable genus. Moreover, using recent progress on approximating the genus of a graph, our O(log(g) / loglog(g))-approximation can be implemented even without an embedding when the input graph has bounded degree. In contrast, the O(sqrt(g)*log(g))-approximation algorithm of Oveis Gharan and Saberi requires a genus-g embedding as part of the input. Finally, our techniques lead to a O(1)-approximation algorithm for ATSP on graphs of genus g, with running time 2^O(g)*n^O(1)

    A Linear Time Parameterized Algorithm for Node Unique Label Cover

    Get PDF
    The optimization version of the Unique Label Cover problem is at the heart of the Unique Games Conjecture which has played an important role in the proof of several tight inapproximability results. In recent years, this problem has been also studied extensively from the point of view of parameterized complexity. Cygan et al. [FOCS 2012] proved that this problem is fixed-parameter tractable (FPT) and Wahlstr\"om [SODA 2014] gave an FPT algorithm with an improved parameter dependence. Subsequently, Iwata, Wahlstr\"om and Yoshida [2014] proved that the edge version of Unique Label Cover can be solved in linear FPT-time. That is, there is an FPT algorithm whose dependence on the input-size is linear. However, such an algorithm for the node version of the problem was left as an open problem. In this paper, we resolve this question by presenting the first linear-time FPT algorithm for Node Unique Label Cover

    A more accurate view of the Flat Wall Theorem

    Full text link
    We introduce a supporting combinatorial framework for the Flat Wall Theorem. In particular, we suggest two variants of the theorem and we introduce a new, more versatile, concept of wall homogeneity as well as the notion of regularity in flat walls. All proposed concepts and results aim at facilitating the use of the irrelevant vertex technique in future algorithmic applications.Comment: arXiv admin note: text overlap with arXiv:2004.1269

    Graph Minors and Parameterized Algorithm Design

    Full text link
    Abstract. The Graph Minors Theory, developed by Robertson and Sey-mour, has been one of the most influential mathematical theories in pa-rameterized algorithm design. We present some of the basic algorithmic techniques and methods that emerged from this theory. We discuss its direct meta-algorithmic consequences, we present the algorithmic appli-cations of core theorems such as the grid-exclusion theorem, and we give a brief description of the irrelevant vertex technique
    corecore