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Abstract. The existence of non-isomorphic graphs which share the same Laplace

spectrum (to be referred to as isospectral graphs) leads naturally to the following

question: What additional information is required in order to resolve isospectral graphs?

It was suggested by Band, Shapira and Smilansky that this might be achieved by either

counting the number of nodal domains or the number of times the eigenfunctions change

sign (the so-called flip count) [1, 2]. Recently examples of (discrete) isospectral graphs

with the same flip count and nodal count have been constructed by K. Ammann by

utilising Godsil-McKay switching [3]. Here we provide a simple alternative mechanism

that produces systematic examples of both discrete and quantum isospectral graphs with

the same flip and nodal counts.

1. Introduction

One of the traditional means for studying the structure of eigenfunctions of the Laplacian

on a large variety of domains is the counting of their nodal domains - the connected subsets

where the eigenfunction has a constant sign. The systematic study begins by ordering

the spectrum in a monotonically non-decreasing sequence, and associating with the nth

eigenfunction the corresponding nodal domain number νn. For domains in one dimension,

Sturm’s oscillation theorem states that νn = n. For higher dimensions Courant’s theorem

provides the upper bound νn ≤ n [4]. Studies of nodal domains have yielded many new

and surprising insights into various branches of Physics and Mathematics (see e.g. [5] for a

collection of relevant papers). In particular, it became apparent that the nodal sequence

{νn}∞n=1 stores information about the domain on which the Laplacian is defined, such

as its boundaries or metric, which does not overlap with the information stored in the

spectrum [6]. Therefore, since the answer to Kac’s famous question [7] ‘can one hear the

shape of a drum? was shown to be ‘no’ (examples of pairs of isospectral‡ planar domains

were first obtained by Gordon Webb and Wolpert [8]), this led Gnutzmann, Smilansky

and others [9, 10] to ask ‘can one count the shape of a drum?’. More specfically, given

‡ The term ‘cospectral’ is used in place of ‘isospectral’ by some other authors.
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two isospectral domains or manifolds, is the knowledge of the nodal count enough to

distinguish the two? Brüning and Fajman [11] showed this is not the case for certain flat

tori, however it seems to be positive in some particular classes of domains [12].

In the present article we address this question in the context of both discrete and

quantum graphs. Studying the Laplacian in these simple, yet non-trivial, systems has

proven to be remarkably insightful because many properties are shared with their higher-

dimensional counterparts. For instance, it is known that for tree-graphs the Sturm result

holds [13], and more generally Courant’s theorem also applies in this context [14]. In

addition, recent results connecting the stability of eigenvalues under small perturbations

to nodal quantities were first born out of discoveries in graphs [15–18], before their

application to planar domains [19]. Counting nodal domains in chaotic billiards [6, 20]

is also highly related to analogous studies in d−regular graphs, which were carried

out numerically [21] and analyzed theoretically [22] within a random wave model. We

also point the reader to the review article [23] which provides further motivations and

developments in the subject.

In [1, 2] a number of examples of pairs of isospectral quantum graphs were

constructed, which were analogous of previous isospectral domains in R2 [8, 24–27]

obtained using Sunada’s method [28]. In all of the examples the nodal count was

able to distinguish these pairs, leading the authors to conjecture that this could resolve

isospectrality. Note that in the case of quantum graphs it was shown that knowing the

spectrum is enough to distinguish between quantum graphs, provided the lengths of the

edges are all incommensurate [29]. In the context of discrete graphs it was shown that

if the so-called weighted Laplacian was used then one can find an example of isospectral

graphs that are not distinguished by the nodal count [30] but the same could not be said

of the standard Laplacian. Recently K. Ammann has used the method of Godsil-McKay

switching [31] to provide examples of discrete graphs in which both the flip count and

nodal count of the Laplacian is the same [3]. Inspired by her results we show here that

one can use an alternative simple mechanism for constructing pairs of both discrete and

quantum graphs that are isospectral that have the same flip and nodal counts.

The article is presented as follows: In the remainder of the introduction we recount

the necessary properties of both discrete graphs, quantum graphs and their respective

nodal and flip counts. In Section 2 we explain a simple mechanism for obtaining

isospectral graphs and then go on to show that from this the flip counts and nodal counts

will be the same. We also show in Subsection 2.1 that one can find non-isospectral

examples of discrete graphs for which the flip and nodal counts coincide. In Section 3

we adapt the mechanism to the quantum graph setting and give analogous examples.

Finally in Section 4 we offer some concluding remarks and possible further directions.

1.1. Discrete graphs

A discrete graph G = (V , E) is given by a set of vertices V and (undirected) edges E ,

meaning (i, j) = (j, i) ∈ E if the vertices i and j are connected (we also use the notation

i ∼ j to denote that i is connected to j). The number of vertices and edges are denoted
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V = |V| and E = |E| respectively. In the present context (unless otherwise stated) we

assume G to be connected and simple, meaning there are no parallel edges or self loops

(i.e. edges of the form e = (i, i)). The connectivity of G is encoded in the V × V

adjacency matrix A(G) whose (i, j) and (j, i) entries are 1 if (i, j) ∈ E and 0 otherwise.

The degree di of a vertex i is the number of vertices that are connected to it. We can

extract this quantity from A using di =
∑

j Aij and in turn use this to construct the

diagonal degree matrix D(G) = diag(d1, . . . , dV ). Combining these two matrices forms

the discrete Laplacian L(G) : RV → RV given by

L(G) = D(G)− A(G). (1)

The Laplacian is real, symmetric and positive-definite. It therefore has V non-

negative eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λV and associated real eigenvectors fn =

(fn(i), · · · , fn(V ))T . We will also use the notation σ(G) = {λ1, . . . , λn} to denote the

spectrum of the Laplacian of G.

In the following we shall investigate the nodal properties. However eigenvectors that

possess zeros present difficulties that must be avoided. It is therefore important to restrict

the investigation to eigenvectors of the following type.

Definition 1.1 (Genericity in discrete graphs). Let f be an eigenvector of L with

eigenvalue λ. Then f is called generic if the eigenvalue λ is non-degenerate and f(i) 6= 0

for all i ∈ V.

1.2. Quantum graphs

Here we give a brief overview of the construction of quantum graphs. One should

consult [32, 33] for a more detailed exposition.

A metric graph is obtained from a discrete graph G = (V , E) by endowing each edge

e = (i, j) ∈ E with a finite length le, which in turn facilitates a position. Specifically

if we choose o(e) = o((i, j)) = min(i, j) to be the origin and t(e) = max(i, j) to be the

terminus of the edge then we specify xe ∈ [0, le] to be the distance from the origin o(e).

We will denote by Γ = (G, l1, . . . , lE) the corresponding metric graph. The establishment

of a metric means we may construct functions ψ(x) that are supported on the graph.

We do this by restricting the function to each edge and we denote this by ψe(xe), where

xe ∈ [0, le]. To align with the notation in the discrete setting we will write ψe(i) to denote

ψe(0) if i = o(e) and ψe(le) if i = t(e).

Given this metric graph we may then consider operators acting on appropriate spaces

of functions that are supported on the graph. In our present context we shall choose the

free one-dimensional Schrödinger operator (the negative Laplacian) acting on each edge

L : ψe(xe) 7→ −
d2ψe

dx2
e

(xe)

and the correct function space (see e.g. [32] for details) is given by

H2(Γ) :=
⊕
e∈E

H2([0, le]),
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where H2([0, le]) denotes the Sobolev space on the edge e of real one-dimensional functions

ψ ∈ L2([0, le]) whose weak-derivatives up to order two are square integrable.

The final step is to make the operator self-adjoint with respect to the following inner

product

〈ψ, φ〉 :=
∑
e∈E

∫ le

0

ψ(x)φ(x)dx. (2)

This requires introducing vertex conditions that match the function and its derivative

on each edge emanating from a vertex. A complete classification of conditions has been

obtained [34], however here we will restrict ourselves to so-called Neumann (also referred

to as Kirchoff) vertex conditions. If we let Eu = {e ∈ E : o(e) = u or t(e) = u} denote

the set of edges incident to the vertex u then these conditions are specified by endowing

the functions ψ at every vertex u ∈ V with following two properties:

(i) The function ψ is continuous:

ψe(u) = ψe
′
(u) ∀ e, e′ ∈ Eu (3)

(ii) The sum of outgoing derivatives is zero:∑
e∈Eu

dψe

dxe
(u) = 0, (4)

where the derivatives are taken in the directions outgoing from the vertex u.

The function ψ(x) is an eigenfunction of Γ (with eigenvalue λ) if Lψ = λψ and the

conditions (3) and (4) are satisfied. Moreover, since we shall only consider compact

graphs, the spectrum of the operator L is a countable sequence of non-negative real

numbers with no accumulation points. Thus we can number the eigenvalues λ1 ≤ λ2 ≤ . . .

with corresponding eigenfunctions ψn(x), which form a basis for L2(Γ) - the space of

square integrable functions with respect to the inner product (2) and satisfying the

boundary conditions (3) and (4). Again, we say the eigenvalue λ is simple if it is non-

degenerate and use the notation σ(Γ) = {λ1, λ2 . . .} for the spectrum of our quantum

graph.

In the quantum graphs setting there is an analogous version on Definition 1.1 for

generic eigenfunctions, which shall be needed in order to avoid ambiguity over nodal

properties.

Definition 1.2 (Genericity in quantum graphs). An eigenfunction ψ of LΓ is called

generic if it is non-zero on all vertices and the corresponding eigenvalue λn is simple.

1.3. The flip count and nodal count

The definition of generic eigenvectors (in the discrete case) and generic eigenfunctions

(in the quantum case) allows us to proceed, without ambiguity, to defining the flip count

and nodal (domain) count in each scenario.§

§ Note that a number of other authors refer to our definition of the ‘flip count’ as the ‘nodal (point)

count’, e.g. [17,35]. We prefer this terminology in this context to emphasise the distinction between flips

and nodal domains.
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Definition 1.3 (Discrete graph flip count). Let f be a generic eigenvector of G. Then

FG(f) := {(i, j) ∈ E(G) : fn(i)fn(j) < 0}

denotes the set of (undirected) edges on the discrete graph G for which f changes sign

(i.e. flips). µG(f) := |FG(f)| is then the number of flips of f .

Definition 1.4 (Discrete graph nodal count). Let G̃ = (V(G), E(G) \F(f)) be the graph

formed by removing all edges on which a generic eigenvector f changes sign. The number

of nodal domains of f on G is denoted νG(f) and defined to be the number of connected

components of G̃.

In the case of quantum graphs we have a completely analogous formalism. Note

that due to the vertex conditions (3) and (4) we are guaranteed that the zeros of generic

eigenfunctions ψn are points on interior of the edges of the graphs.

Definition 1.5 (Quantum graph flip count). Let ψ be a generic eigenfunction of LΓ and

ZΓ(ψ) := {x ∈ Γ : ψ(x) = 0} the associated zero set. Then the flip count is the number

of times the eigenfunction changes sign on edges, or

µΓ(ψ) =
∑
e∈E

∫ le

0

δZΓ(ψ)(xe)dxe. (5)

Definition 1.6 (Quantum graph nodal count). Let Γ \ ZΓ(ψ) be the graph obtained by

removing the zero set of ψ. Then the number of nodal domains νΓ(ψ) is the number of

connected components of Γ \ ZΓ(ψ).

In both discrete and quantum graphs the number of nodal domains νn = νG(fn)

(resp. νn = νΓ(ψn)) of the nth eigenvector (resp. eigenfunction) are known to obey

certain general bounds. An upper bound is given by Courant’s theorem νn ≤ n, which

was translated from the setting of domains to discrete graphs in [14] and to quantum

graphs in [36]. A lower bound was established for both discrete and quantum graphs by

Berkolaiko [13], so that for generic eigenvectors we have

n− β ≤ νn ≤ n . (6)

Here β = E − V + 1 is the first Betti number, which counts the number of fundamental

cycles, or the minimum number of edges one must remove in order for the graph to

become a tree. For the flip count we have

n− 1 ≤ µn ≤ n− 1 + β . (7)

The lower bound was also proved in [13], the upper bound follows from the fact that

µn ≤ νn − 1 + β. The two bounds imply immediately that for trees (6) and (7) reduce

to the Sturm oscillation relation νn = µn + 1 = n, which means tree graphs cannot be

distinguished via there flip or nodal counts. It has also been proved, conversely, that all

graphs with flip counts that follow the integer sequence from 1 to V must be trees [35].

However, interestingly, the analogous statement about the nodal count remains illusive.

We would also like to highlight that, although the flip count and nodal count are

obviously related (see [23] for further discussion on this relation), the two contain different
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Figure 1. A graph G containing a k-leaf-pair connected to some root vertex u = 0, the

graph Ḡ is formed by inserting the edge (j,−j) which can be achieved via the rank one

matrix [γγT ]ik = (δi,j − δi,−j)(δk,j − δk,−j).

types of information. The flip count is local, as the sign changes of eigenvectors or

eigenfunctions occur across small distances, however the nodal count is truly a global

quantity, as nodal domains can stretch across significant proportions of the graph. For

this reason the flip count is often a much easier quantity to obtain, both numerically and

analytically [23], than the nodal count.

2. Discrete graphs

In this section we present a mechanism for constructing both isospectral and non-

isospectral pairs of graphs with the same flip count and nodal count. It is based upon

the idea of inserting edges between dangling bonds, or leaves, of a graph. To begin we

introduce the following definition.

Definition 2.1. A leaf is a vertex i such that di = 1. A k-leaf is a set of k connected

vertices such that k − 1 have degree 2 and one has degree 1. A k-leaf-pair consists of

two k-leaves joined together at a root vertex (see e.g. Figure 1)

In other words, a k-leaf is a line graph of length k in which one end is connected to

some base graph.

The basic premise of this mechanism will be that if we have k-leaf-pair connected to

the rest of the graph at some root vertex, u say, then there exists eigenvectors which are

only non-zero on these leaves. If an edge is inserted appropriately, only these eigenvectors

will change, whereas the rest will be left unaltered with the same eigenvalues.

Lemma 2.1. Let G1 and G2 be two graphs, which each contain a k-leaf-pair. Let Ḡ1 and

Ḡ2 be the respective graphs obtained by inserting an edge connecting the jth vertex from

the root in each k-leaf. Then σ(G1) = σ(G2)⇔ σ(Ḡ1) = σ(Ḡ2).

Proof. For convenience, let us number the vertices in G1 and Ḡ1 in the following manner

V := {−k,−(k − 1), . . . ,−1, 0, 1, . . . , V − k − 1} and denote the subset Vleaves :=

{−k, . . . , k} such that the two k-leaf ends are k and −k and are joined to the rest of

the graph at a root vertex u = 0, as illustrated in Figure 1. Suppose we insert the edge

6



at the point (j,−j) for some j ∈ Vleaves then we can introduce the vector γ which takes

the values γ(i) = δi,j − δi,−j,

L(Ḡ1) = L(G1) + γγT .

Now, let π : RV → RV be the operator that exchanges the two leaves, whilst the rest of

the graph remains invariant, i.e.

[πf ](i) =

{
f(−i) i ∈ Vleaves

f(i) i ∈ V \ Vleaves.
(8)

Since π2 = IV we can decompose our space into those vectors which are even (+) and

odd (−) under this transformation,

S± := {f : πf = ±f} (9)

and RV ∼= S+ ⊕ S−. Furthermore, if f ∈ S+ then 〈γ,f〉 := γTf = 0 and thus, if it is an

eigenvector of L(G1), we have

L(Ḡ1)f = L(G1)f + γγTf = λf , (10)

meaning it is also an eigenvector of L(Ḡ1) with the same eigenvalue.

Now, since [π, L(G1)] = [π, L(Ḡ1)] = 0 (both Laplacians are symmetric under the

action of π) we can choose a basis in which all eigenvectors fn are either even or odd.

The corresponding spectra we denote by σ±(G1) such that σ(G1) = σ+(G1) ∪ σ−(G1)

and similarly for Ḡ1. All the above holds similarly for L(G2) and L(Ḡ2). Hence, since

σ+(G1) = σ+(Ḡ1) and σ+(G2) = σ+(Ḡ2), we have

σ+(G1) = σ+(G2)⇔ σ+(Ḡ1) = σ+(Ḡ2), (11)

It thus remains to show that σ−(G1) = σ−(G2) ⇔ σ−(Ḡ1) = σ−(Ḡ2). If f ∈ S−
then the action (8) and decomposition (9) imply that for all i ∈ {0} ∪ (V \ Vleaves) we

have [πf ](i) = f(i) = −f(i), i.e. f(i) = 0. Therefore if f ∈ S− (it is only non-zero on

Vleaves) is an eigenvector of L(G1) with eigenvalue λ it is also an eigenvector of L(G2)

with the same eigenvalue and hence σ−(G1) = σ−(G2). The same reasoning gives us that

σ−(Ḡ1) = σ−(Ḡ2), which completes the result. However note that σ−(G1) 6= σ−(Ḡ1), in

contrast to the even part of the spectrum.

Theorem 2.2. Let G1 and G2 be two graphs satisfying σ(G1) = σ(G2) in which each

graph contains a k-leaf-pair. Let us denote the respective eigenvectors of G1 and G2 by fn
and gn and suppose that µG1(fn) = µG2(gn) and νG1(fn) = νG2(gn) for all generic n. If

Ḡ1 and Ḡ2 are the graphs, with associated eigenvectors f̄n and ḡn, obtained by inserting

an edge between the two corresponding vertices in each k-leaf. Then

(i) σ(Ḡ1) = σ(Ḡ2) (they are isospectral)

(ii) For all generic eigenvectors µḠ1
(f̄n) = µḠ2

(ḡn) (they have the same flip count)

(iii) For all generic eigenvectors νḠ1
(f̄n) = νḠ2

(ḡn) (they have the same nodal count)
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Proof. Part (i) is simply restating the result of Lemma 2.1.

To show Part (ii), using the reasoning from the proof of Lemma 2.1, we know that

if f is a generic eigenvector of L(G1) with eigenvalue λ then it must belong to f ∈ S+

and, hence, is also an eigenvector of L(Ḡ1) with the same eigenvalue. In addition, if

(j,−j) = E(Ḡ1) \ E(G1) is the edge inserted to make Ḡ1 then f(j) = f(−j). Therefore

we have µG1(f) = µḠ1
(f) since f does not change sign across the edge (j,−j). The

same argument applies to give µG2(g) = µḠ2
(g). Finally, by the isospectrality result

of Lemma 2.1, we know that if f and g are the mth eigenvectors in G1 and G2 then

they must occupy the same position in the spectrum, say the nth, in Ḡ1 and Ḡ2 and so

µḠ1
(f̄n) = µG1(fm) = µG2(gm) = µḠ2

(ḡn) for all generic n.

In order to prove Part (iii) we require more information about the eigenvectors than

their value at the vertices j and −j. If k denotes the endpoint of the k-leaf, then by the

eigenvalue equation L(G1)f = λf we have

λf(k) = f(k)− f(k − 1) ⇒ f(k) =
1

(1− λ)
f(k − 1). (12)

Thus f(k) depends only on the eigenvalue λ and the value of f at the vertex preceding

it. Similarly λf(k − 1) = 2f(k − 1)− f(k)− f(k − 2), which, using (12) gives

f(k − 1) =

(
(2− λ)− 1

(1− λ)

)−1

f(k − 2),

so, again, we see that f(k−1) can be constructed by simply knowing λ and the preceding

value f(k− 2). The recursive nature therefore implies that on the leaves the vector takes

the form f(i) = Fi(λ)f(0) for some function Fi(λ) (it’s exact nature is not important

here, only that it depends on λ).

By inserting the edge (j,−j) we therefore find νḠ1
(f) = νG1(f) + χ(λ, j), where

χ(λ, j) (which only depends on λ and the inserted edge (j,−j)) is either 0 (the vertices

j and −j belong to the same nodal domain of f), or −1 (the vertices j and −j
belong to different nodal domains of f). Applying the same arguments to a generic

eigenvector g of G2 with the same eigenvalue λ gives νḠ2
(f) = νG2(f) + χ(λ, j) and so,

by the isospectrality condition and the equality of nodal domains in G1 and G2 we find

νḠ2
(f̄n) = νG1(fm) + χ(λ, j) = νG2(gm) + χ(λ, j) = νḠ2

(ḡn) for all generic n.

The main issue to highlight is that, although all the generic eigenvectors themselves

do not change between G and Ḡ, some of their positions in the spectrum will. Therefore

the isospectrality condition ensures that they will change in the same manner in both G

and Ḡ, ensuring the flip count µn of the associated nth eigenvectors is the same.

Importantly, we do not preclude in Theorem 2.2 that the graphs G1 are G2 are

isomorphic. In fact the easiest way to obtain examples to illustrate this theorem comes

from taking G1 = G2 but containing multiple sets of k-leaf pairs. Adding edges to

different pairs then makes it possible to create a Ḡ1 and Ḡ2 that are non-isomorphic, but

are still isospectral, which is how the isospectral pair in Figure 2 are created.
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Figure 2. A pair of isospectral graphs with the same flip count and nodal count which

originate by adding edges to trees.

2.1. Removing the isospectrality condition

So far we have presented examples of mechanisms which are able to create families of

isospectral graphs with the same flip count and nodal count. One may ask whether this

condition is always needed. In the following we show this is not the case and present a

way of constructing non-isospectral graphs with the same flip count and also the same

nodal count. This is born out of Lemma 2.1 and the observation that all trees have a flip

count µn = n− 1 and nodal count νn = n.

Theorem 2.3. Let G be a graph containing a k-leaf-pair of length k = 1 and Ḡ the graph

obtained by inserting an edge between the ends of these leaves. If we denote fn to be the

nth eigenvector of G then the flip count of the nth eigenvector f̄n of Ḡ is given (provided

fn is generic) by

µḠ(f̄n) =

{
µG(fn+1) if 1 < λn < 3

µG(fn) otherwise
(13)

and the nodal count by

νḠ(f̄n) =


νG(fn) if λn < 1

νG(fn+1)− 1 if 1 < λn < 3

νG(fn)− 1 if λn > 3 .

(14)

Proof. The statement (13) follows almost immediately from Lemma 2.1. In this case

our leaves are of length 1 and so the subspace S− is spanned entirely by γ (given by

γ(i) = δi,1 − δi,−1). Thus, since γ is a non generic eigenvector of L(G) with eigenvalue 1

we have

L(Ḡ)γ = L(G)γ + γ〈γ,γ〉 = 3γ.

The rank 1 perturbation γ induces a shift of one eigenvalue from 1 to 3, while all other

eigenvalues remain the same. Therefore, by Lemma 2.1 we have for all eigenvectors,

except γ,

f̄n =

{
fn+1 if 1 < λn < 3

fn otherwise
(15)
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σ(Ḡ1) = { 0 , 0.13 , 0.42 , 0.61 , 1, σ(Ḡ2) = { 0 , 0.13 , 0.48 , 0.72 , 1,

2.09 , 2.39 , 3, 3.21 , 3.81 , 5.34 } 1.67 , 2.46 , 2.80 , 3, 3.66 , 6.10 }

Figure 3. An example of two non-isospectral graphs in which all generic eigenvectors

have the same flip count, given by µḠ1
= µḠ2

= {0, 1, 2, 3, 6, 7, 8, 9, 10} and nodal count

νḠ1
= νḠ2

= {1, 2, 3, 4, 6, 7, 8, 9, 10}. The spectrum is presented under each graph and

eigenvalues associated to generic eigenvectors are marked in boxes.

and so (13) follows by the fact that f̄ ∈ S+ and thus 〈γ, f̄〉 = 0⇒ f̄(1) = f̄(−1), i.e. f̄

does not change sign across the inserted edge (1,−1).

To establish (14) requires some more information, specifically the sign of f(0) in

comparison to f(1) = f(−1). Evaluating the Laplacian of G at the vertex 1 we get

[L(G)f ](1) = λf(1) = f(1)− f(0)⇒ (1− λ) =
f(0)

f(1)
.

Hence, for λ < 1, sgn(f(0)) = sgn(f(1)) = sgn(f(−1)) and inserting an edge does not

increase the number of nodal domains, whereas for λ > 1 the opposite is true. Combining

this with (15) leads to (14).

As a consequence of Theorem 2.3 we are able to get the following corollary, which

enables us to generate pairs of non-isospectral graphs with the same flip count

Corollary 2.4. Let G1 and G2 be graphs each containing a k-leaf-pair of length k = 1

with eigenvectors fn and gn respectively. Suppose that for all generic eigenvectors we

have µG1(fn) = µG2(gn) and νG1(fn) = νG2(gn) and they have the same number of

eigenvalues in the ranges 0 ≤ λ < 1, 1 ≤ λ < 3 and λ ≥ 3. Then, if Ḡ1 and Ḡ2 are

the graphs obtained by inserting an edge between each leaf, then µḠ1
(f̄n) = µḠ2

(ḡn) and

νḠ1
(f̄n) = νḠ2

(ḡn) for all generic n.

Corollary 2.4 states that, via this mechanism, we are required to find non-isospectral

graphs G1 and G2 with the same flip count in order to generate another pair with of

non-isospectral graphs Ḡ1 and Ḡ2 with the same flip count. At first sight this may

seem like a pointless search, however it turn out to be very fruitful, as it allows us to go

from tree-graphs (with trivial topologies) to non-tree-graphs, which no longer have trivial

topologies. Examples of graphs Ḡ1 and Ḡ2 generated in this way are given in Figure 3.
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Figure 4. The process of gluing the leaves of a quantum graph Γ together at the dummy

vertices w+ and w− to form a new quantum graph Γ̄ with vertex w of degree 4. These

dummy vertices are the same distance from the root, u, so l(w+,u) = l(w−,u) = l1, and

l(w+,v) = l(w−,v) = l2.

3. Quantum graphs

Definition 3.1. In the case of a metric graph we define an l-leaf to be a leaf with edge

length l. In addition, we define an l-leaf-pair to be two l-leaves connected via some root

vertex.

Remark 3.1. On a quantum graph, a vertex of degree two with Neumann vertex

conditions (a so-called dummy vertex) does not alter any of the spectral properties [32].

Therefore we are free to add such vertices on leaves at any position we desire (see e.g.

Figure 4).

In the previous section we introduced the mechanism of inserting an edge between a

pair of leaves. Our aim is to introduce a similar mechanism for quantum graphs, however

the process of inserting an edge would increase the overall length of the graph, which

could have dramatic consequences for the spectrum. The solution we find is thus to

glue the leaves together at the same point, which alters the topology of the graph but

retains the same overall length. This process leads us to Theorem 3.2 below, which is the

counterpart to Theorem 2.2 in Section 2. However, to begin, we start with the following

lemma.

Lemma 3.1. Let Γ1 and Γ2 be two graphs each containing a l-leaf-pair. Let Γ̄1 and Γ̄2

be the respective graphs obtained by gluing the leaves in each pair together at the same

point. Then σ(Γ1) = σ(Γ2) ⇐⇒ σ(Γ̄1) = σ(Γ̄2).

Proof. The proof proceeds in analogous manner to the discrete case given in Lemma 2.1.

Let us first administer some notation. In Γ1 let u denote the root vertex which joins

the two leaves, with v± the ends of these leaves. Let us introduce two dummy vertices

w± the same distance away from the root on these respective leaves. Thus we have four

edges which we denote e±1 = (w±, u) and e±2 = (w±, v±), with lengths le+1 = le−1 = l1
and le+2 = le−2 = l2, as illustrated in Figure 4. Thus our edge set consists of the edges

E = {e−2, e−1, e1, e2, e3, . . . , e|E|−2} and Eleaves := {e−2, e−1, e1, e2}. Note that here |E| is

the number of edges after we have inserted the dummy vertices w±.
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We now introduce the operator π : L2(Γ1)→ L2(Γ1) that interchanges the two edges,

i.e. for functions ψ ∈ L2(Γ1) we have

[πψ](xei) =

{
ψ(xe−i

) i = −2,−1, 1, 2

ψ(xei) i = 3, . . . , |E| − 2.
(16)

Again, since π2 = I, the identity, we can decompose our Hilbert space into those functions

which are even (+) and odd (−) under exchange of the two leaves

L2
±(Γ1) := {ψ ∈ L2(Γ1) : πψ = ±ψ}, (17)

with L2(Γ1) = L2
+(Γ1) ⊕ L2

−(Γ1). Moreover, if ψ ∈ L2
+(Γ1) and is an eigenvector of LΓ1

with eigenvalue λ then it is also an eigenvector of LΓ̄1
with the same eigenvalue. To see

this note that if LΓ1ψ = λψ then −d2ψ(xe)/dx
2
e = λψ(xe) on all edges e ∈ E(Γ̄1) and

thus it remains to check the vertex conditions at w± are satisfied.

(i) Continuity: By the vertex continuity at w± on Γ1 and the fact that ψ is even we

have ψe+1(w+) = ψe+2(w+) = ψe−2(w−) = ψe−1(w−), which is precisely the condition

required at w on Γ̄1.

(ii) Derivatives: On Γ1 the (outgoing) derivatives at w± satisfy ψ′e+1
(w+)+ψ′e+2

(w+) =

0 and ψ′e−1
(w−) + ψ′e−2

(w−) = 0 respectively. Adding these relations together gives

ψ′e+1
(w+)+ψ′e+2

(w+)+ψ′e−1
(w−)+ψ′e−2

(w−) = 0, which again is the condition required

for the derivatives of ψ at w on Γ̄1.

In addition, since π preserves the eigenspaces of Γ1 we can choose a basis of eigenfunctions

ψn such that they are either even or odd and we denote the corresponding spectra

(including multiplicities) by σ±(Γ1), so that σ(Γ1) = σ+(Γ1) ∪ σ−(Γ1) and similarly

for Γ̄1.

The same result hold for Γ2 and Γ̄2. Hence, since σ+(Γ1) = σ+(Γ̄1) and σ+(Γ2) =

σ+(Γ̄2), we have

σ+(Γ1) = σ+(Γ2) ⇐⇒ σ+(Γ̄1) = σ+(Γ̄2).

It thus remains to show the same for the odd subspaces. We note that if ψ ∈ L−(Γ1)

then (16) and (17) imply that ψ(x) = 0 for all points x which are not on the leaves of Γ1

and similarly for Γ2. Therefore, ψ ∈ L−(Γ1) is an eigenfunction of Γ1 with eigenvalue λ if

and only if it is an eigenfunction of Γ2 with the same eigenvalue and so σ−(Γ1) = σ−(Γ2).

The same reasoning implies that σ−(Γ̄1) = σ−(Γ̄2), which completes the result.

Theorem 3.2. Let Γ1 and Γ2 be two graphs each containing an l-leaf-pair and satisfying

σ(Γ1) = σ(Γ2). Let us denote the respective eigenfunctions by ψn and φn and suppose

that µΓ1(ψn) = µΓ1(φn) and νΓ1(ψn) = νΓ2(φn) for all generic n. Let also Γ̄1 and Γ̄2 be

the respective graphs obtained by gluing the leaves together at points w± in the fashion of

Lemma 3.1 and ψ̄n and φ̄n be the respective eigenfunctions. Then

(i) σ(Γ̄1) = σ(Γ̄2) (the graphs are isospectral).

(ii) For all generic eigenvectors µΓ̄1
(ψ̄n) = µΓ̄2

(φ̄n) (they have the same flip count).

(iii) For all generic eigenvectors νΓ̄1
(ψ̄n) = νΓ̄2

(φ̄n) (they have the same nodal count).
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Remark 3.2. Depending on the choice of w± it may be the case that eigenfunctions

that are generic in Γ1 (without the dummy vertices inserted) are no longer generic in Γ̄1,

since they may be zero at w±. However the combined zero set of all generic eigenfunctions

forms a countable sequence of points on the edges of the leaves. Therefore, as this set is

of zero measure, we can choose w± almost everywhere on the leaves such that all generic

eigenfunctions of Γ1 are also generic on Γ̄1. The same holds for Γ2 and Γ̄2.

Proof of Theorem 3.2. Part (i) is simply restating Lemma 3.1.

For Part (ii) we note that if ψ is a generic eigenfunction of Γ1 with eigenvalue λ, then

ψ ∈ L2
+(Γ1) and hence, by the argument in the proof of Lemma 3.1 it is an eigenfunction

of Γ̄1 with the same eigenvalue. If ψ is the mth eigenfunction ψm of Γ1 and the nth

eigenfunction ψ̄n of Γ̄1 then µΓ1(ψm) = µΓ̄1
(ψ̄n), since the process of gluing the edges

together does not induce any more zeros. For the same reason µΓ2(φr) = µΓ̄2
(φ̄n) when φ

is generic and the nth (resp. rth) eigenfunction of Γ2 (resp. Γ̄2). Thus Lemma 3.1 ensures

that, since Γ̄1 and Γ̄2 are isospectral, we have m = r and thus µΓ̄1
(ψ̄n) = µΓ̄2

(φ̄n) for all

generic n.

For Part (iii) we need to deduce some more information about the eigenfunctions.

Firstly, if ψ is an eigenfunction of Γ1 we know that on each edge it must be of the form

ψ(x) = A1 sin(
√
λx) +B1 cos(

√
λx).

Now, let x ∈ [0, l] denote the position on one of the leaves with the point x = 0 giving

the position at the end of the leaf and x = l the point of the root vertex u. Since all the

vertices obey Neumann conditions we find that

dψ

dx
(0) = A1

√
λ cos(0)−B1

√
λ sin(0) = A1

√
λ = 0.

Thus ψ(x) = B1 cos(
√
λx). For the same reasoning we have on the graph Γ2 φ(x) =

B2 cos(
√
λx), for some other constant B2. Gluing the edges together at the points w±

we either have that the number of nodal domains is the same νΓ1(ψ) = νΓ̄1
(ψ) (the

points w± belong to the same nodal domain of ψ on Γ1) or it decreases by one, i.e.

νΓ̄1
(ψ) = νΓ1(ψ) − 1 (the points w± belong to different nodal domains of ψ on Γ1).

However the same must be true for φ since ψ(x)/φ(x) is constant for all x ∈ Eleaves.

Therefore νΓ̄1
(ψ̄n) = νΓ̄2

(φ̄n) and the isospectrality of Lemma 3.1 ensures they must

occupy the same position in the spectrum.

We also comment that one could, in principle, obtain a pair of non-isospectral

quantum graphs with the same flip and nodal counts in an analogous manner to Section

2.1. The process would involve taking two tree graphs Γ1 and Γ2, both containing an l-leaf-

pair, and then gluing together the leaves to obtain Γ̄1 and Γ̄2, as outlined above. Γ1 will

have the same eigenvalues in the odd part of the spectrum as Γ2 (i.e. λodd
n (Γ1) = λodd

n (Γ2))

and, similarly, Γ̄1 the same (odd) eigenvalues as Γ̄2 (i.e. λodd
n (Γ̄1) = λodd

n (Γ̄2)).

These odd eigenvalues can be explicitly calculated. They correspond to the

eigenvalues of a line graph with Dirichlet conditions at one end, Neumann at the other

and Neumann (resp. Dirichlet) for Γ (resp. Γ̄) at a central vertex a distance l1 from

13



the end with Dirichlet conditions. This means the associated eigenvalues are strictly

interlacing, i.e. λodd
n (Γ1) < λodd

n (Γ̄1) < λodd
n+1(Γ1) (see e.g. Theorem 3.1.8 in [32]).

Since Γ1 and Γ2 are trees they have the same flip and nodal counts. The even

eigenvalues of Γ1 are the same as Γ̄1 (similarly for Γ2 and Γ̄2). Thus, if the positions in

the spectrum (not necessarily the values) of these eigenvalues are the same - i.e. Γ1 and

Γ2 have the same number of even eigenvalues in each interval (λodd
1 , λ̄odd

1 ), (λ̄odd
1 , λodd

2 )

etc. - then the flip counts (although not necessarily the nodal counts) of Γ̄1 and Γ̄2 will

coincide. However, due to the fact that there are an infinite number of eigenvalues for

quantum graphs, this cannot be checked numerically. Thus, at present, we are unsure

about the existence of such a pair of quantum graphs.

4. Conclusions

The work presented here outlines a simple mechanism for constructing both discrete and

quantum isospectral graphs with the same flip and nodal count. Thus presenting a family

of counter-examples to the conjecture that pairs of isospectral (non-tree) graphs may be

distinguished by their nodal properties [1, 2, 30]. In addition, we have also shown that

certain non-isospectral (discrete) graphs share the same flip count and nodal count. These

results afford the existence of both isospectral and non-isospectral graphs with either the

same or different flip/nodal counts, hence knowledge of whether the flip/nodal counts are

the same or different is not enough to deduce whether two graphs are isospectral or not.

We believe the work highlights a number of previous questions and raises yet more.

For instance, what is the likelihood of finding isospectral graphs and quantum graphs

with the same flip/nodal count? - Numerical simulations by I. Oren suggest these may

be extremely rare in the cases such as random regular graphs [37]. With our methods,

we can create graphs with very different topology that are isospectral and have identical

flip counts and nodal counts. What properties unite all of these examples? and is there

a criterion we can point to that tells us whether isospectral graphs and quantum graphs

will have the same flip/nodal count or are these examples all coincidental? Perhaps

recent advances in our understanding of nodal and flip counts in connection with the

stability of eigenvalues [15–18] may provide answers, as this makes connections with

topological properties of the graph. Progress in this respect would be greatly applicable

to graph-theoretical problems looking at distinguishing non-isomorphic graphs and may

also indicate how to proceed in the case of bounded domains.
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