
Bottom-up Object Segmentation for Visual
Recognition

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
João Luís da Silva Carreira

aus
Coimbra, Portugal

Bonn 2012



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rhei-
nischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Cristian Sminchisescu
2. Gutachter: Prof. Dr. Reinhard Klein

Tag der Promotion: 19.12.2012
Erscheinungsjahr: 2013



Abstract

Automatic recognition and segmentation of objects in images is a central open problem in
computer vision. Most previous approaches have pursued either sliding-window object de-
tection or dense classification of overlapping local image patches.

Differently, the framework introduced in this thesis attempts to identify the spatial extent of
objects prior to recognition, using bottom-up computational processes and mid-level selection
cues. After a set of plausible object hypotheses is identified, a sequential recognition process
is executed, based on continuous estimates of the spatial overlap between the image segment
hypotheses and each putative class.

The object hypotheses are represented as figure-ground segmentations, and are extracted
automatically, without prior knowledge of the properties of individual object classes, by solv-
ing a sequence of constrained parametric min-cut problems (CPMC) on a regular image grid.
It is show that CPMC significantly outperforms the state of the art for low-level segmentation
in the PASCAL VOC 2009 and 2010 datasets.

Results beyond the current state of the art for image classification, object detection and
semantic segmentation are also demonstrated in a number of challenging datasets includ-
ing Caltech-101, ETHZ-Shape as well as PASCAL VOC 2009-11. These results suggest that a
greater emphasis on grouping and image organization may be valuable for making progress
in high-level tasks such as object recognition and scene understanding.
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Chapter 1.

Introduction

The goal of research in computer vision is to develop systems that can automatically con-
struct representations of scenes from their images. The desired representation should be very
rich. It should not only include spatial 3D information, but also ‘labels’ attached to things
in the scene. These labels allow the perceiving system to relate the contents of the scene to
things it has observed in the past and that got labeled in a similar way. For example one car
instance could get labels such as ‘car’, ‘Porsche car’, ‘my car’. The general process of labeling
the elements of an image is called visual recognition. Replicating visual recognition in ma-
chines would lead to great economic and technological growth, as it would be a key enabler
of robotics and would allow for dangerous and uninteresting activities to be automated.

Achieving successful visual recognition has, however, proven extremely hard. Consider
objects: the recognition of each object present in a scene requires evaluating whether its ap-
pearance in the image is compatible with some object model. Since the specificities of the 3d
scene are generally unknown, recognition requires a search over both available object models
and over which image pixels belong to them. Both search spaces are gigantic: there are in-
numerous objects that we may want to recognize and there are innumerous subsets of image
pixels which can a priori correspond to the projection of an object in the scene. This creates a
need for efficient machinery to explore both search spaces.

The main problem studied in this thesis is how to efficiently explore the space of sub-
sets of image pixels (segments) for recognition tasks. We pursue a bottom-up segmentation
paradigm: the computation of a small number of segment proposals precedes the search over
matching label models. We propose to sample a large set of segments using a new mechanism
called Constrained Parametric Min-Cuts (CPMC), then rank the segments using mid-level
regularities learned from annotated imagery and select the most promising. We show that
this technique is extremely powerful and indeed outperforms the state-of-the-art on various
benchmarks.

It is widely believed that there is often not enough evidence in an image for perfectly sam-
pling all object regions. Our goal is more modest: to sample segments that cover objects
accurately enough for successful recognition. To evaluate how well this goal is achieved we
introduce a new recognition approach which labels and selects individual segments sequen-
tially. Notably, multiple recognition tasks such as semantic segmentation, object detection
and image classification, that are usually attacked using different techniques, can be solved in
a unified way by our method. Besides their conceptual appeal, our techniques obtain results
that are competitive or superior to those of the more specialized techniques.

For obtaining very precise segmentations robustly it may be necessary to develop addi-
tional processes. Top-down feedback could signal local errors in parts of otherwise good
matches between object models and segments. Such signals can lead to a reinterpretation of
low and mid-level cues in the image and to refined segments that better align with object
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Chapter 1. Introduction

Figure 1.1.: Visual recognition involves searching for matches between patterns in the image and in
memory. The precise location of these patterns in the image is unknown a priori and this is a major
difficulty for recognition: the space of all possible closed boundaries in an image is immense. This
thesis studies mechanisms for efficient exploration of the image, in the absence of prior knowledge
about the scene. We propose a new method that moves the image search problem from the space
of possible boundaries to the much reduced space of plausible boundaries. It does this by exploiting
effectively low and mid-level regularities learned from ground-truth region annotations. This thesis
also proposes a sequential recognition mechanism that employs such free-form regions.

models. The scope of this thesis is, however, confined to an investigation of the bottom-up
stage.

The next section surveys the history of ideas in computer vision that relate segmentation
and visual recognition. Then sec. 1.2 lists the main contributions of this thesis and sec. 1.3
details how the thesis is structured.

1.1. Historical Background

It is useful to place the ideas pursued in this thesis in their historical context. The fact that
there is still much uncertainty about how the human brain achieves visual recognition, to-
gether with the limited performance that the best artificial systems achieve, contribute to
keeping the debate about the role of segmentation in visual recognition, if any, alive up to this
day. A central question is whether object segmentation can feasibly precede recognition, and,

2



1.1. Historical Background

if so, how much can be expected from it.
Some of the first proposals related to bottom-up processes for object segmentation were

advanced by the Gestalt psychology school [157], which was founded in the beginning of
the 20th century. They proposed simple bottom-up rules, called grouping principles, which
permeated the perception of certain combinations of image elements as wholes. Features such
as similarity and proximity were seen as favorable for grouping.

The work of the pioneers [121] of computer vision had a Gestalt flavor. They assumed
bottom-up segmentation was feasible. Between the mid fifties and the end of the sixties, many
of the vision systems were heavily customized to specific application domains applications
such as optical character recognition and remote sensing [121]. Most shared a similar archi-
tecture: regions of interest in the image were identified, features were extracted on each and
input to a classic pattern recognition technique such as nearest neighbor or a linear classifier.
An example of a sophisticated technique developed at the end of this period, was the ‘Edin-
burgh system’ of Barrow and Popplestone [7]. Their system grew regions around locations on
a regular grid and assumed that some of them would align with object parts. It searched then
for the best matching between model parts and the set of computed regions.

Such approaches proved unsatisfactory, and a new movement was born that favored the
use of task-specific knowledge to help segmentation [51, 138], or what is now known as top-
down segmentation. Freuder [51] criticized Barrow and Popplestone’s system, citing an ex-
ample application he was studying: localizing hammers. With the ‘Edinburgh system’ the
head and the handle of the hammer would have to be located bottom-up, independently. He
argued: ‘If the head were to be confused with the background in a scene, the match with the hammer
model simply would not succeed. The presence of the handle did not direct the system in a search
for the head.’. He then asked a question that illustrates well top-down segmentation ideas,
‘(...) must we simply accept and work with the results of the passive segments, or can other problems
motivate a return to modify the results, or to consult with the primitive input data for these segments?’.

The influential David Marr criticized object segmentation in general and suggested avoid-
ing it altogether. He proposed to instead pursue bottom-up processes that produced descrip-
tions of the surfaces in the scene - the 2 1/2D representation [105]. He believed surface prop-
erties could be retrieved independently of which semantic properties they held or to which
objects they belonged to. Object segmentation would be available after 3D reconstruction and
recognition. He criticized bottom-up object segmentation on two main grounds:

1. Not being clear as a problem.

2. The lack of enough information at local scales, to detect the regions.

Regarding the first problem, Marr famously wrote in his book: ‘What, for example, is an
object, and what makes it so special that it should be recoverable as a region in an image? Is a nose an
object? Is a head one? Is it still one if it is attached to a body? What about a man on horseback?’ [105].

He also explained the second problem: ‘People soon found the structure of images to be so
complicated that it was usually quite impossible to recover the desired region by using only grouping
criteria based on local similarity or other purely visual cues that act on the image intensities (...)’.
He stated that ‘regions that have semantic importance do not always have any particular visual dis-
tinction.’ Marr also seemed to argue that top-down influences were necessary to achieve a
segmentation: ‘What was wrong with the idea of segmentation? The most obvious flaw seemed to
be that ‘objects’ and ‘desirable regions’ were almost never visually primitive constructions and hence
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Chapter 1. Introduction

could not be recovered from the primal sketch or other similar early representations without additional
specialized knowledge.’ [105].

Research in bottom-up segmentation continued nevertheless, namely regarding its rela-
tionship with recognition. David Lowe developed the SCERPO system [100], which could
identify a set of 3D objects, and determine their pose. SCERPO fitted and grouped sets of
line segments, then ranked them by order of ‘significance’ and used the top-ranked sets for
recognition. Although in this case the focus was not on regions but on sets of line segments,
similar principles applied. Lowe believed in Gestalt ideas: ‘(...) a major function of perceptual
organization is to distinguish non-accidental groupings from the background of groupings that arise
through accident of viewpoint or random positioning.’ [100]. He argued against Marr’s case for
bottom-up 3D preceding recognition, giving the example of line drawing interpretation. In
line drawings there are often very few cues for Marr’s methods (shape-from-shading, stereo)
to exploit, and people are able to recognize objects in them [100], regardless.

Eric Grimson studied the combinatorics of several recognition approaches, and observed
that successful bottom-up segmentation would greatly reduce the complexity of recognition
[62]. The ideas pursued in this thesis are close to the views expressed in his book [62]: ‘Can
we determine subsets of the data likely to have come from a single object, using only characteristics
of the data? The key word here is likely. We do not expect such methods to uniquely identify the best
subset this would amount to solving the recognition problem. Rather, we want such methods to provide
candidate data subsets, that are likely to have come from a single object. Our expectation is that we
may have to search several of these subsets before finding a correct interpretation , but so long as the
number of subsets to be searched remains small, we will still reduce the overall effort of the search.’

Shimon Ullman’s words, expressed in his book [145], reflect our ideas best. Considering
the problems raised by Marr about the objective of segmentation not being clear and low-
level cues being ambiguous, he frames segmentation in a well defined manner as ‘a process
that attempts to extract image structures that correspond to significant portions of stored object rep-
resentations.’ He adds: ‘If one object forms a part of another, the segmentation process should be
capable of pulling out significant portions of either one.’ [145]. Similarly to Grimson he states that
bottom-up segmentation should not be expected to obtain perfect object boundaries, but at
least sufficiently good alignment with stored object representations.

The new millennium brought a new wave of sophisticated bottom-up segmentation tech-
niques, including Mean Shift [30] and Normalized Cuts [131]. These methods can segment
homogeneous regions accurately and energized research on recognition approaches that pro-
gressively combined segments, while guided by high-level knowledge about object shape [49,
70, 108]. This idea fell out of favor in the meanwhile, maybe because homogeneous image re-
gions are neither very repeatable with respect to object semantics, nor very discriminative.
Two other popular tendencies arose: class-specific top-down segmentation [15] and pixel la-
beling [65]. The first was a simplification of the problem explored in the seventies. Instead
of using scene-specific knowledge to aid segmentation, it was now assumed that the object
category and rough bounding box were known. Success was obtained in real images but re-
stricted scenarios, such as side-views of left-facing horses [15], and such ideas have yet to be
demonstrated in more unconstrained imagery [38, 39]. Pixel labeling approaches recognize
locally at all locations in the image. They are very flexible and produce impressive results in
datasets with restricted intra and inter-class variation [134, 132]. It is however doubtful that
such approaches, unaided, will be effective at the desired scale: predicting hundreds of thou-
sands of labels. There does not seem to be enough information in pre-specified neighborhoods
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around a pixel to perform such fine discriminations reliably.

Despite its appeal, bottom-up segmentation has stubbornly resisted reliable solutions. For
example in the nineties, there was excitement about recognition techniques that explicitly
incorporated geometric invariance [166, 147]. This movement faded in part because the com-
putation of geometric invariants required bottom-up grouping of a large number of features
(e.g. five lines) [110].

Many approaches avoided segmentation altogether. One idea was to resort to minimal fea-
ture sets that could be explored exhaustively. These sets were used to index object models, for
example in the alignment method [69]. One other approach that avoids segmentation and is
still popular today is the sliding window [113]: rectangular regions are sampled exhaustively
and in an image-independent way in both space and scale, so that each object is bounded
tightly by at least one rectangle. The usage of the sliding window has become so widespread
that localizing objects with it is now synonym with ‘object detection’ [41]. However, bound-
ing boxes do not constitute a sufficiently accurate form of object localization for many tasks
and exhaustive search sets tight constraints on the kind of processing that can be executed at
each location, precluding many interesting but more burdensome ideas. There is now some
evidence that progress in recognition using this paradigm has been slowing down, with mi-
nor variations of the same ideas dominating, and performance seems to have plateaued at
around 40 % in the Pascal VOC challenge of 2011 [40]. It may be the right time to look again
at alternatives, such as bottom-up segmentation.

1.2. List of Contributions

This thesis makes two principal contributions:

1. Effective mid-level region sampling. A main obstacle to bottom-up visual processing
approaches has been the lack of effective algorithms for computing a small set of segment
proposals that align well with the boundaries of structures and objects in an image. Previ-
ous techniques targeted the full-image segmentation problem, which imposes non-overlap
consistency constraints between segments very early. We propose instead to generate seg-
ments independently from each other (they may overlap), using a novel algorithm named
Constrained Parametric Min-Cuts (CPMC), which considerably improves upon the state-of-
the-art on several challenging datasets. The algorithm consists of two steps. In the first step,
efficient parametric max-flow techniques are used to sample a large pool of segments under
alternative sets of putative constraints. The resulting segments are afterwards ranked using
a learned function based on mid-level cues, which prefers regions that exhibit object-like reg-
ularities over those with implausible real-world statistics. The retained top-ranked segments
provide a focused space of object hypotheses for recognition. This technique is the topic of
chapter 2.

2. Ranking-based learning for segment selection and sequential recognition. Most pop-
ular detection and classification approaches rely on binary classifiers to select among a set of
possible regions and their labels. These approaches encourage models that give high score
to the ground-truth ‘right answer’ and low scores indiscriminately for all ‘wrong answers’.
Results that are ‘partially correct’ are ignored during learning. This is problematic when
the possible outputs are regions obtained bottom-up, for two reasons. First, perfect ground-
truth regions are unlikely to be obtained bottom-up, hence the ground-truth regions are not
representative of the regions that are used during testing. Second, there may be multiple
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Chapter 1. Introduction

Figure 1.2.: Illustration of issues involved in segment ranking. After bottom-up segmentation (here
using CPMC), recognition can be posed as selection among multiple sampled segments and a set of
labels. While there are usually multiple segments covering each object, segments that align perfectly
with objects may not always, if ever, be sampled. What seems important is to select the segment
that best covers each object. Secondly, the ranking is affected by occlusion. In the images above, the
segment covering the upper body of the girl is undesirable since there is a better one covering her
full body. In the other image the segment covering the upper-body of the man is the most desirable.
These properties justify our ranking formulation to learning: segments are regressed on the predicted
overlap they have with ground truth objects. This formulation encourages finer segment selection
than standard learning approaches based on binary classification and handles better the part-whole
issues. The segment covering the girl’s upper-body is not a negative example in our formulation, it is
a ‘positive example’ which is learned to be ranked proportionally lower than the segment covering the
full body.

regions that only partially align with an object and we want that those that align better get
higher scores. These issues are illustrated in fig. 1.2. We attack such problems using rank-
ing techniques, modeled as regression on segment alignment measures. We show that such
ranking techniques outperform learning approaches based on binary classification for seg-
ment selection and recognition tasks. We also show how to use the rankers to sequentially
parse images in semantic segmentation tasks. Finally, when selecting segments in a mid-level,
label-independent fashion, we show also that diversifying the ranking improves the pools of
retained segments significantly. This contribution is presented in both chapters 2 and 3.

1.3. Thesis Outline

The first half of the thesis studies mid-level segmentation, the second studies visual recogni-
tion. We review specific prior work in the respective chapters.

Chapter 2 presents one of the main contributions of this thesis: the framework for mid-level
region sampling which we call Constrained Parametric Min-Cuts (CPMC). The chapter begins

6



1.3. Thesis Outline

with the description of a constrained binary energy function over pixels. We then refer the
different types of constraints applied and discuss how inference is efficiently performed using
parametric max-flow. Afterwards, we introduce a set of features inspired by Gestalt princi-
ples [157] and an approach to learn object regularities from these features, using a ranking
formulation. The learned ranking function allows many redundant elements to be discarded
and maximum marginal relevance diversification improves performance further. The chap-
ter concludes with results on extensive experiments performed on various datasets and with
multiple different performance benchmarks.

After our mid-level segmentation machinery has been introduced the thesis shifts to the
topic of recognition – how to select the most appropriate conjunction of regions and their la-
bels given an image. Chapter 3 introduces our sequential ranking approach to recognition.
We revisit the ranking problem from chapter 2 and discuss large-scale least-squares method-
ologies suitable for learning to rank regions in large-scale problems with millions of training
examples. We then propose a segment similarity function that penalizes undersegmenta-
tions more than the standard similarity function. Afterwards we explain the combination of
region-based recognition features we employ for recognition, together with the machinery
for support vector regression with non-linear kernels. Finally, we discuss a procedure that
sequentially combines high-scoring labeled segments and forms a robust labeling of the im-
age. We present results on image classification, object detection and semantic segmentation,
as well as empirical studies on the best number of sampled segments to retain for recognition
and the advantage of using regression over classification for segment selection and recogni-
tion.

Conclusions and suggested future directions are discussed in chapter 4. The technical ma-
terial in the thesis is supported by appendix A, a tutorial about parametric max-flow, the
combinatorial optimization technique used in the proposed CPMC algorithm. We review the
combinatorial algorithm, the family of energy functions it minimizes and its background in
computer vision.

1.3.1. Publications

The main material in this thesis has been published in journals and conference proceedings.
We now list the relevant publications.

Chapter 2:

• Constrained Parametric Min-Cuts for Automatic Object Segmentation, João Carreira and
Cristian Sminchisescu, in proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition 2010.

• CPMC:Automatic Object Segmentation Using Constrained Parametric Min-Cuts, João Car-
reira and Cristian Sminchisescu, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2012.

Chapter 3:

• Object Recognition as Ranking Holistic Figure-Ground Hypotheses, by Fuxin Li, João Car-
reira and Cristian Sminchisescu (the first two authors contributed equally), in proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition 2010.
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• Object Recognition by Sequential Figure-Ground Ranking, by João Carreira, Fuxin Li and
Cristian Sminchisescu (the first two authors contributed equally), International Journal
of Computer Vision, 2012.

The following co-authored papers are also closely related to this thesis, but not included:

• Image Segmentation by Discounted Cumulative Ranking on Maximal Cliques, by João Car-
reira, Adrian Ion and Cristian Sminchisescu, in technical report 06-2010 (arXiv:1009.4823).

• Image Segmentation by Figure-Ground Composition into Maximal Cliques, by Adrian Ion,
João Carreira and Cristian Sminchisescu, in proceedings of International Conference on
Computer Vision 2011.

• Probabilistic Joint Image Segmentation and Labeling, by Adrian Ion, João Carreira and Cris-
tian Sminchisescu, Advances in Neural Information Processing Systems 2011.
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Chapter 2.

Constrained Parametric Min-Cuts for
Automatic Object Segmentation

Abstract

We present a novel framework to generate and rank plausible hypotheses for the spatial
extent of objects in images using bottom-up computational processes and mid-level selection
cues. The object hypotheses are represented as figure-ground segmentations, and are ex-
tracted automatically, without prior knowledge of the properties of individual object classes,
by solving a sequence of constrained parametric min-cut problems (CPMC) on a regular im-
age grid. In a subsequent step, we learn to rank the corresponding segments by training a
continuous model to predict how likely they are to exhibit real world regularities (expressed
as putative overlap with ground truth) based on their mid-level region properties, then di-
versify the estimated overlap score using maximum marginal relevance measures. We show
that this algorithm significantly outperforms the state of the art for low-level segmentation in
the VOC 2009 and 2010 datasets.

This chapter corresponds to paper CPMC: Automatic Object Segmentation Using Constrained
Parametric Min-Cuts, João Carreira and Cristian Sminchisescu, PAMI 2012, which is an exten-
sion of Constrained Parametric Min-Cuts for Automatic Object Segmentation, João Carreira and
Cristian Sminchisescu, presented at CVPR 2010.

2.1. Introduction

Reliably identifying the spatial extent of objects in images is important for high-level vision
tasks like object recognition. A region that covers an object fully provides a characteristic
spatial scale for feature extraction, isolates the object from potentially confusing background
signal and allows for information to be propagated from parts of the object to the whole (a
region covering a human fully makes it possible to propagate the person identity from the
easier to identify face area to the rest of the body).

Given an image, the space of all possible regions, or segments that can be obtained, is
exponentially large. However, in our perceived visual world not all image regions are equally
likely to arise from the projection of a three-dimensional object. Objects are usually compact
and this results in their projection in the image being connected; it is also common for strong
contrast edges to mark objects boundaries. Such properties reduce the number of plausible
object regions greatly, but may not be sufficient to unambiguously identify the optimal spatial
support for each of the objects in an image.

In this chapter, we follow a two step strategy by combining a figure-ground, multiple
hypothesis bottom-up approach to segmentation with subsequent verification and ranking
based on mid-level region properties. Key to an effective solution is the capability to leverage
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the statistics of real-world objects in the selection process. One possibility would be to learn
the parameters of the segmentation algorithm directly, by training a machine learning model
using large amounts of human annotated data. However, the local scope of dependencies
and the intrinsically combinatorial nature of image segmentation diminishes the effective-
ness of learning in such ‘pixel spaces’ as many interesting features such as the convexity and
the smoothness of a region boundary are difficult to capture locally. On the other hand, once
sufficient image support is available, learning to distinguish ‘good’ segments that represent
plausible projections of real-world surfaces, from accidental image partitions becomes in prin-
ciple feasible. This motivates our novel decomposition of the problem into two stages. In the
first stage, we explore the space of regions that can inferred from local measurements, using
cues such as good alignment with image edges. The process of enumerating regions with
plausible alignment with the image contours is performed using exact combinatorial meth-
ods based on parametric max-flow. Then, in the restricted space of generated regions, we
use a learned combination of advanced mid-level features to induce a more accurate global
ranking of those regions in terms of their probability to exhibit ‘object-like’ regularities.

A key question, and one of our contributions, is how should image partitions be gener-
ated. Should region hypotheses be allowed to overlap with each other? Should one aim at
multi-region image segmentations early? We argue that segmentation is already a sufficiently
challenging problem without such constraints. It may be better to enforce global inter-region
spatial consistency at a later stage of processing, by higher-level routines with more precise
spatial scope for this calculation. We argue that attempts to enforce complex multi-region
consistency constraints early may disallow the speculative behavior necessary for sampling
regions effectively, given the inherently ambiguous nature of the low-level cues one typically
operates on initially. Hence, differently from most of the existing approaches to segmenta-
tion, we derive methods to generate several independent figure-ground partitions, rather than a
battery of splits of each image into multiple, non-overlapping regions.

Our proposed framework is depicted in fig. 2.1. We first solve a large number of inde-
pendent binary min-cut problems on an image grid, at multiple scales. These are designed
as energy functions efficiently solvable with parametric min-cut/max-flow techniques. The
resulting pool of segments is minimally filtered to remove trivial solutions and ranked using
a regressor trained to predict to what extent the segments exhibit the regularities typical of
real-world objects, based on their low and mid-level region properties. Because ranking tends
to place redundant variations of a same segment in similar ranks, we diversify the resulting
segment ranking using Maximal Marginal Relevance measures, with the top ranked segments
retained.

The quality of the list of object hypotheses returned by our algorithm is evaluated empir-
ically by measuring how accurate they are with respect to pixel-level ground truth human
annotations, in object recognition datasets. We also record performance as a function of the
number of segments. Results are reported on several publicly available benchmarks: MSRC
[133], the Weizmann Segmentation Database [124] and both VOC2009 and VOC2010 [38, 39]
where the proposed method is shown to significantly outperform the state of the art, while at
the same time using significantly fewer segments.

Several visual analysis methods may benefit from outputs like the ones provided by our
algorithm. Object detectors usually scan a large number of bounding boxes in sliding win-
dow schemes [46, 149] without considering the plausibility of pixel grouping within each.
Semantic segmentation algorithms [58, 159, 86, 56] incorporate the outputs of these object de-
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Figure 2.1.: Our object segmentation framework. Segments are extracted around regularly placed fore-
ground seeds, with various background seeds corresponding to image boundary edges, for all levels
of foreground bias, which has the effect of producing segments at different locations and spatial scales.
The resulting set of segments is ranked according to their plausibility of being good object hypothe-
ses, based on mid-level properties. Ranking involves first removing duplicates, then diversifying the
segment overlap scores using maximum marginal relevance measures.

tectors, and may need to mediate the transition between the rectangular regions produced by
the detector and the desired free-form regions that align with object boundaries. Unsuper-
vised object discovery [123] also requires good class-independent object proposals. While the
presentation focuses on the problem of object segmentation, the proposed method is general
and can rank lists of segments that exhibit the statistics of non-object, ‘stuff’ regions such as
grass or sky, as long as appropriate ground truth training data is provided.

An implementation of the proposed algorithm is made publicly available via our website
[25].
Chapter Organization: Section §2.2 reviews the related literature, §2.3 introduces the method-
ology used to generate an initial pool of segments for an image and §2.4 presents the segment
ranking procedure. Section §2.5 presents experimental results and shows comparisons with
the state of the art. An extension of the basic algorithm to include bounding box constraints
and the corresponding results are described in §2.5.3. We conclude and discuss ideas for
future work in §2.6.

2.2. Related Work

One of the first image segmentation approaches, published more than 40 years ago by Muerle
and Allen [109], aimed to compute ‘object’ regions. Small patches having similar gray-level
statistics were iteratively merged, starting at a seed patch. Region growing stopped when
none of the neighboring candidate patches was sufficiently similar to the current region. The
process was repeated until all pixels were assigned. This method took advantage of the fun-
damental grouping heuristic that neighboring pixels with different color are more likely to
belong to different objects. However it produced very local solutions and was not able to
deal with textured regions, and even less, take advantage of more sophisticated object statis-
tics. Later, more accurate techniques emerged—good surveys can be found in [64, 164, 3].
However, most methods still pursued a single optimal segmentation of an image into a set
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of non-overlapping regions that covered it fully (a multi-region image partitioning). But a
sufficiently good partitioning is not easy to obtain given the ambiguity of low and mid-level
cues. Moreover, there were no quantitative benchmarks to gauge progress and most papers
only described the merits of the output segmentations qualitatively, usually based on results
obtained on a few images.

As a consequence, in the nineties, part of the recognition community lost confidence that
a reliable segmentation procedure would be found and began investigating solutions that
avoided bottom-up segmentation entirely [110]. This trend led to the current prevalence of
bounding box detectors operating on sliding windows [46, 154]. These detectors rely on a
dense evaluation of classifiers in overlapping rectangular image regions, with consistency
usually enforced a posteriori by non-maxima suppression operations. Sliding window meth-
ods are effective in localizing certain objects like faces or motorbikes, but do not obviously
generalize to more complex structures and cannot be easily adapted for general 3d scene un-
derstanding: e.g. information predicted on rectangular image regions is not sufficient for tasks
such as vision-based manipulation of a cup by a robot, where it is critical to precisely identify
the cup handle in order to grasp it.

Such considerations made a revival of segmentation inevitable. The trend has gained mo-
mentum during the past ten years, propelled by the creation of annotated benchmarks [106,
38] and new segmentation performance metrics [38, 146]. A second important factor was the
adoption of machine learning techniques to optimize performance on benchmarks. A third
factor was relaxing the constraint of working with a single partitioning. A popular approach
emerged by computing several independent segmentations, possibly using different algo-
rithms. This idea was pursued by Hoiem et al. [68] for geometric labeling problems. Russel
et al. [123] computed normalized cuts for different number of segments and image sizes in
the context of unsupervised object discovery. By generating tens to hundreds of thousands
of segments per image, Malisiewicz and Efros [102] produced very good quality regions for
the MSRC dataset, by merging pairs and triplets of segments obtained using the Mean Shift
[30], Normalized Cuts [131] and Felzenszwalb-Huttenlocher’s (FH) [45] algorithms. Stein
et al. [137] solved Normalized Cut problems for different number of segments, on a special
affinity matrix derived from soft binary mattes, whereas Rabinovich et al. [117] shortlisted
segmentations that reoccured, hence were potentially more stable.

The computation of multiple segmentations can also be organized hierarchically. Shi and
Malik [131] recursively solve relaxations of a Normalized Cut cost based on graphs con-
structed over pixel nodes. Sharon et al. [130] proposed algebraic multigrid techniques to
efficiently solve normalized cuts problems at multiple levels of granularity, where graphs
with increasingly more complex features were used at coarser levels. Arbeláez et al. [4] derive
a segment hierarchy by iteratively merging superpixels produced by an oriented watershed
transform. They use the output of the learned globalPb boundary detector [101] and can rep-
resent the full hierarchy elegantly by a single ultrametric contour map. The hierarchy is a
natural representation for segmentation, as it lends itself to compositional representations.
However, inaccuracies in one level (due to incorrect merging of two regions from the pre-
vious level, for example), tend to propagate to all coarser levels. Therefore, given the same
segmentation technique, generating a single hierarchy is likely to be less robust than using
independent segmentations.

Differently, our region sampling methodology generates multiple independent binary hi-
erarchies constrained at different positions in the image. Each level of the hierarchy corre-
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sponds to a partitioning into figure and ground, where only the figure region is retained, and
regions at finer levels are nested inside coarser levels regions (this is a property induced by
our parametric max-flow methodology [53]). In this way, we aim to better sample the space
of plausible regions popping up at different image locations. We compute these partitionings
using energies mostly related to the ones developed for interactive segmentation applications,
where, however, computing a single figure-ground solution is typical. In these applications,
max-flow algorithms are quite popular because they can obtain exact optima for certain en-
ergy minimization problems that involve region and boundary properties [18]. Generally the
user assigns some pixels to the foreground and background regions manually and these con-
strain an energy function, which is optimized using a global minimization algorithm. The two
steps are repeated until the set of manually assigned pixels constrain the solution sufficiently
to make the resulting binary segmentation satisfactory. Variants requiring less manual inter-
action have been developed, such as GrabCut [122], where a simple rectangular seed around
the object of interest is manually initialized and an observation model is iteratively fitted by
expectation maximization (EM). Alternatively, Bagon et al. [6] require a user to simply click
a point inside the object of interest, and use EM to estimate a sophisticated self-similarity
energy.

Max-flow techniques can only globally optimize energies defined on local features such as
contrast along the boundary and good pixel fit to a color or texture model. Interesting relax-
ation approaches exist for some energies whose minimization is NP-hard, such as curvature
regularity of the boundary [127] and approximations have been developed for energies with
connectivity priors [151]. However, many other more global properties, such as convexity or
symmetry, are significantly more challenging to optimize directly. This motivates our segment
generation and ranking procedure. We differ from existing methods not only in leveraging
an efficient parametric max-flow methodology to solve for multiple breakpoints of the cost,
thus exploring a much larger space of plausible segment hypotheses in polynomial time, but
also in using regression methods on generic mid-level features, in conjunction with ranking
diversification techniques, to score the generated segments. This fully automates the process
of distilling a representative, yet compact segment pool. No manual interaction is necessary
in our method.

One of the big challenges in segmentation is to leverage the statistics of real world images
in order to obtain more coherent spatial results. Methods that learn low-level statistics have
been applied to distinguish real from apparent contours [50, 36, 77] and similar from dis-
similar superpixels [68]. Ren and Malik [120] use a random search algorithm to iteratively
hypothesize segmentations by combining different superpixels, and use a classifier to dis-
tinguish good segmentations from bad ones. Pen and Veksler [114] learn to select the best
segment among a small set generated by varying the value of one parameter, in the context
of interactive segmentation. Models based on mid-level properties have also been learned
to distinguish good from bad regions [120]. High-level shape statistics can be incorporated
into binary segmentation models, usually as non-parametric distributions of templates [92,
32, 129]. Expressive part-based appearance models have also been developed [14, 91, 93, 83].
As objects in real images exhibit large variability in pose, have high intra-class variation and
are often occluded, it is likely that such methods may require bottom-up initialization, which
an algorithm like ours can provide. Effectively leveraging high-level shape priors in the initial
steps of a visual processing pipeline may not always be feasible.

Our method aims to learn what distinguishes meaningful regions, covering full objects,
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from accidental pixel groupings. Since our original presentation at VOC2009 [28] and pub-
lication [26], related ideas have been pursued. Endres and Hoiem [37] follow a processing
pipeline related to ours, but employ a learned affinity measure between superpixels, rather
than pixels, and a structured learning approach on a maximum marginal relevance measure
similar to the one we originally proposed to diversify ranking. To generate figure-ground seg-
ments, Levinshtein et al. [94] developed a procedure based on parametric max-flow principles
similar to ours, but use a graph where new similarity measures are constructed on superpix-
els. In parallel work, Alexe et al. [1] learn a naive Bayes model to distinguish bounding boxes
enclosing objects from those containing amorphous background, without knowledge of the
shape and appearance of particular object classes. They also show how to sample bounding
boxes from the model efficiently but do not provide segmentations. Salient object detection
[98] approaches are also relevant to our work, but they focus on selection criteria inspired by
attention mechanisms. We are instead interested in computing regions that cover every object
in an image well, independently of whether they ‘pop out’ from the rest of the scene or not.

2.3. Constrained Parametric Min-Cuts (CPMC)

In order to generate a pool of segments with high probability of not missing regions with
good object overlap, multiple constrained parametric min-cut (CPMC) problems are solved
with different seeds and unary terms. This leads to a large and diverse pool of segments
at multiple spatial scales. The segments corresponding to implausible solutions are subse-
quently discarded using simple ratio cut criteria. The remaining are clustered so that all but
representative segments with low energy are retained, among those extremely similar. The
final working set of segments is significantly reduced, but at the same time the most accurate
segments are preserved.

2.3.1. Setting up the Energy Functions

For each image, alternative sets of pixels, called seeds, are hypothesized to belong to the fore-
ground and the background. The foreground seeds are placed on a grid, whereas background
seeds are associated with sets of pixels along the image border. For each combination of fore-
ground and background seeds we compute figure-ground segmentations with multiple levels
of foreground bias. The levels of bias are induced by varying the cost of assigning non-seed
pixels to the foreground. Inference consists of finding minimum cuts for the different val-
ues of foreground bias — in fact searching over multiple foreground biases is intrinsic to our
parametric max flow procedure. The optimization problem is formulated next.

Let I(V) → R3 be an image defined on a set of pixels V . As commonly done in graph-based
segmentation algorithms, the similarity between neighboring pixels is encoded as edges of
a weighted graph G = (V, E). Here, each pixel is a node in the set V . The foreground and
background partitions are represented by labels 1 and 0, respectively. Seed pixels Vf are
constrained to the foreground and Vb to the background by setting infinity energy to any
labeling where they receive the contrasting label. Our overall objective is to minimize an
energy function over pixel labels {x1, ..., xN}, xi ∈ {0, 1}, with N the total number of pixels.
In particular, we optimize the following energy function:
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Figure 2.2.: Different effects of uniform and color-based unary terms. For illustration, a single fore-
ground seed was placed manually at the same location for two energy problems, one with uniform
and another with color unary terms. Shown are samples from the set of successive energy breakpoints
(increasing λ values) from left to right, as computed by parametric max-flow. Uniform unary terms
are used in rows 1 and 3. Color unary terms are used in even rows. Uniform unary terms are most
effective in images where the background and foreground have similar color. Color unary terms are
more appropriate for objects with elongated shapes.

Eλ(X) =
∑

u∈V

Dλ(xu) +
∑

(u,v)∈E

Vuv(xu, xv) (2.1)

with λ ∈ R, and unary potentials given by:

Dλ(xu) =















0 if xu = 1, u /∈ Vb

∞ if xu = 1, u ∈ Vb

∞ if xu = 0, u ∈ Vf

f(xu) + λ if xu = 0, u /∈ Vf

(2.2)

The foreground bias is implemented as a cost incurred by the assignment of non-seed pixels
to background, and consists of a pixel-dependent value f(xu) and an uniform offset λ. Two
different functions f(xu) are used in practice. The first is constant and equal to 0, resulting
in a uniform (variable) foreground bias. The second function uses color. Specifically, RGB
color distributions pf (xu) on seed Vf and pb(xu) on seed Vb are estimated to derive f(xu) =
ln pf (xu)− ln pb(xu). The probability distribution of pixel j belonging to foreground is defined
as pf (i) = exp[−γ · minj(||I(i)− I(j)||)], with γ a scaling factor, and j indexing representative
pixels in the seed region, selected as centers resulting from a k-means algorithm (k is set to
5 in all of our experiments). The background probability is defined similarly. This choice of
function is motivated by efficiency, being much faster to estimate compared to the frequently
used Gaussian mixture model [122]. Color-based unary terms are more effective when the
color of the object is distinctive with respect to the background, as well as when objects have
thin parts. Uniform unary terms are more useful in the opposite case. The complementary
effects of these two types of unary energy terms are illustrated in fig. 2.2.

The pairwise term Vuv penalizes the assignment of different labels to similar neighboring

15



Chapter 2. Constrained Parametric Min-Cuts for Automatic Object Segmentation

pixels:

Vuv(xu, xv) =

{

0 if xu = xv
g(u, v) if xu 6= xv

(2.3)

with similarity between adjacent pixels given by g(u, v) = exp
[

−max(gPb(u),gP b(v))
σ2

]

. gPb

returns the output of the multi-cue contour detector globalPb [101] at a pixel. The square
distance is also an option we experimented with, instead of the max operation, with similar
results. The boundary sharpness parameter σ controls the smoothness of the pairwise term.

The function defined by eq. 2.1 is submodular. Given a pair of foreground and background
seeds and f(xu), the cost can be minimized exactly for all values of λ in the same complexity as
a single max-flow problem, using a parametric solver [80]. In canonical form, parametric max-
flow problems differ from their max-flow counterparts in that capacities from the source node
are allowed to be linear functions of a parameter, here λ. As λ (effectively our foreground bias)
varies there are at most (N−1) different cuts in the transformed graph, where N is the number
of nodes, although for the graphs encountered in vision problems there are generally far fewer
(see our study in §2.3.3). The values of λ for which the cut values change are usually known
as breakpoints. When the linear capacity functions from the source are either non-increasing or
non-decreasing functions of λ, the problem is said to be monotonic. Our energy problems are
monotonic because, for all unary terms, λ is multiplied by the same factor, 1. This important
property implies that all cuts computed for a particular choice of source and sink seeds are
nested.

In this work we use the highest label pseudoflow solver [67], which has complexity O(mN log(N))
for image graphs with N nodes and m edges. The complexity of the CPMC procedure is thus
O(kmN log(N)), as we solve multiple parametric max-flow problems, for each of the k com-
binations of foreground and background seeds, and for different choices of f(xu). The pseud-
oflow implementation we used requires a set of λ parameters for which to compute cuts. For
the study in §2.3.3, we additionally use an implementation based on Gallo et al. [53] in order
to analyze the segmentation results produced by a push-relabel parametric max-flow solver
which retrieves all breakpoints [5].

The graph construction that maps to the energy functions in (2.1), for each choice of fore-
ground and background seed, augments the original problem dependency graph G with two
special nodes, source s and sink t that must be in separate partitions in any binary cut [18].
The unary energy terms are encoded as edges between these special nodes and the nodes in
V .

2.3.2. Effect of Grid Geometry

As foreground seeds, we chose groups of pixels that form small solid squares. We have experi-
mented with three different strategies to place them automatically: rectangular grid geometry,
centroids of superpixels obtained with normalized cuts, and centroids of variable size regions,
closest to each rectangular grid position, obtained using segments obtained by the algorithm
of [45]. As shown in table 2.1, the performance differences are not very significant (see section
§2.5 for details about the datasets and the evaluation criteria).

The background seeds are necessary in order to prevent trivial cuts that leave the background
set empty. We used four different types: seeds including pixels that cover the full image
boundary, just the vertical edges, just the horizontal edges and all but the bottom image edge.
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This selection strategy allows us to extract objects that are only partially visible, due to clip-
ping at different image boundaries.

In practice we solve around 180 instances of problem (2.1) for each image, for 30 λ values
each (during processing, we skip duplicate breakpoints), defined on a logarithmic scale. The
set of figure-ground segmentations is further enlarged by splitting the ones with multiple
connected foreground components. The final pool has up to 10,000 segments per image.

As an alternative to multiple ’hard‘ background seeds, it is possible to use a single ’soft‘
background seed. This can be a frame one pixel wide covering the border of the image,
with each pixel having a finite penalty associated to its assignment to the foreground. This
construction is more efficient, as it decreases the number of energy problems to solve by 75%.
We used this type of background seeds in an extension of the basic algorithm, presented in
section §2.5.3.

Seed placement MSRC score Weizmann score

Grid 0.85 ± 0.1 0.93 ± 0.06
NCuts 0.86 ± 0.09 0.93 ± 0.07

FH 0.87 ± 0.08 0.93 ± 0.07

Table 2.1.: Effect of spatial seed distribution. The use of superpixel segmentation algorithms (e.g.
Normalized Cuts or FH [45]) to spatially distribute the foreground seeds does not significantly
improve the average covering score on the MSRC dataset, over regular seed geometries. On
Weizmann, the average best F-measure is the same for all distributions, perhaps because the objects
are large and any placement strategy eventually distributes some seeds inside the object.

2.3.3. Effect of λ Schedule

The effect of solving problem (2.1) for all λ values, instead of a preset logarithmic λ sched-
ule, was evaluated on the training set of the PASCAL VOC 2010 segmentation dataset (the
typical distinction into training and testing is not relevant for the purpose of this experiment,
where the goal is only to analyze the number of breakpoints obtained using different search
strategies). We use a 6x6 regular grid of square seeds and solve using two procedures: (1)
20 values of λ sampled on a logarithmic scale (only the distinct energy optima are recorded)
and, (2) all λ values, as computed as breakpoints of (2.1). We have recorded the average com-
putational time per seed, the ground truth covering score, and the number of breakpoints
obtained under the two λ-search strategies. The results are shown in table 2.2, suggesting
that a preset λ schedule is a sensible option. Using only 20 values produces almost the same
covering as the one obtained using all values, it is 4 times faster and generates 10% of the total
number of breakpoints, hence fewer segments. We also plot the distribution of the number
of breakpoints per seed in fig. 2.3, under the same experimental conditions. The frequency
of breakpoints has a dominantly unimodal (bell) shape, with mean 110, but a slightly heav-
ier tail towards larger numbers of segments. There are never less than 15 breakpoints in this
dataset.

2.3.4. Fast Segment Rejection

Generating a large set of segments increases the hit rate of the algorithm, but many segments
are redundant or do not obey the statistics of real-world surfaces imaged by a camera. For
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# λ values # breakpoints Time (s) Covering

20 12.3 1.8 0.713
all 114.6 7.5 0.720

# objects 1-2 3-4 5-6 7-13

# breakpoints all λ 112.19 124.60 125.29 142.83
# breakpoints 20 λ 12.27 12.64 13.08 13.45

# images 717 147 68 32

Table 2.2.: Covering results obtained on the training set of VOC2010, based on a 6x6 grid of uniform
seeds. The table compares the results of solving CPMC problems for 20 values of λ, sampled on a
logarithmic scale, with the results obtained by solving for all possible values of λ. Shown are the
average number of breakpoints per seed, and the average time required to compute the solutions for
each seed. Computing all breakpoints for each seed provides modest ground truth covering
improvements, at the cost of generating a larger number of segments and an increased computation
time. The second table shows that images containing a larger number of ground truth objects tend to
generate more breakpoints per seed.

images with large homogeneous regions, the original hypothesis generation step can also
produce many copies of the same segment because of the seeding strategy — every seed
placed inside the region would tend to generate the same segment for the same λ. Moreover,
sometimes visually arbitrary segments are created, as artifacts of the foreground bias strength
and the seed constraints employed.

We deal with these problems using a fast rejection step. We first filter very small segments
(up to 150 pixels in our implementation), then sort the segments using a simple criterion (we
have used the ratio cut [156] as this is scale invariant and very selective) and retain up to 2,000
of the highest scoring segments. Then we hierarchically cluster the segments using overlap
as a similarity measure, to form groups with all segments of at least 0.95 spatial overlap. For
each cluster, we retain the segment with the lowest energy.

The number of segments that pass the fast rejection step is usually small, being indicative
of how simple or cluttered the structure of an image is. In general, simple datasets have lower
average number of segments. But even in the difficult PASCAL VOC 2009 dataset, the average
was 154.

2.4. Mid-level Segment Ranking

Gestalt theorists [157, 111] argued that properties such as proximity, similarity, symmetry and
good continuation are key to visual grouping. One approach would be to model such prop-
erties in the segmentation process, as long-range dependencies in a random field model [163,
165]. However, this poses significant modeling and computational challenges. With a segment
set generated using weaker constraints, leveraging Gestalt properties becomes easier: rather
than guide a complex inference procedure based on higher-order, long-range dependencies,
we only need to check conformance with Gestalt regularities. It is therefore interesting to ex-
plore how the qualitative Gestalt theories can be implemented in such a framework and what
effects they produce in practice. An important question is whether Gestalt properties can
be used to predict if segments have regularities typical of projections of real objects, without
leveraging prior knowledge about the classes of objects present in the image. This is a poten-
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Figure 2.3.: Frequency of the parametric max flow breakpoints for each seed, on the training set of the
VOC2010 segmentation dataset. These results were obtained using a 6x6 uniform grid of seeds. The
number of breakpoints has mean 110, and a heavier tail towards a larger number of breakpoints.

tially challenging decision problem, since the visual aspects of objects are extremely diverse.
However, if object regularities can be identified, images could be represented by a handful
of segments, which are easier to interpret and process by higher-level visual routines than a
large set of pixels or superpixels.

In this work, we take an empirical approach: we compile a large set of features and an-
notated examples of segments of many objects from different categories, and use machine
learning techniques to uncover their significance. Three sets of features (34 in total) are con-
sidered to describe each segment, representing graph, region and Gestalt properties. Graph
properties, in particular variations of cut values, have long been used as cost functions in
optimization methods for segmentation. Region properties encode mainly the statistics of
where and at what scale objects tend to appear in images. Finally, Gestalt properties include
mid-level cues like convexity and continuity, which can encode object regularities (e.g. objects
background segments are usually non-convex and object boundaries are usually smoother
than the boundaries of accidental segments).

Graph partition properties (8 features) include the cut (sum of affinities along the segment
boundary) [158], the ratio cut (sum of affinity along the boundary divided by their number)
[156], the normalized cut (ratio of cut and affinity inside foreground, plus ratio of cut and affin-
ity on background) [131], the unbalanced normalized cut (cut divided by affinity inside fore-
ground) [130], and the boundary fraction of low cut, 4 binary variables signaling if the fraction
of the cut is larger than a threshold, normalized by segment perimeter, for different thresh-
olds.

Region properties (18 features) include area, perimeter, relative coordinates of the region
centroid in the image, bounding box location and dimensions, major and minor axis lengths
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of the ellipse having the same normalized second central moments as the region, eccentricity,
orientation, convex area, Euler number, diameter of a circle with the same area as the region,
ratio of pixels in the region to pixels in the total bounding box, perimeter and absolute dis-
tance to the center of the image. Some of these features can be easily computed in Matlab
using the regionprops function.

Gestalt properties (8 features) are implemented mainly as normalized histogram distances

based on the χ2 comparison metric: χ2(x, y) =
∑

i
(xi−yi)2

xi+yi
[29]. Let the texton histogram

vector on the foreground region be tf , and the one on the background be tb. Then inter-
region texton similarity is computed as the χ2(tf , tb). Intra-region texton similarity is computed
as

∑

i 1(tf (i) > k), with 1 the indicator function, and k a threshold, set to 0.3% the area of the
foreground in our implementation. The textons are obtained using the globalPb implementa-
tion [4], which uses 65 nearest neighbor codewords.

Another two features we use are inter-region brightness similarity, defined as χ2(bf , bb), with
bf and bb intensity histograms with 256 bins, and intra-region brightness similarity defined as
∑

i 1(bf (i) > 0).

We also extract the intra-region contour energy as the sum of edge energy inside the fore-
ground region, computed using globalPb, normalized by the length of the region perimeter.
We also extract an inter-region contour energy, as the sum of edge energies along the boundary
normalized by the perimeter.

Other Gestalt features we consider include curvilinear continuity and convexity. The first
is the integral of the segment boundary curvature. We use an angle approximation to the
curvature [23] on triplets of points sampled regularly (every 15 pixels in our tests). Convexity
is measured as the ratio of areas of the foreground region and its convex hull.

All features are normalized by subtracting their mean and dividing by their standard devi-
ation.

2.4.1. Learning

The objective of our ranking process is to identify segments that exhibit object-like regularities
and discard most others. One quality measure for a set of segments with respect to the ground
truth is covering [4]. Let S be the set of ground truth segments for an image, S′ be the set of
machine segments and S′(r) the subset of machine segments at rank r or higher. Then, the
covering of S by S′(r) can be defined as:

C(S, S′(r)) =
1

N

∑

R∈S

|R| ∗ max
R′∈S′(r)

O(R,R′) (2.4)

where N is the total number of pixels in annotated objects in the image, |R| is the number of
pixels in the ground truth segment R, and O is a similarity measure between two regions.

We cast the problem of ranking the figure-ground hypotheses as regression on maxR∈S O(R,R′),
the maximum similarity a segment has with a ground truth object, against the segment fea-
tures. The idea is that if regression is accurate, the generated segments most similar to each
ground truth will be placed at high ranks. Then many lower ranked segments can be dis-
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Figure 2.4.: Feature importance for the random forests regressor learned on the VOC2009 segmentation
training set. The minor axis of the ellipse having the same normalized second central moments as the
segment (here ‘Minor Axis Length’) is, perhaps surprisingly, the most important. This feature used in
isolation results in relatively poor rankings however (see fig. 2.5a). The Graph properties have small
importance. The ‘Boundary fraction of low cut’ features, being binary, do not contribute at all. Gestalt
features have above average importance, particularly the contour energies.

carded without reducing the covering measure. As similarity measure O we use overlap [38]:

O(S,G) =
|S ∩G|
|S ∪G| (2.5)

which penalizes both under-segmentations and over-segmentations and is scale invariant. An
alternative to overlap, which we used in one of our experiments, is the F-measure [124]:

F =
2RP

P +R
(2.6)

where P and R are the precision and recall of pixels in a machine segment relative to a ground
truth segment.

For ranking, we experimented with both linear regression and random forests [21], a com-
petitive non-linear model that averages over multiple regression trees. We used a random
forests implementation available online [75] and used default parameters, except for the num-
ber of trees, 200, and the number of candidate variables to select from, at random, at each split
node, which we set to 10.

The importance of our features as learned by the random forests regressor [21], is shown in
fig. 2.4. Some region properties appear to be quite informative, particularly features such as
segment width and height and the location in the image. The ‘Minor Axis Length’ feature,
which gets the highest importance works quite poorly in isolation, however (as illustrated
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in fig. 2.5a), suggesting that some cues are only effective in conjunction with other features.
Convexity and the edge energy along the boundary are also assigned large importance, as
expected.

2.4.2. Maximum Marginal Relevance Diversification

Applying standard regression for ranking does not come without issues. Similar segments
have similar features, which causes them to regress to the same values and be ranked in
adjacent positions. The covering measure only considers the best overlap with each ground
truth object, hence redundant segments in adjacent positions do not increase covering and
tend to lower the ranks of segments that best overlap other objects. More segments then need
to be retained to achieve the same score.

An effective way to deal with such effects is to diversify the ranking, in order to prevent
that minor variations of a segment saturate the pool. We achieve this based on Maximal
Marginal Relevance (MMR) measures [24]. To our knowledge this is the first application of
this technique to image segmentation. Starting with the originally top-scored segment, the
MMR induces an ordering where the next selected segment (with maximum marginal rele-
vance) is the one maximizing the original score minus a redundancy measure with respect to
segments already selected. This procedure is iterated until all segments have been re-ranked.
The redundancy measure we employ is the overlap with the set of previously selected seg-
ments based on the MMR measure.

Formally, let H be the full set of figure-ground segmentations and Hp ⊂ H hypotheses
already selected. Let s(Hi) be our predicted score for a given figure-ground segmentation and
o(Hi,Hj) the overlap between two figure-ground segmentations. The recursive definition for
the next maximal marginal relevance selection [24] is given as:

MMR = argmax
Hi∈H\Hp

[

θ · s(Hi)− (1− θ) · max
Hj∈Hp

o(Hi,Hj))
]

The first term is the score and the second is the redundancy. Parameter θ regulates the
trade-off between the predicted score and the diversity measures in the first N selections. For
example with θ = 0 the ranking will ignore individual scores, and select the next element
in the set, having minimal overlap with any of the previously chosen elements. In contrast,
with θ = 1 the element with the highest score will always be selected next. The best trade-
off depends on the application. If high precision is desired then a higher weight should be
given to the predicted score, whereas if recall is more important, then a higher weight should
be given to diversity. If θ is very small, then ranking will be close to random. For our VOC
experiments we have cross-validated at θ = 0.75.

2.5. Experiments

We study both the quality of the pool of object hypotheses generated by CPMC and the loss
in quality incurred by selecting the topmost N object hypotheses, as opposed to the use of
a much larger pool. We experiment with three publicly available datasets: Weizmann’s Seg-
mentation Evaluation Database [124], MSRC [133] and the VOC2009 train and validation sets
for the object-class segmentation problem [38].
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Weizmann consists of 100 gray-valued images having a single prominent foreground object.
The goal is to generate coverage of the entire spatial support of the object in the image using
a single segment, and as accurately as possible. We compare the performance of CPMC with
published results from two state of the art segmentation algorithms. The results are reported
using the average best F-measure criterion. For each ground truth object the most similar
segment with respect to F-measure (eq. 2.6) is selected and the value of the similarity is
recorded. These top similarities are then averaged.

The MSRC dataset is quite different, featuring 23 different classes, including some ‘stuff’
classes, such as water and grass. It has up to 11 objects present in each of its nearly 600
images. We use this dataset to evaluate the quality of the pool of segments generated, not the
individual rankings.

The VOC 2009 dataset is challenging for segmentation, as it contains real-world images
from Flickr, with 20 different classes of objects. The background regions are not annotated. In
both MSRC and VOC2009, which contain multiple ground-truth objects per image we use the
covering (eq. 2.4) with overlap (eq. 2.5) as a segment similarity measure.

2.5.1. Segment Pool Quality

The automatic results obtained using CPMC on the Weizmann dataset are shown in table
2.3a together with the previous best result, by Bagon et al [6], which additionally requires the
user to click a point inside the object. We also compare with the method of Alpert et al. [124],
which is automatic. Results for CMPC were obtained using an average of 53 segments per
image. Visibly, it generates an accurate pool of segments. Results on MSRC and VOC2009
are compared in table 2.3b to Arbeláez et al. [4], which is arguably one of the state of the art
methods for low-level segmentation. The methodology of the authors was followed, and we
report average coverings. We use all the unique segments in the hierarchy returned by their
algorithm [4] to compute the score. The pool of segments produced by CPMC appears to
be significantly more accurate and has an order of magnitude fewer segment hypotheses. A
filtering procedure could be used for gPb-owt-ucm to reduce the number segments, but at a
potential penalty in quality. The relation between the quality of segments and the size of the
ground truth objects is shown in fig. 2.7.

2.5.2. Ranking Object Hypotheses

We evaluate the quality of our ranking method on both the validation set of the VOC2009
segmentation dataset, and on hold-out sets from the Weizmann Segmentation Database. The
training set of VOC2009 consists of 750 images, resulting in 114, 000 training examples, one
for each segment passing the fast rejection step. On the Weizmann Segmentation Database we
randomly select 50 images, resulting in 2, 500 training examples, and we test on the remaining
50 images.

We plot curves showing how well the ground truth for each image is covered on average,
as a function of the number of segments we retain per image. The segments are added to the
retained list in the order of their ranking.

The curve marked as ‘upper bound’ describes the maximum quality measure possible given
the generated segments, which can be obtained if the segments are ranked by their known
overlap with ground truth. Note that on Weizmann the upper bound is flat because each im-
age has one single ground truth object, whereas on VOC images there can be multiple objects,
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Weizmann F-measure

CPMC 0.93 ± 0.009
Bagon et al. [6] 0.87 ± 0.010

Alpert et al. [124] 0.86 ± 0.012

(a) Average best F-measure scores over the entire Weiz-
mann dataset. Bagon’s algorithm produces a single
figure-ground segmentation but requires a user to click
inside the object. Alpert’s results were obtained auto-
matically by partitioning the image into one full im-
age segmentation typically having between 2 and 10
regions. The table shows that for each image, among
the pool of segment hypotheses produced by CPMC,
there is usually one segment which is extremely accu-
rate. The average number of segments that passed our
fast rejection step was 53 in this dataset.

MSRC Covering N Segments

CPMC 0.85 ± 0.1 57
gPb-owt-ucm [3] 0.78 ± 0.15 670

VOC2009 Covering N Segments

CPMC 0.78 ± 0.18 154
gPb-owt-ucm [3] 0.61 ± 0.20 1286

(b) Average of covering scores on MSRC and
VOC2009 train+validation datasets, compared to
Arbeláez et al. [4], here gPb-owt-ucm. Scores show
the covering of ground truth by segments produced
using each algorithm. CPMC results before rank-
ing are shown, to evaluate the quality of the pool of
segments from various methods.

Table 2.3.: CPMC segment quality on multiple datasets.

hence the upper bound increases as more than one segment is considered per image (on the
horizontal axis). The curve labeled as ‘random’ is based on randomly ranked segments. It is
a baseline upon which the ranking operation should improve in order to be useful.

On Weizmann we compare a random forests regressor trained on the images in that dataset
with a predictor trained on VOC2009. The results in fig. 2.5a are similar, showing that the
model is not overfitting to the statistics of the individual datasets. This also shows that it is
possible to learn to rank segments of arbitrary objects, using training regions from only 20
classes. The learned models are significantly better than ranking based on the value of any
single feature such as the cut or the ratio cut. On VOC2009 we have also run experiments
where we have complemented the initial feature set with additional appearance and shape
features — a bag of dense gray-level SIFT [99] features computed on the foreground mask,
a bag of local shape contexts [9] computed on its boundary, and a HOG pyramid [17] with
3 levels computed on the bounding box fitted on the boundary of the segment, for a total of
1,054 features. In this case, we trained a linear regressor for ranking (this is significantly faster
than random forests, which takes about 8 hours to train for the model with 34 features). The
results are shown in fig. 2.5b. Clearly the new features help somewhat, producing results that
are slightly better than the ones obtained by the linear regressor on the basic feature set. We
will revisit them in §2.5.3. However, these are not better than a random forests model trained
on the basic feature set. This shows that the set of basic features is already quite expressive in
conjunction with nonlinear models.

Notice that by using this ranking procedure, followed by diversification, we can obtain
more accurate object hypotheses than those provided by the best existing segmentation al-
gorithm of [4]. In fact, by using the top 7 segments produced by our ranking procedure, we
obtain the same covering, 0.61, as obtained using the full hierarchy of 1, 286 distinct segments
in [4].

2.5.3. Subframe-CPMC Extension

We have experimented with a different variant of the algorithm, the Subframe-CPMC, on
the Pascal VOC2010 dataset. The goal was to achieve high object recall while at the same
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(b) Complementing the basic descriptor set with ad-
ditional appearance and shape features improves the
ranking slightly, but the basic set is still superior when
used in conjunction with a more expressive random
forests regressor. Further diversifying the ranking im-
proves the average covering given by the first top N

segments significantly.

Figure 2.5.: Ranking results on the Weizmann and VOC2009 datasets. Different rankers are compared
with the optimal ranker ("Upper bound") and with random ranking ("Random selection").

time preserve segmentation quality, with a mindset towards detection applications. To score
a detection hypothesis as correct, benchmarks such as the Pascal VOC require a minimum
overlap between a correctly classified region and the ground truth. In addition, benchmarks
disregard the area of the ground truth regions (e.g. an object with 500 pixels is just as important
as one occupying the full image), hence what matters is not so much achieving high covering
scores (which explicitly take into account the size of the segments), but high overlap.

Subframe-CPMC uses an additional type of seed, and is configured to generate a larger
number of segments. First we make the overall process faster by solving the energy problems
at half the image resolution. Quantitative results were equivalent. We also changed the seed-
ing strategy to use a single soft background seed and increased the number of foreground
seeds, by using a grid of 6x6 instead of the previous 5x5. We reduced the value of the σ
parameter by 30% in eq. 2.3, resulting in more segments due to reduced affinities between
neighboring pixels.

We have also complemented the existing seeds with subframes, background seeds composed
of the outside of rectangles covering no more than 25% of the area in the image, with a sin-
gle square foreground seed in the center. These seeds constrain segments to smaller regions
in the image, as they force the possible contours to lie inside the rectangular region. This is
especially helpful for segmenting small objects in cluttered regions, as can be seen in fig. 2.7.
For this type of seed we also solve problems with and without a color unary term. Two al-
ternative types of subframe seeds were tried: a 5x5 regular grid of square subframes of fixed
dimension, with width set to 40% of the image, and bounding boxes from a deformable parts
detector [43, 46] with default parameters, set to the regime of high recall but low precision.
For the detector, we discard class information and keep the 40 top-scored bounding boxes
smaller than a threshold C , in this case 25% of the image area. Subframe energy problems
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Figure 2.6.: Segmentation and ranking results obtained using the random forests model learned on
the VOC2009 training set, with the features described in sec. §2.4. The green regions are the segment
foreground hypotheses. The first image on each row shows the ground truth, the second and third
images show the most plausible segments given by CPMC, the last two images show the least plausi-
ble segments, and the fourth and fifth images show segments intermediately placed in the ranking. The
predicted segment scores are overlaid. The first three images are from the VOC2009 validation set and
rows 2, 4 and 6 show the diversified rankings, with θ = 0.75. Note that in the diversified ranking,
segments scored nearby tend to be more dissimilar. The last three rows show results from the Weiz-
mann Segmentation Database. The algorithm has no prior knowledge of the object classes, but on this
dataset, it still shows a remarkable preference for segments with large spatial overlap with the imaged
objects, yet there are neither chariots nor vases in the training set, for example. The lowest ranked ob-
ject hypotheses are usually quite small reflecting perhaps the image statistics in the VOC2009 training
set.
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Figure 2.7.: Quality of the segments in the combined VOC2009 train and validation sets, as a function
of the area of the ground truth segments. Object area has been discretized into 20 bins on a log scale.
In the case of the ground truth curve the y-axis corresponds to the number of segments assigned in
each bin (ground truth segments have an overlap value of 1 with themselves). Medium and large
size objects, that are more frequent, are segmented significantly more accurately by CPMC than by
gPb-owt-ucm [4]. Subframe-CPMC is competitive with gPb-owt-ucm on small objects, but generates a
larger segment pool than plain CPMC (in the order of 700 instead of 150 elements).

are optimized efficiently by contracting all nodes corresponding to pixels belonging to back-
ground seeds into a single node, thereby reducing the size of the graph significantly.

The parameter σ, controlling the sharpness of the boundary, has an important influence on
the number of generated segments. A value of 2.5 with the color-based seeds leads to 225 seg-
ments, average overlap of 0.61 and covering of 0.74, whereas for σ = 1 the method produces
an average of 876 segments, average overlap of 0.69 and covering 0.76. We used σ = 1 for the
uniform seeds, σ =

√
2 for the color seeds, and σ =

√
0.8 for the subframe seeds. This leads

to a larger pool of segments, but also of higher quality, as noticeable in table 2.4.

Additional Features: Working with a larger pool of segments poses additional demands on
the accuracy of ranking. An improvement we pursued was to enlarge the set of mid-level
features with shape and texture descriptors. In §2.5.2 this was shown to improve results, but
the dimensionality of these features made linear regression the most practical learning choice.
A nonlinear random forests regressor on the basic feature set was still superior.

The additional shape and texture features we use are histograms, which are known to be
most effective when used with certain nonlinear similarities, such as a Laplacian-RBF em-
bedding k(x,y) = exp(−∑ |xi − yi|) [29]. Here we handle one of these similarity functions
with linear regression, by first applying a randomized feature map to linearly approximate
the Laplacian-RBF kernel [119, 96].

We adjusted the extended feature set from §2.5.2 slightly. To represent texture we extracted
two bags of words for each segment, one defined over gray-level SIFT features as before and a
new one over color SIFT features, both sampled every 4 pixels and at 4 different scales (16, 24,
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Figure 2.8.: Learned feature weights for the Subframe-CPMC model. The original set of mid-level fea-
tures and region properties gets higher weights, texture features get intermediate weights and shape
features get smaller weights. Texture features might help discard amorphous ‘stuff’ regions such as
grass, water and sky.

36 and 54 pixels wide) to ensure a degree of scale invariance. Each feature was quantized us-
ing a 300-dimensional codebook. To represent shape we computed two pyramid HOGs, both
with gradient orientation quantized into 20 bins, the first with the background segment gra-
dients masked out on a pyramid composed of four levels, for a total of 1, 700 dimensions. The
other PHOG was computed directly on the contour of the segment, with both foreground and
background gradients masked out and a pyramid of three levels for a total of 420 dimensions.
We map the joint vector of the two bags of words for texture features into a 2, 000-dimensional
randomized feature map drawn from the Fourier transform of the Laplacian-RBF kernel [119],
and process similarly the two PHOGs corresponding to shape features. We also append our
original 34-dimensional feature set resulting in a total of 4, 034 features.

VOC2010 Results: The overlap measure is popular for distinguishing hits from misses in
detection benchmarks. In the VOC2010 dataset we evaluate the recall under two different hit-
metrics: 50% minimum segment overlap and 50% minimum bounding box overlap. Using
the 50% segment overlap criterion, the algorithm obtains, on average per class, 87.73% and
83.10% recall, using 800 and 200 segments per image, respectively. Under a 50% bounding
box overlap criterion, the algorithm achieves 91.90% when using 800 segments and 87.65%,
for 200 segments.

The top 200 ranked segments gave on average 0.82 covering and 0.71 best overlap, which
improves upon the results of CPMC without subframes on the VOC2009 (0.78 and 0.66 with
all segments). These results are made possible because of the richer pools of segments, but
also because the ranking is accurate. A reduction of on average around 500 segments per
image results only in a loss of 0.03 average best overlap.

Details are shown in figs. 2.11 and 2.12, whereas image results are shown in fig. 2.9. The
learned weights of the linear regressor for all features are displayed in fig. 2.8.
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Figure 2.9.: Segmentation results on images from the validation set of the VOC2010 database. The first
column contains the original images, the second gives the human ground truth annotations of multiple
objects, the third shows the best segment in the Subframe-CPMC pool for each ground truth object,
the fourth shows the best segment among the ones ranked in the top-200. The proposed algorithm
obtains accurate segments for objects at multiple scales and locations, even when they are spatially
adjacent. See fig. 2.10 for challenging cases.
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Figure 2.10.: Examples, taken from the validation set of VOC2010, where the CPMC algorithm encoun-
ters difficulties. The first column shows the images, the second the human ground truth annotations of
multiple objects, the third shows the best segment in the entire Subframe-CPMC pool for each ground
truth object, the fourth shows the best segment among the ones ranked in the top-200. Partially oc-
cluded objects (first two rows), wiry objects (third row) and objects with low background contrast
(fourth and fifth row) can cause difficulties.
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Quality Measure Grid Subframes BB Detector No Subframes

Overlap 0.74 0.76 0.71
Covering 0.83 0.84 0.82

N segments 736 758 602

Table 2.4.: Results on the training set of the VOC2010 segmentation dataset. Color and uniform seeds
are complemented with subframe seeds, either placed on a regular grid or obtained from a bounding
box detector. Using a regular grid gives only slightly inferior results compared to results obtained
using detector responses. Both give a large improvement in the recall of small objects, compared to
models that do not use subframes. This is reflected in the overlap measure, which does not take into
account the area of the segments.
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Figure 2.11.: Average overlap between ground truth objects and the best Subframe-CPMC segments on
the validation set of VOC2010. We compare results obtained when considering all segments, just the
top ranked 100 or 200 and a baseline that selects 100 segments randomly from the pool of all segments.
Certain classes appear to be considerably harder to segment, such as bicycles, perhaps due to their
wiry structure.

2.6. Conclusions

We have presented an algorithm that casts the automatic image segmentation problem as one
of generating a compact set of plausible figure-ground object hypotheses. It does so by learn-
ing to rank figure-ground segmentations, using ground truth annotations available in object
class recognition datasets and based on a set of low and mid-level properties. The algorithm
uses a very powerful new procedure to generate a pool of figure-ground segmentations —
the Constrained Parametric Min-Cuts (CPMC). This uses parametric max-flow to efficiently
compute non-degenerate figure-ground hypotheses at multiple scales on an image grid, fol-
lowed by maximum relevance ranking and diversification. We have shown that the proposed
framework is able to compute compact sets of segments that represent the objects in an image
more accurately than existing state of the art segmentation methods. These sets of segments
have been used successfully in segmentation-based recognition frameworks [95, 72], as well
as for multi-region image segmentation [27, 71] and cosegmentation [153].
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Figure 2.12.: Recall at 50% overlap between regions of ground truth objects and the best Subframe-
CPMC segments (top) and between ground truth bounding boxes and best Subframe-CPMC segment
bounding boxes (bottom). Note that bicycles are difficult to segment accurately due to their wiry
structure, but there is usually some segment for each bicycle that has an accurate bounding box, such
as the ones shown in the third row of fig. 2.2. These results are computed on the validation set of the
VOC2010 segmentation dataset.

One difficulty for the current method is handling objects composed of disconnected regions
that may arise from occlusion. While the energy minimization problems we solve sometimes
generate such multiple regions, we chose to separate them into individual connected compo-
nents, because they only rarely belong to the same object. In fact, in many such cases it may
not be possible to segment the object correctly without top-down information. For exemple
segmenting people embraced might require the knowledge of the number of arms a person
has, and the configurations they can be in. It might be possible to handle such scenarios in
a bottom-up fashion in simple situations, when cues like strong continuity may be exploited,
but it appears more adequate to do this analysis at a higher level of scene interpretation.

The low-level segmentation and ranking components are also susceptible to improvement.
Both components perform satisfactorily conditioned on the current state-of-the-art and datasets.
One promising direction to improve the segmentation is the development of more sophisti-
cated unary terms. Other advances may come from minimizing more powerful energy func-
tions or the use of additional representations beyond regions. For example curves [142] may
be more appropriate for objects that have long ‘wiry’ structures such as bicycles. The ranking
component can be improved by developing better learning methodology, better features and
by using more training data. At this point the segmentation component seems to allow the
most improvement, but if applications set stringent constraints with respect to the maximum
number of segments retained per image then ranking can become a bottleneck.

A somewhat suboptimal aspect of the proposed method is that energy minimization prob-
lems are solved independently, and the same number of problems is generated for all images,
notwithstanding some having a single object and others having plenty. An interesting exten-
sion would make the process dynamic by making decisions on where and how to extract more
segments conditioned on the solutions of the previous problems. This would be conceivably
more efficient and would make the transition to video smoother. A sequential, conditional
process could also make for a more biologically plausible control structure.
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Chapter 3.

Object Recognition as Ranking Holistic
Figure-Ground Hypotheses

Abstract We present an approach to visual object-class segmentation and recognition based
on a pipeline that combines multiple figure-ground hypotheses with large object spatial sup-
port, generated by bottom-up computational processes that do not exploit knowledge of spe-
cific categories, and sequential categorization based on continuous estimates of the spatial
overlap between the image segment hypotheses and each putative class. We differ from ex-
isting approaches not only in our seemingly unreasonable assumption that good object-level
segments can be obtained in a feed-forward fashion, but also in formulating recognition as a re-
gression problem. Instead of focusing on a one-vs.-all winning margin that may not preserve
the ordering of segment qualities inside the non-maximum (non-winning) set, our learning
method produces a globally consistent ranking with close ties to segment quality, hence to the
extent entire object hypotheses are likely to spatially overlap the ground truth. We demon-
strate results beyond the current state of the art for image classification, object detection and
semantic segmentation, in a number of challenging datasets including Caltech-101, ETHZ-
Shape as well as PASCAL VOC 2009-11.

This chapter corresponds to the journal article Object Recognition by Sequential Figure-Ground
Ranking, by João Carreira, Fuxin Li and Cristian Sminchisescu, IJCV, which extends Object
Recognition as Ranking Holistic Figure-Ground Hypotheses, by Fuxin Li, João Carreira and Cris-
tian Sminchisescu, CVPR 2010. In both cases the first two authors contributed equally.

3.1. Introduction

Recognizing and localizing different categories of objects in images is essential for scene un-
derstanding. Approaches to object-category recognition based on sliding windows have re-
cently been demonstrated convincingly in difficult benchmarks [155, 46, 149]. By scanning the
image at multiple locations and scales, recognition is phrased as a binary decision problem
for which many powerful classifiers exist. Recent developments have shown that scanning
hundreds of thousands of windows efficiently can be feasible for certain types of features and
classifiers [149, 11]. The bounding box approach to recognition has proven successful for ob-
ject categories with stable features that can ‘fill’ the correct window significantly, like faces
or motorbikes, it nevertheless tends to be unsatisfactory for objects with more complex ap-
pearance and geometry, or for advanced tasks such as pose prediction and action recognition
where the knowledge of an object’s shape is also important.

This motivates the focus on semantic segmentation, where the objective is to both identify
the spatial support of objects, and to recognize their category. In semantic segmentation, the
brute-force sliding windows approach to generic category recognition may not be feasible.
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(a) (b)

Figure 3.1.: (a) A girl relaxing on a bench. Both top-down approaches and bottom-up sliding window
methods can encounter difficulties segmenting or detecting a person in this non-canonical pose. (b)
Semantic segmentation results produced by our algorithm.

Consider fig. 3.1 (a). A reliable object detector might locate the person and place a bound-
ing box around her. However, the non-canonical pose may impose a large bounding box,
or alternatively a large search space if different rotations of the bounding box are scanned,
still leaving a non-trivial contour hypothesis space to be explored, even inside the correct
bounding box, e.g. fig. 3.1 (b).

The semantic segmentation problem could be approached top-down [15, 91], by storing
exemplars to guide the search in new images. However, since the variability of object shapes
is large, only an approximate contour alignment between the training exemplars and new
object instances can be expected. Interesting solutions have been proposed recently, although
generalization to a large class of shapes remains non-trivial [84, 93]. In fact, some of the best
performing methods for semantic segmentation currently do not employ shape priors but
directly classify individual pixels, based on statistics of patches enclosing them [133, 33, 85].

An open problem for segmentation and recognition is the design of tractable models capa-
ble to make more informed decisions using increased spatial support. It appears necessary to
be able to work at some intermediate spatial scale, ideally on segments that can model entire
objects, or at least sufficiently distinct parts of them. The idea of doing recognition on seg-
ments larger than just piecewise uniform regions (superpixels) is not new, but has been barred
for a long time by the lack of progress in reliably obtaining such segments. However, recent
developments in segmentation algorithms provide a surprisingly effective solution [26]. For
most images, the Constrained Parametric Min Cuts (CPMC) algorithm can generate a set of
20−200 figure-ground hypotheses, among which segments covering full objects are extracted
with high probability (see fig. 3.2). This motivates our exploration of visual recognition di-
rectly from a pool of holistic segment hypotheses extracted bottom-up. Recognition proceeds
similarly with sliding windows methods, but in the drastically reduced search-space of plau-
sible object segments. This enables the use of more powerful learning machinery based on
multiple features and nonlinear kernels, trained with a large number of segments with differ-
ent degree of overlap with the target object.

Besides leveraging recent progress in figure-ground segmentation methods for recognition,
we contribute with a formulation that casts recognition as a one-against-all regression prob-
lem of predicting the quality of segments. The quality of a segment for a given category is
measured as the maximum amount of overlap between the segment and a ground truth ob-
ject of that category. Therefore, the correct category can be simultaneously determined from
the predicted qualities for each of the multiple classes. This makes it possible to use all in-
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formation available in those segments that only partially overlap with the ground truth and,
we show, gives a significant boost in the recognition performance. We further develop a se-
quential recognition strategy that can identify multiple spatial supports and analyze images
containing several objects from different categories.

The chapter is organized as follows, Section 2 reviews related work. Section 3 describes
the overall framework. Sections 4-6 describe the three main components of the framework:
segment ranking (§4), segment scoring and categorization (§5), and sequential segment post-
processing (§6). In section 7, we test the various components of the system and report state-
of-the-art results on three object recognition tasks: image classification, object detection and
semantic segmentation. Section 8 concludes the chapter and discusses ideas for future work.

Figure 3.2.: Examples of segments used in the recognition process. Clearly, among the multiple figure-
ground hypotheses generated by CPMC [26] there are good segments that cover the object of interest
entirely. The challenge for recognition is to pull them out.

3.2. Related Work

We will confine our review of the state of the art to recognition techniques that estimate the
spatial layout of objects. These techniques can be broadly classified as bottom-up or data-
driven and top-down or model-based, although the separation is to some extent blurred as
many methods have both bottom-up and top-down components.

Bottom-up Recognition. Bottom-up recognition techniques use no prior shape knowledge
to obtain the object regions. They often either categorize among a set of predefined region
hypotheses, like our method, or directly classify pixels.

Rabinovich et al. [118] use a stability heuristic [117] to select a reduced list of segmenta-
tions obtained using normalized cuts [131] for different number of segments and different
cue combinations. Segments are described by bags of features and those with the highest
label confidence given by a k-nearest neighbor classifier are retained. Malisiewicz and Efros
[103] generate a large pool of segments [102] and recognize them using a nearest-neighbor
classifier based on learned distance functions. Todorovic and Ahuja [139], compute a hierar-
chical segmentation and find object subtrees similar to those learned during training. Unlike
other methods they also model the relationship between objects and their subregions. A diffi-
culty to overcome is the reliance on the structure of the hierarchical segmentation, which may
not always be stable.
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Another set of bottom-up approaches decides the object category directly at the level of
image pixels [65, 134], or superpixels [52, 56], based on features extracted over a support-
ing neighborhood. Textonboost [134] classifies each pixel using a linear predictor on texton-
layout features, learned using boosting. These features count the number of occurrences of a
particular texton in a rectangular region at locations relative to each pixel. Because the output
of local predictors can be noisy, often these approaches impose spatial constraints in a Con-
ditional Random Field (CRF) framework to obtain smoother solutions. Smoothness can be
obtained using contrast-sensitive pairwise potentials [19], which facilitate label transitions at
image discontinuities, or higher-order Pn potentials [78] defined over extended image seg-
ments. These aim to bias the results towards solutions with small label variation inside ho-
mogeneous segments.

A common property of many approaches is the extraction of features over overlapping
spatial supports, in order to increase robustness. One variant combines pixel and global im-
age predictions [34, 56]. Another variant adds predictions over extended regions obtained
from low-level image segmentations [85]. Instead of reconciling predictions over overlapping
regions, Gould et al. [57, 58] minimize an energy function over both the set of image segmen-
tations and their labeling. Pantofaru et al. [112] notice that pixels grouped together by all
segments in different image partitionings should have the same label and average category
predictions on superpixels obtained by intersecting all segments.

A difficulty for pixel-level methods is segmenting multiple nearby instances of the same
object without modeling the objects globally. This limitation has been partially addressed re-
cently by adding rectangular bounding box detection constraints [58, 86] to a global energy
formulation. In our method segments and their associated class scores are used instead. Ar-
guably these are closer to the desired ground truth spatial object layout than bounding boxes.

Model-based Recognition. An alternative to bottom-up recognition is the use of shape mod-
els to constrain estimates of the spatial support of objects. This does not rule out models with
bottom-up components that still use high-level information to obtain the final segmentation.

One class of model-based approaches assumes that object parts correspond to homoge-
neous image regions and these can be computed reliably. The methods assemble homoge-
neous image segments into full objects [108, 136, 31] using knowledge of their part decom-
position. Mori et al. [108] first detect key parts among salient segments obtained using the
output of the Normalized Cuts algorithm, then solve a constraint satisfaction problem to find
probable configurations. Srinivasan and Shi [136] compute several independent Normalized
Cut segmentations by varying the number of clusters, then search for high-scoring interpreta-
tions obtained by assembling parts starting from those positioned lower in the image. Partial
object segmentations obtained after each merge operation are matched against shape exem-
plars and used to prune implausible hypotheses. Cour and Shi [31] show how to efficiently
select sets of superpixels that best match an object template under a Hamming distance com-
parison metric. They first locate a set of parts, then repeat the process to assemble them into
complete object hypotheses.

The difficulty of consistently segmenting object parts motivates another class of approaches
that does not rely on low-level image segmentation. One possibility is to search densely for
object parts, then form segmentations by assembling stored partial ground truth responses
associated with each part. Borenstein and Ullman [15] segment objects in new images by
combining partial ground truth segmentations associated with object fragments in training
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images. They identify putative fragments at image locations where the value of a predefined
correlation function is maximal, then select those that locally optimize a cost function that
combines the relevance of identified fragments, the value of their image correlation and a
global consistency criterion. Leibe et al. [91] employ a related top-down idea, but instead of
convolving the image with masked fragments, compute descriptors on scale-invariant interest
points and use a voting scheme to select consistent subsets.

As objects appear in a large variety of poses and shapes, dominantly top-down methods
produce object segmentations that are often qualitative and can miss image detail. One way
to improve such results is to integrate low-level information as image edges [84, 140] or
bottom-up hierarchical segmentations [16]. Yu and Shi [161] solve a constrained eigenvalue
problem to find object segmentations biased by both object patch correlation and low-level
edge alignment. Schoenemann and Cremers [128] solve a minimum ratio cycle problem on
a product graph consisting of responses on the boundary of a shape template. The Objcut
method [84] computes a segmentation biased both by low-level image cues and the output of
a part-based probabilistic object-class model (pictorial structure) by solving a single min-cut
problem. Toshev et al. [140] developed a boundary structure segmentation technique that uses
new chordiogram shape descriptors that make possible to match an image to an exemplar and
simultaneously compute a binary segmentation as the result of a semi-definite programming
relaxation.

Some techniques use more detailed processing only after a bounding box is obtained, being
natural extensions to object detection methods. Yi et al. [159] compute object bounding boxes
using a deformable parts detector [46] and use color cues and simple shape priors on the
bounding box and the rectangular parts returned by the detector to obtain a segmentation.
Gu et al. [63] vote for the location and scale of bounding boxes based on matches between
regions in the image and regions inside exemplar bounding boxes. They assign confidence
scores to foreground and background regions and propagate these decisions to the rest of the
image based on low-level similarities, by constraining an initial segmentation obtained using
Ultrametric Contour Maps [2].

3.3. Method Overview

Our recognition methodology relies on figure-ground segments generated by bottom-up com-
putational processes. Our initial processing step produces a set of figure-ground segmenta-
tion hypotheses (out of which only figure segments are retained) for each image using the
combinatorial CPMC segmentation algorithm [26] (fig. 3.2). The number of segments in this
set depends on the image content: images with more edge structures tend to have more seg-
ments. Once segmentation hypotheses are obtained, the recognition framework consists of
three stages: (1) segment ranking and filtering, (2) segment categorization and, (3) sequential
aggregation and post-processing of multiple categorized segments.

The full recognition pipeline is depicted in fig. 3.3. In the first stage, a class-independent
quality function is learned in order to rank all segment hypotheses. This mid-level step sep-
arates segments with object-like regularities from those that do not have them. Based on the
ranking produced in this step, a maximum (fixed) number of segments is selected for each
image. These will be used for training and testing in later stages. This number depends on
the difficulty of the dataset and is usually much smaller than the average number of segments
generated by the algorithm (40—100 in our experiments). While our segmentation method is

39



Chapter 3. Object Recognition as Ranking Holistic Figure-Ground Hypotheses

Generate multiple object
segment hypotheses

Rank object hypotheses
using mid- level cues

(class independent scoring)

Predict overlap estimate 
of each segment to 
specific object class

(1 predictor / class)

Sort segments by maximal score.
Aggregate high-rank segments with
large spatial overlap.
Choose confident aggregations as final
segmentation result .

�

�

�

Person

Chair

Figure 3.3.: Our semantic segmentation pipeline. Initially, an image is segmented into multiple figure-
ground hypotheses constrained at multiple image locations and spatial scales, these are ranked (using
mid-level cues) based on their plausibility to exhibit ‘object-like’ regularities (CPMC algorithm [26]).
Quality functions for different categories are learnt to rank the likelihood of segments to belong to each
class. Several top-scoring segments are selected for post-processing. The final spatial support and the
category labels are obtained sequentially from these segments, based on a weighted sum of selected
segment scores.

based on CPMC [26], additional processing is implemented in the framework, and this will
be described in detail in section 3.4.

In the second stage, we learn a continuous scoring function for each object category, to
assess the likelihood that a segment hypothesis belongs to that class. We follow a one-against-
all methodology: the scoring function for each category is trained with all the input segment
hypotheses that correspond or not to that category. In this way, each of the scoring functions
is also discriminative and separates well one class from the others.

In the final stage, we sort the segment hypotheses by their scores and sequentially make de-
tection and segmentation decisions based on a weighted combination of responses collected
at high-rank segments. Image classification results are generated by taking maximal scores
over all classes and among all image segments.

One of the main innovative points of this work, besides using multiple figure-ground segmen-
tations from CPMC (rather than, e.g., different multi-region image segmentations at different
scales), is that category learning is performed by regressing on a quality function measuring
the spatial overlap with the ground truth segments. Different segments carry different levels
of information. For instance, in fig. 3.2, a segment capturing the entire cow carries the most
significant amount of information in determining its category. Parts of the animal, like the
head, contain a lower, yet significant level of information. Segments that cover the cow and
surrounding grassland provide context about where the cows can typically be found. Even
background segments carry some information, e.g., persistent mountain-grass segments show
that this is a wilderness picture, and some objects like a sofa or a TV are unlikely in the scene.

Our regression-based training scheme is designed to more effectively (and accurately) ex-
ploit the various levels of information available in different segments. The quality function
measures overlap with ground truth, which is a smooth measure of quality that degrades
gracefully: full object segments have the highest overlap, parts of objects and surrounding
segments have moderate overlap and dominantly background segments have the lowest (or
no) overlap. By regressing on overlap, we more judiciously use partial information in all
segments.

Prediction from our regression model generates a natural ranking of all segments based
on their importance. This is illustrated in fig. 3.4. Our decision stage exploits this ranking
to create an accurate object mask. We group together high-confidence segments that cover a
similar region and attempt to consolidate a single mask (and its label) by integrating informa-
tion from all segments. To achieve this, a confidence score is computed for each pixel as the
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Figure 3.4.: An illustration of our segment categorization process. Each segment is given as input
to regressors specialized for each category, producing estimated qualities. The maximal score across
categories is used to sort segments and decide on their category.

weighted sum of scores of the segments that cover it. If all segments agree that a given pixel
should belong to a given category, the likelihood of this assignment will be high. If there are
conflicts, for example one segment votes that a pixel is more likely part of a dog whereas the
other three vote for a cat, the confidence would decrease (see fig. 3.7). A learned threshold on
the pixel confidence score determines if the pixel should be included in the final mask.

3.4. Segment Generation and Filtering

3.4.1. Basic Approach

The inputs to our processing pipeline are multiple figure-ground segmentations obtained by
CPMC [26]. These are obtained by solving a series of constrained min-cut problems, for pu-
tative foreground seeds constrained on a regular image grid and for background seeds sam-
pled as various subsets of pixels on image borders. Multiple significant scale breakpoints
(solutions) for these problems are computed using parametric max-flow in polynomial time
[53].

Ranking segments based on their mid-level properties is the second step in the framework.
During this phase, the segments generated by CPMC are filtered based on a quality function
learned by regression, with covariates chosen as mid-level segment properties and Gestalt
features (see [26]). We additionally use SIFT and HOG descriptors computed on the fore-
ground to augment the feature set used to predict segment quality. Section 3.5.1 provides
detail on the computation of these histogram features.

The regression function we learn for segmentation is class-independent (there is a single
such function in the framework), with input given by segment features and output given
by the maximal overlap between a segment and all the ground truth segments. The scale
of the problem rapidly runs into millions: for instance, a dataset of 2000 images and 1000
segments for each image gives rise to a problem with 2 million examples. Therefore, at
first linear methods appear to be the only practical choice for learning. However, random
Fourier approximations can be used to transform the features linearly, to accurately approx-
imate non-linear similarity measures [119, 12, 150]. In the Fourier methodology we consider
an initial kernel and generate a new set of features based on randomly sampling multiple
components from its Fourier transform. A linear regressor working on the transformed rep-
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resentation usually offers performance close to those of nonlinear kernel machines [119]. In
this chapter, we use random Fourier approximations for all image features and for all kernels
employed for class-independent ranking. The mid-level segment descriptors are transformed
using random Fourier projections corresponding to a Gaussian kernel, and the histogram fea-
tures (SIFT and HOG) are transformed separately using Fourier embeddings derived from
the skewed chi-square kernel [96]. The resulting dimensions are concatenated to generate the
final covariate vector.

Beside random Fourier approximations, we employ additional processing for segment rank-
ing. In the next subsection we define a customized overlap measure that is better tailored to
the performance metric used on the PASCAL VOC challenge [41]. In section 3.4.3 we show
how to learn the class-independent ranking function using linear regression, for problems
where it is no longer possible to load the entire training set into memory.

3.4.2. Quality Function

A common measure used to assess segmentation quality is the ‘intersection-over-union’ over-
lap, or IOU-overlap. Let Sp and Sq be two generic segments and Gq be a ground truth seg-
ment. IOU-overlap is defined as:

Oiou(Sp, Sq) =
|Sp

⋂

Sq|
|Sp

⋃

Sq|
. (3.1)

Sample segments from an image and their IOU-overlap to the ground truth are shown in fig.
3.5. To show how different these can be, the best 4 segments (w.r.t. the ground truth segment)
and the worst 4 segments are shown on the top and bottom rows. On the second and third
row, selected segments that partially overlap the object are shown.

The choice of quality function for training is not confined to the original IOU-overlap used
in [26]. Depending on the task, different quality functions can be used. For example, in the
PASCAL VOC segmentation challenge, the performance measure places more importance on
larger objects. Moreover, the accuracy of the background class is also measured, therefore
segmentations that handle the background correctly are also preferred. These two constraints
are not entirely accounted for by the standard IOU-overlap measure (3.1). It can be seen from
fig. 3.5 that some of the very large segments have significant IOU-overlap with the ground
truth object, although this is not desirable, in order to accurately classify the background.

To palliate some of these effects, we propose a new overlap measure for training that we
refer to as the Foreground-Background Overlap, or FB-overlap. It accounts for both over-
lap with the foreground and overlap with the background, and compensates against large
segments. The measure is computed as:

O(Sp, Gq) =
C
√

|Sp|

log |Sp|
√

Nfg
c

|Sp

⋂

Gq|
|Sp

⋃

Gq|

+
C
√

|Sp|
log |Sp|

√
N bg

|Sp

⋂

Gq|
|Sp

⋃

Gq|
(3.2)

where Nfg
c and N bg are the number of foreground and background pixels in the entire training

set, with c the class of the ground truth segment Gq, and S is the image complement of a
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0.0810/0.0000 0.0808/0.0000 0.0763/0.0000 0.0725/0.0012

0.3770/0.3057 0.3720/0.3005 0.3628/0.3646 0.2131/0.1367

0.6756/0.6273 0.6477/0.5811 0.6444/0.5779 0.6061/0.5838

1.0042/0.9335 0.9292/0.8607 0.8997/0.8319 0.8854/0.8179

Figure 3.5.: (Best viewed in color) Segments with different overlaps with the ground truth. The two
numbers shown are the proposed FB-overlap on the left and the standard IOU-overlap on the right.
It can be seen that FB-overlap favors segments that do not contain a lot of background, whereas IOU-
overlap is indifferent to such effects.

segment hypothesis. C = 90 is a normalization constant that scales the range of the measure
so as to match the range of IOU-overlap on the VOC dataset. The class-independent quality
function of the segment is computed as

O(Sp, I) = max
Gq∈I

O(Sp, Gq) (3.3)

where I is the image where the segment resides in.

FB-overlap emphasizes large segments mildly, while still not penalizing significantly small
to moderately sized segments – because the background is also considered, oversized seg-
ments are not preferred. From fig. 3.5, it can be seen that under the new measure, the seg-
ments that correspond to objects and parts tend to have higher rankings under FB-overlap
than under IOU-overlap. Segments that overlap significantly with the background are given
comparatively lower FB-overlap scores. Besides, FB-overlap provides a mechanism to bal-
ance the training set sizes among different classes. For example the class person in VOC has
around 8 million training pixels, whereas bicycle has only around 300, 000. The overlap
in the class of bicycles are made mildly higher under the FB-overlap measure in order to
equalize the prediction accuracy among different classes.

The formula is derived using ideas from residual analysis [143] on the maximal predicted
scores of the regression model (Section 3.5). Our principle in designing the scoring function
is that although larger segments are to be favored in general, random segments (that do not
correspond to any ground truth) of different size should have roughly the same predicted
scores. During the design phase of the measure, the entire framework has been tested several
times and changes to the measure were made. The end result is formula (3.2). In fig. 3.6 it
can be seen that after tuning, the lower bound scores on all the segment sizes are roughly
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Figure 3.6.: Predicted FB-overlap on VOC 2010 validation dataset against size of the segment (in pix-
els). It can be seen that the lowest predicted score on segments of different size is roughly the same
under the new FB-overlap measure.

similar. Overall, the use of FB-overlap improves the VOC result by around 1%. We will use
the notation O for either overlap measure in the sequel. Notice however that FB-overlap will
only be used in PASCAL VOC training, whereas IOU-overlap is used for all the other datasets.

3.4.3. Linear Regression with Partial-Storage

As the number of images and segments increases, they no longer fit into memory. Since SIFT
and HOG features are not very sparse, a dense representation needs to be used. For instance,
in the VOC 2010 dataset, there are around 10,000 images. We use 800 segments for each image
and 3,600 Fourier feature dimensions as training data for segment ranking. This sums to 8
million examples, each having 3,600 dimensions. Storing the features using single precision (4
bytes) requires 107 gigabytes, which is beyond the current memory capacity of many personal
computers. Some progress has been made in designing large-scale SVM classifiers [160], but
those generally require loading the data into memory multiple times and are extremely time-
consuming. Previous work on large-scale learning mostly focused on text categorization, but
because those features are considerably sparser than in computer vision, the storage problem
is less stringent.

In this work we take a simple approach. It is well-known that for least-squares and related
methods, the problem can always be transformed into an optimization problem on the mean
and the covariance matrix – the sufficient statistics of the Gaussian distribution [10]. These can
be built from the data in chunks. Formally, in regression, our goal is to solve the quadratic
optimization:

min
w

∑

i

(wTxi − yi)
2 + CΩ(w) (3.4)

where xi represents segment features, yi the overlap of a segment, e.g. eq. (3.2), and Ω(w) can
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be any regularizer applied on w, e.g., ‖w‖22, ‖w‖1. This is equivalent to

min
w

wTXTXw − 2wTXTy + CΩ(w) (3.5)

where XTX =
∑n

i=1 xix
T
i and XTy =

∑

i x
T
i yi can be computed by loading a single or a

chunk of xi into memory at a time. Therefore, all methods that use a quadratic loss function
can work without loading all training data into memory. This includes ordinary least squares,
ridge regression, lasso and group lasso methods. We work with ridge regression, under a
quadratic regularization term Ω(w) = ‖w‖22.

One common pitfall in applying the approach is normalization. For instance, if a standard
normalization is to be performed (x = x−x̄

std(x) , where x̄ is the mean and std(x) is the standard

deviation), it is tempting to compute the mean and variance for each chunk of data separately
because not all data can be loaded into memory simultaneously. However this shortcut does
not work well—in our experiments we observed a performance drop of up to 2%. The correct
mean and variance still need to be computed, although this means tediously loading the data
chunk by chunk, computing

∑

i xi and
∑

i x
2
i for each chunk, summing it up to obtain the

mean and variance and loading the data again, in chunks, to normalize.

3.5. Segment Categorization

For categorization, we compute multiple figure-ground segmentations and extract multiple
sets of features for them. A weighted sum of kernels on different types of features is used,
with hyperparameters learned on the validation set. Based on the features and the coeffi-
cients of the kernel combination, support-vector regression on the overlap measure generates
a scoring function for each object category.

3.5.1. Multiple Features

Features are extracted for each segment. We use 7 feature types. In order to model the object
appearance we extract four bags of words of gray-level SIFT [99] and color SIFT [126], on a
regular grid, two on the foreground and two on the background of each segment. Computing
bags of words on the background of a segment models a coarse scene context.

To encode shape information we extract three pyramid HOGs (pHOG) [17], which are con-
catenations of histograms of gradients extracted at different resolutions. Each level of the
pyramid divides each cell from the previous level into four higher resolution cells. The first
level has a single cell. The first of our three pHOGs is defined directly on the contour of
the foreground, whereas the other two operate on edges detected by globalPB [101] inside
the foreground. The first two pHOGs adapt the cell dimensions in order to tightly fit the
bounding box of the foreground segments, whereas the third uses square cells. The pHOG
with square cells always covers a square region of the image, so we pad the image with zero,
whenever this square region is partially outside the image. We use these different pHOGs
so they can complement each other. The gradient orientation is discretized into 16 bins with
values restricted between 0 and 180 degrees, as we chose to ignore the contrast direction.

A chi-square kernel K(x, y) = exp(−γχ2(x, y)) is used for each type of histogram features
and we use a weighted sum of such kernels for regression. The coefficient and the width
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hyperparameters of each chi-square kernel are learned using an optimization scheme detailed
in subsection 3.5.3.

3.5.2. Learning Scoring Functions with Regression

Let us consider an image I with ground truth segments {GI
q}. The segmentation algorithm

provides a set of segments {SI
p} for image I . Denote also the K object categories {c1, c2, . . . , cK}.

Let 1(x) be the indicator function.

As discussed in the previous section, we learn K functions f1(S
I
p), . . . , fK(SI

p) by regression

on a quality measure for segments. For each putative segment SI
p , we compute its overlap,

given by (3.2), against all ground truth segments {GI
q} in the image. The target value yIkp for a

segment SI
p and a category ck is the maximal overlap with ground truth segments that belong

to ck:
yIkp = max

GI
q∈ck

O(SI
p , G

I
q). (3.6)

Usually a segment SI
p overlaps with at most a few ground truth segments. For categories

that do not appear in an image I , yIkp = 0. After training, the estimated qualities for SI
p on

improbable categories tend to be close to 0. Therefore, this regression scheme is able to both
estimate the quality of segments and classify them into categories.

To learn the function fk(S
I
p) for each ck , we use a nonlinear support vector model (SVR)

to regress on yIkp against xIp, the features extracted from segments SI
p . The SVR optimization

problem can be derived as:

min
w,ξ,η

1
2‖w‖2 + C

∑n
i=1 ξi + C

∑n
i=1 ηi

s.t. ξi ≥ 0; ηi ≥ 0,∀i (3.7)

〈w,φ(xi)〉 ≥ O(yi, y)− ε− ηi

〈w,φ(xi)〉 ≤ O(yi, y) + ε+ ξi

where φ(xi) is a nonlinear feature transform of the input xi, defined implicitly by the kernel
K(xi, xj) = 〈φ(xi), φ(xj)〉 detailed in the next section; ε is a small constant, usually 0.05 or 0.1.
Using the kernel trick, it is possible to represent f(SI

p) in dual form as f(SI
p) =

∑

i αiK(xi, x
I
p),

where xi are support vectors from the training set, and the α are coefficients obtained by the
SVR optimizer.

The maximal score and the final segment category are given, respectively, by maxk fk(S
I
p)

and argmaxk fk(S
I
p). However, scores on all categories will be used in the post-processing

stage. One can avoid this type of post-processing and directly choose the segment with maxi-
mum responses, argmaxk,p fk(S

I
p), as output. We call this a simple decision rule. In experiments

we test this rule against more complex post-processing rules.

A main challenge is, once again, the training set size. Since each segment is used as an
example, the number of training examples could be large. We mine hard negatives, an ap-
proach that has become popular recently [46]. First, regressors are trained only on ground
truth segments and putative segments that best overlap the ground truth for each training
object. Then, we classify all training segments, find misclassifications, and re-estimate the
model parameters with these segments added to the training set. Given a memory budget,
we often add only a subset of the misclassified segments and repeat the process multiple
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times. Using this procedure, we are able to train on the Caltech-101 and the VOC 2009/2010
datasets in only a few hours.

3.5.3. Learning the Kernel Hyperparameters

Fundamental to equation (3.7) is the form of the kernel function [82]. Existing multiple ker-
nel learning methods that optimize performance measures on the training set suffer from
overfitting in many cases [82, 54]. Therefore, we optimize the kernel hyperparameters on the
validation set. Since we employ a weighted addition of multiple kernels, it is infeasible to es-
timate all kernel hyperparameters by means of grid search. Instead, we use gradient descent
on an objective function defined on the validation set. To speed-up the process, we apply
the algorithm only on a subsample of the data, consisting of segments that best overlap the
ground truth. The idea is that kernels need to at least model well the similarity between the
clean segments in different classes. Given two exemplars xi and xj the additive kernel model
is

K(xi, xj) =
∑

k

βkKk(xi, xj ; γk), (3.8)

where γk is the width of the chi-square kernel. We learn β and γ jointly by directly minimizing
the misclassification rate over all images in a (hold-out) validation set:

min
β,γ

∑

SI
p∈ck

1(fk(S
I
p) < max

i
fi(S

I
p)). (3.9)

where fk(S
I
p) =

∑

j,k αjβkKk(xi, xj ; γk) is trained with SVR using the kernel (3.8) on the cur-
rent β and γ.

To be able to employ gradient-based optimization algorithms, we use the sigmoid function
as a continuous approximation to the indicator:

∑

SI
p∈ck

u(fk(S
I
p) < max

i
fi(S

I
p)), (3.10)

where u(x) = 1
1+e−σ0x

. A quasi-Newton method is used to find a local optimum for the
parameters. Since both the number of kernel parameters and the number of examples are
small, this process is fast.

We found that hyperparameters obtained by this procedure are very stable. We learned
them on the VOC 2009 train and validation sets and used them throughout all our experi-
ments, both in the VOC 2009 and 2010 (validation and test sets) and for the ETHZ Shape,
with consistently good performance.

3.5.4. Connections with Structural SVM

There are interesting connections between our learning approach and the method of Blaschko
and Lampert [11], which uses a structural SVM [141] to learn a model for detection. For a
bounding box yi and a ground truth bounding box y, let xi be the feature vector for yi and x

47



Chapter 3. Object Recognition as Ranking Holistic Figure-Ground Hypotheses

the feature vector for y. The structural SVM formulation for sliding window prediction is:

min
w,ξ

1
2‖w‖2 + C

∑n
i=1 ξi

s.t. ξi ≥ 0,∀i (3.11)

〈w,φ(x, y) − φ(xi, yi)〉 ≥ 1−O(yi, y)− ξi.

Structural SVMs have a larger feature space than standard SVMs because the output is ker-
nelized and y appears jointly in the embedding function φ(x, y). However, the output vector
of [11] is 5-dimensional: the class label and the locations of the bounding box. This makes the
difference between the input and the joint feature space dimensionality unimportant.

Another difference to [11] is that all possible rectangular regions are considered. This is fea-
sible within a branch-and-bound procedure [88] that can rapidly prune out irrelevant regions
of the search space, for the restricted class of features and linear models used in [11]. How-
ever, it is difficult to adapt both the structural SVM and the branch-and-bound methodology
for the much more powerful nonlinear SVM predictors and image features we want to be
able to use. Our task is easier, however, because our use of a compact pool of image segments
eliminates the need to process a large number of bounding boxes.

Ignoring these two differences, the structural SVM (3.11) looks superficially similar to our
SVR formulation (3.7). It could be seen that if we assume 〈w,φ(x, y)〉 = 1 − ε, then the last
constraint in (3.11) would be the same as the last constraint in (3.7). The difference is clear,
however: (3.11) scores the ground truth bounding box and ensures its quality is better than
other tentative bounding boxes, with margin determined by the overlap. Meanwhile, (3.7)
simply scores all the segments and measures an absolute quality of the segments. We argue
that our approach has important advantages. It does not only guarantee the highest rank for
the ground truth, but also the correct ranking for all remaining (putative) segments: those
with higher overlap will simply have higher scores. For structural SVM, only the smallest
margin between the best segment and other segments is imposed based on the overlap. Since
each segment may have an arbitrarily low score without violating margin constraints, the
segment ordering is not preserved inside the non-maximum subset.

3.6. Sequential Segment Post-Processing

3.6.1. Generating Segmentation Results

The challenge of this stage is to form a consistent segmentation and labeling for images con-
taining multiple objects, given a set of plausible, reasonably high ranked segments with initial
category labels. The simple decision rule of only using the highest scoring segment cannot
handle multiple objects in an image. The non-maximum suppression method that removes all
regions overlapping the highest scoring one is standard in bounding box detection, and can
be used similarly for segmentation, but we argue that a better approach can be constructed
by exploiting the redundancy of class predictions from multiple overlapping segments. Our
methodology employs a weighted consolidation of segments and a sequential interpretation
strategy, in order to analyze images with multiple objects.

Figure 3.7 shows an example. After classification, the highest-ranked segment was assigned
the correct category, cat, but this segment also contains background around the object. The
next two segments located the cat exactly, but were classified as dog. One can see that pre-
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Score: Cat: 0.3361; Dog: 0.1669 Score: Cat: 0.327; Dog: 0.188 Final Mask Score: Cat: 0.9754

Score: Cat: 0.362; Dog: 0.1175 Score: Cat: 0.286; Dog: 0.3419 Score: Cat: 0.2874; Dog: 0.3297

Cat

Cat Cat

Dog Dog

Figure 3.7.: (Best viewed in color) An image of a cat from the VOC2009 dataset. We show the cat/dog
scores of the 5 top scoring segments from the image. It is relatively difficult to distinguish if this
instance is a cat or a dog, from the foreground/object information only (e.g., top-middle and top-
right segments). However, our algorithm takes advantage of multiple slightly different overlapping
segments to produce a robust decision, that consistently improves upon the simple decision rule. In
the Final Mask, the cat itself has the strongest score (indicated by high intensity values).

dictions for these two segments are not very decisive, since cat and dog have very similar
scores. By taking into account the class predictions of such multiple overlapping segments, it
is possible to achieve more robust decisions.

Since the higher-ranked segments should have higher probability of representing full ob-
jects, we proceed iteratively. First, we consider the highest-scoring segment as a seed and
group segments that intersect it. To decide which segments to group, we compute a segment
intersection measure:

Int(Sp, Sq) =
|Sp

⋂

Sq|
min(|Sp|, |Sq|)

. (3.12)

Under this criterion, parts have 100% intersection with full objects, therefore they are always
grouped together. We consider segments with intersection > τ1 (τ1 = 75% chosen based on
the validation sets) as candidates for combination. In the end, a list LI

1 (1 is used as index
because this is the first candidate mask in the image) of segments is generated, in which
partially overlapping segments are sorted according to their descending scores.

We then generate the scores for each pixel and each class in the image by weighted voting
based on the segments in the list

gk(pj) =
∑

Si∈LI
1

wi1(pj ∈ Si)fk(Si). (3.13)

where Si represents the i-th ranked segment in the list LI
1, k is a certain class, pj is a pixel,

fk(Si) is the predicted score for Si on class k. Through this equation, scores on segments
are transferred to scores on pixels inside segments. Then a weighted combination is taken,
with segments with higher prediction having higher weights. For a pixel, its scores are only
counted on the segments that overlap it, as given by the term 1(pj ∈ Si). Therefore, pixels
that appear in all segments get higher scores, whereas pixels that only rarely appear get lower
scores. Besides, because scores are computed for each class separately, if all overlapping
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segments agree on the label, that class is supported strongly. Finally, each pixel is assigned to
the class that has the highest score: g(pj) = maxk gk(pj).

We define the term mask as a figure-ground segmentation with each pixel on the foreground
classified to some category, in order to differentiate it from segments. To separate foreground
and background, only pixels with final scores > τ2 are displayed in the aggregated mask M I

1

(τ2 = 0.55 is selected, based on validation data). The score of the mask is given by

g(M I
1 ) = max

pj∈I
g(pj) (3.14)

The last image in fig. 3.7 shows an example of the final mask, where it can be seen that the
classification is now correct and the scores are highest in the cat region and much lower in
other regions.

The weights wi in (3.13) are associated with the rank (in the list m) of the segment only,
uniformly across different images and classes. These are learned using linear regression on
targets that measure the overlap of the generated masks with ground truth, in the validation
set.

After we have generated a final mask M I
1 from segments in LI

1, we remove the segment set
LI
1 and the foreground region in M I

1 from the image and consider it consolidated. Then we
proceed with the next highest-ranked segment. Based on the same procedure we generate LI

2

and M I
2 , etc. Altogether in the VOC dataset usually 6-7 final masks are sufficient. In the end,

the final masks are filtered, and only those with mask score g(M I
j ) ≥ τ3(τ3 = 0.66 chosen

based on validation data) are retained in the final result. It can be seen that the false positive
rate is high, therefore so many stages are needed to reduce variance. With more training data
and improved regression accuracy, we can probably remove some of the filtering steps. The
post-processing method is detailed as Algorithm 1.

We also implement a simple filter based on the class co-occurrence frequencies in the VOC
training set [56]. A co-occurrence frequency matrix is computed, whose ij-th entry counts
the number of times two objects of class i and j co-occur in the same image. During testing,
we filter object pairs that never co-occur. This only improves performance slightly in our ex-
periments (see Table 3.1). Further discussion on alternative decision rules appears in Section
3.7.1.

3.6.2. Generating Detection and Classification Results

To generate detection results, the method changes slightly. We use overlap (3.1) to replace
the intersection measure (3.12) used for grouping segments. This is because when using an
intersection measure, small objects are combined within a larger segment containing them.
For instance, sometimes we combine two bottles placed next to each other into one large
segment enclosing both. This may not affect the segmentation performance measure, but for
detection, a single bounding box would enclose both bottles and would count as one false
positive and two false negatives. Adapting the criterion from intersection to overlap makes
the method work well for detection. Also, we do not use a threshold to determine whether to
output a segment as in Algorithm 1. Instead, we simply output all the generated final masks.
For classification, in each image we simply find the mask with the highest score and output
its label.
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Algorithm 1 Postprocessing pipeline for image I . Sequential aggregation of multiple catego-
rized segments.

input Segments S = {SI
1 , . . . , S

I
m}, with predicted scores fk(SI

i ) for each class k.
output Final masks {Mi} on the image I .

1: Sort the segments descending by maximal score f(SI
i ) = maxk f

k(SI
i ) on all classes.

2: n = 1
3: while S is not empty do
4: Select SI

n = argmaxi f(S
I
i ), the segment with the highest maximal score.

5: Find all segments that have at least τ1 intersection with SI
n, let them be LI

n, still sorted
by maximal score.

6: For each pixel pj in the image, compute pixel score gk(pj) for each class k by

gk(pj) =
∑

Si∈LI
n

wi1(pj ∈ Si)fk(Si). (3.15)

7: for each pixel pj do

8: if maxk gk(pj) < τ2 then

9: Mn(pj) = background
{Classify pj as background.}

10: else

11: Mn(pj) = argmaxk gk(pj)
{Classify pj as class k.}

12: if maxk,j gk(pj) > τ3 then

13: Output Mn

{The score of the mask is given by the highest pixel score in the mask. It must exceed
a threshold to be retained in the final semantic segmentation.}

14: Delete all segments in LI
n from S.

15: n = n + 1
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3.7. Experiments

The experiments are divided in two parts. The first section shows proof-of-concept studies,
where various important aspects of the algorithm are tested. In the second section, we show
results of our recognition framework (denoted SvrSegm, abbreviated from SVR on SEGMen-
tations) applied to three key tasks in image understanding: image classification, object local-
ization and object segmentation. We also compare with previously reported results.

The segments used in all experiments except those on PASCAL VOC 2010 were generated
by CPMC based on the same 5x5 grid of seeds and the same parameters detailed in the origi-
nal CPMC paper [26]. The experiments on PASCAL VOC 2010 used CPMC with a different set
of parameters tuned for producing a larger initial pools of segments. Additionally, these ex-
periments used an expanded set of seeds. Further detail on the PASCAL VOC 2010 segments
can be found in the documentation provided with the publicly available CPMC segmentation
implementation [25].

The initial pools of segments have, averaged over all images, 95 segments for the ETHZ
shape dataset, 64 for Caltech 101, 145 for VOC2009 and 736 (with the new parameters) for
PASCAL VOC 2010. One possible way to measure the CPMC performance on a dataset is
to compute the maximum IOU-overlap between each ground truth object and any generated
segment, then average over all objects. This score also illustrates how difficult low-level seg-
mentation is in each dataset. Our pools of CPMC segments obtain 0.83 on Caltech 101, 0.85
on ETHZ Shapes and 0.66 on PASCAL VOC 2009. With the new CPMC configuration, on
PASCAL VOC 2010 we obtain a maximum IOU-overlap of 0.74. Note that the PASCAL VOC
datasets are considerably more challenging for low-level object segmentation. More details
about these datasets will be given in the next subsections.

3.7.1. Proof-of-Concept Experiments

In this subsection we test two concepts presented in the chapter: 1) Regression against overlap
and 2) Post-processing. We use the PASCAL VOC 2010 dataset to perform these tests.

The PASCAL VOC 2010 segmentation dataset contains 1928 images (with 4203 objects) for
training, which are divided into 964 images (2075 objects) in the train set and 964 images
(2028 objects) in the val set. Objects are selected from 20 classes. A hold-out test set of 964
images is used to evaluate the performance of the algorithm. For this data, annotations are
not available and one must submit results to an external evaluation server1. The performance
is measured using per-class overlap, defined as:

segmentation accuracy =
TP

TP + FP + FN
(3.16)

where TP is the number of true positive pixels of the class, FP is the number of false positive
pixels and FN is the number of false negative pixels. The TP, FP, and FN values are summed
across all the images of the test set. In the end, the 21 per-class overlaps (all the 20 classes
plus the background class) are shown, and the mean performance is an average over the 21
individual accuracies. Naturally, this performance measure favors big segments, which may
often be more important in understanding the image, although this is perhaps arguable. Our

1available at http://host.robots.ox.ac.uk:8080/
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(a) Comparison of classification and regression ap-
proaches. Even the best threshold for classification gives
results vastly inferior to regression.

0 50 100 150

24

26

28

30

Number of Segments

V
O

C
 P

er
fo

rm
an

ce

(b) Performance as a function of the number of
segments. Performance improves very quickly
initially, as more segments are added and reaches
its peak for 110 segments. Beyond that value, it
deteriorates slightly.

Figure 3.8.: Studies on the VOC2010 segmentation validation set.

FB-overlap measure (3.2) is designed to reflect the evaluation objective in a principled manner,
and shows the flexibility of our approach in adapting to different objectives.

In this subsection we perform experiments by training on the train set and testing on the
val set. This is consistent with the recommended usage of the two sets: to test the model and
identify parameters. We use the VOC mean performance to evaluate the models.

First, we test our one-vs-all regression scheme against the more commonly used classifica-
tion approach. We set an acceptance threshold on the overlap so that segments with overlap
higher than a threshold are considered positives for the class and the remaining ones are con-
sidered negative; we varied this parameter from 0.1 to 0.7. All the other parameters are the
same except that we use SVM classification instead of regression. To avoid interference from
external factors, post-processing is disabled in this experiment, and only the best segment for
each image is reported. The result is shown in fig. 3.8a.

The regression scheme obtained 30.47% as VOC mean score. Among the threshold values
tested for classification, the best threshold (0.3) achieved 26.15%. Therefore, the one-against-
all regression approach brings at least a 4% performance improvement, and has one less pa-
rameter to tune compared to classification (the acceptance threshold).

Another relevant aspect of study is the number of segments required by the algorithm
in order to obtain good results. This can also be seen as a test on the performance of the
class-independent segment ranking method (Section 3.4). For this study we again disabled
post-processing operations and output only the best segment for each image. The results in
fig. 3.8b, perhaps surprisingly, show that even by using only a few segments, the results
are not much lower than the best ones that we achieved. Moreover, when using more than
110 segments, the accuracy does not saturate but deteriorates slightly. Since the classifier has
limited inductive power, it seems that when there are too many low quality segments in both
the training and testing sets, spending too much capacity on predicting those well negatively
impacts the ability to correctly generalize on good segments. This justifies our need of a
multi-stage segment filtering approach.
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We also test the importance of various factors in post-processing. Compared with the
straightforward approach of selecting the best segment for each image, there are two improve-
ments from post-processing: 1) Improving the quality of the segment; 2) Obtaining multiple
segments per image instead of just one. In order to separate these factors, we compare the full
post-processing results with strategies that only extract one segment per image.

We show detailed results of this experiment in Table 3.1, where the improvement provided
by each step is recorded. From the results, we note that post-processing improves the qual-
ity of the segmentation by about 3% (improvements are observed in 17 out of 21 classes)
when moving from Simple to 1-Seg. Besides, our approach significantly outperforms non-
maximum suppression (NMS). However, allowing for multiple segments leads to mixed re-
sults: the performance deteriorates in 8 out of 21 classes and only improves in 12. The co-
occurrence criterion is not entirely satisfactory either: from the simpler No co-occur to
Full, only 4 classes show significant performance improvement.

3.7.2. Performance Experiments

Image Classification: Caltech-101

We also test the image classification performance of our algorithm in the Caltech-101 bench-
mark[42]. As in standard approaches, we report results averaged on all the 101 classes, over
3 different random splits. For each class, we use 5, 15 or 30 images for training and up to
15 images for testing, following the common setting in the literature. We train the model
using ground truth segmentation masks provided with the dataset. In fig. 3.9, we compare
our results against existing approaches. Our scores consistently improve the current state-of-
the-art in all training regimes. In particular, our approach outperforms other multiple kernel
frameworks such as [54] and the segmentation-based framework of [63].

We have also run some of the proof-of-concept experiments on this dataset, in order to
compare our regression scheme with SVC (support vector classification). We also evaluate
the impact of post-processing. Since the outputs of our SVR are different from those of SVC,
we do not employ the post-processing algorithm in this comparison, but use only the simple
decision rule. It turns out that in Caltech-101, the simple decision rule works well. Table
3.2 confirms that regression works significantly better than classification. More sophisticated
post-processing does not outperform the simple decision rule in this case, except for the small
training regimes (5 training images). Two experiments were pursued further. The first uses
only the best segment in our hypothesis pool for both training and testing; the second uses
only the ground truth segment for the same purpose. The experiments show that we are very
close to saturation: the results generated by training and testing only on our best segment for
each image are not significantly better than results based on multiple segments. Arguably,
in this dataset, improvements are more likely to emerge from better features and better seg-
ments, than the decision rule itself.

Detection: ETHZ Shape Classes

We compare our detection results with the ones reported in [63], a competitive segmentation-
based recognition approach. We use the ETH Zurich database[47] which contains 5 shape
categories and 255 images. We follow the experimental settings in [47], and use the PASCAL
criterion to decide if a detection is correct. The image set is evenly split into training and test-
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Class Name Simple NMS 1-Seg No new No co- Full
segment occur

Mean 30.47 31.84 33.28 33.76 33.91 34.30

Background 79.01 80.74 81.60 81.71 82.03 82.03

Aeroplane 35.65 41.66 44.47 42.13 43.80 43.97

Bicycle 16.66 16.03 16.92 16.03 16.14 16.29

Bird 30.99 31.22 34.76 33.24 32.38 32.55

Boat 29.65 32.21 34.42 33.59 33.61 33.81

Bottle 40.72 41.94 40.81 42.26 43.07 43.07

Bus 44.88 48.25 47.72 47.64 49.55 49.70

Car 56.92 53.63 55.64 55.58 53.94 56.19

Cat 34.35 36.20 37.10 35.86 37.26 36.28

Chair 4.94 7.35 4.24 6.26 6.79 6.79

Cow 8.51 8.80 11.57 13.08 13.48 13.13

Dining Table 12.53 14.43 19.84 24.12 23.56 23.31

Dog 13.94 14.98 16.57 17.43 17.35 17.52

Horse 32.53 29.03 31.14 29.44 30.30 30.33

Motorbike 42.04 41.36 47.61 46.42 45.47 46.80

Person 26.26 30.85 27.67 33.35 33.73 33.71

Potted Plant 20.54 20.15 18.74 18.70 19.01 19.01

Sheep 30.36 35.62 33.20 36.74 36.31 38.67

Sofa 14.90 15.79 15.94 20.19 17.47 19.93

Train 35.28 37.20 41.93 41.86 41.94 42.39

TV/Monitor 29.25 31.16 36.94 33.33 35.00 34.75

Table 3.1.: Study of the effects of post-processing on the VOC2010 validation set. The Simple scheme
uses no post-processing and outputs only the best segment. NMS is the result obtained using non-
maximum suppression. 1-Seg outputs at most 1 best segment from post-processing, but allows to
combine multiple segments. No new segment allows an arbitrary number of segments, but selects
the segment from the original pool that is closest to the post-processing result. In No co-occur,
the result is not filtered by the frequency matrix of segment co-occurrence. Full uses the full post-
processing pipeline described in the chapter.
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Figure 3.9.: Comparisons on Caltech-101. SvrSegm outperforms the current state of the art for all
training regimes.
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Method 5 Train 15 Train 30 Train

Classification 58.6 72.6 79.2
Regression 59.6 74.7 82.3
Reg. w/ Post-Processing 60.9 74.7 81.9

Best Segment 62.4 75.8 82.5
Ground Truth Segment 71.7 83.7 89.3

Table 3.2.: Comparisons of different settings of SvrSegm for learning in Caltech-101. Our regression
on overlap framework significantly outperforms classifier-based implementations. Post-processing
helps somewhat for small training sets. We also show the result produced by using only the best
ranked segments and ground truth segments (in both training and testing), to give an idea of the best
performance the current recognition framework could obtain by improving the segmentation.

ing sets and performance is averaged over 5 random splits. For training with just bounding
box data, we automatically extracted an object mask inside each bounding box and set it as
the ground truth segmentation mask. This mask is obtained by first generating multiple seg-
ments inside the bounding box, then selecting the one that maximizes a mid-level segment
quality score—the output of the predictor in [26], from which we subtract the sum of Eu-
clidean distance of the segment to each edge of the ground truth bounding box, as a penalty
for deviation from the frame constraint.

ETHZ results are given in fig. 3.10. Our method outperforms the state of the art by nearly an
order of magnitude—at 0.02 FPPI (false positives per image) our detection rate is comparable
with the detection rate at 0.2 FPPI in Gu et al. [63]. Comparisons between algorithms at 0.02
FPPI are shown in Table 3.4. We achieve 98.3%, a nearly perfect detection rate for the Swans
category, at less than 0.02 FPPI.

We also evaluate the quality of our object segmentations using the ground truth segmenta-
tion masks made available by Gu et al. [63]. Following [63], we report pixel average precision
(AP) on each class. For each, a ROC curve is computed by varying the detection threshold on
the mask scores of segments. AP is computed as the area under the curve. Comparisons with
[63] in Table 3.3 show improvement in most classes.

Results of SvrSegm for various training conditions are shown in fig. 3.11. We use three
variants for the scoring function: overlap with the bounding box (named Bounding Box in
the figure); overlap with automatic object mask generated from the bounding box (Automatic
Overlap) and overlap with the ground truth object mask (Ground Truth). The algorithm ap-
pears to be robust to noise in the overlap measure. We also trained and tested our recognition
framework using segments from [4] (denoted OWT-UCM Segments). We observe that this
setting produces lower scores than the one obtained using CPMC segments. A possible ex-
planation is that the OWT-UCM segments usually do not correspond to full objects but to
parts and other image regions. This type of input does not appear to be effective in conjunc-
tion with our recognition framework.

Segmentation and Labeling: VOC 2009 and 2010

The SvrSegm algorithm was used in BONN_SVM-SEGM entry for the PASCAL VOC 2009
Challenge and the BONN_SVR_SEGM entry for the PASCAL VOC 2010 Challenge. The sys-
tem was declared a winner in the VOC 2009 challenge and a joint winner of the 2010 challenge.
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Figure 3.10.: Comparisons on ETHZ-Shape classes. SvrSegm is trained using only bounding box data.
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Figure 3.11.: Comparisons on ETHZ-Shape classes for different training conditions. SvrSegm is trained
to predict overlap with object masks generated from the bounding box (Automatic Overlap), overlap
with the bounding box (Bounding Box) and ground truth object masks (Ground Truth). We also both
trained and tested with segments from Arbelaez et al.[4] (OWT-UCM Masks).

Categories Gu et al. SvrSegm

Applelogos 77.2 ± 11.1 89.0± 1.9
Bottles 90.6 ± 1.5 90.0± 2.1
Giraffes 74.2 ± 2.5 75.4± 1.9
Mugs 76.0 ± 4.4 77.7± 5.9
Swans 60.6 ± 1.3 80.5± 2.8

Average 75.7 ± 3.2 82.5± 1.2

Table 3.3.: Segmentation results for ETHZ-Shape. Performance (%) is measured as pixel-wise mean AP
over 5 trials, following [63].

Categories Ferrari et al. Gu et al. SvrSegm

Applelogos 68.83 69.75 90.48
Bottles 60.32 74.59 89.13
Mugs 46.06 54.33 81.25
Giraffes 23.75 49.63 92.07
Swans 31.60 56.98 98.31

Average 47.76 59.40 90.25

Table 3.4.: Detection rate at 0.02 FPPI in ETHZ-Shape. SvrSegm noticeably improves on the state-of-the
art in this regime.
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This section describes the results obtained in these challenges, and our subsequent efforts on
the VOC 2010 dataset, after the challenge, which results in the best performance reported so
far for this dataset on the test set: 43.8% accuracy.

The 2009 segmentation challenge provides 1,499 images (containing 3211 objects) in the
trainval dataset and 750 images in the hold-out test set to evaluate the performance of
submitted algorithms. Additionally there are 5,555 images (with 14,007 objects) where only
bounding box annotations are available. We did not use images with bounding box annota-
tions at the time of the challenge, where our entry was declared as winner with an accuracy of
36.3% (in evaluating different methodologies, notice that some of the participants used these
additional images to train their system [56]). The results of the challenge are reproduced in
Table 3.5. Some systems from the detection challenge have automatic entries in the segmen-
tation challenge, since a trivial segment from the bounding box can be generated. However
this often gives relatively uncompetitive results that we omit in the table.

After the challenge, we have also exploited bounding box annotations crudely (only one
segment which best overlaps the bounding box is used, with overlap value always set to 0.8)
to produce the slightly improved 37.24% accuracy reported in [95]. This result is not included
in this chapter because the methodology is slightly different, but see our work in [95] for
details.

As described in section 3.7.1, in the 2010 segmentation challenge, the trainval set is aug-
mented to 1,928 images (with 4,203 objects) and the test set is augmented to 964 images.
An additional 8,175 images (containing 19,171 objects) have only bounding box annotations.
This approach was one of the joint winners with an accuracy of 39.7%. The version we sub-
mitted to the challenges was trained only based on segmentation annotation and without
taking advantage of the information in the additional images that contain only bounding box
annotations. After the challenge we included those additional images in the training set.
For each ground truth object, we selected the 10 segments whose bounding-box had the best
IOU-overlap with the object bounding box, and set those overlap values as desired outputs.
With this additional training data, we obtain a further 4% performance improvement on VOC
2010, resulting in 43.8%. To our knowledge this is the best result reported on this dataset so
far. Table 3.6 provides details.

Fig. 3.12 illustrates some successfully segmented images from the VOC test set. It can be
seen that our method handles background clutter, partially occluded objects, objects with low
contrast with the background, as well as multiple objects in the same image. The first two
images shown in the last row have particularly low contrast—the sheep in the first image or
the black suit of the child in the second one are almost the same color as the background. Our
approach nevertheless succeeds in identifying the correct spatial support of those objects and
also predicts their category correctly.

However, despite our moderate success, the performance on the VOC dataset remains at
around 44%, which means there is still substantial room for improvement. In order to gain
intuition on directions for future development, we also show images where the method fails.
Fig. 3.13 shows images that illustrate various types of failure. We partition the errors into
4 groups. In group 1, errors come from the inability to correctly select segments. Usually,
the segments selected by the algorithm are to some degree intuitive. For instance, in the last
image where we classified a segment as boat, a background segment shaped as a boat was
selected and wrongly labeled as boat. In turn, the aircraft is also quite hard to detect since it
is small and almost entirely occluded.
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Name SvrSegm BROOKES CVC LEAR MPI NEC UC3M UCI UCLA UoC
MSRC UIUC TTI

Mean 36.3 24.8 34.5 25.7 15.0 29.7 14.5 24.7 13.8 29.0

background 83.9 79.6 80.2 79.1 70.9 81.8 69.8 80.7 51.2 78.9
aeroplane 64.3 48.3 67.1 44.6 16.4 41.9 20.8 38.3 13.9 35.3

bicycle 21.8 6.7 26.6 15.5 8.7 23.1 9.7 30.9 7.0 22.5

bird 21.7 19.1 30.3 20.5 8.6 22.4 6.3 3.4 3.9 19.1
boat 32.0 10.0 31.6 13.3 8.3 22.0 4.3 4.4 6.4 23.5

bottle 40.2 16.6 30.0 28.8 20.8 27.8 7.9 31.7 8.1 36.2

bus 57.3 32.7 44.5 29.3 21.6 43.2 19.7 45.5 14.4 41.2
car 49.4 38.1 41.6 35.8 14.4 51.8 21.8 47.3 24.3 50.1

cat 38.8 25.3 25.2 25.4 10.5 25.9 7.7 10.4 12.1 11.7

chair 5.2 5.5 5.9 4.4 0.0 4.5 3.8 4.8 6.4 8.9

cow 28.5 9.4 27.8 20.3 14.2 18.5 7.5 14.3 10.3 28.5

diningtable 22.0 25.1 11.0 1.3 17.2 18.0 9.6 8.8 14.5 1.4

dog 19.6 13.3 23.1 16.4 7.3 23.5 9.5 6.1 6.7 5.9
horse 33.6 12.3 40.5 28.2 9.3 26.9 12.3 21.5 9.7 24.0

motorbike 45.5 35.5 53.2 30.0 20.3 36.6 16.5 25.0 23.6 35.3

person 33.6 20.7 32.0 24.5 18.2 34.8 16.4 38.9 20.0 33.4
pottedplant 27.3 13.4 22.2 12.2 6.9 8.8 1.5 14.8 2.3 35.1

sheep 40.4 17.1 37.4 31.5 14.1 28.3 14.2 14.4 12.6 27.7
sofa 18.1 18.4 23.6 18.3 0.0 14.0 11.0 3.0 12.3 14.2

train 33.6 37.5 40.3 28.8 13.2 35.5 14.1 29.1 17.0 34.1

tv/monitor 46.1 36.4 30.2 31.9 13.2 34.7 20.3 45.5 13.2 41.8

Table 3.5.: VOC 2009 segmentation results on the test set, for various research teams participating in
the challenge. SvrSegm is the method presented in this chapter.
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Name SvrSegm SvrSegm BROOKES CVC STANFORD UC3M UOCTTI
WITH DET W/O DET

Mean 43.8 39.7 30.3 40.1 29.1 27.8 31.8

background 84.6 84.2 70.1 81.1 80.0 73.4 80.0

aeroplane 59.0 52.5 31.0 58.3 38.8 45.9 36.7
bicycle 28.0 27.4 18.8 23.1 21.5 12.3 23.9

bird 44.0 32.3 19.5 39.0 13.6 14.5 20.9

boat 35.5 34.5 23.9 37.8 9.2 22.3 18.8
bottle 50.9 47.4 31.3 36.4 31.1 9.3 41.0

bus 68.0 60.6 53.5 63.2 51.8 46.8 62.7

car 53.5 54.8 45.3 62.4 44.4 38.3 49.0
cat 45.6 42.6 24.4 31.9 25.7 41.7 21.5

chair 15.3 9.0 8.2 9.1 6.7 0.0 8.3
cow 40.0 32.9 31.0 36.8 26.0 35.9 21.1

diningtable 28.9 25.2 16.4 24.6 12.5 20.7 7.0

dog 33.5 27.1 15.8 29.4 12.8 34.1 16.4
horse 53.1 32.4 27.3 37.5 31.0 34.8 28.2

motorbike 53.2 47.1 48.1 60.6 41.9 33.5 42.5

person 37.6 38.3 31.1 44.9 44.4 24.6 40.5
pottedplant 35.8 36.8 31.0 30.1 5.7 4.7 19.6

sheep 48.5 50.3 27.5 36.8 37.5 25.6 33.6

sofa 23.6 21.9 19.8 19.4 10.0 13.0 13.3
train 39.3 35.2 34.8 44.1 33.2 26.8 34.1

tv/monitor 42.1 40.9 26.4 35.9 32.3 26.1 48.5

Table 3.6.: VOC 2010 segmentation results on the test set. For our method, SvrSegm, models trained
both with and without additional bounding box data and images from the training set for object detec-
tion are shown (WITH DET and W/O DET, respectively).
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Figure 3.12.: Successful semantic segmentations produced by our method on the VOC test set. Notice
that the object boundaries are relatively accurate and that our method can handle partial views and
background clutter.
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In the second failure group, the algorithm does not successfully handle multiple interacting
objects, such as men on motorbike. These types of images are difficult to segment purely
bottom-up because of the complicated patterns of mutual occlusion between objects. It might
also be, in part, a problem of the current post-processing method, whose sequential nature (fix
a mask before considering the next one) does not always allow for a joint analysis of multiple
segments and categories. We have recently developed alternative formulations to address
some of these issues [27, 71].

The third failure group illustrates errors in classification. Currently, confusions mostly arise
between a few relatively similar category pairs: cow—horse, dog—cat, dog—horse, dog—
sheep, other tables (which are labeled as background in the challenge)—dining table, sofa—
chair, and TV/Monitor—other similar shaped objects (e.g., windows, glasses on doors). Oth-
erwise, if a segment is correctly recovered, it is usually correctly classified. Considering the
relatively small training set, we believe that such errors are not very problematic in the long
run, as more training data becomes available.

The fourth failure group shows that it is sometimes difficult for the method to determine
the proper spatial extent of objects. This can happen when parts of objects are recovered (the
table and the bottle in the group), an overly large segment contains the object (the sofa and
the bird in the group) or reflections occur (the boat in the group).

It is also worth mentioning that because normal tables are not classified as dining tables
in the VOC dataset, the trained dining table classifier mainly looks for dishes, plates, glasses
and other stuff on the table, instead of the table itself. This annotation may just be too fine-
grained considering the dataset size and distribution. At the same time it is to some degree
ambiguous as in principle almost any table can be used as a dining table.

3.8. Conclusion

We have described a semantic image interpretation framework based on a novel front end
algorithm, CPMC [26], that generates multiple figure-ground segmentations, followed by se-
quential object labeling. Unlike previous methods that rely on classification, we frame recog-
nition as a regression problem of estimating the spatial overlap of generated segments with
the target object of the desired category. Instead of selecting only one segment, we produce a
ranking in the space of all putative segments based on spatial overlap. This makes it possi-
ble to better exploit segments that partially overlap the ground truth in order to consolidate
recognition. We demonstrate state-of-the-art results in image classification, object detection
and semantic segmentation in Caltech-101, ETHZ-Shapes and PASCAL VOC 2009 and VOC
2010. Our approach is dominantly bottom-up: object class knowledge is used only after plau-
sible object segmentations have been obtained. In the long run, a closer integration of top-
down information could improve performance. In this work, however, we make a case that
bottom-up modules that extract object-level segments beyond superpixels can achieve good
performance. They are a plausible front-end for both segmentation and recognition tasks.
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Figure 3.13.: Failure modes of our semantic segmentation on the VOC testset, split into four groups.
See text for discussion.
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Chapter 4.

Conclusions and Future Directions

Vision allows humans to build extremely rich internal representations of physical scenes.
Many important tasks require reasoning about the elements of a scene and this often requires
these elements to be linked to memories. For example, understanding that a circular object in
the image is an ‘apple’ affects the decision of eating it. Visual recognition is the ability to ‘link’
elements of a scene pictured in an image with memories of related elements seen previously,
often object categories, such as ‘car’, and ‘person’.

Reproducing visual recognition in computers has been a subject of much research. While
there has been progress, recognition is still challenging. Even small problems comprising a
few dozen categories are notoriously difficult for current technology [39]. Visual recognition
can be roughly decomposed into three main subproblems: how to explore the image and
select regions to inspect, how to explore memory and select elements to compare with, and
how to evaluate the merits of a match between a memory element and an image region.

The main focus of this thesis was the first problem: the development of algorithms for struc-
turing image exploration to facilitate recognition and localization of objects in images. We ap-
proached this problem using ideas based on segmentation. Differently from sliding window
approaches, which sample densely among the set of rectangles possessing a predetermined
aspect-ratio, our techniques select regions having desired low and mid-level statistics learned
from category-independent training data. For example, the appearance of objects usually con-
trasts with their background and this creates intensity gradients along their boundaries in an
image. Such properties can be detected and exploited, and their use leads to a much reduced
search space, independent of the number of categories to be recognized.

We introduced a recognition model that labels multiple objects sequentially and indepen-
dently, and uses individual object segmentation proposals as input. We compute these pro-
posals using the Constrained Parametric Min-Cuts algorithm (CPMC), introduced in chapter
2. CPMC generates figure-ground segmentation proposals with desired statistics, learned
from annotated ground-truth regions in training images. Chapter 3 explains how we ap-
proach recognition with segments. We use support vector regressors operating on multiple
non-linear kernels, which would be too computationally expensive to work with without the
focused space of object hypotheses that CPMC produces.

An underlying assumption in this thesis is that the initial segmentation is not required
to be perfect, but it should be sufficiently precise to allow for accurate recognition at some
helpful level. For example, a segment covering the upper-body of a person may be enough
for recognition of category ‘person’ and its identity ‘Clyde’, but not for determining full-body
pose. Once a match is established with a visual pattern in memory, it should then be possible
to retrieve associated knowledge corresponding to the expected region shape, which can aid
completing and perfecting the segmentation. This new segmentation will then allow for finer
recognition.
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We evaluated the quality of our segmentations in a large number of datasets (almost all we
could find that had segmentation annotation), and obtained better results than those of other
top bottom-up methods in the literature. The quality of our segmentations is also validated
by state-of-the-art results obtained in recognition tasks, namely in semantic segmentation
problems.

In the remaining of this chapter we will suggest directions for future research.

4.1. Future Directions

Despite considerable progress, performance on tasks such as semantic segmentation on the
VOC Pascal dataset is still low in absolute terms. This seems to be chiefly caused by an
insufficient ability to rank (segment, label) tuples. For example on the training set of the
VOC segmentation dataset, our models can obtain 70% VOC score, and the layout quality
is good, but performance drops to slightly above 40% when those models are tested on the
test set. Generalization, in the form of incorrect top candidate ranking, is unsatisfying. The
main problem seems to be that our recognition models do not capture robustly the patterns
that define the object categories, as well as the fine distinctions between better and worse
object delineations. Additionally, we did not address important topics such as segmentation
refinement using knowledge about object shape, as well as fine-grained recognition - our
experiments were limited to recognition problems with up to 100 categories. We will now list
the research directions we find most important for future work:

• Large-scale visual memories and efficient learning

Future visual systems will handle millions of visual concepts, both abstract categories
and particular object instances, such as particular faces, body poses, etc. Simplifying
image exploration by reducing it to a small bag of segments, as pursued in this thesis, is
helpful, but there is another bottleneck: memory exploration. Memory will need to be
organized, perhaps into a hierarchy, so that search can be performed efficiently. Learn-
ing should be performed in an adaptive online fashion, as new data arrives, possibly
using stochastic gradient methods. Such techniques are already becoming necessary
even for static, immutable, datasets as high dimensional features seem to help perfor-
mance [125]. One approach that incorporates these ideas has been recently proposed by
Lai et al. [87].

Annotating large amounts of data will be necessary, and may be partially facilitated
by the usage of video, where information can be propagated between frames (recent
interesting ideas in this area include [22, 90]).

• Features

Defining segment-specific features is a powerful concept, as it allows segmentation to
be modeled as a discriminative learning problem of automatically determining the pat-
terns that differentiate ground truth segmentations from spurious mis-segmentations,
for objects from each category. One issue that has received little attention in the litera-
ture is how to make a segment affect (leave its imprint on) the features. In this thesis we
tried clearing local features and gradients centered outside the segment, and in some
cases we also deformed the feature extraction coordinate frame. Possible ideas include
defining the scale of local feature extraction based on the proportions of the segment and
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defining the cells of a spatial pyramid [89] based on segment decomposition instead of
on a regular grid.

Segmentation may also simplify the use of features having some degree of intrinsic,
matching-free, geometric invariance, for example by using ideas from the literature on
affine-invariant local feature detectors [107, 76, 144].

• Determining correspondences

Objects are almost never fully visible, due to self-occlusion and/or occlusion by other
objects. This makes it difficult to define what is a complete object segmentation in ab-
solute terms. For example, sometimes a complete segmentation of a person in some
images corresponds to its upper-body, due to occlusion by a desk, or due to zoom. In
other cases, when the person is not occluded, the desired segment covers the full body.
Sometimes CPMC computes both half-body and full-body segments for non-occluded
people and in such cases it seems hard to decide which segment should be selected
without reasoning jointly about pairs of conflicting segments. In order to resolve such
issues elegantly the part decomposition of the objects could be modeled. Matching ob-
ject parts is useful in itself, as it provides richer outputs, but it would also allow to
understand ‘what is missing’, and what is ‘extra’ in a segment, to guide top-down seg-
mentation. Correspondences, as opposed to holistic object descriptions, may also help
achieve better recognition, and much work has been devoted to this [8, 44], but not yet
with segmentation on realistic images such as those from the PASCAL VOC dataset.

• Top-down processes

Most existing top-down segmentation techniques assume that the label of the object
is known, or that there is a weak spatial initialization in the form of a bounding box
enclosing the object [93, 159, 104]. Object segmentations obtained bottom-up are likely
to be closer to the desired segmentation than a bounding box and may therefore provide
a better initialization. There are however still many remaining challenges, including
how to achieve registration between the image and an object model in order to be able
to understand “what is wrong” with the current segmentation.
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Appendix A.

Energy Minimization with Parametric
Max-Flow

APPENDIX

A.1. Introduction

Many aspects of low and high-level vision are naturally modeled as pairwise relationships
between variables. In stereo problems, depth varies smoothly in most areas. In scene under-
standing, a person is unlikely to be taller than a nearby building. Structured-output models
are a type of models having dependencies between output variables so that they follow such
statistics. A popular type is the markov random field, which defines a probability distribution
over interdependent input and output variables, which usually factorize over a product of
functions defined on cliques of the dependency graph.

One of the main challenges of structured-output models is inference (e.g. to find the max-
imum a posteriori solution), which is often intractable. A notable exception is the markov
random field with discrete binary outputs and pairwise clique functions obeying certain re-
stricted properties, like submodularity. Inference in these models can be performed exactly
in polynomial time using st-mincut/max-flow solvers, as first shown by Greig et al. [60]. The
precise types of pairwise terms that permit exact inference were later characterized by Kol-
mogorov and Zabih [81]. Importantly, an efficient max-flow solver for vision problems [20]
was developed, which made it possible to handle very large problems (segmentation of an
image with 1000x1000 pixels leads to a problem with one million variables).

Inference in markov random fields is also known as energy minimization, owing to the
origin of these models in the statistical physics community [73]. We will use both names in-
terchangeably.

Moreover, many approaches in vision focus on obtaining a single solution, either a global
optimum or a strong local minimum. There is a particularly efficient algorithm, called para-
metric max-flow, that jointly solves a family of energy minimization problems that differ by a
restricted type of changes in the unary term, that are parameterized by a single number. It re-
trieves all unique discrete solutions by determining the breakpoints of a piecewise linear cost
function, obtained by varying the value of the parameter. Each such breakpoint corresponds
to a unique discrete global minimum, conditioned on the value of the parameter.

Parametric max-flow has proved useful in a few recent computer vision methods [80, 66,
152, 97], mainly due to its low polynomial worst-case time complexity, and was an important
technique in chap. 2 of this thesis.

We will first define formally the energy problems we are interested in, and how they can be
represented as weighted directed graphs, for inference to be performed using max-flow tech-
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niques. We will then describe in some detail the first parametric max-flow solver, introduced
by Gallo et al. [53].

A.2. Parametric Sets of Graph-representable Energy Proble ms

Consider a set X of binary variables {x1, ..., xk}, xi ∈ {0, 1}, associated with nodes V of an
undirected graph G = (V, E). We will review minimization of a popular type of energy func-
tions in computer vision [80], of the form:

Eλ(X) =
∑

u∈V

(au + λbu) · xu +
∑

(u,v)∈E

Vuv(xu, xv) (1)

with λ ∈ R, Vuv a submodular function (i.e. Vuv(0, 0) + Vuv(1, 1) ≥ Vuv(0, 1) + Vuv(1, 0).
Assume further that all parameters bu are either non-positive or non-negative.

These energy functions are interesting mainly because their solutions correspond to binary
minimum cuts on appropriately defined graphs [81]. Finding minimum cuts is equivalent to
finding maximum flows [48]. Hence, given a single λ value, minXEλ(X) can be computed
with efficient max-flow algorithms, using techniques such as push-relabel [55], augmenting
paths [48, 20] or pseudoflow [67].

Additionally, it is possible to retrieve the solutions for all possible values of λ in the asymp-
totic complexity of retrieving a single solution using either the Gallo-Grioridis-Tarjan (GGT)
algorithm [53], a push-relabel technique, or a version of the pseudoflow algorithm [67].

A.2.1. Graph Construction for Inference with Max-flow Techn iques

Energy 1 can be efficiently minimized using max-flow techniques. First the energy must be
mapped into a special directed weighted graph, known traditionally as a network [55], G′ =
(V ′, E ′), containing one node for each variable in X plus two new nodes V ′ = V ∪{vs, vt}, and
a nonnegative capacity function c(v,w) for each edge (v,w) in E ′. Let the number of nodes be
n and the number of edges m. Nodes s and t are named respectively the source and the sink.

Once the capacities (the directed edge weights) are assigned in a proper way, the minimum
cut s for the constructed network can be mapped to the solution of problem 1. We define that
variables from X associated with nodes in a graph partition containing the source assume
value 1 in the original problem, the others assume value 0.

The edges of G′ need to be created in a certain way, for minimum cuts of G′ to represent
solutions of 1. Each edge in E is replaced by two directed edges in E ′, one in each direction,
with c(i, j) = Vij . These edges are usually known a n-links [18]. Two sets of additional edges,
both called t-links [18] are created. One set connects the source and the nodes in V ′. The other
set connects nodes in V ′ to the sink. Each node in V ′ gets one t-link, to either the source or the
sink. If (au + λbu) ≥ 0 then node vu gets a t-link from the source, else it gets a link to the sink.
In any case the capacity is (au + λbu). The graph construction for a simple example problem
with 4 variables is given in fig. A.1.

Proof that the minimum cut on this graph indeed provides the solution to problem 1 can
be consulted, for example, in the paper by Boykov and Jolly [19]. Note that there are multiple
ways to set up the edge weights that result in the same solution [81, 19, 79]. For example
adding a constant to both t-links of a node does not affect the solution.
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Figure A.1.: Graph construction for max-flow based inference on a problem with four binary variables:
u, v, x and z. Two additional nodes are created, the source (s) and sink (t). If (au+λbu) ≥ 0 then cut = 0
and csu = (au + λbu). Else cut = (au + λbu) and csu = 0.

A.3. Parametric Max-Flow

Given a fixed value of λ one can solve problem 1 in the complexity of a max-flow problem,
O(nm log(n2/m)) with the push-relabel algorithm [55], for a network with n nodes and m
edges. To solve the problem for various values of λ one could just repeat the process multiple
times. However, the family of solutions has properties that allow for more efficient search
procedures.

When the capacities from the source are non-decreasing and the edge weights to the sink
are non-increasing functions of λ the problem is said to be monotonic. This is the case in the
network corresponding to problem 1, as parameters bu are assumed to be either non-positive
or non-negative. Monotonicity is important because it implies that the different minimum
cuts become nested: as λ increases, the source component of the cut grows. The values of
λ that induce change in the two minimum cut partitions (node swaps from sink to source or
vice-versa) are called breakpoints, and one consequence of nestedness is that there are at most
n − 1 breakpoints (in the worst case where every breakpoint corresponds to adding a single
node to the source side). Information about the non-monotonic case can be found in [80].

Nestedness allows for efficient parametric max-flow using the GGT algorithm [53]. GGT
is an adaptation the push-relabel max-flow algorithm [55] that is able to compute minimum
cuts for a O(n) sequence of λ values in the worst-case time complexity of a single max-flow
problem. An extension of the basic technique retrieves all unique minimum cuts induced by
varying λ values, which subsumes the previous problem. It does so in the same worst-case
complexity, although with larger constant factors.

We will review these algorithms in this section. We will start by defining additional flow
terminology and the basic machinery: the push-relabel algorithm. Afterwards we will discuss
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how push-relabel can be adapted to handle a sequence of λ values. The section will conclude
with the presentation of the most general algorithm, which builds upon the previous two and
is able to compute minimum cuts for all values of λ. We will follow the original exposition
[53].

A.3.1. Network Flow Preliminaries

A flow f on a generic network G = (V, E) with source node s and sink node t is a real-valued
function on pairs of nodes satisfying three constraints: bounded capacity f(v,w) ≤ c(v,w),
antisymmetry f(v,w) = −f(w, v), for (v,w) ∈ E′, and conservation

∑

v∈V f(u, v) = 0 for
v ∈ V ′ − s, t. We define c(v,w) = 0 if (v,w) 3 E′, so the capacity functions extends to any
node pair. The value of flow f is given by

∑

v∈V f(v, t). The capacity of a pair of disjoint nodes
Y,Z is c(Y,Z) =

∑

v∈Y,w∈Z c(v,w). An important concept referred often in this thesis is the

cut (Y, Y ) which divides the network into two partitions (Y ∪ Y = V ′, Y ∩ Y = ∅) such that
s ∈ Y and t ∈ Y . A minimum cut is a cut of minimum capacity. The max-flow min-cut theorem
of Ford and Fulkerson [48] states that the maximum flow equals the minimum cut.

To discuss the push-relabel algorithm, two additional concepts need to be introduced: pre-
flow and valid labelings. A preflow f on G is a real-valued function on node pairs similar to a
flow, except it relaxes the conservation constraint:

∑

u∈V f(u, v) ≥ 0 for all v ∈ V − s. An-
other important notion is that of a residual edge for f , which is any node pair (v,w) such that
f(v,w) < c(v,w). The difference between capacity and flow in an edge is named residual ca-
pacity and a path of residual edges is a residual path. Any edge that is not a residual edge is
said to be saturated. Finally, a valid labeling d for a preflow f is a function from the nodes to
the positive integers, such that d(t) = 0, d(s) = n, and d(v) ≤ d(w)+ 1 for every residual edge
(v,w) .

The GGT parametric max-flow algorithm uses the push-relabel max-flow algorithm [55] as
a subroutine. We will now review push-relabel briefly.

A.3.2. Max-flow Using Push-relabel

The push-relabel algorithm computes the maximum flow from s to t through the network. It
uses the labeling function d(v), which can be intuitively interpreted as a “height” function in
a physical network. Gravity makes liquid flow from higher nodes to lower nodes. The role of
the algorithm is then to adjust the heights of the nodes in the network so that, first, as many
edges as possible become saturated, and then, any excess liquid in the network (liquid that
did not reach t) returns to the source.

The algorithm maintains a preflow f , initially equal to the edge capacities on edges leaving
s and zero on edges not incident to s. It improves f by pushing flow excess towards the sink
along edges estimated (by using d) to be on shortest residual paths. The value of f gradually
becomes larger, and f eventually becomes a flow of maximum value. As a distance estimate,
the algorithm uses a valid labeling d, initially defined by d(s) = n, d(v) = 0 for v 6= s. This
labeling increases as flow excess is moved among nodes; such movement causes residual
edges to change. After algorithm termination and a maximum flow has been obtained, it is
possible to find the minimum cut by breadth-first search from the source to the sink. Details
can be found in [55].

The complexity of the push-relabel algorithm is dominated by the number of push opera-
tions required which is bounded by O(n2m). It can be improved to O(nml̇og(n2/m)) using a
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dynamic tree data structure [135].

A.3.3. Parametric Max-flow as a Push-relabel Extension

Unlike regular networks, parametric networks have edge capacities that are functions of a
real-valued parameter λ. Let cλ(v,w) be the capacity function in parametric networks. We are
interested in a form of cλ(v,w) that is a nondecreasing function of λ on edges from the source,
nonincreasing on edges to the sink, and constant on the remaining edges. Note that changing
the value of λ can alter the minimum cut of the network.

One configuration of the parametric max-flow problem is concerned with computing min-
imum cuts for each value of an increasing sequence of parameters. Gallo et al. [53] proposed
one algorithm for this problem, which assumes that the successive values are given online.
The key observation exploited by his algorithm, named parametric push-relabel algorithm [53],
is that increasing the capacity of the edges from the source keeps the labeling d valid. It is
therefore feasible to “warm-start” push-relabel for a new parameter λ with the solution of the
max-flow problem for the previous parameter.

The algorithm is as follows. All flows and labels are initialized to zero except the source
label which is set to n. The algorithm then executes three steps for each parameter λi [53]:

Step 1. (Update preflow.) For (v, t) ∈ E, replace f(v, t) by min cλi
(v, t), f(v, t). For (s, v) ∈ E

with d(v) < n, replace f(s, v) by max cλi
(s, v), f(s, v).

Step 2. (Find maximum flow.) Apply the push-relabel algorithm to the network with the
edge capacities corresponding to λi, beginning with the current f and d. Let f and d be the
resulting flow and final valid labeling.
Step 3. (Find minimum cut.) Redefine d(v) = min df (v, s) + n, df (v, t) for each v ∈ V . The cut
(Yi, Y i) is then given by Yi = v|d(v) ≥ n.

The outputs of the algorithm are a maximum flow fi and a minimum cut (Yi, Yi) for each
value λi of the parameter. As in the push-relabel algorithm, the time complexity is O(nml̇og(n2/m))
[53] if a dynamic tree data structure [135] is used.

To compute minimum cuts for a decreasing sequence of values of λ instead, it is enough to
apply the same algorithm on the reversed network GR. This network is obtained by reversing
the direction of all edges and exchanging the source with the sink.

A.3.4. Retrieving All Breakpoints

Some problems require obtaining all breakpoints, not just minimum cuts for a list of λ values.
For obtaining all breakpoints, additional computation needs to be performed. The values of
λ where breakpoints occur are a priori unknown and need to be searched over, together with
their associated minimum cuts.

Let us assume, without loss of generality, that the capacities cλ(s, v) and cλ(v, t) are given in
the form cλ(s, v) = a0(v) + λa1(v) and cλ(s, v) = b0(v)− λb1(v), with arbitrary coefficients a0,
b0 and nonnegative coefficients a1, b1. A minimum cut (Y, Y0) at λ = λ0 gives an equation for
a line that contributes a line segment to the function K(λ) at λ = λ0. Note that edge capacities
can be negative, because there is a simple transformation that makes them positive without
affecting minimum cuts [115]. Additionally, for a given node v, suppose we add a constant
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δ(v) to c(s, v) and c(v, t). The capacity of the minimum cut does not change since the capacity
of every cut is increased by δ(v).

The GGT algorithm for retrieving all breakpoints requires initial bounds on the smallest
and largest breakpoints. A lower bound on the smallest breakpoint can be obtained by a
value λ1 small enough so that for each node v such that c(s, v) or c(v, t) have nonconstant
capacity, cλ1

(s, v) +
∑

u∈V−s,t c(u, v) < cλ1
(v, t). This translates into the following condition

λ1 = minv∈V −s,t

b0(v)− a0(v) −
∑

u∈V−s,tc(u,v)

a1(v) + b1(v)
− 1 (2)

Similarly, a value λ2 that bounds the largest breakpoint from above can be found by

λ2 = maxv∈V−s,t

b0(v)− a0(v) +
∑

w∈V−s,tc(v,w)

a1(v) + b1(v)
− 1 (3)

In both cases v is such that a1(v) + b1(v) > 0.

If G is a network and Y is a set of nodes such that at most one of s and t is in Y , it is useful to
define G(Y ), the contraction of G by Y , to be the network formed by shrinking the nodes in Y
to a single node, eliminating loops, and combining multiple edges by adding their capacities.

We shall now describe the GGT algorithm. The core of the algorithm is a recursive function
called slice, which is applied to contracted versions of G. There are 4 values associated with
each of these contracted networks: λ1 and λ3 and respective flows f1 and f3. Each of these
parameters induces a prescribed cut. Parameter λ1 gives minimum cut (s, V −s) and (V −t, t)
is the minimum cut for λ3 (note λ1 < λ3). The λ parameters are initialized from eqs. 2 and 3.
The GGT breakpoint algorithm consists of the following two steps [53]:

Step 1. Compute λ1 according to eq. 2 and λ3 according to eq. 3. Compute a maximum flow
f1 and minimum cut (Y1, Y1) for λ1 such that |Y1 is maximum by applying the push-relabel
algorithm to G. Compute a maximum flow f3 and minimum cut (Y3, Y3) for λ3 such that |Y3|
is minimum by applying the push-relabel algorithm to GR. Form G′ from G by shrinking the
nodes in Y3 to a single node, shrinking the nodes in Y1 to a single node, eliminating loops,
and combining multiple edges by adding their capacities.
Step 2. If G′ contains at least three nodes, let f ′

1 and f ′
3 be the flows in G′ corresponding to f1

and f3, respectively; perform slice(G′, λ1, λ3, f
′
1, f

′
3), where slice is defined as follows:

Procedure slice(G,λ1, λ3, f1, f3)

Step 1. Let λ2 be the value of λ such cλ2
(s, V − s) = cλ2

(V − t, t). This value will satisfy
λ1 ≤ λ2 ≤ λ3.

Step 2. Run the push-relabel algorithm for the value λ2 on G starting with the preflow f ′
1

formed by increasing f1 on edges (s, v) to saturate them and decreasing f1 on edges (v, t) to
meet the capacity constraints. As an initial valid labeling, use d(v) = min d′f1(v, t), d

′
f1
(v, s) + n).

Stop when one of the concurrent applications stops, having computed a maximum flow f2.
Suppose the push-relabel algorithm applied to G stops first (the other case is symmetric).

Find the minimum cuts (Y2, Y2) and (Y ′
2 , Y2

′
) for λ2 such that |Y2| is minimum and |Y ′

2 | is max-
imum. If |Y2| > n/2 complete the execution of the push-relabel algorithm on GR and let f2 be
the resulting maximum flow.

Step 3. If cλ(Y2, Y2) 6= cλ(Y
′
2 , Y2

′
) for some λ, report λ as a breakpoint.
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Step 4. If Y2 6= s, perform slice(G(Y2, λ1, λ2, f1, f2). If Y ′
2 6= t, perform slice(G(Y ′

2 ), λ2, λ3, f2, f3).
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1.1. Visual recognition involves searching for matches between patterns in the im-
age and in memory. The precise location of these patterns in the image is un-
known a priori and this is a major difficulty for recognition: the space of all
possible closed boundaries in an image is immense. This thesis studies mecha-
nisms for efficient exploration of the image, in the absence of prior knowledge
about the scene. We propose a new method that moves the image search prob-
lem from the space of possible boundaries to the much reduced space of plausi-
ble boundaries. It does this by exploiting effectively low and mid-level regular-
ities learned from ground-truth region annotations. This thesis also proposes a
sequential recognition mechanism that employs such free-form regions. . . . . 2

1.2. Illustration of issues involved in segment ranking. After bottom-up segmenta-
tion (here using CPMC), recognition can be posed as selection among multiple
sampled segments and a set of labels. While there are usually multiple seg-
ments covering each object, segments that align perfectly with objects may not
always, if ever, be sampled. What seems important is to select the segment that
best covers each object. Secondly, the ranking is affected by occlusion. In the
images above, the segment covering the upper body of the girl is undesirable
since there is a better one covering her full body. In the other image the seg-
ment covering the upper-body of the man is the most desirable. These prop-
erties justify our ranking formulation to learning: segments are regressed on
the predicted overlap they have with ground truth objects. This formulation
encourages finer segment selection than standard learning approaches based
on binary classification and handles better the part-whole issues. The segment
covering the girl’s upper-body is not a negative example in our formulation, it
is a ‘positive example’ which is learned to be ranked proportionally lower than
the segment covering the full body. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. Our object segmentation framework. Segments are extracted around regularly
placed foreground seeds, with various background seeds corresponding to im-
age boundary edges, for all levels of foreground bias, which has the effect
of producing segments at different locations and spatial scales. The result-
ing set of segments is ranked according to their plausibility of being good ob-
ject hypotheses, based on mid-level properties. Ranking involves first remov-
ing duplicates, then diversifying the segment overlap scores using maximum
marginal relevance measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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2.2. Different effects of uniform and color-based unary terms. For illustration, a
single foreground seed was placed manually at the same location for two en-
ergy problems, one with uniform and another with color unary terms. Shown
are samples from the set of successive energy breakpoints (increasing λ val-
ues) from left to right, as computed by parametric max-flow. Uniform unary
terms are used in rows 1 and 3. Color unary terms are used in even rows.
Uniform unary terms are most effective in images where the background and
foreground have similar color. Color unary terms are more appropriate for
objects with elongated shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Frequency of the parametric max flow breakpoints for each seed, on the train-
ing set of the VOC2010 segmentation dataset. These results were obtained us-
ing a 6x6 uniform grid of seeds. The number of breakpoints has mean 110, and
a heavier tail towards a larger number of breakpoints. . . . . . . . . . . . . . . . 19

2.4. Feature importance for the random forests regressor learned on the VOC2009
segmentation training set. The minor axis of the ellipse having the same nor-
malized second central moments as the segment (here ‘Minor Axis Length’) is,
perhaps surprisingly, the most important. This feature used in isolation results
in relatively poor rankings however (see fig. 2.5a). The Graph properties have
small importance. The ‘Boundary fraction of low cut’ features, being binary, do
not contribute at all. Gestalt features have above average importance, particu-
larly the contour energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5. Ranking results on the Weizmann and VOC2009 datasets. Different rankers are
compared with the optimal ranker ("Upper bound") and with random ranking
("Random selection"). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6. Segmentation and ranking results obtained using the random forests model
learned on the VOC2009 training set, with the features described in sec. §2.4.
The green regions are the segment foreground hypotheses. The first image on
each row shows the ground truth, the second and third images show the most
plausible segments given by CPMC, the last two images show the least plau-
sible segments, and the fourth and fifth images show segments intermediately
placed in the ranking. The predicted segment scores are overlaid. The first
three images are from the VOC2009 validation set and rows 2, 4 and 6 show
the diversified rankings, with θ = 0.75. Note that in the diversified ranking,
segments scored nearby tend to be more dissimilar. The last three rows show
results from the Weizmann Segmentation Database. The algorithm has no prior
knowledge of the object classes, but on this dataset, it still shows a remarkable
preference for segments with large spatial overlap with the imaged objects, yet
there are neither chariots nor vases in the training set, for example. The lowest
ranked object hypotheses are usually quite small reflecting perhaps the image
statistics in the VOC2009 training set. . . . . . . . . . . . . . . . . . . . . . . . . 26
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2.7. Quality of the segments in the combined VOC2009 train and validation sets,
as a function of the area of the ground truth segments. Object area has been
discretized into 20 bins on a log scale. In the case of the ground truth curve the
y-axis corresponds to the number of segments assigned in each bin (ground
truth segments have an overlap value of 1 with themselves). Medium and
large size objects, that are more frequent, are segmented significantly more ac-
curately by CPMC than by gPb-owt-ucm [4]. Subframe-CPMC is competitive
with gPb-owt-ucm on small objects, but generates a larger segment pool than
plain CPMC (in the order of 700 instead of 150 elements). . . . . . . . . . . . . . 27

2.8. Learned feature weights for the Subframe-CPMC model. The original set of
mid-level features and region properties gets higher weights, texture features
get intermediate weights and shape features get smaller weights. Texture fea-
tures might help discard amorphous ‘stuff’ regions such as grass, water and
sky. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9. Segmentation results on images from the validation set of the VOC2010 database.
The first column contains the original images, the second gives the human
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