1,404 research outputs found

    A simple preconditioner for a discontinuous Galerkin method for the Stokes problem

    Full text link
    In this paper we construct Discontinuous Galerkin approximations of the Stokes problem where the velocity field is H(div)-conforming. This implies that the velocity solution is divergence-free in the whole domain. This property can be exploited to design a simple and effective preconditioner for the final linear system.Comment: 27 pages, 4 figure

    An embedded--hybridized discontinuous Galerkin finite element method for the Stokes equations

    Full text link
    We present and analyze a new embedded--hybridized discontinuous Galerkin finite element method for the Stokes problem. The method has the attractive properties of full hybridized methods, namely an H(div)H({\rm div})-conforming velocity field, pointwise satisfaction of the continuity equation and \emph{a priori} error estimates for the velocity that are independent of the pressure. The embedded--hybridized formulation has advantages over a full hybridized formulation in that it has fewer global degrees-of-freedom for a given mesh and the algebraic structure of the resulting linear system is better suited to fast iterative solvers. The analysis results are supported by a range of numerical examples that demonstrate rates of convergence, and which show computational efficiency gains over a full hybridized formulation

    Multigrid Preconditioning for a Space-Time Spectral-Element Discontinuous-Galerkin Solver

    Get PDF
    In this work we examine a multigrid preconditioning approach in the context of a high- order tensor-product discontinuous-Galerkin spectral-element solver. We couple multigrid ideas together with memory lean and efficient tensor-product preconditioned matrix-free smoothers. Block ILU(0)-preconditioned GMRES smoothers are employed on the coarsest spaces. The performance is evaluated on nonlinear problems arising from unsteady scale- resolving solutions of the Navier-Stokes equations: separated low-Mach unsteady ow over an airfoil from laminar to turbulent ow. A reduction in the number of ne space iterations is observed, which proves the efficiency of the approach in terms of preconditioning the linear systems, however this gain was not reflected in the CPU time. Finally, the preconditioner is successfully applied to problems characterized by stiff source terms such as the set of RANS equations, where the simple tensor product preconditioner fails. Theoretical justification about the findings is reported and future work is outlined

    Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods

    Full text link
    In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O(p2d)\mathcal{O}(p^{2d}) storage and O(p3d)\mathcal{O}(p^{3d}) computational work, where pp is the degree of basis polynomials used, and dd is the spatial dimension. Our SVD-based tensor-product preconditioner requires O(pd+1)\mathcal{O}(p^{d+1}) storage, O(pd+1)\mathcal{O}(p^{d+1}) work in two spatial dimensions, and O(pd+2)\mathcal{O}(p^{d+2}) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in pp per degree of freedom in 2D, and reduce the computational complexity from O(p9)\mathcal{O}(p^9) to O(p5)\mathcal{O}(p^5) in 3D. Numerical results are shown in 2D and 3D for the advection and Euler equations, using polynomials of degree up to p=15p=15. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees pp.Comment: 40 pages, 15 figure

    Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations

    Full text link
    We present optimal preconditioners for a recently introduced hybridized discontinuous Galerkin finite element discretization of the Stokes equations. Typical of hybridized discontinuous Galerkin methods, the method has degrees-of-freedom that can be eliminated locally (cell-wise), thereby significantly reducing the size of the global problem. Although the linear system becomes more complex to analyze after static condensation of these element degrees-of-freedom, the pressure Schur complement of the original and reduced problem are the same. Using this fact, we prove spectral equivalence of this Schur complement to two simple matrices, which is then used to formulate optimal preconditioners for the statically condensed problem. Numerical simulations in two and three spatial dimensions demonstrate the good performance of the proposed preconditioners
    • …
    corecore