1,479 research outputs found

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE

    Connectivity Limits of Mechanical Assemblies Modeled as Networks

    Get PDF
    This paper applies network connectivity analysis to mechanical assemblies. Assemblies have extensive intentional structure while simultaneously displaying some of the properties of previously analyzed networks. Fundamental principles impose restrictions on the structure of assemblies, as do some practical principles. Fundamental restrictions stem from the desire to avoid over-constraining the assembly. Practical restrictions stem from the desire to limit the complexity of the assembly or any significant subassembly. These restrictions play a role analogous to the cost of connection. For these reasons, mechanical assemblies are unlikely to exhibit scale-free properties common in many natural systems and some man-made ones

    A theory of spectral partitions of metric graphs

    Get PDF
    We introduce an abstract framework for the study of clustering in metric graphs: after suitably metrising the space of graph partitions, we restrict Laplacians to the clusters thus arising and use their spectral gaps to define several notions of partition energies; this is the graph counterpart of the well-known theory of spectral minimal partitions on planar domains and includes the setting in [Band \textit{et al}, Comm.\ Math.\ Phys.\ \textbf{311} (2012), 815--838] as a special case. We focus on the existence of optimisers for a large class of functionals defined on such partitions, but also study their qualitative properties, including stability, regularity, and parameter dependence. We also discuss in detail their interplay with the theory of nodal partitions. Unlike in the case of domains, the one-dimensional setting of metric graphs allows for explicit computation and analytic -- rather than numerical -- results. Not only do we recover the main assertions in the theory of spectral minimal partitions on domains, as studied in [Conti \textit{et al}, Calc.\ Var.\ \textbf{22} (2005), 45--72; Helffer \textit{et al}, Ann.\ Inst.\ Henri Poincar\'e Anal.\ Non Lin\'eaire \textbf{26} (2009), 101--138], but we can also generalise some of them and answer (the graph counterparts of) a few open questions

    Isospectral discrete and quantum graphs with the same flip counts and nodal counts

    Get PDF
    The existence of non-isomorphic graphs which share the same Laplace spectrum (to be referred to as isospectral graphs) leads naturally to the following question: What additional information is required in order to resolve isospectral graphs? It was suggested by Band, Shapira and Smilansky that this might be achieved by either counting the number of nodal domains or the number of times the eigenfunctions change sign (the so-called flip count). Recently examples of (discrete) isospectral graphs with the same flip count and nodal count have been constructed by K. Ammann by utilising Godsil-McKay switching. Here we provide a simple alternative mechanism that produces systematic examples of both discrete and quantum isospectral graphs with the same flip and nodal counts.Comment: 16 pages, 4 figure

    Smooth Gaussian fields and percolation

    Get PDF
    In the last two decades there was a lot of progress in understanding the geometry of smooth Gaussian fields. This survey aims to cover one particular line of research: the large scale behaviour of level and excursion sets and their (conjectured) connection to Bernoulli percolation

    Network Scaling Effects in Graph Analytic Studies of Human Resting-State fMRI Data

    Get PDF
    Graph analysis has become an increasingly popular tool for characterizing topological properties of brain connectivity networks. Within this approach, the brain is modeled as a graph comprising N nodes connected by M edges. In functional magnetic resonance imaging (fMRI) studies, the nodes typically represent brain regions and the edges some measure of interaction between them. These nodes are commonly defined using a variety of regional parcellation templates, which can vary both in the volume sampled by each region, and the number of regions parcellated. Here, we sought to investigate how such variations in parcellation templates affect key graph analytic measures of functional brain organization using resting-state fMRI in 30 healthy volunteers. Seven different parcellation resolutions (84, 91, 230, 438, 890, 1314, and 4320 regions) were investigated. We found that gross inferences regarding network topology, such as whether the brain is small-world or scale-free, were robust to the template used, but that both absolute values of, and individual differences in, specific parameters such as path length, clustering, small-worldness, and degree distribution descriptors varied considerably across the resolutions studied. These findings underscore the need to consider the effect that a specific parcellation approach has on graph analytic findings in human fMRI studies, and indicate that results obtained using different templates may not be directly comparable
    • …
    corecore