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Abstract

In  virtualized  systems,  the  task  of  profiling  and  resource  monitoring  is  not

straight-forward.  Many  datacenters  perform  CPU  overcommittment  using

hypervisors, running multiple virtual machines on a single computer where the

total  number  of  virtual  CPUs  exceeds  the  total  number  of  physical  CPUs

available.

From a customer point of view, it  could be indeed interesting to know if  the

purchased service levels are effectively respected by the cloud provider.

The innovative approach to performance profiling described in this work is based

on the use of virtual performance counters, only recently made available by some

hypervisors to their virtual machines, to implement guest-wide profiling.

Although  it  isn't  possible  for  the  virtual  machine  to  access  Virtual  Machine

Monitor, with this method it is able to gather interesting informations to deduce

the  state  of  resource  overcommittment   of  the  virtualization  host  where  it  is

executed.

Tests have been carried out inside the compute nodes of  FIWARE Genoa Node,

an  instance  of  a  widely  distributed  federated  community  cloud,  based  on

OpenStack and KVM.  AgiLab-DITEN, the laboratory I belonged to and where I

conducted  my  studies,  together  with  TnT-Lab–DITEN  and  CNIT-GE-Unit

designed, installed and configured the whole Genoa Node, that was hosted on

DITEN-UniGE equipment rooms.

All the software measuring instruments, operating systems and programs used in

this research are publicly available and free, and can be easily installed in a micro

instance of virtual machine, rapidly deployable also in public clouds.
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 1 Introduction

Virtualization is not a new technology. In the 1960s computing systems were as

large as a room and very expensive to operate. In those days only one application

could be executed on one piece of hardware at  a  particular time.  Then time-

sharing had been introduced to execute several applications simultaneously. One

major  drawback  of  this  approach  was  the  lack  of  isolation  of  the  running

applications.  If  application  A  caused  a  hardware  error  all  other  running

applications were affected.

To isolate  these,  virtualization  provided  several  isolated  environments  to  ran

them into [1].

In  the  1970s  hardware  architectures  became  virtualization  aware.  IBM

mainframes allowed the administrators to partition the real hardware and provide

isolated environments for each application.

In the 1980s, as the x86 architecture arose and the prices of hardware felt,  it

became affordable to run one computer per application. Also operating systems

supported multi tasking and there was no need for time-sharing any more. As a

consequence virtualization became history.

In the last couple of years virtualization experienced a comeback. Intel and AMD

extended the  IA32 instructon set  of  x86  processors  to  support  virtualization.

Since these are the big players on the CPU market, nearly any recent PC and

server supports virtualization.

Today, virtualization  is  mainly  used  for  consolidation:  an  interesting  statistic

reported by the U.S. Environmental Protection Agency (EPA) stood out. The EPA

7



study on server and data center energy efficiency found that only around 5% of

server capacity was actually used. The rest of the time, the server was dormant.

Virtualizing platforms on a single server can improve server utilization, but the

benefits  of reducing server count are a force multiplier. With reduced servers

comes reduced real estate, power consumption, cooling (less energy costs), and

management costs.  Less  hardware also means improved reliability. All  in all,

virtualization  brings  not  only  technical  advantages  but  cost  and  energy

advantages, as well.

There are many types of consolidation and the following examples should give a

basic idea about it.

A lot of servers are running at a very low load but still consuming a huge amount

of energy. Server consolidation means workload optimization of these servers by

running each of them as a Virtual Machine (VM) on virtualization hosts. When

contention is low these VMs are dynamically migrated to fewer virtualization

hosts and shut down the others to reduce energy consumption and lower costs. If

the load increases and more hosts are needed to fulfill server level objectives,

these are started again and some VMs are migrated onto them.

Another  example  is  application  consolidation,  where  virtualization  is  used  to

replace the old hardware of a legacy system. It helps to provide an environment

which mimics the old hardware and runs the legacy system.

Sandboxing is  another purpose of virtualization.  It  is  mainly used to increase

security  by  running  potentially  insecure  applications  inside  a  VM.  So  an

application  runs  in  its  isolated  environment,  while  specialists  can observe its

behaviour. Thus malware and other malicious software could be found before it’s

deployed on a machine with access to the network of a company.
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There  are  various  techniques  to  provide  and  operate  VMs,  one  of  those  are

Virtual Machine Monitors (VMM). Such a VMM represents a software layer of

indirection, running on top of the hardware. It operates all VMs running upon it.

 2 System Virtualization

 2.1 Definition

Since virtualization is  a  settled topic,  there  are  several  definitions  on it.  The

following is a general definition of virtualization given by  Chiueh and  Brook

[2]:

“Virtualization is a technology that combines or divides computing re-

sources to present one or many operating environments using method-

ologies like hardware and software partitioning or aggregation, partial

or complete machine simulation, emulation, time-sharing, and many

others”

This means, that virtualization uses techniques to abstract from the real hardware

and  provides  isolated  environments,  so  called  Virtual  Machines.  These  are

capable to run various applications or even a whole operating system. A goal not

mentioned in the definition is to have nearly to native performance for running

VMs.

This is a very important point, because the users always want to get the most out
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of  their  hardware.  Most  of  them  are  not  willing  to  introduce  virtualization

technology, if a huge amount of CPU power is wasted by managing Vms.

As well as virtualization in general, system virtualization is well defined too:

“A system VM provides a complete environment in which an operating

system and many processes, possibly belonging to multiple users, can

coexist.” [3]

The complete  environment,  in this  case,  means an environment  that  provides

usual hardware like ethernet controllers, CPUs or hard disk drives to an operating

system (OS) which runs inside of it. A server with real hardware attached to it

commonly runs several VM’s. Such a server is called virtualization host and the

VM’s running on top of it are called guests. The OS that runs inside a guest is

called guest OS.

For this work, by virtualization we mean system virtualization.

 2.2 Virtual Machine Monitor

Virtualization, in the context of this work, is the process of hiding the underlying

physical hardware in a way that makes it transparently usable and shareable by

multiple  operating  systems.  This  architecture  is  also  known  as  platform

virtualization other than system virtualization. In a typical layered architecture,

the layer that provides for the system virtualization is called the hypervisor, also

known as virtual machine monitor, or VMM. Each instance of a guest operating

10



system is called a virtual machine (VM), because to these VMs the hardware is

virtualized to appear as dedicated to them. A simple illustration of this layered

architecture is shown in Figure 1.

Figure 1. Simple layered architecture showing the virtualization of common hardware

Hypervisors  do for  operating systems what  operating systems roughly  do for

processes. They provide isolated virtual hardware platforms for execution that in

turn provide the illusion of full access to the underlying machine. 

Operating systems virtualize access to the underlying resources of the machine to

processes.  Hypervisors  do  the  same  thing,  but  instead  of  processes,  they

accomplish this task for entire guest operating systems.

 2.2.1 Hypervisor classifications

Hypervisors  can  be  classified  into  two  distinct  types.  The  first,  type  1

hypervisors, are those that natively run on the bare-metal hardware. The second,

type 2, are hypervisors that execute in the context of another operating system

(that runs on the bare metal). Examples of type 1 hypervisors include Kernel-
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based Virtual Machine (KVM), Vmware ESXi, MS Hyper-V, Xen.

Examples of type 2 hypervisors include QEMU, WINE, Virtual Box, Vmware

Workstation and Player.

So a hypervisor (regardless of the type) is just a layered application that abstracts

the machine hardware from its guests. In this way, each guest sees a VM instead

of the real hardware. 

All guests are controlled and monitored by the VMM. It provides tools to the

users to manage them. These tools allow to do several operations like starting or

stopping a guest or migrating VMs between hosts.

At a high level, the hypervisor requires a small number of items to boot a guest

operating system: a kernel image to boot, a configuration, such as IP addresses

and quantity  of  memory to  use,  a  disk,  and a  network device.  The  disk  and

network device commonly map into the machine's  physical  disk and network

device, as shown in Figure 2. Finally, a set of guest tools is necessary to launch a

guest and subsequently manage it.

A VM usually has at least one virtual CPU. The VMM maps the virtual CPU(s)

of all actually running VMs to the physical CPU(s) of the host. Hence, there are

usually  more  VMs running on a  host  than physical  CPUs are  attached to  it,

causes  the  need  of  some  kind  of  scheduling.  Therefore  a  VMM  uses  a

scheduling mechanism to assign a certain share of the physical CPUs to each

virtual CPU.
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Figure 2. Minimal mapping of resources in a hypothetical hypervisor

A VMM has to  deal  with memory management,  also.  It  maps an amount  of

physical  memory  into  the  VMs  address  space  and  also  has  to  handle

fragmentation of memory and swapping. Since some VMs need more memory

than others, the amount of assigned memory is defined and often dynamically

adjusted by using the management tools.

Usually, the VMs don’t have access to the physical hardware and don’t even

know about it  either. Only if  direct  access is  desired,  devices may be passed

through directly. For running legacy software this may be a point. But in more

common scenarios the VMM provides virtual  I/O devices like network cards,

hard disks and cd drives.  Since a VMM provides different  VMs mostly with

same hardware, it is much easier to migrate them between hosts running the same

VMM. The drivers for the virtual I/O devices need to be installed only once in

this case.
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 2.2.2 Hardware Support

To  implement  a  Virtual  Machine  Monitor  on  a  x86  architecture,  hardware

assistance is needed. The privilege levels implemented by the CPU to restrict

tasks  that  processes  can  do,  are  one  aspect.  Another  one  is  the  memory

management  that  is  emulated  by  the  VMM  which  tends  to  be  inefficient.

Hardware support could lead to an increased performance of the virtual machines

by supporting a VMM.

 2.2.3 Privilege Levels

The most modern operating systems don’t allow applications to execute certain

operations. Only the OS may load drivers or access the hardware directly, for

example. To restrict all running applications to only a subset of the resources, the

OS and the CPU conspire using privilege levels.

As described in [4]  a x86 CPU runs in a specific privileged level at any given

time.

Figure 3 shows these levels as rings. Ring 0 is the most privileged and ring 3 is

the least privileged.

Figure 3. CPU privilege levels
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The resources that are protected through the rings are: memory, I/O ports and

CPU instructions. The operating system typically runs in ring 0. It needs the most

privileged level to do resource management and provide access to the hardware.

All the applications run in ring 3. Ring 1 and 2 are widely unused. From a OSs

point of view ring 0 is called kernel-mode and ring 3 user-mode.

As mentioned in section 2.2.1 the VMM needs to access the memory, CPU and

I/O devices of the host. Since only code running in ring 0 is allowed to perform

these operations, it needs to run in the most privileged ring, next to the kernel. 

An operating system installed in a VM also expects to access all the resources

and in order of that running in ring 0 like the VMM does. Due to the fact that

only one kernel can run in ring 0 at the same time, the guest OSs have to run in

another ring with less privileges or have to be modified to run in user-mode.

Intel and AMD realized that this is a major challenge of virtualization on the x86

architecture. So they introduced Intel VT and AMD SVM as an extension of the

IA-32 instruction set for better support of virtualization. These extensions allow

the VMM to run  a guest  OS that  expects  to  run in  kernel-mode,  in  a  lower

privileged ring.

 2.2.4 Memory Management

In order to  run several  VMs on top of a server, a  multiple of the amount of

memory that is attached to a common server is needed. Since each VM runs an

entire operating system and applications on that, it is recommended to assign as

much memory to a  VM as  a  comparable  physical  machine  would have.  The
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VMM splits the physical memory of the host  into contiguous blocks of fixed

length and maps it into the address space provided to a VM.

Most  modern systems are  using virtual  memory management.  This  technique

allows to provide the previously mentioned contiguous blocks of memory to a

VM, although it is fragmented all over the physical memory or even partially

stored on the hard disk. In this case it has to be copied back to memory by the

virtual memory management first, when accessed. Since a VM is unaware of the

physical  address  of  its  address  space,  it  can’t  figure  out  whether  parts  of  its

virtual memory has to be copied or not. To achieve that, the VMM holds a so

called shadow page table that stores the physical location of the virtual memory

of all VMs. Thus, any time a VM writes to its memory, the operation has to be

intercepted to keep the shadow pages up to date.  When a swapped address is

accessed the VMM first uses the virtual memory management to restore it.

With  the  introduction  of  Intel’s  Extended  Paging  Tables  (EPT)  and  AMD’s

Nested Paging Tables (NPT) a VMM can use hardware support for the translation

between  virtual  and  physical  memory. This  reduces  the  overhead  of  holding

shadow pages and increases the performance of a VMM [5].

 2.3 Virtualization techniques

I introduce now two techniques to realize system virtualization:

paravirtualization and full virtualization.
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 2.3.1 Paravirtualization

The paravirtualization approach allows each guest to run a full operating system.

But these do not run in ring 0. Due to that all the privileged instructions can’t be

executed by a guest. In order of that, modifications to the guest operating systems

are required to implement an interface. This is used by the VMM to take over

control and handle the restricted instructions for the VM. The paravirtualization

approach promises  nearly  to  native  performance  but  lacks  in  the  support  for

closed source operating systems [6].  To apply the mentioned modifications, the

source code of the kernel of an operating system has to be patched. Thus, running

Microsoft Windows in a VM is impossible using paravirtualization.

 2.3.2 Full virtualization

This approach allows to operate several operating systems on top of a hosting

system, each running into its own isolated VM. The VMM uses hardware support

as  described in  section 2.3.1 to  operate  these,  which allows to run  the  guest

operating systems without  modifications.  The VMM provides I/O devices for

each VM, which is commonly done by emulating older hardware. This ensures

that a guest OS has driver support for these devices. Because of the emulated

parts fullvirtualization is not as fast as paravirtualization. But if one needs to run

a closed source OSs, it is the only viable technique to do so.
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 2.4 Linux as an hypervisor

One of the most important modern innovations of Linux is its transformation into

a hypervisor or, in other terms, an operating system for hosted operating systems.

A number of hypervisor solutions have appeared that use Linux as the core, but

in this document I will introduce KVM, that is one of the emerging hypervisor

technologies, completely open source and used to realize the experiments in our

laboratory, for the purposes of my PhD research work. 

 2.4.1 Generic linux-based hypervisor

A simplified hypervisor architecture then implements the glue that allows a guest

operating system to be run concurrently with the host  operating system. This

functionality requires a few specific elements, shown in Figure 4. 

First,  similar  to  system calls  that  bridge  user-space  applications  with  kernel

functions, a hypercall layer is commonly available that allows guests to make

requests of the host operating system. Input/output (I/O) can be virtualized in the

kernel  or  assisted  by  code  in  the  guest  operating  system.  Interrupts  must  be

handled  uniquely  by  the  hypervisor  to  deal  with  real  interrupts  or  to  route

interrupts for virtual devices to the guest operating system. The hypervisor must

also handle traps or exceptions that occur within a guest: after all, a fault in a

guest should halt the guest but not the hypervisor or other guests. A core element

of the hypervisor is a page mapper, which points the hardware to the pages for

the  particular  operating  system  (guest  or  hypervisor).  Finally,  a  high-level
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scheduler  is  necessary  to  transfer  control  between  the  hypervisor  and  guest

operating systems and back.

Figure 4. Simplified view of a Linux-based hypervisor

 2.4.2 KVM  Kernel-based Virtual Machine

KVM has been initially developed by Qumranet,  a small  company located in

Israel. Redhat acquired Qumranet in september 2008, when KVM became more

production  ready.  They  see  KVM  as  the  next  generation  of  virtualization

technology. Nowadays it is used as the default VMM in Redhat Enterprise Linux

(RHEL) since version 5.4 and the Redhat Enterprise Virtualization for Servers.

Qumranet released the code of KVM to the open source community. Today, well

known companies like IBM, Intel and AMD count to the list of contributors of

the project. Since version 2.6.20 KVM is part of the vanilla linux kernel and thus
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available on the most linux-based operating systems with a newer kernel. 

Further more it benefits from the world class development of the open source

operating  system,  because  if  linux  gains  better  performance  through  new

algorithms, drivers or whatsoever KVM also performs better.

KVM is a system virtualization solution that uses full virtualization to run Vms

[7].  It  has a small  code base,  since it  was designed to leverage the facilities

provided by hardware support for virtualization. KVM runs mainly on the x86

architecture, but IA64 and PowerPC support was added.

Additionally, KVM has added support for symmetrical multiprocessing (SMP)

hosts and guests, and supports enterprise-level features such as live migration, to

allow guest operating systems to migrate between physical servers.

KVM  is  implemented  as  a  kernel  module,  allowing  Linux  to  become  a

hypervisor  simply by loading a  module.  KVM provides  full  virtualization on

hardware  platforms  that  provide  hypervisor  instruction  support,  such  as  the

Intel® Virtualization Technology [Intel  VT] or AMD Virtualization [AMD-V]

offerings.  KVM  also  supports  paravirtualized  guests,  including  Linux  and

Windows®.

This  technology  is  implemented  as  two  components.  The  first  is  the  KVM-

loadable module that, when installed in the Linux kernel, provides management

of  the  virtualization hardware,  exposing its  capabilities  through the  /proc file

system  (see  Figure  5).  The  second  component  provides  for  PC  platform

emulation, which is provided by a modified version of QEMU. QEMU executes

as a user-space process, coordinating with the kernel for guest operating system

requests.
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Figure 5. High-level view of the KVM hypervisor

 2.4.3 KVM architecture

Linux has all  the mechanisms a VMM needs to operate several VMs. So the

developers didn’t reinvent the wheel and added only few components to support

virtualization. KVM is implemented as a kernel module that can be loaded to

extend linux by these capabilities. 

In  a  normal  linux  environment  each  process  runs  either  in  user-mode or  in

kernel-mode. KVM introduces a third mode, the guest-mode. Therefore it relies

on a virtualization capable CPU with either Intel VT or AMD SVM extensions. 

A process in guest-mode has its own kernel-mode and user-mode. Thus, it is able

to run an operating system. Such processes are representing the VMs running on

a KVM host. In  [8] the  author states what the modes are used for from a hosts

point of view:
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• user-mode: I/O when guest needs to access devices

•  kernel-mode:  switch  into  guest-mode  and  handle  exits  due  to  I/O

operations

• guest-mode: execute guest code, which is the guest OS except I/O

 2.4.4 Resource management

The KVM developers aimed to reuse as much code as possible. Due to that they

mainly  modified  the  linux  memory  management,  to  allow  mapping  physical

memory into the VMs address space. Therefore they added shadow page tables,

that were needed in the early days of x86 virtualization, when Intel and AMD had

not  released  EPT  respectively  NPT  yet.  On  May  2008  support  for  these

technologies has been introduced.

In modern operating systems there are many more processes than CPUs available

to run them. The scheduler of an operating system computes an order in that each

process  is  assigned  to  one  of  the  available  CPUs.  In  this  way,  all  running

processes are share the computing time. Since the KVM developers wanted to

reuse most of the mechanisms of linux, they simply implemented each VM as a

process, relying on its scheduler to assign computing power to the VMs.

 2.4.5 The KVM control interface

Once the KVM kernel module has been loaded, the /dev/kvm device node appears

in the filesystem. This is a special device node that represents the interface of
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KVM.  It  allows  to  control  the  hypervisor  through  a  set  of  ioctls.  These  are

commonly used in certain operating systems as an interface for processes running

in user-mode to communicate with a driver. The ioctl()  system call  allows to

execute several operations to create new virtual machines, assign memory to a

virtual machine, assign and start virtual CPUs.

 2.4.6 Emulation of hardware

To provide hardware like hard disks, cd drives or network cards to the Vms,

KVM uses a highly modified QEMU. This is a so called platform virtualization

tool,  which  allows  to  emulate  an  entire  pc  platform  including  graphics,

networking, disk drives and many more. For each VM a QEMU process is started

in user-mode and certain emulated devices are virtually attached to these. When a

VM performs I/O operations, these are intercepted by KVM and redirected to the

QEMU process regarding to the guest.

 2.4.7 Execution Model

Figure 6 depicts the execution model of KVM. This is a loop of actions used to

operate the VMs. These actions are separated by the three modes we mentioned

earlier in section 3.1.1.
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Figure 6. KVM execution model

In [9] Kivity et al. described the KVM execution model and stated which

tasks are done in which mode:

•  user-mode:  The KVM module is called using ioclt()  to execute guest

code until I/O operations initiated by the guest or an external event occurs.

Such an event may be the arrival of a network package, which could be

the reply of a network package sent by the host earlier. Such events are

expressed as signals that leads to an interruption of guest code execution.

•  kernel-mode:  The  kernel  causes  the  hardware  to  execute  guest  code

natively.

If the processor exits the guest due to pending memory or I/O operations,

the kernel performs the necessary tasks and resumes the flow of execution.

If external events such as signals or I/O operations initiated by the guest
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exists, it exits to the user-mode.

•  guest-mode:  This  is  on  the  hardware  level,  where  the  extended

instruction  set  of  a  virtualization  capable  CPU is  used  to  execute  the

native code, until an instruction is called that needs assistance by KVM, a

fault or an external interrupt.

While  a  VM runs,  there  are  plenty  of  switches  between  these  modes.  From

kernel-mode to guest-mode switches and viceversa are very fast, because there is

only  native  code  that  is  executed  on  the  underlying  hardware.  When  I/O

operations occur and the flow of execution switches to the user-mode, emulation

of the virtual I/O devices comes into play. Thus, a lot of I/O exits and switches to

user-mode  are  expected.  Imagine  an  emulated  hard  disk  and a  guest  reading

certain blocks from it. Then QEMU emulates the operations by simulating the

behaviour of the hard disk and the controller it is connected to. To perform the

guests read operation, it  reads the corresponding blocks from a large file and

returns  the  data  to  the  guest.  Thus,  user-mode  emulated  I/O  tends  to  be  a

bottleneck which slows down the execution of a VM.

 2.4.8  Paravirtual device drivers

With the support for the virtio [10] paravirtual device model, KVM addresses the

performance limitations by using QEMU emulated devices.  Virtio is  common

framework to write VMM independent drivers promising bare-metal speed for

these, since paravirtual devices attached to a VM are not emulated any more.
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Instead, a backend for the paravirtual drivers is used to perform I/O operations

either directly or through a user-mode backend. KVM uses QEMU as such a

backend which handles I/O operations directly. Thus, the overhead to mimic the

behaviour of a IDE hard disk is tremendously decreased to simply using kernel

drivers for performing certain operations and responding.

 2.4.9 Linux hypervisor benefits

Developing hypervisors using Linux as the core has real, tangible benefits. Most

obviously, basing a hypervisor on Linux benefits from the steady progression of

Linux  and  the  large  amount  of  work  that  goes  into  it.  From  the  typical

optimizations and bug fixes, scheduling, and memory-management innovations

to support for different processor architectures, Linux is a platform that continues

to advance.

KVM proved not long ago that through the addition of a kernel module, one

could transform the Linux kernel into a hypervisor. KVM operates in the context

of Linux as the host but supports a large number of guest operating systems,

given  underlying  hardware  virtualization  support,  such  as  Linux  itself,  MS

Windows (almost all versions), FreeBSD, Apple Mac OS X.

Another intriguing benefit of using Linux as the platform is that you can take

advantage of that platform as an operating system in addition to a hypervisor.

Therefore, in addition to running multiple guest operating systems on a Linux

hypervisor,  you  can  run  your  other  traditional  applications  at  that  level.  So

instead of worrying about a new platform with new application programming
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interfaces  (APIs),  you  have  your  standard  Linux  platform  for  application

development.  The  standard  communication  protocols  and  other  useful

applications are available alongside the guests. 
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 3 Cloud Computing

Cloud computing is actually nothing more than the provisioning of computing

resources (computers and storage) as a service. Beside that comes the flexibility

to dynamically scale the service to further computers and storage in an easy and

clear approach [11]. All this is similar to the ideas behind  utility computing, in

which computing resources were viewed as a metered service, as is the case for

more traditional utilities (such as electricity or water). What's different is not the

goal behind these ideas but the existing technologies that have come together to

make them a reality. 

One of the most important ideas behind cloud computing is scalability, and the

key technology that makes that possible is virtualization. Virtualization allows

better use of a server by aggregating multiple operating systems and applications

on a single shared computer. Virtualization also permits online migration so that

if  a  server  becomes  overloaded,  an  instance  of  an  operating  system (and  its

applications) can be migrated to a new, less cluttered server. 

From an external view, cloud computing is simply the migration of computing

and  storage  outside  an  enterprise  and  into  the  cloud.  The  user  defines  the

resource  requirements  (such  as  computing  and  wide  area  network,  or  WAN,

bandwidth needs), and the cloud provider virtually assembles these components

within its infrastructure. 

But why would you willingly relinquish control over your resources and allow

them to virtually  exist  in  the  cloud? There  are  many reasons,  but  two that  I
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believe are most important are cost and scalability. The goal of cloud computing

is to make these resources less expensive than what you can provide for and

manage yourself. Along with this reduction in cost comes greater flexibility and

scaling. A cloud computing provider can easily scale your virtual environment

for  greater  bandwidth  or  computing  resources  with  the  provider's  virtual

infrastructure. 

The green advantage to cloud computing is the ability to virtualize and share

resources  among  different  applications  for  better  server  utilization.  Figure  7

shows  an  example.  Here,  three  independent  platforms  existed  for  different

applications, each running on its own server. In the cloud, servers can be shared

(virtualized)  for  operating  systems and applications  to  better  use  the  servers,

resulting in fewer servers. Fewer servers means less required space (minimizing

the data  center  footprint)  and less  power  for  cooling  (minimizing the  carbon

footprint). 

Figure 7. Virtualization and resource use
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 3.1 Anatomy of cloud computing

As you peer inside the cloud, you find that it's actually not just a single service

but a collection of services, as shown in Figure 8. These layers define the level of

service provided. 

Figure 8. The layers of cloud computing

Let's  start  at  the  lowest  level  of  service  provided,  which is  the  infrastructure

(Infrastructure-as-a-Service, or  IaaS).  IaaS  is  the  leasing  of  an  infrastructure

(computing resources and storage) as a service. This means not only virtualized

computers with guaranteed processing power but reserved bandwidth for storage

and Internet access. In essence, it's the capability of leasing a computer or data

center with specific quality-of-service constraints that has the ability to execute

an arbitrary operating system and software. 

Besides  reducing  the  management  cost  associated  with  cloud  computing
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resources, there are other advantages. For example, when you separate yourself

from your resources by the Internet, it doesn't really matter where those resources

reside. They could be, for example,  in a climate that  offers  ambient (natural)

cooling and therefore minimizes energy usage. 

Moving up the stack, the next level of service is the platform (Platform-as-a-

Service, or PaaS). PaaS is similar to IaaS but includes operating systems and

required services that focus on a particular application. For example, a PaaS in

addition to virtualized servers and storage provides a particular operating system

and application set along with access to necessary services such as a MySQL

database or other, specialized local resources. In other words, PaaS is IaaS with a

custom software stack for the given application. 

Finally, at the top of Figure  8 is the simplest service that can be provided: the

application. This layer is called Software-as-a-Service (SaaS), and it is the model

of deploying software from a centralized system to run on a local computer (or

remotely from the cloud).  As a metered service, SaaS allows you to lease an

application and pay only for the time used. 

That's only an overview of cloud computing. This view ignores some of the other

aspects of the cloud, such as data-Storage-as-a-Service (dSaaS), which provides

storage  as  a  metered  service  in  which  the  consumer  is  billed  based on used

capacity (the amount of storage used) and utilization (bandwidth requirements

for  the  storage).  Cloud  services  have  also  emerged,  which  provide  internal

mechanisms  for  interoperability  as  well  as  external  application  program

interfaces (APIs), such as Web services. 
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 3.2 The cloud computing landscape

Over recent years, there's been an explosion of investment into cloud computing

and related infrastructure. This massive investment indicates that there is demand

for virtualization of resources inside the cloud. There is a plenty of new services,

some of which are shown in Figure 9. 

Figure 9. Cloud computing layers with offerings 

This is by no means an exhaustive list of offerings, as it changes quite frequently.

However, it does provide an overview of some of the offerings and how they are

differentiated.

 3.2.1 Software-as-a-Service

SaaS is the ability to access software over the Internet as a service. An early

approach to SaaS was the Application Service Provider (ASP).  ASPs provide

32



subscriptions to software that is hosted or delivered over the Internet. The ASP

delivers the software and charges fees based on its use. In this way, you don't

purchase the software but simply lease it on an as-needed basis. 

A  growing  number  of  software  companies  offer  their  products  using  the

traditional  model,  where  customers  host  the  application  suite  within  their

enterprise, or as SaaS, where customers host the application suite and make it

available over the Internet. Microsoft itself provides its office automation suite,

Office 365, both locally installed on your pc or remotely available as executed in

its datacenters, and usable in the online version through your web browser. 

In fact the use of software over the Internet that executes remotely can be in the

form of services used by a local application (defined as Web services) or a remote

application  observed  through  a  Web  browser.  One  example  of  a  remote

application  service  is  Google  Apps,  which  provides  several  enterprise

applications through a standard Web browser. Remotely executing applications

commonly  rely  on  an  application  server  to  expose  needed  services.  An

application  server is  a  software  framework  that  exposes  APIs  for  software

services (such as transaction management or database access). Examples include

Red Hat JBoss Application Server, Apache Geronimo, and IBM® WebSphere®

Application Server. 

 3.2.2 Platform-as-a-Service

PaaS can be described as an entire virtualized platform that includes one or more
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servers  (virtualized  over  the  set  of  physical  servers),  operating  systems,  and

specific applications (such as Apache and MySQL for Web-based applications).

In some cases, these platforms can be predefined and selected; in others, you can

provide a VM image that contains all the necessary user-specific applications. 

One  interesting  example  of  a  PaaS is  Google  App  Engine.  App  Engine  is  a

service  that  allows  you  to  deploy  your  Web  applications  on  Google's  very

scalable architecture. App Engine provides you with a sandbox for your Python,

Java, Php, Go, Ruby, C#, Node.js applications that can be referenced over the

Internet. App Engine provides APIs for persistently storing and managing data

(using  the  Google  Query  Language,  or  GQL)  in  addition  to  support  for

authenticating users, manipulating images, and sending e-mail. The sandbox in

which  the  Web  application  runs  restricts  access  to  the  underlying  operating

system.  Although  App  Engine  limits  the  functionality  available  to  your

application, it supports the construction of useful Web services.  

Another example of a PaaS is MongoDB, which is both a cloud platform and a

downloadable open-source document database. Among the many services offered

there is also an hosted platform, called MongoDB Cloud Manager, for managing

your database on the infrastructure of your choice.

 3.2.3 Infrastructure-as-a-Service

IaaS is the delivery of computer infrastructure as a service. This layer differs

from PaaS in that the virtual hardware is provided without a software stack.

Instead,  the  consumer provides  a  VM image that  is  invoked on one or more
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virtualized servers. IaaS is the rawest form of computing as a service, beside of

access  to  the  physical  infrastructure.  The  most  well-known  commercial  IaaS

provider is Amazon Elastic Compute Cloud (EC2). In EC2, you can specify a

particular  VM (operating  system  and  application  set),  and  then  deploy  your

applications on it  or  provide your own VM image to execute on the servers.

You're then billed simply for compute time, storage, and network bandwidth. 

 3.3 Linux and open source in the cloud

Linux and open source technologies play a huge role into the world of cloud

computing. 

Owing to the new dynamic nature of virtualization and the new capabilities it

provides, new management schemes are needed [12]. This management is best

done in layers, considering local management at the server, as well as higher-

level  infrastructure  management,  providing  the  overall  orchestration  of  the

virtual environment.

Placing multiple virtualization nodes on a physical network with shared storage,

orchestrating management over the entire infrastructure, then providing front-end

load balancing of incoming connections (whether in a private or a public setting)

with  caching  and  filtering,  you  will  realize  a  virtual  infrastructure  called  a

“cloud”.

In such an infrastructure (Fig.10) dormant servers can be powered down until

needed for additional compute capacity, providing better power efficiency, with

VMs  balanced  (even  dynamically)  across  the  nodes  depending  upon  their
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collective loads.

In the next paragraphs I will show where open source software is being applied

to build out a dynamic cloud infrastructure.

Figure 10. Cloud Computing Infrastructure
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 3.3.1 Core virtual computing open source technologies

The Linux landscape is seeing a wave of development focused on virtualized

infrastructures  for  virtualization,  management,  and  larger-scale  integration  of

cloud software packages. Let's start with a view of open source at the individual

node level, then step up to the infrastructure to see what's happening there.

 3.3.1.1 Hypervisors

The base of the cloud at the node level is the hypervisor. Although virtualization

is not a requirement, it provides undisputed capabilities for scalable and power-

efficient  architectures.  A good number of  open source virtualization solutions

exists: among these we have seen the Linux Kernel Virtual Machine (KVM), but

I would mention also LXC, an operating-system-level virtualization method for

running multiple isolated Linux systems (containers) on a control host using a

single Linux kernel.  The Xen hypervisor is also widely used within public and

private IaaS solutions due to its performance advantages.

Outside of converting Linux to a hypervisor, there are other solutions that take a

guest VM-focused approach. User-Mode Linux (UML) is another approach that

modifies a guest Linux kernel to run on top of another Linux operating system,

without hypervisor extensions. Because many users want to run an unmodified

kernel, full virtualization solutions (such as KVM) are preferred.
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 3.3.1.2 Device emulation

The hypervisor provides the means to share the CPU with multiple operating

systems  (CPU  virtualization),  but  to  provide  full  virtualization,  the  entire

environment must be virtualized for the VMs. Machine or platform emulation

can be performed in a number of ways, but a popular open source package that

supports  a  number  of  hypervisors  is  called  QEMU.  QEMU  is  a  complete

emulator and hypervisor. But KVM makes use of QEMU for device emulation as

a separate process in the user space. One interesting feature of QEMU is that

because it provides disk emulation (through the QCOW format), QEMU provides

other advanced features such as snapshots and live VM migration.

KVM, since kernel 2.6.25, uses virtio as a means of optimizing I/O virtualization

performance.  It  does  this  by  introducing  paravirtualized  drivers  into  the

hypervisor with hooks from the guest to bring performance to near-native levels.

This works only when the operating system can be modified for this purpose, but

finds use in Linux guest on Linux hypervisor scenarios.

Today, virtio and QEMU work together so emulated device transactions can be

optimized between the Linux guest and QEMU emulator in the user space. 

 3.3.1.3 Virtual networking

As VMs consolidate onto physical servers, the networking needs of the platform

intensify. But rather than force all of the VM's networking to the physical layer of

the platform, local communication could instead be virtualized itself. To optimize
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network  communication  among Vms,  there  is  the  introduction  of  the  virtual

switch. The vSwitch behaves like a physical switch, but is virtualized into the

platform.  In  figure  11, virtualized  interfaces  (VIFs)  associated  with  the  VMs

communicate through the virtual switch to the physical interfaces (PIFs).

Figure 11 High-level view of Open vSwitch with virtual and physical interfaces

Open  source  is  addressing  this  problem  as  well,  with  one  very  interesting

solution called the Open vSwitch. In addition to providing a virtual switch for

virtual environments, the vSwitch can also integrate across physical platforms

and provide enterprise-level features like virtual local area networks (VLANs),

priority-based  Quality  of  Service  (QoS),  trunking,  and  support  for  hardware

acceleration (such as single-root I/O virtualization [IOV] network adapters). The

Open vSwitch is currently available for Linux kernels and supports the range of

Linux-based virtualization solutions (Xen, KVM, VirtualBox) and management

standards  like Remote Switched Port Analyzer (RSPAN), NetFlow, etc.
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 3.3.1.4 VM tools and technologies

As  VMs  are  an  aggregation  of  operating  system,  root  file  system,  and

configuration,  the  space  is  ripe  for  tool  development.  But  to  realize  the  full

potential of VMs and tools, there must be a portable way to assemble them. The

current  approach,  called  the  Open  Virtualization  Format  (OVF)  is  a  VM

construction that is flexible,  efficient,  and portable.  OVF wraps a virtual disk

image in an XML wrapper that defines the configuration of the VM, including

networking configuration, processor and memory requirements, and a variety of

extensible metadata to further define the image and its platform needs. The key

capability provided by OVF is the portability to distribute VMs in a hypervisor-

agnostic manner.

A number of utilities exist to manage VM images (VMIs) as well as convert them

to and from other formats. The ovftool from VMware is a useful tool that you can

use for VMI conversion, for example to convert from the VMware Virtual Disk

(VMDK) format into OVF. This tool and others are useful once you have a VMI,

but what if you have a physical server you'd like to convert into a VMI? You can

employ a useful tool called Clonezilla for this purpose. Although it was originally

developed as a disk-cloning tool for disaster recovery, you can use it to convert a

physical  server  instance  into  a  VM  for  easy  deployment  into  a  virtualized

infrastructure. Numerous other tools exist (such as utilities built upon libvirt) or

are in development for conversion and management as the OVF format gains

adoption.
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 3.3.1.5 Local management

Red  Hat  introduced  the  libvirt  library  as  an  API  for  managing  platform

virtualization (hypervisors and VMs).  What makes libvirt  interesting is that  it

supports  a  number of  hypervisor  solutions  (KVM and Xen for  example)  and

provides API bindings for a number of languages (such as C, Python, and Ruby).

It provides the "last mile" of management, interfacing directly with the platform

hypervisor and extending APIs out to larger infrastructure-management solutions.

With libvirt,  it's simple to start and stop VMs, and it  provides APIs for more

advanced operations, such as migration of Vms between platforms. Using libvirt,

it's also possible to use its shell (built on top of libvirt), called virsh.

 3.3.2 Infrastructure open source technologies

Other open source applications support session management and infrastructure

management. 

 3.3.2.1 Session management

Building a scalable and balanced web architecture depends upon the ability to

balance web traffic across the servers that implement the back-end functionality.

A number of load-balancing solutions exist; one of the most powerful was open

sourced by Yahoo and donated to Apache Foundation, and it is known by the

name of Traffic Server. 

Traffic Server represents an interesting project, because it encapsulates a large
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number of capabilities in one package for cloud infrastructures, including session

management,  authentication,  filtering,  load  balancing,  and  routing.  Yahoo!

initially  acquired  this  product  from  Inktomi,  but  the  code  is  now  publicly

available to the community.

 3.3.2.2 Infrastructure management

Larger-scale infrastructure management (managing many hypervisors and even

more VMs) can be accomplished in a number of ways. Two of the more common

solutions are each built from the same platform (libvirt). 

The  oVirt package is an open VM management tool that  scales from a small

number of VMs to thousands of VMs running on hundreds of hosts. The oVirt

package, developed by Red Hat,  is a web-based management console that,  in

addition to traditional management,  supports the automation of clustering and

load balancing. The oVirt tool is written in the Python language. 

VirtManager, also based on libvirt and developed by Red Hat, is an application

with a GTK+ UI (instead of being web-based like oVirt). VirtManager presents a

much  more  graphically  rich  display  (for  live  performance  and  resource

utilization)  and includes  a  VNC client  viewer for  a  full  graphical  console  to

remote Vms.

Puppet is another open source package designed for data center infrastructure:

although  not  designed  solely  for  virtualized  infrastructures,  it  simplifies  the

management  of  large  infrastructures  by  abstracting  the  details  of  the  peer

operating system. It does this through the use of the Puppet language. Puppet is
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ideal for automating administrative tasks over large numbers of servers and is

widely used today.

 3.3.2.3 Integrated IaaS solutions

The following open source packages take a more holistic approach by integrating

all of the necessary functionality into a single package (including virtualization,

management, interfaces, and security). When added to a network of servers and

storage,  these  packages  produce  flexible  cloud  computing  and  storage

infrastructures (IaaS). For details about these platforms, see Resources.

Eucalyptus

One of the most popular open source packages for building cloud computing

infrastructures  is  Eucalyptus  (for  Elastic  Utility  Computing  Architecture  for

Linking Your Programs to Useful  Systems).  What  makes it  unique is  that  its

interface  is  compatible  with  Amazon  Elastic  Compute  Cloud  (Amazon  EC2

Amazon's cloud computing interface). Additionally, Eucalyptus includes Walrus,

which is a cloud storage application compatible with Amazon Simple Storage

Service (Amazon S3 Amazon's cloud storage interface).

Eucalyptus  supports  KVM/Linux  and  Xen  for  hypervisors  and  includes  the

Rocks cluster distribution for cluster management.

OpenNebula

OpenNebula is  another interesting open source application (under the Apache

license) developed at  the Universidad Complutense de Madrid.  In addition to

supporting private cloud construction, OpenNebula supports the idea of hybrid
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clouds. A hybrid cloud permits combining a private cloud infrastructure with a

public cloud infrastructure (such as Amazon) to enable even higher degrees of

scaling.

OpenNebula supports  Xen,  KVM/Linux,  and VMware and relies  on elements

like libvirt for management and introspection.

Nimbus

Nimbus is another IaaS solution focused on scientific computing. With Nimbus,

you can lease remote resources (such as those provided by Amazon EC2) and

manage them locally (configure, deploy VMs, monitor, etc.). Nimbus morphed

from the Workspace Service project (part of Globus.org). Being dependent on

Amazon EC2, Nimbus supports Xen and KVM/Linux. 

Xen Cloud Platform

Citrix has integrated Xen into an IaaS platform, using Xen as the hypervisor

while incorporating other open source capabilities such as the Open vSwitch. An

interesting  advantage  to  the  Xen  solution  is  the  focus  on  standards-based

management (including OVF, Distributed Management Task Force [DTMF], the

Common Information Model [CIM], and Virtualization Management Initiative

[VMAN]) from the project Kensho. The Xen management stack supports SLA

guarantees, along with detailed metrics for charge-back.

OpenQRM

OpenQRM is  categorized  as  a  data  center  management  platform.  OpenQRM

provides  a  single  console  to  manage  an  entire  virtualized  data  center  that  is

architecturally pluggable to permit  integration of third-party tools.  OpenQRM
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integrates  support  for  high  availability  (through  redundancy)  and  supports  a

variety of hypervisors, including KVM/Linux, Xen and Vmware.

OpenStack

Today,  the  leading  IaaS  solution  is  called  OpenStack  [13].  OpenStack  was

released in July 2010, and has quickly become the standard open-source IaaS

solution. OpenStack is a combination of two cloud initiatives from RackSpace

Hosting  (Cloud  Files)  and  NASA's  Nebula  platform.  OpenStack  is  being

developed in the Python language, and is under active development under the

Apache license.

Each OpenStack deployment embraces a wide variety of technologies, spanning

Linux  distributions,  database  systems,  messaging  queues,  OpenStack

components  themselves,  access  control  policies,  logging  services,  security

monitoring tools, and much more. 

I  briefly  introduce  the  kinds  of  clouds  (private,  public,  and  hybrid)  before

presenting an overview of the OpenStack components, referring briefly also to

the most common security issues related to the use of such components.

 3.3.2.4 Cloud types

OpenStack is a key enabler in the adoption of cloud technology and has several

common deployment use cases. These are commonly known as Public, Private,

and  Hybrid  models.  The  following  sections  use  the  National  Institute  of

Standards and Technology (NIST) definition of cloud to introduce these different

types of cloud as they apply to OpenStack.
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Public cloud

According to NIST, a public cloud is one in which the infrastructure is open to

the general public for consumption. OpenStack public clouds are typically run by

a service  provider  and can be consumed by individuals,  corporations,  or  any

paying customer. A public-cloud provider might expose a full set of features such

as software-defined networking or block storage, in addition to multiple instance

types.

By  their  nature,  public  clouds  are  exposed  to  a  higher  degree  of  risk.  As  a

consumer of a public cloud, you should validate that your selected provider has

the necessary certifications, attestations, and other regulatory considerations. As

a  public  cloud  provider,  depending  on  your  target  customers,  you  might  be

subject to one or more regulations. Additionally, even if  not required to meet

regulatory  requirements,  a  provider  should  ensure  tenant  isolation  as  well  as

protecting management infrastructure from external attacks.

Private cloud

At the opposite end of the spectrum is the private cloud. As NIST defines it, a

private  cloud  is  provisioned  for  exclusive  use  by  a  single  organization

comprising  multiple  consumers,  such  as  business  units.  The  cloud  may  be

owned,  managed,  and  operated  by  the  organization,  a  third-party,  or  some

combination of them, and it may exist on or off premises. Private-cloud use cases

are diverse and, as such, their individual security concerns vary.

Community cloud

NIST defines a community cloud as one whose infrastructure is provisioned for
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the exclusive use by a specific community of consumers from organizations that

have shared concerns  (for  example,  mission,  security  requirements,  policy, or

compliance considerations). The cloud might be owned, managed, and operated

by  one  or  more  of  organizations  in  the  community,  a  third-party,  or  some

combination of them, and it may exist on or off premises. This is, on my own

opinion, the type of cloud that best fits the characteristics of our lab installation,

at least for the first stage of the project..

Hybrid cloud

A hybrid cloud is defined by NIST as a composition of two or more distinct

cloud infrastructures, such as private, community, or public, that remain unique

entities, but are bound together by standardized or proprietary technology that

enables data and application portability, such as cloud bursting for load balancing

between clouds. For example, an online retailer might present their advertising

and catalogue on a public cloud that allows for elastic provisioning. This would

enable them to handle seasonal loads in a flexible, cost-effective fashion. Once a

customer begins to process  their  order, they are transferred to a more secure

private cloud that is PCI DSS compliant (Payment Card Industry Data Security

Standard). Your security measures depend where your deployment falls upon the

private public continuum.

 3.3.3 OpenStack service overview

OpenStack embraces a modular architecture to provide a set of core services that
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facilitates  scalability  and  elasticity  as  core  design  tenets.  In  the  following

paragraphs I briefly review OpenStack components, their use cases and security

considerations.

Figure 12. Openstack main components

 3.3.3.1 Compute

The OpenStack  Compute  Service (nova)  provides  services  to  support  the

management of virtual machine instances at scale, instances that host multi-tiered

applications, dev or test environments, “Big Data” crunching Hadoop clusters, or

high-performance computing.

The Compute Service facilitates this management through an abstraction layer

that interfaces with supported hypervisors, particularly KVM, chosen for all the

nodes of our lab installation.

Compute security is critical for an OpenStack deployment. Hardening techniques

should  include  support  for  strong  instance  isolation,  secure  communication
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between  Compute  sub-components,  and  resiliency  of  public-facing  API

endpoints.

 3.3.3.2 Object Storage

The  OpenStack Object Storage Service (swift) provides support for storing and

retrieving arbitrary data in the cloud. The Object Storage service provides both a

native  API  and  an  Amazon  Web  Services  S3-compatible  API.  The  service

provides  a  high  degree of  resiliency through data  replication  and can handle

petabytes of data. It is important to understand that object storage differs from

traditional file system storage. Object storage is best used for static data such as

media files (MP3s, images, or videos), virtual machine images, and backup files.

Object security should focus on access control and encryption of data in transit

and at rest.  Other concerns might relate to system abuse,  illegal or malicious

content storage, and cross-authentication attack vectors.

 3.3.3.3 Block Storage

The OpenStack Block Storage Service (cinder) provides persistent block storage

for compute instances. The Block Storage service is responsible for managing the

life-cycle  of  block  devices,  from the  creation  and  attachment  of  volumes  to

instances, to their release. Security considerations for block storage are similar to

that of object storage.
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 3.3.3.4 Shared File Systems

The Shared File Systems Service (manila) provides a set of services for managing

shared  file  systems  in  a  multi-tenant  cloud  environment,  similar  to  how

OpenStack provides for block-based storage management through the OpenStack

Block Storage service project. With the Shared File Systems service, you can

create a remote file system, mount the file system on your instances, and then

read and write data from your instances to and from your file system.

 3.3.3.5 Networking

The  OpenStack  Networking  Service (neutron)  provides  various  networking

services to cloud users (tenants) such as IP address management, DNS, DHCP,

load balancing, and security groups (network access rules, like firewall policies).

This service provides a framework for software defined networking (SDN) that

allows for pluggable integration with various networking solutions.

OpenStack  Networking  allows  cloud  tenants  to  manage  their  guest  network

configurations. Security concerns with the networking service include network

traffic isolation, availability, integrity, and confidentiality.

 3.3.3.6 Dashboard

The  OpenStack Dashboard (horizon)  provides  a web-based interface for  both

cloud administrators and cloud tenants. Using this interface, administrators and
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tenants can provision, manage, and monitor cloud resources. The dashboard is

commonly  deployed  in  a  public-facing  manner  with  all  the  usual  security

concerns of public web portals.

 3.3.3.7 Identity service

The  OpenStack  Identity  Service (keystone)  is  a  shared  service  that  provides

authentication  and  authorization  services  throughout  the  entire  cloud

infrastructure. The Identity service has pluggable support for multiple forms of

authentication.  Security  concerns  with  the  Identity  service  include  trust  in

authentication,  the  management  of  authorization  tokens,  and  secure

communication.

 3.3.3.8 Image service

The  OpenStack  Image  service  (glance)  provides  disk-image  management

services,  including image  discovery, registration,  and delivery  services  to  the

Compute service, as needed. Trusted processes for managing the life cycle of

disk images are required, as are all the previously mentioned issues with respect

to data security.

 3.3.3.9 Messaging and databases

Messaging  is  used  for  internal  communication  between  several  OpenStack
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services.  By  default,  OpenStack  uses  message  queues  based  on  the  standard

AMQP (Advanced Message Queuing Protocol). Like most OpenStack services,

AMQP supports  pluggable  components.  Today  the  implementation  back  end

could be  RabbitMQ, Qpid, or ZeroMQ. Because most management commands

flow through the message queuing system, message-queue security is a primary

security concern for any OpenStack deployment.

Several components use databases as backend, in particular MariaDB, though it

is  not  explicitly  called  out.  Securing  database  access  is  yet  another  security

concern.
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 4 Performance monitoring

Virtual machines are becoming commonplace as a stable and flexible platform to

run many workloads [14]. As developers continue to move more workloads into

virtual environments, they need ways to analyze the performance characteristics

of  those  workloads.  Some standard  profiling  tools  like  Vtune  and  the  Linux

Performance Counter Subsystem rely on CPUs’ hardware performance counters,

which were exposed to the guests by most hypervisors only recently: in the case

of KVM the support for virtual counters has only been officially made available starting

from 2012.

 4.1 Hardware-Based Monitoring

Performance  monitoring  means  collecting  information  related  to  how  an

application or system performs. This information can be obtained either through

software-based means or from the CPU or chipset. 

Many  modern  processors  contain  a  performance  monitoring  unit  (PMU).

Intel[15] and AMD[16] provide similar interfaces to their performance counting

hardware. Each CPU has its own set of performance counters and performance

event  select  registers.  The  event  select  register  is  used  to  specify  which

microarchitectural event is to be counted, and contains bits to enable, filter the

count  results,  and  raise  interrupts  if  the  counter  overflows  from negative  to

positive. 

The Performance Monitoring Unit of processors supporting Intel® 64 and IA-32
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architectures,  generally  consists  of  collections  of  MSRs  (Model  Specific

Registers). The collection of MSRs include counter registers, event programming

MSRs, global event control MSRs. PMUs of older processors are model-specific;

PMU interfaces in more recent processors are evolving towards higher degrees of

architectural stability.

MSR registers are accessed via the RDMSR and WRMSR instruction. Certain

counter registers can be accessed via the RDPMC instruction at any privilege

level while RDMSR and WRMSR are available only to software running at ring

0.

Events common across many architectures include cycle counts (relative to core

cycles and to constant-rate cycles), TLB accesses and misses, last-level cache

accesses and misses,  and instruction and branch retired counts.  In addition to

these  common  events,  each  CPU  generation  has  its  own  assortment  of

architecture-specific events including store-to-load forwarding failure counts and

functional unit stall events. AMD and Intel each have mechanisms to enable and

disable individual counters during the state transition between the hypervisor’s

own code and running the guest. 

A typical  usage of the performance counters  could include configuring Event

Select  0  to  count  Last-Level  Cache  misses  in  all  privilege  levels  with  the

overflow interrupt disabled and configuring Event Select 1 to count Last-Level

Cache accesses  with identical  privilege and interrupt  settings.  A profiler  then

samples the Event Counts 0 and 1 and calculates per-sample period differences to

track the ratio of cache misses to accesses. In addition, the interrupt facility of the

hardware  counters  can  be  enabled  to  cause  interrupts  after  a  set  number  of
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events.

For  example,  setting  the  Event  Select’s  interrupt-enable  bit  and  setting  the

corresponding counter to -10,000 would cause the hardware to raise an interrupt

after the 10,000th cache miss. 

Another  special  counting  mode  used by Intel  is  PEBS (Precise  Event  Based

Sampling),  in  which  counters  can  be  configured  to  overflow,  interrupt  the

processor, and capture machine state at that point.

Uncore or Northbridge counters are shared among multiple physical CPUs and

thus are less amenable to time-multiplexing. 

Compared to software profilers, hardware counters provide low-overhead access

to a wealth of detailed performance information related to CPU's functional units,

caches and main memory etc. Another benefit of using them is that no source

code modifications are needed in general.

Many  resource  and  performance  monitoring  tools  are  available  for  non-

virtualized systems. The type of tool to be used depends on the granularity of

information to be extracted and frequency of profiling.

 4.2 Perf: a profiling tool for linux based systems

For the purpose of my research, I have chosen as principal measuring tool perf.

Perf subsystem [17] has been evolved in mainline kernel to unify performance

measurement  across  the  system for  processor  PMU, software  and trace  point
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events.  This  uniform  framework  enables  user  to  understand  various  system

performance bottlenecks in a holistic manner. Also perf has been improved to

accommodate  performance  measurement  capabilities  in  a  virtualized

environment.

As we can see from Figure 13, 14 and 15,  perf_events, the kernel counterpart of

perf user mode program, instruments "events", which are a unified interface for

different kernel instrumentation frameworks.

Figure 13. Perf_event stack overview
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Figure 14. Perf_event software modules detailed

Figure 15. Linux perf_event event sources
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The types of events are:

• Hardware Events: CPU performance monitoring counters. 

• Software Events: These are low level events based on kernel counters.

For example, CPU migrations, minor faults, major faults, etc. 

• Kernel Tracepoint Events:  This  are static  kernel-level  instrumentation

points that are hardcoded in interesting and logical places in the kernel. 

• User Statically-Defined Tracing (USDT): These are static tracepoints for

user-level programs and applications. 

• Dynamic Tracing:  Software can be dynamically instrumented,  creating

events  in  any  location.  For  kernel  software,  this  uses  the  kprobes

framework. For user-level software, uprobes. 

• Timed Profiling:  Snapshots can be collected at an arbitrary frequency,

using  perf record -FHz.  This  is  commonly used for  CPU usage

profiling, and works by creating custom timed interrupt events. 

Details about the events can be collected, including timestamps, the code path

that led to it, and other specific details. 

Currently available events can be listed using the list subcommand, as in the

following example:

# perf list

List of pre-defined events (to be used in -e):
  cpu-cycles OR cycles                               [Hardware event]
  instructions                                       [Hardware event]
  cache-references                                   [Hardware event]
  cache-misses                                       [Hardware event]
  branch-instructions OR branches                    [Hardware event]
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  branch-misses                                      [Hardware event]
  bus-cycles                                         [Hardware event]
  stalled-cycles-frontend OR idle-cycles-frontend    [Hardware event]
  stalled-cycles-backend OR idle-cycles-backend      [Hardware event]
  ref-cycles                                         [Hardware event]
  cpu-clock                                          [Software event]
  task-clock                                         [Software event]
  page-faults OR faults                              [Software event]
  context-switches OR cs                             [Software event]
  cpu-migrations OR migrations                       [Software event]
  minor-faults                                       [Software event]
  major-faults                                       [Software event]
  alignment-faults                                   [Software event]
  emulation-faults                                   [Software event]
  L1-dcache-loads                                    [Hardware cache 
event]
  L1-dcache-load-misses                              [Hardware cache 
event]
  L1-dcache-stores                                   [Hardware cache 
event]
[...]
  rNNN                                               [Raw hardware 
event descriptor]
  cpu/t1=v1[,t2=v2,t3 ...]/modifier                  [Raw hardware 
event descriptor]
   (see 'man perf-list' on how to encode it)
  mem:<addr>[:access]                                [Hardware 
breakpoint]
  probe:tcp_sendmsg                                  [Tracepoint 
event]
[...]
  sched:sched_process_exec                           [Tracepoint 
event]
  sched:sched_process_fork                           [Tracepoint 
event]
  sched:sched_process_wait                           [Tracepoint 
event]
  sched:sched_wait_task                              [Tracepoint 
event]
  sched:sched_process_exit                           [Tracepoint 
event]
[...]
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 4.2.1 Hardware Events

For  my  experiments,  I  focused  attention  on  hardware  events  coming  from

performance monitoring counters (PMCs).

Perf_events began life as a tool for instrumenting the processor's performance

monitoring unit (PMU) hardware counters, also called performance monitoring

counters, or performance instrumentation counters (PICs). These instrument low-

level processor activity, for example, CPU cycles, instructions retired, memory

stall cycles, level 2 cache misses, etc. Part of them will be listed as Hardware

Events, others as Hardware Cache Events.

PMCs  are  documented  in  the  Intel  64  and  IA-32  Architectures  Software

Developer's  Manual  Volume 3B: System Programming Guide,  Part  2 and the

BIOS  and  Kernel  Developer's  Guide  (BKDG)  For  AMD  Family  Processors.

There are thousands of different PMCs available.

A typical processor will implement PMCs in the following way: only a few or

several  can be recorded at  the  same time,  from the many thousands that  are

available. This is because they are a fixed hardware resource on the processor (a

limited number of registers), and are programmed to begin counting the selected

events.

 4.2.1.1 CPU Statistics

The  perf stat command  instruments  and  summarizes  key  CPU  counters

(PMCs). 
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# perf stat gzip file1

 Performance counter stats for 'gzip file1':

       1920.159821 task-clock                #    0.991 CPUs utilized 
                13 context-switches          #    0.007 K/sec         
                 0 CPU-migrations            #    0.000 K/sec         
               258 page-faults               #    0.134 K/sec         
     5,649,595,479 cycles                    #    2.942 GHz           
[83.43%]
     1,808,339,931 stalled-cycles-frontend   #   32.01% frontend 
cycles idle    [83.54%]
     1,171,884,577 stalled-cycles-backend    #   20.74% backend  
cycles idle    [66.77%]
     8,625,207,199 instructions              #    1.53  insns per 
cycle        
                                             #    0.21  stalled cycles
per insn [83.51%]
     1,488,797,176 branches                  #  775.351 M/sec         
[82.58%]
        53,395,139 branch-misses             #    3.59% of all 
branches         [83.78%]

       1.936842598 seconds time elapsed

This includes instructions per cycle (IPC), labeled "insns per cycle", or in earlier

versions, "IPC". This is a commonly examined metric, either IPC or its invert,

CPI. Higher IPC values mean higher instruction throughput, and lower values

indicate more stall cycles. I'd generally interpret high IPC values (eg, over 1.0) as

good, indicating optimal processing of work. However, I'd want to double check

what  the  instructions  are,  in  case  this  is  due  to  a  spin  loop:  a  high  rate  of

instructions, but a low rate of actual work completed.

There are some advanced metrics now included in perf stat:

frontend cycles idle, backend cycles idle, and stalled cycles per instruction. The

frontend and backend metrics refer to the CPU pipeline, and are also based on
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stall  counts.  The  frontend  processes  CPU  instructions,  in  order.  It  involves

instruction  fetch,  along  with  branch  prediction,  and  decode.  The  decoded

instructions become micro-operations (uops) which the backend processes, and it

may do so out of order.

The backend can also process multiple uops in parallel; for modern processors,

three or four. Along with pipelining, this is how IPC can become greater than

one, as more than one instruction can be completed ("retired") per CPU cycle. 

Stalled cycles per instruction is similar to IPC (inverted), however, only counting

stalled cycles,  which will  be caused by memory or resource bus access.  This

makes it easy to interpret: stalls are latency, so we should reduce stalls to increase

performance.

There is also a "detailed" mode for perf stat:

# perf stat -d gzip file1

 Performance counter stats for 'gzip file1':

       1610.719530 task-clock                #    0.998 CPUs utilized 
                20 context-switches          #    0.012 K/sec         
                 0 CPU-migrations            #    0.000 K/sec         
               258 page-faults               #    0.160 K/sec         
     5,491,605,997 cycles                    #    3.409 GHz           
[40.18%]
     1,654,551,151 stalled-cycles-frontend   #   30.13% frontend 
cycles idle    [40.80%]
     1,025,280,350 stalled-cycles-backend    #   18.67% backend  
cycles idle    [40.34%]
     8,644,643,951 instructions              #    1.57  insns per 
cycle        
                                             #    0.19  stalled cycles
per insn [50.89%]
     1,492,911,665 branches                  #  926.860 M/sec         
[50.69%]
        53,471,580 branch-misses             #    3.58% of all 
branches         [51.21%]
     1,938,889,736 L1-dcache-loads           # 1203.741 M/sec         
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[49.68%]
       154,380,395 L1-dcache-load-misses     #    7.96% of all L1-
dcache hits   [49.66%]
                 0 LLC-loads                 #    0.000 K/sec         
[39.27%]
                 0 LLC-load-misses           #    0.00% of all LL-
cache hits    [39.61%]

       1.614165346 seconds time elapsed

This example includes additional counters for Level 1 data cache events, and last

level cache (LLC) events.

I can instrument specific counters, seen in perf list, using the following example,

referred particularly to cache events:

#  perf  stat  -e  L1-dcache-loads,L1-dcache-load-misses,L1-

dcache-stores gzip file1

 Performance counter stats for 'gzip file1':

     1,947,551,657 L1-dcache-loads
                                            
       153,829,652 L1-dcache-misses
         #    7.90% of all L1-dcache hits  
     1,171,475,286 L1-dcache-stores
                                           

       1.538038091 seconds time elapsed

The percentage printed is a convenient calculation that perf_events has included,

based on the counters I specified. If you include the "cycles" and "instructions"

counters, it will include an IPC calculation in the output.

63



 4.2.2 Performance monitoring in KVM virtualized environments

In  virtualized  systems,  the  task  of  profiling  and  resource  monitoring  is  not

straight-forward. 

Many  datacenters  perform CPU overcommittment  using  hypervisors,  running

multiple VMs on a single computer where the total VCPU count exceeds the total

number of PCPUs. The hypervisor must share PCPUs among all the VCPUs,

giving each VCPU a fraction of the total runtime of the system. The sharing of

hardware resources requires the hypervisor to apply heuristics to enable guest

operating systems to accurately keep track of absolute time, often called wall-

clock time. The guest operating system wall-clock should track absolute time

over  the  long  term.  To  achieve  this,  while  the  VM  is  descheduled,  some

hypervisors, like Vmware ESXi,  make available a virtual timer device that is

used by the guest operating system for timekeeping. This device is allowed to fall

behind  real  time  and  later  catch  up  faster  than  real  time  when  the  VM  is

rescheduled. This way, over the longer term, these devices track absolute real

time.  Profilers,  on  the  other  hand,  are  more  concerned  with  relative  time

differences over the short term, and want to count only the time that the VCPU is

scheduled on a PCPU.

This tension over the desired semantics of a timer device requires the hypervisor

to carefully trade off keeping a guest’s notion of wall-clock time correct  and

giving a notion of time appropriate for profilers’ use. Both Intel and AMD CPUs

provide an event called core cycles not halted, which tracks the CPU cycle count

independently of wall-clock time. CPU frequency can increase or decrease due to
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power saving modes, and CPU cycles can stop entirely if the OS has executed the

HLT instruction.  The  notion  of  core  cycles  not  halted  is  thus  a  convenient

hardware interface that can be extended for profiling in a virtual environment.

The hypervisor can define core cycles not halted to count only core clock cycles

when the VCPU is in context on a PCPU, including time spent in the hypervisor

on that VCPU’s behalf.

Sharing hardware leads to other, less direct effects.  Just as multiple processes

may compete for cache and other resources, multiple VCPUs and other unrelated

hypervisor threads that share a physical core can pollute each other’s caches,

branch predictors, TLBs, and other microarchitectural state.

 4.2.2.1 Perf kvm: the host perspective

Guest  virtual  machine's  individual  performance  and  its  impact  on  the  host

machine can be measured from various directions with the help of  perf  tool.

Performance data collected from all these methods help us monitor and detect a

situation of performance degradation [18].

Perf  tool  has  been improved to  have  capabilities  to  profile  KVM virtualized

environment. A new subcommand kvm has been added to that effect. Perf kvm

understands how qemu process address space encapsulates the entire guest kernel

and guest user space and how to resolve addresses inside that into guest kernel

symbols.

Perf kvm requires access to guest /proc/modules and /proc/kallsyms file sets to

be able  to resolve all  the  captured event  instruction addresses  into respective
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guest kernel symbols. Users can either transfer these files from guests to the host

and then provide them explicitly while invoking perf kvm session or they can

mount the guest root file system (typically with sshfs) in the host, so that perf

kvm can extract required files from the designated mount point.

There are two different methods available in perf kvm to profile either the host or

guest virtual machines. One is perf kvm top and the other one being perf kvm

record followed by perf kvm report. 

Any  perf  session  is  always  initiated  from  the  host  machine which  can

subsequently profile either the host or a guest or both. The profiling methods

mentioned above  are  sampled counter  based  which  associates  event  captured

instruction addresses with respective symbols and sorts the symbols according to

their relative percentage across the workload. During the session, perf captures

the  event's  sample  data  from  the  kernel  and  stores  them  in  a  file  named

perf.data.kvm (perf.data.guest or  perf.data.host if  they are  profiled

individually). Though in case of  perf top, this file is created and analysed on

the run and the results are refreshed periodically.

The host perf exclusively configures, initiates and terminates the PMU access for

any process requesting PMU events. The direct control over the PMU cannot be

granted to the guest virtual machine as they are not aware of other guests who

might  be  requesting  PMU events  at  the  same  point  of  time.  Host  is  always

required to arbiter access to the PMU. Because of these reasons, for host linux

kernels before version 3.3 and qemu-kvm before version 1.2.5, perf inside guest

does not support hardware PMU events.
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A typical perf kvm command is represented by the following:

# perf kvm --host --guest --guestkallsyms=guest-kallsyms \

--guestmodules=guest-modules record -a -o perf.data

gathering  data  both  from host  and  guest  obtained  files  “guest-kallsyms”  and

“guest-modules”, recording and then reporting events to “perf.data.kvm” file.

 4.2.2.2 vPMU: the guest perspective

Performance  counter  virtualization  for  the  hardware-assisted  KVM  virtual

machine monitor is included in recent versions of the Linux kernel.

Users of a public cloud service are normally not granted the privilege to run a

profiler in the VMM, which is necessary for conducting system-wide profiling

[19]. To  achieve  guest-wide  profiling,  the  VMM  needs  to  provide  PMU

multiplexing, i.e. saving and restoring PMU registers.

The  hypervisor  context  switches  all  relevant  CPU state  when each VCPU is

scheduled and descheduled. To virtualize performance counters, the hypervisor

must  context  switch  the  active  performance  counter  state,  in  addition  to  the

context switching of general purpose registers and control state. This serves to

time-multiplex  the  CPU  and  performance  counter  hardware  resources  and

guarantee that virtual counters do not advance while that VCPU is out of context.

The  context  switching  of  the  counter  state  satisfies  previous  definition  of

unhalted core-cycles.

The virtualization extensions augment x86 with two new operation modes: host
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mode and guest mode. KVM runs in host mode, and its guests run in guest mode.

Host mode is compatible with conventional x86, while guest mode is very similar

to it  but deprivileged in certain ways. Guest mode supports  all  four privilege

levels and allows direct execution of the guest code. A virtual machine control

structure (VMCS) is introduced to control various behaviors of a virtual machine.

Two transitions  are  also defined:  a  transition from host  mode to  guest  mode

called a VM-entry, and a transition from guest mode to host mode called a VM-

exit. Regarding performance profiling, if a performance counter overflows when

the CPU is in guest mode, the currently running guest is forced to exit, i.e., the

CPU switches from guest mode to host mode. The VM-exit information filed in

the  VMCS  indicates  that  the  current  VM-exit  is  caused  by  a  non-maskable

interrupt (NMI). By checking this field, KVM is able to decide whether a counter

overflow is contributed by a guest. This approach assumes all NMIs are caused

by counter overflows in a profiling session. To be more precise, KVM could also

check the content of all performance counters to make sure that NMIs are really

caused by counter overflows.

A good guest-wide profiling  implementation  requires  no  modifications  to  the

guest  and its  profiler.  The  guest  profiler  reads  and writes  the  physical  PMU

registers  directly  as  it  does  in  native  profiling.  KVM  is  responsible  for

virtualizing  the  PMU  hardware  and  forwarding  NMIs  due  to  performance

counter overflows to the guest. A user can launch the profiler from the guest and

do performance profiling exactly as in a native environment.

When CPU switch is enabled, KVM saves all the relevant MSRs when a VM-

exit happens and restores them when the corresponding VM-resume occurs. By
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configuring certain fields in the VMCS, this is done automatically in hardware.

When domain switch is enabled, all Linux kernel threads belonging to a guest are

tagged and grouped into one domain. When the Linux kernel switches to a thread

not belonging to the current domain, it saves and restores the relevant registers.

To enable the vPMU in a KVM hardware assisted guest VM, I must pass the

parameter <cpu mode='host-passthrough'> during virtual machine launch. By the

way this was a default option in our lab Openstack installation.

With  these  assumptions,  after  the  vPMU  is  enabled,  I  can  display  a  virtual

machine's performance statistics by simply running the perf command from the

guest virtual machine.

The hardware events available inside the VM are the same as those listed for the

virtualization host, while the hardware cache event types available for the virtual

machine are fewer. In my experiments and next discussion I will use only the

hardware events.

Follows an output of  perf list command inside virtual machine, limited to harware

events:

branch-instructions OR branches  [Hardware event] 

branch-misses  [Hardware event] 

bus-cycles  [Hardware event] 

cache-misses  [Hardware event] 

cache-references  [Hardware event] 

cpu-cycles OR cycles  [Hardware event] 

instructions  [Hardware event] 

ref-cycles   [Hardware event]

69



 5 The evolution of the testbed

 5.1 General characteristics

The very early tests in my work were conducted on a simple dual-core computer,

based on i7-3517U,  equipped with 8GB ram and a solid state drive with 512 GB

storing  capacity.  The  operating  system was  initially  based  on  Ubuntu  Linux

12.04, kernel 3.2, and to act as an hypervisor the qemu-kvm module was loaded

while  the  libvirtd  daemon  was  installed  and  loaded  for  vm  management

purposes.  Afterwards,  to  access  the  newly  supported  feature  of  virtual

performance counters inside virtual machines, I upgraded the operating system to

the next long term support release 14.04, supporting kernel 3.13 and qemu-kvm

2.0.  After  first  measurement  sessions,  I  focused  my  attention  on  some

inconsistencies and missing values returned by virtual counters, caused by a bug

in qemu-kvm that was quickly corrected by next module release. 

Basing  upon  a  more  reliable  base  system  I  could  extract  some  important

informations to narrow the search of main performance indicators, useful for the

purpose of the study, focusing on branch misprediction, cache misses, virtual cpu

cycles and number of instructions.

At the same time of the early stages of my research work “InsideOutCC”, that

would  have  resulted  in  this  doctoral  dissertation,  I  have  been  party  to  an

important  european  project,  within  the  wider  Future  Internet  Project,  named

FIWARE.

FIWARE is an open source computing platform, sponsored and financed by the
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European  Union,  with  the  specific  mission  “to  build  an  open  sustainable

ecosystem  around  public,  royalty-free  and  implementation-driven  software

platform standards that will ease the development of new Smart Applications in

multiple sectors”.

I will describe in more detail aims and finality of FIWARE Project in Annex A,

but  now I  shall  focus  on  the  computing  infrastructure  that  was  used  in  my

experiments.  In  particular  FIWARE  Genoa  Node  is  an  instance  of  a  widely

distributed federated community cloud, based on OpenStack.

AgiLab - DITEN, the laboratory I belonged to and where I conducted my studies,

together  with  TnT-Lab  –  DITEN and  CNIT-GE Unit  designed,  installed  and

configured the whole Genoa Node, that was hosted on DITEN-UniGE equipment

rooms, expressly dedicated to the dawning data center.

 5.2 Focus on compute nodes

 5.2.1 Hypervisors in OpenStack

Whether OpenStack is deployed within private data centers or as a public cloud

service,  the  underlying  virtualization  technology  provides  enterprise-level

capabilities in the realms of scalability, resource efficiency, and uptime. While

such  high-level  benefits  are  generally  available  across  many  OpenStack-
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supported  hypervisor  technologies,  there  are  significant  differences  in  the

security  architecture  and  features  for  each  hypervisor,  particularly  when

considering the security threat  vectors which are unique to elastic  OpenStack

environments. As applications consolidate into single Infrastructure-as-a-Service

(IaaS) platforms, instance isolation at the hypervisor level becomes paramount.

The requirement for secure isolation holds true across commercial, government,

and military communities.

Within  the  OpenStack  framework,  you  can  choose  among  many

hypervisor  platforms and corresponding OpenStack plug-ins  to  optimize your

cloud environment.  

FIWARE  choice  fell  on  KVM  for  two  main  reasons:  product  maturity  and

certification.

One of the biggest indicators of a hypervisor’s maturity is the size and

vibrancy  of  the  community  that  surrounds  it.  As  this  concerns  security,  the

quality  of  the  community  affects  the  availability  of  expertise  if  you  need

additional  cloud  operators.  It  is  also  a  sign  of  how  widely  deployed  the

hypervisor is, in turn leading to the battle readiness of any reference architectures

and best practices.

Further, the quality of community, as it surrounds an open source hypervisor like

KVM, has a direct impact on the timeliness of bug fixes and security updates.

When investigating both commercial and open source hypervisors, you must look

into  their  release  and  support  cycles  as  well  as  the  time  delta  between  the

announcement of a bug or security issue and a patch or response. 

One  additional  consideration  when  selecting  a  hypervisor  is  the

availability of various formal certifications and attestations. While they may not
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be  requirements  for  your  specific  organization,  these  certifications  and

attestations speak to the maturity, production readiness, and thoroughness of the

testing a particular hypervisor platform has been subjected to.

Common  Criteria  [20]  is  an  internationally  standardized  software  evaluation

process, used by governments and commercial companies to validate software

technologies perform as advertised. In the government sector, NSTISSP No. 11

mandates that U.S. Government agencies only procure software which has been

Common Criteria certified, a policy which has been in place since July 2002.

In addition to validating a technologies capabilities, the Common Criteria process

evaluates how technologies are developed, verifying

•  how is source code management performed?

•  how are users granted access to build systems?

•  is the technology cryptographically signed before distribution?

The  KVM  hypervisor  has  been  Common  Criteria  certified through  the  U.S.

Government and commercial distributions. These have been validated to separate

the  runtime  environment  of  virtual  machines  from  each  other,  providing

foundational  technology  to  enforce  instance  isolation.  In  addition  to  virtual

machine isolation, KVM has been Common Criteria certified to:

"...provide  system-inherent  separation  mechanisms  to  the  resources  of  virtual

machines.  This  separation  ensures  that  large  software  component  used  for

virtualizing and simulating devices executing for each virtual machine cannot

interfere  with  each  other.  Using  the  SELinux  multi-category  mechanism,  the

virtualization and simulation software instances are isolated. The virtual machine

management  framework  configures  SELinux  multi-category  settings
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transparently to the administrator."

I should also point out that KVM is the only hypervisor included in “group A” of

fully supported Compute Drivers for Nova Openstack Compute Service; other

hypervisors like Hyper-V, Vmware and Xen lack on some functional tests.

Considering the context in which our cloud instance should have been installed,

that is a little data center but with full cooling capacities and uninterrupted power

availability, we chose an high density dual rack solution, preferring sled servers

for compute and controller nodes, while using more traditional 2U servers for

ceph storage nodes, hosting a plenty of hard disk drives.

Sled servers are rack-mounted servers that support multiple independent servers

in a single 2U or 3U enclosure. These deliver higher density as compared to

typical  1U  or  2U  rack-mounted  servers.  Our  Intel  sled  servers  offer  four

independent dual-socket nodes in 2U for a total  of eight CPU sockets in 2U,

sharing one cooling system and double power supply unit for each server.

The type of CPUs we choose had to support virtualization by way of Intel VT-x, in

particular  Intel  Xeon  E5-2630V4 and  E5-2660V4 where  used  with  hyper-threading

capabilities.  Hyper-threading  is  Intel’s  proprietary  simultaneous  multithreading

implementation  used  to  improve  parallelization  on  their  CPUs.  Enabling  hyper-

threading may improve the performance of multi-threaded applications. Whether you

should  enable  Hyper-Threading  on  your  CPUs  depends  upon  your  use  case.  For

example,  disabling  Hyper-Threading  can  be  beneficial  in  intense  computing

environments, but in our tests did not make the difference.

In most cases, hyper-threading CPUs can provide a 1.3x to 2.0x performance benefit

over non-hyper-threaded CPUs depending on types of workload.
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Dynamic memory available on average per socket was 64GB, while storage totalized

24TB on three ceph storage nodes.

Figure 16. FIWARE Genoa Node infrastructure

 5.2.2 CPU and RAM overcommitting

OpenStack allows you to overcommit CPU and RAM on compute nodes. This

allows you to increase the number of instances running on your cloud at the cost
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of  reducing the  performance  of  the  instances.  The  Compute  service  uses  the

following ratios by default:

    CPU allocation ratio: 16:1

    RAM allocation ratio: 1.5:1

The default CPU allocation ratio of 16:1 means that the scheduler allocates up to

16 virtual cores per physical core. For example, if a physical node has 10 cores,

the scheduler sees 160 available virtual cores. With typical flavor definitions of 4

virtual cores per instance, this ratio would provide 40 instances on a physical

node.

The  formula  for  the  number  of  virtual  instances  on  a  compute  node  is

(OR*PC)/VC, where:

OR represents CPU overcommit ratio (virtual cores per physical core)

PC  number of physical cores

VC number of virtual cores per instance

Similarly, the default  RAM allocation ratio of 1.5:1 means that the scheduler

allocates  instances  to  a  physical  node  as  long  as  the  total  amount  of  RAM

associated with the instances is less than 1.5 times the amount of RAM available

on the physical node.

For example, if a physical node has 128 GB of RAM, the scheduler allocates

instances to that node until the sum of the RAM associated with the instances

reaches 192 GB (such as twenty four instances, in the case where each instance

has 8 GB of RAM).

Obviously regardless of the overcommit ratio, an instance of virtual machine can

not be placed on any physical node with fewer raw (pre-overcommit) resources
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than the instance flavor requires.

For my research purposes, owing to an intensive computing pressure I would

push inside virtual machines, and a consequently supposed early warning signal,

I fixed overcommit ratio to 2:1 both for CPU and RAM.

 5.2.3 Bulk and privileged workers

I  realized a template for “bulk worker” virtual  machines,  which consists of a

single vCPU without pinning, 3 GB RAM and a little virtual disk sizing 3 GB.

The operating system was based on Linux Ubuntu 14.04 server edition, with the

only ssh server enabled and listening on network, awaiting for commands. I was

particularly careful to disable any underlying background service that could alter

measures (i.e. cron, udev, etc.) and to install the test suites “stress” and “stress-

ng”. 

I used this template to instantiate 80 virtual machines, each with its private static

ip address, to reach the 2:1 overcommit ratio of a compute node equipped with

40 cores and 128 GB ram.

From the same template I derived a single virtual machine, named  vm-micro,

which is a sort of “privileged worker” and represents my particular point of view

to  probe  the  degree  of  saturation  of  host's  computing  resources.  On  this

“privileged worker” I installed also the software measuring instrument “perf”,

previously included in perf-tools package and nowadays included in a linux-tools

package specific for each version of the kernel.  I  used a third type of virtual

machine, named vm-director,  also based on the same template, but not executed
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on the same compute node hosting bulk and privileged workers. Vm-director was

realized with the express purpose of sending the necessary commands to workers

to perform the experiments.

Particularly,  to  allow  the  execution  of  scripts  in  parallel  on  more  virtual

machines,  I  used  a  versatile  tool  like  the  program  parallel-ssh, that  opens

different  connections  to  several  hosts  via  ssh  protocol,  allowing  to  pass

commands to the virtual machines, all at the same time.

To avoid the interactive authentication steps, ssh public-key from vm-director's

root user was exchanged with all controlled virtual machines.

parallel-ssh -t 0 -h hosts_25.txt -p 10 /root/test_script.sh 

parallel-ssh -t 0 -h hosts_50.txt -p 20 /root/test_script.sh 

parallel-ssh -t 0 -h hosts_75.txt -p 30 /root/test_script.sh 

parallel-ssh -t 0 -h hosts_100.txt -p 40 /root/test_script.sh 

parallel-ssh -t 0 -h hosts_125.txt -p 50 /root/test_script.sh 

parallel-ssh -t 0 -h hosts_150.txt -p 60 /root/test_script.sh 

parallel-ssh -t 0 -h hosts_175.txt -p 70 /root/test_script.sh 

parallel-ssh -t 0 -h hosts_200.txt -p 80 /root/test_script.sh

The  bulk  workers  was  divided  in  8  groups  of  10  virtual  machines  each,  to

graduate computational load for the host in 25% steps, from 0 to 200%.

I noticed that the extra load caused by the boot phase of each virtual machine

could  excessively  disturb  the  measures,  so  I  decided  to  bring  all  the  virtual

machines in a stable booted state, without extra computational load, that would
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represent the steady basis for all following tests. 

I deployed testing scripts on all worker virtual machines and started to step up

efforts on 0, 10, 20, and so on till 80 vms, with a delay between each step of

about 10 minutes, to stabilize the situation between one test and the other.

deploy_script.sh (from vm-director):

#!/bin/bash 

        for i in `seq 11 90`; 

        do 

#                echo $i 

#ssh  -f  172.27.27.$i  "stress  -c  1  -m  2  -t  600s  >

/dev/null 2>&1" 

scp /root/test_script.sh 172.27.27.$i:/root/ 

        done    

test_script.sh (deployed towards each worker vm):

#!/bin/bash 

stress -c 1 -m 1 -i 4 -t 600s > /dev/null 2>&1

At about 8 minutes from the start of each step, on vm-micro was run the perf

tests of hardware PMU indicators visible from inside guest operating system, for

a duration of 60 seconds, saving locally a comma separated file with results for

further processing of data.

(from vm-micro)
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perf  stat  -x,  -I  1000  -e  cycles,instructions,branch-misses,cache-

misses stress -c 1 -m 1 -i 4 -t 60s 2>&1| tee Exp0X_DDMM_hhmm.csv

to  obtain  for  each  launch  a  comma  separated  file  containing  performance

counters values, every 1000 ms, for a duration of 60 seconds.

From  several  measuring  sessions,  I  realized  that  two  particular  software

mechanisms introduced by KVM could partially alter results:

Memory Ballooning and Kernel Same-page Merging.

 5.2.3.1 Memory Ballooning 

Through memory ballooning [21],  a  host  server  can  reclaim unused memory

from other less busy virtual machines and reassign it to ones that require it more.

Theoretically,  a  server  with  32GB  of  memory  might  be  able  to  support  a

combined virtual machine memory capacity allocation of 64GB simply because

all of those virtual machines will not be using the maximum amount of memory

they have been assigned at the same time.

The balloon driver  in  each guest  operating  system keeps  track  of  the  excess

memory of each VM and when the hypervisor calls for a memory reclamation

through ballooning, the balloon driver in the VM pins down a specific amount of

memory so that the VM cannot consume it, and then the hypervisor reclaims that

pinned memory for reallocation. If there is a scarcity of unused memory then a

memory swap might  be  initiated in  order  to  fulfill  the  balloon quota.  If  this
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happens too much, there would be a lot of I/O overhead between the various

VMs that are doing memory swapping with the disk and might adversely affect

overall performance of the virtual system.

The obvious benefit is that a host can support more VMs provided that most of

them will not consume their memory allocation most of the time. But in a system

where most of the VMs are busy and consume most of their allocated memory,

then ballooning might cause performance degradation. This just highlights the

importance of memory capacity for any computer system.

 5.2.3.2 Kernel Same-page Merging

Kernel Same-page Merging (KSM) [22], used by the KVM hypervisor, allows

KVM guests to share identical memory pages. These shared pages are usually

common libraries or other identical, high-use data. KSM allows for greater guest

density  of  identical  or  similar  guest  operating  systems  by  avoiding  memory

duplication. 

The concept of shared memory is common in modern operating systems. For

example, when a program is first started, it shares all of its memory with the

parent program. When either the child or parent program tries to modify this

memory, the kernel allocates a new memory region, copies the original contents

and allows the program to modify this new region. This is known as copy on

write. 

KSM is a Linux feature which uses this concept in reverse. KSM enables the
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kernel  to  examine two or  more  already running programs and compare  their

memory. If any memory regions or pages are identical, KSM reduces multiple

identical memory pages to a single page. This page is then marked copy on write.

If the contents of the page is modified by a guest virtual machine, a new page is

created for that guest. 

This  is  useful  for  virtualization with KVM. When a guest  virtual  machine is

started, it only inherits the memory from the host qemu-kvm process. Once the

guest is running, the contents of the guest operating system image can be shared

when guests are running the same operating system or applications. KSM allows

KVM to request that these identical guest memory regions be shared. 

KSM provides  enhanced memory speed and utilization.  With KSM, common

process data is stored in cache or in main memory. This reduces cache misses for

the  KVM guests,  which  can  improve  performance  for  some applications  and

operating systems. Secondly, sharing memory reduces the overall memory usage

of guests, which allows for higher densities and greater utilization of resources. 

In recent KVM versions, KSM is NUMA aware. This allows it to take NUMA

locality into account while coalescing pages, thus preventing performance drops

related  to  pages  being  moved  to  a  remote  node.  It's  highly  recommended

avoiding cross-node memory merging when KSM is in use. If KSM is in use,

you should change the /sys/kernel/mm/ksm/merge_across_nodes tunable to

0 to  avoid  merging  pages  across  NUMA nodes.  This  can  be  done  with  the

command

virsh node-memory-tune --shm-merge-across-nodes 0
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Kernel memory accounting statistics can eventually contradict each other after

large amounts of cross-node merging. As such, numad can become confused after

the KSM daemon merges large amounts of memory. If your system has a large

amount of free memory, you may achieve higher performance by turning off and

disabling the KSM daemon.

Two separate methods are normally used for controlling KSM: 

• The ksm service, that starts and stops the KSM kernel thread. 

• The  ksmtuned service  that  controls  and  tunes  the  ksm service,

dynamically  managing  same-page  merging.  ksmtuned starts  the  ksm

service  and stops  the  ksm service  if  memory  sharing  is  not  necessary.

When new guests are created or destroyed, ksmtuned must be instructed

with the retune parameter to run. 

Both of these services are controlled with the standard service management tools.

The KSM Service

• The ksm service is included in the qemu-kvm package. 

• When the  ksm service is not started, Kernel same-page merging (KSM)

shares  only  2000  pages.  This  default  value  provides  limited  memory-

saving benefits. 

• When the  ksm service is started, KSM will share up to half of the host

system's main memory. Start the ksm service to enable KSM to share more

memory. 

# systemctl start ksm
Starting ksm:                                              [  OK  ]
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The  ksm service can be added to the default startup sequence. Make the  ksm

service persistent with the systemctl command. 

# systemctl enable ksm

The KSM Tuning Service

The  ksmtuned service  fine-tunes  the  kernel  same-page  merging  (KSM)

configuration by looping and adjusting ksm. In addition, the ksmtuned service

is notified by libvirt when a guest virtual machine is created or destroyed. The

ksmtuned service has no options. 

# systemctl start ksmtuned
Starting ksmtuned:                                         [  OK  ]

The  ksmtuned service  can  be tuned with  the  retune parameter,  which  instructs

ksmtuned to run tuning functions manually. 

KSM Variables and Monitoring

Kernel  same-page  merging  (KSM)  stores  monitoring  data  in  the

/sys/kernel/mm/ksm/ directory. Files in this directory are updated by the kernel

and are an accurate record of KSM usage and statistics.

The  variables  in  the  list  below  are  also  configurable  variables  in  the

/etc/ksmtuned.conf file, as noted above. 

Files in /sys/kernel/mm/ksm/:

full_scans

Full scans run. 
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merge_across_nodes

Whether pages from different NUMA nodes can be merged. 

pages_shared

Total pages shared. 

pages_sharing

Pages currently shared. 

pages_to_scan

Pages not scanned. 

pages_unshared

Pages no longer shared. 

pages_volatile

Number of volatile pages. 

run

Whether the KSM process is running. 

sleep_millisecs

Sleep milliseconds. 

These variables can be manually tuned using the  virsh node-memory-tune

command. For example,  the following specifies  the number of  pages  to  scan

before the shared memory service goes to sleep: 

# virsh node-memory-tune --shm-pages-to-scan number

Deactivating KSM

Kernel same-page merging (KSM) has a performance overhead which may be

too large for certain environments or host systems. KSM may also introduce side

channels that could be potentially used to leak information across guests. If this
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is a concern, KSM can be disabled on per-guest basis. 

KSM  can  be  deactivated  by  stopping  the  ksmtuned and  the  ksm services.

However, this action does not persist after restarting. To deactivate KSM, run the

following in a terminal as root: 

# systemctl stop ksmtuned

Stopping ksmtuned:                                         [  OK  ]

# systemctl stop ksm

Stopping ksm:                                              [  OK  ]

Stopping the ksmtuned and the ksm deactivates KSM, but this action does not

persist  after  restarting.  Persistently  deactivate  KSM  with  the  systemctl

commands: 

# systemctl disable ksm

# systemctl disable ksmtuned

When KSM is disabled, any memory pages that were shared prior to deactivating

KSM are  still  shared.  To delete  all  of  the  PageKSM in  the  system,  use  the

following command: 

# echo 2 >/sys/kernel/mm/ksm/run

After  this  is  performed,  the  khugepaged daemon  can  rebuild  transparent

hugepages on the KVM guest physical memory. Using 

# echo 0 >/sys/kernel/mm/ksm/run 

stops KSM, but does not unshare all the previously created KSM pages (this is the same

as the # systemctl stop ksmtuned command). 
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Fortunately, as we have been able to ascertain, both mechanisms can be disabled

by software, to obtain cleaner results.

Anyway,  I  report  graphs  for  both  conditions,  with  and  without  memory

ballooning and kernel share page merging.

 5.3 Collected data rendering

I  present  a  synthesis  of  the  measurements  collected  during  this  research,  in

particular I have organized 3D graphs to report on each axis respectively:

• time in range 0 to 60 seconds;

• virtual  to  physical  resources  ratio,  referring  to  the  percentage  of

overcommitting previously explained and graduated in 25% steps;

• branch miss to vcpu cycles ratio.

Values are derived from tests conducted on a compute node equipped with 40

cores and 128 GB ram.
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Figure 17. Host performance seen from vm-micro perspective: the noisy way
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Figure 18. Host performance seen from vm-micro perspective without  ballooning and KSM
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Figure 19. Cache_misses to cycle ratio seen from vm-micro perspective w/o  ballooning and KSM
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 5.4 Data interpretation

Modern  processors  use  pipelining  to  exploit  parallelism  and  improve

performance.  Conditional  branches  in  the  instruction  stream  degrade

performance by causing pipeline flushes. Branch prediction mechanisms [23] can

overcome  this  limitation  by  predicting  the  outcome  of  the  branch  before  its

condition is resolved. As a result, instruction fetch is not interrupted as often and

the window of instructions over which ILP (Instruction-level Parallelism) can be

exposed increases. In fact, accurate branch predictors can eliminate over 90% of

these pipeline stalls and are thus critical to realizing the performance potential of

a processor.

Branch  prediction  accuracy  is  important  because  the  new  generation  of

processors have deeper pipelines, which result in larger misprediction penalties.

Most  processors  use  dynamic  branch  prediction  to  predict  branch  directions.

Dynamic predictors record and utilize information from previous runs of a static

branch instruction to predict its outcome in the future. This requires additional

hardware to store the branch history. These predictors dynamically adjust their

prediction to match the changing behavior of a branch instruction as the program

executes.

One aspect of branch prediction that has largely been ignored is the effect of

context switches. In typical systems, several processes are in the active queue at

any given time and they share the branch predictor structure. Each process runs

for its allotted time slice and then yields the processor to allow another waiting

process to execute. Unless steps are taken to change the state of the predictor
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structure, it will contain stale information from the run of the previous process

when the new process commences execution. Since different processes generally

have completely different branch behaviors,  reusing the stale information will

increase the misprediction rate.

Several papers on branch prediction acknowledge the effects of context switching

on branch prediction accuracy and on system performance [24] [25].

In the same way,  for a virtualization host a context switch is the switching of the

CPU from one process or thread to another. A guest operating system running in

a virtual machine is executed by the host just as any other processes or threads

running on the host  are executed.  When the host operating system receives a

hardware interrupt, it generally suspends the progression of the current process

on  the  CPU  and  starts  servicing  the  interrupt.  Once  the  interrupt  has  been

serviced,  either the current process or some other  process (as decided by the

scheduler of the host operating system) continues with its execution. 

The guest operating system is scheduled in the same manner as any other process

on the host.  Context switches can occur during program execution for several

reasons such as I/O requests, system calls, page faults, expiration of time slice

etc. The frequency of these context switches depends on factors like the number

of virtual machines active on a system, the types of  applications executed, the

operating system used and the scheduling scheme.

I have found that a good performance indicator in this context is represented by

branch miss to vcpu cycles ratio (Fig.17 and 18), referring to branch miss as the

number of branch misprediction events in a second and to vcpu cycles as the

number of execution cycles the virtual cpu executed in a second. I would like to
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remind that both quantities are measured from inside virtual machine vm-micro,

using  virtual  performance  counters,  and  so  without  any  perception  of  host's

intensity  of  saturation.  The  value  of  this  ratio  reported  in  graphs  has  been

multiplied by 10^4 only for ranging and scaling purposes.

Even in the noisy mode with ballooning and KSM active, the behavioral pattern

of the virtual system shows a trend that identifies with good approximation the

state  of  over-committment  of  host's  resources,  since  values  exceeding  100%

virtual to physical ratio.

The same thing cannot be said about cache_misses performance indicator (Fig.

19): in this case the cache_miss to cycles ratio presents a behavior proportional to

P2V overcommitment ratio, but with a smoother profile that doesn't point out a

threshold effect.
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 6 Summary and conclusion

In this  work I analyzed the  performance of  a virtualization host  in particular

conditions of resource over-committing, from an innovative point of view as that

of a virtual machine executed on the same host.

Normally this guest virtual machine isn't  aware of its host's condition, in fact

hypervisors  are  specifically  designed  and  realized  to  isolate  the  execution

environment of each hosted virtual machine, so that none of them could interfere

with any other one in a crowded computing environment like a cloud node.

From a customer point of view, it  could be indeed interesting to know if  the

purchased service levels are effectively respected by the cloud provider.

All  the  software  measuring  instruments  used  in  this  research  are  publicly

available  and free,  and can  be  easily  installed  in  a  micro  instance  of  virtual

machine, rapidly deployable also in public clouds.

Actually the method described in this work has been applied only to KVM hosts

and guests, and the results show a trend that identifies with good approximation

the state of over-committment of host's resources. 

Further studies should be conducted on other type of hypervisors, such as Xen or

Vmware  ESXi,  principally  to  investigate  the  accessibility  of  virtual  counters,

even if I suppose the results should be comparable.
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