961 research outputs found

    Modeling functional requirements using tacit knowledge: a design science research methodology informed approach

    Get PDF
    The research in this paper adds to the discussion linked to the challenge of capturing and modeling tacit knowledge throughout software development projects. The issue emerged when modeling functional requirements during a project for a client. However, using the design science research methodology at a particular point in the project helped to create an artifact, a functional requirements modeling technique, that resolved the issue with tacit knowledge. Accordingly, this paper includes research based upon the stages of the design science research methodology to design and test the artifact in an observable situation, empirically grounding the research undertaken. An integral component of the design science research methodology, the knowledge base, assimilated structuration and semiotic theories so that other researchers can test the validity of the artifact created. First, structuration theory helped to identify how tacit knowledge is communicated and can be understood when modeling functional requirements for new software. Second, structuration theory prescribed the application of semiotics which facilitated the development of the artifact. Additionally, following the stages of the design science research methodology and associated tasks allows the research to be reproduced in other software development contexts. As a positive outcome, using the functional requirements modeling technique created, specifically for obtaining tacit knowledge on the software development project, indicates that using such knowledge increases the likelihood of deploying software successfully

    PoN-S : a systematic approach for applying the Physics of Notation (PoN)

    Get PDF
    Visual Modeling Languages (VMLs) are important instruments of communication between modelers and stakeholders. Thus, it is important to provide guidelines for designing VMLs. The most widespread approach for analyzing and designing concrete syntaxes for VMLs is the so-called Physics of Notation (PoN). PoN has been successfully applied in the analysis of several VMLs. However, despite its popularity, the application of PoN principles for designing VMLs has been limited. This paper presents a systematic approach for applying PoN in the design of the concrete syntax of VMLs. We propose here a design process establishing activities to be performed, their connection to PoN principles, as well as criteria for grouping PoN principles that guide this process. Moreover, we present a case study in which a visual notation for representing Ontology Pattern Languages is designed

    Do Process Modelling Techniques Get Better? A Comparative Ontological Analysis of BPMN

    Get PDF
    Current initiatives in the field of Business Process Management (BPM) strive for the development of a BPM standard notation by pushing the Business Process Modeling Notation (BPMN). However, such a proposed standard notation needs to be carefully examined. Ontological analysis is an established theoretical approach to evaluating modelling techniques. This paper reports on the outcomes of an ontological analysis of BPMN and explores identified issues by reporting on interviews conducted with BPMN users in Australia. Complementing this analysis we consolidate our findings with previous ontological analyses of process modelling notations to deliver a comprehensive assessment of BPMN

    Intangible trust requirements - how to fill the requirements trust "gap"?

    Get PDF
    Previous research efforts have been expended in terms of the capture and subsequent instantiation of "soft" trust requirements that relate to HCI usability concerns or in relation to "hard" tangible security requirements that primarily relate to security a ssurance and security protocols. Little direct focus has been paid to managing intangible trust related requirements per se. This 'gap' is perhaps most evident in the public B2C (Business to Consumer) E- Systems we all use on a daily basis. Some speculative suggestions are made as to how to fill the 'gap'. Visual card sorting is suggested as a suitable evaluative tool; whilst deontic logic trust norms and UML extended notation are the suggested (methodologically invariant) means by which software development teams can perhaps more fully capture hence visualize intangible trust requirements

    Cognitive Effectiveness of Visual Instructional Design Languages

    Get PDF
    The introduction of learning technologies into education is making the design of courses and instructional materials an increasingly complex task. Instructional design languages are identified as conceptual tools for achieving more standardized and, at the same time, more creative design solutions, as well as enhancing communication and transparency in the design process. In this article we discuss differences in cognitive aspects of three visual instructional design languages (E²ML, PoEML, coUML), based on user evaluation. Cognitive aspects are of relevance for learning a design language, creating models with it, and understanding models created using it. The findings should enable language constructors to improve the usability of visual instructional design languages in the future. The paper concludes with directions with regard to how future research on visual instructional design languages could strengthen their value and enhance their actual use by educators and designers by synthesizing existing efforts into a unified modeling approach for VIDLs

    A Semiotics View of Modeling Method Complexity - The Case of UML

    Get PDF
    Unified Modeling Language (UML) is the standard modeling language for object oriented system development. Despite its status as a standard, UML’s formal specification is fuzzy and its theoretical foundation is weak. Semiotics, the study of signs, provides us good theoretical foundation for UML research as UML graphical notations are some kinds of signs. In this research, we use semiotics to study the graphical notations in UML. We hypothesized that using iconic signs as UML graphical notations leads to more accurate representation and arouses fewer connotations than using symbolic signs. Since symbolic signs involve more learning efforts, we assume that expert users of UML will perform better with symbolic signs than novice users. We created an open-ended survey to test these hypotheses. The qualitative analysis of the survey process can help us gain in-depth understanding of the complexity of modeling language graphical notations. In addition, the introduction of semiotics in this research helps build a solid theoretical foundation of IS modeling method research

    Combining Objects with Rules to Represent Aggregation Knowledge in Data Warehouse and OLAP Systems

    Get PDF
    Les entrepôts de données reposent sur la modélisation multidimensionnelle. A l'aide d'outils OLAP, les décideurs analysent les données à différents niveaux d'agrégation. Il est donc nécessaire de représenter les connaissances d'agrégation dans les modèles conceptuels multidimensionnels, puis de les traduire dans les modèles logiques et physiques. Cependant, les modèles conceptuels multidimensionnels actuels représentent imparfaitement les connaissances d'agrégation, qui (1) ont une structure et une dynamique complexes et (2) sont fortement contextuelles. Afin de prendre en compte les caractéristiques de ces connaissances, nous proposons de les représenter avec des objets (diagrammes de classes UML) et des règles en langage PRR (Production Rule Representation). Les connaissances d'agrégation statiques sont représentées dans les digrammes de classes, tandis que les règles représentent la dynamique (c'est-à-dire comment l'agrégation peut être effectuée en fonction du contexte). Nous présentons les diagrammes de classes, ainsi qu'une typologie et des exemples de règles associées.Agrégation ; Entrepôt de données ; Modèle conceptuel multidimensionnel ; OLAP ; Règle de production ; UML
    • …
    corecore