13 research outputs found

    Target Network Selection Algorithm based on Required Dwell Time Estimation

    Get PDF
    In wireless communication of fourth generation the expectation to integrate a diverse heterogeneous wireless network leads to a worldwide seamless mobility. For seamless mobility in heterogenous wireless networks, selection of best target network from available network is primary goal for handovers. To achieve this goal, we devise a target network selection algorithm to enhance the user satisfaction level.The method relies on a dwell time and prediction of received signal strength. By observing the Predicted received signal strength for a specified dwell time duration, a mobile node is able to decide whether to tigger the handoff process or not. Once the handoff process is triggered. Target network is selected depending upon a cost function. The Simulated results shows that, the proposed algorithm improves the handover performance by measuring the received signal strength accurately. It also selects the optimum target network quantitatively. Therefore, results obtained through our proposed algorithm are more accurate as compared to existing handover algorithms

    Performance Analysis of Genetic Zone Routing Protocol Combined With Vertical Handover Algorithm for 3G-WiFi Offload

    Get PDF
    In the deployment scenario of multiple base stations there is usually a deficiency in the routing protocols for load balancing in the wireless network. In this study, we propose a routing algorithm that can be implemented inMobile Adhoc Networks (MANETs) as well as third-generation (3G)"“Wireless Fidelity (WiFi) offload networks. We combined the Genetic Zone Routing Protocol (GZRP) with the Vertical Handover (VHO) algorithm in a 3G"“WiFioffload network with multiple base stations. Simulationresults show thatthe proposed algorithm yields improvement in the received signal strength(which is increased up to 25 dBm), user throughput (which is approximately 1 Mbps-2.5 Mbps), and data rate (which is increased up to 2.5 Mbps)

    Motorized cart

    Get PDF
    Motorized cart is known as an effective tool and timeless that help people carry heavy loads. For farmers, it has an especially vital tool for moving goods. Oil palm farmers typically uses the wheelbarrow to move the oil palm fruit (Figure 10.1). However, there is a lack of equipment that should be further enhanced in capabilities. Motorized carts that seek to add automation to wheelbarrow as it is to help people save manpower while using it. At present, oil palm plantation industry is among the largest in Malaysia. However, in an effort to increase the prestige of the industry to a higher level there are challenges to be faced. Shortage of workers willing to work the farm for harvesting oil palm has given pain to manage oil palm plantations. Many have complained about the difficulty of hiring foreign workers and a high cost. Although there are tools that can be used to collect or transfer the proceeds of oil palm fruits such as carts available. However, these tools still have the disadvantage that requires high manpower to operate. Moreover, it is not suitable for all land surfaces and limited cargo space. Workload and manpower dependence has an impact on farmers' income

    Analytical Modelling of a New Handover Algorithm to Improve Allocation of Resources in Highly Mobile Environments

    Get PDF
    Wireless and mobile communication systems have evolved considerably in recent years. Seamless mobility is one of the main challenges facing mobile users in wireless and mobile systems. However, highly mobile users lead to a high number of handover failures and unnecessary handovers due to the limited resources and coverage limitations with a high mobile speed. The traditional handover models are unable to cope with high mobile users in such environments. This paper proposes, an intelligent handover decision approach to minimize the probability of handover failures and unnecessary handovers whilst maximizing the usage of resources in highly mobile environments. The proposed approach is based on modelling the system using a Markov chain to enhance the system’s performance in terms of blocking probability, mean queue length and transmission delay. The results are compared with the traditional handover model. Simulation is also employed to validate the accuracy of the proposed model. Numerical results have shown that the proposed method outperforms the traditional algorithm over a wide range of handover failures and significantly reduced the number of such failures and unnecessary handovers. The results of this study show that quality if service (QoS) measures of such systems can be evaluated efficiently and accurately using the proposed analytical model. However, the performance results have also shown that it is still necessary to explore an effective model for operational spaces. In addition, the proposed model can also be adapted to various types of networks considering the high speed of the mobile user and the radius of the network

    Investigation of a New Handover Approach in LTE and WiMAX

    Get PDF
    Nowadays, one of the most important challenges in heterogeneous networks is the connection consistency between the mobile station and the base stations. Furthermore, along the roaming process between the mobile station and the base station, the system performance degrades significantly due to the interferences from neighboring base stations, handovers to inaccurate base station and inappropriate technology selection. In this paper, several algorithms are proposed to improve mobile station performance and seamless mobility across the long-term evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) technologies, along with a minimum number of redundant handovers. Firstly, the enhanced global positioning system (GPS) and the novel received signal strength (RSS) prediction approaches are suggested to predict the target base station accurately. Then, the multiple criteria with two thresholds algorithm is proposed to prioritize the selection between LTE and WiMAX as the target technology. In addition, this study also covers the intercell and cochannel interference reduction by adjusting the frequency reuse ratio 3 (FRR3) to work with LTE and WiMAX. The obtained results demonstrate high next base station prediction efficiency and high accuracy for both horizontal and vertical handovers. Moreover, the received signal strength is kept at levels higher than the threshold, while maintaining low connection cost and delay within acceptable levels. In order to highlight the combination of the proposed algorithms’ performance, it is compared with the existing RSS and multiple criteria handover decision algorithms

    A Novel Handoff Necessity Estimation Approach Based on Travelling Distance

    Full text link
    corecore