11,060 research outputs found

    Win-Stay, Lose-Sample: A simple sequential algorithm for approximating Bayesian inference

    Get PDF
    a b s t r a c t People can behave in a way that is consistent with Bayesian models of cognition, despite the fact that performing exact Bayesian inference is computationally challenging. What algorithms could people be using to make this possible? We show that a simple sequential algorithm ''Win-Stay, Lose-Sample'', inspired by the Win-Stay, Lose-Shift (WSLS) principle, can be used to approximate Bayesian inference. We investigate the behavior of adults and preschoolers on two causal learning tasks to test whether people might use a similar algorithm. These studies use a ''mini-microgenetic method'', investigating how people sequentially update their beliefs as they encounter new evidence. Experiment 1 investigates a deterministic causal learning scenario and Experiments 2 and 3 examine how people make inferences in a stochastic scenario. The behavior of adults and preschoolers in these experiments is consistent with our Bayesian version of the WSLS principle. This algorithm provides both a practical method for performing Bayesian inference and a new way to understand people's judgments

    Variational Sequential Monte Carlo

    Full text link
    Many recent advances in large scale probabilistic inference rely on variational methods. The success of variational approaches depends on (i) formulating a flexible parametric family of distributions, and (ii) optimizing the parameters to find the member of this family that most closely approximates the exact posterior. In this paper we present a new approximating family of distributions, the variational sequential Monte Carlo (VSMC) family, and show how to optimize it in variational inference. VSMC melds variational inference (VI) and sequential Monte Carlo (SMC), providing practitioners with flexible, accurate, and powerful Bayesian inference. The VSMC family is a variational family that can approximate the posterior arbitrarily well, while still allowing for efficient optimization of its parameters. We demonstrate its utility on state space models, stochastic volatility models for financial data, and deep Markov models of brain neural circuits

    Bayesian Conditional Density Filtering

    Full text link
    We propose a Conditional Density Filtering (C-DF) algorithm for efficient online Bayesian inference. C-DF adapts MCMC sampling to the online setting, sampling from approximations to conditional posterior distributions obtained by propagating surrogate conditional sufficient statistics (a function of data and parameter estimates) as new data arrive. These quantities eliminate the need to store or process the entire dataset simultaneously and offer a number of desirable features. Often, these include a reduction in memory requirements and runtime and improved mixing, along with state-of-the-art parameter inference and prediction. These improvements are demonstrated through several illustrative examples including an application to high dimensional compressed regression. Finally, we show that C-DF samples converge to the target posterior distribution asymptotically as sampling proceeds and more data arrives.Comment: 41 pages, 7 figures, 12 table

    Approximate Bayesian Computation in State Space Models

    Full text link
    A new approach to inference in state space models is proposed, based on approximate Bayesian computation (ABC). ABC avoids evaluation of the likelihood function by matching observed summary statistics with statistics computed from data simulated from the true process; exact inference being feasible only if the statistics are sufficient. With finite sample sufficiency unattainable in the state space setting, we seek asymptotic sufficiency via the maximum likelihood estimator (MLE) of the parameters of an auxiliary model. We prove that this auxiliary model-based approach achieves Bayesian consistency, and that - in a precise limiting sense - the proximity to (asymptotic) sufficiency yielded by the MLE is replicated by the score. In multiple parameter settings a separate treatment of scalar parameters, based on integrated likelihood techniques, is advocated as a way of avoiding the curse of dimensionality. Some attention is given to a structure in which the state variable is driven by a continuous time process, with exact inference typically infeasible in this case as a result of intractable transitions. The ABC method is demonstrated using the unscented Kalman filter as a fast and simple way of producing an approximation in this setting, with a stochastic volatility model for financial returns used for illustration

    Sequential Monte Carlo Methods for System Identification

    Full text link
    One of the key challenges in identifying nonlinear and possibly non-Gaussian state space models (SSMs) is the intractability of estimating the system state. Sequential Monte Carlo (SMC) methods, such as the particle filter (introduced more than two decades ago), provide numerical solutions to the nonlinear state estimation problems arising in SSMs. When combined with additional identification techniques, these algorithms provide solid solutions to the nonlinear system identification problem. We describe two general strategies for creating such combinations and discuss why SMC is a natural tool for implementing these strategies.Comment: In proceedings of the 17th IFAC Symposium on System Identification (SYSID). Added cover pag
    corecore