
Latency-aware Joint Virtual Machine and Policy
Consolidation for Mobile Edge Computing

Thiago A. L. Genez∗, Fung Po Tso∗, Lin Cui†,
∗Department of Computer Science, Loughborough University, LE11 3TU, UK
†Department of Computer Science, Jinan University, Guangzhou, China

Email: {t.a.lopes-genez, p.tso}@lboro.ac.uk; tcuilin@jnu.edu.cn;

Abstract—To guarantee an efficient and high-performance
environment for mobile devices to perform offloading with low
end-to-end delay, it is important to ensure no network policies
are violated. In this paper, we explore the simultaneous, dynamic
virtual machine (VM) and policy consolidation, and formulate the
Policy-VM Latency-aware Consolidation problem for Mobile Edge
Computing, which is shown to be NP-Hard. We propose the PL-
Edge, an efficient scheme to jointly consolidate network policies
and virtual machines for mobile edge computing to reduce
communication end-to-end delays among devices and virtual
machines. Our simulation results demonstrate that the proposed
PL-Edge can significantly reduces policy-flows end-to-end delay
by nearly 45% while adhering strictly to the requirements of
network policies.

I. INTRODUCTION

A common approach to overcome ever-increasing compu-
tation demand on resource-constraint Internet-of-Things (IoT)
devices is to offload the application’s computation to remote
“Cloud” (i.e. data centres) [1]. Nevertheless, offloading work-
loads reduces the devices’ computational cost at the expense
of their communications cost. It has been reported that both
application performance and user experience are often greatly
impaired because the network latency between the devices and
cloud date centres are high and unpredictable [2]. This requires
the need for bringing the “Cloud” closer to devices and users.
As a result, “cloudlets”, micro data centres deployed in close
proximity to users, were introduced in mobile networks in
a bid to cut the end-to-end latency [3]. This is essentially
the emerging of the mobile edge computing (MEC) paradigm,
where a small, edge-located clusters of resource-rich servers
can be dispersed at the edge of the carrier’s network [1].

Similar to cloud data centers, servers in a cloudlet are also
virtualised and provisioned as virtual machines (VMs) [4]. We
consider a Software Defined Network (SDN) based cellular
network architecture [5], [6] to provide efficient and flexible
communications paths between VMs and user equipments
(UEs), such as mobile or IoT devices. To reap the benefits
of using cloudlets in mobile edge computing, base stations
(BSs) are connected to cloudlets in order to provide ubiquitous
computing resources, in terms of VMs, for UEs. In this case,
the presence of the cellular backhaul is paramount to the
operation of a cellular cloudlet-based infrastructure [1], [5].
Thanks to the cellular backhaul connectivity, VMs can be
migrated between cloudlets to maintain a low latency commu-
nication with UEs. Driven by UE movements and by the aim of
maintaining a low latency communication, VMs are migrated

passing through the cellular backhaul to reach others cloudlet
deployed in the network. An unexpected cloudlet overhead or
malfunction may also call for a temporary migration of VMs to
a nearer cloud using the cellular backhaul [7]. However, sim-
ilar to the cloud, traffic from/to VMs are normally governed
by network policies [8]. This mean that, in many cases, traffic
between UEs and VMs will not exactly exchanged directly
among them, but it may be forced to across a set of network
functions, such as firewall, load balancers, proxies, etc., before
reaching the final destination [9].

As UEs may be moving over time, this mean following
dynamic VM migrations, network policies will need to be
redeployed; otherwise carriers will face several network policy
violations, which could lead to severe consequences such
as services disruption or network blackout. In this paper
we jointly optimise VM and network policy migration to
minimise the end-to-end latency among UEs and VMs whilst
ensuring that no network policy is violated. To the best of our
knowledge, this is the first paper in the literature that tackles
network polices in a cloudlet-based cellular network.

This paper explores the simultaneous, dynamic virtual ma-
chine (VM) and policy consolidation, and formulates the
PL-Edge, a Policy-VM Latency-aware Consolidation problem
for Mobile Edge Computing to reduce the end-to-end delay
(latency) between user equipments (UEs) and virtual machines
(VMs) in a cloudlet-based network whilst ensuring that no
network policy is violated. By reducing the multiple knapsack
problem (MKP) to PL-Edge, we prove its NP-Hardness. To
solve PL-Edge efficiently, we propose a two-step heuristic
for migrating network policy and VM accordingly. We have
evaluated PL-Edge in ns-3, and our results have shown that it
can reduce the average latency by 45% while maintaining a
constant throughput for policy-flows among UEs and VMs.

This paper is organised as follows. Section II presents
related work, while Section III describes the problem model of
joint policy and VM consolidation for a mobile cloudlet-based
network infrastructure. The proposed PL-Edge is presented in
Section IV, while results are discussed in Section V. Final
remarks and conclusion are presented in Section VI.

II. RELATED WORK

Hu et al. quantified in [10] the impact of employing
cloudlets on cellular networks. They state that running appli-
cation on cloudlets can improve application’s response time
and significantly reduce UE’s battery consumption. Actually,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288357118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

offloading applications’ workloads to a remote cloud through
cellular networks is costly due to the lower bandwidth, higher
end-to-end latency and higher battery consumption. To solve
these issues, a mobile cloudlet-based network architecture
is proposed by Sun and Ansari in [5]. This architecture is
aimed at providing seamless and low end-to-end delay between
UEs and cloudlets to facilitate the offloading of applications’
workloads. The concept of cloudlets to mitigate the end-to-end
delay is also presented by Taleb et al. in [4]. They described
a concept of Follow-Me-Cloud, whereby not only data but
also mobile services intelligently should follow their respective
users. All these works advanced the concept of bringing the
cloud in close proximity to mobile users (via cloudlets), but
none of them have mentioned network policies in their design.
Network policies are extremely important for any network
have efficient data traffic management since it directly impacts
the end-to-end latency between any communication nodes.

III. PROBLEM MODELLING

A. Problem Notations

1) Cloudlet: We consider a cloudlet as a rack of servers.
Let Ci = {Vi, Si} be the ith cloudlet of the mobile infrastruc-
ture, where Vi = {v1, v2, . . .} is a set of VMs that are hosted
by a set of servers Si = {s1, s2, . . .}. Let ra be the vector
that denotes the physical resource requirements of va ∈ Vi,
such as ra could have three components that capture three
types of physical hardware resources, such as CPU cores,
memory size, and I/O operations. Accordingly, the available
amount of physical resource of server sb ∈ Si is given by
a vector hb. Thus, to denote that sb has sufficient physical
resource to accommodate va, we use the relation � as follows:∑
rk∈A(sb)

rk + ra � hb, where
∑
rk∈A(sb)

rk is the total
requirements of all VMs already hosted by sj . Assuming n
available cloudlets, C = ∪ni=1 Ci is the set of all cloudlets
presented in the mobile infrastructure, while S = ∪ni=1 Si and
V = ∪ni=1 Vi are the set of all servers and VMs, respectively.

2) Mobile Infrastructure: Let Bi = {Ui, Ci} be the ith

base station of the mobile infrastructure, in which Ui =
{u1, u2, . . .} is the set of all UEs connected to Bi, and
Ci = {Vi, Si} is the Bi’s dedicated cloudlet. We assume
that Ci is connected to Bi via high-speed fibre. Assum-
ing a mobile infrastructure composed by m base stations,
B = {B1, . . . , Bm} is the set of all base stations, while
U =

⋃m
i=1 Ui is the set of all UEs connected to the carrier’s

infrastructure. In a real deployment of cloudlets in a cellular
network, base stations localised in remote areas will probably
share cloudlets deployed nearby the backhaul portion of the
network [5]. However, without loss of generality, we assume
that cloudlets and base stations are one-to-one correspondence,
i.e., |C| = |B|. Also, for the sake of discussion simplicity, we
consider that only one VM is provided for each UE to offload
workloads [5], and thus UEs and VMs are also one-to-one
correspondence, i.e., |U| = |V|.

It is important to emphasise the presence of the cellular
backhaul is still important to the maintenance of cloudlets.
Apart from VM migrations triggered by UE movements, there

are many edge computing situations in which VMs migration
have to pass through the backhaul as well [7]. For example,
an unexpected flash crowd may overload a small cloudlet and
make it necessary to temporarily move some parts of the
current workload to another cloudlet or the cloud. Or when
a cloudlet failure due to a site catastrophe such as rising flood
water, a spreading fire, or approaching enemy: the currently-
executing VMs can be moved to a safer cloudlet without
disrupting the offloading service. In these cases, besides the
migration of VMs, the migration of policies is extremely
important to keep UE-VM communications alive.

3) Middleboxes: Service function chaining (SFC) is de-
fined [9] as “an ordered set of service functions that must
be applied to selected packets and/or frames as a result of
classification”. SFC requires the placement of service func-
tions (also called middleboxes [11]) and the adaptation of
traffic-forwarding policies on the underlying network to steer
packets through an ordered chain of service components. The
best practical use case of SFC in today’s mobile network is
the deployment of middleboxes among P-GWs (gateways) and
external networks (such as the Internet), which is far from the
edge of the network, where UEs are localised [1]. However, as
we attempt to bring cloud closer to UEs with cloudlets nearby
base stations, we also attempt to bring middleboxes closer to
UEs in order to shorten the path that policy-flows between
UEs and VMs need to transverse necessary middleboxes.

LetM be a set of middleboxes. Each middlebox mi ∈M is
represented by a 3-tuple 〈type, state, capacity〉. The property
mi.type defines the service function provided by mi, such as
intrusion detection system (IDS), deep packet inspection (DPI)
or even necessary logging/charging carrier’s applications. Each
middlebox may be available at multiple locations, such as
inside the cloudlet or in the backhaul portion of the cellular
network. Middleboxes are usually stateful and need process
both directions of a session for correctness. The mi.state is
used to store the internal state and processing logic, for mi,
while the mi.capacity is essentially the throughput of mi.

4) Flows: We consider the traffic in the mobile network
is routed using a flow-based routing mechanism [6]. Let
F = {f1, f2, . . .} be a set of flows, where each flow fi ∈ F
is composed by a 5-tuple 〈src : port, dst : port, rate〉. The
fi.src and fi.dst specify, respectively, the source and desti-
nation of fi including IP addresses and ports, while fi.rate
indicates the data rate exchanged among fi.src and fi.dst.
For a better management and utilisation of the entire network,
flows are usually governed by network policies.

5) Policy: Let P be a set of network policies in
which each policy pi ∈ P is composed by a 4-tuple
〈seq, list, len, in, out〉. In a real environment, one policy can
be attributed to multiple flows and vice versa. However, for
the sake of discussion simplicity, we assume that flows and
policies are one-to-one correspondence. For each flow fi ∈ F ,
there is a policy pi ∈ P that governs its path to ensure
the middleboxes crossing. The attribute pi.seq defines the
sequence of types of middleboxes that the flow fi matches pi
should transverse in order, e.g., pi.seq = {IDS,DPI}, while

pi.list indicates the list of deployed middleboxes assigned
to pi, , e.g., pi.list = {IDSx, DPIy}. The pi.len denotes
the size of this list, while pi.in and pi.out represent the
first (ingress) and the last (egress) middlebox, respectively.
A policy pi is called satisfied if all required middleboxes
are correctly allocated to pi concerning types and order:
pi.list[k].type == pi.seq[k],∀k ∈ {1, . . . , pi.len}. If pi = ∅,
then all flows matching pi are not governed by any policies.

B. Policy and VM Consolidation Problem

Since we argue in [8] that treating VM and policy man-
agement separately can lead to sub-optimal network utilisa-
tion and policy violations, this paper address the UE–VM
consolidation in conjunction with the dynamism of policy re-
configuration regarding the network latency minimisation.

We denote A to be an initial allocation of VMs, UEs, and
middleboxes. A(u) returns the base station Bj that UE u
is currently connected with, while A(v) returns the 2-tuple
〈Ci, s〉 saying that v is localised in the cloudlet Ci and hosted
by a server s ∈ Si of Ci. The set of VMs hosted by s is given
by A(s), while the set of middleboxes that are allocated to the
policy pk is given by A(pk), i.e., pk.list. Lastly, A(m) refers
to all flow-policies that use the middlebox m on its path. We
also denote the variable xu,v that assumes the value of 1 if the
VM v “belongs” to the UE u; otherwise, the value of positive
infinity is assigned to xu,v . Assuming Lu↔v as the average
end-to-end latency for the communication pair UE u and its
VM v, the Policy-VM Consolidation problem for Mobile Edge
Compuing (PVC-MEC) in this paper can be defined as:

Definition 1. Given the set of UEs U , VMs V , servers S,
policies P , and middleboxes M, we need to find an alloca-
tion A that minimises the average end-to-end latency for each
UE–VM communication pair presented in the mobile network:

Minimise
∑
u∈ U

∑
v∈ V

Lu↔v · xu,v Subject to:

∑
v∈V

xu,v = 1 ∀u ∈ U (C1)

pk is satisfied ∀pk ∈ P (C2)

A(u) 6= ∅ and |A(u)| = 1 ∀u ∈ U (C3)

A(v) 6= ∅ and |A(v)| = 1 ∀v ∈ V (C4)∑
vk∈A(sj)

rk + rv � hj , ∀sj ∈ S (C5)∑
pk∈A(m)

fk.rate ≤ m.capacity ∀m ∈M (C6)

The constraints (C1) determine that each UE u has only
one VM v available for offloading purposes, while the con-
straints (C2) describe that all policy requirements for the flows
among u and v on middleboxes traversal are fulfilled. The
constraints (C3) and (C4) determine, respectively, that each UE
is connected on one base station and each VM is hosted on one
server in one cloudlet. The capacity requirements for servers
and middleboxes are reinforced by (C5) and (C6), respectively.

Theorem 1. The PVC-MEC problem is NP-Hard

Proof. To show the non-polynomial complexity of PVC-
MEC, we will show that the multiple knapsack problem
(MKP) [12], which decision version has already been proven
to be strongly NP-hard, can be reduced to this problem in
polynomial time. Considering a special case of the PVC-
MEC problem where a mobile network is composed by only
two base stations: B1 = {U1, C1} and B2 = {U2, C2}.
Both base stations are connected to different switches of the
mobile backhaul. Each base station is directed connected to
their cloudlet represented by a rack of one server only, i.e.,
C1 = {V1, S1} and C2 = {V2, S2}, where S1 = {sa} and
S2 = {sb}. The capacity of each servers is equal to n,
i.e., ha = hb = n. Also, considers 2n UEs divided in two
equal size groups. One group is connected to B1, while the
other group is connected to B2, e.g. U1 = {u1, . . . , un} and
U2 = {un+1, . . . , u2n}. As there is one VM for each UE,
there are also 2n VMs deployed. These 2n VMs are also
divided two equal size groups, i.e., V2 = {v1, . . . , vn} and
V1 = {vn+1, . . . , v2n}. The resource requirement of each VM
is equal to 1, i.e., ri = 1,∀i ∈ {1, . . . , 2n}. In summary, all
VMs of B1’s UEs are hosted into B2’s cloudlet and vice versa.

There are n flows among U1 and V2 as well as n flows
among U2 and V1. All flows are policy flows and they need
to traverse three types of middleboxes in order, e.g., X , Y ,
and Z. There are deployed one X box, one Y box and
several Z boxes. The X and Y middleboxes are attached
to switches connecting B1 and B2, while the Z boxes are
deployed within the cloudlets C1 and C2. Suppose the capacity
of X and Y are enough to accept all flows that require them.
A reasonable solution to minimise the network latency of all
UE–VM communication pairs is to migrate all VMs localised
in C1 to C2 and migrate all VMs in C2 to C1. After all
migrations have been performed, we have: C1 = {V2, S1}
and C2 = {V1, S2}. In this new configuration, the PVC-MEC
problem becomes to find an appropriate Z box for each UE–
VM pair that minimises the end-to-end latency among them.

Consider each flow fi to be an item, where fi.rate is the
item size. Each Z box is a knapsack with limited capacity. The
profit of assigning fi to each Z box is the network latency. The
PVC-MEC problem becomes to find an allocation of all flows
to Z boxes that minimises the average latency. Thus, the MKP
problem is reducible to the PVC-MEC problem in polynomial
time, and hence the PVC-MEC problem is NP-hard.

IV. POLICY AND VIRTUAL MACHINE CONSOLIDATION
FOR MOBILE EDGE COMPUTING

This section introduces the PL-Edge, a policy-VM latency-
aware consolidation scheme for mobile edge computing.

A. VM Migration Latency Reduction Model

Let u and v be an UE and its VM, respectively, and Ci =
{Vi, Si} a cloudlet. The current allocation of v ∈ Vi is given
by A(v) = 〈Ci, s〉, where s ∈ Si is a server of Ci. Let A(v)→
〈Cj , ŝ〉 represent the migration of v from its current location to
a server ŝ ∈ Sj of another cloudlet Cj = {Vj , Sj}. Since we

do not consider migrations of VMs within the same cloudlet,
the set of all servers that are available to host vi is given by:

S(v) =
{
ŝ
∣∣ ∑
vk∈A(ŝ)

rk + ri � ĥ, ∀ ŝ ∈ S \ Si
}

(1)

The aim of migrating v from its current cloudlet to another
one is to reduce the delay in communication with u. However,
we have to analyse if this migration will first bring a latency
reduction between s (the server where v is currently hosted)
and all ingress & egress middleboxes that all flows among u
and v have to across due to policies governance.

By taking the advantage of a SDN-based cellular core net-
work, the end-to-end latency between nodes (such as switches,
middleboxes, and cloudlets) can be measured by monitoring
tools included in the SDN controller [13]. Let all flows from
v to u be governed by policies defined in P (v, u) ∈ P , and all
flows from u to v by policies in P (u, v) ∈ P . By hosting v,
let U(s) be the maximum latency between s and all ingress &
egress middleboxes. The U(s) value is calculated as follows:

Uv(s) = max
∀pk∈P (v,u)

(v
fk−−→ pk.in) + max

∀pk′∈P (u,v)
(pk′ .out

fk′−−→ v), (2)

where v
fk−→ pk.in is the latency that fk has to face from v

to the ingress middlebox pk.in (specified by the policy pk),
while p′k.out

fk′−−→ v is the latency that fk′ faces from the
egress middlebox p′k.out to v according to p′k. Note that fk
is a flow from v to u that has to pass through pk.in as part
of its initial route, while fk′ is a flow from u to v that across
p′k.out as part of its final route. Assuming that the migration
A(v)→ 〈Cj , ŝ〉 takes place, it is expected that Uv(ŝ) < Uv(s).

Migrating a VM also generates data traffic between the
source and destination hosts. The amount of traffic depends
on the VM’s memory size, its page dirty rate, the available
bandwidth for the migration and some other hypervisor spe-
cific constants [14]. Let s v−→ ŝ denote the migration of v from
s to ŝ, the migrate time can be given as follows [14]:

U(s
v−→ ŝ) = M ·

1−
(
R
L

)γ+1

1−
(
R
L

) , (3)

where γ = min(dlogR/L
T ·L
M e), dlogR/L

X·R
M ·(L−R)e) is the

number of pre-copy cycles, M is the total memory size of vi,
R is the page dirty rate of vi, and L is the available bandwidth
for migration among s and ŝ. The T and X are parameters
of the user-configured hypervisor that represent the minimum
required progress for each pre-copy cycle and the maximum
time for the final stop-copy cycle, respectively.

Migrating v from s to ŝ should not contribute to the increase
of the end-to-end latency among u and v; otherwise, the
communication among them may become slower. Motivated
by the migration A(v) → 〈Cj , ŝ〉, the expected gain in
reduction the latency between the current server s and all
ingress & egress middleboxes is defined as:

G(s
v−→ ŝ) = Uv(s) + U(s

v−→ ŝ)− Uv(ŝ) (4)

A candidate server ŝ is considered to host v if the gain of
migrating v to ŝ results in a positive balance, i.e., G(s v−→

ŝ) > 0, since we assume that increasing one unit of the gain
collaborates in reducing one unit of the total latency among u
and v. The gain of migrating v from s to s is considered to
be null, G(s v−→ s) = 0, since U(s

v−→ s) = 0 and s 6∈ S(v).

B. Policy Migration Latency Reduction Model

When performing policy migration, to preserve the cor-
rectness and fidelity of flows, the destination middlebox
must receive the internal middlebox state associated with
the migrated flows, while the old middlebox still keeps the
internal state associated for the remaining flows. Clearly, the
middlebox states must be able to be cloned, shared, moved and
merged. To support this feature, we adopt the architecture of
OpenNF [15], which is a control plane with carefully designed
APIs for managing middleboxes and network policies.

Let m be the current ith middlebox of a policy pk ∈ P ,
i.e., m = pk.list[i]. Let m

pk,i−−→ m̂ denote migrating the ith
middlebox of pk from m to m̂. The feasible space of candidate
middleboxes for m is denoted by:

M(pk, i) =

{
m̂, ∀m̂ ∈M \m

∣∣ m̂.type is equal to m.type,∑
pj∈A(m̂)

fj .rate ≤ (m̂.capacity − fk.rate)
} (5)

We assume that the middleboxes assignment for any policy
pk is an atomic operation, i.e., either all required middleboxes
are assigned for pk or none is assigned. Supposing pk is an
assigned policy for a flow fk, the migration of middleboxes
defined in pk.list is detailed in the following.

1) Migration of Intermediate Middleboxes: Intermediate
middleboxes are middleboxes that are neither in the first
(i = 1) nor in the last position (i = pk.len) of pk.list[i], since
those end middleboxes are either connected directly with the
end points of the communication, e.g., the UE and its VM.
Due to the advantage of having a SDN-based core network,
let U(m1 → m2) denote the end-to-end latency between
the middleboxes m1 and m2. Similar to the previous gain
calculation for VM migration, the expected gain in reducing
the end-to-end latency that flows governed by pk will face if
the migration m

pk,i−−→ m̂ takes place is defined as follows:

G(m
pk,i−−−→ m̂) = U(pk.list[i− 1] −→ m) + U(m −→ pk.list[i+ 1])

+ U(m
σpk−−−→ m̂)

− U(pk.list[i− 1] −→ m̂)− U(m̂ −→ pk.list[i+ 1])

(6)

where U(m
σpk−−→ m̂) is the time that takes to migrate the

internal states of the policy pk from m to m̂.
2) Migration of End Middleboxes: The migration of end

middleboxes involves the migration of either pk.in (ingress)
or pk.out (egress). The key difference is that UEs and VMs
are included in the gain calculation, since end middleboxes
communicate directly to the endpoints of the communication.
Hence, in this case, the expected gain is defined as follows:

G(pk.in
pk,1−−−→ m̂) = U(fk.src −→ pk.in) + U(pk.in −→ pk.list[2])

+ U(pk.in
σpk−−−→ m̂)

− U(fk.src −→ m̂)− U(m̂ −→ pk.list[2])

(7)

The migration gain of the egress middlebox is similar to
Equation 7. Thus, a middlebox m̂ ∈M(pk, i) is considered to
be an alternative for the current m = pk.list[i] if the gain of
migrating m to m̂ result in a positive balance, i.e., G(m

pk,i−−→
m̂) > 0. Also, the gain of migrating the middlebox m to m

is considered to be null, i.e., G(m
(pk,i)−−−→ m) = 0.

C. Migration Decomposition

According to our previous paper [8], the migration of VMs
and policies are decomposable since they are independent
from each other. Without loss of generality, the overall gain
calculation for a flow fk guided by pk is given as follows:

G(s
v−→ ŝ, pk.in

pk,1−−−→ m̂, m̃
pk,2−−−→ ḿ, pk.out

pk,3−−−→ m̈) =

G(s
v−→ ŝ) +G(pk.in

pk,1−−−→ m̂) +G(m̃
pk,2−−−→ ḿ) +G(pk.out

pk,3−−−→ m̈)
(8)

According to Equation 8, the gain calculations can be treat in-
dependently during migrations. Due to space limitation, please,
see [8] for more details regarding migration decomposition.

D. Policy and VM Migration Algorithms

The proposed PL-Edge scheme is comprised in two steps:
first the migration of policies and then the migration of VMs.

1) Policy Migration: Let fk be a flow governed by a policy
pk. We define a (n+1)-tier directed acyclic graph (DAG) as the
latency network from fk.src to fk.dst, in which n = pk.len
is the number of middleboxes that fk has to transverse. This
DAG is composed of only one entry node (source) and one exit
node (sink). Flows originate from the entry node and terminate
at the exit node. If the entry node represents an UE, then the
exit node represent its VM and the last node-tier is composed
of nodes that represent the candidates servers that are able to
host the VM (Equation 1). Each of the n remaining node-tiers
represents all possible middleboxes according to pk.list. For
example, the first node-tier includes nodes that represent all
candidates middleboxes according to pk.list[1] (Equation 5).

Figure 1 illustrates a (n+1)-tier DAG as a latency network
for fk. The weight of each edge is initialised as the corre-
sponding gain between two adjacent nodes, while the weights
of all nodes are zero. The problem of maximising the gain
between source and sink becomes in finding the shortest path
from source to sink assuming edges with negative weights.
We attempt, therefore, in minimising the end-to-end latency
among source and sink by maximising the gain among them.

G
(fk

.s
rc
→

ṁ1
)

G
(f
k .src →

ṁ
1)

G(ṁ1 → m̃1)

G
(ṁ

1
→

m̃
y
)

G
(ṁ

x
→

m̃
1)

G(ṁx → m̃y)

G(m̃1 → m̂1)

G
(m̃

1
→

m̂
z
)

G
(m̃

y
→

m̂
1)

G(m̃y → m̂z)

G(m̂1 → s1)

G
(m̂

1
→

s w
)

G
(m̂

z
→

s
1)

G(m̂z → sw)

0

G
(s

v
−→

sw
)

u

Source

fk.src

ṁ1

fk.in

...

ṁx

Ingress

m̃1

...

m̃y

m̂1

fk.out

...

m̂z

Egress

s

...

sw

Server

v

Sink

fk.dst

Fig. 1. Latency network example: Suppose a flow fk from an UE u to its
VM v has to across the middleboxes types ṁ, m̃, and m̃ according to a
policy pk ∈ P (u, v), where v is currently hosted in s.

Algorithm 1 Step I: Policy Migration
1: procedure POLICY MIGRATION
2: for each Base station Bi = {Ui, Ci} ∈ B do
3: for each UE u in Ui do
4: v = the u’s VM
5: s = the current server that host v
6: S = S(v) ∪ {s} . the candidate servers for v (Eq. 1) plus s
7: ρ = the server preference array to accept v
8: P = P (u, v) ∪ P (v, u) . all policies among u and v
9: Call Migrate_Policies (P, S, ρ)

10: Call Algorithm 2 to perform the step II
11: procedure MIGRATE POLICIES (P, S, ρ)
12: for each pk in P do
13: for i = 1 to pk.len do
14: M(pk, i) = the candidate middleboxes for pk.list[i] – Eq. 5
15: G = construct the latency network for pk as a (n+1)-tier DAG
16: (ŝ, ˆlist) = Shortest_Path(G) . nodes in the shortest path
17: for i = 1 to pk.len do
18: if pk.list[i] 6= ˆlist[i] then
19: Perform policy migration: pk.list[i]→ ˆlist[i]
20: Update the allocations A(pk.list[i]) and A(ˆlist[i])

21: Update routing for policies that have been migrated
22: ρ[ŝ] = ρ[ŝ] + 1 . Update the preference server array

Algorithm 2 Step II: VM Migration
1: procedure VM MIGRATION (ρ, S, v)
2: ŝ = the server in S that has the highest ρ[s] value.
3: if ŝ is not the current server that hosts v then
4: Perform the migration of v from s to ŝ
5: Update routing for v and the allocations A(v), A(s), and A(ŝ)

Algorithm 1 performs the policy migrations for each UE–
VM communication pair by creating the a latency network for
each flow of such pair. Since there may be several policy-
flows among them, the migration of VMs are carried out in
the next step, when all policy-flows among them have already
been analysed. Algorithm 1 performs the policy migration by
checking the UEs of each base station in a round-robin fashion.

2) Migration VM: According to Equation 4, migrating a
VM v from its current server to a different one will yield
different gain, which means that v can rank order candidate
servers for migration. During the first step of policy migra-
tions, the ρ array store the preference server to host v. The
server that results in the highest ρ value will be selected to
host v. If there is no tie, v is migrated to ŝ if it is not already
there. In case of a tie, the tiebreaker is performed by the server
that results in the highest gain according to Equation (4). If the
tie persists, the tiebreaker is performed randomly. Algorithm 2
shows the VM migration step of the proposed PL-Edge.

V. EVALUATION RESULTS

In this section, the effectiveness of the proposed PL-Edge
is assessed and compared via simulation using ns-3. VMs
and UEs are modelled as a collection of socket applications
communicating with each others in the mobile infrastructure.
We defined policy-flows as traffic flows that have to transverse
a sequence of middleboxes as specified in their governing
policies. In this evaluation, all traffic flows are randomly
generated during the initialisation of the simulation, and all
flows are policy-flows. Each policy-flow is configured to
transverse 1 to 3 middleboxes and five types of middleboxes

0 50 100 150 200 250 300
Simulation time

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0
Av

g.
 L
at
en

cy
 (m

s)

Flows from VM to UE (Static)
Flows from UE to VM (Static)
Flows from VM to UE (Sync-MEC)
Flows from UE to VM (Sync-MEC)

(a) Latency (ms)

0 50 100 150 200 250 300
Simulation time

35

40

45

50

55

Av
g.
 T
hr
ou
gh
pu
t (
M
bp
s)

Flows from VM to UE (Static)
Flows from UE to VM (Static)
Flows from VM to UE (Sync-MEC)
Flows from UE to VM (Sync-MEC)

(b) Throughput (Mbps)

Fig. 2. Average values of latency (left) and throughput (right)

were considered in the evaluation. For each middlebox type,
there are 5 to 10 middleboxes deployed. The capacity of each
middlebox was setup to 1Gbps As a result, the average path
length of all flows was 3.4 hops. A centralised SDN controller
is implemented to collect all latency network information to
perform the proposed PL-Edge scheme. In order to compare
the effectiveness of the proposed scheme in migrating policy
and VM to reduce the average network latency of all flows,
we have run the same simulation but using the Static strategy,
which does not consider any migration of policies and VMs.
The locations of VMs and policies using this strategy do not
change during the simulation time once started.

Figure 2 shows the average network latency (in ms) and
throughput (in Mbps) for a scenario that comprises 8 base
stations. Each base station contains 10 to 400 active UE-
VM communication pairs, where each UE-VM pair contains
1 to 5 active upload flows (UE to VM) and 1 to 5 active
download flows (VM to UE). All flows are implemented as
constant bit rate (CBR). In the simulation, the data rate (in
Mbps) for flows from VM to UE and flow flows from UE to
VM are taken from the uniformly distributed interval [40; 50]
and [30; 40], respectively. The graphs of Figure 2 present 4
curves. Two curves corresponding to the results given by the
proposed PL-Edge while the other two represent the results
when static strategy is applied. We can easily observe from
Figure 2a that the proposed PL-Edge scheme significantly
reduces the average network latency while maintaining the
average throughput of policy-flows (Figure 2b). For instance,
once the proposed scheme is triggered, the average network
latencies of both upload (UE to VM) and download (VM to
UE) flows are considerably reduced by approximately 45%
of the simulation time when compared to the results when
no migration scheme is applied. As a preliminary study, the
proposed PL-Edge scheme was able to provide a significant
reduction on the end-to-end network latency among UEs and
VMs, which is an important feature for mobile edge computing
that considers a scenario where VMs are available for UEs
offload applications’ workloads.

VI. CONCLUSION

This paper proposes PL-Edge, a policy-VM latency-aware
consolidation scheme for mobile edge. We have studied the
network latency reduction in a cellular SDN-based infrastruc-
ture by jointly considering virtual machine and network policy
dynamic (re)allocation. The proposed scheme is aimed at

providing a low end-to-end latency between a user equipment
(UE) and a virtual machine (VM) in the cloudlets. We first
proved that this jointly optimisation problem is NP-Hard, and
then we proposed the PL-Edge scheme to minimise the end-
to-end latency between UEs and VMs by not performing
only VM migrations but also policy migrations since network
policies is a reality in any computer network. Preliminary
results have shown that the proposed scheme for mobile
edge computing was able to reduce the average latency by
up to 45% while maintaining the throughput of policy-flows
constant, besides strictly satisfying requirements of network
policies. Future works include a scheme that also involves the
network policy migration on the communication among VMs
in cloudlets (within the carrier’s premises) and VMs in the
cloud (outside carrier’s premises).

ACKNOWLEDGMENT

The work has been supported by the UK Engineering
and Physical Sciences Research Council (EPSRC) grants
EP/P004407/1 and EP/P004024/1.

REFERENCES

[1] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer
(Long. Beach. Calif)., vol. 50, no. 1, pp. 30–39, jan 2017.

[2] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy, and Y. Zhang,
“Mobile edge cloud system: Architectures, challenges, and approaches,”
IEEE Systems Journal, vol. PP, no. 99, pp. 1–14, 2017.

[3] Z. Chen, L. Jiang, W. Hu, K. Ha, B. Amos, P. Pillai, A. Hauptmann, and
M. Satyanarayanan, “Early Implementation Experience with Wearable
Cognitive Assistance Applications,” in Work. Wearable Syst. Appl. -
WearSys ’15, 2015, pp. 33–38.

[4] T. Taleb, “Toward carrier cloud: Potential, challenges, and solutions,”
IEEE Wirel. Commun., vol. 21, no. 3, pp. 80–91, 2014.

[5] X. Sun and N. Ansari, “Green Cloudlet Network: A Distributed Green
Mobile Cloud Network,” IEEE Netw., vol. 31, no. 1, pp. 64–70, 2017.

[6] V.-G. Nguyen, T.-X. Do, and Y. Kim, “SDN and Virtualization-Based
LTE Mobile Network Architectures: A Comprehensive Survey,” Wireless
Personal Communications, vol. 86, no. 3, pp. 1401–1438, feb 2016.

[7] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya,
P. Pillai, and M. Satyanarayanan, “You Can Teach Elephants to Dance:
Agile VM Handoff for Edge Computing,” in 2nd ACM/IEEE Symposium
on Edge Computing, October 2017.

[8] L. Cui, R. Cziva, F. P. Tso, and D. P. Pezaros, “Synergistic policy and
virtual machine consolidation in cloud data centers,” in IEEE INFOCOM
2016 - 35th IEEE Int. Conf. Comput. Commun. IEEE, 2016, pp. 1–9.

[9] J. Halpern and C. Pignataro, “ Service Function Chaining (SFC)
Architecture,” Internet Requests for Comments, RFC Editor, RFC 7665,
October 2015. [Online]. Available: https://tools.ietf.org/html/rfc7665

[10] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and
M. Satyanarayanan, “Quantifying the impact of edge computing on
mobile applications,” in ACM SIGOPS AsPac Wkshop on Systems, 2016.

[11] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and
T. Magedanz, “Service function chaining in next generation networks:
State of the art and research challenges,” IEEE Communications Mag-
azine, vol. 55, no. 2, pp. 216–223, February 2017.

[12] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer,
Berlin, Germany, 2004.

[13] C. Yu, C. Lumezanu, A. Sharma, Q. Xu, G. Jiang, and H. V. Madhyastha,
“Software-Defined Latency Monitoring in Data Center Networks,” Pas-
siv. Act. Meas. (Pam 2015), vol. 8995, pp. 360–372, 2015.

[14] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar,
and A. Iyer, “Remedy: Network-aware Steady State VM Management
for Data Centers,” in Int’l. Conf. on Research Networking, 2012.

[15] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling Innovation in Network
Function Control,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4,
pp. 163–174, Aug. 2014.

