
PoN-S: A Systematic Approach for Applying
the Physics of Notation (PoN)

Maria das Graças da Silva Teixeira1(&), Glaice Kelly Quirino1,
Frederik Gailly2, Ricardo de Almeida Falbo1, Giancarlo Guizzardi1,

and Monalessa Perini Barcellos1

1 Ontology and Conceptual Modeling Research Group (NEMO),
Federal University of Espírito Santo, Vitoria, ES, Brazil

maria.teixeira@ufes.br,

{gksquirino,falbo,gguizzardi,monalessa}@inf.ufes.br
2 Faculty of Economics and Business Administration,

Ghent University, Ghent, Belgium
frederik.gailly@ugent.be

Abstract. Visual Modeling Languages (VMLs) are important instruments of
communication between modelers and stakeholders. Thus, it is important to
provide guidelines for designing VMLs. The most widespread approach for
analyzing and designing concrete syntaxes for VMLs is the so-called Physics of
Notation (PoN). PoN has been successfully applied in the analysis of several
VMLs. However, despite its popularity, the application of PoN principles for
designing VMLs has been limited. This paper presents a systematic approach for
applying PoN in the design of the concrete syntax of VMLs. We propose here a
design process establishing activities to be performed, their connection to PoN
principles, as well as criteria for grouping PoN principles that guide this process.
Moreover, we present a case study in which a visual notation for representing
Ontology Pattern Languages is designed.

Keywords: Concrete syntax � Design process � Visual Modeling Language �
Physics of Notation � Ontology-Pattern Languages

1 Introduction

Visual Modeling Languages (VMLs) are important instruments of communication
between modelers and stakeholders. The quality of a VML influences the results of a
modeling task [1]. Thus, it is relevant to provide guidelines for designing VMLs.
Basically, a VML comprises an abstract syntax, which defines the modeling elements
(constructs) of the language, and a concrete syntax, which defines the representational
elements (symbols) of the language [2]. The concrete syntax can be constituted of one or
more dialects, which are different symbol sets to represent the same abstract syntax.
These different dialects reflect variations in the language users’ profile and modeling task
application [3]. Complementary to these alternative syntaxes, there are representation
strategies for managing model complexity, which identify mechanisms to visualize large
(or complex) models. Our focus is on the design of concrete syntaxes for VMLs.

© Springer International Publishing Switzerland 2016
R. Schmidt et al. (Eds.): BPMDS/EMMSAD 2016, LNBIP 248, pp. 432–447, 2016.
DOI: 10.1007/978-3-319-39429-9_27

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55822997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Thus, we are interested in, given an abstract syntax, how to design the correspondent
concrete syntax, its complementary dialects and representation strategies to manage
model complexity.

The most widespread work in the area of designing visual aspects of modeling
languages is the Physics of Notation (PoN) [3]. PoN defines an approach that is
supposed to be used for designing cognitively effective visual notations, i.e. notations
that are optimized for being processed by the human mind. PoN consists of nine
principles that are based on theories and empirical evidence from a wide range of fields
[4]. However, PoN does not prescribe any method or process for systematically
applying its principles [5, 6].

In this paper, we present a systematic approach for bridging the theory and practice
of PoN in the design of concrete syntaxes for VMLs. We term this approach PoN-
Systematized (PoN-S).1 The process establishes an ordered set of tasks and suggests
when to apply the PoN principles. It takes into account a way of grouping these
principles. Also, we describe a case study applying the approach in the design of the
concrete syntax of a visual language for modeling Ontology Pattern Languages [7].

This paper is structured as follow. Section 2 presents the foundations of PoN.
Section 3 describes the proposed process for systematizing the application of PoN.
Section 4 presents the case study. Section 5 discusses some related works. Finally,
Sect. 6 presents our final considerations.

2 Fundamentals of the Physics of Notation (PoN)

PoN defines a set of principles for designing cognitively effective visual notations. The
approach considers information visualization and pragmatic theories in order to
improve the cognitive effectiveness of VMLs, which is defined as “the speed, ease, and
accuracy with which a representation can be processed by the human mind” [3].

Following the tradition in the literature, PoN [3] considers the following elements
as the ingredients of a visual notation: a set of graphical symbols (visual vocabulary), a
set of compositional rules for forming valid expression (visual grammar), and semantic
definitions for each symbol (visual semantics). The set of symbols and compositional
rules form the visual (concrete) syntax. Graphical symbols are used to signify or
symbolize (perceptually represent) semantic constructs, typically defined by a
meta-model. An expression in a visual notation is called a visual sentence or diagram.
Diagrams are composed of instances of graphical symbols arranged according to the
rules of the visual grammar [8].

PoN identifies nine principles for designing cognitively effective visual notations,
namely [3]: (i) Semiotic Clarity: “There should be a 1:1 correspondence between a
meta-model construct and a graphical symbol”; (ii) Semantic Transparency: “Use
symbols whose appearance suggests their meaning”; (iii) Perceptual Discriminability:
“Symbols should be clearly distinguishable from one another”; (iv) Complexity

1 PONS is a region of the brainstem with neural pathways that carry sensory signals including those
related to eye movement. Etymologically, the term from Latin also means bridge.

PoN-S: A Systematic Approach for Applying the Physics of Notation (PoN) 433

Management: “Include explicit mechanisms for dealing with complexity”; (v) Cogni-
tive Integration: “Include explicit mechanisms to support integration of information
from different diagrams”; (vi) Visual Expressiveness: “Use the full range and capacities
of visual variables”; (vii) Graphic Economy: “The number of different graphical
symbols should be cognitively manageable”; (viii) Dual Coding: “Use text to com-
plement graphics”; (ix) Cognitive Fit: “Use different visual dialects for different tasks
and audiences”.

There are in the literature a number of concrete cases of the application of PoN, for
instance: (i) in [8], the authors describe the evaluation and redesign of a visual notation
for the i* language. The publication describes a notation redesign effort and a
description of the redesign process employed, which adds operational characteristics to
PoN. This work is used as a study in [4], which analyzes the influence of model readers
on the language concrete syntax; (ii) in [6], the authors evaluated the UCM visual
notation and present not only the evaluation and redesign proposal, but their impres-
sions concerning the application of the approach.

An important consideration is that the principles in PoN influence one another.
Knowledge of these influence relations can be used to spot tradeoffs (where principles
conflict with one another), as well as synergies (where principles complement or
reinforce one another). In [3], Moody presents detailed descriptions of each principle
and the influence relations between them. However, when a designer is applying these
principles in a design process, s/he needs further design guidance. For instance, when
should s/he apply a principle? In which sequence should principles be applied? Which
principles should be applied in tandem? In order to overcome this limitation, we
propose a systematic process for applying PoN.

3 PoN Systematized (PoN-S)

In this section, we present an approach for systematizing the application of PoN in the
design of concrete syntax of VMLs. The methodology we followed is based on the
Design Science approach discussed in [9]. The steps carried out here were: (i) we
identified the design questions that a developer needs to answer; (ii) we established
how the PoN principles are related to these design questions; (iii) in order to sys-
tematize the process, we described groups of PoN principles; (iv) we added ordering
relations between the design tasks constituting the design process. Our approach is
based not only on the foundations of PoN [3], but also on works that have applied PoN
for analysis or (re)design of VMLs, as [4–6, 8].

Design questions: When designing the VML’s concrete syntax, we should deal with
concerns at different levels. First, we need to decide whether different dialects for the
same abstract syntax are needed. The motivation for creating more than one dialect
should be clearly identified (e.g., the fact that the language must be suitable for more
than one stakeholder profile, modeling task or problem domain characteristics). Sec-
ond, at the language level, we need to determine the symbols to be used in the concrete
syntax. Finally, at the instance level, we are concerned with the development of dia-
grams using the proposed concrete syntax. Table 1 presents the concerns for these

434 Maria das Graças da Silva Teixeira et al.

different levels as design questions and identifies the PoN principles that can be applied
to answer them. Answering these design questions helps the designer to understand the
rationale behind the application of each principle, acting as initial guidance. However,
this is not enough for guiding the design effort. To do so, we propose a way of
grouping the principles and a process for applying them when designing a concrete
syntax.

Grouping the Principles: Moody describes a number of influence relations between
pairs of principles [3]. However, most of the time these principles act in group. This
perception is fundamental to guide the VML design process. Thus, we suggest
grouping PoN principles into the following groups:

• Group 1 – Basic principles. This group comprises three principles: Semiotic
Clarity, Semantic Transparency and Perceptual Discriminability. These principles
are considered basic principles, because they should be applied at some extent in the
design of any concrete syntax. They are complementary in the sense that we need to
create a symbol to each construct (Semiotic Clarity), and each of these symbols
should be clearly identifiable (Semantic Transparency), and yet clearly distin-
guishable from other symbols in the language (Perceptual Discriminability). So,
these principles should be applied together in the design of each dialect of the
concrete syntax, and the level they should be in compliance with can vary in each
dialect. Semiotic Clarity acts as a guarantee that the mapping between abstract and

Table 1. Answering to some basic design questions with PoN principles

Design question Related PoN
principles

Dialect set
Do we need different dialects for the abstract syntax? If so, which
dialects should we consider?

Cognitive fit

For each dialect
Language level
Which symbol(s) do we need to create? Semiotic clarity
How to create each symbol? Semantic

transparency
How to relate differents symbols? To what extent two or more symbols
should be similar/different?

Perceptual
discriminability

How visual variables (such as shape, color and texture) and text should
be applied in order to aid the identification of each representational
element?

Visual
expressiveness

Graphic economy
Dual coding

Instance level
Which procedures should we create to support the development of a
(some) diagram(s)? (Depending on the answer to this question, it
may be necessary to create new symbols, affecting decisions at the
language level.)

Complexity
management

Cognitive
integration

PoN-S: A Systematic Approach for Applying the Physics of Notation (PoN) 435

concrete syntaxes is complete, avoiding possible anomalies, i.e., that all necessary
symbols are defined. Perceptual Discriminability is concerned with whether such
symbols are adequately different from (or similar to, depending on the case) the
others. Finally, Semantic Transparency is concerned with whether each symbol has
its meaning easily inferred.

• Group 2 – Information complexity management principles. This group comprises
two principles: Complexity Management and Cognitive Integration. These princi-
ples are commonly applied when dealing with large or complex diagrams. They are
complementary, since the former deals with how to organize the information in a
model (probably separating them in several diagrams), and the second refers to how
to keep connection and traceability of the information spread in different diagrams.
Thus, they should be applied together. Basically, this group of principles will be
applied at the level of individual diagrams, giving rise to representation strategies
for managing model complexity. Ideally, the way of addressing information com-
plexity management should be the same (or very similar) in any dialect of the
concrete syntax. Finally, it is worth pointing out that the application of these two
principles can demand the creation of new symbols, hence, affecting the language
level (Group 1).

• Group 3 – Supporting principles. The principles in this group can somehow affect
principles of groups 1 and 2. The support principles are: Visual Expressiveness,
Graphic Economy and Dual Coding. Visual Expressiveness is connected to the
other principles (except Dual Coding), in the sense that it provides the mechanisms
(as visual variables) for implementing the other principles. Graphic Economy is also
connected to the other principles, since it establishes a way to control them, trying
to keep them as simple as possible. We consider here Dual Coding to refer only to
redundant textual representational support.

• Group 4 – Dialect set principle. This group, in fact, contains only one principle:
Cognitive Fit. This principle has an indirect connection to the other principles,
because the other principles are applied to each dialect of the concrete syntax at a
time, while Cognitive Fit is about defining the set of dialects.

The principles of a group can interact with principles of another group, as in Group 3
(which influences groups 1 and 2). Furthermore, the principles inside a group can
interact with each other. Typically, this intra-group relationship is stronger than the
inter-group relationships. This is a reason for grouping the principles in such way.

Design process: The design questions and groups of principles give us some guidance
for designing the concrete syntax. However, to truly systematize the application of
PoN, we need a design process for guiding this. Figures 1, 2, 3 and 4 present the
proposed design process. This process is structured according to the concerns shown in
Table 1, starting by the concern related to the dialect set, and in the sequel addressing
concerns related to the language level and then the instance level, for each dialect. Each
figure presents a part of the process, including inputs, outputs, tasks and decisions to be
made. The process is represented by means of an extension the UML activity diagrams
notation, introducing a new modeling element: PoN principle. A PoN principle can be
seen as a guideline to perform an activity and it is represented by means of an ellipse,
which is connected by a line to the activity that applies the principle at hand.

436 Maria das Graças da Silva Teixeira et al.

Fig. 1. PoN-S design process overview

Fig. 2. “Define the dialect symbol set” activity

PoN-S: A Systematic Approach for Applying the Physics of Notation (PoN) 437

Figure 1 depicts the whole design process, which comprises two main stages:
Define dialect set and Design dialect. In the stage Define dialect set, the designer shall
identify the requirements for the VML (modeling task, stakeholder profile, problem
domain characteristics) that help to Define the size of the language dialect set. Next, in
the activity Identify the dialect goal and directives for its design, each dialect should be
characterized, establishing its goal and directives for its design. In this task, the

Fig. 3. “Apply support principles” activity

Fig. 4. “Identify ways to manage model complexity” activity

438 Maria das Graças da Silva Teixeira et al.

designer should take into account the influence relations (conflicts or synergies) that
exist among PoN principles (see [3]). It is not possible to establish the same level of
compliance to all principles. So, the designer should choose the principles to highlight
in each dialect. The stage Define dialect set should be performed considering language
abstract syntax (as input) and the Cognitive Fit principle (as method).

In the second stage (Design dialect), each dialect identified should have its set of
symbols (representational elements) defined in accordance to the goal and directives
previously identified. This stage has two complex tasks: (i) Define the dialect symbol
set, which is responsible for defining representational elements for the model elements
identified by the abstract syntax; and (ii) Identify ways to manage model complexity, an
optional task performed when the amount of elements requires managing model
complexity. The input for these tasks are the language dialect set and the abstract
syntax. The output is the concrete syntax, and optionally some representation strategies
to deal with size and complexity of the models. These two complex tasks are further
detailed in Figs. 2 and 4, respectively.

Figure 2 depicts the steps for defining the dialect symbol set for each dialect
previously identified. This activity starts by choosing a model element to be repre-
sented. This task is guided by Semiotic Clarity principle to ensure that each model
element will be represented by exactly one symbol, unless this situation is required due
to the directives established for the dialect. Once the model element to be represented is
chosen, we need to define a symbol for it (task Define a symbol to the modeling
element). This activity is guided by the Semantic Transparency principle in order to
establish a clear meaning to the symbol. Also, we should relate the chosen symbol to
the other symbols already defined in the concrete syntax, following the Perceptual
Discriminability principle. This task aims at evaluating the visual distance between the
new symbol and the other symbols already defined. These two tasks can be supported
by the application of supporting principles (see Fig. 3). They are performed in a loop
until all the representational elements of that dialect have been defined.

The Apply supporting principles activity depicted in Fig. 3 deals with the possible
application of three supporting principles: Visual Expressiveness, Graphic Economy
and Dual Coding. The designer can apply each principle as much as s/he deems
necessary. There is no pre-defined order to be followed. The inputs are the language
abstract and concrete syntaxes and the characteristics of the dialect. The output can be
an update of the language concrete syntax or an update of some representation strategy
for managing model complexity.

The Improve the use of visual variables activity is guided by the Visual Expres-
siveness principle. In this task, the designer shall review the symbol(s) (or strategies),
possibly updating the visual variables values to maximize their expressiveness. The
designer can do this individually (per symbol) or considering the whole symbol set.
The Simplify the symbol set activity is guided by the Graphic Economy principle. In
this task, the designer may also review the symbol(s) (or strategies), now with the goal
of simplifying the dialect. Finally, in the Define textual complement activity, by
applying the Dual Coding principle, the designer should evaluate when it is useful to
introduce redundancy through the use of text. This can be necessary when the designer
deems that the text will increase symbol expressiveness.

PoN-S: A Systematic Approach for Applying the Physics of Notation (PoN) 439

After defining the symbols of a dialect, the designer must decide if it is necessary to
manage the model complexity in diagrams developed using this dialect. Therefore, the
Identify ways to manage model complexity activity is an optional activity whose
importance increases as the language grows in size and complexity.

Figure 4 details the complex activity Identify ways to manage model complexity.
The inputs for this activity are the language abstract and concrete syntaxes as well as
the characteristics of the dialect set. The outputs are the language concrete syntax (in
case it suffers some update) and representation strategies for managing model com-
plexity (as many as the designer deems necessary).

The first task is Manage model complexity, which is guided by the Complexity
Management principle. In this task, representation strategies for managing the com-
plexity of diagrams written in that dialect shall be established. An example is the use of
modularization. As a complement to this task, there is the task Integrate spread
information, which is guided by the Cognitive Integration principle. This task is
responsible for establishing ways to trace information spread in several diagrams and
strategies for connecting them. It is important to say that these two tasks can be applied
in parallel, resulting in a single representation strategy that is in accordance with both
aspects of complexity management (organization and integration of information). In
fact, both tasks are applied in independent loops until deemed sufficient by the
designer. Usually, each cycle results in a representation strategy for managing model
complexity, which is complemented by new concrete syntax elements, when necessary.

4 Applying PoN-S: A Case Study

In a preliminary evaluation of PoN-S, a case study was performed aiming at designing
a visual notation for representing Ontology Pattern Languages (OPLs). An OPL is a
network of interrelated domain-related ontology patterns that provides holistic support
for solving ontology development problems for a specific domain. It contains a set of
interrelated domain-related ontology patterns, plus a process providing explicit guid-
ance on what problems can arise in that domain, informing the order in which these
problems should be addressed, and suggesting one or more patterns to solve each
specific problem [7, 10]. For adequately representing OPLs, two types of models are
necessary: a structural model, showing the patterns and the dependency relationships
between them, and a process model, showing, among other things, the activities of
applying the patterns, decision points, and entry and end points in the OPL process.

Regarding the process model, in a nutshell, its meta-model is an extension for
representing OPLs of the meta-model of the UML activity diagram [9]. For this reason,
its concrete syntax is based on the UML notation for activity diagrams. This has the
advantage of benefiting users who are familiar with this notation. Due to space limi-
tations, however, in this paper we do not discuss the design of the visual notation for
the process model. Our focus here is on discussing the application of PoN-S, and thus
we concentrate in the design of the visual notation for the structural model.

Figure 5 shows the meta-model of the language concerning the OPL structural
model. This model is composed of OPL Structural Elements. There are two types of
OPL Structural Elements: Pattern and Pattern Group. A Pattern represents a

440 Maria das Graças da Silva Teixeira et al.

domain-related ontology pattern, i.e., a small and reusable fragment of an ontology
conceptual model, extracted from a reference ontology [11]. A Pattern Group is a way
of grouping related patterns and other pattern groups. Thus, a Pattern Group is
composed by OPL Structural Elements. A special type of pattern group is the Variant
Pattern Group, which is a set of (variant) patterns that solve the same problem, but
each in a different way. Only one pattern from a Variant Pattern Group can be used at a
time. Patterns that compose a Variant Pattern Group are variants of each other, giving
rise to the derived relationship variantOf between patterns.

Patterns may depend on other patterns, i.e., for applying a pattern p2 another
pattern p1 has to be applied first. An OPL should be able to represent dependencies
between patterns or between a Pattern Group and a Pattern. The requires relationship
captures this dependency. In the case of a dependency between a Pattern Group and a
Pattern, the following rule applies: If a pattern p1 is part of a pattern group pg and pg
requires a pattern p2, then p1 requires p2. Finally, a Pattern may require the application
of a pattern from a Variant Pattern Group.

As Fig. 1 shows, the design process started by identifying the dialect requirements,
which includes: (i) Domain characteristics: the visual notation for representing OPLs.
Each OPL can refer to a different domain. Thus, this is the case of a
domain-independent language; (ii) Stakeholder profile: OPLs are typically used by
ontology engineers (both beginners and experienced); (iii) Modeling task: developing
domain ontologies by reusing domain-related ontology patterns.

Although there are stakeholders with different levels of experience, the OPL visual
notation should be simple and intuitive for all kinds of stakeholders. Thus, the designer
established that only one dialect is enough. The goal of this dialect is to provide a
simple and intuitive visual notation for ontology engineers to develop domain
ontologies by reusing ontology patterns [7, 10]. The notation should contain symbols to
represent all OPL constructs without ambiguity. Moreover, in case of the use of colors,
it should be possible to print the diagrams in gray scale without denting their
comprehensibility.

The next step is to define the dialect symbol set. A loop was performed, in which
each model element was characterized and had a symbol defined for it. This loop was
guided by the principles of Semiotic Clarity, Semantic Transparency, Perceptual Dis-
criminability as well as the supporting principles. Initially, considering the abstract

Fig. 5. OPL structural meta-model

PoN-S: A Systematic Approach for Applying the Physics of Notation (PoN) 441

syntax defined by the meta-model shown in Fig. 5, and taking into account the
Semiotic Clarity principle, a 1:1 correspondence between the meta-model constructs
and graphical symbols was defined. This otherwise isomorphic mapping has two
exceptions: the designer decided that it was not necessary to assign a symbol to the
OPL Structural Element construct (an abstract modeling element), but only to its
(concrete) subtypes (Pattern and Pattern Group). Moreover, symbols should be
assigned to the relationships between these constructs, except for the variantOf rela-
tionship, since it is a derived association. Thus, symbols should only be assigned to the
constructs shown in gray in Fig. 5 and to the regular associations between them.

The designer started assigning a symbol to the Pattern construct. Since s/he was
dealing with a domain-independent language, s/he decided to represent patterns by
rectangles (an abstract sign). This choice was done considering that this is a common
symbol used for representing patterns in Software Engineering Languages (e.g., UML
class diagrams). Concerning Semantic Transparency, on one hand, this symbol is
considered semantically opaque, since it does not inform its meaning directly [3].
However, on the other hand, it can be considered a good design decision, given that
this symbol is easily recalled [3].

Pattern Groups are represented by figures closed by straight solid lines (solid
polygons). For representing Variant Pattern Groups, the same notion was applied, but
now using dashed lines. This decision was taken considering the Perceptual Dis-
criminability principle, aiming at guaranteeing that symbols representing groups have a
small visual distance. Furthermore, the visual variables texture and color were used to
differentiate them. The lines of Variant Pattern Groups are dashed and red, while the
lines of Pattern Groups are solid and blue.

For representing the relation between Patterns and Pattern Groups, the designer
chose the notion of spatial containment: Patterns that are part of a Pattern Group
represented as spatially enclosed by the symbol representing the latter. This choice
affords the so-called inferential free-rides to the language, i.e., visual querying and
reasoning operations of minimal cognitive costs [12]. Moreover, it is noteworthy that
there is a visual variable that qualifies Patterns and Pattern Groups: size. The region
that represents the group encompasses several patterns. Thus, the size of this region is
greater than the rectangle representing the pattern.

Regarding the dependency relations requires and requires a pattern of, both are
represented by an arrow from the dependant to the dependee. For differentiating
between them, arrows representing the requires association are symbolized with solid
lines, in contrast to the dashed lines for the requires a pattern of association. This
decision is in line with the one of representing Pattern Groups using solid lines, and
Variant Pattern Groups using dashed lines. Thus, it takes the Perceptual Discrim-
inability principle into account. So, these symbols have small visual distances.

It is worthwhile to point out that supporting principles were also applied for making
the aforementioned choices. Regarding the Visual Expressiveness principle, the pro-
posed visual notation uses the following visual variables: shape, texture and size. Color
values are used as a redundant encoding, because variation in color disappears when a
diagram is printed in grayscale. The designer decided not to apply other visual vari-
ables, keeping the notation as simple as possible.

442 Maria das Graças da Silva Teixeira et al.

The Graphic Economy principle did not play a strong role in this case study. This is
because PoN advocates the use of up to six elements in a dialect and the structural
meta-model considered here has only four classes and three regular associations.
Nevertheless, some decisions were taken aiming at making the language as simple as
possible. In summary, no symbol was assigned to the following meta-model elements:
OPL Structural Element construct, since it is an abstract class in the meta-model (i.e., it
cannot be directly instantiated); whole-part relationship between Pattern Group and
Pattern, since the notion of containment used to represent Pattern Groups also
addresses this relation; and the derived association variant of, since it is also derived
from the representation for Pattern and Pattern Group.

Finally, the Dual Coding principle, which deals with the use of text as an infor-
mation supplement, was not applied. This is because, according to the designer: there´s
a small amount of constructs to represent, their semantic are clear enough without
textual redundancy and use of textual values can be better applied to distinguish
between instances (as instance labels).

After defining an initial version of the concrete syntax, it is time to evaluate if the
language demands representation strategies for managing model complexity. If this is
the case, we should apply the principles of Complexity Management and Cognitive
Integration. The Complexity Management principle emphasizes the importance of
managing the diagrammatic complexity, which is measured by the number of elements
in a diagram, among others. In the case of this case study, the designer recognized the
need for managing complexity. Although the proposed language for representing OPLs
is simple, the models that may be built using it tend to be large. Thus, to increase the
speed and accuracy of understanding the diagrams, the designer decided to introduce a
symbol for representing Pattern Groups (including Variant Pattern Groups) that
encapsulates the Patterns that comprise it. Following the Perceptual Discriminability
principle, the designer chose to represent these alternative forms by means of rectangles
decorated by the following icon (), indicating that this element is detailed in another
diagram2.

Table 2 shows the final concrete syntax for representing OPL structural models.
Figure 6 shows an example of a structural model of an OPL: Service OPL (S-OPL).

This OPL, which provides ontology patterns for service modeling, is discussed in
details in [10]. As shown in this figure, S-OPL is organized in three groups: Service
Offering, Service Negotiation and Agreement and Service Delivery. The Service
Offering Group is composed by three patterns (SOffering, SODescription and
SOCommitments) and two groups of variant patterns (Provider Variant Group and
Target Customer Variant Group). The patterns SODescription and SOCommitments as
well as the Provider and Target Customer Variant Groups require the pattern
SOffering. SOffering, in turn, requires patterns of both Provider and Target Customer
Variant Groups. Provider and Target Customer Variant Groups are both composed of
seven variant patterns each. The Service Negotiation and Agreement Group is com-
posed by four patterns (SNegotiation, SADescription, HPCommitments and

2 This icon is commonly used by UML to represent that an element represented by the decorated
construct encapsulates further elements. A similar symbol is used by ARIS.

PoN-S: A Systematic Approach for Applying the Physics of Notation (PoN) 443

SCCommitments) and three groups of variant patterns (Agreement Variant Group,
Hired Provider Variant Group and Service Customer Variant Group). The Agreement
Variant Group is composed by three patterns: SNegAgree, SOfferAgree, and SAgree-
ment. The first two of these patterns as well as the SNegotiation pattern require
SOffering. The patterns SADescription, HPCommitments and SCCommitments require
a pattern of the Agreement Variant Group. The SAgreement pattern requires patterns of
both Hired Provider and Service Customer Variant Groups (shown as black boxes in
Fig. 6). These two variant groups, in turn, require the SAgreement pattern. Finally, the
Service Delivery Group (shown as a black box in Fig. 6) requires the Service Nego-
tiation and Agreement Group.

5 Related Work

In a brief literature review, executed to identify how concrete syntax of conceptual
modeling languages have been evaluated and designed, we identified PoN as the most
widespread approach for analysis and design of VML concrete syntax [5, 13]. Also, we
noticed that studies discussing efforts in analyzing modeling languages (with associated
redesign suggestions) (e.g., [6, 14]) are more common than those describing efforts in
language design (e.g., [15]).

The need for improving the design process involving PoN has been identified by
many researchers, including Moody himself. In [8], Moody et al. discuss operational
issues of PoN when presenting the analysis and redesign of i* (a language in the
Requirements Engineering field). However, these issues are discussed individually for
each principle, i.e., the authors do not define a process involving all principles. In [4], a
work complementing the i* evaluation described in [8], the authors added the idea of

Table 2. Symbols of the visual notation for OPL structural models

Structural Model
Element Symbol

Pattern

Pattern Group (expanded format)

Pattern Group (black box format)

Variant Pattern Group (expanded format)

Variant Pattern Group (black box format)

Relation “requires”

Relation “requires a pattern of”

444 Maria das Graças da Silva Teixeira et al.

PoN operationalization, highlighting the importance of considering stakeholder profiles
during language design. It is a clear contribution towards considering pragmatic issues
for notation analysis and design. However, once more, they did not define a design
process.

In [5], Storrle and Fish criticize PoN judging that it still needs improvements
towards operationalization. In that article, the authors propose ways for operational-
izing PoN focusing on the analysis task of modeling languages. Moreover, they
established a series of measures that complement the PoN original proposal. However,
they also do not propose a design process.

The work proposed in this paper contributes to this collective effort of proposing
operationalizable techniques for the design of visual languages. In particular, PoN-S is
a methodological contribution that supports language designers in the application of
PoN through the definition of a design process, a gap that has been identified in the
literature.

6 Final Considerations

This paper focused on the elaboration of PoN-S, a design process for applying the PoN
principles in practice. The elements involved in this process model are: inputs, outputs,
tasks, task ordering and procedures (the PoN principles). This process was applied in a
case study aiming at developing a visual notation for Ontology Pattern Languages. The
case study was the first validation of PoN-S. As a result of its execution, the design
process was refined, for example, by identifying the need for a Identify dialect
requirements task. This study also indicated that PoN-S is easy to follow. We are
currently conducting an on going survey whose preliminary findings indicate that the
OPLs’ users approve the resulting concrete syntax.

Fig. 6. S-OPL structural model

PoN-S: A Systematic Approach for Applying the Physics of Notation (PoN) 445

An expected benefit of PoN-S is the establishment of a path that modeling language
designers can follow. This is particularly helpful mainly for novice language designers.
When defining a clear and simple path we are reducing the possibility of errors during
the process. The need to reduce the effort of PoN application is a recognized problem
[6]. Also, a systematic process aids in the standardization of the language design, which
facilitates future maintenance tasks and facilitates teamwork.

The establishment of the tasks constituting PoN-S take into account: (i) the PoN
principles, assuring that every principle is considered; (ii) visual aspects of a VML
(symbol set, dialects, representation strategies for manage model complexity). A cur-
rent limitation of the process is the level of details in which some tasks have been
defined. For example, in Identify ways to manage model complexity task, we state that
strategies should be defined, but we do not identify how to create these strategies.

We are planning to extend the design process of PoN-S to provide more directed
and complete guidelines for the language designer. In particular, ontological theories
such as the ones discussed in [12] are the basis for such future extensions of PoN-S.

Acknowledgments. This research is funded by the Brazilian Research Funding Agency CNPq
(National Council for Scientific and Technological Development) (Processes 461777/2014-2 and
206255/2014-4).

References

1. Krogstie, J., Solvberg, A.: Information Systems Engineering: Conceptual Modeling in a
Quality Perspective. Draft of Book, Information Systems Groups, NTNU, Trondheim,
Norway (2000)

2. Ruiz, M., Costal, D., España, S., Franch, X., Pastor, Ó.: Integrating the goal and business
process perspectives in information system analysis. In: Jarke, M., Mylopoulos, J., Quix, C.,
Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol.
8484, pp. 332–346. Springer, Heidelberg (2014)

3. Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing visual
notations in software engineering. IEEE TSE 35(6), 1–22 (2009)

4. Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0: towards user
comprehensible requirements engineering notations. In: Requirements Engineering
Conference (RE), pp. 115–124. IEEE Computer Society (2013)

5. Störrle, H., Fish, A.: Towards an operationalization of the “Physics of Notations” for the
analysis of visual languages. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke,
P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 104–120. Springer, Heidelberg (2013)

6. Genon, N., Amyot, D., Heymans, P.: Analysing the cognitive effectiveness of the UCM
visual notation. In: Kraemer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS, vol. 6598,
pp. 221–240. Springer, Heidelberg (2011)

7. Falbo, R.A., Barcellos, M.P., Nardi, J.C., Guizzardi, G.: Organizing ontology design
patterns as ontology pattern languages. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L.,
Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 61–75. Springer, Heidelberg (2013)

8. Moody, D.L., Heymans, P., Matulevicius, R.: Visual syntax does matter: improving the
cognitive effectiveness of the i* visual notation. Requir. Eng. 15, 141–175 (2010)

446 Maria das Graças da Silva Teixeira et al.

9. Wieringa, R.J.: Design Science Methodology for Information Systems and Software
Engineering. Springer, London (2014)

10. Falbo, R.A., Quirino, G.K., Nardi, J.C., Barcellos, M.P., Guizzardi, G., Guarino, N., Longo,
A., Livieri, B.: An ontology pattern language for service modeling. In: Proceedings of the
31th Annual ACM Symposium on Applied Computing - ACM-SAC 2016 (2016)

11. Falbo, R.A., Guizzardi, G., Gangemi, A., Presutti, V.: Ontology patterns: clarifying concepts
and terminology. In: Proceedings of the 4th Workshop on Ontology and Semantic Web
Patterns (2013)

12. Guizzardi, G.: Ontology-based evaluation and design of visual conceptual modeling
languages. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain
Engineering. Product Lines, Languages and Conceptual Models, p. 345. Springer, New
York (2013)

13. Genon, N., Heymans, P., Amyot, D.: Analysing the cognitive effectiveness of the BPMN 2.0
visual notation. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol.
6563, pp. 377–396. Springer, Heidelberg (2011)

14. Figl, K., Derntl, M.: The impact of perceived cognitive effectiveness on perceived usefulness
of visual conceptual modeling languages. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.)
ER 2011. LNCS, vol. 6998, pp. 78–91. Springer, Heidelberg (2011)

15. Miske, C., Rothenberger, M.A., Peffers, K.: Towards a more cognitively effective business
process notation for requirements engineering. In: Tremblay, M.C., VanderMeer, D.,
Rothenberger, M., Gupta, A., Yoon, V. (eds.) DESRIST 2014. LNCS, vol. 8463, pp. 360–
367. Springer, Heidelberg (2014)

PoN-S: A Systematic Approach for Applying the Physics of Notation (PoN) 447

	PoN-S: A Systematic Approach for Applying the Physics of Notation (PoN)
	Abstract
	1 Introduction
	2 Fundamentals of the Physics of Notation (PoN)
	3 PoN Systematized (PoN-S)
	4 Applying PoN-S: A Case Study
	5 Related Work
	6 Final Considerations
	Acknowledgments
	References

