15 research outputs found

    Image-based window detection: an overview

    Get PDF
    Automated segmentation of buildings’ façade and detection of its elements is of high relevance in various fields of research as it, e. g., reduces the effort of 3 D reconstructing existing buildings and even entire cities or may be used for navigation and localization tasks. In recent years, several approaches were made concerning this issue. These can be mainly classified by their input data which are either images or 3 D point clouds. This paper provides a survey of image-based approaches. Particularly, this paper focuses on window detection and therefore groups related papers into the three major detection strategies. We juxtapose grammar based methods, pattern recognition and machine learning and contrast them referring to their generality of application. As we found out machine learning approaches seem most promising for window detection on generic façades and thus we will pursue these in future work

    Hierarchical Image-Region Labeling via Structured Learning

    Full text link

    R^2IM: Reliable and Robust Intersection Manager Robust to Rogue Vehicles

    Get PDF
    abstract: At modern-day intersections, traffic lights and stop signs assist human drivers to cross the intersection safely. Traffic congestion in urban road networks is a costly problem that affects all major cities. Efficiently operating intersections is largely dependent on accuracy and precision of human drivers, engendering a lingering uncertainty of attaining safety and high throughput. To improve the efficiency of the existing traffic network and mitigate the effects of human error in the intersection, many studies have proposed autonomous, intelligent transportation systems. These studies often involve utilizing connected autonomous vehicles, implementing a supervisory system, or both. Implementing a supervisory system is relatively more popular due to the security concerns of vehicle-to-vehicle communication. Even though supervisory systems are a step in the right direction for security, many supervisory systems’ safe operation solely relies on the promise of connected data being correct, making system reliability difficult to achieve. To increase fault-tolerance and decrease the effects of position uncertainty, this thesis proposes the Reliable and Robust Intersection Manager, a supervisory system that uses a separate surveillance system to dependably detect vehicles present in the intersection in order to create data redundancy for more accurate scheduling of connected autonomous vehicles. Adding the Surveillance System ensures that the temporal safety buffers between arrival times of connected autonomous vehicles are maintained. This guarantees that connected autonomous vehicles can traverse the intersection safely in the event of large vehicle controller error, a single rogue car entering the intersection, or a sybil attack. To test the proposed system given these fault-models, MATLAB® was used to create simulations in order to observe the functionality of R2IM compared to the state-of-the-art supervisory system, Robust Intersection Manager. Though R2IM is less efficient than the Robust Intersection Manager, it considers more fault models. The Robust Intersection Manager failed to maintain safety in the event of large vehicle controller errors and rogue cars, however R2IM resulted in zero collisions.Dissertation/ThesisMasters Thesis Computer Engineering 201

    Bottom-up Object Segmentation for Visual Recognition

    Get PDF
    Automatic recognition and segmentation of objects in images is a central open problem in computer vision. Most previous approaches have pursued either sliding-window object detection or dense classification of overlapping local image patches. Differently, the framework introduced in this thesis attempts to identify the spatial extent of objects prior to recognition, using bottom-up computational processes and mid-level selection cues. After a set of plausible object hypotheses is identified, a sequential recognition process is executed, based on continuous estimates of the spatial overlap between the image segment hypotheses and each putative class. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of constrained parametric min-cut problems (CPMC) on a regular image grid. It is show that CPMC significantly outperforms the state of the art for low-level segmentation in the PASCAL VOC 2009 and 2010 datasets. Results beyond the current state of the art for image classification, object detection and semantic segmentation are also demonstrated in a number of challenging datasets including Caltech-101, ETHZ-Shape as well as PASCAL VOC 2009-11. These results suggest that a greater emphasis on grouping and image organization may be valuable for making progress in high-level tasks such as object recognition and scene understanding
    corecore