46,693 research outputs found

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Responsibility modelling for civil emergency planning

    Get PDF
    This paper presents a new approach to analysing and understanding civil emergency planning based on the notion of responsibility modelling combined with HAZOPS-style analysis of information requirements. Our goal is to represent complex contingency plans so that they can be more readily understood, so that inconsistencies can be highlighted and vulnerabilities discovered. In this paper, we outline the framework for contingency planning in the United Kingdom and introduce the notion of responsibility models as a means of representing the key features of contingency plans. Using a case study of a flooding emergency, we illustrate our approach to responsibility modelling and suggest how it adds value to current textual contingency plans

    Machine learning stochastic design models.

    Get PDF
    Due to the fluid nature of the early stages of the design process, it is difficult to obtain deterministic product design evaluations. This is primarily due to the flexibility of the design at this stage, namely that there can be multiple interpretations of a single design concept. However, it is important for designers to understand how these design concepts are likely to fulfil the original specification, thus enabling the designer to select or bias towards solutions with favourable outcomes. One approach is to create a stochastic model of the design domain. This paper tackles the issues of using a product database to induce a Bayesian model that represents the relationships between the design parameters and characteristics. A greedy learning algorithm is presented and illustrated using a simple case study

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Binary Models for Marginal Independence

    Full text link
    Log-linear models are a classical tool for the analysis of contingency tables. In particular, the subclass of graphical log-linear models provides a general framework for modelling conditional independences. However, with the exception of special structures, marginal independence hypotheses cannot be accommodated by these traditional models. Focusing on binary variables, we present a model class that provides a framework for modelling marginal independences in contingency tables. The approach taken is graphical and draws on analogies to multivariate Gaussian models for marginal independence. For the graphical model representation we use bi-directed graphs, which are in the tradition of path diagrams. We show how the models can be parameterized in a simple fashion, and how maximum likelihood estimation can be performed using a version of the Iterated Conditional Fitting algorithm. Finally we consider combining these models with symmetry restrictions

    Threats Management Throughout the Software Service Life-Cycle

    Full text link
    Software services are inevitably exposed to a fluctuating threat picture. Unfortunately, not all threats can be handled only with preventive measures during design and development, but also require adaptive mitigations at runtime. In this paper we describe an approach where we model composite services and threats together, which allows us to create preventive measures at design-time. At runtime, our specification also allows the service runtime environment (SRE) to receive alerts about active threats that we have not handled, and react to these automatically through adaptation of the composite service. A goal-oriented security requirements modelling tool is used to model business-level threats and analyse how they may impact goals. A process flow modelling tool, utilising Business Process Model and Notation (BPMN) and standard error boundary events, allows us to define how threats should be responded to during service execution on a technical level. Throughout the software life-cycle, we maintain threats in a centralised threat repository. Re-use of these threats extends further into monitoring alerts being distributed through a cloud-based messaging service. To demonstrate our approach in practice, we have developed a proof-of-concept service for the Air Traffic Management (ATM) domain. In addition to the design-time activities, we show how this composite service duly adapts itself when a service component is exposed to a threat at runtime.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    The i* framework for goal-oriented modeling

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-39417-6i* is a widespread framework in the software engineering field that supports goal-oriented modeling of socio-technical systems and organizations. At its heart lies a language offering concepts such as actor, dependency, goal and decomposition. i* models resemble a network of interconnected, autonomous, collaborative and dependable strategic actors. Around this language, several analysis techniques have emerged, e.g. goal satisfaction analysis and metrics computation. In this work, we present a consolidated version of the i* language based on the most adopted versions of the language. We define the main constructs of the language and we articulate them in the form of a metamodel. Then, we implement this version and a concrete technique, goal satisfaction analys is based on goal propagation, using ADOxx. Throughout the chapter, we used an example based on open source software adoption to illustrate the concepts and test the implementation.Peer ReviewedPostprint (author's final draft
    • …
    corecore