6,374 research outputs found

    Ionization for Three Dimensional Time-dependent Point Interactions

    Full text link
    We study the time evolution of a three dimensional quantum particle under the action of a time-dependent point interaction fixed at the origin. We assume that the ``strength'' of the interaction (\alpha(t)) is a periodic function with an arbitrary mean. Under very weak conditions on the Fourier coefficients of (\alpha(t)), we prove that there is complete ionization as (t \to \infty), starting from a bound state at time (t = 0). Moreover we prove also that, under the same conditions, all the states of the system are scattering states.Comment: Some improvements and some references added, 26 pages, LaTe

    Do Prices Coordinate Markets?

    Full text link
    Walrasian equilibrium prices can be said to coordinate markets: They support a welfare optimal allocation in which each buyer is buying bundle of goods that is individually most preferred. However, this clean story has two caveats. First, the prices alone are not sufficient to coordinate the market, and buyers may need to select among their most preferred bundles in a coordinated way to find a feasible allocation. Second, we don't in practice expect to encounter exact equilibrium prices tailored to the market, but instead only approximate prices, somehow encoding "distributional" information about the market. How well do prices work to coordinate markets when tie-breaking is not coordinated, and they encode only distributional information? We answer this question. First, we provide a genericity condition such that for buyers with Matroid Based Valuations, overdemand with respect to equilibrium prices is at most 1, independent of the supply of goods, even when tie-breaking is done in an uncoordinated fashion. Second, we provide learning-theoretic results that show that such prices are robust to changing the buyers in the market, so long as all buyers are sampled from the same (unknown) distribution

    Genericity on curves and applications: pseudo-integrable billiards, Eaton lenses and gap distributions

    Get PDF
    In this paper we prove results on Birkhoff and Oseledets genericity along certain curves in the space of affine lattices and in moduli spaces of translation surfaces. We also prove applications of these results to dynamical billiards, mathematical physics and number theory. In the space of affine lattices ASL2(R)/ASL2(Z)ASL_2(\mathbb{R})/ASL_2( \mathbb{Z}), we prove that almost every point on a curve with some non-degeneracy assumptions is Birkhoff generic for the geodesic flow. This implies almost everywhere genericity for some curves in the locus of branched covers of the torus inside the stratum H(1,1)\mathcal{H}(1,1) of translation surfaces. For these curves (and more in general curves which are well-approximated by horocycle arcs and satisfy almost everywhere Birkhoff genericity) we also prove that almost every point is Oseledets generic for the Kontsevitch-Zorich cocycle, generalizing a recent result by Chaika and Eskin. As applications, we first consider a class of pseudo-integrable billiards, billiards in ellipses with barriers, which was recently explored by Dragovic and Radnovic, and prove that for almost every parameter, the billiard flow is uniquely ergodic within the region of phase space in which it is trapped. We then consider any periodic array of Eaton retroreflector lenses, placed on vertices of a lattice, and prove that in almost every direction light rays are each confined to a band of finite width. This generalizes a phenomenon recently discovered by Fraczek and Schmoll which could so far only be proved for random periodic configurations. Finally, a result on the gap distribution of fractional parts of the sequence of square roots of positive integers, which extends previous work by Elkies and McMullen, is also obtained.Comment: To appear in Journal of Modern Dynamic

    Genericity in Topological Dynamics

    Full text link
    We study genericity of dynamical properties in the space of homeomorphisms of the Cantor set and in the space of subshifts of a suitably large shift space. These rather different settings are related by a Glasner-King type correspondence: genericity in one is equivalent to genericity in the other. By applying symbolic techniques in the shift-space model we derive new results about genericity of dynamical properties for transitive and totally transitive homeomorphisms of the Cantor set. We show that the isomorphism class of the universal odometer is generic in the space of transitive systems. On the other hand, the space of totally transitive systems displays much more varied dynamics. In particular, we show that in this space the isomorphism class of every Cantor system without periodic points is dense, and the following properties are generic: minimality, zero entropy, disjointness from a fixed totally transitive system, weak mixing, strong mixing, and minimal self joinings. The last two stand in striking contrast to the situation in the measure-preserving category. We also prove a correspondence between genericity of dynamical properties in the measure-preserving category and genericity of systems supporting an invariant measure with the same property.Comment: 48 pages, to appear in Ergodic Theory Dynamical Systems. v2: revised exposition, added proof that the universal odometer is generic among transitive Cantor homeomorphism

    Generic Morse-Smale property for the parabolic equation on the circle

    Get PDF
    In this paper, we show that, for scalar reaction-diffusion equations ut=uxx+f(x,u,ux)u_t=u_{xx}+f(x,u,u_x) on the circle S1S^1, the Morse-Smale property is generic with respect to the non-linearity ff. In \cite{CR}, Czaja and Rocha have proved that any connecting orbit, which connects two hyperbolic periodic orbits, is transverse and that there does not exist any homoclinic orbit, connecting a hyperbolic periodic orbit to itself. In \cite{JR}, we have shown that, generically with respect to the non-linearity ff, all the equilibria and periodic orbits are hyperbolic. Here we complete these results by showing that any connecting orbit between two hyperbolic equilibria with distinct Morse indices or between a hyperbolic equilibrium and a hyperbolic periodic orbit is automatically transverse. We also show that, generically with respect to ff, there does not exist any connection between equilibria with the same Morse index. The above properties, together with the existence of a compact global attractor and the Poincar\'e-Bendixson property, allow us to deduce that, generically with respect to ff, the non-wandering set consists in a finite number of hyperbolic equilibria and periodic orbits . The main tools in the proofs include the lap number property, exponential dichotomies and the Sard-Smale theorem. The proofs also require a careful analysis of the asymptotic behavior of solutions of the linearized equations along the connecting orbits
    • …
    corecore