4,697 research outputs found

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    Latency-aware joint virtual machine and policy consolidation for mobile edge computing

    Get PDF
    To guarantee an efficient and high-performance environment for mobile devices to perform offloading with low end-to-end delay, it is important to ensure no network policies are violated. In this paper, we explore the simultaneous, dynamic virtual machine (VM) and policy consolidation, and formulate the Policy-VM Latency-aware Consolidation problem for Mobile Edge Computing, which is shown to be NP-Hard. We propose the PL-Edge, an efficient scheme to jointly consolidate network policies and virtual machines for mobile edge computing to reduce communication end-to-end delays among devices and virtual machines. Our simulation results demonstrate that the proposed PL-Edge can significantly reduces policy-flows end-to-end delay by nearly 45% while adhering strictly to the requirements of network policies

    Synergistic policy and virtual machine consolidation in cloud data centers

    Get PDF
    In modern Cloud Data Centers (DC)s, correct implementation of network policies is crucial to provide secure, efficient and high performance services for tenants. It is reported that the inefficient management of network policies accounts for 78% of DC downtime, challenged by the dynamically changing network characteristics and by the effects of dynamic Virtual Machine (VM) consolidation. While there has been significant research in policy and VM management, they have so far been treated as disjoint research problems. In this paper, we explore the simultaneous, dynamic VM and policy consolidation, and formulate the Policy-VM Consolidation (PVC) problem, which is shown to be NP-Hard. We then propose Sync, an efficient and synergistic scheme to jointly consolidate network policies and virtual machines. Extensive evaluation results and a testbed implementation of our controller show that policy and VM migration under Sync significantly reduces flow end-to-end delay by nearly 40%, and network-wide communication cost by 50% within few seconds, while adhering strictly to the requirements of network policies

    Two levels autonomic resource management in virtualized IaaS

    Get PDF
    International audienceVirtualized cloud infrastructures are very popular as they allow resource mutualization and therefore cost reduction. For cloud providers, minimizing the number of used resources is one of the main services that such environments must ensure. Cloud customers are also concerned with the minimization of used resources in the cloud since they want to reduce their invoice. Thus, resource management in the cloud should be considered by the cloud provider at the virtualization level and by the cloud customers at the application level. Many research works investigate resource management strategies in these two levels. Most of them study virtual machine consolidation (according to the virtualized infrastructure utilization rate) at the virtualized level and dynamic application sizing (according to its workload) at the application level. However, these strategies are studied separately. In this article, we show that virtual machine consolidation and dynamic application sizing are complementary. We show the efficiency of the combination of these two strategies, in reducing resource usage and keeping an application’s Quality of Service. Our demonstration is done by comparing the evaluation of three resource management strategies (implemented at the virtualization level only, at the application level only, or complementary at both levels) in a private cloud infrastructure, hosting typical JEE web applications (evaluated with the RUBiS benchmark)

    Hybrid approach for energy aware management of multi-cloud architecture integrating user machines

    Get PDF
    International audienceThe arrival and development of remotely accessible services via the cloud has transfigured computer technology. However, its impact on personal computing remains limited to cloud-based applications. Meanwhile, acceptance and usage of telephony and smartphones have exploded. Their sparse administration needs and general user friendliness allows all people, regardless of technology literacy, to access, install and use a large variety of applications.We propose in this paper a model and a platform to offer personal computing a simple and transparent usage similar to modern telephony. In this model, user machines are integrated within the classical cloud model, consequently expanding available resources and management targets. In particular, we defined and implemented a modular architecture including resource managers at different levels that take into account energy and QoS concerns. We also propose simulation tools to design and size the underlying infrastructure to cope with the explosion of usage. Functionalities of the resulting platform are validated and demonstrated through various utilization scenarios. The internal scheduler managing resource usage is experimentally evaluated and compared with classical method-ologies, showing a significant reduction of energy consumption with almost no QoS degradation

    Decision Support Tools for Cloud Migration in the Enterprise

    Full text link
    This paper describes two tools that aim to support decision making during the migration of IT systems to the cloud. The first is a modeling tool that produces cost estimates of using public IaaS clouds. The tool enables IT architects to model their applications, data and infrastructure requirements in addition to their computational resource usage patterns. The tool can be used to compare the cost of different cloud providers, deployment options and usage scenarios. The second tool is a spreadsheet that outlines the benefits and risks of using IaaS clouds from an enterprise perspective; this tool provides a starting point for risk assessment. Two case studies were used to evaluate the tools. The tools were useful as they informed decision makers about the costs, benefits and risks of using the cloud.Comment: To appear in IEEE CLOUD 201

    An innovative approach to performance metrics calculus in cloud computing environments: a guest-to-host oriented perspective

    Get PDF
    In virtualized systems, the task of profiling and resource monitoring is not straight-forward. Many datacenters perform CPU overcommittment using hypervisors, running multiple virtual machines on a single computer where the total number of virtual CPUs exceeds the total number of physical CPUs available. From a customer point of view, it could be indeed interesting to know if the purchased service levels are effectively respected by the cloud provider. The innovative approach to performance profiling described in this work is based on the use of virtual performance counters, only recently made available by some hypervisors to their virtual machines, to implement guest-wide profiling. Although it isn't possible for the virtual machine to access Virtual Machine Monitor, with this method it is able to gather interesting informations to deduce the state of resource overcommittment of the virtualization host where it is executed. Tests have been carried out inside the compute nodes of FIWARE Genoa Node, an instance of a widely distributed federated community cloud, based on OpenStack and KVM. AgiLab-DITEN, the laboratory I belonged to and where I conducted my studies, together with TnT-Lab\u2013DITEN and CNIT-GE-Unit designed, installed and configured the whole Genoa Node, that was hosted on DITEN-UniGE equipment rooms. All the software measuring instruments, operating systems and programs used in this research are publicly available and free, and can be easily installed in a micro instance of virtual machine, rapidly deployable also in public clouds
    • …
    corecore