
DITEN

Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle

Telecomunicazioni

Università degli Studi di Genova

Corso di Dottorato di Ricerca in Scienze e Tecnologie per

l'Informazione e la Conoscenza

XXVII ciclo

Ingegneria Elettronica, Informatica, della Robotica e delle Telecomunicazioni

Ph.D. Thesis

Submitted by Danilo Tigano

March, 2018

DITEN, Universita' di Genova

danilo.tigano@unige.it

Title: An innovative approach to performance metrics calculus in cloud

computing environments: a guest-to-host oriented perspective.

Advisor: Professor Giulio Barabino

DITEN, Universita' di Genova

giulio.barabino@unige.it

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Genova

https://core.ac.uk/display/162442405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In virtualized systems, the task of profiling and resource monitoring is not

straight-forward. Many datacenters perform CPU overcommittment using

hypervisors, running multiple virtual machines on a single computer where the

total number of virtual CPUs exceeds the total number of physical CPUs

available.

From a customer point of view, it could be indeed interesting to know if the

purchased service levels are effectively respected by the cloud provider.

The innovative approach to performance profiling described in this work is based

on the use of virtual performance counters, only recently made available by some

hypervisors to their virtual machines, to implement guest-wide profiling.

Although it isn't possible for the virtual machine to access Virtual Machine

Monitor, with this method it is able to gather interesting informations to deduce

the state of resource overcommittment of the virtualization host where it is

executed.

Tests have been carried out inside the compute nodes of FIWARE Genoa Node,

an instance of a widely distributed federated community cloud, based on

OpenStack and KVM. AgiLab-DITEN, the laboratory I belonged to and where I

conducted my studies, together with TnT-Lab–DITEN and CNIT-GE-Unit

designed, installed and configured the whole Genoa Node, that was hosted on

DITEN-UniGE equipment rooms.

All the software measuring instruments, operating systems and programs used in

this research are publicly available and free, and can be easily installed in a micro

instance of virtual machine, rapidly deployable also in public clouds.

2

To my beloved Mom and Dad, living forever in my memories

3

Acknowledgments

I wish to thank:

Giulio Barabino, master of science and life, as well as my friend, without whom

this long journey would never have begun;

Mario Marchese, for his constant and careful encouragement to complete my

doctorate;

Giorgio Robino and Giancarlo Portomauro, for their friendship, effective help

and cooperation in realizing the Fiware Genoa Node.

4

Table of Contents
 1 Introduction...7
 2 System Virtualization..9

 2.1 Definition...9
 2.2 Virtual Machine Monitor...10

 2.2.1 Hypervisor classifications..11
 2.2.2 Hardware Support..14
 2.2.3 Privilege Levels..14
 2.2.4 Memory Management..15

 2.3 Virtualization techniques...16
 2.3.1 Paravirtualization...17
 2.3.2 Full virtualization...17

 2.4 Linux as an hypervisor...18
 2.4.1 Generic linux-based hypervisor...18
 2.4.2 KVM Kernel-based Virtual Machine...19
 2.4.3 KVM architecture...21
 2.4.4 Resource management...22
 2.4.5 The KVM control interface..22
 2.4.6 Emulation of hardware...23
 2.4.7 Execution Model..23
 2.4.8 Paravirtual device drivers...25
 2.4.9 Linux hypervisor benefits..26

 3 Cloud Computing..28
 3.1 Anatomy of cloud computing..30
 3.2 The cloud computing landscape...32

 3.2.1 Software-as-a-Service..32
 3.2.2 Platform-as-a-Service...33
 3.2.3 Infrastructure-as-a-Service...34

 3.3 Linux and open source in the cloud...35
 3.3.1 Core virtual computing open source technologies.......................................37

 3.3.1.1 Hypervisors..37
 3.3.1.2 Device emulation..38
 3.3.1.3 Virtual networking..38
 3.3.1.4 VM tools and technologies...40
 3.3.1.5 Local management...41

 3.3.2 Infrastructure open source technologies...41
 3.3.2.1 Session management..41

5

 3.3.2.2 Infrastructure management...42
 3.3.2.3 Integrated IaaS solutions..43
 3.3.2.4 Cloud types...45

 3.3.3 OpenStack service overview..47
 3.3.3.1 Compute...48
 3.3.3.2 Object Storage..49
 3.3.3.3 Block Storage...49
 3.3.3.4 Shared File Systems...50
 3.3.3.5 Networking...50
 3.3.3.6 Dashboard...50
 3.3.3.7 Identity service...51
 3.3.3.8 Image service..51
 3.3.3.9 Messaging and databases..51

 4 Performance monitoring..53
 4.1 Hardware-Based Monitoring...53
 4.2 Perf: a profiling tool for linux based systems..55

 4.2.1 Hardware Events..60
 4.2.1.1 CPU Statistics...60

 4.2.2 Performance monitoring in KVM virtualized environments.......................64
 4.2.2.1 Perf kvm: the host perspective...65
 4.2.2.2 vPMU: the guest perspective..67

 5 The evolution of the testbed..70
 5.1 General characteristics...70
 5.2 Focus on compute nodes..71

 5.2.1 Hypervisors in OpenStack..71
 5.2.2 CPU and RAM overcommitting...75
 5.2.3 Bulk and privileged workers..77

 5.2.3.1 Memory Ballooning...80
 5.2.3.2 Kernel Same-page Merging..81

 5.3 Collected data rendering..87
 5.4 Data interpretation...91

 6 Summary and conclusion..94

6

 1 Introduction

Virtualization is not a new technology. In the 1960s computing systems were as

large as a room and very expensive to operate. In those days only one application

could be executed on one piece of hardware at a particular time. Then time-

sharing had been introduced to execute several applications simultaneously. One

major drawback of this approach was the lack of isolation of the running

applications. If application A caused a hardware error all other running

applications were affected.

To isolate these, virtualization provided several isolated environments to ran

them into [1].

In the 1970s hardware architectures became virtualization aware. IBM

mainframes allowed the administrators to partition the real hardware and provide

isolated environments for each application.

In the 1980s, as the x86 architecture arose and the prices of hardware felt, it

became affordable to run one computer per application. Also operating systems

supported multi tasking and there was no need for time-sharing any more. As a

consequence virtualization became history.

In the last couple of years virtualization experienced a comeback. Intel and AMD

extended the IA32 instructon set of x86 processors to support virtualization.

Since these are the big players on the CPU market, nearly any recent PC and

server supports virtualization.

Today, virtualization is mainly used for consolidation: an interesting statistic

reported by the U.S. Environmental Protection Agency (EPA) stood out. The EPA

7

study on server and data center energy efficiency found that only around 5% of

server capacity was actually used. The rest of the time, the server was dormant.

Virtualizing platforms on a single server can improve server utilization, but the

benefits of reducing server count are a force multiplier. With reduced servers

comes reduced real estate, power consumption, cooling (less energy costs), and

management costs. Less hardware also means improved reliability. All in all,

virtualization brings not only technical advantages but cost and energy

advantages, as well.

There are many types of consolidation and the following examples should give a

basic idea about it.

A lot of servers are running at a very low load but still consuming a huge amount

of energy. Server consolidation means workload optimization of these servers by

running each of them as a Virtual Machine (VM) on virtualization hosts. When

contention is low these VMs are dynamically migrated to fewer virtualization

hosts and shut down the others to reduce energy consumption and lower costs. If

the load increases and more hosts are needed to fulfill server level objectives,

these are started again and some VMs are migrated onto them.

Another example is application consolidation, where virtualization is used to

replace the old hardware of a legacy system. It helps to provide an environment

which mimics the old hardware and runs the legacy system.

Sandboxing is another purpose of virtualization. It is mainly used to increase

security by running potentially insecure applications inside a VM. So an

application runs in its isolated environment, while specialists can observe its

behaviour. Thus malware and other malicious software could be found before it’s

deployed on a machine with access to the network of a company.

8

There are various techniques to provide and operate VMs, one of those are

Virtual Machine Monitors (VMM). Such a VMM represents a software layer of

indirection, running on top of the hardware. It operates all VMs running upon it.

 2 System Virtualization

 2.1 Definition

Since virtualization is a settled topic, there are several definitions on it. The

following is a general definition of virtualization given by Chiueh and Brook

[2]:

“Virtualization is a technology that combines or divides computing re-

sources to present one or many operating environments using method-

ologies like hardware and software partitioning or aggregation, partial

or complete machine simulation, emulation, time-sharing, and many

others”

This means, that virtualization uses techniques to abstract from the real hardware

and provides isolated environments, so called Virtual Machines. These are

capable to run various applications or even a whole operating system. A goal not

mentioned in the definition is to have nearly to native performance for running

VMs.

This is a very important point, because the users always want to get the most out

9

of their hardware. Most of them are not willing to introduce virtualization

technology, if a huge amount of CPU power is wasted by managing Vms.

As well as virtualization in general, system virtualization is well defined too:

“A system VM provides a complete environment in which an operating

system and many processes, possibly belonging to multiple users, can

coexist.” [3]

The complete environment, in this case, means an environment that provides

usual hardware like ethernet controllers, CPUs or hard disk drives to an operating

system (OS) which runs inside of it. A server with real hardware attached to it

commonly runs several VM’s. Such a server is called virtualization host and the

VM’s running on top of it are called guests. The OS that runs inside a guest is

called guest OS.

For this work, by virtualization we mean system virtualization.

 2.2 Virtual Machine Monitor

Virtualization, in the context of this work, is the process of hiding the underlying

physical hardware in a way that makes it transparently usable and shareable by

multiple operating systems. This architecture is also known as platform

virtualization other than system virtualization. In a typical layered architecture,

the layer that provides for the system virtualization is called the hypervisor, also

known as virtual machine monitor, or VMM. Each instance of a guest operating

10

system is called a virtual machine (VM), because to these VMs the hardware is

virtualized to appear as dedicated to them. A simple illustration of this layered

architecture is shown in Figure 1.

Figure 1. Simple layered architecture showing the virtualization of common hardware

Hypervisors do for operating systems what operating systems roughly do for

processes. They provide isolated virtual hardware platforms for execution that in

turn provide the illusion of full access to the underlying machine.

Operating systems virtualize access to the underlying resources of the machine to

processes. Hypervisors do the same thing, but instead of processes, they

accomplish this task for entire guest operating systems.

 2.2.1 Hypervisor classifications

Hypervisors can be classified into two distinct types. The first, type 1

hypervisors, are those that natively run on the bare-metal hardware. The second,

type 2, are hypervisors that execute in the context of another operating system

(that runs on the bare metal). Examples of type 1 hypervisors include Kernel-

11

based Virtual Machine (KVM), Vmware ESXi, MS Hyper-V, Xen.

Examples of type 2 hypervisors include QEMU, WINE, Virtual Box, Vmware

Workstation and Player.

So a hypervisor (regardless of the type) is just a layered application that abstracts

the machine hardware from its guests. In this way, each guest sees a VM instead

of the real hardware.

All guests are controlled and monitored by the VMM. It provides tools to the

users to manage them. These tools allow to do several operations like starting or

stopping a guest or migrating VMs between hosts.

At a high level, the hypervisor requires a small number of items to boot a guest

operating system: a kernel image to boot, a configuration, such as IP addresses

and quantity of memory to use, a disk, and a network device. The disk and

network device commonly map into the machine's physical disk and network

device, as shown in Figure 2. Finally, a set of guest tools is necessary to launch a

guest and subsequently manage it.

A VM usually has at least one virtual CPU. The VMM maps the virtual CPU(s)

of all actually running VMs to the physical CPU(s) of the host. Hence, there are

usually more VMs running on a host than physical CPUs are attached to it,

causes the need of some kind of scheduling. Therefore a VMM uses a

scheduling mechanism to assign a certain share of the physical CPUs to each

virtual CPU.

12

Figure 2. Minimal mapping of resources in a hypothetical hypervisor

A VMM has to deal with memory management, also. It maps an amount of

physical memory into the VMs address space and also has to handle

fragmentation of memory and swapping. Since some VMs need more memory

than others, the amount of assigned memory is defined and often dynamically

adjusted by using the management tools.

Usually, the VMs don’t have access to the physical hardware and don’t even

know about it either. Only if direct access is desired, devices may be passed

through directly. For running legacy software this may be a point. But in more

common scenarios the VMM provides virtual I/O devices like network cards,

hard disks and cd drives. Since a VMM provides different VMs mostly with

same hardware, it is much easier to migrate them between hosts running the same

VMM. The drivers for the virtual I/O devices need to be installed only once in

this case.

13

 2.2.2 Hardware Support

To implement a Virtual Machine Monitor on a x86 architecture, hardware

assistance is needed. The privilege levels implemented by the CPU to restrict

tasks that processes can do, are one aspect. Another one is the memory

management that is emulated by the VMM which tends to be inefficient.

Hardware support could lead to an increased performance of the virtual machines

by supporting a VMM.

 2.2.3 Privilege Levels

The most modern operating systems don’t allow applications to execute certain

operations. Only the OS may load drivers or access the hardware directly, for

example. To restrict all running applications to only a subset of the resources, the

OS and the CPU conspire using privilege levels.

As described in [4] a x86 CPU runs in a specific privileged level at any given

time.

Figure 3 shows these levels as rings. Ring 0 is the most privileged and ring 3 is

the least privileged.

Figure 3. CPU privilege levels

14

The resources that are protected through the rings are: memory, I/O ports and

CPU instructions. The operating system typically runs in ring 0. It needs the most

privileged level to do resource management and provide access to the hardware.

All the applications run in ring 3. Ring 1 and 2 are widely unused. From a OSs

point of view ring 0 is called kernel-mode and ring 3 user-mode.

As mentioned in section 2.2.1 the VMM needs to access the memory, CPU and

I/O devices of the host. Since only code running in ring 0 is allowed to perform

these operations, it needs to run in the most privileged ring, next to the kernel.

An operating system installed in a VM also expects to access all the resources

and in order of that running in ring 0 like the VMM does. Due to the fact that

only one kernel can run in ring 0 at the same time, the guest OSs have to run in

another ring with less privileges or have to be modified to run in user-mode.

Intel and AMD realized that this is a major challenge of virtualization on the x86

architecture. So they introduced Intel VT and AMD SVM as an extension of the

IA-32 instruction set for better support of virtualization. These extensions allow

the VMM to run a guest OS that expects to run in kernel-mode, in a lower

privileged ring.

 2.2.4 Memory Management

In order to run several VMs on top of a server, a multiple of the amount of

memory that is attached to a common server is needed. Since each VM runs an

entire operating system and applications on that, it is recommended to assign as

much memory to a VM as a comparable physical machine would have. The

15

VMM splits the physical memory of the host into contiguous blocks of fixed

length and maps it into the address space provided to a VM.

Most modern systems are using virtual memory management. This technique

allows to provide the previously mentioned contiguous blocks of memory to a

VM, although it is fragmented all over the physical memory or even partially

stored on the hard disk. In this case it has to be copied back to memory by the

virtual memory management first, when accessed. Since a VM is unaware of the

physical address of its address space, it can’t figure out whether parts of its

virtual memory has to be copied or not. To achieve that, the VMM holds a so

called shadow page table that stores the physical location of the virtual memory

of all VMs. Thus, any time a VM writes to its memory, the operation has to be

intercepted to keep the shadow pages up to date. When a swapped address is

accessed the VMM first uses the virtual memory management to restore it.

With the introduction of Intel’s Extended Paging Tables (EPT) and AMD’s

Nested Paging Tables (NPT) a VMM can use hardware support for the translation

between virtual and physical memory. This reduces the overhead of holding

shadow pages and increases the performance of a VMM [5].

 2.3 Virtualization techniques

I introduce now two techniques to realize system virtualization:

paravirtualization and full virtualization.

16

 2.3.1 Paravirtualization

The paravirtualization approach allows each guest to run a full operating system.

But these do not run in ring 0. Due to that all the privileged instructions can’t be

executed by a guest. In order of that, modifications to the guest operating systems

are required to implement an interface. This is used by the VMM to take over

control and handle the restricted instructions for the VM. The paravirtualization

approach promises nearly to native performance but lacks in the support for

closed source operating systems [6]. To apply the mentioned modifications, the

source code of the kernel of an operating system has to be patched. Thus, running

Microsoft Windows in a VM is impossible using paravirtualization.

 2.3.2 Full virtualization

This approach allows to operate several operating systems on top of a hosting

system, each running into its own isolated VM. The VMM uses hardware support

as described in section 2.3.1 to operate these, which allows to run the guest

operating systems without modifications. The VMM provides I/O devices for

each VM, which is commonly done by emulating older hardware. This ensures

that a guest OS has driver support for these devices. Because of the emulated

parts fullvirtualization is not as fast as paravirtualization. But if one needs to run

a closed source OSs, it is the only viable technique to do so.

17

 2.4 Linux as an hypervisor

One of the most important modern innovations of Linux is its transformation into

a hypervisor or, in other terms, an operating system for hosted operating systems.

A number of hypervisor solutions have appeared that use Linux as the core, but

in this document I will introduce KVM, that is one of the emerging hypervisor

technologies, completely open source and used to realize the experiments in our

laboratory, for the purposes of my PhD research work.

 2.4.1 Generic linux-based hypervisor

A simplified hypervisor architecture then implements the glue that allows a guest

operating system to be run concurrently with the host operating system. This

functionality requires a few specific elements, shown in Figure 4.

First, similar to system calls that bridge user-space applications with kernel

functions, a hypercall layer is commonly available that allows guests to make

requests of the host operating system. Input/output (I/O) can be virtualized in the

kernel or assisted by code in the guest operating system. Interrupts must be

handled uniquely by the hypervisor to deal with real interrupts or to route

interrupts for virtual devices to the guest operating system. The hypervisor must

also handle traps or exceptions that occur within a guest: after all, a fault in a

guest should halt the guest but not the hypervisor or other guests. A core element

of the hypervisor is a page mapper, which points the hardware to the pages for

the particular operating system (guest or hypervisor). Finally, a high-level

18

scheduler is necessary to transfer control between the hypervisor and guest

operating systems and back.

Figure 4. Simplified view of a Linux-based hypervisor

 2.4.2 KVM Kernel-based Virtual Machine

KVM has been initially developed by Qumranet, a small company located in

Israel. Redhat acquired Qumranet in september 2008, when KVM became more

production ready. They see KVM as the next generation of virtualization

technology. Nowadays it is used as the default VMM in Redhat Enterprise Linux

(RHEL) since version 5.4 and the Redhat Enterprise Virtualization for Servers.

Qumranet released the code of KVM to the open source community. Today, well

known companies like IBM, Intel and AMD count to the list of contributors of

the project. Since version 2.6.20 KVM is part of the vanilla linux kernel and thus

19

available on the most linux-based operating systems with a newer kernel.

Further more it benefits from the world class development of the open source

operating system, because if linux gains better performance through new

algorithms, drivers or whatsoever KVM also performs better.

KVM is a system virtualization solution that uses full virtualization to run Vms

[7]. It has a small code base, since it was designed to leverage the facilities

provided by hardware support for virtualization. KVM runs mainly on the x86

architecture, but IA64 and PowerPC support was added.

Additionally, KVM has added support for symmetrical multiprocessing (SMP)

hosts and guests, and supports enterprise-level features such as live migration, to

allow guest operating systems to migrate between physical servers.

KVM is implemented as a kernel module, allowing Linux to become a

hypervisor simply by loading a module. KVM provides full virtualization on

hardware platforms that provide hypervisor instruction support, such as the

Intel® Virtualization Technology [Intel VT] or AMD Virtualization [AMD-V]

offerings. KVM also supports paravirtualized guests, including Linux and

Windows®.

This technology is implemented as two components. The first is the KVM-

loadable module that, when installed in the Linux kernel, provides management

of the virtualization hardware, exposing its capabilities through the /proc file

system (see Figure 5). The second component provides for PC platform

emulation, which is provided by a modified version of QEMU. QEMU executes

as a user-space process, coordinating with the kernel for guest operating system

requests.

20

Figure 5. High-level view of the KVM hypervisor

 2.4.3 KVM architecture

Linux has all the mechanisms a VMM needs to operate several VMs. So the

developers didn’t reinvent the wheel and added only few components to support

virtualization. KVM is implemented as a kernel module that can be loaded to

extend linux by these capabilities.

In a normal linux environment each process runs either in user-mode or in

kernel-mode. KVM introduces a third mode, the guest-mode. Therefore it relies

on a virtualization capable CPU with either Intel VT or AMD SVM extensions.

A process in guest-mode has its own kernel-mode and user-mode. Thus, it is able

to run an operating system. Such processes are representing the VMs running on

a KVM host. In [8] the author states what the modes are used for from a hosts

point of view:

21

• user-mode: I/O when guest needs to access devices

• kernel-mode: switch into guest-mode and handle exits due to I/O

operations

• guest-mode: execute guest code, which is the guest OS except I/O

 2.4.4 Resource management

The KVM developers aimed to reuse as much code as possible. Due to that they

mainly modified the linux memory management, to allow mapping physical

memory into the VMs address space. Therefore they added shadow page tables,

that were needed in the early days of x86 virtualization, when Intel and AMD had

not released EPT respectively NPT yet. On May 2008 support for these

technologies has been introduced.

In modern operating systems there are many more processes than CPUs available

to run them. The scheduler of an operating system computes an order in that each

process is assigned to one of the available CPUs. In this way, all running

processes are share the computing time. Since the KVM developers wanted to

reuse most of the mechanisms of linux, they simply implemented each VM as a

process, relying on its scheduler to assign computing power to the VMs.

 2.4.5 The KVM control interface

Once the KVM kernel module has been loaded, the /dev/kvm device node appears

in the filesystem. This is a special device node that represents the interface of

22

KVM. It allows to control the hypervisor through a set of ioctls. These are

commonly used in certain operating systems as an interface for processes running

in user-mode to communicate with a driver. The ioctl() system call allows to

execute several operations to create new virtual machines, assign memory to a

virtual machine, assign and start virtual CPUs.

 2.4.6 Emulation of hardware

To provide hardware like hard disks, cd drives or network cards to the Vms,

KVM uses a highly modified QEMU. This is a so called platform virtualization

tool, which allows to emulate an entire pc platform including graphics,

networking, disk drives and many more. For each VM a QEMU process is started

in user-mode and certain emulated devices are virtually attached to these. When a

VM performs I/O operations, these are intercepted by KVM and redirected to the

QEMU process regarding to the guest.

 2.4.7 Execution Model

Figure 6 depicts the execution model of KVM. This is a loop of actions used to

operate the VMs. These actions are separated by the three modes we mentioned

earlier in section 3.1.1.

23

Figure 6. KVM execution model

In [9] Kivity et al. described the KVM execution model and stated which

tasks are done in which mode:

• user-mode: The KVM module is called using ioclt() to execute guest

code until I/O operations initiated by the guest or an external event occurs.

Such an event may be the arrival of a network package, which could be

the reply of a network package sent by the host earlier. Such events are

expressed as signals that leads to an interruption of guest code execution.

• kernel-mode: The kernel causes the hardware to execute guest code

natively.

If the processor exits the guest due to pending memory or I/O operations,

the kernel performs the necessary tasks and resumes the flow of execution.

If external events such as signals or I/O operations initiated by the guest

24

exists, it exits to the user-mode.

• guest-mode: This is on the hardware level, where the extended

instruction set of a virtualization capable CPU is used to execute the

native code, until an instruction is called that needs assistance by KVM, a

fault or an external interrupt.

While a VM runs, there are plenty of switches between these modes. From

kernel-mode to guest-mode switches and viceversa are very fast, because there is

only native code that is executed on the underlying hardware. When I/O

operations occur and the flow of execution switches to the user-mode, emulation

of the virtual I/O devices comes into play. Thus, a lot of I/O exits and switches to

user-mode are expected. Imagine an emulated hard disk and a guest reading

certain blocks from it. Then QEMU emulates the operations by simulating the

behaviour of the hard disk and the controller it is connected to. To perform the

guests read operation, it reads the corresponding blocks from a large file and

returns the data to the guest. Thus, user-mode emulated I/O tends to be a

bottleneck which slows down the execution of a VM.

 2.4.8 Paravirtual device drivers

With the support for the virtio [10] paravirtual device model, KVM addresses the

performance limitations by using QEMU emulated devices. Virtio is common

framework to write VMM independent drivers promising bare-metal speed for

these, since paravirtual devices attached to a VM are not emulated any more.

25

Instead, a backend for the paravirtual drivers is used to perform I/O operations

either directly or through a user-mode backend. KVM uses QEMU as such a

backend which handles I/O operations directly. Thus, the overhead to mimic the

behaviour of a IDE hard disk is tremendously decreased to simply using kernel

drivers for performing certain operations and responding.

 2.4.9 Linux hypervisor benefits

Developing hypervisors using Linux as the core has real, tangible benefits. Most

obviously, basing a hypervisor on Linux benefits from the steady progression of

Linux and the large amount of work that goes into it. From the typical

optimizations and bug fixes, scheduling, and memory-management innovations

to support for different processor architectures, Linux is a platform that continues

to advance.

KVM proved not long ago that through the addition of a kernel module, one

could transform the Linux kernel into a hypervisor. KVM operates in the context

of Linux as the host but supports a large number of guest operating systems,

given underlying hardware virtualization support, such as Linux itself, MS

Windows (almost all versions), FreeBSD, Apple Mac OS X.

Another intriguing benefit of using Linux as the platform is that you can take

advantage of that platform as an operating system in addition to a hypervisor.

Therefore, in addition to running multiple guest operating systems on a Linux

hypervisor, you can run your other traditional applications at that level. So

instead of worrying about a new platform with new application programming

26

interfaces (APIs), you have your standard Linux platform for application

development. The standard communication protocols and other useful

applications are available alongside the guests.

27

 3 Cloud Computing

Cloud computing is actually nothing more than the provisioning of computing

resources (computers and storage) as a service. Beside that comes the flexibility

to dynamically scale the service to further computers and storage in an easy and

clear approach [11]. All this is similar to the ideas behind utility computing, in

which computing resources were viewed as a metered service, as is the case for

more traditional utilities (such as electricity or water). What's different is not the

goal behind these ideas but the existing technologies that have come together to

make them a reality.

One of the most important ideas behind cloud computing is scalability, and the

key technology that makes that possible is virtualization. Virtualization allows

better use of a server by aggregating multiple operating systems and applications

on a single shared computer. Virtualization also permits online migration so that

if a server becomes overloaded, an instance of an operating system (and its

applications) can be migrated to a new, less cluttered server.

From an external view, cloud computing is simply the migration of computing

and storage outside an enterprise and into the cloud. The user defines the

resource requirements (such as computing and wide area network, or WAN,

bandwidth needs), and the cloud provider virtually assembles these components

within its infrastructure.

But why would you willingly relinquish control over your resources and allow

them to virtually exist in the cloud? There are many reasons, but two that I

28

believe are most important are cost and scalability. The goal of cloud computing

is to make these resources less expensive than what you can provide for and

manage yourself. Along with this reduction in cost comes greater flexibility and

scaling. A cloud computing provider can easily scale your virtual environment

for greater bandwidth or computing resources with the provider's virtual

infrastructure.

The green advantage to cloud computing is the ability to virtualize and share

resources among different applications for better server utilization. Figure 7

shows an example. Here, three independent platforms existed for different

applications, each running on its own server. In the cloud, servers can be shared

(virtualized) for operating systems and applications to better use the servers,

resulting in fewer servers. Fewer servers means less required space (minimizing

the data center footprint) and less power for cooling (minimizing the carbon

footprint).

Figure 7. Virtualization and resource use

29

 3.1 Anatomy of cloud computing

As you peer inside the cloud, you find that it's actually not just a single service

but a collection of services, as shown in Figure 8. These layers define the level of

service provided.

Figure 8. The layers of cloud computing

Let's start at the lowest level of service provided, which is the infrastructure

(Infrastructure-as-a-Service, or IaaS). IaaS is the leasing of an infrastructure

(computing resources and storage) as a service. This means not only virtualized

computers with guaranteed processing power but reserved bandwidth for storage

and Internet access. In essence, it's the capability of leasing a computer or data

center with specific quality-of-service constraints that has the ability to execute

an arbitrary operating system and software.

Besides reducing the management cost associated with cloud computing

30

resources, there are other advantages. For example, when you separate yourself

from your resources by the Internet, it doesn't really matter where those resources

reside. They could be, for example, in a climate that offers ambient (natural)

cooling and therefore minimizes energy usage.

Moving up the stack, the next level of service is the platform (Platform-as-a-

Service, or PaaS). PaaS is similar to IaaS but includes operating systems and

required services that focus on a particular application. For example, a PaaS in

addition to virtualized servers and storage provides a particular operating system

and application set along with access to necessary services such as a MySQL

database or other, specialized local resources. In other words, PaaS is IaaS with a

custom software stack for the given application.

Finally, at the top of Figure 8 is the simplest service that can be provided: the

application. This layer is called Software-as-a-Service (SaaS), and it is the model

of deploying software from a centralized system to run on a local computer (or

remotely from the cloud). As a metered service, SaaS allows you to lease an

application and pay only for the time used.

That's only an overview of cloud computing. This view ignores some of the other

aspects of the cloud, such as data-Storage-as-a-Service (dSaaS), which provides

storage as a metered service in which the consumer is billed based on used

capacity (the amount of storage used) and utilization (bandwidth requirements

for the storage). Cloud services have also emerged, which provide internal

mechanisms for interoperability as well as external application program

interfaces (APIs), such as Web services.

31

 3.2 The cloud computing landscape

Over recent years, there's been an explosion of investment into cloud computing

and related infrastructure. This massive investment indicates that there is demand

for virtualization of resources inside the cloud. There is a plenty of new services,

some of which are shown in Figure 9.

Figure 9. Cloud computing layers with offerings

This is by no means an exhaustive list of offerings, as it changes quite frequently.

However, it does provide an overview of some of the offerings and how they are

differentiated.

 3.2.1 Software-as-a-Service

SaaS is the ability to access software over the Internet as a service. An early

approach to SaaS was the Application Service Provider (ASP). ASPs provide

32

subscriptions to software that is hosted or delivered over the Internet. The ASP

delivers the software and charges fees based on its use. In this way, you don't

purchase the software but simply lease it on an as-needed basis.

A growing number of software companies offer their products using the

traditional model, where customers host the application suite within their

enterprise, or as SaaS, where customers host the application suite and make it

available over the Internet. Microsoft itself provides its office automation suite,

Office 365, both locally installed on your pc or remotely available as executed in

its datacenters, and usable in the online version through your web browser.

In fact the use of software over the Internet that executes remotely can be in the

form of services used by a local application (defined as Web services) or a remote

application observed through a Web browser. One example of a remote

application service is Google Apps, which provides several enterprise

applications through a standard Web browser. Remotely executing applications

commonly rely on an application server to expose needed services. An

application server is a software framework that exposes APIs for software

services (such as transaction management or database access). Examples include

Red Hat JBoss Application Server, Apache Geronimo, and IBM® WebSphere®

Application Server.

 3.2.2 Platform-as-a-Service

PaaS can be described as an entire virtualized platform that includes one or more

33

servers (virtualized over the set of physical servers), operating systems, and

specific applications (such as Apache and MySQL for Web-based applications).

In some cases, these platforms can be predefined and selected; in others, you can

provide a VM image that contains all the necessary user-specific applications.

One interesting example of a PaaS is Google App Engine. App Engine is a

service that allows you to deploy your Web applications on Google's very

scalable architecture. App Engine provides you with a sandbox for your Python,

Java, Php, Go, Ruby, C#, Node.js applications that can be referenced over the

Internet. App Engine provides APIs for persistently storing and managing data

(using the Google Query Language, or GQL) in addition to support for

authenticating users, manipulating images, and sending e-mail. The sandbox in

which the Web application runs restricts access to the underlying operating

system. Although App Engine limits the functionality available to your

application, it supports the construction of useful Web services.

Another example of a PaaS is MongoDB, which is both a cloud platform and a

downloadable open-source document database. Among the many services offered

there is also an hosted platform, called MongoDB Cloud Manager, for managing

your database on the infrastructure of your choice.

 3.2.3 Infrastructure-as-a-Service

IaaS is the delivery of computer infrastructure as a service. This layer differs

from PaaS in that the virtual hardware is provided without a software stack.

Instead, the consumer provides a VM image that is invoked on one or more

34

virtualized servers. IaaS is the rawest form of computing as a service, beside of

access to the physical infrastructure. The most well-known commercial IaaS

provider is Amazon Elastic Compute Cloud (EC2). In EC2, you can specify a

particular VM (operating system and application set), and then deploy your

applications on it or provide your own VM image to execute on the servers.

You're then billed simply for compute time, storage, and network bandwidth.

 3.3 Linux and open source in the cloud

Linux and open source technologies play a huge role into the world of cloud

computing.

Owing to the new dynamic nature of virtualization and the new capabilities it

provides, new management schemes are needed [12]. This management is best

done in layers, considering local management at the server, as well as higher-

level infrastructure management, providing the overall orchestration of the

virtual environment.

Placing multiple virtualization nodes on a physical network with shared storage,

orchestrating management over the entire infrastructure, then providing front-end

load balancing of incoming connections (whether in a private or a public setting)

with caching and filtering, you will realize a virtual infrastructure called a

“cloud”.

In such an infrastructure (Fig.10) dormant servers can be powered down until

needed for additional compute capacity, providing better power efficiency, with

VMs balanced (even dynamically) across the nodes depending upon their

35

collective loads.

In the next paragraphs I will show where open source software is being applied

to build out a dynamic cloud infrastructure.

Figure 10. Cloud Computing Infrastructure

36

 3.3.1 Core virtual computing open source technologies

The Linux landscape is seeing a wave of development focused on virtualized

infrastructures for virtualization, management, and larger-scale integration of

cloud software packages. Let's start with a view of open source at the individual

node level, then step up to the infrastructure to see what's happening there.

 3.3.1.1 Hypervisors

The base of the cloud at the node level is the hypervisor. Although virtualization

is not a requirement, it provides undisputed capabilities for scalable and power-

efficient architectures. A good number of open source virtualization solutions

exists: among these we have seen the Linux Kernel Virtual Machine (KVM), but

I would mention also LXC, an operating-system-level virtualization method for

running multiple isolated Linux systems (containers) on a control host using a

single Linux kernel. The Xen hypervisor is also widely used within public and

private IaaS solutions due to its performance advantages.

Outside of converting Linux to a hypervisor, there are other solutions that take a

guest VM-focused approach. User-Mode Linux (UML) is another approach that

modifies a guest Linux kernel to run on top of another Linux operating system,

without hypervisor extensions. Because many users want to run an unmodified

kernel, full virtualization solutions (such as KVM) are preferred.

37

 3.3.1.2 Device emulation

The hypervisor provides the means to share the CPU with multiple operating

systems (CPU virtualization), but to provide full virtualization, the entire

environment must be virtualized for the VMs. Machine or platform emulation

can be performed in a number of ways, but a popular open source package that

supports a number of hypervisors is called QEMU. QEMU is a complete

emulator and hypervisor. But KVM makes use of QEMU for device emulation as

a separate process in the user space. One interesting feature of QEMU is that

because it provides disk emulation (through the QCOW format), QEMU provides

other advanced features such as snapshots and live VM migration.

KVM, since kernel 2.6.25, uses virtio as a means of optimizing I/O virtualization

performance. It does this by introducing paravirtualized drivers into the

hypervisor with hooks from the guest to bring performance to near-native levels.

This works only when the operating system can be modified for this purpose, but

finds use in Linux guest on Linux hypervisor scenarios.

Today, virtio and QEMU work together so emulated device transactions can be

optimized between the Linux guest and QEMU emulator in the user space.

 3.3.1.3 Virtual networking

As VMs consolidate onto physical servers, the networking needs of the platform

intensify. But rather than force all of the VM's networking to the physical layer of

the platform, local communication could instead be virtualized itself. To optimize

38

network communication among Vms, there is the introduction of the virtual

switch. The vSwitch behaves like a physical switch, but is virtualized into the

platform. In figure 11, virtualized interfaces (VIFs) associated with the VMs

communicate through the virtual switch to the physical interfaces (PIFs).

Figure 11 High-level view of Open vSwitch with virtual and physical interfaces

Open source is addressing this problem as well, with one very interesting

solution called the Open vSwitch. In addition to providing a virtual switch for

virtual environments, the vSwitch can also integrate across physical platforms

and provide enterprise-level features like virtual local area networks (VLANs),

priority-based Quality of Service (QoS), trunking, and support for hardware

acceleration (such as single-root I/O virtualization [IOV] network adapters). The

Open vSwitch is currently available for Linux kernels and supports the range of

Linux-based virtualization solutions (Xen, KVM, VirtualBox) and management

standards like Remote Switched Port Analyzer (RSPAN), NetFlow, etc.

39

 3.3.1.4 VM tools and technologies

As VMs are an aggregation of operating system, root file system, and

configuration, the space is ripe for tool development. But to realize the full

potential of VMs and tools, there must be a portable way to assemble them. The

current approach, called the Open Virtualization Format (OVF) is a VM

construction that is flexible, efficient, and portable. OVF wraps a virtual disk

image in an XML wrapper that defines the configuration of the VM, including

networking configuration, processor and memory requirements, and a variety of

extensible metadata to further define the image and its platform needs. The key

capability provided by OVF is the portability to distribute VMs in a hypervisor-

agnostic manner.

A number of utilities exist to manage VM images (VMIs) as well as convert them

to and from other formats. The ovftool from VMware is a useful tool that you can

use for VMI conversion, for example to convert from the VMware Virtual Disk

(VMDK) format into OVF. This tool and others are useful once you have a VMI,

but what if you have a physical server you'd like to convert into a VMI? You can

employ a useful tool called Clonezilla for this purpose. Although it was originally

developed as a disk-cloning tool for disaster recovery, you can use it to convert a

physical server instance into a VM for easy deployment into a virtualized

infrastructure. Numerous other tools exist (such as utilities built upon libvirt) or

are in development for conversion and management as the OVF format gains

adoption.

40

 3.3.1.5 Local management

Red Hat introduced the libvirt library as an API for managing platform

virtualization (hypervisors and VMs). What makes libvirt interesting is that it

supports a number of hypervisor solutions (KVM and Xen for example) and

provides API bindings for a number of languages (such as C, Python, and Ruby).

It provides the "last mile" of management, interfacing directly with the platform

hypervisor and extending APIs out to larger infrastructure-management solutions.

With libvirt, it's simple to start and stop VMs, and it provides APIs for more

advanced operations, such as migration of Vms between platforms. Using libvirt,

it's also possible to use its shell (built on top of libvirt), called virsh.

 3.3.2 Infrastructure open source technologies

Other open source applications support session management and infrastructure

management.

 3.3.2.1 Session management

Building a scalable and balanced web architecture depends upon the ability to

balance web traffic across the servers that implement the back-end functionality.

A number of load-balancing solutions exist; one of the most powerful was open

sourced by Yahoo and donated to Apache Foundation, and it is known by the

name of Traffic Server.

Traffic Server represents an interesting project, because it encapsulates a large

41

number of capabilities in one package for cloud infrastructures, including session

management, authentication, filtering, load balancing, and routing. Yahoo!

initially acquired this product from Inktomi, but the code is now publicly

available to the community.

 3.3.2.2 Infrastructure management

Larger-scale infrastructure management (managing many hypervisors and even

more VMs) can be accomplished in a number of ways. Two of the more common

solutions are each built from the same platform (libvirt).

The oVirt package is an open VM management tool that scales from a small

number of VMs to thousands of VMs running on hundreds of hosts. The oVirt

package, developed by Red Hat, is a web-based management console that, in

addition to traditional management, supports the automation of clustering and

load balancing. The oVirt tool is written in the Python language.

VirtManager, also based on libvirt and developed by Red Hat, is an application

with a GTK+ UI (instead of being web-based like oVirt). VirtManager presents a

much more graphically rich display (for live performance and resource

utilization) and includes a VNC client viewer for a full graphical console to

remote Vms.

Puppet is another open source package designed for data center infrastructure:

although not designed solely for virtualized infrastructures, it simplifies the

management of large infrastructures by abstracting the details of the peer

operating system. It does this through the use of the Puppet language. Puppet is

42

ideal for automating administrative tasks over large numbers of servers and is

widely used today.

 3.3.2.3 Integrated IaaS solutions

The following open source packages take a more holistic approach by integrating

all of the necessary functionality into a single package (including virtualization,

management, interfaces, and security). When added to a network of servers and

storage, these packages produce flexible cloud computing and storage

infrastructures (IaaS). For details about these platforms, see Resources.

Eucalyptus

One of the most popular open source packages for building cloud computing

infrastructures is Eucalyptus (for Elastic Utility Computing Architecture for

Linking Your Programs to Useful Systems). What makes it unique is that its

interface is compatible with Amazon Elastic Compute Cloud (Amazon EC2

Amazon's cloud computing interface). Additionally, Eucalyptus includes Walrus,

which is a cloud storage application compatible with Amazon Simple Storage

Service (Amazon S3 Amazon's cloud storage interface).

Eucalyptus supports KVM/Linux and Xen for hypervisors and includes the

Rocks cluster distribution for cluster management.

OpenNebula

OpenNebula is another interesting open source application (under the Apache

license) developed at the Universidad Complutense de Madrid. In addition to

supporting private cloud construction, OpenNebula supports the idea of hybrid

43

clouds. A hybrid cloud permits combining a private cloud infrastructure with a

public cloud infrastructure (such as Amazon) to enable even higher degrees of

scaling.

OpenNebula supports Xen, KVM/Linux, and VMware and relies on elements

like libvirt for management and introspection.

Nimbus

Nimbus is another IaaS solution focused on scientific computing. With Nimbus,

you can lease remote resources (such as those provided by Amazon EC2) and

manage them locally (configure, deploy VMs, monitor, etc.). Nimbus morphed

from the Workspace Service project (part of Globus.org). Being dependent on

Amazon EC2, Nimbus supports Xen and KVM/Linux.

Xen Cloud Platform

Citrix has integrated Xen into an IaaS platform, using Xen as the hypervisor

while incorporating other open source capabilities such as the Open vSwitch. An

interesting advantage to the Xen solution is the focus on standards-based

management (including OVF, Distributed Management Task Force [DTMF], the

Common Information Model [CIM], and Virtualization Management Initiative

[VMAN]) from the project Kensho. The Xen management stack supports SLA

guarantees, along with detailed metrics for charge-back.

OpenQRM

OpenQRM is categorized as a data center management platform. OpenQRM

provides a single console to manage an entire virtualized data center that is

architecturally pluggable to permit integration of third-party tools. OpenQRM

44

integrates support for high availability (through redundancy) and supports a

variety of hypervisors, including KVM/Linux, Xen and Vmware.

OpenStack

Today, the leading IaaS solution is called OpenStack [13]. OpenStack was

released in July 2010, and has quickly become the standard open-source IaaS

solution. OpenStack is a combination of two cloud initiatives from RackSpace

Hosting (Cloud Files) and NASA's Nebula platform. OpenStack is being

developed in the Python language, and is under active development under the

Apache license.

Each OpenStack deployment embraces a wide variety of technologies, spanning

Linux distributions, database systems, messaging queues, OpenStack

components themselves, access control policies, logging services, security

monitoring tools, and much more.

I briefly introduce the kinds of clouds (private, public, and hybrid) before

presenting an overview of the OpenStack components, referring briefly also to

the most common security issues related to the use of such components.

 3.3.2.4 Cloud types

OpenStack is a key enabler in the adoption of cloud technology and has several

common deployment use cases. These are commonly known as Public, Private,

and Hybrid models. The following sections use the National Institute of

Standards and Technology (NIST) definition of cloud to introduce these different

types of cloud as they apply to OpenStack.

45

Public cloud

According to NIST, a public cloud is one in which the infrastructure is open to

the general public for consumption. OpenStack public clouds are typically run by

a service provider and can be consumed by individuals, corporations, or any

paying customer. A public-cloud provider might expose a full set of features such

as software-defined networking or block storage, in addition to multiple instance

types.

By their nature, public clouds are exposed to a higher degree of risk. As a

consumer of a public cloud, you should validate that your selected provider has

the necessary certifications, attestations, and other regulatory considerations. As

a public cloud provider, depending on your target customers, you might be

subject to one or more regulations. Additionally, even if not required to meet

regulatory requirements, a provider should ensure tenant isolation as well as

protecting management infrastructure from external attacks.

Private cloud

At the opposite end of the spectrum is the private cloud. As NIST defines it, a

private cloud is provisioned for exclusive use by a single organization

comprising multiple consumers, such as business units. The cloud may be

owned, managed, and operated by the organization, a third-party, or some

combination of them, and it may exist on or off premises. Private-cloud use cases

are diverse and, as such, their individual security concerns vary.

Community cloud

NIST defines a community cloud as one whose infrastructure is provisioned for

46

the exclusive use by a specific community of consumers from organizations that

have shared concerns (for example, mission, security requirements, policy, or

compliance considerations). The cloud might be owned, managed, and operated

by one or more of organizations in the community, a third-party, or some

combination of them, and it may exist on or off premises. This is, on my own

opinion, the type of cloud that best fits the characteristics of our lab installation,

at least for the first stage of the project..

Hybrid cloud

A hybrid cloud is defined by NIST as a composition of two or more distinct

cloud infrastructures, such as private, community, or public, that remain unique

entities, but are bound together by standardized or proprietary technology that

enables data and application portability, such as cloud bursting for load balancing

between clouds. For example, an online retailer might present their advertising

and catalogue on a public cloud that allows for elastic provisioning. This would

enable them to handle seasonal loads in a flexible, cost-effective fashion. Once a

customer begins to process their order, they are transferred to a more secure

private cloud that is PCI DSS compliant (Payment Card Industry Data Security

Standard). Your security measures depend where your deployment falls upon the

private public continuum.

 3.3.3 OpenStack service overview

OpenStack embraces a modular architecture to provide a set of core services that

47

facilitates scalability and elasticity as core design tenets. In the following

paragraphs I briefly review OpenStack components, their use cases and security

considerations.

Figure 12. Openstack main components

 3.3.3.1 Compute

The OpenStack Compute Service (nova) provides services to support the

management of virtual machine instances at scale, instances that host multi-tiered

applications, dev or test environments, “Big Data” crunching Hadoop clusters, or

high-performance computing.

The Compute Service facilitates this management through an abstraction layer

that interfaces with supported hypervisors, particularly KVM, chosen for all the

nodes of our lab installation.

Compute security is critical for an OpenStack deployment. Hardening techniques

should include support for strong instance isolation, secure communication

48

between Compute sub-components, and resiliency of public-facing API

endpoints.

 3.3.3.2 Object Storage

The OpenStack Object Storage Service (swift) provides support for storing and

retrieving arbitrary data in the cloud. The Object Storage service provides both a

native API and an Amazon Web Services S3-compatible API. The service

provides a high degree of resiliency through data replication and can handle

petabytes of data. It is important to understand that object storage differs from

traditional file system storage. Object storage is best used for static data such as

media files (MP3s, images, or videos), virtual machine images, and backup files.

Object security should focus on access control and encryption of data in transit

and at rest. Other concerns might relate to system abuse, illegal or malicious

content storage, and cross-authentication attack vectors.

 3.3.3.3 Block Storage

The OpenStack Block Storage Service (cinder) provides persistent block storage

for compute instances. The Block Storage service is responsible for managing the

life-cycle of block devices, from the creation and attachment of volumes to

instances, to their release. Security considerations for block storage are similar to

that of object storage.

49

 3.3.3.4 Shared File Systems

The Shared File Systems Service (manila) provides a set of services for managing

shared file systems in a multi-tenant cloud environment, similar to how

OpenStack provides for block-based storage management through the OpenStack

Block Storage service project. With the Shared File Systems service, you can

create a remote file system, mount the file system on your instances, and then

read and write data from your instances to and from your file system.

 3.3.3.5 Networking

The OpenStack Networking Service (neutron) provides various networking

services to cloud users (tenants) such as IP address management, DNS, DHCP,

load balancing, and security groups (network access rules, like firewall policies).

This service provides a framework for software defined networking (SDN) that

allows for pluggable integration with various networking solutions.

OpenStack Networking allows cloud tenants to manage their guest network

configurations. Security concerns with the networking service include network

traffic isolation, availability, integrity, and confidentiality.

 3.3.3.6 Dashboard

The OpenStack Dashboard (horizon) provides a web-based interface for both

cloud administrators and cloud tenants. Using this interface, administrators and

50

tenants can provision, manage, and monitor cloud resources. The dashboard is

commonly deployed in a public-facing manner with all the usual security

concerns of public web portals.

 3.3.3.7 Identity service

The OpenStack Identity Service (keystone) is a shared service that provides

authentication and authorization services throughout the entire cloud

infrastructure. The Identity service has pluggable support for multiple forms of

authentication. Security concerns with the Identity service include trust in

authentication, the management of authorization tokens, and secure

communication.

 3.3.3.8 Image service

The OpenStack Image service (glance) provides disk-image management

services, including image discovery, registration, and delivery services to the

Compute service, as needed. Trusted processes for managing the life cycle of

disk images are required, as are all the previously mentioned issues with respect

to data security.

 3.3.3.9 Messaging and databases

Messaging is used for internal communication between several OpenStack

51

services. By default, OpenStack uses message queues based on the standard

AMQP (Advanced Message Queuing Protocol). Like most OpenStack services,

AMQP supports pluggable components. Today the implementation back end

could be RabbitMQ, Qpid, or ZeroMQ. Because most management commands

flow through the message queuing system, message-queue security is a primary

security concern for any OpenStack deployment.

Several components use databases as backend, in particular MariaDB, though it

is not explicitly called out. Securing database access is yet another security

concern.

52

 4 Performance monitoring

Virtual machines are becoming commonplace as a stable and flexible platform to

run many workloads [14]. As developers continue to move more workloads into

virtual environments, they need ways to analyze the performance characteristics

of those workloads. Some standard profiling tools like Vtune and the Linux

Performance Counter Subsystem rely on CPUs’ hardware performance counters,

which were exposed to the guests by most hypervisors only recently: in the case

of KVM the support for virtual counters has only been officially made available starting

from 2012.

 4.1 Hardware-Based Monitoring

Performance monitoring means collecting information related to how an

application or system performs. This information can be obtained either through

software-based means or from the CPU or chipset.

Many modern processors contain a performance monitoring unit (PMU).

Intel[15] and AMD[16] provide similar interfaces to their performance counting

hardware. Each CPU has its own set of performance counters and performance

event select registers. The event select register is used to specify which

microarchitectural event is to be counted, and contains bits to enable, filter the

count results, and raise interrupts if the counter overflows from negative to

positive.

The Performance Monitoring Unit of processors supporting Intel® 64 and IA-32

53

architectures, generally consists of collections of MSRs (Model Specific

Registers). The collection of MSRs include counter registers, event programming

MSRs, global event control MSRs. PMUs of older processors are model-specific;

PMU interfaces in more recent processors are evolving towards higher degrees of

architectural stability.

MSR registers are accessed via the RDMSR and WRMSR instruction. Certain

counter registers can be accessed via the RDPMC instruction at any privilege

level while RDMSR and WRMSR are available only to software running at ring

0.

Events common across many architectures include cycle counts (relative to core

cycles and to constant-rate cycles), TLB accesses and misses, last-level cache

accesses and misses, and instruction and branch retired counts. In addition to

these common events, each CPU generation has its own assortment of

architecture-specific events including store-to-load forwarding failure counts and

functional unit stall events. AMD and Intel each have mechanisms to enable and

disable individual counters during the state transition between the hypervisor’s

own code and running the guest.

A typical usage of the performance counters could include configuring Event

Select 0 to count Last-Level Cache misses in all privilege levels with the

overflow interrupt disabled and configuring Event Select 1 to count Last-Level

Cache accesses with identical privilege and interrupt settings. A profiler then

samples the Event Counts 0 and 1 and calculates per-sample period differences to

track the ratio of cache misses to accesses. In addition, the interrupt facility of the

hardware counters can be enabled to cause interrupts after a set number of

54

events.

For example, setting the Event Select’s interrupt-enable bit and setting the

corresponding counter to -10,000 would cause the hardware to raise an interrupt

after the 10,000th cache miss.

Another special counting mode used by Intel is PEBS (Precise Event Based

Sampling), in which counters can be configured to overflow, interrupt the

processor, and capture machine state at that point.

Uncore or Northbridge counters are shared among multiple physical CPUs and

thus are less amenable to time-multiplexing.

Compared to software profilers, hardware counters provide low-overhead access

to a wealth of detailed performance information related to CPU's functional units,

caches and main memory etc. Another benefit of using them is that no source

code modifications are needed in general.

Many resource and performance monitoring tools are available for non-

virtualized systems. The type of tool to be used depends on the granularity of

information to be extracted and frequency of profiling.

 4.2 Perf: a profiling tool for linux based systems

For the purpose of my research, I have chosen as principal measuring tool perf.

Perf subsystem [17] has been evolved in mainline kernel to unify performance

measurement across the system for processor PMU, software and trace point

55

events. This uniform framework enables user to understand various system

performance bottlenecks in a holistic manner. Also perf has been improved to

accommodate performance measurement capabilities in a virtualized

environment.

As we can see from Figure 13, 14 and 15, perf_events, the kernel counterpart of

perf user mode program, instruments "events", which are a unified interface for

different kernel instrumentation frameworks.

Figure 13. Perf_event stack overview

56

Figure 14. Perf_event software modules detailed

Figure 15. Linux perf_event event sources

57

The types of events are:

• Hardware Events: CPU performance monitoring counters.

• Software Events: These are low level events based on kernel counters.

For example, CPU migrations, minor faults, major faults, etc.

• Kernel Tracepoint Events: This are static kernel-level instrumentation

points that are hardcoded in interesting and logical places in the kernel.

• User Statically-Defined Tracing (USDT): These are static tracepoints for

user-level programs and applications.

• Dynamic Tracing: Software can be dynamically instrumented, creating

events in any location. For kernel software, this uses the kprobes

framework. For user-level software, uprobes.

• Timed Profiling: Snapshots can be collected at an arbitrary frequency,

using perf record -FHz. This is commonly used for CPU usage

profiling, and works by creating custom timed interrupt events.

Details about the events can be collected, including timestamps, the code path

that led to it, and other specific details.

Currently available events can be listed using the list subcommand, as in the

following example:

perf list

List of pre-defined events (to be used in -e):
 cpu-cycles OR cycles [Hardware event]
 instructions [Hardware event]
 cache-references [Hardware event]
 cache-misses [Hardware event]
 branch-instructions OR branches [Hardware event]

58

 branch-misses [Hardware event]
 bus-cycles [Hardware event]
 stalled-cycles-frontend OR idle-cycles-frontend [Hardware event]
 stalled-cycles-backend OR idle-cycles-backend [Hardware event]
 ref-cycles [Hardware event]
 cpu-clock [Software event]
 task-clock [Software event]
 page-faults OR faults [Software event]
 context-switches OR cs [Software event]
 cpu-migrations OR migrations [Software event]
 minor-faults [Software event]
 major-faults [Software event]
 alignment-faults [Software event]
 emulation-faults [Software event]
 L1-dcache-loads [Hardware cache
event]
 L1-dcache-load-misses [Hardware cache
event]
 L1-dcache-stores [Hardware cache
event]
[...]
 rNNN [Raw hardware
event descriptor]
 cpu/t1=v1[,t2=v2,t3 ...]/modifier [Raw hardware
event descriptor]
 (see 'man perf-list' on how to encode it)
 mem:<addr>[:access] [Hardware
breakpoint]
 probe:tcp_sendmsg [Tracepoint
event]
[...]
 sched:sched_process_exec [Tracepoint
event]
 sched:sched_process_fork [Tracepoint
event]
 sched:sched_process_wait [Tracepoint
event]
 sched:sched_wait_task [Tracepoint
event]
 sched:sched_process_exit [Tracepoint
event]
[...]

59

 4.2.1 Hardware Events

For my experiments, I focused attention on hardware events coming from

performance monitoring counters (PMCs).

Perf_events began life as a tool for instrumenting the processor's performance

monitoring unit (PMU) hardware counters, also called performance monitoring

counters, or performance instrumentation counters (PICs). These instrument low-

level processor activity, for example, CPU cycles, instructions retired, memory

stall cycles, level 2 cache misses, etc. Part of them will be listed as Hardware

Events, others as Hardware Cache Events.

PMCs are documented in the Intel 64 and IA-32 Architectures Software

Developer's Manual Volume 3B: System Programming Guide, Part 2 and the

BIOS and Kernel Developer's Guide (BKDG) For AMD Family Processors.

There are thousands of different PMCs available.

A typical processor will implement PMCs in the following way: only a few or

several can be recorded at the same time, from the many thousands that are

available. This is because they are a fixed hardware resource on the processor (a

limited number of registers), and are programmed to begin counting the selected

events.

 4.2.1.1 CPU Statistics

The perf stat command instruments and summarizes key CPU counters

(PMCs).

60

perf stat gzip file1

 Performance counter stats for 'gzip file1':

 1920.159821 task-clock # 0.991 CPUs utilized
 13 context-switches # 0.007 K/sec
 0 CPU-migrations # 0.000 K/sec
 258 page-faults # 0.134 K/sec
 5,649,595,479 cycles # 2.942 GHz
[83.43%]
 1,808,339,931 stalled-cycles-frontend # 32.01% frontend
cycles idle [83.54%]
 1,171,884,577 stalled-cycles-backend # 20.74% backend
cycles idle [66.77%]
 8,625,207,199 instructions # 1.53 insns per
cycle
 # 0.21 stalled cycles
per insn [83.51%]
 1,488,797,176 branches # 775.351 M/sec
[82.58%]
 53,395,139 branch-misses # 3.59% of all
branches [83.78%]

 1.936842598 seconds time elapsed

This includes instructions per cycle (IPC), labeled "insns per cycle", or in earlier

versions, "IPC". This is a commonly examined metric, either IPC or its invert,

CPI. Higher IPC values mean higher instruction throughput, and lower values

indicate more stall cycles. I'd generally interpret high IPC values (eg, over 1.0) as

good, indicating optimal processing of work. However, I'd want to double check

what the instructions are, in case this is due to a spin loop: a high rate of

instructions, but a low rate of actual work completed.

There are some advanced metrics now included in perf stat:

frontend cycles idle, backend cycles idle, and stalled cycles per instruction. The

frontend and backend metrics refer to the CPU pipeline, and are also based on

61

stall counts. The frontend processes CPU instructions, in order. It involves

instruction fetch, along with branch prediction, and decode. The decoded

instructions become micro-operations (uops) which the backend processes, and it

may do so out of order.

The backend can also process multiple uops in parallel; for modern processors,

three or four. Along with pipelining, this is how IPC can become greater than

one, as more than one instruction can be completed ("retired") per CPU cycle.

Stalled cycles per instruction is similar to IPC (inverted), however, only counting

stalled cycles, which will be caused by memory or resource bus access. This

makes it easy to interpret: stalls are latency, so we should reduce stalls to increase

performance.

There is also a "detailed" mode for perf stat:

perf stat -d gzip file1

 Performance counter stats for 'gzip file1':

 1610.719530 task-clock # 0.998 CPUs utilized
 20 context-switches # 0.012 K/sec
 0 CPU-migrations # 0.000 K/sec
 258 page-faults # 0.160 K/sec
 5,491,605,997 cycles # 3.409 GHz
[40.18%]
 1,654,551,151 stalled-cycles-frontend # 30.13% frontend
cycles idle [40.80%]
 1,025,280,350 stalled-cycles-backend # 18.67% backend
cycles idle [40.34%]
 8,644,643,951 instructions # 1.57 insns per
cycle
 # 0.19 stalled cycles
per insn [50.89%]
 1,492,911,665 branches # 926.860 M/sec
[50.69%]
 53,471,580 branch-misses # 3.58% of all
branches [51.21%]
 1,938,889,736 L1-dcache-loads # 1203.741 M/sec

62

[49.68%]
 154,380,395 L1-dcache-load-misses # 7.96% of all L1-
dcache hits [49.66%]
 0 LLC-loads # 0.000 K/sec
[39.27%]
 0 LLC-load-misses # 0.00% of all LL-
cache hits [39.61%]

 1.614165346 seconds time elapsed

This example includes additional counters for Level 1 data cache events, and last

level cache (LLC) events.

I can instrument specific counters, seen in perf list, using the following example,

referred particularly to cache events:

perf stat -e L1-dcache-loads,L1-dcache-load-misses,L1-

dcache-stores gzip file1

 Performance counter stats for 'gzip file1':

 1,947,551,657 L1-dcache-loads

 153,829,652 L1-dcache-misses
 # 7.90% of all L1-dcache hits
 1,171,475,286 L1-dcache-stores

 1.538038091 seconds time elapsed

The percentage printed is a convenient calculation that perf_events has included,

based on the counters I specified. If you include the "cycles" and "instructions"

counters, it will include an IPC calculation in the output.

63

 4.2.2 Performance monitoring in KVM virtualized environments

In virtualized systems, the task of profiling and resource monitoring is not

straight-forward.

Many datacenters perform CPU overcommittment using hypervisors, running

multiple VMs on a single computer where the total VCPU count exceeds the total

number of PCPUs. The hypervisor must share PCPUs among all the VCPUs,

giving each VCPU a fraction of the total runtime of the system. The sharing of

hardware resources requires the hypervisor to apply heuristics to enable guest

operating systems to accurately keep track of absolute time, often called wall-

clock time. The guest operating system wall-clock should track absolute time

over the long term. To achieve this, while the VM is descheduled, some

hypervisors, like Vmware ESXi, make available a virtual timer device that is

used by the guest operating system for timekeeping. This device is allowed to fall

behind real time and later catch up faster than real time when the VM is

rescheduled. This way, over the longer term, these devices track absolute real

time. Profilers, on the other hand, are more concerned with relative time

differences over the short term, and want to count only the time that the VCPU is

scheduled on a PCPU.

This tension over the desired semantics of a timer device requires the hypervisor

to carefully trade off keeping a guest’s notion of wall-clock time correct and

giving a notion of time appropriate for profilers’ use. Both Intel and AMD CPUs

provide an event called core cycles not halted, which tracks the CPU cycle count

independently of wall-clock time. CPU frequency can increase or decrease due to

64

power saving modes, and CPU cycles can stop entirely if the OS has executed the

HLT instruction. The notion of core cycles not halted is thus a convenient

hardware interface that can be extended for profiling in a virtual environment.

The hypervisor can define core cycles not halted to count only core clock cycles

when the VCPU is in context on a PCPU, including time spent in the hypervisor

on that VCPU’s behalf.

Sharing hardware leads to other, less direct effects. Just as multiple processes

may compete for cache and other resources, multiple VCPUs and other unrelated

hypervisor threads that share a physical core can pollute each other’s caches,

branch predictors, TLBs, and other microarchitectural state.

 4.2.2.1 Perf kvm: the host perspective

Guest virtual machine's individual performance and its impact on the host

machine can be measured from various directions with the help of perf tool.

Performance data collected from all these methods help us monitor and detect a

situation of performance degradation [18].

Perf tool has been improved to have capabilities to profile KVM virtualized

environment. A new subcommand kvm has been added to that effect. Perf kvm

understands how qemu process address space encapsulates the entire guest kernel

and guest user space and how to resolve addresses inside that into guest kernel

symbols.

Perf kvm requires access to guest /proc/modules and /proc/kallsyms file sets to

be able to resolve all the captured event instruction addresses into respective

65

guest kernel symbols. Users can either transfer these files from guests to the host

and then provide them explicitly while invoking perf kvm session or they can

mount the guest root file system (typically with sshfs) in the host, so that perf

kvm can extract required files from the designated mount point.

There are two different methods available in perf kvm to profile either the host or

guest virtual machines. One is perf kvm top and the other one being perf kvm

record followed by perf kvm report.

Any perf session is always initiated from the host machine which can

subsequently profile either the host or a guest or both. The profiling methods

mentioned above are sampled counter based which associates event captured

instruction addresses with respective symbols and sorts the symbols according to

their relative percentage across the workload. During the session, perf captures

the event's sample data from the kernel and stores them in a file named

perf.data.kvm (perf.data.guest or perf.data.host if they are profiled

individually). Though in case of perf top, this file is created and analysed on

the run and the results are refreshed periodically.

The host perf exclusively configures, initiates and terminates the PMU access for

any process requesting PMU events. The direct control over the PMU cannot be

granted to the guest virtual machine as they are not aware of other guests who

might be requesting PMU events at the same point of time. Host is always

required to arbiter access to the PMU. Because of these reasons, for host linux

kernels before version 3.3 and qemu-kvm before version 1.2.5, perf inside guest

does not support hardware PMU events.

66

A typical perf kvm command is represented by the following:

perf kvm --host --guest --guestkallsyms=guest-kallsyms \

--guestmodules=guest-modules record -a -o perf.data

gathering data both from host and guest obtained files “guest-kallsyms” and

“guest-modules”, recording and then reporting events to “perf.data.kvm” file.

 4.2.2.2 vPMU: the guest perspective

Performance counter virtualization for the hardware-assisted KVM virtual

machine monitor is included in recent versions of the Linux kernel.

Users of a public cloud service are normally not granted the privilege to run a

profiler in the VMM, which is necessary for conducting system-wide profiling

[19]. To achieve guest-wide profiling, the VMM needs to provide PMU

multiplexing, i.e. saving and restoring PMU registers.

The hypervisor context switches all relevant CPU state when each VCPU is

scheduled and descheduled. To virtualize performance counters, the hypervisor

must context switch the active performance counter state, in addition to the

context switching of general purpose registers and control state. This serves to

time-multiplex the CPU and performance counter hardware resources and

guarantee that virtual counters do not advance while that VCPU is out of context.

The context switching of the counter state satisfies previous definition of

unhalted core-cycles.

The virtualization extensions augment x86 with two new operation modes: host

67

mode and guest mode. KVM runs in host mode, and its guests run in guest mode.

Host mode is compatible with conventional x86, while guest mode is very similar

to it but deprivileged in certain ways. Guest mode supports all four privilege

levels and allows direct execution of the guest code. A virtual machine control

structure (VMCS) is introduced to control various behaviors of a virtual machine.

Two transitions are also defined: a transition from host mode to guest mode

called a VM-entry, and a transition from guest mode to host mode called a VM-

exit. Regarding performance profiling, if a performance counter overflows when

the CPU is in guest mode, the currently running guest is forced to exit, i.e., the

CPU switches from guest mode to host mode. The VM-exit information filed in

the VMCS indicates that the current VM-exit is caused by a non-maskable

interrupt (NMI). By checking this field, KVM is able to decide whether a counter

overflow is contributed by a guest. This approach assumes all NMIs are caused

by counter overflows in a profiling session. To be more precise, KVM could also

check the content of all performance counters to make sure that NMIs are really

caused by counter overflows.

A good guest-wide profiling implementation requires no modifications to the

guest and its profiler. The guest profiler reads and writes the physical PMU

registers directly as it does in native profiling. KVM is responsible for

virtualizing the PMU hardware and forwarding NMIs due to performance

counter overflows to the guest. A user can launch the profiler from the guest and

do performance profiling exactly as in a native environment.

When CPU switch is enabled, KVM saves all the relevant MSRs when a VM-

exit happens and restores them when the corresponding VM-resume occurs. By

68

configuring certain fields in the VMCS, this is done automatically in hardware.

When domain switch is enabled, all Linux kernel threads belonging to a guest are

tagged and grouped into one domain. When the Linux kernel switches to a thread

not belonging to the current domain, it saves and restores the relevant registers.

To enable the vPMU in a KVM hardware assisted guest VM, I must pass the

parameter <cpu mode='host-passthrough'> during virtual machine launch. By the

way this was a default option in our lab Openstack installation.

With these assumptions, after the vPMU is enabled, I can display a virtual

machine's performance statistics by simply running the perf command from the

guest virtual machine.

The hardware events available inside the VM are the same as those listed for the

virtualization host, while the hardware cache event types available for the virtual

machine are fewer. In my experiments and next discussion I will use only the

hardware events.

Follows an output of perf list command inside virtual machine, limited to harware

events:

branch-instructions OR branches [Hardware event]

branch-misses [Hardware event]

bus-cycles [Hardware event]

cache-misses [Hardware event]

cache-references [Hardware event]

cpu-cycles OR cycles [Hardware event]

instructions [Hardware event]

ref-cycles [Hardware event]

69

 5 The evolution of the testbed

 5.1 General characteristics

The very early tests in my work were conducted on a simple dual-core computer,

based on i7-3517U, equipped with 8GB ram and a solid state drive with 512 GB

storing capacity. The operating system was initially based on Ubuntu Linux

12.04, kernel 3.2, and to act as an hypervisor the qemu-kvm module was loaded

while the libvirtd daemon was installed and loaded for vm management

purposes. Afterwards, to access the newly supported feature of virtual

performance counters inside virtual machines, I upgraded the operating system to

the next long term support release 14.04, supporting kernel 3.13 and qemu-kvm

2.0. After first measurement sessions, I focused my attention on some

inconsistencies and missing values returned by virtual counters, caused by a bug

in qemu-kvm that was quickly corrected by next module release.

Basing upon a more reliable base system I could extract some important

informations to narrow the search of main performance indicators, useful for the

purpose of the study, focusing on branch misprediction, cache misses, virtual cpu

cycles and number of instructions.

At the same time of the early stages of my research work “InsideOutCC”, that

would have resulted in this doctoral dissertation, I have been party to an

important european project, within the wider Future Internet Project, named

FIWARE.

FIWARE is an open source computing platform, sponsored and financed by the

70

European Union, with the specific mission “to build an open sustainable

ecosystem around public, royalty-free and implementation-driven software

platform standards that will ease the development of new Smart Applications in

multiple sectors”.

I will describe in more detail aims and finality of FIWARE Project in Annex A,

but now I shall focus on the computing infrastructure that was used in my

experiments. In particular FIWARE Genoa Node is an instance of a widely

distributed federated community cloud, based on OpenStack.

AgiLab - DITEN, the laboratory I belonged to and where I conducted my studies,

together with TnT-Lab – DITEN and CNIT-GE Unit designed, installed and

configured the whole Genoa Node, that was hosted on DITEN-UniGE equipment

rooms, expressly dedicated to the dawning data center.

 5.2 Focus on compute nodes

 5.2.1 Hypervisors in OpenStack

Whether OpenStack is deployed within private data centers or as a public cloud

service, the underlying virtualization technology provides enterprise-level

capabilities in the realms of scalability, resource efficiency, and uptime. While

such high-level benefits are generally available across many OpenStack-

71

supported hypervisor technologies, there are significant differences in the

security architecture and features for each hypervisor, particularly when

considering the security threat vectors which are unique to elastic OpenStack

environments. As applications consolidate into single Infrastructure-as-a-Service

(IaaS) platforms, instance isolation at the hypervisor level becomes paramount.

The requirement for secure isolation holds true across commercial, government,

and military communities.

Within the OpenStack framework, you can choose among many

hypervisor platforms and corresponding OpenStack plug-ins to optimize your

cloud environment.

FIWARE choice fell on KVM for two main reasons: product maturity and

certification.

One of the biggest indicators of a hypervisor’s maturity is the size and

vibrancy of the community that surrounds it. As this concerns security, the

quality of the community affects the availability of expertise if you need

additional cloud operators. It is also a sign of how widely deployed the

hypervisor is, in turn leading to the battle readiness of any reference architectures

and best practices.

Further, the quality of community, as it surrounds an open source hypervisor like

KVM, has a direct impact on the timeliness of bug fixes and security updates.

When investigating both commercial and open source hypervisors, you must look

into their release and support cycles as well as the time delta between the

announcement of a bug or security issue and a patch or response.

One additional consideration when selecting a hypervisor is the

availability of various formal certifications and attestations. While they may not

72

be requirements for your specific organization, these certifications and

attestations speak to the maturity, production readiness, and thoroughness of the

testing a particular hypervisor platform has been subjected to.

Common Criteria [20] is an internationally standardized software evaluation

process, used by governments and commercial companies to validate software

technologies perform as advertised. In the government sector, NSTISSP No. 11

mandates that U.S. Government agencies only procure software which has been

Common Criteria certified, a policy which has been in place since July 2002.

In addition to validating a technologies capabilities, the Common Criteria process

evaluates how technologies are developed, verifying

• how is source code management performed?

• how are users granted access to build systems?

• is the technology cryptographically signed before distribution?

The KVM hypervisor has been Common Criteria certified through the U.S.

Government and commercial distributions. These have been validated to separate

the runtime environment of virtual machines from each other, providing

foundational technology to enforce instance isolation. In addition to virtual

machine isolation, KVM has been Common Criteria certified to:

"...provide system-inherent separation mechanisms to the resources of virtual

machines. This separation ensures that large software component used for

virtualizing and simulating devices executing for each virtual machine cannot

interfere with each other. Using the SELinux multi-category mechanism, the

virtualization and simulation software instances are isolated. The virtual machine

management framework configures SELinux multi-category settings

73

transparently to the administrator."

I should also point out that KVM is the only hypervisor included in “group A” of

fully supported Compute Drivers for Nova Openstack Compute Service; other

hypervisors like Hyper-V, Vmware and Xen lack on some functional tests.

Considering the context in which our cloud instance should have been installed,

that is a little data center but with full cooling capacities and uninterrupted power

availability, we chose an high density dual rack solution, preferring sled servers

for compute and controller nodes, while using more traditional 2U servers for

ceph storage nodes, hosting a plenty of hard disk drives.

Sled servers are rack-mounted servers that support multiple independent servers

in a single 2U or 3U enclosure. These deliver higher density as compared to

typical 1U or 2U rack-mounted servers. Our Intel sled servers offer four

independent dual-socket nodes in 2U for a total of eight CPU sockets in 2U,

sharing one cooling system and double power supply unit for each server.

The type of CPUs we choose had to support virtualization by way of Intel VT-x, in

particular Intel Xeon E5-2630V4 and E5-2660V4 where used with hyper-threading

capabilities. Hyper-threading is Intel’s proprietary simultaneous multithreading

implementation used to improve parallelization on their CPUs. Enabling hyper-

threading may improve the performance of multi-threaded applications. Whether you

should enable Hyper-Threading on your CPUs depends upon your use case. For

example, disabling Hyper-Threading can be beneficial in intense computing

environments, but in our tests did not make the difference.

In most cases, hyper-threading CPUs can provide a 1.3x to 2.0x performance benefit

over non-hyper-threaded CPUs depending on types of workload.

74

Dynamic memory available on average per socket was 64GB, while storage totalized

24TB on three ceph storage nodes.

Figure 16. FIWARE Genoa Node infrastructure

 5.2.2 CPU and RAM overcommitting

OpenStack allows you to overcommit CPU and RAM on compute nodes. This

allows you to increase the number of instances running on your cloud at the cost

75

of reducing the performance of the instances. The Compute service uses the

following ratios by default:

 CPU allocation ratio: 16:1

 RAM allocation ratio: 1.5:1

The default CPU allocation ratio of 16:1 means that the scheduler allocates up to

16 virtual cores per physical core. For example, if a physical node has 10 cores,

the scheduler sees 160 available virtual cores. With typical flavor definitions of 4

virtual cores per instance, this ratio would provide 40 instances on a physical

node.

The formula for the number of virtual instances on a compute node is

(OR*PC)/VC, where:

OR represents CPU overcommit ratio (virtual cores per physical core)

PC number of physical cores

VC number of virtual cores per instance

Similarly, the default RAM allocation ratio of 1.5:1 means that the scheduler

allocates instances to a physical node as long as the total amount of RAM

associated with the instances is less than 1.5 times the amount of RAM available

on the physical node.

For example, if a physical node has 128 GB of RAM, the scheduler allocates

instances to that node until the sum of the RAM associated with the instances

reaches 192 GB (such as twenty four instances, in the case where each instance

has 8 GB of RAM).

Obviously regardless of the overcommit ratio, an instance of virtual machine can

not be placed on any physical node with fewer raw (pre-overcommit) resources

76

than the instance flavor requires.

For my research purposes, owing to an intensive computing pressure I would

push inside virtual machines, and a consequently supposed early warning signal,

I fixed overcommit ratio to 2:1 both for CPU and RAM.

 5.2.3 Bulk and privileged workers

I realized a template for “bulk worker” virtual machines, which consists of a

single vCPU without pinning, 3 GB RAM and a little virtual disk sizing 3 GB.

The operating system was based on Linux Ubuntu 14.04 server edition, with the

only ssh server enabled and listening on network, awaiting for commands. I was

particularly careful to disable any underlying background service that could alter

measures (i.e. cron, udev, etc.) and to install the test suites “stress” and “stress-

ng”.

I used this template to instantiate 80 virtual machines, each with its private static

ip address, to reach the 2:1 overcommit ratio of a compute node equipped with

40 cores and 128 GB ram.

From the same template I derived a single virtual machine, named vm-micro,

which is a sort of “privileged worker” and represents my particular point of view

to probe the degree of saturation of host's computing resources. On this

“privileged worker” I installed also the software measuring instrument “perf”,

previously included in perf-tools package and nowadays included in a linux-tools

package specific for each version of the kernel. I used a third type of virtual

machine, named vm-director, also based on the same template, but not executed

77

on the same compute node hosting bulk and privileged workers. Vm-director was

realized with the express purpose of sending the necessary commands to workers

to perform the experiments.

Particularly, to allow the execution of scripts in parallel on more virtual

machines, I used a versatile tool like the program parallel-ssh, that opens

different connections to several hosts via ssh protocol, allowing to pass

commands to the virtual machines, all at the same time.

To avoid the interactive authentication steps, ssh public-key from vm-director's

root user was exchanged with all controlled virtual machines.

parallel-ssh -t 0 -h hosts_25.txt -p 10 /root/test_script.sh

parallel-ssh -t 0 -h hosts_50.txt -p 20 /root/test_script.sh

parallel-ssh -t 0 -h hosts_75.txt -p 30 /root/test_script.sh

parallel-ssh -t 0 -h hosts_100.txt -p 40 /root/test_script.sh

parallel-ssh -t 0 -h hosts_125.txt -p 50 /root/test_script.sh

parallel-ssh -t 0 -h hosts_150.txt -p 60 /root/test_script.sh

parallel-ssh -t 0 -h hosts_175.txt -p 70 /root/test_script.sh

parallel-ssh -t 0 -h hosts_200.txt -p 80 /root/test_script.sh

The bulk workers was divided in 8 groups of 10 virtual machines each, to

graduate computational load for the host in 25% steps, from 0 to 200%.

I noticed that the extra load caused by the boot phase of each virtual machine

could excessively disturb the measures, so I decided to bring all the virtual

machines in a stable booted state, without extra computational load, that would

78

represent the steady basis for all following tests.

I deployed testing scripts on all worker virtual machines and started to step up

efforts on 0, 10, 20, and so on till 80 vms, with a delay between each step of

about 10 minutes, to stabilize the situation between one test and the other.

deploy_script.sh (from vm-director):

#!/bin/bash

 for i in `seq 11 90`;

 do

echo $i

#ssh -f 172.27.27.$i "stress -c 1 -m 2 -t 600s >

/dev/null 2>&1"

scp /root/test_script.sh 172.27.27.$i:/root/

 done

test_script.sh (deployed towards each worker vm):

#!/bin/bash

stress -c 1 -m 1 -i 4 -t 600s > /dev/null 2>&1

At about 8 minutes from the start of each step, on vm-micro was run the perf

tests of hardware PMU indicators visible from inside guest operating system, for

a duration of 60 seconds, saving locally a comma separated file with results for

further processing of data.

(from vm-micro)

79

perf stat -x, -I 1000 -e cycles,instructions,branch-misses,cache-

misses stress -c 1 -m 1 -i 4 -t 60s 2>&1| tee Exp0X_DDMM_hhmm.csv

to obtain for each launch a comma separated file containing performance

counters values, every 1000 ms, for a duration of 60 seconds.

From several measuring sessions, I realized that two particular software

mechanisms introduced by KVM could partially alter results:

Memory Ballooning and Kernel Same-page Merging.

 5.2.3.1 Memory Ballooning

Through memory ballooning [21], a host server can reclaim unused memory

from other less busy virtual machines and reassign it to ones that require it more.

Theoretically, a server with 32GB of memory might be able to support a

combined virtual machine memory capacity allocation of 64GB simply because

all of those virtual machines will not be using the maximum amount of memory

they have been assigned at the same time.

The balloon driver in each guest operating system keeps track of the excess

memory of each VM and when the hypervisor calls for a memory reclamation

through ballooning, the balloon driver in the VM pins down a specific amount of

memory so that the VM cannot consume it, and then the hypervisor reclaims that

pinned memory for reallocation. If there is a scarcity of unused memory then a

memory swap might be initiated in order to fulfill the balloon quota. If this

80

happens too much, there would be a lot of I/O overhead between the various

VMs that are doing memory swapping with the disk and might adversely affect

overall performance of the virtual system.

The obvious benefit is that a host can support more VMs provided that most of

them will not consume their memory allocation most of the time. But in a system

where most of the VMs are busy and consume most of their allocated memory,

then ballooning might cause performance degradation. This just highlights the

importance of memory capacity for any computer system.

 5.2.3.2 Kernel Same-page Merging

Kernel Same-page Merging (KSM) [22], used by the KVM hypervisor, allows

KVM guests to share identical memory pages. These shared pages are usually

common libraries or other identical, high-use data. KSM allows for greater guest

density of identical or similar guest operating systems by avoiding memory

duplication.

The concept of shared memory is common in modern operating systems. For

example, when a program is first started, it shares all of its memory with the

parent program. When either the child or parent program tries to modify this

memory, the kernel allocates a new memory region, copies the original contents

and allows the program to modify this new region. This is known as copy on

write.

KSM is a Linux feature which uses this concept in reverse. KSM enables the

81

kernel to examine two or more already running programs and compare their

memory. If any memory regions or pages are identical, KSM reduces multiple

identical memory pages to a single page. This page is then marked copy on write.

If the contents of the page is modified by a guest virtual machine, a new page is

created for that guest.

This is useful for virtualization with KVM. When a guest virtual machine is

started, it only inherits the memory from the host qemu-kvm process. Once the

guest is running, the contents of the guest operating system image can be shared

when guests are running the same operating system or applications. KSM allows

KVM to request that these identical guest memory regions be shared.

KSM provides enhanced memory speed and utilization. With KSM, common

process data is stored in cache or in main memory. This reduces cache misses for

the KVM guests, which can improve performance for some applications and

operating systems. Secondly, sharing memory reduces the overall memory usage

of guests, which allows for higher densities and greater utilization of resources.

In recent KVM versions, KSM is NUMA aware. This allows it to take NUMA

locality into account while coalescing pages, thus preventing performance drops

related to pages being moved to a remote node. It's highly recommended

avoiding cross-node memory merging when KSM is in use. If KSM is in use,

you should change the /sys/kernel/mm/ksm/merge_across_nodes tunable to

0 to avoid merging pages across NUMA nodes. This can be done with the

command

virsh node-memory-tune --shm-merge-across-nodes 0

82

Kernel memory accounting statistics can eventually contradict each other after

large amounts of cross-node merging. As such, numad can become confused after

the KSM daemon merges large amounts of memory. If your system has a large

amount of free memory, you may achieve higher performance by turning off and

disabling the KSM daemon.

Two separate methods are normally used for controlling KSM:

• The ksm service, that starts and stops the KSM kernel thread.

• The ksmtuned service that controls and tunes the ksm service,

dynamically managing same-page merging. ksmtuned starts the ksm

service and stops the ksm service if memory sharing is not necessary.

When new guests are created or destroyed, ksmtuned must be instructed

with the retune parameter to run.

Both of these services are controlled with the standard service management tools.

The KSM Service

• The ksm service is included in the qemu-kvm package.

• When the ksm service is not started, Kernel same-page merging (KSM)

shares only 2000 pages. This default value provides limited memory-

saving benefits.

• When the ksm service is started, KSM will share up to half of the host

system's main memory. Start the ksm service to enable KSM to share more

memory.

systemctl start ksm
Starting ksm: [OK]

83

The ksm service can be added to the default startup sequence. Make the ksm

service persistent with the systemctl command.

systemctl enable ksm

The KSM Tuning Service

The ksmtuned service fine-tunes the kernel same-page merging (KSM)

configuration by looping and adjusting ksm. In addition, the ksmtuned service

is notified by libvirt when a guest virtual machine is created or destroyed. The

ksmtuned service has no options.

systemctl start ksmtuned
Starting ksmtuned: [OK]

The ksmtuned service can be tuned with the retune parameter, which instructs

ksmtuned to run tuning functions manually.

KSM Variables and Monitoring

Kernel same-page merging (KSM) stores monitoring data in the

/sys/kernel/mm/ksm/ directory. Files in this directory are updated by the kernel

and are an accurate record of KSM usage and statistics.

The variables in the list below are also configurable variables in the

/etc/ksmtuned.conf file, as noted above.

Files in /sys/kernel/mm/ksm/:

full_scans

Full scans run.

84

merge_across_nodes

Whether pages from different NUMA nodes can be merged.

pages_shared

Total pages shared.

pages_sharing

Pages currently shared.

pages_to_scan

Pages not scanned.

pages_unshared

Pages no longer shared.

pages_volatile

Number of volatile pages.

run

Whether the KSM process is running.

sleep_millisecs

Sleep milliseconds.

These variables can be manually tuned using the virsh node-memory-tune

command. For example, the following specifies the number of pages to scan

before the shared memory service goes to sleep:

virsh node-memory-tune --shm-pages-to-scan number

Deactivating KSM

Kernel same-page merging (KSM) has a performance overhead which may be

too large for certain environments or host systems. KSM may also introduce side

channels that could be potentially used to leak information across guests. If this

85

is a concern, KSM can be disabled on per-guest basis.

KSM can be deactivated by stopping the ksmtuned and the ksm services.

However, this action does not persist after restarting. To deactivate KSM, run the

following in a terminal as root:

systemctl stop ksmtuned

Stopping ksmtuned: [OK]

systemctl stop ksm

Stopping ksm: [OK]

Stopping the ksmtuned and the ksm deactivates KSM, but this action does not

persist after restarting. Persistently deactivate KSM with the systemctl

commands:

systemctl disable ksm

systemctl disable ksmtuned

When KSM is disabled, any memory pages that were shared prior to deactivating

KSM are still shared. To delete all of the PageKSM in the system, use the

following command:

echo 2 >/sys/kernel/mm/ksm/run

After this is performed, the khugepaged daemon can rebuild transparent

hugepages on the KVM guest physical memory. Using

echo 0 >/sys/kernel/mm/ksm/run

stops KSM, but does not unshare all the previously created KSM pages (this is the same

as the # systemctl stop ksmtuned command).

86

Fortunately, as we have been able to ascertain, both mechanisms can be disabled

by software, to obtain cleaner results.

Anyway, I report graphs for both conditions, with and without memory

ballooning and kernel share page merging.

 5.3 Collected data rendering

I present a synthesis of the measurements collected during this research, in

particular I have organized 3D graphs to report on each axis respectively:

• time in range 0 to 60 seconds;

• virtual to physical resources ratio, referring to the percentage of

overcommitting previously explained and graduated in 25% steps;

• branch miss to vcpu cycles ratio.

Values are derived from tests conducted on a compute node equipped with 40

cores and 128 GB ram.

87

Figure 17. Host performance seen from vm-micro perspective: the noisy way

88

Figure 18. Host performance seen from vm-micro perspective without ballooning and KSM

89

Figure 19. Cache_misses to cycle ratio seen from vm-micro perspective w/o ballooning and KSM

90

 5.4 Data interpretation

Modern processors use pipelining to exploit parallelism and improve

performance. Conditional branches in the instruction stream degrade

performance by causing pipeline flushes. Branch prediction mechanisms [23] can

overcome this limitation by predicting the outcome of the branch before its

condition is resolved. As a result, instruction fetch is not interrupted as often and

the window of instructions over which ILP (Instruction-level Parallelism) can be

exposed increases. In fact, accurate branch predictors can eliminate over 90% of

these pipeline stalls and are thus critical to realizing the performance potential of

a processor.

Branch prediction accuracy is important because the new generation of

processors have deeper pipelines, which result in larger misprediction penalties.

Most processors use dynamic branch prediction to predict branch directions.

Dynamic predictors record and utilize information from previous runs of a static

branch instruction to predict its outcome in the future. This requires additional

hardware to store the branch history. These predictors dynamically adjust their

prediction to match the changing behavior of a branch instruction as the program

executes.

One aspect of branch prediction that has largely been ignored is the effect of

context switches. In typical systems, several processes are in the active queue at

any given time and they share the branch predictor structure. Each process runs

for its allotted time slice and then yields the processor to allow another waiting

process to execute. Unless steps are taken to change the state of the predictor

91

structure, it will contain stale information from the run of the previous process

when the new process commences execution. Since different processes generally

have completely different branch behaviors, reusing the stale information will

increase the misprediction rate.

Several papers on branch prediction acknowledge the effects of context switching

on branch prediction accuracy and on system performance [24] [25].

In the same way, for a virtualization host a context switch is the switching of the

CPU from one process or thread to another. A guest operating system running in

a virtual machine is executed by the host just as any other processes or threads

running on the host are executed. When the host operating system receives a

hardware interrupt, it generally suspends the progression of the current process

on the CPU and starts servicing the interrupt. Once the interrupt has been

serviced, either the current process or some other process (as decided by the

scheduler of the host operating system) continues with its execution.

The guest operating system is scheduled in the same manner as any other process

on the host. Context switches can occur during program execution for several

reasons such as I/O requests, system calls, page faults, expiration of time slice

etc. The frequency of these context switches depends on factors like the number

of virtual machines active on a system, the types of applications executed, the

operating system used and the scheduling scheme.

I have found that a good performance indicator in this context is represented by

branch miss to vcpu cycles ratio (Fig.17 and 18), referring to branch miss as the

number of branch misprediction events in a second and to vcpu cycles as the

number of execution cycles the virtual cpu executed in a second. I would like to

92

remind that both quantities are measured from inside virtual machine vm-micro,

using virtual performance counters, and so without any perception of host's

intensity of saturation. The value of this ratio reported in graphs has been

multiplied by 10^4 only for ranging and scaling purposes.

Even in the noisy mode with ballooning and KSM active, the behavioral pattern

of the virtual system shows a trend that identifies with good approximation the

state of over-committment of host's resources, since values exceeding 100%

virtual to physical ratio.

The same thing cannot be said about cache_misses performance indicator (Fig.

19): in this case the cache_miss to cycles ratio presents a behavior proportional to

P2V overcommitment ratio, but with a smoother profile that doesn't point out a

threshold effect.

93

 6 Summary and conclusion

In this work I analyzed the performance of a virtualization host in particular

conditions of resource over-committing, from an innovative point of view as that

of a virtual machine executed on the same host.

Normally this guest virtual machine isn't aware of its host's condition, in fact

hypervisors are specifically designed and realized to isolate the execution

environment of each hosted virtual machine, so that none of them could interfere

with any other one in a crowded computing environment like a cloud node.

From a customer point of view, it could be indeed interesting to know if the

purchased service levels are effectively respected by the cloud provider.

All the software measuring instruments used in this research are publicly

available and free, and can be easily installed in a micro instance of virtual

machine, rapidly deployable also in public clouds.

Actually the method described in this work has been applied only to KVM hosts

and guests, and the results show a trend that identifies with good approximation

the state of over-committment of host's resources.

Further studies should be conducted on other type of hypervisors, such as Xen or

Vmware ESXi, principally to investigate the accessibility of virtual counters,

even if I suppose the results should be comparable.

94

References

[1] Anatomy of a Linux hypervisor - Tim Jones - IBM developerWorks®, 2009

[2] Susanta Nanda Tzi-cker Chiueh and Stony Brook. A Survey on Virtualization

Technologies. RPE Report, pages 1–42, 2005

[3] Smith, James E., and Ravi Nair. "The architecture of virtual machines."

Computer 38.5 (2005): 32-38.

[4] Gustavo Duarte. CPU Rings, Privilege, and Protection, 2008

[5] [Bha09] Nikhil Bhatia. Performance Evaluation of Intel EPT Hardware

Assist, 2009

[6] Gil Neiger, Santoni Amy, Felix Leing, Dion Rodgers, and Rich Uhlig. Intel

Virtualization Technology: Hardware Support for Efficient Processor

Virtualization. Intel Technology Journal, 10(03), 2006

[7] KVM – The kernel-based virtual machine – Timo Hirt – Red Hat Inc, 2010

[8] Qumranet. KVM - Kernel-based Virtualiztion Machine White paper, 2006

[9] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm:

the Linux Virtual machine monitor. In Proceedings of the Linux Symposium,

Ottawa, 2007

[10] Rusty Russell. virtio: Towards a De-Facto Standard For Virtual I/O Devices.

SIGOPS Oper. Syst. Rev., 42(5):95–103, 2008

[11] Tim Jones, M. "Cloud computing with Linux." 2008-09-10]. http..//www, ibm.

com/developerworks/library/I-cloudcomputing (2009)

[12] Anatomy of an open source cloud - Tim Jones - IBM developerWorks®,

2012

95

[13] OpenStack - https://docs.openstack.org

[14] Serebrin, Benjamin, Daniel Hecht. "Virtualizing performance counters."

European Conference on Parallel Processing. Springer, Berlin, Heidelberg, 2011

[15] Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume

3B: System Programming Guide, Part 2

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-

architectures-software-developer-vol-3b-part-2-manual.html

[16] AMD Bios and Kernel Developer Guide.

 http://support.amd.com/us/Processor_TechDocs/31116.pdf

[17] Linux performance - http://www.brendangregg.com/perf.html

[18] Khandual, Anshuman. "Performance monitoring in linux kvm cloud

environment." Cloud Computing in Emerging Markets (CCEM), 2012 IEEE

International Conference on. IEEE, 2012.

[19] Du, Jiaqing, Nipun Sehrawat, and Willy Zwaenepoel. "Performance

profiling of virtual machines." Acm Sigplan Notices 46.7 (2011): 3-14

[20] Common Criteria for Information Technology Security Evaluation

https://www.commoncriteriaportal.org/

[21] https://www.techopedia.com/definition/30466/memory-ballooning

[22] https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guid

e/chap-ksm

[23] S. Pasricha and A. Veidenbaum, “Improving branch prediction accuracy in

embedded processors in the presence of context switches,” in Computer Design,

2003. Proceedings. 21st International Conference on, 2003, pp. 526–531

96

[24] Tse-Yu Yeh, Yale N. Patt, “Alternative Implementations of Two-Level

Adaptive Branch Prediction” Nineteenth ISCA, 1992

[25] Nicolas Gloy, Cliff Young, J. Bradley Chen, Michael D. Smith, “An

Analysis of Dynamic Branch Prediction Schemes on System Workloads”, Proc.

23rd Annual ISCA, 1996

97

	1 Introduction
	2 System Virtualization
	2.1 Definition
	2.2 Virtual Machine Monitor
	2.2.1 Hypervisor classifications
	2.2.2 Hardware Support
	2.2.3 Privilege Levels
	2.2.4 Memory Management

	2.3 Virtualization techniques
	2.3.1 Paravirtualization
	2.3.2 Full virtualization

	2.4 Linux as an hypervisor
	2.4.1 Generic linux-based hypervisor
	2.4.2 KVM Kernel-based Virtual Machine
	2.4.3 KVM architecture
	2.4.4 Resource management
	2.4.5 The KVM control interface
	2.4.6 Emulation of hardware
	2.4.7 Execution Model
	2.4.8 Paravirtual device drivers
	2.4.9 Linux hypervisor benefits

	3 Cloud Computing
	3.1 Anatomy of cloud computing
	3.2 The cloud computing landscape
	3.2.1 Software-as-a-Service
	3.2.2 Platform-as-a-Service
	3.2.3 Infrastructure-as-a-Service

	3.3 Linux and open source in the cloud
	3.3.1 Core virtual computing open source technologies
	3.3.1.1 Hypervisors
	3.3.1.2 Device emulation
	3.3.1.3 Virtual networking
	3.3.1.4 VM tools and technologies
	3.3.1.5 Local management

	3.3.2 Infrastructure open source technologies
	3.3.2.1 Session management
	3.3.2.2 Infrastructure management
	3.3.2.3 Integrated IaaS solutions
	3.3.2.4 Cloud types

	3.3.3 OpenStack service overview
	3.3.3.1 Compute
	3.3.3.2 Object Storage
	3.3.3.3 Block Storage
	3.3.3.4 Shared File Systems
	3.3.3.5 Networking
	3.3.3.6 Dashboard
	3.3.3.7 Identity service
	3.3.3.8 Image service
	3.3.3.9 Messaging and databases

	4 Performance monitoring
	4.1 Hardware-Based Monitoring
	4.2 Perf: a profiling tool for linux based systems
	4.2.1 Hardware Events
	4.2.1.1 CPU Statistics

	4.2.2 Performance monitoring in KVM virtualized environments
	4.2.2.1 Perf kvm: the host perspective
	4.2.2.2 vPMU: the guest perspective

	5 The evolution of the testbed
	5.1 General characteristics
	5.2 Focus on compute nodes
	5.2.1 Hypervisors in OpenStack
	5.2.2 CPU and RAM overcommitting
	5.2.3 Bulk and privileged workers
	5.2.3.1 Memory Ballooning
	5.2.3.2 Kernel Same-page Merging

	5.3 Collected data rendering
	5.4 Data interpretation

	6 Summary and conclusion

